Date: June 18 2019

Unified Architecture Framework Profile (UAFP)

Version 1.1

OMG Document Number: Normative dtc/19-06-15

Standard document URL: http://www.omg.org/spec/UAF/1.1

Normative Machine Consumable File(s):

http://www.omg.org/spec/UAF/20190619/UAF.xmi

http://www.omg.org/spec/UAF/20190620/Measurements-Library.xmi

Copyright © 2019, IBM

Copyright © 2019, KDM Analytics

Copyright © 2019, Mega

Copyright © 2019, Object Management Group, Inc.

Copyright © 2019, No Magic Inc. a Dassault Systemes Company

Copyright © 2019, PTC

Copyright © 2019, Sparx Systems

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any

means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed only partially matching the applicable compliance points may claim only that the software was based on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

Table of Contents

PF	REFACE		
1.	INTRO	DDUCTION	3
	1.1	Overview	3
2.	ADDI	FIONAL INFORMATION	4
	2.1	LANGUAGE ARCHITECTURE	
	2.2	CORE PRINCIPLES	
	2.3	REPRESENTING STEREOTYPE CONSTRAINTS	
	2.3.1	Metaconstraint dependency	
	2.3.2	Metarelationship dependency	
	2.3.3	Stereotyped relationship dependency	
3.		TEREOTYPES	
	3.1	UAF	
	3.1.1	UAF::Dictionary	
	3.1.2	UAF::Parameters	
	3.1.3	UAF::Metadata	
	3.1.4	UAF::Strategic	
	3.1.5	UAF::Operational	
	3.1.6	UAF::Services	
	3.1.7	UAF::Personnel	
	3.1.8	UAF::Resources	
	3.1.9	UAF::Security	
	3.1.10	,	
	3.1.1		
	3.1.12		
	3.1.13	,	
4.	UAF \	/IEW SPECIFICATIONS	<u>146</u> 145
	4.1	VIEW SPECIFICATIONS	
	4.1.1	View Specifications::Strategic	
	4.1.2	View Specifications::Operational	
	4.1.3	View Specifications::Services	
	4.1.4	View Specifications::Personnel	
	4.1.5	View Specifications::Resources	
	4.1.6	View Specifications::Security	
	4.1.7	View Specifications::Projects	
	4.1.8	View Specifications::Standards	
	4.1.9	View Specifications::Actual Resources	
	4.1.10	,,	
	4.1.1	, ,	
	4.1.12	, ,	
	4.1.13	, , ,	
	4.1.14	View Specifications::Parameters	<u>213211</u>
5.	MEAS	UREMENT LIBRARY	216 21 4

TABLE OF FIGURES

Figure 2:1 – MapsToCapability Stereotype	5
Figure 2:2 – Connector Extension	5
Figure 2:3 – Capabilities Generalization	6
Figure 2:4 – Visualizing «metarelationship»	6
Figure 2:5 – Use of the AchievedEffect «stereotyped relationship» dependency	7
Figure 3:1 - Alias	8
Figure 3:2 - Definition	9
Figure 3:3 - SameAs	9
Figure 3:4 - ActualCondition	10
Figure 3:5 - ActualEnvironment	10
Figure 3:6 - ActualLocation	
Figure 3:7 - ActualMeasurement	12
Figure 3:8 - ActualMeasurementSet	13
Figure 3:9 - ActualPropertySet	13
Figure 3:10 - Condition	14
Figure 3:11 - Environment	14
Figure 3:12 - EnvironmentProperty	15
Figure 3:13 - GeoPoliticalExtentType	16
Figure 3:14 - Location	17
Figure 3:15 - LocationHolder	18
Figure 3:16 - MeasurableElement	
Figure 3:17 - Measurement	
Figure 3:18 - MeasurementSet	
Figure 3:19 - PropertySet	
Figure 3:20 - ActualState	
Figure 3:21 - ISO8601DateTime	
Figure 3:22 - Exchange	
Figure 3:23 - Resource	
Figure 3:24 - Activity	
Figure 3:25 - CapableElement	
Figure 3:26 - IsCapableToPerform	
Figure 3:27 - PerformsInContext	
Figure 3:28 - ArchitectureMetadata	28
Figure 3:29 - DataModel	
Figure 3:30 - Information	
Figure 3:31 - Metadata	
Figure 3:32 - Rule	
Figure 3:33 - ArchitecturalReference	
Figure 3:34 - Implements	
Figure 3:35 - ActualEnterprisePhase	
Figure 3:36 - Capability	
Figure 3:37 - EnterpriseGoal	
Figure 3:38 - EnterprisePhase	
Figure 3:39 - EnterpriseVision	
Figure 3:40 - VisionStatement	38

Figure 3:41 - WholeLifeEnterprise	39
Figure 3:42 - CapabilityRole	
Figure 3:43 - StructuralPart	40
Figure 3:44 - TemporalPart	40
Figure 3:45 - ActualEnduringTask	41
Figure 3:46 - CapabilityForTask	
Figure 3:47 - EnduringTask	42
Figure 3:48 - AchievedEffect	
Figure 3:49 - Achiever	43
Figure 3:50 - DesiredEffect	<u>44</u> 43
Figure 3:51 - Desirer	44
Figure 3:52 - Exhibits	45
Figure 3:53 - MapsToCapability	45
Figure 3:54 - OrganizationInEnterprise	46
Figure 3:55 - ArbitraryConnector	
Figure 3:56 - ConceptItem	47
Figure 3:57 - ConceptRole	48
Figure 3:58 - HighLevelOperationalConcept	48
Figure 3:59 - KnownResource	
Figure 3:60 - Operational Agent	49
Figure 3:61 - Operational Architecture	
Figure 3:62 - Operational Method	
Figure 3:63 - OperationalParameter	51
Figure 3:64 - OperationalPerformer	52
Figure 3:65 - OperationalPort	<u>52</u> 53
Figure 3:66 - OperationalRole	53
Figure 3:67 - ProblemDomain	54
Figure 3:68 - OperationalConnector	55
Figure 3:69 - OperationalExchange	56
Figure 3:70 - OperationalExchangeItem	57
Figure 3:71 - OperationalInterface	58
Figure 3:72 - OperationalSignal	58
Figure 3:73 - OperationalSignalProperty	59
Figure 3:74 - Operational Activity	<u>60</u> 59
Figure 3:75 - Operational Activity Action	60
Figure 3:76 - Operational Activity Edge	61
Figure 3:77 - OperationalControlFlow	61
Figure 3:78 - OperationalObjectFlow	
Figure 3:79 - StandardOperationalActivity	
Figure 3:80 - OperationalStateDescription	
Figure 3:81 - Operational Message	· · · · · · · · · · · · · · · · · · ·
Figure 3:82 - InformationElement	
Figure 3:83 - OperationalConstraint	
Figure 3:84 - SubjectOfOperationalConstraint	
Figure 3:85 - ServiceSpecification	
Figure 3:86 - ServiceMethod	

Figure 3:87 - ServiceParameter	67
Figure 3:88 - ServicePort	<u>68</u> 67
Figure 3:89 - ServiceSpecificationRole	68
Figure 3:90 - ServiceConnector	69
Figure 3:91 - ServiceInterface	<u>70</u> 69
Figure 3:92 - ServiceFunction	70
Figure 3:93 - ServiceFunctionAction	<u>71</u> 70
Figure 3:94 - ServiceStateDescription	71
Figure 3:95 - ServiceMessage	
Figure 3:96 - ServicePolicy	72
Figure 3:97 - Consumes	
Figure 3:98 - Organization	<u>74</u> 73
Figure 3:99 - OrganizationalResource	74
Figure 3:100 - Person	<u>75</u> 74
Figure 3:101 - Post	75
Figure 3:102 - Responsibility	<u>76</u> 75
Figure 3:103 - Command	
Figure 3:104 - Control	
Figure 3:105 - CompetenceToConduct	77
Figure 3:106 - Competence	
Figure 3:107 - CompetenceForRole	
Figure 3:108 - RequiresCompetence	
Figure 3:109 - ResponsibleFor	
Figure 3:110 - CapabilityConfiguration	
Figure 3:111 - NaturalResource	
Figure 3:112 - PhysicalResource	82
Figure 3:113 - ResourceArchitecture	
Figure 3:114 - ResourceArtifact	
Figure 3:115 - ResourcePerformer	83
Figure 3:116 - Software	
Figure 3:117 - System	
Figure 3:118 - ResourceMethod	
Figure 3:119 - ResourceParameter	86
Figure 3:120 - ResourcePort	86
Figure 3:121 - ResourceRole	87
Figure 3:122 - ResourceConnector	89
Figure 3:123 - ResourceExchange	90
Figure 3:124 - ResourceExchangeItem	91
Figure 3:125 - ResourceInterface	92
Figure 3:126 - ResourceSignal	92
Figure 3:127 - ResourceSignalProperty	
Figure 3:128 - Function	
Figure 3:129 - FunctionAction	
Figure 3:130 - FunctionControlFlow	
Figure 3:131 - FunctionEdge	
Figure 3:132 - FunctionObjectFlow	

Figure 3:133 - ResourceStateDescription	96
Figure 3:134 - ResourceMessage	97
Figure 3:135 - DataElement	97
Figure 3:136 - ResourceConstraint	98
Figure 3:137 - SubjectOfResourceConstraint	98
Figure 3:138 - Forecast	
Figure 3:139 - SubjectOfForecast	100
Figure 3:140 - Technology	100
Figure 3:141 - VersionedElement	
Figure 3:142 - VersionOfConfiguration	101
Figure 3:143 - VersionSuccession	
Figure 3:144 - WholeLifeConfiguration	103
Figure 3:145 - ProtocolImplementation	104
Figure 3:146 - Asset	
Figure 3:147 - Operational Asset	105
Figure 3:148 - Operational Mitigation	106
Figure 3:149 - ResourceAsset	
Figure 3:150 - ResourceMitigation	
Figure 3:151 - SecurityEnclave	
Figure 3:152 - AssetRole	
Figure 3:153 - DataRole	108
Figure 3:154 - InformationRole	
Figure 3:155 - EnhancedSecurityControl	
Figure 3:156 - Enhances	
Figure 3:157 - Protects	110
Figure 3:158 - ProtectsInContext	
Figure 3:159 - SecurityProcess	
Figure 3:160 - SecurityProcessAction	
Figure 3:161 - ActualRisk	
Figure 3:162 - Risk	
Figure 3:163 - SecurityConstraint	
Figure 3:164 - SecurityControl	
Figure 3:165 - SecurityControlFamily	
Figure 3:166 - SubjectOfSecurityConstraint	
Figure 3:167 - Affects	
Figure 3:168 - AffectsInContext	116
Figure 3:169 - Mitigates	
Figure 3:170 - OwnsRisk	
Figure 3:171 - OwnsRiskInContext	118
Figure 3:172 - Project	119
Figure 3:173 - ProjectMilestone	
Figure 3:174 - ProjectMilestoneRole	
Figure 3:175 - ProjectRole	
Figure 3:176 - ProjectStatus	
Figure 3:177 - ProjectTheme	
Figure 3:178 - StatusIndicators	

Figure 3:179 - MilestoneDependency	123
Figure 3:180 - ProjectSequence	123
Figure 3:181 - ProjectActivity	124
Figure 3:182 - ProjectActivityAction	124
Figure 3:183 - ActualProject	125
Figure 3:184 - ActualProjectMilestone	126
Figure 3:185 - ActualProjectMilestoneRole	<u>127126</u>
Figure 3:186 - ActualProjectRole	
Figure 3:187 - Protocol	
Figure 3:188 - ProtocolStack	<u>129</u> 128
Figure 3:189 - Standard	129
Figure 3:190 - ProtocolLayer	<u>130</u> 129
Figure 3:191 - ActualOrganization	<u>131</u> 130
Figure 3:192 - ActualOrganizationalResource	<u>132131</u>
Figure 3:193 - ActualPerson	
Figure 3:194 - ActualPost	<u>133132</u>
Figure 3:195 - ActualResource	<u>133132</u>
Figure 3:196 - ActualResponsibility	
Figure 3:197 - ActualResponsibleResource	
Figure 3:198 - FieldedCapability	
Figure 3:199 - ActualOrganizationRole	
Figure 3:200 - ActualResourceRole	136 135
Figure 3:201 - ActualResourceRelationship	
Figure 3:202 - FillsPost	
Figure 3:203 - ActualService	
Figure 3:204 - ProvidedServiceLevel	
Figure 3:205 - ProvidesCompetence	
Figure 3:206 - RequiredServiceLevel	
Figure 3:207 - OwnsProcess	
Figure 3:208 - ArchitecturalDescription	<u>141</u> 140
Figure 3:209 - Architecture	
Figure 3:210 - Concern	
Figure 3:211 - Stakeholder	<u>143</u> 142
Figure 3:212 - UAFElement	<u>144143</u>
Figure 3:213 - View	
Figure 3:214 - Viewpoint	
Figure 4:1 - Strategic Taxonomy	
Figure 4:2 - Strategic Structure	
Figure 4:3 - Strategic Connectivity	
Figure 4:4 - Strategic States	
Figure 4:5 - Strategic Constraints	
Figure 4:6 - Strategic Roadmap: Deployment	
Figure 4:7 - Strategic Roadmap: Phasing	
Figure 4:8 - Strategic Traceability	
Figure 4:9 - Operational Taxonomy	
Figure 4:10 - Operational Structure	
- · · · · · · · · · · · · · · · · · · ·	

Figure 4:11 - Operational Connectivity	<u>155</u> 154
Figure 4:12 - Operational Processes	<u>157</u> 156
Figure 4:13 - Operational States	<u>158</u> 157
Figure 4:14 - Operational Interaction Scenarios	<u>159</u> 157
Figure 4:15 - Operational Constraints	<u>160</u> 158
Figure 4:16 - Operational Traceability	<u>161</u> 159
Figure 4:17 - Services Taxonomy	<u>162</u> 160
Figure 4:18 - Services Structure	<u>163</u> 161
Figure 4:19 - Services Connectivity	<u>164</u> 162
Figure 4:20 - Services Processes	<u>165</u> 163
Figure 4:21 - Services States	
Figure 4:22 - Services Interaction Scenarios	<u>166</u> 164
Figure 4:23 - Services Constraints	<u>166</u> 164
Figure 4:24 - Services Roadmap	<u>167</u> 165
Figure 4:25 - Services Traceability	<u>168</u> 166
Figure 4:26 - Personnel Taxonomy	<u>169</u> 167
Figure 4:27 - Personnel Sructure	
Figure 4:28 - Personnel Connectivity	<u>171</u> 169
Figure 4:29 - Personnel Processes	<u>172</u> 170
Figure 4:30 - Personnel States	<u>173</u> 171
Figure 4:31 - Personnel Interaction Scenarios	<u>174</u> 172
Figure 4:32 - Personnel Constraints: Competence	<u>175</u> 173
Figure 4:33 - Personnel Constraints: Drivers	<u>176</u> 174
Figure 4:34 - Personnel Constraints: Performance	<u>177</u> 175
Figure 4:35 - Personnel Roadmap: Availability	<u>178</u> 176
Figure 4:36 - Personnel Roadmap: Evolution	<u>179</u> 177
Figure 4:37 - Personnel Roadmap: Forecast	<u>180</u> 178
Figure 4:38 - Personnel Traceability	<u>181</u> 179
Figure 4:39 - Resources Taxonomy	<u>182</u> 180
Figure 4:40 - Resources Structure	<u>183</u> 181
Figure 4:41 - Resources Connectivity	<u>184</u> 182
Figure 4:42 - Resources Processes	<u>185</u> 183
Figure 4:43 - Resources States	<u>186</u> 184
Figure 4:44 - Resources Interaction Scenarios	<u>186</u> 184
Figure 4:45 - Resources Constraints	<u>187</u> 185
Figure 4:46 - Resources Roadmap: Evolution	<u>188</u> 186
Figure 4:47 - Resources Roadmap: Forecast	<u>189</u> 187
Figure 4:48 - Resources Traceability	<u>190</u> 188
Figure 4:49 - Security Taxonomy	<u>191</u> 189
Figure 4:50 - Security Structure	<u>192</u> 190
Figure 4:51 - Security Connectivity	
Figure 4:52 - Security Processes	<u>194</u> 192
Figure 4:53 - Security Constraints	<u>195</u> 193
Figure 4:54 - Security Traceability	<u>197</u> 195
Figure 4:55 - Project Taxonomy	<u>198</u> 196
Figure 4:56 - Project Structure	<u>199</u> 197

Figure 4:57 - Project Connectivity	00
Figure 4:59 - Project Roadmap	
	01
Figure 4:60 - Project Traceability	
Figure 4:61 - Standards Taxonomy	02
Figure 4:62 - Standards Structure	03
Figure 4:63 - Standards Roadmap	04
Figure 4:64 - Standards Traceability	05
Figure 4:65 - Actual Resources Structure	06
Figure 4:66 - Actual Resources Connectivity	07
Figure 4:67 - Actual Resources Traceability	07
Figure 4:68 - Dictionary	08
Figure 4:69 - Requirements	09
Figure 4:70 - Summary & Overview	09
Figure 4:71 - Information Model	10
Figure 4:72 - Parameters: Environment	11
Figure 4:73 - Parameters: Measurements	12

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies and academia. OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available from this URL: http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

- CORBA/IIOP
- Data Distribution Services
- Specialized CORBA IDL/Language Mapping Specifications

Modeling and Metadata Specifications

- UML, MOF, CWM, XMI
- UML Profile Specifications

Platform Independent Model (PIM) - Platform Specific Model (PSM) - Interface Specifications

- CORBAServices
- CORBAFacilities
- OMG Domain Specifications
- CORBA Embedded Intelligence Specifications
- CORBA Security Specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at: OMG Headquarters 109 Highland Avenue, Needham, MA 02494 USA Tel: +1-781-444-0404 Fax: +1-781-444-0320 Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in *italics* are defined in the glossary. Italic text also represents the name of a document, specification, or other publication.

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://issues.omg.org/issues/createnew-issue).

1.Introduction

1.1 Overview

This document is a normative supplement to the UAF DMM document (c4i/19-06-16).

This document specifies a UAF profile to enable practitioners to express architectural model elements and organize them in a set of domains, model kinds, and view specification (specified in the UAF DMM) that support the specific needs of end users in defense and commercial industry.

UAFP 1.1 defines a set of stereotypes and model elements and relationships to satisfy the requirements of the UPDM 3.0 RFP and the UAF DMM. The profile specification documents the language architecture in terms of UML profiling mechanism.

A number of UAFP stereotypes inherit from SysML stereotypes where reuse of SysML semantics is necessary. The reusable portions of the SysML specification are not included directly in the specification but are made explicit through the stereotype inheritance.

2. Additional Information

2.1 Language Architecture

The UAFP specification reuses a subset of UML 2.5.1 and SysML 1.5 and provides additional extensions needed to address requirements in the UPDM 3.0 RFP Mandatory Requirements. Those requirements form the basis for this document. This document describes the language architecture in terms of the UML 2.5.1 and SysML 1.5 parts that are reused and the defined UML 2.5.1 extensions; and specifies how to implement UAFP. This clause explains design principles and how they are applied to define the UAFP language architecture.

2.2 Core Principles

The fundamental design principles for UAFP are:

- **Requirements-driven**: UAFP is intended to satisfy the requirements of the UPDM 3.0 RFP Mandatory Requirements.
- UAF Domain Metamodel (DMM) driven: The DMM served as a foundation for profile development.
- Reuse of existing specifications: UAFP reuses UML/SysML wherever practical to satisfy the requirements of the UAFP 3.0 RFP and leverage features from both UML and SysML to provide a robust modeling capability. Consequently, UAFP is intended to be relatively easy to implement for vendors who support UML 2.x and SysML 1.x.
- Compliance levels: UAFP has a single compliance level based upon a combination of the reuse of UML and SysML elements. It is expected that the views that are created as result of this profile have frames that reflect the underlying SysML diagram type that is used as the basis for the view. It also expected that the graphical notation used to display elements within those views correspond to the standard SysML graphical notation of the SysML/UML metaclass that the stereotype extends.
- **Interoperability**: UAFP inherits the XMI interchange capability from UML. The UAFP specification reuses a subset of UML 2.5.1 and provides additional extensions needed to address requirements in the UPDM 3.0 RFP Mandatory Requirements.

2.3 Representing Stereotype Constraints

The UAF Profile uses an enhanced standard notation to represent metaconstraints graphically in the UAF profile diagrams to improve readability of the UAF Profile specification and overcome limitations of being unable to visualize constraints diagrammatically in UML.

The metaconstraints appears in the UAFP specification diagrams for visualization purposes only, however the represention in the XMI is as a UML constraint, specified in structured English. These constraints are implementable in a tool, by OCL for example.

A simple UML profile defines these metaconstraints.

The following subsections detail the metaconstraint profile definition within the UAF profile.

2.3.1 Metaconstraint dependency

«metaconstraint» is a stereotype that extends the Dependency metaclass. It is used to specify constrained elements within the profile.

A sample of the «metaconstraint» dependency is a diagram for stereotype extending the Dependency metaclass.

MapsToCapability is a UAFP stereotype that extends Abstraction (a type of Dependency in UML). The constraint on this stereotype is that its client end must be stereotyped by an Activity (which is abstract) and its supplier end must be stereotyped by a Capability. But as it is not possible to show this constraint graphically the diagram does not communicate the needed information. We then use the "metaconstraint" dependency to visualize the constraint.

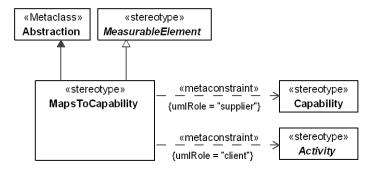


Figure 2:1 – MapsToCapability Stereotype

With the metaconstraint dependency added to the diagram (see Figure Figure 1) which shows that MapsToCapability is a stereotype extending the Abstraction metaclass, that inherits the properties of a MeasurableElement and is used for modeling a relationship between an Activity (or its specializations) and a Capability (or its specializations). A Dependency stereotyped MapsToCapability must have its values for the client property stereotyped as an Activity, and its values for the supplier property must be stereotyped Capability.

Note – When stereotype extends Connector, the stereotype property umlRole has values "end[0].role" and "end[1].role." For example:

This is done because Connector has no direct "linkage" to the connected element; it links to the Connector Ends, which references the linked element. So, end[n] gives the reference to the ConnectorEnd, and role gives the reference to the linked element.

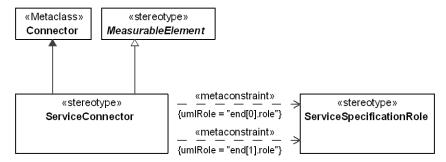


Figure 2:12 - Connector Extension

2.3.2 Metarelationship dependency

«metarelationship» is a stereotype for dependency, showing that certain domain concepts will be implemented using regular UML relationships.

For example: A Capability may depend on other Capabilities or be subtype of a Capability, but this concept cannot be visualized on the diagram:

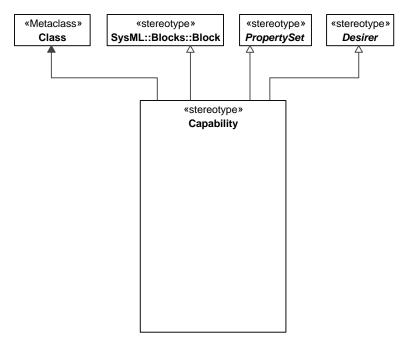


Figure 2:3 – Capabilities Generalization

We are using the «metarelationship» dependency to visualize the dependency and the generalization concept.

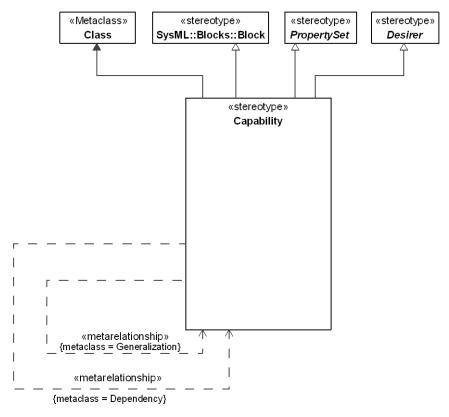


Figure 2:4 - Visualizing «metarelationship»

This diagram should be read as follows:

Capability may have other Capabilities related to it, using the UML Dependency metaclass and it may have sub types of Capabilities related to it, using the the UML Generalization metaclass.

The «metarelationship» dependency will appear only in the specification diagrams, but not the profile XMI.

2.3.3 Stereotyped relationship dependency

Although the «metarelationship» dependency creates a good way to show the constrained ends of the stereotyped relationship, it also creates some overhead when showing the relationship between two stereotypes. For example, Figure 2:2 Figure 5 below shows that elements of subtype Achiever have a stereotyped relationship called AchievedEffect with elements of type ActualState.

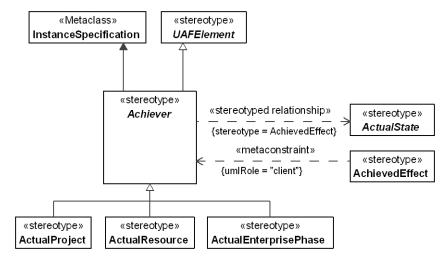


Figure 2:25 – Use of the AchievedEffect «stereotyped relationship» dependency

3.UAF Stereotypes

UAFP imports the entire SysML profile. This is intended to provide more seamless integration with system modeling using SysML and to be able to fully leverage the capabilities of SysML in UAFP. An example of this is the integration of Requirements into the UAFP and also the use of Parametric Diagrams and integration of elements based upon instance specifications to allow the assessment of measures within an architecture developed using UAFP.

3.1 **UAF**

UAF is top level profile root.

3.1.1 UAF::Dictionary

Stakeholders: Architects, users of the architecture, Capability Owners, Systems Engineers, Solution Providers. Concerns: Definitions for all the elements in the architecture, libraries of environments and measurements. Definition: Presents all the elements used in an architecture. Can be used specifically to capture:

a. elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.

b. measurable properties that can be used to support analysis such as KPIs, MoEs, TPIs etc.

Alias

Package: Dictionary is Abstract: No

Generalization: MeasurableElement

Extension: Comment

Description

A metamodel Artifact used to define an alternative name for an element.

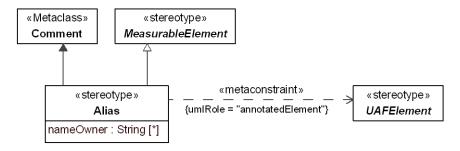


Figure 3:1 - Alias

Attributes

nameOwner: String[*] Someone or something that uses this alternative name.

Constraints

[1] Alias.annotatedElement Value for the annotatedElement metaproperty must be stereotyped by the specialization of «UAFElement».

Definition

Package: Dictionary is Abstract: No

Generalization: MeasurableElement

Extension: Comment

Description

A comment containing a description of an element in the architecture.

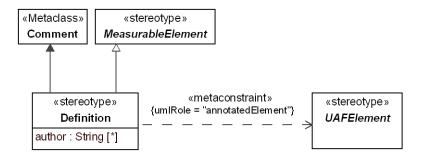


Figure 3:2 - Definition

Attributes

author: String[*] The original or current person (architect) responsible for the Definition.

Constraints

[1] Definition.annotatedElement Value for the annotatedElement metaproperty must be stereotyped by the specialization of «UAFElement».

SameAs

Package: Dictionary is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship that asserts that two elements refer to the same real-world thing.



Figure 3:3 - SameAs

Constraints

[1] SameAs.client Values for the client metaproperty must be stereotyped by the specialization of

«UAFElement».

[2] SameAs.supplier Values for the supplier metaproperty must be stereotyped by the specialization of

«UAFElement».

3.1.2 UAF::Parameters

ActualCondition

Package: Parameters

isAbstract: No

Generalization: <u>ActualPropertySet</u> **Extension:** InstanceSpecification

Description

An actual situation with respect to circumstances under which an OperationalActivity, Function or ServiceFunction can be performed.

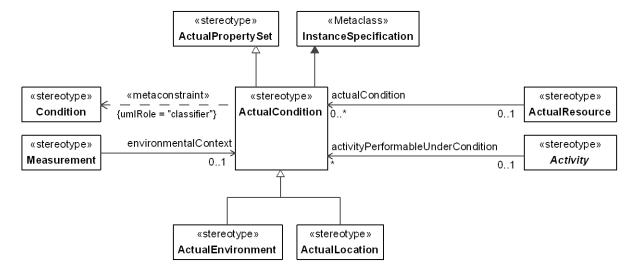


Figure 3:4 - ActualCondition

Constraints

[1] ActualCondition.classifier Value for the classifier metaproperty has to be stereotyped «Condition» or its specializations.

ActualEnvironment

Package: Parameters

isAbstract: No

Generalization: <u>ActualCondition</u> **Extension:** InstanceSpecification

Description

Actual circumstances of an Environment.

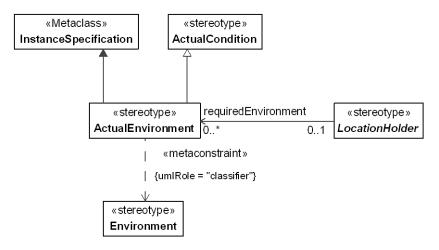


Figure 3:5 - ActualEnvironment

Constraints

Unified Architecture Framework Profile (UAFP) Version 1.1

[1] ActualEnvironment.classifier Value for the classifier metaproperty has to be stereotyped «Environment» or its specializations.

ActualLocation

Package: Parameters is Abstract: No

Generalization: <u>ActualCondition</u> **Extension:** InstanceSpecification

Description

A physical location, for example using text to provide an address, Geo-coordinates, etc.

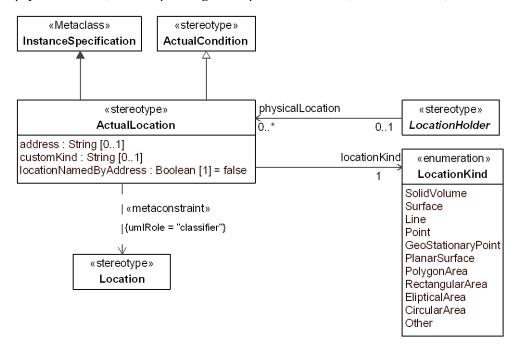


Figure 3:6 - ActualLocation

Attributes

address: String[0..1] String describing the address of the ActualLocation, i.e. "1600

Pennsylvania avenue", "The White House"

customKind: String[0..1] String describing a location kind that is not in the LocationKind enumerated

list

locationNamedByAddress: Boolean[1] Boolean that indicates if the ActualLocation address is embedded in the

ActualLocation name. By default = false.

Associations

locationKind: LocationKind[1] Enumerated value describing the kind of ActualLocation.

Constraints

[1] ActualLocation.classifier Classifier metaproperty value must be stereotyped «Location» or its specializations.

ActualMeasurement

Package: Parameters is Abstract: No

Generalization: ActualState

Extension: Slot Description

An actual value that is applied to a Measurement.

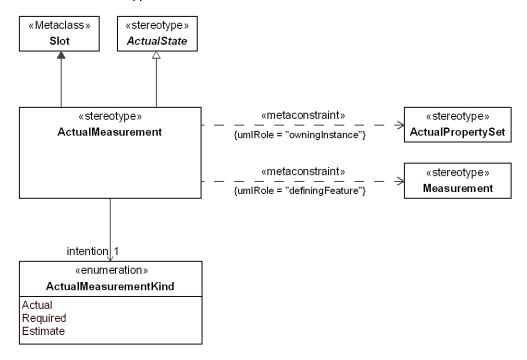


Figure 3:7 - ActualMeasurement

Associations

intention: ActualMeasurementKind[1] Enumerated value describing the intent of the ActualMeasurement.

Constraints

[1] ActualMeasurement.definingFeature Value for the definingFeature metaproperty must be stereotyped

«Measurement» or its specializations.

[2] ActualMeasurement.owningInstance Value for the owningInstance metaproperty must be stereotyped

«ActualPropertySet» or its specializations.

ActualMeasurementKind

Package: Parameters

isAbstract: No Description

Enumeration of the possible kinds of ActualMeasurement. Its enumeration literals are:

- Actual Indicates that the ActualMeasurement associated with the ActualMeasurementKind is a realworld
 value.
- Required Indicates that the ActualMeasurement associated with the ActualMeasurementKind is a value that is expected to be achieved.
- Estimate Indicates that the ActualMeasurement associated with the ActualMeasurementKind is an estimate of a realworld value.

ActualMeasurementSet

Package: Parameters is Abstract: No

Generalization: ActualPropertySet Extension: InstanceSpecification

Description

A set of ActualMeasurements.

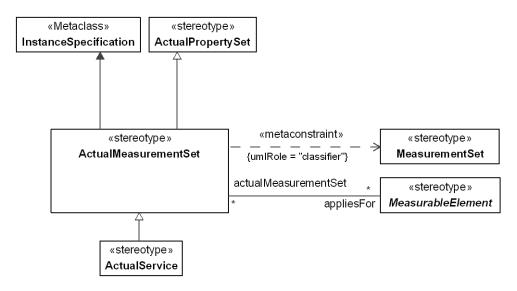


Figure 3:8 - ActualMeasurementSet

Associations

appliesFor : MeasurableElement[*]

 $Relates \ the \ Actual Measurement Set \ to \ the \ elements \ that \ are \ being \ measured.$

Constraints

[1] ActualMeasurementSet.classifier

Classifier metaproperty value must be stereotyped «MeasurementSet» or its

specializations.

[2] ActualMeasurementSet.slot

Value for the slot metaproperty must be stereotyped «ActualMeasurement» or its specializations.

ActualPropertySet

Package: Parameters

isAbstract: No

Generalization: ActualState

Extension: InstanceSpecification

Description

A set or collection of Actual properties.

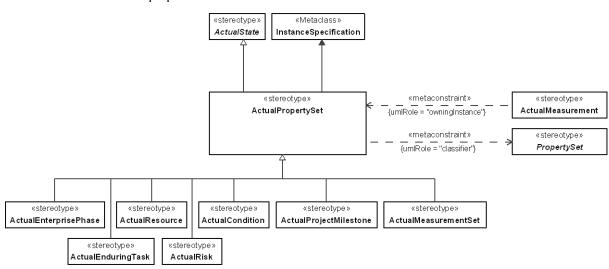


Figure 3:9 - ActualPropertySet

Constraints

[1] ActualPropertySet.classifier Value for the classifier metaproperty must be stereotyped by the specialization of «PropertySet».

Condition

Package: Parameters is Abstract: No

Generalization: PropertySet, ValueType

Extension: DataType

Description

A type that defines the Location, Environment and/or GeoPoliticalExtent.

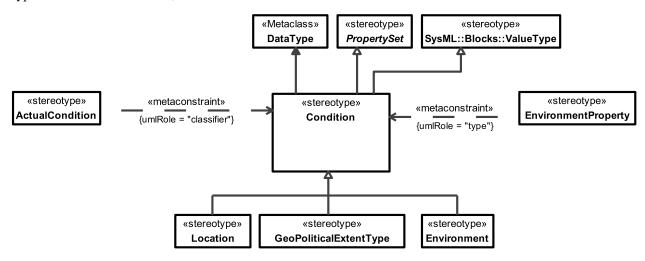


Figure 3:10 - Condition

Environment

Package: Parameters is Abstract: No

Generalization: Condition Extension: DataType

Description

A definition of the environmental factors in which something exists or functions. The definition of an Environment element can be further defined using EnvironmentKind.

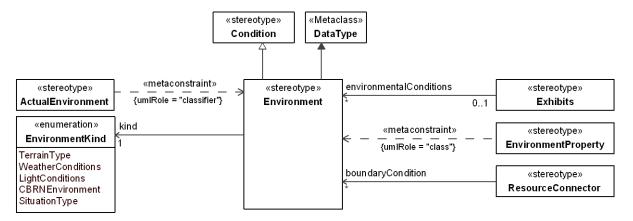


Figure 3:11 - Environment

Associations

kind: EnvironmentKind[1] Captures the kind of Environment.

EnvironmentKind

Package: Parameters

isAbstract: No Description

Enumeration of the possible kinds of Environment. Its enumeration literals are:

- TerrainType Indicates that the Environment associated with EnvironmentKind captures a kind of terrain used to describe the terrain state of an environment at a particular time (e.g. muddy, frozen ground, deep snow, etc.).
- WeatherConditions Indicates that the Environment associated with EnvironmentKind captures a kind of weather condition (e.g. Typhoon, Hurricane, Very Hot, Humid etc.).
- LightConditions Indicates that the Environment associated with EnvironmentKind captures a kind of light condition (e.g. broad daylight, dusk, moonlit, etc.).
- CBRNEnvironment Indicates that the Environment associated with EnvironmentKind is of a Chemical, Biological, Radiological or Nuclear (CBRN) kind.
- SituationType Indicates that the Environment associated with EnvironmentKind captures a kind of situation used to describe the types and levels of threat (e.g. Corrosive, Fire, Smoke, Peaceful etc.).

EnvironmentProperty

Package: Parameters is Abstract: No

Generalization: MeasurableElement

Extension: Property

Description

A property of an Environment that is typed by a Condition. The kinds of Condition that can be represented are Location, GeoPoliticalExtentType and Environment.

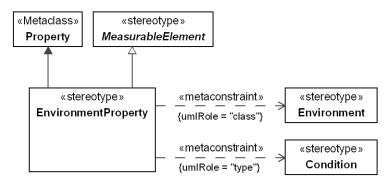


Figure 3:12 - EnvironmentProperty

Constraints

[1] EnvironmentalProperty.class Value for the class metaproperty must be stereotyped «Environment» or its

specializations.

[2] EnvironmentalProperty.type Value for the type property must be stereotyped «Condition» or its specializations.

GeoPoliticalExtentType

Package: Parameters is Abstract: No

Generalization: ResourceExchangeItem, OperationalExchangeItem, Condition

Extension: DataType

Description

A type of geospatial extent whose boundaries are defined by declaration or agreement by political parties.

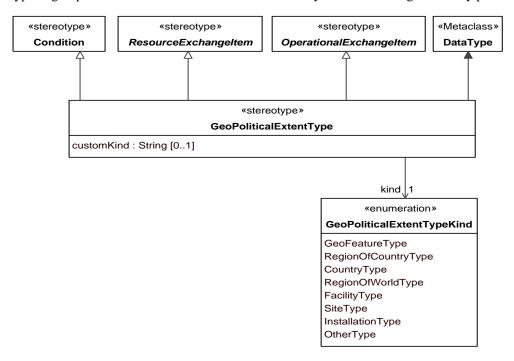


Figure 3:13 - GeoPoliticalExtentType

Attributes

customKind : String[0..1] Captures the kind of GeopoliticalExtentType if the GeoPoliticalExtentTypeKind has been set to "OtherType".

Associations

kind: GeoPoliticalExtentTypeKind[1] Captures the kind of GeopoliticalExtentType.

GeoPoliticalExtentTypeKind

Package: Parameters

isAbstract: No Description

Enumeration of the possible kinds of GeoPoliticalExtentType. Its enumeration literals are:

- GeoFeatureType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of object that encompasses meteorological, geographic, and control features mission significance.
- RegionOfCountryType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of large, usually continuous segment of a political state, nation or its territory.
- CountryType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of political state, nation or its territory.
- RegionOfWorldType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of large, usually continuous segment of a surface or space; area.
- FacilityType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of a real property entity consisting of underlying land and one or more of the following: a building, a structure (including linear structures), a utility system, or pavement.
- SiteType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of Physical (geographic) location that is or was owned by, leased to, or otherwise possessed. Each site is assigned to a single installation. A site may exist in one of three forms: (1) Land only, where there are no facilities present and where the land consists of either a single land parcel or two or more contiguous land parcels. (2) Facility or facilities only, where the underlying land is neither owned nor controlled by the

government. A stand-alone facility can be a site. If a facility is not a stand-alone facility, it must be assigned to a site. (3). Land and all the facilities thereon, where the land consists of either a single land parcel or two or more contiguous land parcels.

- InstallationType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type of base, camp, post, station, yard, center, or other activity, including leased facilities, without regard to the duration of operational control. An installation may include one or more sites.
- OtherType Indicates that the GeoPoliticalExtentType associated with the GeoPoliticalExtentTypeKind is a type not covered by the standard GeoPoliticalExtentTypeKinds.

Location

Package: Parameters is Abstract: No

Generalization: ConceptItem, Condition

Extension: DataType

Description

A specification of the generic area in which a LocationHolder is required to be located.

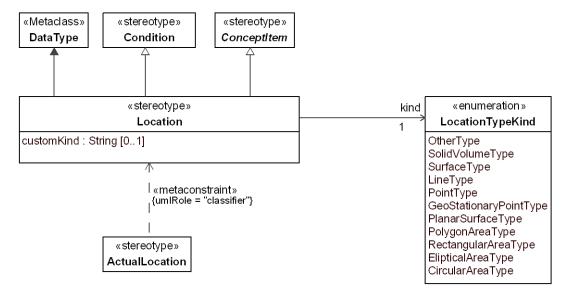


Figure 3:14 - Location

Attributes

customKind: String[0..1] Captures the kind of Location if the LocationTypeKind has been set to "OtherType".

Associations

kind: LocationTypeKind[1] Captures the kind of Location.

LocationHolder

Package: Parameters is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element

Description

Abstract grouping used to define elements that are allowed to be associated with a Location.

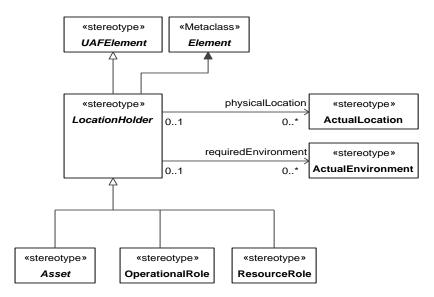


Figure 3:15 - LocationHolder

Associations

physicalLocation: ActualLocation[0..*] Relates a LocationHolder (i.e. OperationalPerformer,

OperationalRole, ResourceRole etc.) to its ActualLocation.

requiredEnvironment: ActualEnvironment[0..*] Relates a LocationHolder (i.e. OperationalPerformer,

OperationalRole, ResourceRole etc.) to the Environment in which

it is required to perform/be used.

LocationKind

Package: Parameters

isAbstract: No Description

Enumeration of the possible kinds of location applicable to an ActualLocation. Its enumeration literals are:

- SolidVolume Indicates that the ActualLocation associated with the LocationKind is the amount of space occupied by a three-dimensional object of definite shape; not liquid or gaseous.
- Surface Indicates that the ActualLocation associated with the LocationKind is a portion of space having length and breadth but no thickness or regards to time.
- Line Indicates that the ActualLocation associated with the LocationKind is a geometric figure formed by a point moving along a fixed direction and the reverse direction.
- Point Indicates that the ActualLocation associated with the LocationKind is a unidimensional Individual.
- GeoStationaryPoint Indicates that the ActualLocation associated with the LocationKind is a unidimensional Individual.
- PlanarSurface Indicates that the ActualLocation associated with the LocationKind is a two-dimensional portion of space.
- PolygonArea Indicates that the ActualLocation associated with the LocationKind is a space enclosed by a polygon.
- RectangularArea Indicates that the ActualLocation associated with the LocationKind is a space enclosed by a rectangle.
- ElipticalArea Indicates that the ActualLocation associated with the LocationKind is a space enclosed by an ellipse.
- CircularArea Indicates that the ActualLocation associated with the LocationKind is a space enclosed by a circle.
- Other Indicates that the ActualLocation associated with the LocationKind is a LocationKind that is not on the enumerated list.

LocationTypeKind

Package: Parameters is Abstract: No Description

Enumeration of the possible kinds of location type that are applicable to a Location. Its enumeration literals are:

- OtherType Indicates that the Location associated with the LocationTypeKind describes a type of is a LocationKindType that is not on the enumerated list.
- SolidVolumeType Indicates that the Location associated with the LocationTypeKind describes a type of amount of space occupied by a three-dimensional object of definite shape; not liquid or gaseous.
- SurfaceType Indicates that the Location associated with the LocationTypeKind describes a type of
 portion of space having length and breadth but no thickness or regards to time.
- LineType Indicates that the Location associated with the LocationTypeKind describes a type of geometric figure formed by a point moving along a fixed direction and the reverse direction.
- PointType Indicates that the Location associated with the LocationTypeKind describes a type of unidimensional Individual.
- GeoStationaryPointType Indicates that the Location associated with the LocationTypeKind describes a type of unidimensional Individual.
- PlanarSurfaceType Indicates that the Location associated with the LocationTypeKind describes a type of is a two-dimensional portion of space.
- PolygonAreaType Indicates that the Location associated with the LocationTypeKind describes a type of space enclosed by a polygon.
- RectangularAreaType Indicates that the Location associated with the LocationTypeKind describes a type of space enclosed by a rectangle.
- ElipticalAreaType Indicates that the Location associated with the LocationTypeKind describes a type of space enclosed by an ellipse.
- CircularAreaType Indicates that the Location associated with the LocationTypeKind describes a type of space enclosed by a circle.

MeasurableElement

Package: Parameters is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

Abstract grouping for elements that can be measured by applying MeasurementSets to them.

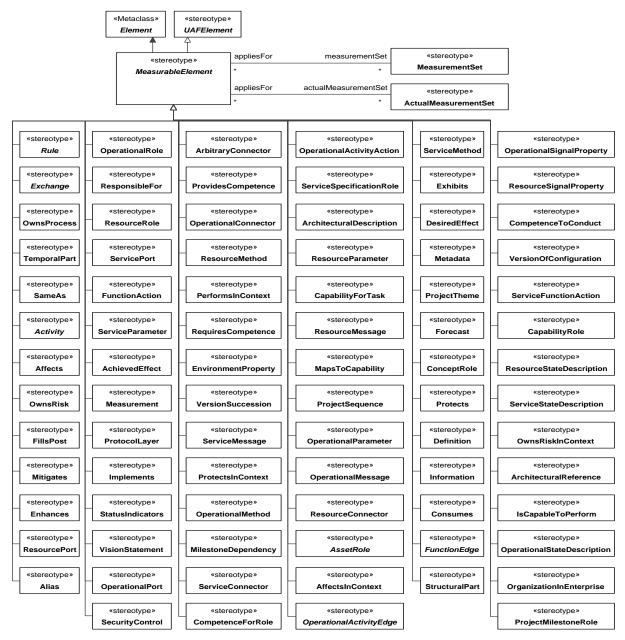


Figure 3:16 - MeasurableElement

Associations

actualMeasurementSet: ActualMeasurementSet[*]

Relates the MeasurableElement to the ActualMeasurementSet that provides its ActualMeasurements.

measurementSet: MeasurementSet[*]

Relates the MeasurableElement to the MeasurementSet that provides its Measurements by which it can be measured.

Measurement

Package: Parameters

isAbstract: No

Generalization: MeasurableElement

Extension: Property

Description

A property of an element representing something in the physical world, expressed in amounts of a unit of measure.

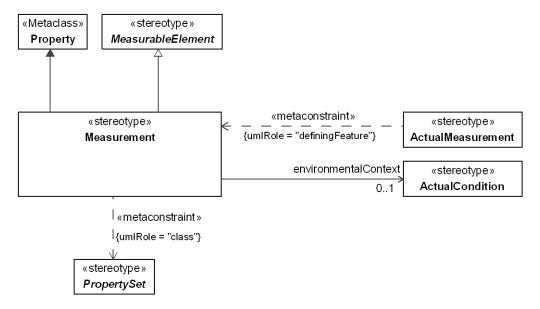


Figure 3:17 - Measurement

Associations

environmentalContext: ActualCondition[0..1] Relates the Measurement to the Condition (which provides the environementalContext) under which the Measurement is expected

to be taken.

Constraints

[1] Measurement.class Value for the class metaproperty must be stereotyped by the specialization of «PropertySet».

MeasurementSet

Package: Parameters is Abstract: No

Generalization: PropertySet, ValueType

Extension: DataType

Description

A collection of Measurements.

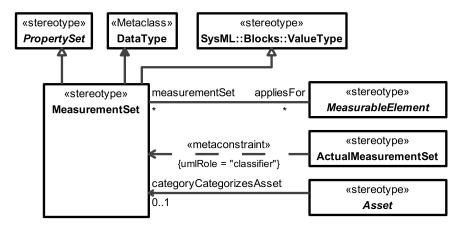


Figure 3:18 - MeasurementSet

Associations

appliesFor: MeasurableElement[*] Relates the MeasurementSet to the MeasurableElement that it is applicable to.

Unified Architecture Framework Profile (UAFP) Version 1.1

PropertySet

Package: Parameters is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

An abstract grouping of architectural elements that can own Measurements.

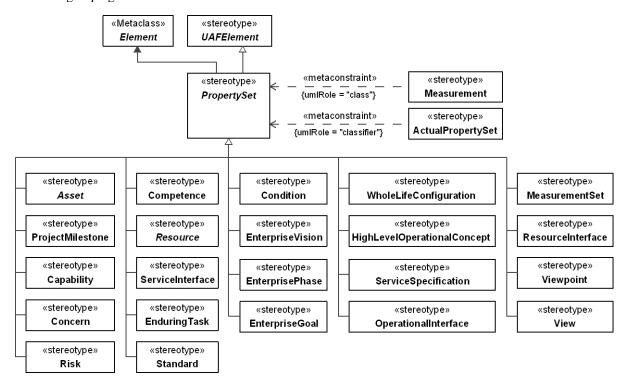


Figure 3:19 - PropertySet

3.1.3 UAF::Metadata

Stakeholders: Enterprise Architects, people who want to discover the architecture, Technical Managers.

Concerns: Captures meta-data relevant to the entire architecture

Definition: Provide information pertinent to the entire architecture. Present supporting information rather than architectural models.

UAF::Metadata::Taxonomy

Contains the elements that contribute to the Metadata Taxonomy Viewpoint.

ActualState

Package: Taxonomy is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

Abstract element that applies temporal extent to a set of elements realized as Instance Specifications.

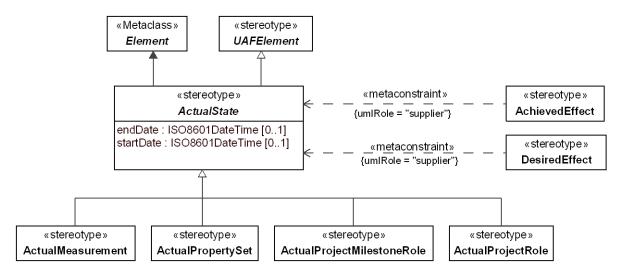


Figure 3:20 - ActualState

Attributes

endDate: ISO8601DateTime[0..1] End time for all "actual" elements. startDate: ISO8601DateTime[0..1] Start time for all "actual" elements.

ISO8601DateTime

Package: Taxonomy is Abstract: No

Generalization: <u>UAFElement</u> **Extension:** LiteralString

Description

A date and time specified in the ISO8601 date-time format including timezone designator (TZD): YYYY-MM-DDThh:mm:ssTZD.

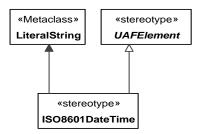


Figure 3:21 - ISO8601DateTime

UAF::Metadata::Connectivity

Contains the elements that contribute to the Metadata Connectivity Viewpoint.

Exchange

Package: Connectivity

isAbstract: Yes

Generalization: MeasurableElement, ItemFlow, SubjectOfSecurityConstraint

Extension: InformationFlow

Description

Abstract grouping for OperationalExchanges and ResourceExchanges that exchange Resources.

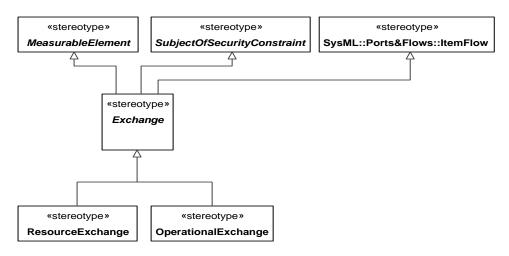


Figure 3:22 - Exchange

Resource

Package: Connectivity

isAbstract: Yes

Generalization: PropertySet

Extension: Element

Description

Abstract element grouping for all elements that can be conveyed by an Exchange.

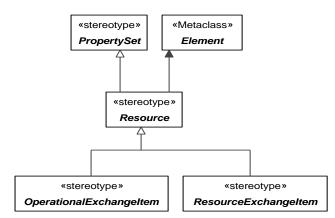


Figure 3:23 - Resource

UAF::Metadata::Processes

Contains the elements that contribute to the Metadata Processes Viewpoint.

Activity

Package: Processes is Abstract: Yes

Generalization: MeasurableElement

Extension: Activity

Description

An abstract element that represents a behavior or process (i.e. a Function or OperationalActivity) that can be performed by a Performer.



Figure 3:24 - Activity

Associations

activityPerformableUnderCondition: ActualCondition[*] The environment under which an activity is performed.

CapableElement

Package: Processes is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

An abstract type that represents a structural element that can exhibit capabilities.

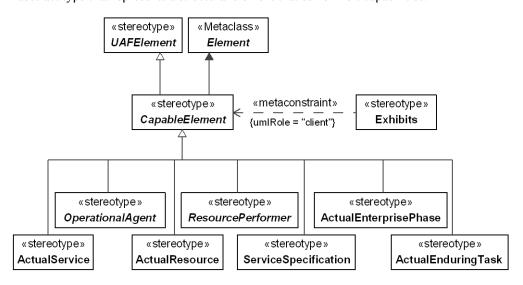


Figure 3:25 - CapableElement

IsCapableToPerform

Package: Processes is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An Abstraction relationship defining the traceability between the structural elements to the Activities that they can

perform.

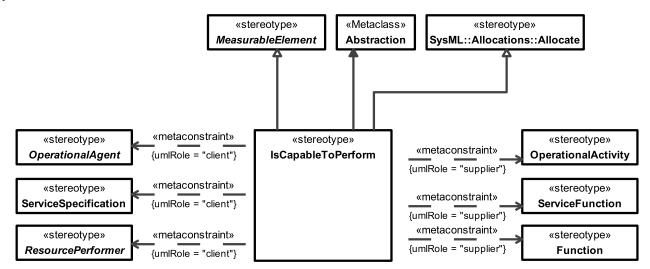


Figure 3:26 - IsCapableToPerform Constraints

[1] IsCapableOfPerforming.client

In case of value for IsCapableToPerform.supplier is stereotyped:

- a. «OperationalActivity» or its specializations, values for the client metaproperty must be stereotyped by any of specializations of «OperationalAgent»,
- b. «ServiceFunction» or its specializations, values for the client metaproperty must be stereotyped «ServiceSpecification» or its specializations,
- c. «Function» or its specializations, except for «ProjectActivity», values for the client metaproperty must be stereotyped by any of specializations of «ResourcePerformer»,
- d. «ProjectActivity» or its specializations, values for the client metaproperty must be stereotyped by any of specializations of «Project».

[2] IsCapableOfPerforming.supplier

In case of value for IsCapableToPerform.client is stereotyped:
a. by a specialization of «OperationalAgent», values for the supplier metaproperty must be stereotyped «OperationalActivity» or its specializations, b. «ServiceSpecification» or its specializations, values for the supplier metaproperty must be stereotyped «ServiceFunction» or its specializations, c. by a specialization of «ResourcePerformer», values for the supplier metaproperty must be stereotyped «Function» or its specializations, except for «ProjectActivity»,

d. by a specialization of «Project», values for the supplier metaproperty must be stereotyped «ProjectActivity» or its specializations.

PerformsInContext

Package: Processes is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship that relates an OperationalAction to a OperationalRole, or a FunctionAction to a ResourceRole. It indicates that the action can be carried out by the role when used in a specific context or configuration.

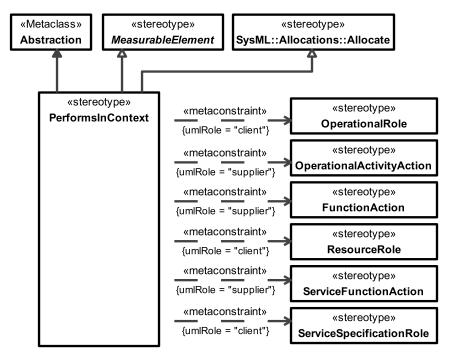


Figure 3:27 - PerformsInContext

Constraints

[1] PerformsInContext.client

In case of value for PerformsInContext.supplier is stereotyped:

- a. «OperationalActivityAction» or its specializations, values for the client metaproperty must be stereotyped «OperationalRole» or its specializations,
- b. «ServiceFunctionAction» or its specializations, values for the client metaproperty must be stereotyped «ServiceSpecificationRole» or its specializations,
- c. «FunctionAction» or its specializations, except for «ProjectActivityAction», values for the client metaproperty must be stereotyped «ResourceRole» or its specializations.
- d. «ProjectActivityAction» or its specializations, values for the client metaproperty must be stereotyped «ProjectRole» or its specializations.
- [2] PerformsInContext.supplier

In case of value for PerformsInContext.client is stereotyped:

- a. «OperationalRole» or its specializations, values for the supplier metaproperty must be stereotyped «OperationalActivityAction» or its specializations,
- b. «ServiceSpecificationRole» or its specializations, values for the supplier metaproperty must be stereotyped «ServiceFunctionAction» or its specializations, c. «ResourceRole» or its specializations, values for the supplier metaproperty must
- be stereotyped «FunctionAction» or its specializations.

UAF::Metadata::Information

Contains the elements that contribute to the Metadata Information Viewpoint.

ArchitectureMetadata

Package: Information

isAbstract: No

Generalization: Metadata
Extension: Comment

Description

Information associated with an ArchitecturalDescription, that supplements the standard set of tags used to summarize the Architecture. It states things like what methodology was used, notation, etc.

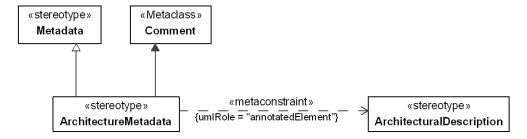


Figure 3:28 - ArchitectureMetadata

Constraints

[1] ArchitectureMetadata.annotatedElement Value for the annotatedElement metaproperty must be stereotyped «ArchitecturalDescription» or its specializations.

DataModel

Package: Information

isAbstract: No

Generalization: SubjectOfOperationalConstraint, SubjectOfResourceConstraint

Extension: Package Description

A structural specification of data types, showing relationships between them. The type of data captured in the DataModel is described using the enumeration DataModelKind (Conceptual,Logical and Physical).

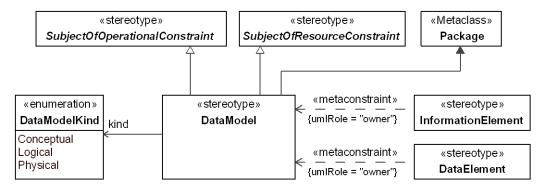


Figure 3:29 - DataModel

Associations

kind: DataModelKind[] Captures the kind of DataModel being respresented, Conceptual, Logical or Physcial.

DataModelKind

Package: Information

isAbstract: No Description

Enumeration of the possible kinds of DataModel. Its enumeration literals are:

- Conceptual Indicates that the DataModel associated with the DataModelKind is a conceptual DataModel that defines the required high-level data concepts and their relationships.
- Logical Indicates that the DataModel associated with the DataModelKind is a logical data model that
 allows analysis of an architecture's data definition aspect, without consideration of implementation
 specific or product specific issues. It details the conceptual data model.

• Physical - Indicates that the DataModel associated with the DataModelKind is a physical data model that is an implementable specification of a data structure. A physical data model realizes a logical data model, taking into account implementation restrictions and performance issues while still enforcing the constraints, relationships and typing of the logical data model.

Information

Package: Information

isAbstract: No

Generalization: MeasurableElement

Extension: Comment

Description

A comment that describes the state of an item of interest in any medium or form -- and is communicated or received.

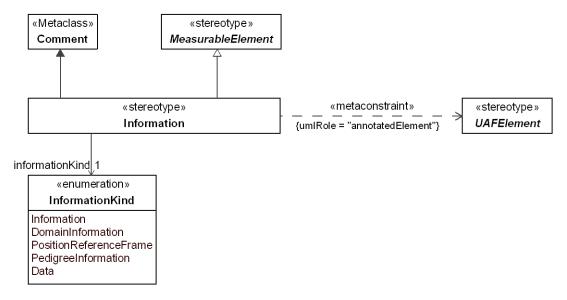


Figure 3:30 - Information

Associations

informationKind: InformationKind[1] Captures the kind of information.

Constraints

[1] Information.annotatedElement Value for the annotatedElement metaproperty must be stereotyped by a specialization of «UAFElement».

InformationKind

Package: Information

isAbstract: No Description

Enumeration of the possible kinds of Information. Its enumeration literals are:

- Information Indicates that the Information associated with the InformationKind describes the state of a something of interest that is materialized -- in any medium or form -- and communicated or received.
- DomainInformation Indicates that the Information associated with the InformationKind describes information within the scope or domain of the architecture.
- PositionReferenceFrame Indicates that the Information associated with the InformationKind describes an
 arbitrary set of axes with reference to which the position or motion of something is described or physical
 laws are formulated.
- PedigreeInformation Indicates that the Information associated with the InformationKind describes information pedigree.

• Data - Indicates that the Information associated with the InformationKind describes the representation of information in a formalized manner suitable for communication, interpretation, or processing by humans or by automatic means. Examples could be whole models, packages, entities, attributes, classes, domain values, enumeration values, records, tables, rows, columns, and fields.

Metadata

Package: Information

isAbstract: No

Generalization: MeasurableElement

Extension: Comment

Description

A comment that can be applied to any element in the architecture. The attributes associated with this element details the relationship between the element and its related dublinCoreElement, metaDataScheme, category and name. This allows the element to be referenced using the Semantic Web.

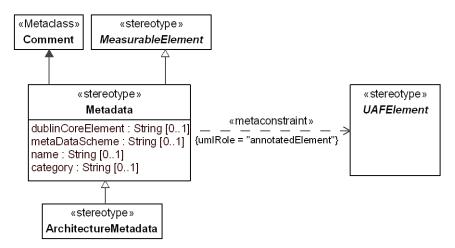


Figure 3:31 - Metadata

Attributes

category: String[0..1] Defines the category of a Metadata element example:

http://purl.org/dc/terms/abstract.

dublinCoreElement: String[0..1] A metadata category that is a DublinCore tag.

metaDataScheme: String[0..1] A representation scheme that defines a set of Metadata.

name: String[0..1] The name of the Metadata.

Constraints

[1] Metadata.annotatedElement Value for the annotatedElement metaproperty must be stereotyped by a

specialization of «UAFElement».

UAF::Metadata::Constraints

Contains the elements that contribute to the Metadata Constraints Viewpoint.

Rule

Package: Constraints is Abstract: Yes

Generalization: MeasurableElement

Extension: Constraint

Description

An abstract grouping for all types of constraint (i.e. an OperationalConstraint could detail the rules of accountancy best practice).

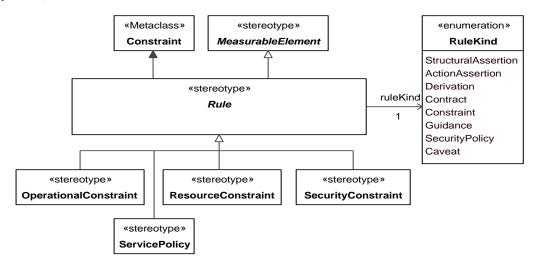


Figure 3:32 - Rule

Associations

ruleKind: RuleKind[1] Captures the kind of Rule that is being described.

RuleKind

Package: Constraints

isAbstract: No Description

Enumeration of the possible kinds of Rules applicable to constraints. Its enumeration literals are:

- StructuralAssertion Indicates that the Rule associated with the RuleKind is a statement that details that something of importance either exists as a concept of interest or exists in relationship to another thing of interest.
- ActionAssertion Indicates that the Rule associated with the RuleKind is a statement that concerns some dynamic aspect.
- Derivation Indicates that the Rule associated with the RuleKind is a statement that details a Rule derived from another Rule.
- Contract Indicates that the Rule associated with the RuleKind is a statement that details a consent among parties regarding the terms and conditions of activities that said parties participate in.
- Constraint Indicates that the Rule associated with the RuleKind is a statement that details a limitation, e.g. business rule, restraint, operational limitation.
- Guidance Indicates that the Rule associated with the RuleKind is a statement that details an authoritative statement intended to lead or steer the execution of actions.
- SecurityPolicy Indicates that the Rule associated with the RuleKind is a statement that details a constraint that specifies policy for information handling, physical security, encryption, etc.
- Caveat Indicates that the Rule associated with the RuleKind is a statement that details alternate conditions under which the rule is not valid.

UAF::Metadata::Traceability

Contains the elements that contribute to the Metadata Traceability Viewpoint.

ArchitecturalReference

Package: Traceability

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship that specifies that one architectural description refers to another.

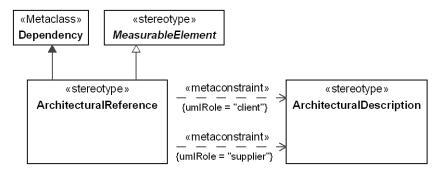


Figure 3:33 - ArchitecturalReference

Constraints

[1] ArchitecturalReference.client Value for the client metaproperty must be stereotyped

«ArchitecturalDescription» or its specializations.

[2] ArchitecturalReference.supplier Value for the supplier metaproperty must be stereotyped

«ArchitecturalDescription» or its specializations.

Implements

Package: Traceability

isAbstract: No

Generalization: Allocate, MeasurableElement

Extension: Abstraction

Description

An abstraction relationship that defines how an element in the upper layer of abstraction is implemented by a semantically equivalent element (for example tracing the Functions to the OperationalActivities) in the lower level of abstraction.

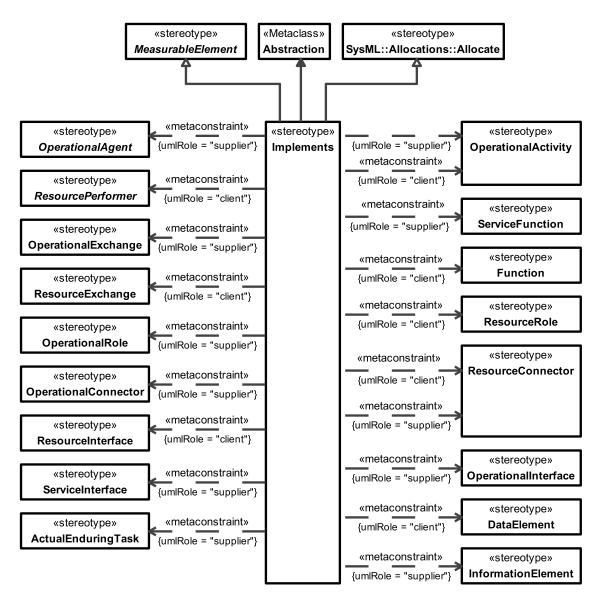


Figure 3:34 - Implements
Constraints

[1] Implements.client

In case of value for Implements.supplier is stereotyped:

- a. by any of specializations of «Operational Agent», values for the client metaproperty must be stereotyped by any of specializations of «Resource Performer»,
- b. «Operational Activity» or its specializations, values for the client metaproperty must be stereotyped «Function» or its specializations,
- c. «ServiceFunction» or its specializations, values for the client metaproperty must be stereotyped «Function» or its specializations,
- d. «ServiceInterface» or its specializations, values for the client metaproperty must be stereotyped «ResourceInterface» or its specializations,
- e. «OperationalInterface» or its specializations, values for the client metaproperty must be stereotyped «ResourceInterface» or its specializations,
- f. «OperationalConnector» or its specializations, values for the client metaproperty must be stereotyped «ResourceConnector» or its specializations,
- g. «OperationalExchange» or its specializations, values for the client metaproperty must be stereotyped «ResourceExchange» or its specializations,
- g. «OperationalRole» or its specializations, values for the client metaproperty must be

stereotyped «ResourceRole» or its specializations,

- h. «ResourceConnector» or its specializations, values for the client metaproperty must be stereotyped «ResourceConnector» or its specializations,
- i. «ActualEnduringTask» or its specializations, values for the client metaproperty must be stereotyped «OperationalActivity» or its specializations,
- j. «InformationElement» or its specializations, values for the client metaproperty must be stereotyped «DataElement» or its specializations.

[2] Implements.supplier

In case of value for Implements.client is stereotyped:

- a. by any of specializations of «ResourcePerformer», values for the supplier metaproperty must be stereotyped by any of specializations of «OperationalAgent»,
- b. «Function» or its specializations, values for the supplier metaproperty must be stereotyped «Operational Activity», «Service Function» or their specializations,
- c. «ResourceInterface» or its specializations, values for the supplier metaproperty must be stereotyped «ServiceInterface», «OperationalInterface», or their specializations,
- d. «ResourceConnector» or its specializations, values for the supplier metaproperty must be stereotyped «OperationalConnector», «ResourceConnector» or their specializations,
- e. «ResourceExchange» or its specializations, values for the supplier metaproperty must be stereotyped «OperationalExchange» or its specializations,
- f. «ResourceRole» or its specializations, values for the supplier metaproperty must be stereotyped «OperationalRole» or its specializations,
- g. «OperationalActivity» or its specializations, values for the supplier metaproperty must be stereotyped «ActualEnduringTask» or its specializations,
- h. «DataElement» or its specializations, values for the supplier metaproperty must be stereotyped «InformationElement» or its specializations.

3.1.4 UAF::Strategic

Stakeholders: Capability Portfolio Managers. Concerns: capability management process.

Definition: describe capability taxonomy, composition, dependencies and evolution.

UAF::Strategic::Taxonomy

Contains the elements that contribute to the Strategic Taxonomy Viewpoint.

ActualEnterprisePhase

Package: Taxonomy is Abstract: No

Generalization: ActualPropertySet, CapableElement, Achiever

Extension: InstanceSpecification

Description

A phase of an actual enterprise endeavor.

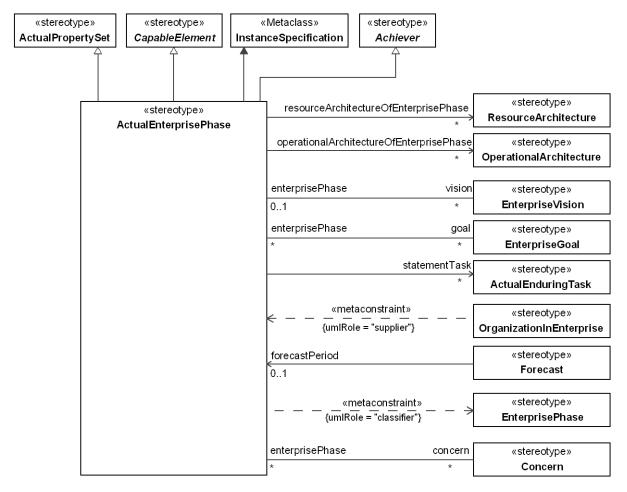


Figure 3:35 - ActualEnterprisePhase

Associations

concern: Concern[*] goal : EnterpriseGoal[*] The Goal towards which this Phase is directed and is in support of. operational Architecture Of Enterprise Phase: Operational Architecture [*]Relates an ActualEnterprisePhase to its relevant Operational Architecture. resourceArchitectureOfEnterprisePhase: ResourceArchitecture[*] Relates an ActualEnterprisePhase to its relevant ResourceArchitecture. statementTask : ActualEnduringTask[*] Relates the ActualEnterprisePhase to the ActualEnduringTasks that are intended to be implemented during that phase. vision: EnterpriseVision[*] The Vision towards which this Phase is

Constraints

[1] ActualEnterprisePhase.classifier Value for the classifier metaproperty must be stereotyped by «EnterprisePhase» or its specializations.

[2] ActualEnterprisePhase.start/endDate Must fall within the start and end dates of the enclosing ActualEnterprisePhase having this ActualEnterprisePhase set as a value for

a slot.

directed and is in support of.

Capability

Package: Taxonomy is Abstract: No

Generalization: PropertySet, Desirer, Block

Extension: Class Description

An enterprise's ability to Achieve a DesiredEffect realized through a combination of ways and means (e.g. CapabilityConfigurations) along with specified measures.

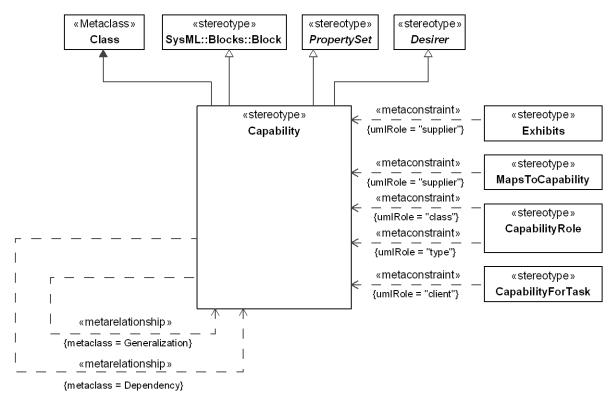


Figure 3:36 - Capability

EnterpriseGoal

Package: Taxonomy isAbstract: No

Generalization: PropertySet, Requirement

Extension: Class Description

A statement about a state or condition of the enterprise to be brought about or sustained through appropriate Means. An EnterpriseGoal amplifies an EnterpriseVision that is, it indicates what must be satisfied on a continuing basis to effectively attain the EnterpriseVision. http://www.omg.org/spec/BMM/1.3/

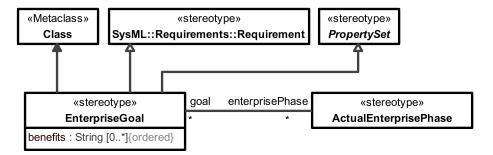


Figure 3:37 - EnterpriseGoal

Attributes

 $benefits: String[0..*] \quad A \ description \ of \ the \ usefulness \ of \ the \ Goal \ in \ terms \ of \ why \ the \ state \ or \ condition \ of \ the$

Enterprise is worth attaining.

Associations

enterprisePhase: ActualEnterprisePhase[*] Relates the EnterpriseGoal to the ActualEnterprisePhase in which the

EnterpriseGoal is attained.

EnterprisePhase

Package: Taxonomy

isAbstract: No

Generalization: PropertySet, Block

Extension: Class Description

A type of a current or future state of the enterprise.

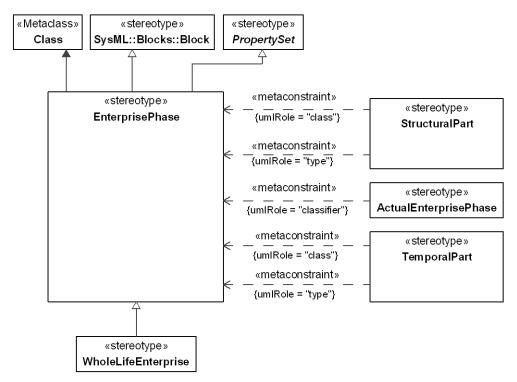


Figure 3:38 - EnterprisePhase

EnterpriseVision

Package: Taxonomy is Abstract: No

Generalization: PropertySet, Block

Extension: Class Description

A Vision describes the future state of the enterprise, without regard to how it is to be achieved. http://www.omg.org/spec/BMM/1.3/

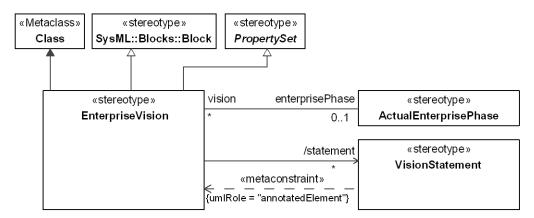


Figure 3:39 - EnterpriseVision

Associations

 $enterprise Phase: Actual Enterprise Phase [0..1] \\ Relates the Enterprise Vision to the Actual Enterprise Phase in which the enterprise Phase in the$

the EnterpriseVision is expected to be realized.

statement: VisionStatement[*] A description of the Vision.

VisionStatement

Package: Taxonomy is Abstract: No

Generalization: MeasurableElement

Extension: Comment

Description

A type of comment that describes the future state of the enterprise, without regard to how it is to be achieved. http://www.omg.org/spec/BMM/1.3/

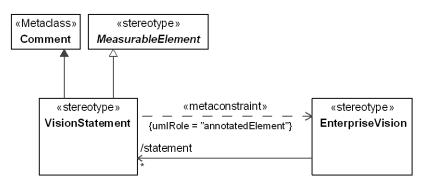


Figure 3:40 - VisionStatement

Constraints

[1] VisionStatement.ownedAttribute Values for annotatedElement metaproperty must be stereotyped «EnterpriseVision» or its specializations.

WholeLifeEnterprise

Package: Taxonomy is Abstract: No

Generalization: EnterprisePhase

Extension: Class Description

A WholeLifeEnterprise is a purposeful endeavor of any size involving people, organizations and supporting systems. It is made up of TemporalParts and StructuralParts.

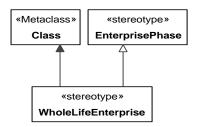


Figure 3:41 - WholeLifeEnterprise

UAF::Strategic::Structure

Contains the elements that contribute to the Strategic Structure Viewpoint.

CapabilityRole

Package: Structure is Abstract: No

Generalization: MeasurableElement, Desirer

Extension: Property

Description

Property of a Capability typed by another Capability, enabling whole-part relationships and structures.

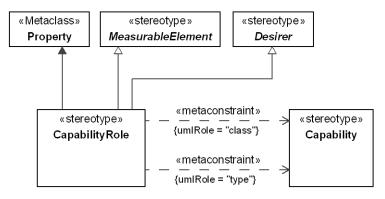


Figure 3:42 - CapabilityRole

Constraints

- [1] CapabilityProperty.class Value for class metaproperty must be stereotyped «Capability» or its specializations.
- [2] CapabilityProperty.type Value for type metaproperty must be stereotyped «Capability» or its specializations.

StructuralPart

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Property

Description

Usage of an EnterprisePhase in the context of another EnterprisePhase. It asserts that one EnterprisePhase is a spatial part of another. Creates a whole-part relationship that represents the structure of the EnterprisePhase.

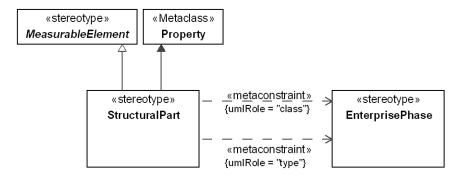


Figure 3:43 - StructuralPart

Constraints

- [1] StructuralPart.class Value for class metaproperty must be stereotyped «EnterprisePhase» or its specializations.
- [2] StructuralPart.type Value for type metaproperty must be stereotyped «EnterprisePhase» or its specializations.

TemporalPart

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Property Description

Usage of an EnterprisePhase in the context of another EnterprisePhase. It asserts that one EnterprisePhase is a spatial part of another. Creates a whole-part relationship that represents the temporal structure of the EnterprisePhase.

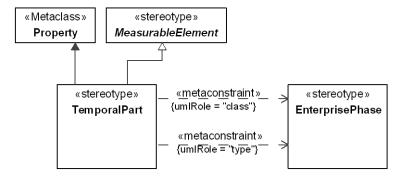


Figure 3:44 - TemporalPart

Constraints

- [1] TemporalPart.class Value for class metaproperty must be stereotyped «EnterprisePhase» or its specializations.
- [2] TemporalPart.type Value for type metaproperty must be stereotyped «EnterprisePhase» or its specializations.

UAF::Strategic::Processes

Contains the elements that contribute to the Strategic Proceses Viewpoint.

ActualEnduringTask

Package: Processes is Abstract: No

Generalization: CapableElement, ActualPropertySet

Extension: InstanceSpecification

Description

An actual undertaking recognized by an enterprise as being essential to achieving its goals - i.e. a strategic specification of what the enterprise does.

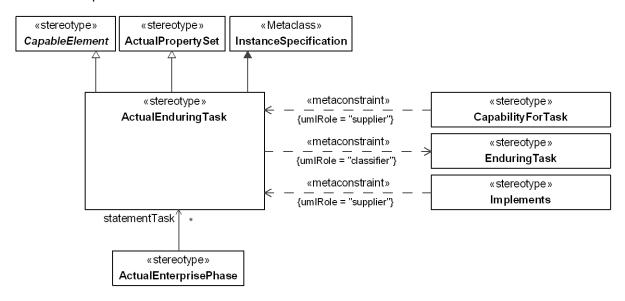


Figure 3:45 - ActualEnduringTask

Constraints

[1] ActualEnduringTask.classifier Value for the classifier metaproperty must be stereotyped by «EnduringTask» or its specializations.

CapabilityForTask

Package: Processes is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship that asserts that a Capability is required in order for an Enterprise to conduct a phase of an EnduringTask.

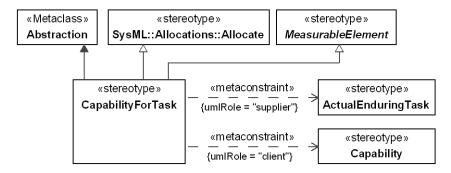


Figure 3:46 - CapabilityForTask

Constraints

[1] CapabilityForTask.client Value for the client metaproperty must be stereotyped «Capability» or its specializations.

[2] CapabilityForTask.supplier Value for the supplier metaproperty must be stereotyped «ActualEnduringTask» or its specializations.

EnduringTask

Package: Processes is Abstract: No

Generalization: PropertySet, Block

Extension: Class Description

A type of template behavior recognized by an enterprise as being essential to achieving its goals - i.e. a template for a strategic specification of what the enterprise does.

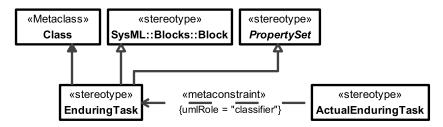


Figure 3:47 - Enduring Task

UAF::Strategic::States

Contains the elements that contribute to the Strategic States Viewpoint.

AchievedEffect

Package: States is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship that exists between an ActualState (e.g., observed/measured during testing) of an element that attempts to achieve a DesiredEffect and an Achiever.

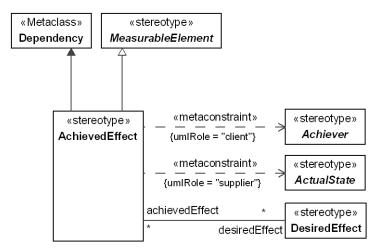


Figure 3:48 - AchievedEffect

Associations

desiredEffect: DesiredEffect[*] Relates the effect that is achieved with the originally expected DesirectEffect.

Providing a means of comparison, between the expectation of the desirer and the

actual result.

Constraints

[1] AchievedEffect.client Value for the client metaproperty must be stereotyped by the specialization of

«Achiever».

[2] AchievedEffect.supplier Value for the supplier metaproperty must be stereotyped by the specialization of

«ActualState».

Achiever

Package: States is Abstract: Yes

Generalization: <u>UAFElement</u> **Extension:** InstanceSpecification

Description

An ActualResource, ActualProject or ActualEnterprisePhase that can deliver a DesiredEffect.

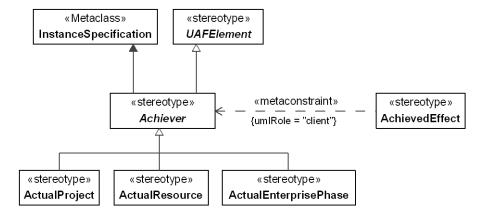


Figure 3:49 - Achiever

DesiredEffect

Package: States is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship relating the Desirer (a Capability or OrganizationalResource) to an ActualState.

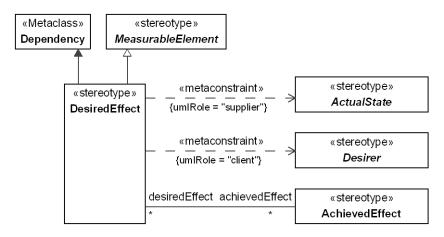


Figure 3:50 - DesiredEffect

Associations

achievedEffect[*]

Constraints

[1] DesiredEffect.client Value for the client metaproperty must be stereotyped a specialization of «Desirer».

[2] DesiredEffect.supplier Value for the supplier metaproperty must be stereotyped a specialization of

«ActualState».

Desirer

Package: States is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

Abstract element used to group architecture elements that might desire a particular effect.

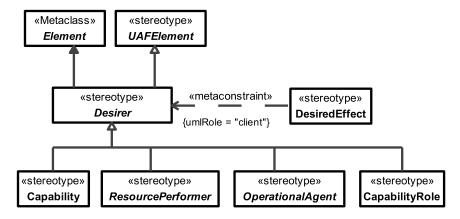


Figure 3:51 - Desirer

UAF::Strategic::Traceability

Contains the elements that contribute to the Strategic Traceability Viewpoint.

Exhibits

Package: Traceability

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship that exists between a CapableElement and a Capability that it meets under specific environmental conditions.

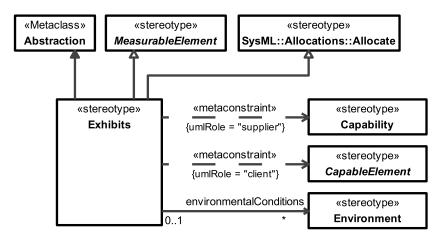


Figure 3:52 - Exhibits

Associations

environmentalConditions: Environment[*] Defines the environmental conditions constraining the way that a Capability is exhibited.

Constraints

[1] Exhibits.client Value for the client metaproperty must be stereotyped a specialization of «CapableElement».

[2] Exhibits.supplier Value for the supplier metaproperty must be stereotyped «Capability».

MapsToCapability

Package: Traceability

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An Abstraction relationship denoting that an Activity contributes to providing a Capability.

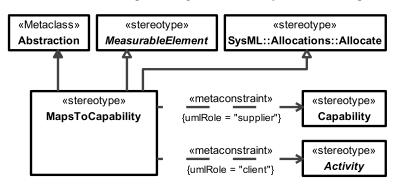


Figure 3:53 - MapsToCapability

Constraints

[1] MapsToCapability.client Value for the client metaproperty must be stereotyped a specialization of «Activity».

[2] MapsToCapability.supplier Value for the supplier metaproperty must be stereotyped «Capability».

OrganizationInEnterprise

Package: Traceability is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship relating an ActualOrganization to an ActualEnterprisePhase to denote that the ActualOrganization plays a role or is a stakeholder in an ActualEnterprisePhase.

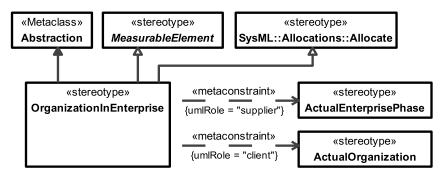


Figure 3:54 - OrganizationInEnterprise

Constraints

[1] OrganizationInEnterprise.client Value for the client metaproperty must be stereotyped «ActualOrganization»

or its specializations.

[2] OrganizationInEnterprise.supplier Value for the supplier metaproperty must be stereotyped

«ActualEnterprisePhase» or its specializations.

3.1.5 UAF::Operational

Stakeholders: Business Architects, Executives.

Concerns: illustrate the Logical Architecture of the enterprise.

Definition: describe the requirements, operational behavior, structure, and exchanges required to support (exhibit)

capabilities. Defines all operational elements in an implementation/solution independent manner.

UAF::Operational::Taxonomy

Contains the elements that contribute to the Operational Taxonomy Viewpoint.

ArbitraryConnector

Package: Taxonomy is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

Represents a visual indication of a connection used in high level operational concept diagrams.

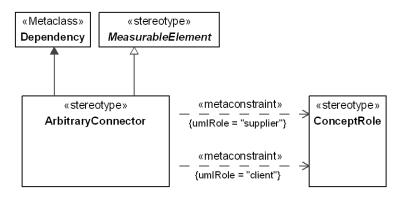


Figure 3:55 - ArbitraryConnector

[1] ArbitraryConnector.client The value for client metaproperty has to be stereotyped «ConceptRole» or its

specializations.

[2] ArbitraryConnector.supplier The value for supplier metaproperty has to be stereotyped «ConceptRole» or its

specializations.

ConceptItem

Package: Taxonomy is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

Abstract, an item which may feature in a HighLevelOperationalConcept.

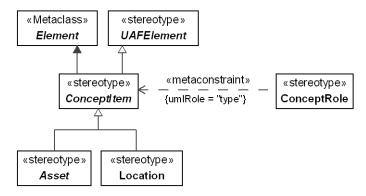


Figure 3:56 - ConceptItem

ConceptRole

Package: Taxonomy is Abstract: No

Generalization: MeasurableElement

Extension: Property

Description

Usage of a ConceptItem in the context of a HighLevelOperationalConcept.

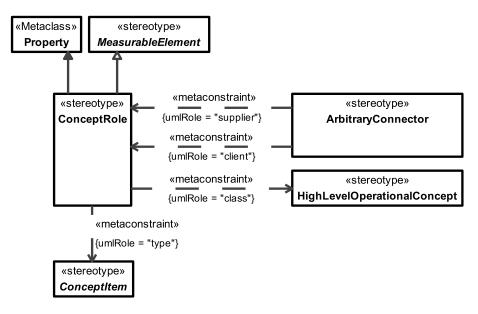


Figure 3:57 - ConceptRole

[1] ConceptRole.class Value for the class metaproperty must be stereotyped «HighLevelOperationalConcept» or its

specializations.

[2] ConceptRole.type Value for the type metaproperty must be stereotyped by a specialization of «ConceptItem».

HighLevelOperationalConcept

Package: Taxonomy is Abstract: No

Generalization: PropertySet, Block

Extension: Class Description

Describes the Resources and Locations required to meet an operational scenario from an integrated systems point of view. It is used to communicate overall quantitative and qualitative system characteristics to stakeholders.

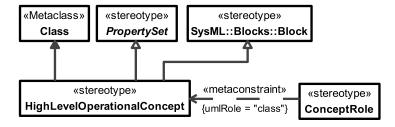


Figure 3:58 - HighLevelOperationalConcept

UAF::Operational::Structure

Contains the elements that contribute to the Operational Structure Viewpoint.

KnownResource

Package: Structure is Abstract: No

Generalization: OperationalPerformer, ResourcePerformer

Extension: Class

Unified Architecture Framework Profile (UAFP) Version 1.1

Description

Asserts that a known ResourcePerformer constrains the implementation of the OperationalPerformer that plays the role in the OperationalArchitecture.

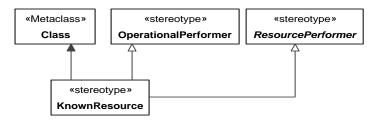
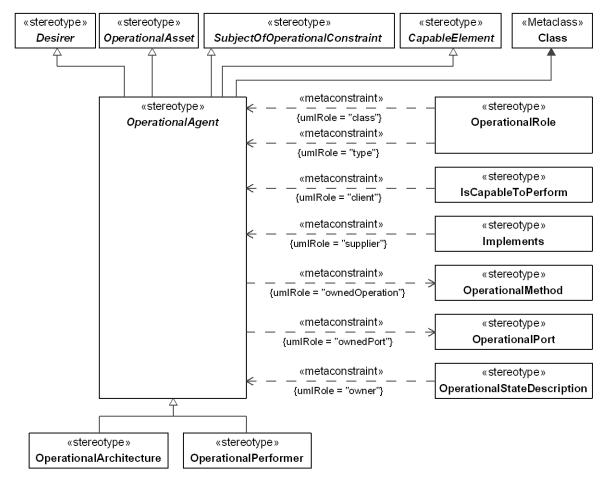


Figure 3:59 - KnownResource


Operational Agent

Package: Structure is Abstract: Yes

Generalization: OperationalAsset, SubjectOfOperationalConstraint, CapableElement, Desirer

Extension: Class Description

An abstract type grouping OperationalArchitecture and OperationalPerformer.

Figure 3:60 – Operational Agent Constraints

[1] Operational Agent. is Capable To Perform Is capable of performing only «Operational Activity» elements or its

specializations.

[2] Operational Agent. owned Operation Values for the owned Operation metaproperty must be stereotyped

«OperationalMethod» or its specializations.

[3] Operational Agent. owned Port Values for the owned Port metaproperty must be stereotyped

«OperationalPort» or its specializations.

Operational Architecture

Package: Structure is Abstract: No

Generalization: Operational Agent, Architecture

Extension: Class Description

An element used to denote a model of the Architecture, described from the Operational perspective.

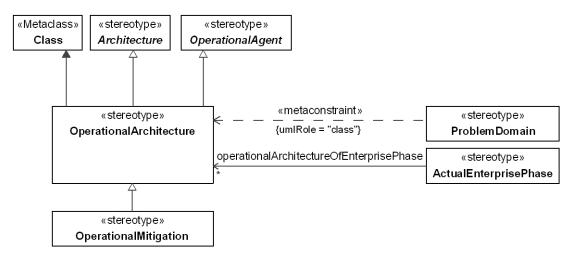


Figure 3:61 – Operational Architecture

Operational Method

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Operation

Description

A behavioral feature of an Operational Agent whose behavior is specified in an Operational Activity.

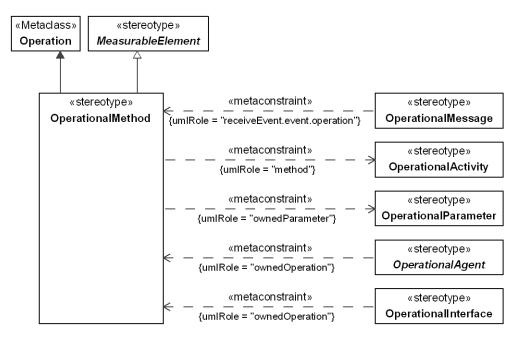


Figure 3:62 - Operational Method

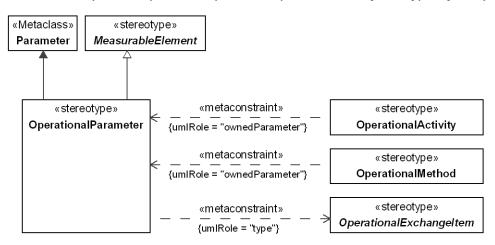
[1] OperationalMethod.method Value for the method metaproperty must be stereotyped

«Operational Activity» or its specializations.

[2] OperationalMethod.ownedParameter
The values for the ownedParameter metaproperty must be stereotyped

«OperationalParameter» or its specializations.

OperationalParameter


Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Parameter

Description

An element that represents inputs and outputs of an OperationalActivity. It is typed by an OperationalExchangeItem.

 ${\bf Figure~3:63-Operational Parameter}$

Constraints

[1] OperationalParameter.type Value for the type metaproperty must be stereotyped by specialization of «OperationalExchangeItem».

OperationalPerformer

Package: Structure is Abstract: No

Generalization: Operational Agent

Extension: Class Description

A logical agent that IsCapableToPerform OperationalActivities which produce, consume and process Resources.

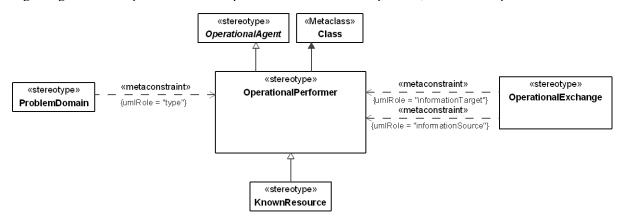


Figure 3:64 - OperationalPerformer

OperationalPort

Package: Structure is Abstract: No

Generalization: MeasurableElement, ProxyPort

Extension: Port Description

An interaction point for an OperationalAgent through which it can interact with the outside environment and which is defined by an OperationalInterface.

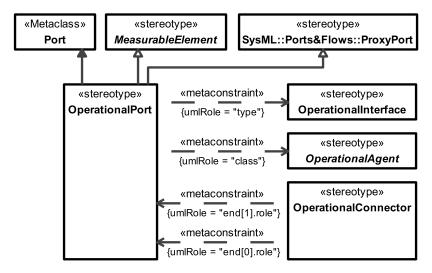


Figure 3:65 - OperationalPort

specializations.

[2] OperationalPort.type Value for type metaproperty must be stereotyped «OperationalInterface» or its

specializations.

OperationalRole

Package: Structure is Abstract: No

Generalization: MeasurableElement, LocationHolder, AssetRole

Extension: Property Description

Usage of a OperationalPerformer or OperationalArchitecture in the context of another OperationalPerformer or OperationalArchitecture. Creates a whole-part relationship.

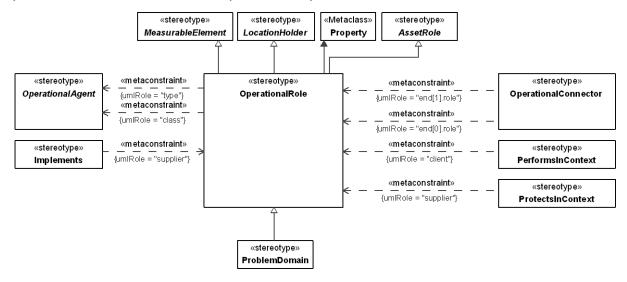


Figure 3:66 - OperationalRole

Constraints

[1] OperationalRole.class Value for class metaproperty must be stereotyped by a specialization of

«Operational Agent».

[2] OperationalRole.type Value for type metaproperty must be stereotyped by a specialization of

«Operational Agent».

ProblemDomain

Package: Structure is Abstract: No

Generalization: OperationalRole

Extension: Property Description

A property associated with an Operational Architecture, used to specify the scope of the problem.

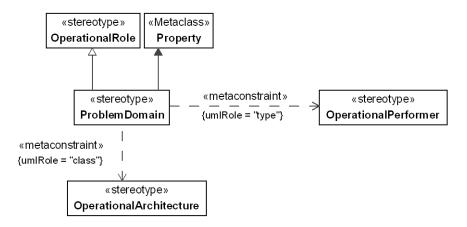


Figure 3:67 - ProblemDomain

[1] ProblemDomain.class Value for the class metaproperty must be stereotyped «OperationalArchitecture» or its

specializations.

[2] ProblemDomain.type Value for the type metaproperty must be stereotyped «OperationalPerformer» or its

specializations.

UAF::Operational::Connectivity

Contains the elements that contribute to the Operational Connectivity Viewpoint.

OperationalConnector

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement

Extension: Connector

Description

A Connector that goes between OperationalRoles representing a need to exchange Resources. It can carry a number of

OperationalExchanges.

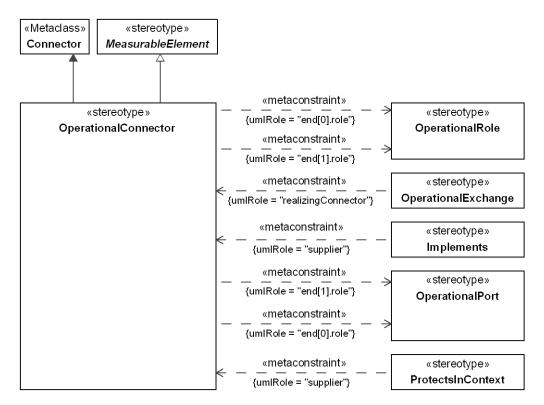


Figure 3:68 - OperationalConnector

[1] OperationalConnector.end The value for the role metaproperty for the owned ConnectorEnd must be stereotype «OperationalRole»/«OperationalPort» or its specializations.

OperationalExchange

Package: Connectivity

isAbstract: No

Generalization: Exchange, SubjectOfOperationalConstraint

Extension: InformationFlow

Description

Asserts that a flow can exist between OperationalPerformers (i.e. flows of information, people, materiel, or energy).

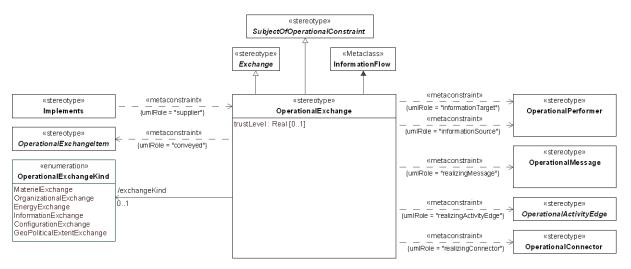


Figure 3:69 - OperationalExchange

Attributes

trustLevel: Real[0..1] Captures the directional arbitrary level of trust related to an Operational Exchange between

two OperationalPerformers.

Associations

exchangeKind: OperationalExchangeKind[0..1] Captures the kind of Resource being exchanged.

Constraints

[1] OperationalExchange.conveyed In case of OperationalExchange.operationalExchangeKind:

> = InformationExchange, the conveyed element must be stereotyped «InformationElement» or its specializations,

= MaterielExchange, the conveyed element must be stereotyped «ResourceArtifact» or its specializations,

= EnergyExchange, the conveyed element must be stereotyped

«NaturalResource» or its specializations,

= OrganizationalExchange, the conveyed element must be stereotyped «OrganizationalResource» or its specializations,

= ConfigurationExchange, the conveyed element must be stereotyped «CapabilityConfiguration» or its specializations, or = GeoPoliticalExtentExchange, the conveyed element must be

stereotyped «GeoPoliticalExtentType» or its specializations. Value for informationSource metaproperty has to be stereotyped

«OperationalPerformer» or its specializations.

Value for informationTarget metaproperty has to be stereotyped

«OperationalPerformer» or its specializations.

Value for realizing Activity Edge metaproperty has to be stereotyped by any specialization of «Operational Activity Edge».

Value for realizingConnector metaproperty has to be stereotyped

«OperationalConnector» or its specializations.

Value for realizingMessage metaproperty has to be stereotyped «OperationalMessage» or its specializations.

OperationalExchangeItem

[2] OperationalExchange.informationSource

[3] OperationalExchange.informationTarget

[4] OperationalExchange.realizingActivityEdge

[5] OperationalExchange.realizingConnector

[6] OperationalExchange.realizingMessage

Package: Connectivity

isAbstract: Yes

Generalization: Resource

Description

An abstract grouping for elements that defines the types of elements that can be exchanged between OperationalPerformers and conveyed by an OperationalExchange.

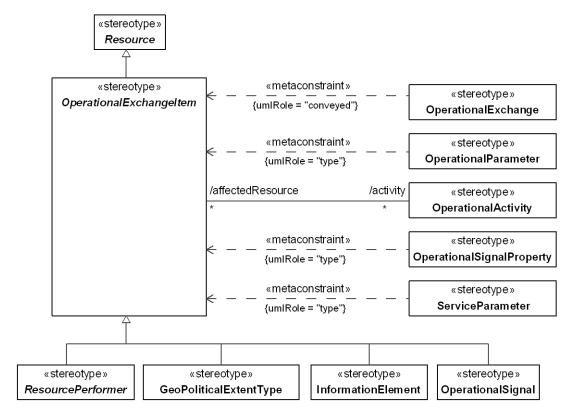


Figure 3:70 - OperationalExchangeItem

Associations

activity: OperationalActivity[*] A collection of OperationalActivities that consume and/or produce the OperationalExchangeItem internally.

OperationalExchangeKind

Package: Connectivity

isAbstract: No Description

Enumeration of the possible kinds of operational exchange applicable to an OperationalExchange. Its enumeration literals are:

- MaterielExchange Indicates that the OperationalExchange associated with the OperationalExchangeKind is a logical flow of materiel (artifacts) between Functions.
- OrganizationalExchange Indicates that the OperationalExchange associated with the
 OperationalExchangeKind is a logical flow where human resources (PostTypes, RoleTypes) flow between
 OperationalPerformers.
- EnergyExchange Indicates that the OperationalExchange associated with the OperationalExchangeKind is a logical flow where energy is flowed from one OperationalPerformer to another.
- InformationExchange Indicates that the OperationalExchange associated with the OperationalExchangeKind is a logical flow where information is flowed from one OperationalPerformer to another.
- ConfigurationExchange Indicates that the OperationalExchange associated with the OperationalExchangeKind is a logical flow where CapabilityConfigurations flow from one OperationalPerformer to another.

GeoPoliticalExtentExchange - Indicates that the OperationalExchange associated with the
OperationalExchangeKind is a logical flow where GeoPoliticalExtentTypes (i.e. Borders) flow from one
place to another.

OperationalInterface

Package: Connectivity

isAbstract: No

Generalization: PropertySet, InterfaceBlock

Extension: Class Description

A declaration that specifies a contract between the OperationalPerformer it is related to, and any other OperationalPerformers it can interact with.

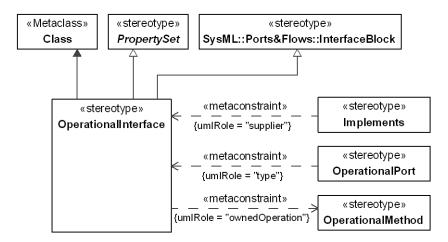


Figure 3:71 - OperationalInterface

Constraints

[1] OperationalInterface.ownedOperation

Values for the ownedOperation metaproperty must be stereotyped «OperationalMethod» or its specializations.

OperationalSignal

Package: Connectivity

isAbstract: No

Generalization: OperationalExchangeItem, SubjectOfOperationalConstraint

Extension: Signal Description

An OperationalSignal is a specification of a kind of communication between operational performers in which a reaction is asynchronously triggered in the receiver without a reply.

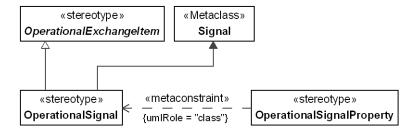


Figure 3:72 - Operational Signal

OperationalSignalProperty

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement

Extension: Property Description

A property of an OperationalSignal typed by OperationalExchangeItem. It enables OperationalExchangeItem e.g. InformationElement to be passed as arguments of the OperationalSignal.

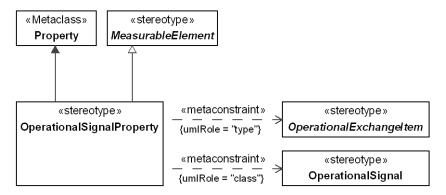


Figure 3:73 - Operational Signal Property

Constraints

[1] OperationalSignalProperty.class Value for class metaproperty must be stereotyped «OperationalSignal» or its

specializations.

[2] OperationalSignalProperty.type Value for type metaproperty must be stereotyped by a specialization of

«OperationalExchangeItem».

UAF::Operational::Processes

Contains the elements that contribute to the Operational Processes Viewpoint.

Operational Activity

Package: Processes is Abstract: No

Generalization: Activity, SubjectOfOperationalConstraint

Extension: Activity Description

An Activity that captures a logical process, specified independently of how the process is carried out.

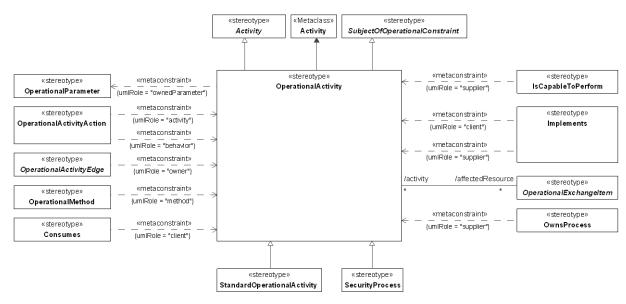


Figure 3:74 - Operational Activity

Associations

affectedResource : OperationalExchangeItem[*] A collection of OperationalExchangeItems consumed and produced internally within the OperationalActivity.

Constraints

[1] Operational Activity. owned Parameter

The values for the ownedParameter metaproperty must be stereotyped «OperationalParameter» or its specializations.

Operational Activity Action

Package: Processes is Abstract: No

Generalization: <u>MeasurableElement</u> **Extension:** CallBehaviorAction

Description

A call of an Operational Activity in the context of another Operational Activity.

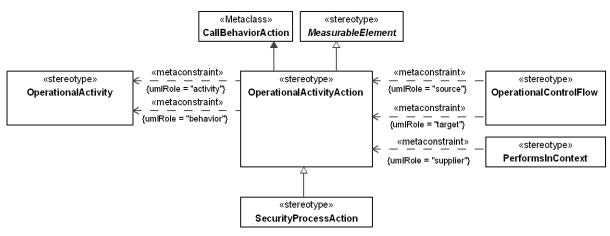


Figure 3:75 - Operational Activity Action

Constraints

[1] OperationalActivityAction.activity Value for the activity metaproperty must be stereotyped «OperationalActivity» or its specializations.

[2] Operational Activity Action. behavior

Value for activity metaproperty must be stereotyped «Operational Activity» or its specializations.

Operational Activity Edge

Package: Processes is Abstract: Yes

Generalization: MeasurableElement

Extension: ActivityEdge

Description

Abstract grouping for OperationalControlFlow and OperationalObjectFlow.

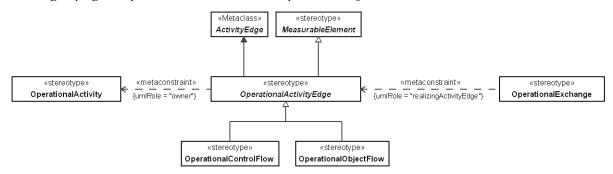


Figure 3:76 - Operational Activity Edge

Constraints

[1] OperationalActivityEdge.owner «OperationalActivityEdge» must be owned directly or indirectly by «OperationalActivity» or its specializations.

OperationalControlFlow

Package: Processes is Abstract: No

Generalization: Operational Activity Edge

Extension: ControlFlow

Description

An ActivityEdge that shows the flow of control between OperationalActivityActions.

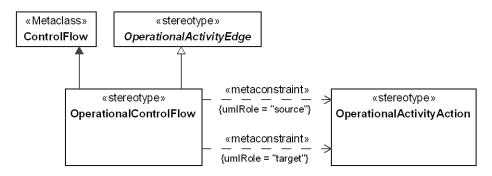


Figure 3:77 - OperationalControlFlow

Constraints

[1] OperationalControlFlow.source Value for the source metaproperty must be stereotyped

«Operational Activity Action» or its specializations.

[2] OperationalControlFlow.target Value for the target metaproperty must be stereotyped

«Operational Activity Action» or its specializations.

OperationalObjectFlow

Package: Processes is Abstract: No

Generalization: Operational Activity Edge

Extension: ObjectFlow

Description

An ActivityEdge that shows the flow of Resources (objects/information) between OperationalActivityActions.

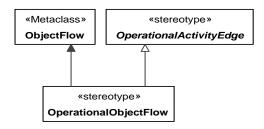


Figure 3:78 - OperationalObjectFlow

StandardOperationalActivity

Package: Processes is Abstract: No

Generalization: Operational Activity

Extension: Activity Description

A sub-type of Operational Activity that is a standard operating procedure.

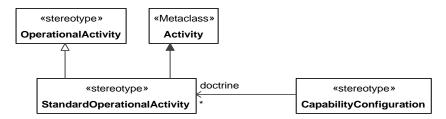


Figure 3:79 - StandardOperationalActivity

UAF::Operational::States

Contains the elements that contribute to the Operational States Viewpoint.

OperationalStateDescription

Package: States is Abstract: No

Generalization: MeasurableElement

Extension: StateMachine

Description

A state machine describing the behavior of a OperationalPerformer, depicting how the OperationalPerformer responds to various events and the actions.

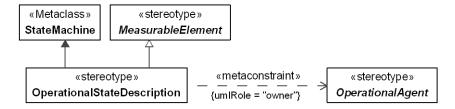


Figure 3:80 - OperationalStateDescription

[1] OperationalStateDescription.owner Values for the owner metaproperty must be stereotyped with specializations of «OperationalAgent» .

UAF::Operational::Interaction Scenarios

Contains the elements that contribute to the Operational Interaction Scenarios Viewpoint.

Operational Message

Package: Interaction Scenarios

isAbstract: No

Generalization: MeasurableElement

Extension: Message

Description

Message for use in an operational interaction scenario which carries any of the subtypes of OperationalExchange.

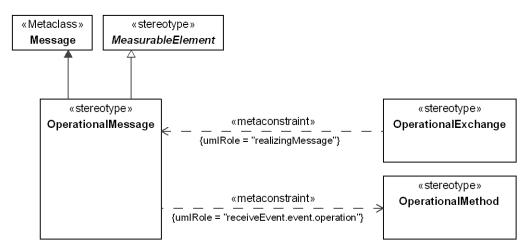


Figure 3:81 - OperationalMessage

Constraints

[1] OperationalMessage.receiveEvent.event.operation

Values for the receiveEvent.event.operation metaproperty must be stereotyped with «OperationalMethod» or its specializations.

UAF::Operational::Information

Contains the elements that contribute to the Operational Information Viewpoint.

InformationElement

Package: Information

isAbstract: No

Generalization: OperationalAsset, OperationalExchangeItem, SubjectOfOperationalConstraint

Extension: Class Description

An item of information that flows between OperationalPerformers and is produced and consumed by the OperationalActivities that the OperationalPerformers are capable to perform (see IsCapableToPerform).

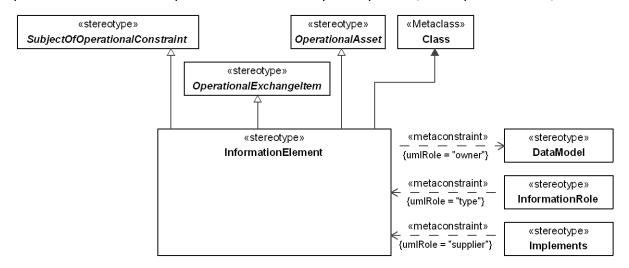


Figure 3:82 - InformationElement

Constraints

[1] InformationElement.owner Values for the owner metaproperty must be stereotyped «DataModel» or its specializations.

UAF::Operational::Constraints

Contains the elements that contribute to the Operational Constraints Viewpoint.

OperationalConstraint

Package: Constraints

isAbstract: No

Generalization: Rule **Extension:** Constraint

Description

A Rule governing an operational architecture element i.e. OperationalPerformer, OperationalActivity, InformationElement etc.

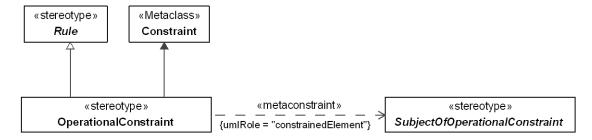


Figure 3:83 - OperationalConstraint

Constraints

[1] OperationalConstraint.constrainedElement Value for the constrainedElement metaproperty must be stereotyped by any specialization of «SubjectOfOperationalConstraint».

SubjectOfOperationalConstraint

Package: Constraints is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

An abstract grouping of elements that can be the subject of an OperationalConstraint.

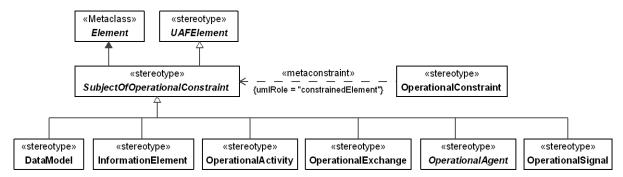


Figure 3:84 - SubjectOfOperationalConstraint

3.1.6 UAF::Services

Stakeholders: Enterprise Architects, Solution Providers, Systems Engineers, Software Architects, Business Architects.. Concerns: specifications of services required to exhibit a Capability.

Definition: shows Service Specifications and required and provided service levels of these specifications required to exhibit a Capability or to support an Operational Activity.

UAF::Services::Taxonomy

Contains the elements that contribute to the Services Taxonomy Viewpoint.

ServiceSpecification

Package: Taxonomy is Abstract: No

Generalization: PropertySet, VersionedElement, CapableElement, Block

Extension: Class Description

The specification of a set of functionality provided by one element for the use of others.

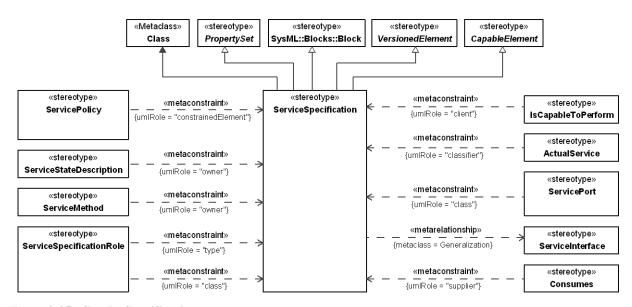


Figure 3:85 - ServiceSpecification

UAF::Services::Structure

Contains the elements that contribute to the Services Structure Viewpoint.

ServiceMethod

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Operation

Description

A behavioral feature of a ServiceSpecification whose behavior is specified in a ServiceFunction.

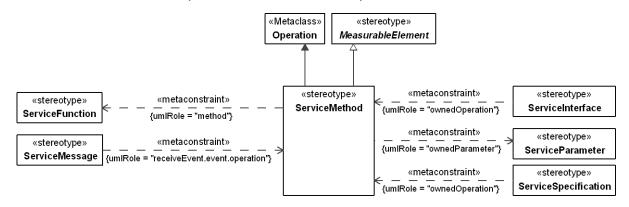


Figure 3:86 - ServiceMethod

Constraints

[1] ServiceMethod.method Value for the method metaproperty must be stereotyped «ServiceFunction» or

its specializations.

[2] ServiceMethod.ownedParameter The values for the ownedParameter metaproperty must be stereotyped

«ServiceParameter» or its specializations.

[3] ServiceMethod.owner The values for the owner metaproperty must be stereotyped

«ServiceSpecification» or its specializations.

ServiceParameter

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Parameter

Description

An element that represents inputs and outputs of a ServiceFunction, represents inputs and outputs of a ServiceSpecification.

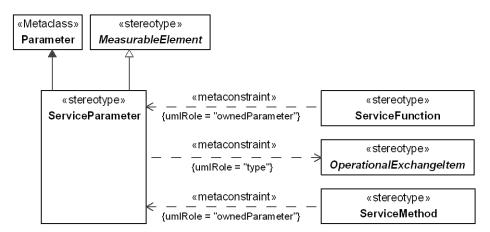


Figure 3:87 - ServiceParameter

Constraints

[1] ServiceParameter.type The values for the type metaproperty must be stereotyped a specialization of

«Operational Exchange I tem».

ServicePort

Package: Structure is Abstract: No

Generalization: ProxyPort, MeasurableElement

Extension: Port Description

An interaction point for a ServiceSpecification through which it can interact with the outside environment and which is defined by a ServiceInterface.

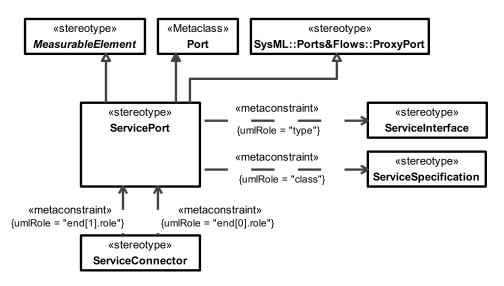


Figure 3:88 - ServicePort

[1] ServicePort.class Value for the class metaproperty must be stereotyped «ServiceSpecification» or its

specializations.

[2] ServicePort.type Value for the type metaproperty must be stereotyped «ServiceInterface» or its specializations.

ServiceSpecificationRole

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Property

Description

Usage of a ServiceSpecification in the context of another ServiceSpecification. Creates a whole-part relationship.

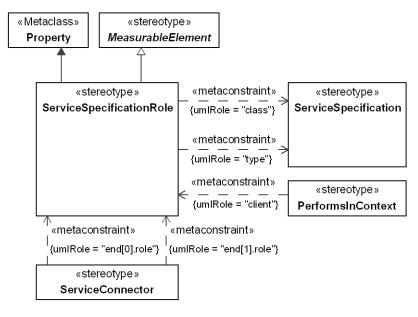


Figure 3:89 - ServiceSpecificationRole

Constraints

[1] ServiceSpecificationRole.class Value for the class metaproperty must be stereotyped «ServiceSpecification» or

its specializations.

[2] ServiceSpecificationRole.type Value for the type metaproperty must be stereotyped «ServiceSpecification» or

its specializations.

UAF::Services::Connectivity

Contains the elements that contribute to the Services Connectivity Viewpoint.

ServiceConnector

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement

Extension: Connector

Description

A channel for exchange between two ServiceSpecifications. Where one acts as the consumer of the other.

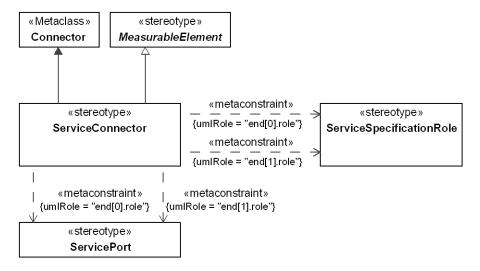


Figure 3:90 - ServiceConnector

Constraints

[1] ServiceConnector.end The value for the role metaproperty for the owned ConnectorEnd must be stereotyped «ServicePort», «ServiceSpecificationRole» or their specializations.

ServiceInterface

Package: Connectivity

isAbstract: No

Generalization: PropertySet, InterfaceBlock

Extension: Class Description

A contract that defines the ServiceMethods and ServiceMessageHandlers that the ServiceSpecification realizes.

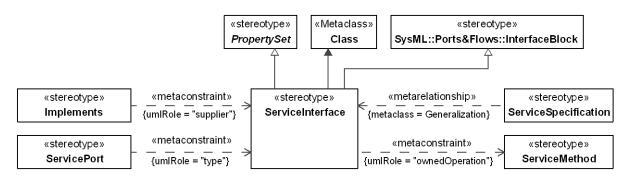


Figure 3:91 - ServiceInterface

[1] ServiceInterface.ownedOperation Values for the ownedOperation metaproperty must be stereotyped «ServiceMethod» or its specializations.

UAF::Services::Processes

Contains the elements that contribute to the Services Processes Viewpoint.

ServiceFunction

Package: Processes is Abstract: No

Generalization: Activity
Extension: Activity
Description

An Activity that describes the abstract behavior of ServiceSpecifications, regardless of the actual implementation.

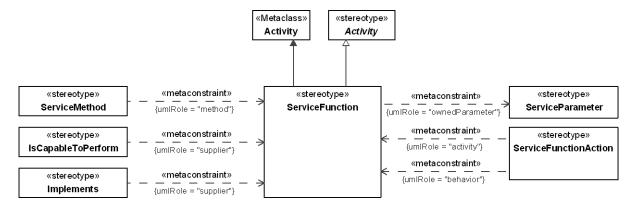


Figure 3:92 - ServiceFunction

Constraints

[1] ServiceFunction.ownedParameter

The values for the ownedParameter metaproperty must be stereotyped «ServiceParameter».

ServiceFunctionAction

Package: Processes is Abstract: No

Generalization: MeasurableElement Extension: CallBehaviorAction

Description

A call of a ServiceFunction in the context of another ServiceFunction.

Unified Architecture Framework Profile (UAFP) Version 1.1

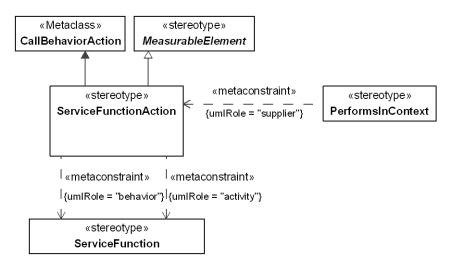


Figure 3:93 - ServiceFunctionAction

[1] ServiceFunctionAction.activity Value for the behavior metaproperty must be stereotyped «ServiceFunction» or

its specializations.

[2] ServiceFunctionAction.behavior Value for the activity metaproperty must be stereotyped «ServiceFunction» or

its specializations.

UAF::Services::States

Contains the elements that contribute to the Services States Viewpoint.

ServiceStateDescription

Package: States is Abstract: No

Generalization: MeasurableElement

Extension: StateMachine

Description

A state machine describing the behavior of a ServiceSpecification, depicting how the ServiceSpecification responds to various events and the actions.

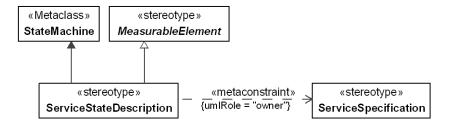


Figure 3:94 - ServiceStateDescription

Constraints

[1] ServiceStateMachine.owner Values for the owner metaproperty must be stereotyped «ServiceSpecification» or its specializations.

UAF::Services::Interaction Scenarios

Contains the elements that contribute to the Services Interaction Scenarios Viewpoint.

ServiceMessage

Package: Interaction Scenarios

isAbstract: No

Generalization: MeasurableElement

Extension: Message

Description

Message for use in a Service Event-Trace.

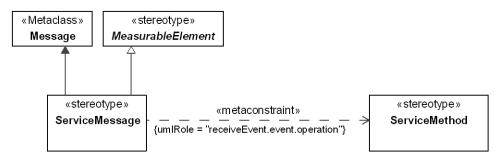


Figure 3:95 - ServiceMessage

Constraints

[1] ServiceMessage.receiveEvent.event.operation

Values for the receiveEvent.event.operation metaproperty must be stereotyped with «ServiceMethod» or its specializations.

UAF::Services::Constraints

Contains the elements that contribute to the Services Constraints Viewpoint.

ServicePolicy

Package: Constraints

isAbstract: No

Generalization: Rule **Extension:** Constraint

Description

A constraint governing the use of one or more ServiceSpecifications.

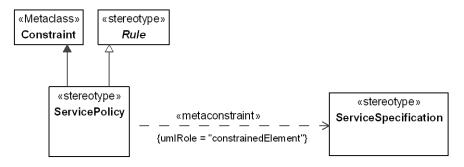


Figure 3:96 - ServicePolicy

Constraints

[1] ServicePolicy.constrainedElement Values for constrainedElement metaproperty must be stereotyped «ServiceSpecification» or its specializations.

UAF::Services::Traceability

Contains the elements that contribute to the Services Traceability Viewpoint.

Consumes

Package: Traceability

isAbstract: No

Generalization: Allocate, MeasurableElement

Extension: Abstraction

Description

A abstraction relationship that asserts that a service in someway contributes or assists in the execution of an Operational Activity.

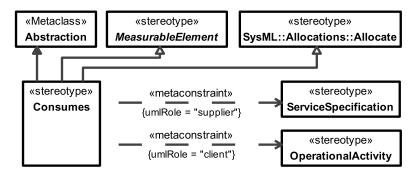


Figure 3:97 - Consumes

Constraints

[1] Consumes.client Value for the client metaproperty must be stereotyped «Operational Activity» or its

specializations.

[2] Consumes.supplier Value for the supplier metaproperty must be stereotyped «ServiceSpecification» or its

specializations.

3.1.7 UAF::Personnel

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: human factors.

Definition: aims to clarify the role of Human Factors (HF) when creating architectures in order to facilitate both Human

Factors Integration (HFI) and systems engineering (SE).

UAF::Personnel::Taxonomy

Contains the elements that contribute to the Personnel Taxonomy Viewpoint.

Organization

Package: Taxonomy is Abstract: No

Generalization: OrganizationalResource

Extension: Class Description

A group of OrganizationalResources (Persons, Posts, Organizations and Responsibilities) associated for a particular

purpose.

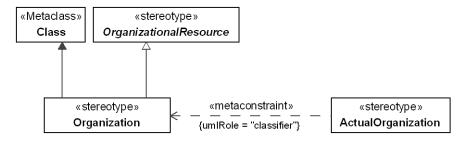


Figure 3:98 - Organization

OrganizationalResource

Package: Taxonomy is Abstract: Yes

Generalization: PhysicalResource, Stakeholder

Extension: Class Description

An abstract element grouping for Organization, Person, Post and Responsibility.

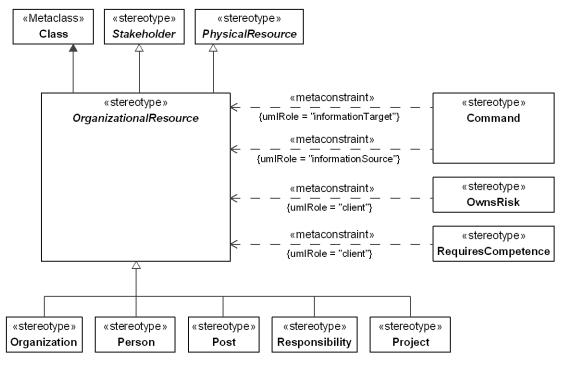


Figure 3:99 - OrganizationalResource

Person

Package: Taxonomy is Abstract: No

Generalization: OrganizationalResource

Extension: Class Description

A type of a human being used to define the characteristics that need to be described for ActualPersons (e.g. properties such as address, telephone number, nationality, etc).

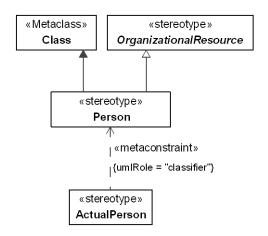


Figure 3:100 - Person

Post

Package: Taxonomy

isAbstract: No

Generalization: OrganizationalResource

Extension: Class Description

A type of job title or position that a person can fill (e.g. Lawyer, Solution Architect, Machine Operator or Chief Executive Officer).

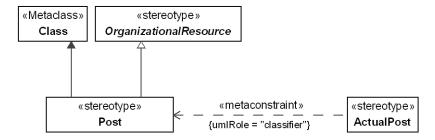


Figure 3:101 - Post

Responsibility

Package: Taxonomy

isAbstract: No

Generalization: OrganizationalResource

Extension: Class Description

The type of duty required of a Person or Organization.

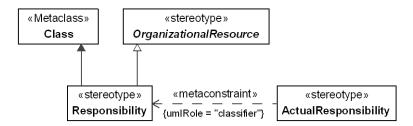


Figure 3:102 - Responsibility

UAF::Personnel::Connectivity

Contains the elements that contribute to the Personnel Connectivity Viewpoint.

Command

Package: Connectivity

isAbstract: No

Generalization: ResourceExchange

Extension: InformationFlow

Description

A type of ResourceExchange that asserts that one OrganizationalResource commands another.

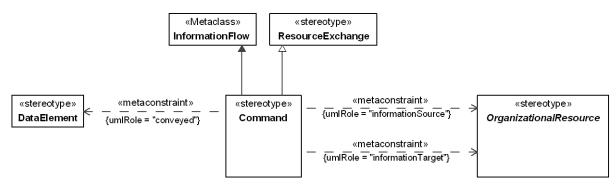


Figure 3:103 - Command

Constraints

[1] Command.conveyed Value for the conveyed metaproperty must be stereotyped «DataElement» or its

specializations.

[2] Command.informationSource Value for the informationSource metaproperty must be stereotyped by the

specialization of «OrganizationalResource».

[3] Command.informationTarget Value for the informationTarget metaproperty must be stereotyped by the

specialization of «OrganizationalResource».

Control

Package: Connectivity

isAbstract: No

Generalization: ResourceExchange

Extension: InformationFlow

Description

A type of ResourceExchange that asserts that one PhysicalResource controls another PhysicalResource (i.e. the driver of a vehicle controlling the vehicle speed or direction).

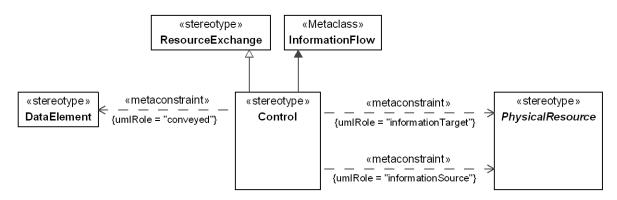


Figure 3:104 - Control

[1] Control.conveyed Value for the conveyed metaproperty must be stereotyped «DataElement» or its

specializations.

[2] Control.informationSource Value for the informationSource metaproperty must be stereotyped by the

specialization of «PhysicalResource».

[3] Control.informationTarget Value for the informationTarget metaproperty must be stereotyped by the

specialization of «PhysicalResource» or its specializations.

UAF::Personnel::Processes

Contains the elements that contribute to the Personnel Processes Viewpoint.

CompetenceToConduct

Package: Processes is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship used to associate a Function with a specific set of Competencies needed to conduct the Function.

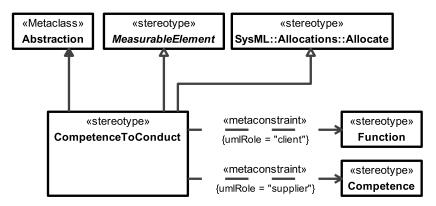


Figure 3:105 - CompetenceToConduct

Constraints

[1] CompetenceToConduct.client Value for the client metaproperty must be stereotyped «Function» or its

specializations.

[2] CompetenceToConduct.supplier Value for the supplier metaproperty must be stereotyped «Competence» or its

specializations.

UAF::Personnel::Constraints

Contains the elements that contribute to the Personnel Constraints Viewpoint.

Competence

Package: Constraints

isAbstract: No

Generalization: SubjectOfForecast, PropertySet, Block

Extension: Class Description

A specific set of abilities defined by knowledge, skills and aptitude.

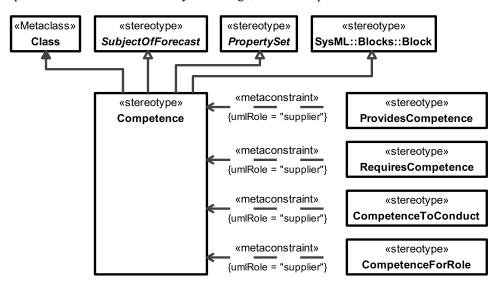


Figure 3:106 - Competence

CompetenceForRole

Package: Constraints is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship used to associate an organizational role with a specific set of required competencies.

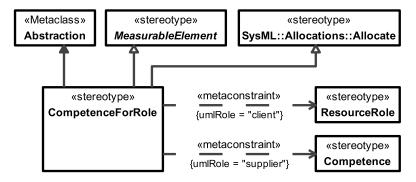


Figure 3:107 - CompetenceForRole

Constraints

[1] CompetenceForRole.client Value for the client metaproperty must be stereotyped «ResourceRole» or its

specializations.

[2] CompetenceForRole.supplier Value for the supplier metaproperty must be stereotyped «Competence» or its

specializations.

RequiresCompetence

Package: Constraints is Abstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship that asserts that an ActualOrganizationalResource is required to have a specific set of Competencies.

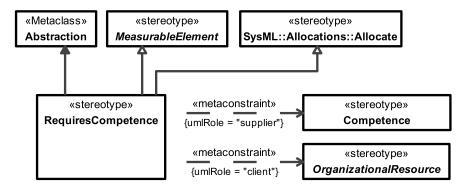


Figure 3:108 - RequiresCompetence

Constraints

[1] RequiresCompetence.client Value for the client metaproperty must be stereotyped a specialization of

«OrganizationalResource».

[2] RequiresCompetence.supplier Value for the supplier metaproperty must be stereotyped «Competence» or its

specializations.

UAF::Personnel::Traceability

Contains the elements that contribute to the Personnel Traceability Viewpoint.

ResponsibleFor

Package: Traceability

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relationship between an ActualResponsibleResource and an ActualResponsibility or ActualProject. It defines the duties that the ActualResponsibleResource is ResponsibleFor.

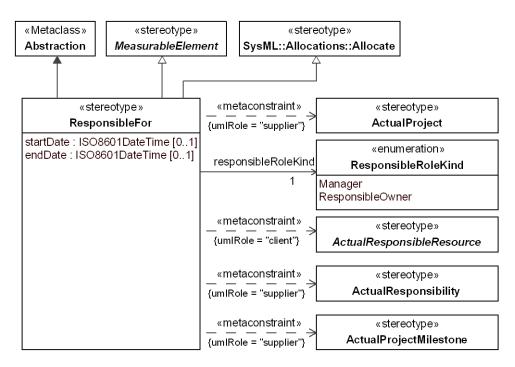


Figure 3:109 - ResponsibleFor

Attributes

ActualProject or ActualResponsibility.

startDate: ISO8601DateTime[0..1] Start date of an ActualResponsibleResource being ResponsibleFor and

ActualProject or ActualResponsibility.

Associations

responsibleRoleKind: ResponsibleRoleKind[1] Captures the kind of role (Manager or ResponsibleOwner)

responsible for the ActualProject or ActualResponsibility.

Constraints

[1] ResponsibleFor.client Value for the client metaproperty must be stereotyped by the specialization of

«ActualResponsibleResource».

[2] ResponsibleFor.supplier Value for the supplier metaproperty must be stereotyped «ActualProject»,

«ActualResponsibility», «ActualProjectMilestone» or their specializations.

ResponsibleRoleKind

Package: Traceability

isAbstract: No Description

Enumeration of the possible kinds of ResponsibleFor relationship. Its enumeration literals are:

- Manager Indicates that the ResourceInteraction associated with the ResourceInteractionKind is a an implementation of logical flow.
- ResponsibleOwner Indicates that the ResourceInteraction associated with the ResourceInteractionKind is a an implementation of logical flow.

3.1.8 UAF::Resources

Stakeholders: Systems Engineers, Resource Owners, Implementers, Solution Providers, IT Architects.

Concerns: definition of solution architectures to implement operational requirements. Definition: captures a solution architecture consisting of resources, e.g. organizational, software, artifacts, capability configurations, natural resources that implement the operational requirements. Further design of a resource is typically detailed in SysML or UML.

UAF::Resources::Taxonomy

Contains the elements that contribute to the Resources Taxonomy Viewpoint.

CapabilityConfiguration

Package: Taxonomy is Abstract: No

Generalization: ResourceArchitecture

Extension: Class Description

A composite structure representing the physical and human resources (and their interactions) in an enterprise, assembled to meet a capability.

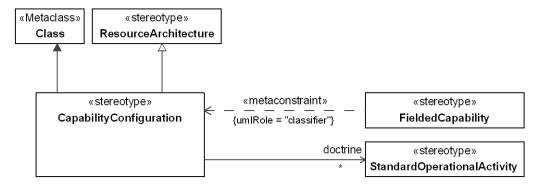


Figure 3:110 - CapabilityConfiguration

Associations

doctrine: StandardOperationalActivity[*] Represents the doctrinal line of development of the Capability.

NaturalResource

Package: Taxonomy is Abstract: No

Generalization: PhysicalResource

Extension: Class Description

Type of physical resource that occurs in nature such as oil, water, gas or coal.

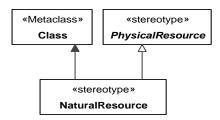


Figure 3:111 - NaturalResource

PhysicalResource

Package: Taxonomy is Abstract: Yes

Generalization: ResourcePerformer

Extension: Class Description

An abstract grouping that defines physical resources (i.e. OrganizationalResource, ResourceArtifact and NaturalResource).

Figure 3:112 - PhysicalResource

ResourceArchitecture

Package: Taxonomy is Abstract: No

Generalization: ResourcePerformer, Architecture

Extension: Class Description

An element used to denote a model of the Architecture, described from the ResourcePerformer perspective.

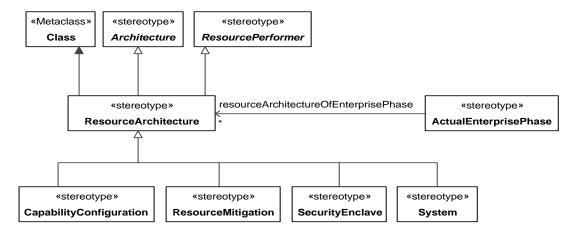


Figure 3:113 - ResourceArchitecture

ResourceArtifact

Package: Taxonomy is Abstract: No

Generalization: PhysicalResource

Extension: Class Description

A type of man-made object that contains no human beings (i.e. satellite, radio, petrol, gasoline, etc.).

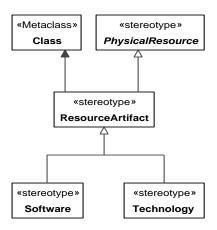


Figure 3:114 - ResourceArtifact

ResourcePerformer

Package: Taxonomy is Abstract: Yes

Generalization: ResourceAsset, ResourceExchangeItem, SubjectOfResourceConstraint, VersionedElement,

CapableElement, SubjectOfForecast, OperationalExchangeItem, Desirer

Extension: Class Description

An abstract grouping of elements that can perform Functions.

Figure 3:115 - ResourcePerformer

Attributes

 $is Standard Configuration: Boolean [] \quad Indicates \ if \ the \ Resource Performer \ is \ Standard Configuration, \ default=false.$ Associations

milestone : ProjectMilestone[*] Relates ResourcePerformer to ProjectMilestones that affect it.

Unified Architecture Framework Profile (UAFP) Version 1.1

[1] ResourcePerformer.isCapableOfPerforming Is capable of performing only «Function» elements or its

specializations.

[2] ResourcePerformer.ownedOperation Values for the ownedOperation metaproperty must be stereotyped

«ResourceMethod» or its specializations.

[3] ResourcePerformer.ownedPort Values for the ownedPort metaproperty must be stereotyped

«ResourcePort» or its specializations.

Software

Package: Taxonomy is Abstract: No

Generalization: ResourceArtifact

Extension: Class Description

A sub-type of ResourceArtifact that specifies an executable computer program.

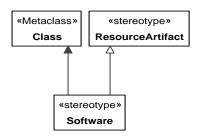


Figure 3:116 - Software

System

Package: Taxonomy is Abstract: No

Generalization: Resource Architecture

Extension: Class Description

An integrated set of elements, subsystems, or assemblies that accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people, information, techniques, facilities, services, and other support elements (INCOSE SE Handbook V4, 2015).

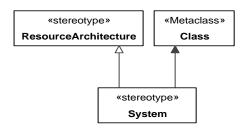


Figure 3:117 - System

UAF::Resources::Structure

Contains the elements that contribute to the Resources Structure Viewpoint.

ResourceMethod

Package: Structure

isAbstract: No

Generalization: MeasurableElement

Extension: Operation

Description

A behavioral feature of a ResourcePerformer whose behavior is specified in a Function.

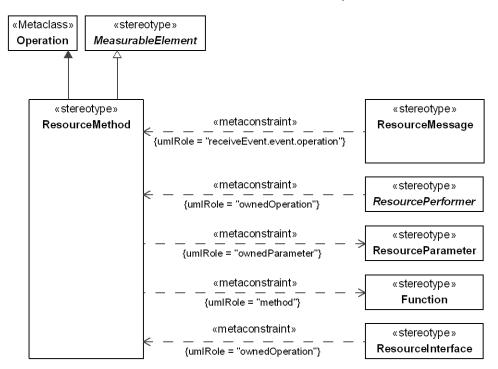


Figure 3:118 - ResourceMethod

Constraints

[1] ResourceMethod.method Value for the method metaproperty must be stereotyped «Function» or its

specializations.

[2] ResourceMethod.ownedParameter
The values for the ownedParameter metaproperty must be stereotyped

«ResourceParameter».

ResourceParameter

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Parameter

Description

An element that represents inputs and outputs of an Function. It is typed by a ResourceInteractionItem.

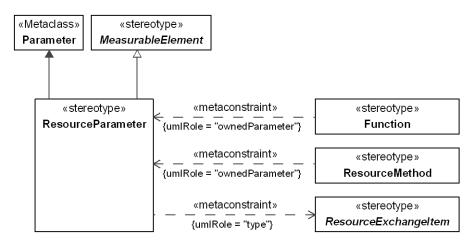


Figure 3:119 - ResourceParameter

[1] ResourceParameter.type Value for the type metaproperty must be stereotyped with a specialization of «ResourceInteractionItem».

ResourcePort

Package: Structure is Abstract: No

Generalization: ProxyPort, MeasurableElement, ProtocolImplementation

Extension: Port Description

An interaction point for a ResourcePerformer through which it can interact with the outside environment and which is defined by a ResourceInterface.

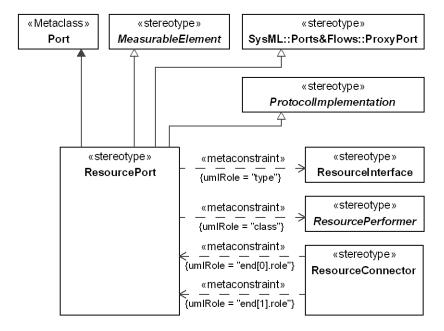


Figure 3:120 - ResourcePort

Constraints

[1] ResoucePort.type Value for the type metaproperty must be stereotyped «ResourceInterface» or its specializations.

[2] ResourcePort.class Value for the class metaproperty must be stereotyped by the specialization of «ResourcePerformer».

ResourceRole

Package: Structure is Abstract: No

Generalization: LocationHolder, SubjectOfResourceConstraint, MeasurableElement, AssetRole

Extension: Property

Description

Usage of a ResourcePerformer in the context of another ResourcePerformer. Creates a whole-part relationship.

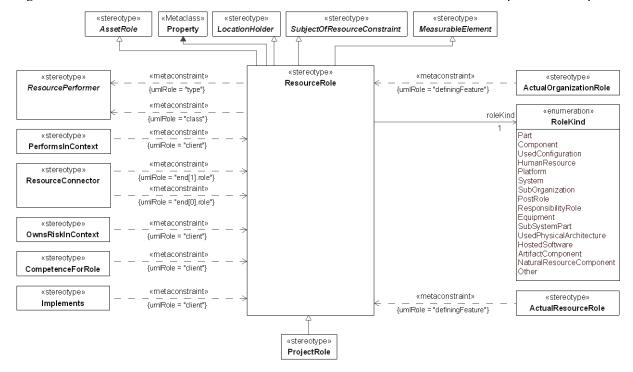


Figure 3:121 - ResourceRole

Associations

roleKind: RoleKind[1] Captures the kind of role a Resource can play.

Constraints

[1] ResouceRole.type Value for the type metaproperty must be stereotyped by the specialization of

«Resource Performer».

[2] ResourceRole.class Value for the class metaproperty must be stereotyped by the specialization of

«ResourcePerformer».

RoleKind

Package: Structure is Abstract: No Description

Enumeration of the possible kinds of roles that a ResourceRole may play in the context of a ResourcePerformer. Its enumeration literals are:

- Part Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of a ResourcePerformer that is used as a part of another ResourcePerformer.
- Component Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of Software that is used in the context of a ResourcePerformer.

- UsedConfiguration Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of existing CapabilityConfiguration that is used in the context of a ResourcePerformer.
- HumanResource Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of human resource that is used in the context of a ResourcePerformer.
- Platform Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of a ResourcePerformer that represents a platform (e.g. vessel, aircraft, etc.) that is used in the context of a SystemsResource.
- System Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of assembly of ResourcePerformers that is used in the context of another ResourcePerformer.
- SubOrganization Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of Organization that is typically the parent of another e.g. a squadron may be part of a batallion, that is used in the context of a ResourcePerformer.
- PostRole Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of Post that is used in the context of a ResourcePerformer.
- ResponsibilityRole Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of Responsibility associated with a role that is used in the context of a ResourcePerformer.
- Equipment Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of man made resource that is used to accomplish a task or function in the context of a ResourcePerformer.
- SubSystemPart Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of subsystem (represented as a ResourcePerformers) is is part of another ResourcePerformer.
- UsedPhysicalArchitecture Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of existing PhysicalArchitecture that is used in the context of a ResourcePerformer.
- HostedSoftware Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of software that is used in the context of a ResourcePerformer.
- ArtifactComponent Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of non human resource that is used as a component in the context of a ResourcePerformer.
- NaturalResourceComponent Indicates that the ResourceRole associated with the ResourceRoleKind is a kind of natural resource that is used as a component in the context of a ResourcePerformer.
- Other Indicates that the ResourceRole associated with the ResourceRoleKind is another kind of RoleKind
 that is not on the enumerated list.

UAF::Resources::Connectivity

Contains the elements that contribute to the Resources Connectivity Viewpoint.

ResourceConnector

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement, ProtocolImplementation

Extension: Connector

Description

A channel for exchange between two ResourceRoles.

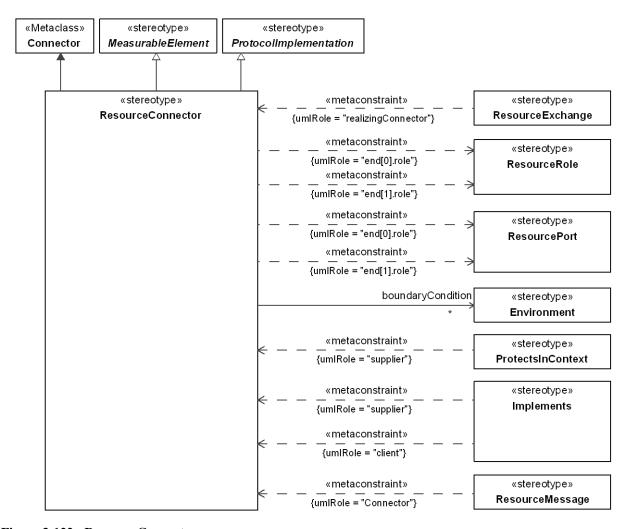


Figure 3:122 - ResourceConnector

Associations

boundaryCondition : Environment[*] Relates a ResourceConector to the extremes of the Environment in which it is required to be made available.

Constraints

[1] ResourceConnector.end The value for the role metaproperty for the owned ConnectorEnd must be stereotype «ResourcePort», «ResourceRole» or their specializations.

ResourceExchange

Package: Connectivity

isAbstract: No

Generalization: Exchange **Extension:** InformationFlow

Description

Asserts that a flow can exist between ResourcePerformers (i.e. flows of data, people, materiel, or energy).

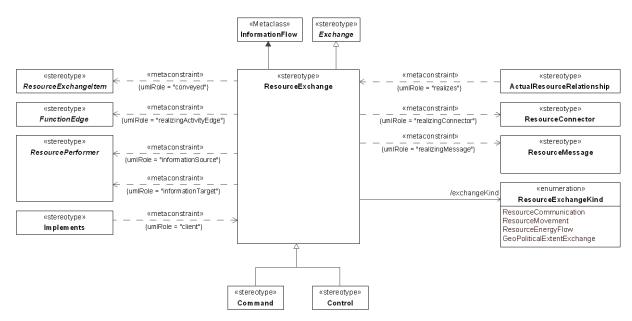


Figure 3:123 - ResourceExchange

Associations

exchangeKind: ResourceExchangeKind[] Captures the kind of ResourceExchange. Constraints

[1] ResourceExchange.conveyed In case of ResourceExchange.exchangeKind:

= ResourceCommunication, the conveyed element must be stereotyped «DataElement» or its specializations,

= ResourceMovement, the conveyed element must be stereotyped by the specialization of «PhysicalResource»,

= ResourceEnergyFlow, the conveyed element must be stereotyped

«NaturalResource» or its specializations,

= GeoPoliticalExtentExchange, the conveyed element must be stereotyped «GeoPoliticalExtentType» or its specializations.

[2] ResourceInteraction.informationSource Value for the informationSource metaproperty must be stereotyped

by the specialization of «ResourcePerformer».

[3] ResourceInteraction.informationTarget Value for the informationTarget metaproperty must be stereotyped by

the specialization of «ResourcePerformer».

[4] ResourceInteraction.realizingActivityEdge Value for the realizingActivityEdge metaproperty must be

stereotyped by the specialization of «FunctionEdge».

[5] ResourceInteraction.realizingConnector Value for the realizingConnector metaproperty must be stereotyped

«ResourceConnector» or its specializations.

[6] ResourceInteraction.realizingMessage Value for the realizingMessage metaproperty must be stereotyped

«ResourceMessage» or its specializations.

ResourceExchangeItem

Package: Connectivity

isAbstract: Yes

Generalization: Resource

Description

An abstract grouping for elements that defines the types of elements that can be exchanged between ResourcePerformers and conveyed by a ResourceExchange.

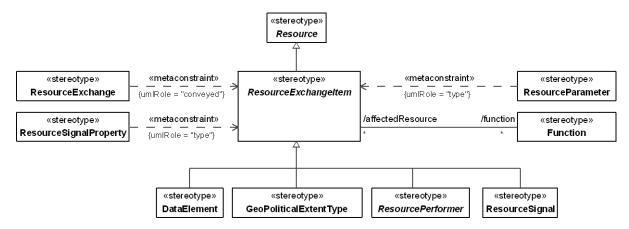


Figure 3:124 - ResourceExchangeItem

Associations

function: Function[*] Function using the ResourceExchangeItem internally.

ResourceExchangeKind

Package: Connectivity

isAbstract: No Description

Enumeration of the possible kinds of resource exchange applicable to a ResourceExchange. Its enumeration literals are:

- ResourceCommunication Indicates that the ResourceInteraction associated with the ResourceInteractionKind is a an implementation of logical flow of data between Resources.
- ResourceMovement Indicates that the ResourceInteraction associated with the ResourceInteractionKind is a an implementation of logical flow of Resources between Resources.
- ResourceEnergyFlow Indicates that the ResourceInteraction associated with the ResourceInteractionKind is a an implementation of logical flow of natural resources between Resources.
- GeoPoliticalExtentExchange Indicates that the ResourceInteraction associated with the ResourceInteractionKind is a an implementation of logical flow where GeoPoliticalExtents (i.e. Borders) flow from one place to another.

ResourceInterface

Package: Connectivity

isAbstract: No

Generalization: PropertySet, InterfaceBlock

Extension: Class Description

A declaration that specifies a contract between the ResourcePerformers it is related to and any other ResourcePerformers it can interact with. It is also intended to be an implementation of a specification of an Interface in the Business and/or Service layer.

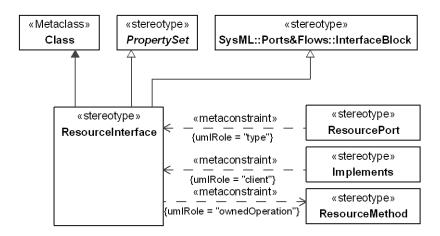


Figure 3:125 - ResourceInterface

[1] ResourceInterface.ownedOperation Values for ownedOperation metaproperty must be stereotyped «ResourceMethod» or its specializations.

ResourceSignal

Package: Connectivity

isAbstract: No

Generalization: ResourceExchangeItem

Extension: Signal Description

A ResourceSignal is a specification of a kind of communication between resources (ResourcePerformers) in which a reaction is asynchronously triggered in the receiver without a reply.

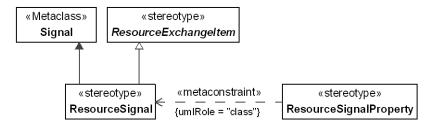


Figure 3:126 - ResourceSignal

ResourceSignalProperty

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement

Extension: Property

Description

A property of an ResourceSignal typed by ResourceExchangeItem. It enables ResourceExchangeItem e.g. DataElement to be passed as arguments of the ResourceSignal.

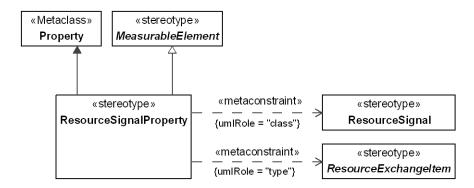


Figure 3:127 - ResourceSignalProperty

[1] ResourceSignalProperty.class Value for class metaproperty must be stereotyped «ResourceSignal» or its

specializations.

[2] ResourceSignalProperty.type Value for type metaproperty must be stereotyped by a specialization of

«ResourceExchangeItem».

UAF::Resources::Processes

Contains the elements that contribute to the Resources Processes Viewpoint.

Function

Package: Processes is Abstract: No

Generalization: Activity, SubjectOfResourceConstraint

Extension: Activity Description

An Activity which is specified in the context to the ResourcePerformer (human or machine) that IsCapableToPerform it.

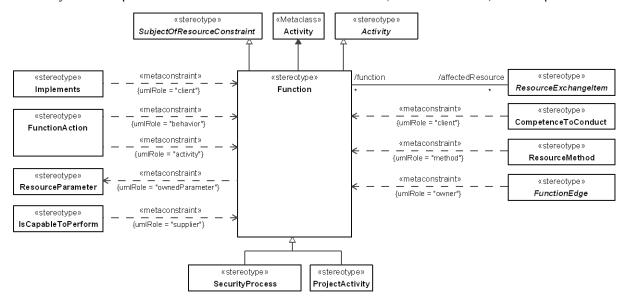


Figure 3:128 - Function

Associations

affectedResource : ResourceExchangeItem[*] ResourceExchangeItems consumed and produced internally within a Function.

[1] Function.ownedParameter
The values for the ownedParameter metaproperty must be stereotyped

«ResourceParameter» or its specializations.

FunctionAction

Package: Processes is Abstract: No

Generalization: MeasurableElement Extension: CallBehaviorAction

Description

A call of a Function indicating that the Function is performed by a ResourceRole in a specific context.

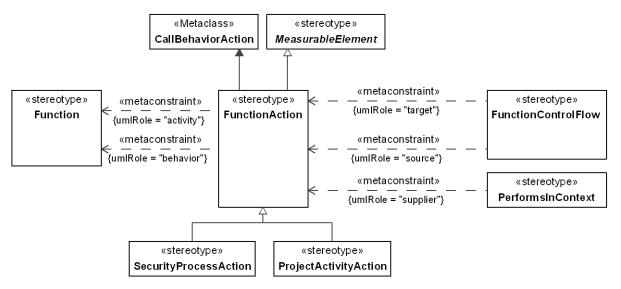


Figure 3:129 - FunctionAction

Constraints

[1] FunctionAction.activity Value for the activity metaproperty must be stereotyped «Function» or its

specializations.

[2] FunctionAction.behavior Value for the behavior metaproperty must be stereotyped «Function» or its

specializations.

FunctionControlFlow

Package: Processes is Abstract: No

Generalization: FunctionEdge

Extension: ControlFlow

Description

An ActivityEdge that shows the flow of control between FunctionActions.

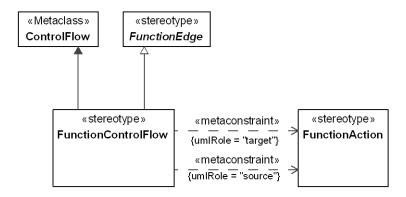


Figure 3:130 - FunctionControlFlow

[1] FunctionControlFlow.source Value for the source metaproperty must be stereotyped «FunctionAction» or its

specializations.

[2] FunctionControlFlow.target Value for the target metaproperty must be stereotyped «FunctionAction» or its

specializations.

FunctionEdge

Package: Processes is Abstract: Yes

Generalization: MeasurableElement

Extension: ActivityEdge

Description

Abstract grouping for FunctionControlFlow and FunctionObjectFlow.

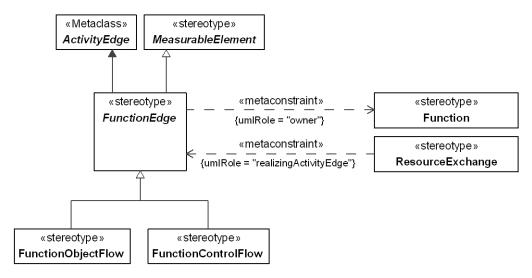


Figure 3:131 - FunctionEdge

Constraints

[1] FunctionEdge.owner «FunctionEdge» must be owned directly or indirectly by «Function» or its specializations.

FunctionObjectFlow

Package: Processes is Abstract: No

Generalization: FunctionEdge

Extension: ObjectFlow

Description

An ActivityEdge that shows the flow of Resources (objects/data) between FunctionActions.

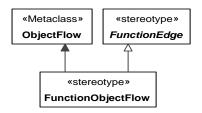


Figure 3:132 - FunctionObjectFlow

UAF::Resources::States

Contains the elements that contribute to the Resources States Viewpoint.

ResourceStateDescription

Package: States is Abstract: No

Generalization: MeasurableElement

Extension: StateMachine

Description

A state machine describing the behavior of a ResourcePerformer, depicting how the ResourcePerformer responds to various events and the actions.

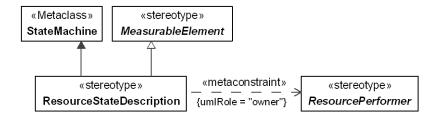


Figure 3:133 - ResourceStateDescription

Constraints

[1] ResourceStateDescription.owner Values for the owner metaproperty must be stereotyped with the specialization of «ResourcePerformer».

UAF::Resources::Interaction Scenarios

Contains the elements that contribute to the Resources Interaction Scenarios Viewpoint.

ResourceMessage

Package: Interaction Scenarios

isAbstract: No

Generalization: MeasurableElement

Extension: Message

Description

Message for use in an Resource Event-Trace which carries any of the subtypes of ResourceExchange.

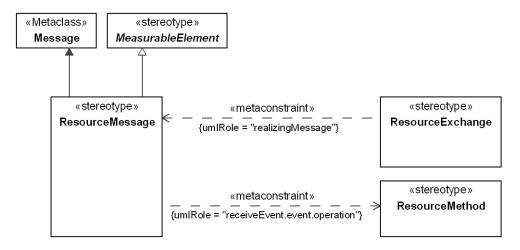


Figure 3:134 - ResourceMessage

Constraints

[1] ResourceMessage.receiveEvent.event.operation

Values for the receiveEvent.event.operation metaproperty must be stereotyped with «ResourceMethod» or its specializations.

UAF::Resources::Information

Contains the elements that contribute to the Resources Information Viewpoint.

DataElement

Package: Information

isAbstract: No

Generalization: ResourceExchangeItem, SubjectOfResourceConstraint, ResourceAsset

Extension: Class Description

A formalized representation of data that is managed by or exchanged between systems.

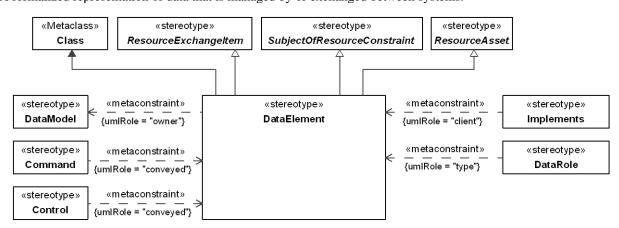


Figure 3:135 - DataElement

Constraints

[1] DataElement.owner Values for the owner metaproperty must be stereotyped «DataModel» or its specializations.

UAF::Resources::Constraints

Contains the elements that contribute to the Resources Constraints Viewpoint.

ResourceConstraint

Package: Constraints is Abstract: No

Generalization: Rule **Extension:** Constraint

Description

A rule governing the structural or functional aspects of an implementation.



Figure 3:136 - ResourceConstraint

Constraints

[1] ResourceConstraint.constrainedElement

Value for the constrainedElement metaproperty must be stereotyped by the specialization of «SubjectOfResourceConstraint».

SubjectOfResourceConstraint

Package: Constraints is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

An abstract grouping of elements that can be the subject of a ResourceConstraint.

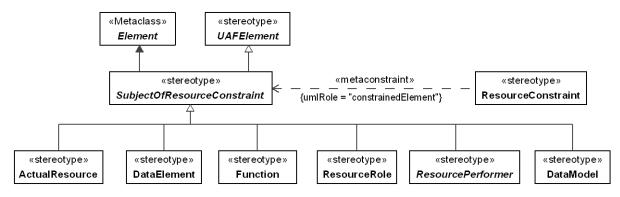


Figure 3:137 - SubjectOfResourceConstraint

UAF::Resources::Roadmap

Contains the elements that contribute to the Resources Roadmap Viewpoint.

Forecast

Package: Roadmap is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship that specifies a transition from one Asset, Standard, Competence to another future one. It is related to an ActualEnterprisePhase to give it a temporal context.

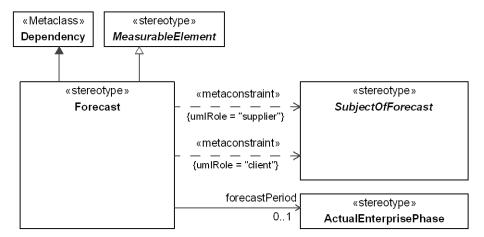


Figure 3:138 - Forecast

Associations

 $forecast Period: \ Actual Enterprise Phase [0..1] \quad Relates \ the \ Subject Of Forecast \ to \ the \ Actual Enterprise Phase \ in \ which \ Actual Enterprise Phase \ in \ w$

the SubjectOfForecast is expected to be provided.

Constraints

[1] Forecast, client Value for the client metaproperty must be stereotyped by the specialization of

«SubjectOfForecast».

[2] Forecast.pair Values for the client and supplier metaproperties must be stereotyped by the same

specialization of «SubjectOfForecast» (e.g. «Software» to «Software», «Standard» to

«Standard», etc).

[3] Forecast.supplier Value for the supplier property must be stereotyped by the specialization of

 ${\it ``SubjectOfForecast''}.$

SubjectOfForecast

Package: Roadmap is Abstract: Yes

Generalization: UAFElement

Extension: Class Description

An abstract grouping of elements that can be the subject of a Forecast.

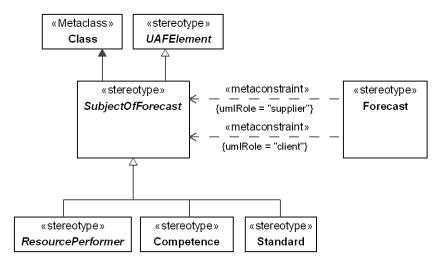


Figure 3:139 - SubjectOfForecast

Technology

Package: Roadmap is Abstract: No

Generalization: Resource Artifact

Extension: Class Description

A sub type of ResourceArtifact that indicates a technology domain, i.e. nuclear, mechanical, electronic, mobile telephony etc.

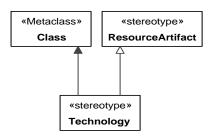


Figure 3:140 - Technology

VersionedElement

Package: Roadmap is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Class Description

An abstract grouping of ResourcePerformer and ServiceSpecification that allows VersionOfConfiguration to be related to ActualProjectMilestones.

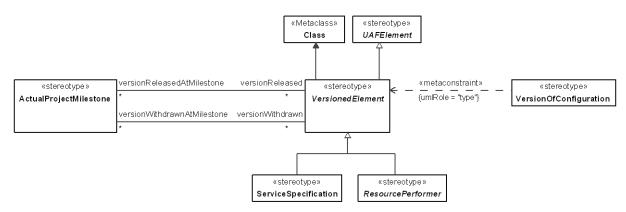


Figure 3:141 - VersionedElement

versionReleasedAtMilestone : ActualProjectMilestone[*] Relates a VersionedElement to the

ActualProjectMilestone. It indicates the

ActualProjectMilestone at which the VersionedElement

is released.

versionWithdrawnAtMilestone: ActualProjectMilestone[*] Relates a VersionedElement to the

ActualProjectMilestone. It indicates the

ActualProjectMilestone at which the VersionedElement

is withdrawn.

VersionOfConfiguration

Package: Roadmap is Abstract: No

Generalization: MeasurableElement

Extension: Property

Description

A property of a WholeLifeConfiguration, used in version control of a VersionedElement. It asserts that a VersionedElement is a version of a WholeLifeConfiguration.

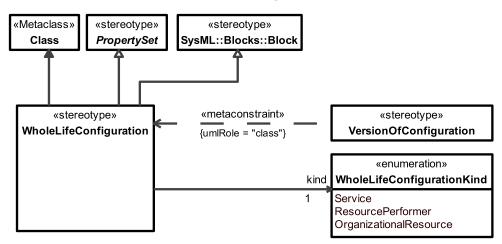


Figure 3:142 - VersionOfConfiguration

Constraints

[1] VersionOfConfiguration.class Value for the class metaproperty must be stereotyped «WholeLifeConfiguration» or its specializations.

[2] VersionOfConfiguration.type Value for the type metaproperty must be stereotyped by the specialization of «VersionedElement».

VersionSuccession

Package: Roadmap is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship between two VersionOfConfigurations that denotes that one VersionOfConfiguration follows

from another.

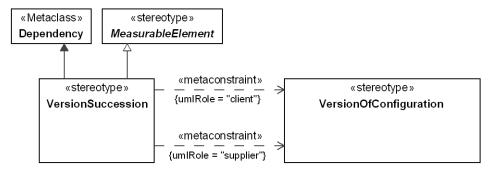


Figure 3:143 - VersionSuccession

Constraints

[1] VersionSuccession.client Value for the client metaproperty must be stereotyped «VersionOfConfiguration» or

its specializations.

[2] VersionSuccession.supplier Value for the supplier metaproperty must be stereotyped «VersionOfConfiguration»

or its specializations.

WholeLifeConfiguration

Package: Roadmap is Abstract: No

Generalization: PropertySet, Block

Extension: Class Description

A set of VersionedElements.

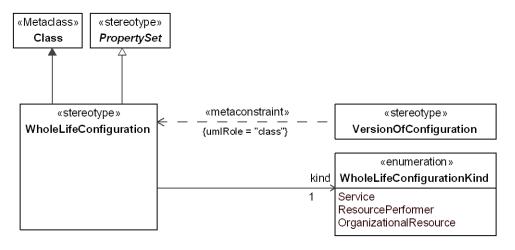


Figure 3:144 - WholeLifeConfiguration

kind: WholeLifeConfigurationKind[1] Captures the kind of WholeLifeConfiguration.

WholeLifeConfigurationKind

Package: Roadmap isAbstract: No Description

Enumeration of the possible kinds of WholeLifeConfiguration. Its enumeration literals are:

- Service Indicates that the WholeLifeConfiguration associated with the WholeLifeConfigurationKind is the master specification from which Services are versioned.
- ResourcePerformer Indicates that the WholeLifeConfiguration associated with the WholeLifeConfigurationKind is the master specification from which ResourcePerformers are versioned.
- OrganizationalResource Indicates that the WholeLifeConfiguration associated with the WholeLifeConfigurationKind is the master specification from which OrganizationalResources are versioned.

UAF::Resources::Traceability

Contains the elements that contribute to the Resources Traceability Viewpoint.

ProtocolImplementation

Package: Traceability is Abstract: Yes

Generalization: UAFElement

Extension: Element

Description

An abstract grouping of architectural elements that can implement Protocols.

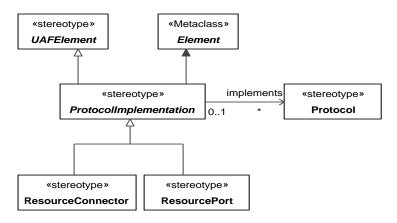


Figure 3:145 - ProtocolImplementation

implements : Protocol[*] Relates the ResourceConnector and ResourcePort to the Protocols that they can implement.

3.1.9 UAF::Security

Stakeholders: Security Architects, Security Engineers. Systems Engineers, Operational Architects.

Concerns: addresses the security constraints and information assurance attributes that exist on exchanges between resources and OperationalPerformers

Definition: illustrates the security assets, security constraints, security controls, families, and measures required to address specific security concerns.

UAF::Security::Taxonomy

Contains the elements that contribute to the Security Taxonomy Viewpoint.

Asset

Package: Taxonomy is Abstract: Yes

Generalization: ConceptItem, PropertySet, LocationHolder, SubjectOfSecurityConstraint, Block

Extension: Class Description

Asset as applied to Security views, an abstract element that indicates the types of elements that can be considered as a subject for security analysis.

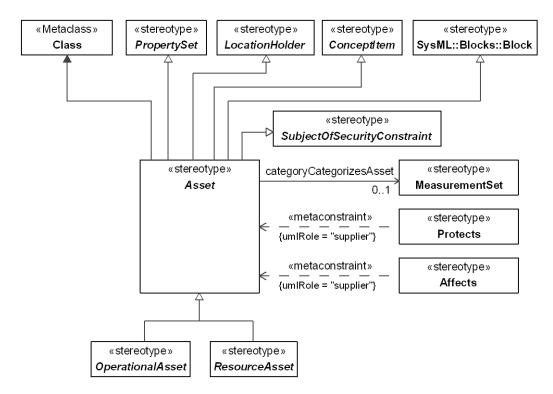


Figure 3:146 - Asset

categoryCategorizesAsset: MeasurementSet[0..1] Enables association of an Asset to the set of security related measurementSet).

OperationalAsset

Package: Taxonomy is Abstract: Yes

Generalization: Asset

Extension: Class Description

An abstract element used to group the elements of Operational Agent and Information Element allowing them to own Information Roles.

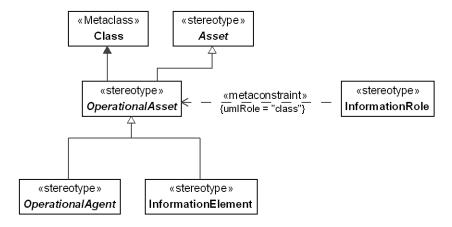


Figure 3:147 - Operational Asset

Operational Mitigation

Package: Taxonomy is Abstract: No

Generalization: Operational Architecture

Extension: Class Description

A set of OperationalPerformers intended to address against specific operational risks.

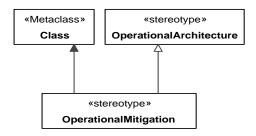


Figure 3:148 - Operational Mitigation

ResourceAsset

Package: Taxonomy isAbstract: Yes

Generalization: Asset
Extension: Class
Description

An abstract element used to group the elements of ResourcePerformer and DataElement allowing them to own DataRoles

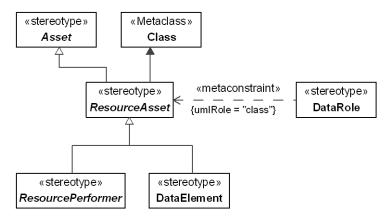


Figure 3:149 - ResourceAsset

ResourceMitigation

Package: Taxonomy is Abstract: No

Generalization: Resource Architecture

Extension: Class Description

A set of ResourcePerformers intended to address against specific risks.

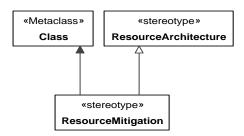


Figure 3:150 - ResourceMitigation

SecurityEnclave

Package: Taxonomy is Abstract: No

Generalization: Resource Architecture

Extension: Class Description

Collection of information systems connected by one or more internal networks under the control of a single authority and security policy. The systems may be structured by physical proximity or by function, independent of location.

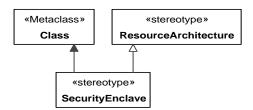


Figure 3:151 - SecurityEnclave

UAF::Security::Structure

Contains the elements that contribute to the Security Structure Viewpoint.

AssetRole

Package: Structure is Abstract: Yes

Generalization: MeasurableElement, SubjectOfSecurityConstraint

Extension: Property Description

AssetRole as applied to Security views, an abstract element that indicates the type of elements that can be considered as a subject for security analysis in the particular context.

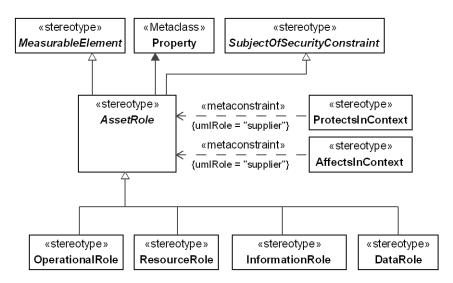


Figure 3:152 - AssetRole

DataRole

Package: Structure is Abstract: No

Generalization: AssetRole

Extension: Property

Description

A usage of DataElement that exists in the context of an ResourceAsset. It also allows the representation of the whole-part aggregation of DataElements.

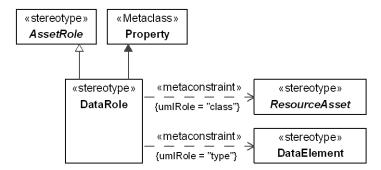


Figure 3:153 - DataRole

InformationRole

Package: Structure is Abstract: No

Generalization: <u>AssetRole</u>

Extension: Property

Description

A usage of InformationElement that exists in the context of an OperationalAsset. It also allows the representation of the whole-part aggregation of InformationElements.

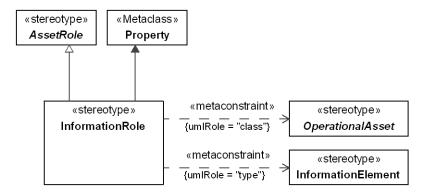


Figure 3:154 - InformationRole

Constraints

[1] SecurityProperty.class Value for the class metaproperty must be stereotyped by the specialization of «Asset».

[2] SecurityProperty.type In case of value for the class metaproperty is stereotyped:

a. by any of specializations of «Operational Agent», values for the type metaproperty must be stereotyped «Information Element» or its specializations,

b. by any of specializations of «ResourcePerformer», values for the type metaproperty must be stereotyped «DataElement» or its specializations,

c. «InformationElement», values for the type metaproperty must be stereotyped «InformationElement» or its specializations,

d. «DataElement», values for the type metaproperty must be stereotyped «DataElement» or its specializations.

UAF::Security::Processes

Contains the elements that contribute to the Security Processes Viewpoint.

EnhancedSecurityControl

Package: Processes is Abstract: No

Generalization: SecurityControl

Extension: Class Description

Statement of security capability to: (i) build in additional but related, functionality to a basic control; and/or (ii)increase the strength of a basic control.

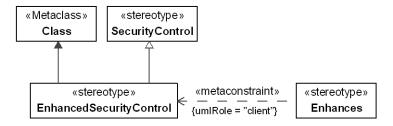


Figure 3:155 - EnhancedSecurityControl

Enhances

Package: Processes is Abstract: No

Generalization: DeriveReqt, MeasurableElement

Extension: Abstraction, Connector

Unified Architecture Framework Profile (UAFP) Version 1.1

Description

A dependency relationship relating the EnhancedSecurityControl to a SecurityControl.

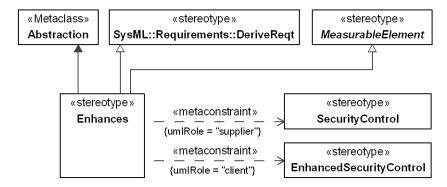


Figure 3:156 - Enhances

Constraints

[1] Enhances.client Value for the client metaproperty must be stereotyped «EnhancedSecurityControl» or its

specializations.

[2] Enhances supplier Value for the supplier metaproperty must be stereotyped «SecurityControl» or its

specializations.

Protects

Package: Processes is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency that asserts that a SecurityControl is required to protect an Asset.

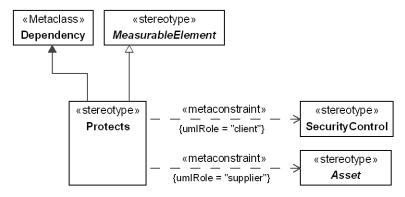


Figure 3:157 - Protects

Constraints

[1] Protects.client Value for the client metaproperty must be stereotyped «SecurityControl» or its specializations.

[2] Protects.supplier Value for the supplier metaproperty must be stereotyped but he specialization of «Asset».

ProtectsInContext

Package: Processes is Abstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship that relates a SecurityControlAction to a OperationalRole, or a ResourceRole. It indicates that SecurityControl is required to protect an Asset in a specific context or configuration.

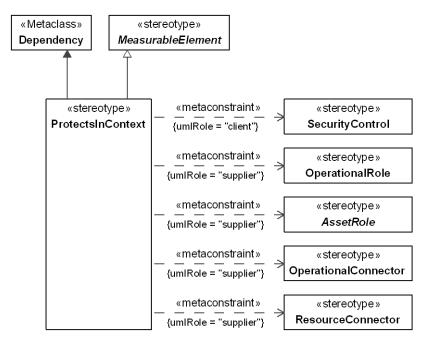


Figure 3:158 - ProtectsInContext

Constraints

[1] ProtectsInContext.client Value for the client metaproperty must be stereotyped «SecurityControlAction» or its

specializations.

[2] ProtectsInContext.supplier Value for the supplier metaproperty must be stereotyped «OperationalRole»,

«ResourceRole», «OperationalConnector», «ResourceConnector»,

«SecurityProperty» or their specializations.

SecurityProcess

Package: Processes is Abstract: No

Generalization: Operational Activity, Function, Subject Of Security Constraint

Extension: Activity Description

The security-related procedure that satisfies the security control requirement.

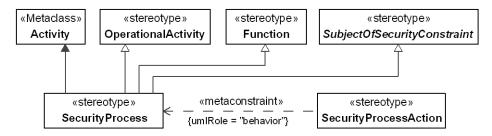


Figure 3:159 - SecurityProcess

SecurityProcessAction

Package: Processes

isAbstract: No

Generalization: Operational Activity Action, Function Action

Extension: CallBehaviorAction

Description

A call of a SecurityProcess in the context of another SecurityProcess.

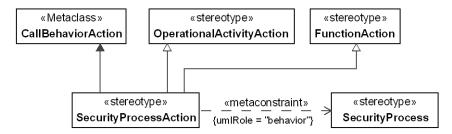


Figure 3:160 - SecurityProcessAction

Constraints

[1] SecurityControlAction.behavior Value for behavior metaproperty must be stereotyped «SecurityControl» or its specializations.

UAF::Security::Constraints

Contains the elements that contribute to the Security Constraints Viewpoint.

ActualRisk

Package: Constraints

isAbstract: No

Generalization: <u>ActualPropertySet</u> **Extension:** InstanceSpecification

Description

An instance of a Risk. A value holder for Risk Measurements.

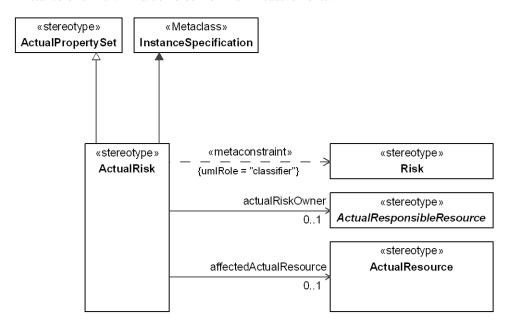


Figure 3:161 - ActualRisk

Associations

actualRiskOwner: ActualResponsibleResource[0..1] Enables association of an ActualRisk to an actual

organizational role that is responsible for executing the actual

mitigation.

affectedActualResource: ActualResource[0..1] Asserts that an ActualRisk is applicable to an ActualResource.

Risk

Package: Constraints is Abstract: No

Generalization: PropertySet, Block

Extension: Class Description

A statement of the impact of an event on Assets. It represents a constraint on an Asset in terms of adverse effects, with an associated measure. The measure is used to capture the extent to which an entity is threatened by a potential circumstance or event. Risk is typically a function of: (i) the adverse impacts that would arise if the circumstance or event occurs; and (ii) the likelihood of occurrence.

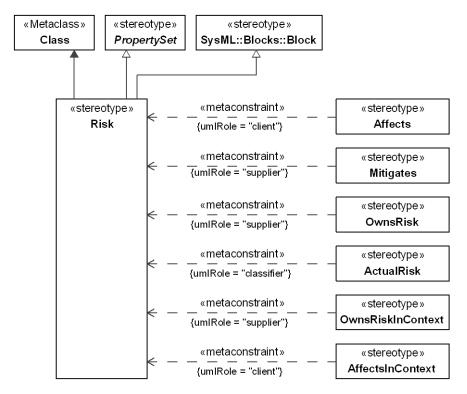


Figure 3:162 - Risk

SecurityConstraint

Package: Constraints is Abstract: No

Generalization: Rule **Extension:** Constraint

Description

A type of rule that captures a formal statement to define security laws, regulations, guidances, and policy.

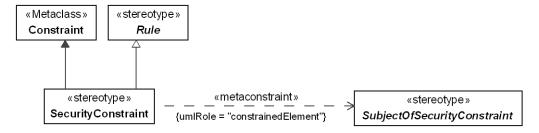


Figure 3:163 - SecurityConstraint

Constraints

[1] Security.constrainedElement Value for the constrainedElement metaproperty must be stereotyped by the specialization of «SubjectOfSecurityConstraint».

SecurityControl

Package: Constraints

isAbstract: No

Generalization: Requirement, MeasurableElement

Extension: Class Description

The management, operational, and technical control (i.e., safeguard or countermeasure) prescribed for an information system to protect the confidentiality, integrity, and availability of the system and its information [NIST SP 800-53].

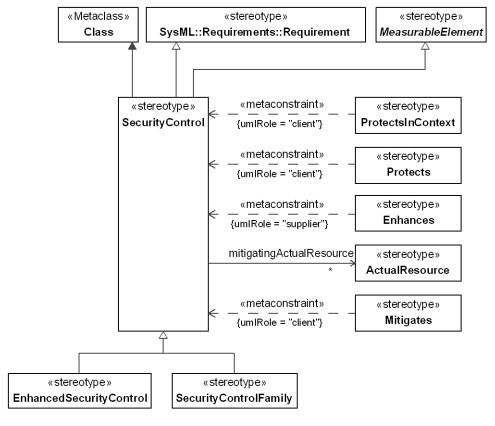


Figure 3:164 - SecurityControl

Associations

mitigatingActualResource : ActualResource[*] Relates an actual mitigation (an ActualResource for mitigating a Risk) to an ActualRisk.

SecurityControlFamily

Package: Constraints is Abstract: No

Generalization: SecurityControl

Extension: Class Description

An element that organizes security controls into a family. Each Security Control Family contains security controls related to the general security topic of the family.

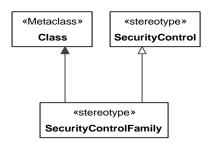


Figure 3:165 - SecurityControlFamily

SubjectOfSecurityConstraint

Package: Constraints is Abstract: Yes

Generalization: <u>UAFElement</u>

Extension: Element Description

An abstract grouping of elements that can be the subject of a SecurityConstraint.

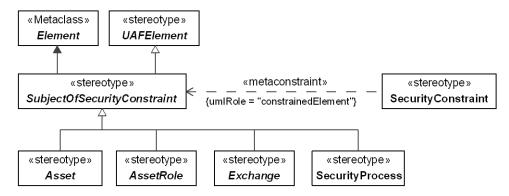


Figure 3:166 - SubjectOfSecurityConstraint

UAF::Security::Traceability

Contains the elements that contribute to the Security Traceability Viewpoint.

Affects

Package: Traceability

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency that asserts that a Risk is applicable to an Asset.

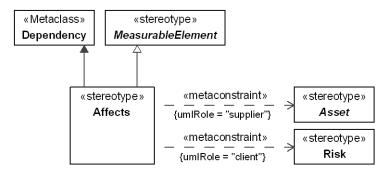


Figure 3:167 - Affects

Constraints

[1] Affects.client Value for the client metaproperty must be stereotyped «Risk» or its specializations.

[2] Affects.supplier Value for the supplier metaproperty must be stereotyped «Asset» or its specializations.

AffectsInContext

Package: Traceability

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency that asserts that a Risk is applicable to an AssetRole in the specific context or configuration.

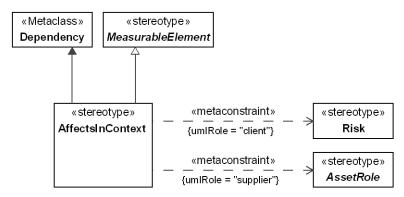


Figure 3:168 - AffectsInContext

Constraints

[1] AffectsInContext.client Value for the client metaproperty must be stereotyped «Risk» or its specializations.

[2] AffectsInContext.supplier Value for the supplier metaproperty must be stereotyped «AssetRole» or its

specializations.

Mitigates

Package: Traceability

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relating a Security Control to a Risk. Mitigation is established to manage risk and could be represented as an overall strategy or through techniques (mitigation configurations) and procedures (SecurityProcesses).

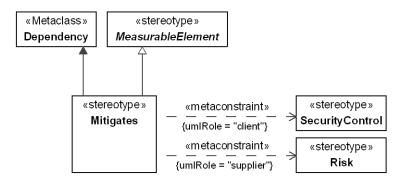


Figure 3:169 - Mitigates

Constraints

[1] Mitigates.client Value for the client metaproperty must be stereotyped «SecurityControl» or its specializations.

[2] Mitigates.supplier Value for the supplier metaproperty must be stereotyped «Risk» or its specializations.

OwnsRisk

Package: Traceability

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relating a Risk to an organizational resource that is responsible for executing the risk mitigation.

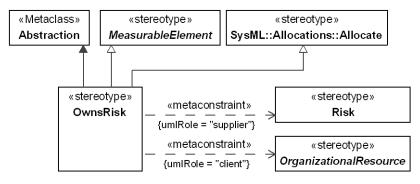


Figure 3:170 - OwnsRisk

Constraints

[1] OwnsRisk.client Value for the client metaproperty must be stereotyped «OrganizationalResource» or its

specializations.

[2] OwnsRisk.supplier Value for the supplier metaproperty must be stereotyped «Risk» or its specializations.

OwnsRiskInContext

Package: Traceability

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

An abstraction relating a Risk to an organizational role that is responsible for executing the risk mitigation in the specific context or configuration.



Figure 3:171 - OwnsRiskInContext

Constraints

[1] OwnsRiskInContext.client Value for the client metaproperty must be stereotyped «ResourceRole» or its

specializations.

[2] OwnsRiskInContext.supplier Value for the supplier metaproperty must be stereotyped «Risk» or its

specializations.

3.1.10 UAF::Projects

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects.

Concerns: project portfolio, projects and project milestones.

Definition: describes projects and project milestones, how those projects deliver capabilities, the organizations

contributing to the projects and dependencies between projects.

UAF::Projects::Taxonomy

Contains the elements that contribute to the Project Taxonomy Viewpoint.

ActualMilestoneKind

Package: Taxonomy

isAbstract: No Description

Enumeration of the possible kinds of ActualProjectMilestone. Its enumeration literals are:

- InService Indicates that the ActualProjectMilestone associated with the ActualMilestoneKind is when the
 configuration goes into service.
- Deployed Indicates that the ActualProjectMilestone associated with the ActualMilestoneKind is a configuration deployment milestone.
- NoLongerUsed Indicates that the ActualProjectMilestone associated with the ActualMilestoneKind is when the deployed configuration is no longer used.
- OutOfService Indicates that the ActualProjectMilestone associated with the ActualMilestoneKind is when the in service configuration goes out of service.
- Other Indicates that the ActualProjectMilestone associated with the ActualMilestoneKind is not one of the standard ActualMilestoneKinds.

Project

Package: Taxonomy is Abstract: No

Generalization: OrganizationalResource, Block

Extension: Class Description

A type that describes types of time-limited endeavors that are required to meet one or more Capability needs.

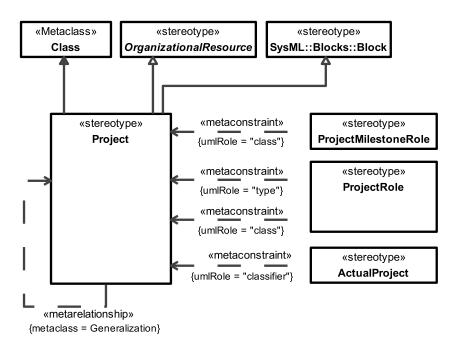


Figure 3:172 - Project

ProjectKind

Package: Taxonomy is Abstract: No Description

Enumeration of the possible kinds of project applicable to an ActualProject. Its enumeration literals are:

- Programme Indicates that the ActualProject associated with the ProjectKind is an undertaking that is a temporary, flexible organization created to co-ordinate, direct and oversee the implementation of a set of related Projects and Tasks in order to deliver outcomes and benefits related to the organization's strategic objectives. A programme is likely to have a lifespan of several years. During a programme lifecycle, projects are initiated, executed, and closed. Programmes provide an umbrella under which these projects can be co-ordinated. The programme integrates the projects so that it can deliver an outcome greater than the sum of its parts.
- Portfolio Indicates that the ActualProject associated with the ProjectKind is an undertaking comprised of the Projects and Programmes that are the totality of an organization's investment (or segment thereof) in the changes required to achieve its strategic objectives.
- Project Indicates that the ActualProject associated with the ProjectKind is an undertaking that is a time-limited endeavor to create a specific set of products or services.
- PersonnelDevelopment Indicates that the ActualProject associated with the ProjectKind is an undertaking
 that relates to the training and enablement of personnel to enable them help achieve the organizations
 objectives.

ProjectMilestone

Package: Taxonomy is Abstract: No

Generalization: PropertySet, Block

Extension: Class Description

A type of event in a Project by which progress is measured.

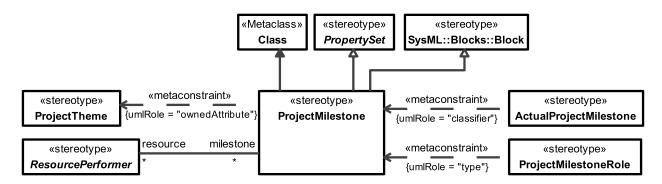


Figure 3:173 - ProjectMilestone

resource: ResourcePerformer[*] Relates a ProjectMilestone to the Resources that can be affected by the milestone. It is used to describe aspects of the lifecycle of a Resource.

Constraints

[1] ProjectMilestone.ownedAttribute All of the «ProjectThemes», owned by a «ProjectMilestone», must be typed by the same «StatusIndicators» or its specializations.

UAF::Projects::Structure

Contains the elements that contribute to the Project Structure Viewpoint.

ProjectMilestoneRole

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Property

Description

The role played by a ProjectMilestone in the context of a Project.

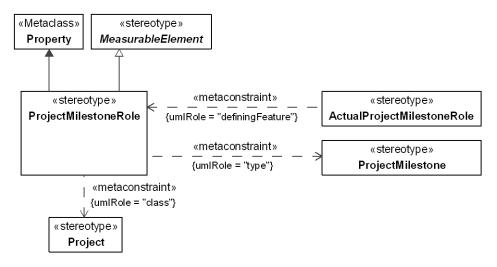


Figure 3:174 - ProjectMilestoneRole

Constraints

- [1] ProjectMilestoneRole.class Value for the class metaproperty must be stereotyped «Project» or its specializations.
- [2] ProjectMilestoneRole.type Value for the type metaproperty must be stereotyped «ProjectMilestone» or its specializations.

ProjectRole

Package: Structure is Abstract: No

Generalization: ResourceRole

Extension: Property Description

Usage of a Project in the context of another Project. Creates a whole-part relationship.

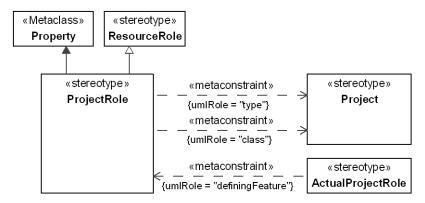


Figure 3:175 - ProjectRole

Constraints

[1] ProjectRole.class Value for the class metaproperty must be stereotyped «Project» or its specializations.

[2] ProjectRole.type Value for the type metaproperty must be stereotyped «Project» or its specializations.

ProjectStatus

Package: Structure is Abstract: No

Generalization: UAFElement

Extension: Slot Description

The status (i.e. level of progress) of a ProjectTheme for an ActualProject at the time of the ActualProjectMilestone.

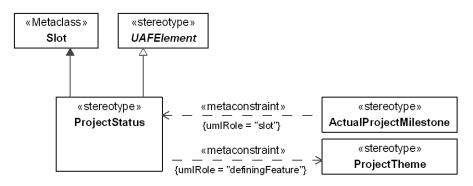


Figure 3:176 - ProjectStatus

Constraints

[1] ProjectStatus.definingFeature Value for the DefiningFeature metaproperty must be stereotyped «ProjectTheme» or its specializations.

ProjectTheme

Package: Structure

isAbstract: No

Generalization: MeasurableElement

Extension: Property Description

A property of a ProjectMilestone that captures an aspect by which the progress of ActualProjects may be measured.

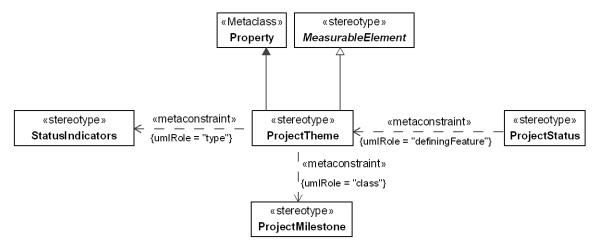


Figure 3:177 - ProjectTheme

Constraints

[1] ProjecTheme.class Value for the class metaproperty must be stereotyped «ProjectMilestone» or its

specializations.

[2] ProjecTheme.type Value for the type metaproperty must be stereotyped «StatusIndicators» or its specializations.

StatusIndicators

Package: Structure is Abstract: No

Generalization: MeasurableElement, ValueType

Extension: Enumeration

Description

An enumerated type that specifies a status for a ProjectTheme.

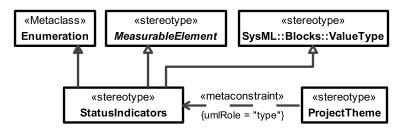


Figure 3:178 - StatusIndicators

UAF::Projects::Connectivity

Contains the elements that contribute to the Project Connectivity Viewpoint.

MilestoneDependency

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship between two ActualProjectMilestones that denotes one ActualProjectMilestone follows from another.

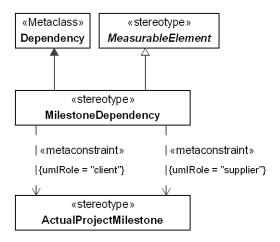


Figure 3:179 - MilestoneDependency

Constraints

its specializations.

[2] MilestoneSequence.supplier Value for the supplier metaproperty must be stereotyped «ActualProjectMilestone»

or its specializations.

ProjectSequence

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship between two ActualProjects that denotes one ActualProject cannot start before the previous ActualProject is finished.

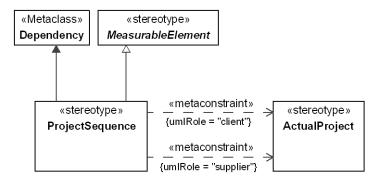


Figure 3:180 - ProjectSequence

Constraints

[1] ProjectSequence.client Value for the client metaproperty must be stereotyped «ActualProject» or its

specializations.

[2] ProjectSequence.supplier Value for the supplier metaproperty must be stereotyped «ActualProject» or its

specializations.

UAF::Projects::Processes

Contains the elements that contribute to the Project Processes Viewpoint.

ProjectActivity

Package: Processes is Abstract: No

Generalization: Function Extension: Activity

Description

An activity carried out during a project.

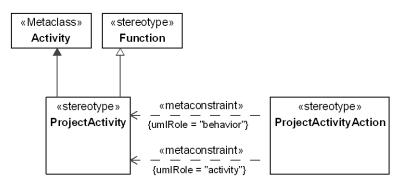


Figure 3:181 - ProjectActivity

ProjectActivityAction

Package: Processes is Abstract: No

Generalization: FunctionAction
Extension: CallBehaviorAction

Description

The ProjectActivityAction is defined as a call behavior action that invokes the activity that needs to be preformed.

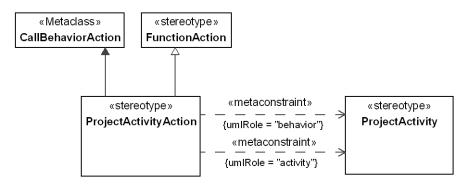


Figure 3:182 - ProjectActivityAction

Constraints

[1] FunctionAction.behavior Value for the behavior metaproperty must be stereotyped «ProjectActivity» or its specializations.

[2] ProjectActivityAction.activity Value for the activity metaproperty must be stereotyped «ProjectActivity» or its specializations.

UAF::Projects::Roadmap

Contains the elements that contribute to the Project Roadmap Viewpoint.

ActualProject

Package: Roadmap is Abstract: No

Generalization: ActualOrganizationalResource, Achiever

Extension: InstanceSpecification

Description

A time-limited endeavor to provide a specific set of ActualResources that meet specific Capability needs.

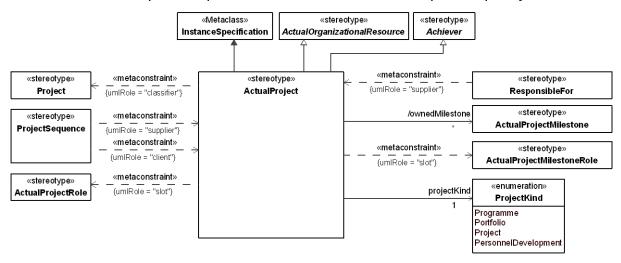


Figure 3:183 - ActualProject

Associations

ownedMilestone : ActualProjectMilestone[*] Relates the ActualProjectMilestones to the relevant ActualProject.

projectKind: ProjectKind[1] Enumerated value describing the kind of ActualProject.

Constraints

[1] ActualProject.classifier Value for the classifier metaproperty must be stereotyped «Project» or its specializations.

[2] ActualProject.slot Value for the slot metaproperty must be stereotyped «ActualProjectRole»,

«ActualProjectMilestoneRole», or their specializations.

ActualProjectMilestone

Package: Roadmap is Abstract: No

Generalization: <u>ActualPropertySet</u> **Extension:** InstanceSpecification

Description

An event with a start date in a ActualProject from which progress is measured.

Figure 3:184 - ActualProjectMilestone

Attributes

endDate: ISO8601DateTime[0] End time for this ActualProjectMilestone.

Associations

actualResource: ActualResource[*] Relates an ActualProjectMilestone to the ActualResources that are

affected by the milestone. It is used to describe aspects of the lifecycle of

an ActualResource.

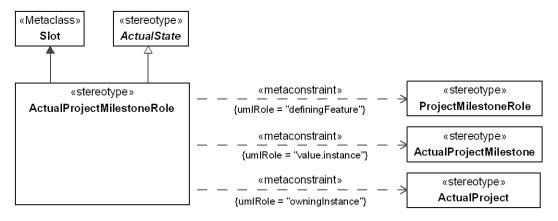
kind: ActualMilestoneKind[1] Enumerated value describing the kind of ActualProjectMilestone.

versionReleased : VersionedElement[*]
versionWithdrawn : VersionedElement[*]

Constraints

[1] ActualProjectMilestone.classifier Value for the classifier metaproperty must be stereotyped «ProjectMilestone»

or its specializations.


ActualProjectMilestoneRole

Package: Roadmap is Abstract: No

Generalization: ActualState

Extension: Slot Description

An ActualProjectMilestone that is applied to a ProjectMilestoneRole.

 ${\bf Figure~3:185-Actual Project Milestone Role}$

Constraints

[1] ActualProjectMilestoneRole.definingFeature V

[2] ActualProjectMilestoneRole.owningInstance

[3] ActualProjectMilestoneRole.value.instance

Value for the definingFeature metaproperty has to be stereotyped «ProjectMilestoneRole» or its specializations.

Value for the owningInstance metaproperty has to be stereotyped «ActualProject» or its specializations.

Value for the value.instance metaproperty has to be stereotyped «ActualProjectMilestone» or its specializations.

ActualProjectRole

Package: Roadmap is Abstract: No

Generalization: ActualState

Extension: Slot Description

An ActualProject that is applied to a ProjectRole.

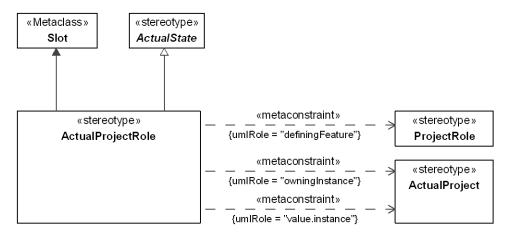


Figure 3:186 - ActualProjectRole

Constraints

[1] ActualProjectRole.definingFeature Value for the definingFeature metaproperty has to be stereotyped «ProjectRole» or its specializations.

[2] ActualProjectRole.owningInstance Value for the owningInstance metaproperty has to be stereotyped «ActualProject» or its specializations.

3.1.11 UAF::Standards

 $Stakeholders:\ Solution\ Providers,\ Systems\ Engineers,\ Software\ Engineers,\ Systems\ Architects,\ Business\ Architects.$

Concerns: technical and non-technical Standards applicable to the architecture.

Definition: shows the technical, operational, and business Standards applicable to the architecture. Defines the underlying current and expected Standards.

UAF::Standards::Taxonomy

Contains the elements that contribute to the Standards Taxonomy Viewpoint.

Protocol

Package: Taxonomy is Abstract: No

Generalization: Standard

Extension: Class Description

A Standard for communication over a network. Protocols may be composite, represented as a ProtocolStack made up of ProtocolLayers.

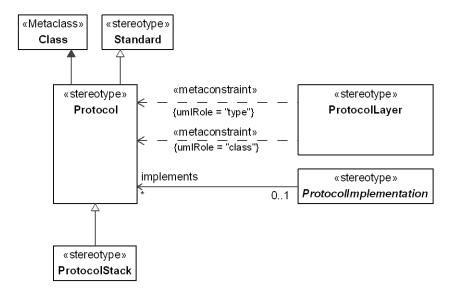


Figure 3:187 - Protocol

ProtocolStack

Package: Taxonomy is Abstract: No

Generalization: Protocol

Extension: Class Description

A sub-type of Protocol that contains the ProtocolLayers, defining a complete stack.

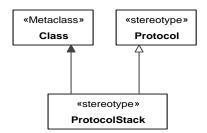


Figure 3:188 - ProtocolStack

Standard

Package: Taxonomy is Abstract: No

Generalization: SubjectOfForecast, PropertySet, Block

Extension: Class Description

A ratified and peer-reviewed specification that is used to guide or constrain the architecture. A Standard may be applied to any element in the architecture.

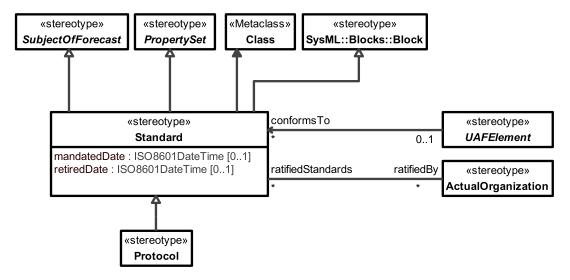


Figure 3:189 - Standard

Attributes

mandatedDate: ISO8601DateTime[0..1] The date when this version of the Standard was published. retiredDate: ISO8601DateTime[0..1] The date when this version of the Standard was retired.

Associations

ratifiedBy: ActualOrganization[*] Relates a Standard to the ActualOrganization that ratified the Standard.

UAF::Standards::Structure

Contains the elements that contribute to the Standards Structure Viewpoint.

ProtocolLayer

Package: Structure is Abstract: No

Generalization: MeasurableElement

Extension: Property

Unified Architecture Framework Profile (UAFP) Version 1.1

Description

Usage of a Protocol in the context of another Protocol. Creates a whole-part relationship.

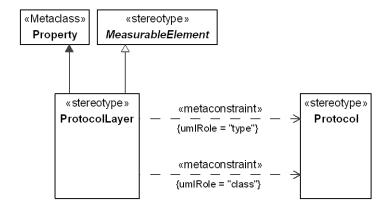


Figure 3:190 - ProtocolLayer

Constraints

- [1] ProtocolLayer.class Value for the class metaproperty must be stereotyped «Protocol» or its specializations.
- [2] ProtocolLayer.type Value for the type metaproperty must be stereotyped «Protocol» or its specializations.

3.1.12 UAF::Actual Resources

Stakeholders: Solution Providers, Systems Engineers, Business Architects, Human Resources.

Concerns: the analysis.e.g. evaluation of different alternatives, what-if, trade-offs, V&V on the actual resource configurations.

Definition: illustrates the expected or achieved actual resource configurations and actual relationships between them.

UAF::Actual Resources::Taxonomy

Contains the elements that contribute to the Actual Resources Taxonomy Viewpoint.

ActualOrganization

Package: Taxonomy is Abstract: No

Generalization: ActualResponsibleResource

Extension: InstanceSpecification

Description

An actual formal or informal organizational unit, e.g. "Driving and Vehicle Licensing Agency", "UAF team Alpha".

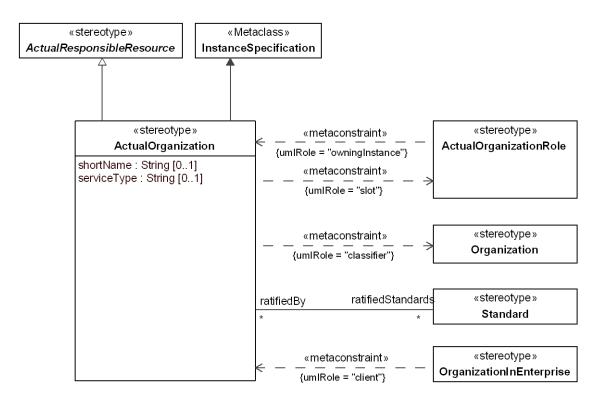


Figure 3:191 - ActualOrganization

Attributes

serviceType: String[0..1] Service office code or symbol

shortName: String[0..1] String providing a simplified means of identifying an ActualOrganization, i.e.

SoftWareGroup could use SWG as the shortName.

Associations

 $ratified Standards: Standard[*] \quad Standards \ that \ were \ ratified \ by \ this \ Actual Organization.$

Constraints

[1] ActualOrganization.classifier Classifier metaproperty value must be stereotyped «Organization» or its

specializations.

[2] ActualOrganization.slot Slot metaproperty value must be stereotyped «ActualOrganizationRole» or its

specializations.

ActualOrganizationalResource

Package: Taxonomy is Abstract: Yes

Generalization: Stakeholder, ActualResource

Extension: InstanceSpecification

Description

Abstract element for an ActualOrganization, ActualPerson or ActualPost.

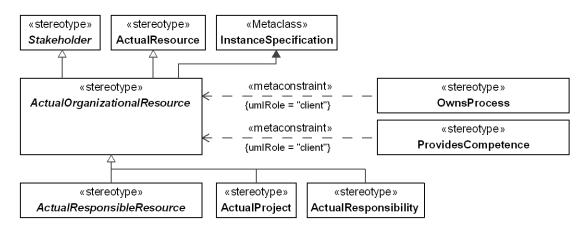


Figure 3:192 - ActualOrganizationalResource

ActualPerson

Package: Taxonomy is Abstract: No

Generalization: ActualResponsibleResource

Extension: InstanceSpecification

Description

An individual human being.

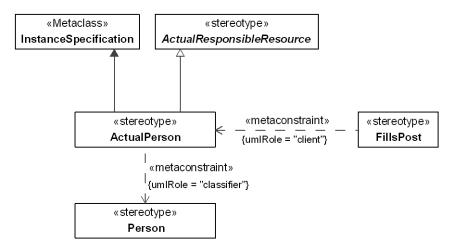


Figure 3:193 - ActualPerson

Constraints

[1] ActualPerson.classifier Value for the classifier metaproperty has to be stereotyped «Person» or its specializations.

ActualPost

Package: Taxonomy is Abstract: No

Generalization: ActualResponsibleResource

Extension: InstanceSpecification

Description

An actual, specific post, an instance of a Post "type" - e.g., "President of the United States of America." where the Post would be president.

Unified Architecture Framework Profile (UAFP) Version 1.1

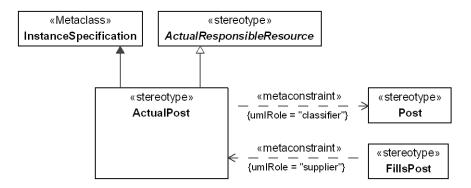


Figure 3:194 - ActualPost

Constraints

[1] ActualPost.classifier Classifier metaproperty value must be stereotyped «Post» or its specializations.

ActualResource

Package: Taxonomy is Abstract: No

Generalization: ActualPropertySet, SubjectOfResourceConstraint, Achiever, CapableElement

Extension: InstanceSpecification

Description

A fully-realized ResourcePerformer.

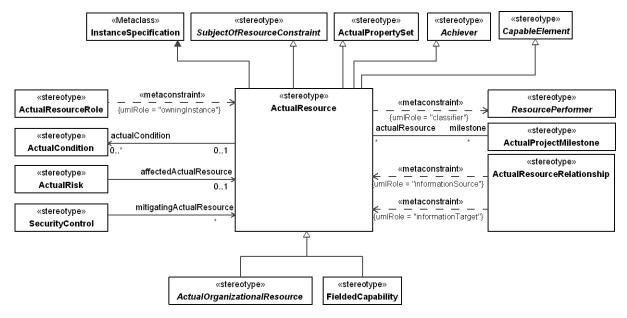


Figure 3:195 - ActualResource

Associations

 $actual Condition: \ Actual Condition [0..*] \quad Relates \ the \ Actual Resource \ to \ the \ Actual States \ of \ an \ environment \ or$

location describing its situation

milestone: ActualProjectMilestone[*] Relates an ActualResource to the ActualProjectMilestones. It is used to

describe aspects of the lifecycle of an ActualResource.

Constraints

[1] ActualResource.classifier Classifier metaproperty value must be stereotyped by a specialization of «ResourcePerformer».

ActualResponsibility

Package: Taxonomy is Abstract: No

Generalization: ActualOrganizationalResource

Extension: InstanceSpecification

Description

The duty required of a Person or Organization.

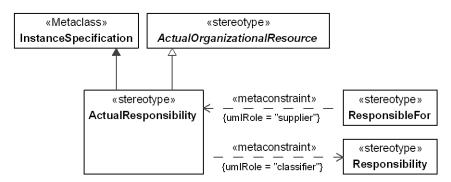


Figure 3:196 - ActualResponsibility

Constraints

[1] ActualResponsibility.classifier Classifier metaproperty value must be stereotyped «Responsibility» or its specializations.

ActualResponsibleResource

Package: Taxonomy is Abstract: Yes

Generalization: ActualOrganizationalResource

Extension: InstanceSpecification

Description

An abstract grouping of responsible OrganizationalResources.

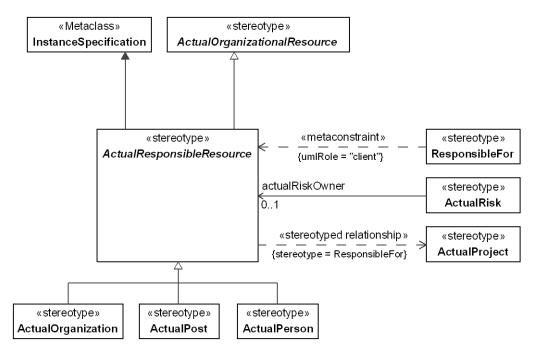


Figure 3:197 - ActualResponsibleResource

FieldedCapability

Package: Taxonomy is Abstract: No

Generalization: <u>ActualResource</u> Extension: InstanceSpecification

Description

An actual, fully-realized capability. A FieldedCapability is typed by a CapabilityConfiguration.

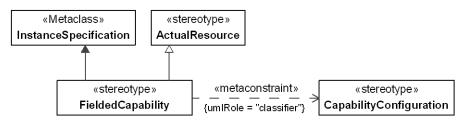


Figure 3:198 - FieldedCapability

Constraints

[1] FieldedCapability.classifier Value for the classifier metaproperty must be stereotyped «CapabilityConfiguration» or its specializations.

UAF::Actual Resources::Structure

Contains the elements that contribute to the Actual Resources Structure Viewpoint.

ActualOrganizationRole

Package: Structure is Abstract: No

Generalization: <u>ActualResourceRole</u>

Extension: Slot

Unified Architecture Framework Profile (UAFP) Version 1.1

Description

An ActualOrganizationalResource that is applied to a ResourceRole.

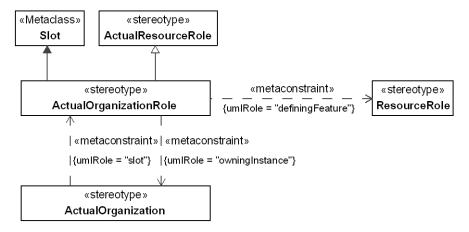


Figure 3:199 - ActualOrganizationRole

Constraints

[1] ActualOrganizationRole.owningInstance

Value for owningInstance metaproperty has to be stereotyped «ActualOrganization» or its specializations.

ActualResourceRole

Package: Structure isAbstract: No

Generalization: UAFElement

Extension: Slot Description

An instance of a ResourcePerformer.

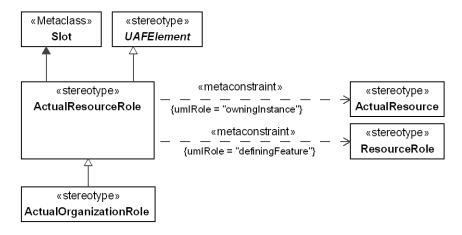


Figure 3:200 - ActualResourceRole

Constraints

[1] ActualResourceRole.definingFeature Value for definingFeature metaproperty has to be stereotyped

«ResourceRole» or its specializations.

[2] ActualResourceRole.owningInstance Value for owningInstance metaproperty has to be stereotyped

«ActualResource» or its specializations.

UAF::Actual Resources::Connectivity

Contains the elements that contribute to the Actual Resources Connectivity Viewpoint.

ActualResourceRelationship

Package: Connectivity

isAbstract: No

Generalization: UAFElement, ItemFlow

Extension: InformationFlow

Description

An abstract element that details the ActualOrganizationalResources that are able to carry out an ActualResponsibility.

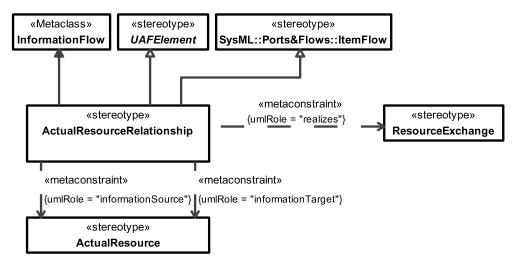


Figure 3:201 - ActualResourceRelationship

Constraints

 $[1] \ Actual Resource Relationship. in formation Source$

Value for informationSource metaproperty must be stereotyped «ActualResource» or its specializations.

[2] ActualResourceRelationship.informationTarget

Value for informationTarget metaproperty must be stereotyped «ActualResource» or its specializations.

[3] ActualResourceRelationship.realizes

Value for realizes metaproperty must be stereotyped «ResourceExchange» or its specializations.

FillsPost

Package: Connectivity

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

A dependency relationship that asserts that an ActualPerson fills an ActualPost.

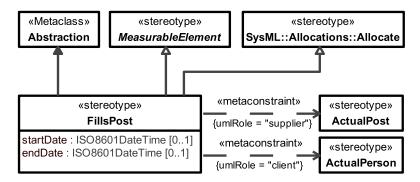


Figure 3:202 - FillsPost

Attributes

endDate: ISO8601DateTime[0..1] End date of an ActualPerson filling an ActualPost. startDate: ISO8601DateTime[0..1] Start date of an ActualPerson filling an ActualPost.

Constraints

[1] FillsPost.client Value for the client metaproperty must be stereotyped by «ActualPerson» or its specializations.

[2] FillsPost.supplier Value for the supplier metaproperty must be stereotyped by «ActualPost» or its specializations.

UAF::Actual Resources::Constraints

Contains the elements that contribute to the Actual Resources Constraints Viewpoint.

ActualService

Package: Constraints

isAbstract: No

Generalization: ActualMeasurementSet, CapableElement

Extension: InstanceSpecification

Description

An instance of a ServiceSpecification.

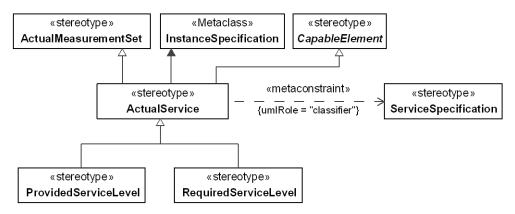


Figure 3:203 - ActualService

Constraints

[1] ActualService.classifier Value for the classifier metaproperty must be stereotyped by «ServiceSpecification» or its specializations.

ProvidedServiceLevel

Package: Constraints

isAbstract: No

Generalization: <u>ActualService</u> **Extension:** InstanceSpecification

Description

A sub type of ActualService that details a specific service level delivered by the provider.

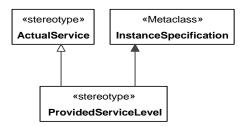


Figure 3:204 - ProvidedServiceLevel

ProvidesCompetence

Package: Constraints

isAbstract: No

Generalization: MeasurableElement

Extension: Dependency

Description

A dependency relationship that asserts that an ActualOrganizationalResource provides a specific set of Competencies.

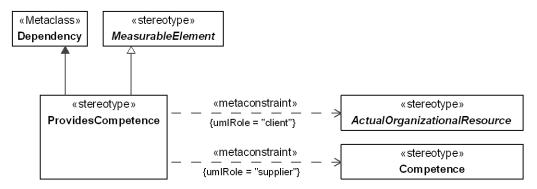


Figure 3:205 - ProvidesCompetence

Constraints

[1] ProvidesCompetence.client Value for the client metaproperty must be stereotyped by a specialization of

«ActualOrganizationalResource».

[2] ProvidesCompetence.supplier Value for the supplier metaproperty must be stereotyped «Competence» or its

specializations.

RequiredServiceLevel

Package: Constraints

isAbstract: No

Generalization: <u>ActualService</u> **Extension:** InstanceSpecification

Description

A sub type of ActualService that details a specific service level required of the provider.

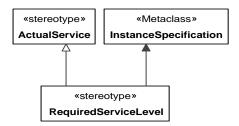


Figure 3:206 - RequiredServiceLevel

UAF::Actual Resources::Traceability

Contains the elements that contribute to the Actual Resources Traceability Viewpoint.

OwnsProcess

Package: Traceability

isAbstract: No

Generalization: MeasurableElement, Allocate

Extension: Abstraction

Description

A dependency relationship denoting that an ActualOrganizationResource owns an OperationalActivity.

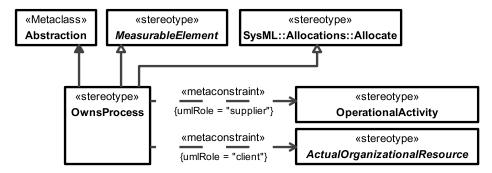


Figure 3:207 - OwnsProcess

Constraints

[1] OwnsProcess.client Value for the client metaproperty must be stereotyped «ActualOrganizationalResource» or

its specializations.

[2] OwnsProcess.supplier Value for the supplier metaproperty must be stereotyped «Operational Activity» or its

specializations.

3.1.13 UAF::Summary and Overview

Stakeholders: Executives, PMs, Enterprise Architects.

Concerns: executive-level summary information in a consistent form.

Definition: provides executive-level summary information in a consistent form that allows quick reference and comparison between architectural descriptions. Includes assumptions, constraints, and limitations that may affect high-level decisions relating to an architecture-based work programme.

Architectural Description

Package: Summary and Overview

isAbstract: No

Generalization: MeasurableElement

Extension: Package

Description

An Architecture Description is a work product used to express the Architecture of some System Of Interest. It provides executive-level summary information about the architecture description in a consistent form to allow quick reference and comparison between architecture descriptions -- It includes assumptions, constraints, and limitations that may affect high-level decisions relating to an architecture-based work program.

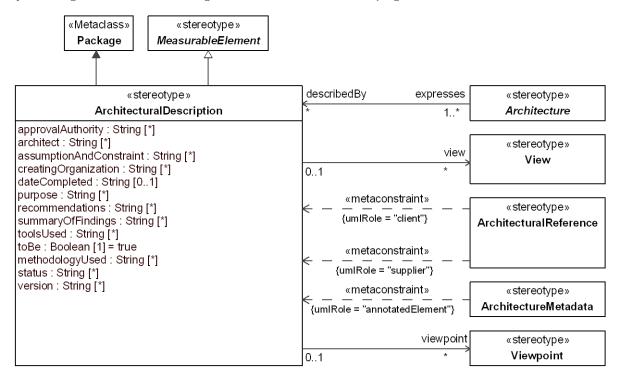


Figure 3:208 - ArchitecturalDescription

Attributes

approvalAuthority: String[*] Someone or something that has the authority to approve the Architectural Description. architect: String[*] Someone responsible for the creation of ArchitecturalDescription. assumptionAndConstraint : String[*] Any assumptions, constraints, and limitations contained in the ArchitecturalDescription, including those affecting deployment, communications performance, information assurance environments, etc. creatingOrganization: String[*] The organization responsible for creating the Architectural Description. dateCompleted: String[0..1] Date that the Architectural Description was completed. methodologyUsed: String[*] The methodology used in developing the architecture. purpose : String[*] Explains the need for the Architecture, what it will demonstrate, the types of analyses that will be applied to it, who is expected to perform the analyses, what decisions are expected to be made on the basis of each form of analysis, who is expected to make those decisions, and what actions are expected to result.

recommendations: String[*] States the recommendations that have been developed based on the

architecture effort. Examples include recommended system implementations,

and opportunities for technology insertion.

status : String[*] Approval status of the architecture.

summaryOfFindings: String[*] Summarizes the findings that have been developed so far. This may be

updated several times during the development of the ArchitecturalDescription.

toBe: Boolean[1] Indicates whether the ArchitecturalDescription represents an Architecture that

exists or will exist in the future.

toolsUsed: String[*] Identifies any tools used to develop the ArchitecturalDescription as well as

file names and formats if appropriate.

version : String[*] Version number of the architecture.

Associations

architectureFramework: String[1] Indicates the type of framework used.

view: View[*] Indicates which views are used in the ArchitecturalDescription.

viewpoint: Viewpoint[*]

Architecture

Package: Summary and Overview

isAbstract: Yes

Generalization: UAFElement

Extension: Class Description

An abstract type that represents a generic architecture. Subtypes are Operational Architecture and Physical Architecture.

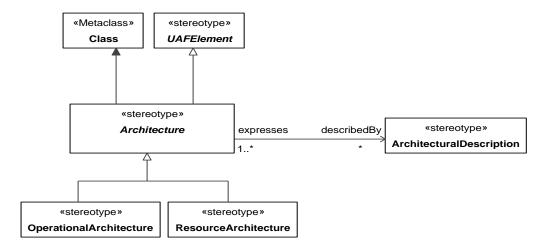


Figure 3:209 - Architecture

Associations

describedBy: ArchitecturalDescription[*] The description of an Architecture.

Concern

Package: Summary and Overview

isAbstract: No

Generalization: PropertySet, Block

Extension: Class Description

Interest in an EnterprisePhase (EnterprisePhase is synonym for System in ISO 42010) relevant to one or more of its

stakeholders.

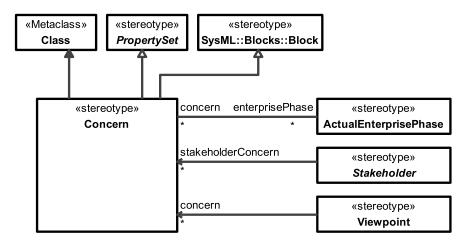


Figure 3:210 - Concern

Associations

enterprisePhase: ActualEnterprisePhase[*] Relates a Concern to the ActualEnterprisePhase that addresses that concern (ActualEnterprisePhase is synonym for System in ISO 42010).

Stakeholder

Package: Summary and Overview

isAbstract: Yes

Generalization: UAFElement

Extension: Element

Description

individual, team, organization, or classes thereof, having an interest in an EnterprisePhase [ISO/IEC/IEEE 42010:2011].

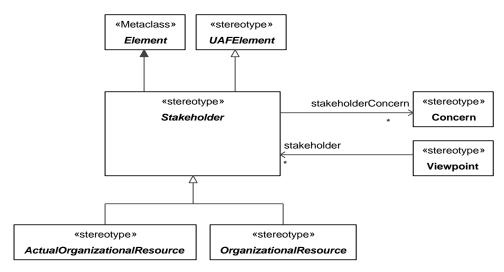


Figure 3:211 - Stakeholder

Associations

stakeholderConcern: Concern[*] Relates a Stakeholder to a Concern.

UAFElement

Package: Summary and Overview

isAbstract: Yes Extension: Element

Unified Architecture Framework Profile (UAFP) Version 1.1

Description

Abstract super type for all of the UAF elements. It provides a way for all of the UAF elements to have a common set of properties.

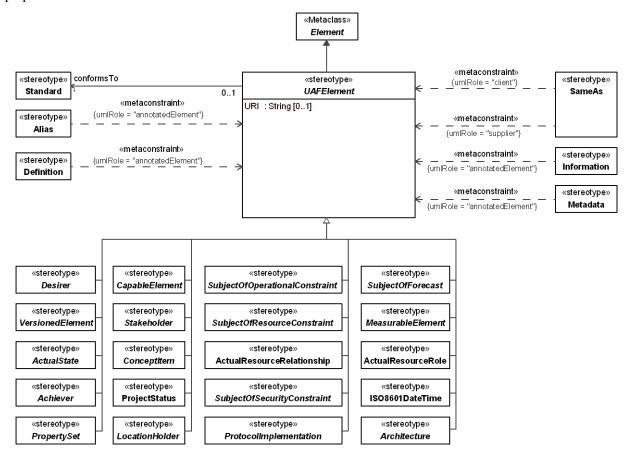


Figure 3:212 - UAFElement

Attributes

URI: String[0..1] Captures Unique identifier for the element.

Associations

conformsTo: Standard[*] Relates a UAFElement to the Standard that the UAFElement is conforming to.

View

Package: Summary and Overview

isAbstract: No

Generalization: PropertySet, View

Extension: Class Description

An architecture view expresses the architecture of the system-of-interest in accordance with an architecture viewpoint (or simply, viewpoint). [ISO/IEC/IEEE 42010:2011(E)].

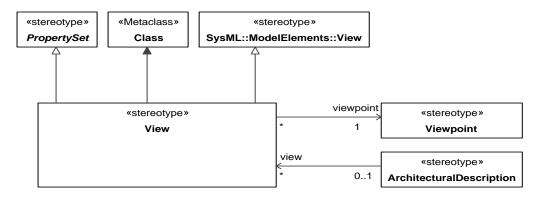


Figure 3:213 - View

Associations

viewpoint: Viewpoint[1] Relates the View to the Viewpoint that the View conforms to.

Viewpoint

Package: Summary and Overview

isAbstract: No

Generalization: PropertySet, Viewpoint

Extension: Class Description

An architecture viewpoint frames (to formulate or construct in a particular style or language) one or more concerns. A concern can be framed by more than one viewpoint. [ISO/IEC/IEEE 42010:2011(E)].

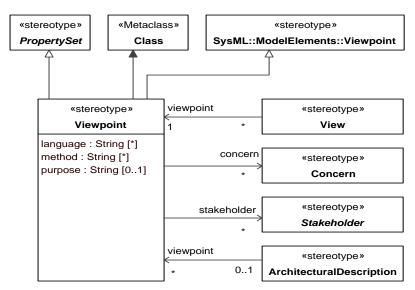


Figure 3:214 - Viewpoint

Attributes

method: String[*] The methods employed in the development of the Viewpoint.

purpose: String[0..1] The purpose of the Viewpoint.

Associations

concern: Concern[*] Relates the Viewpoint to the Concerns that the Viewpoint addresses.

 $stakeholder:\ Stakeholder[*] \ \ Relates\ the\ Viewpoint\ to\ the\ Stakeholders\ whose\ Concerns\ are\ being\ addressed\ by\ the$

Viewpoint.

4. UAF View Specifications

This paragraph is intended as normative guidance for developers and users as to what UAF stereotypes and metaconstraints are applicable for each of the UAF view specifications.

4.1 View Specifications

This section describes the normative stereotypes and metaconstraints needed to define UAF view specifications.

4.1.1 View Specifications::Strategic

Stakeholders: Capability Portfolio Managers. Concerns: capability management process.

Definition: describe capability taxonomy, composition, dependencies and evolution.

View Specifications::Strategic::Taxonomy

Stakeholders: PMs, Enterprise Architects, Executives.

Concerns: capability needs.

Definition: shows the taxonomy of capabilities.

Recommended Implementation: SysML Block Definition Diagram.

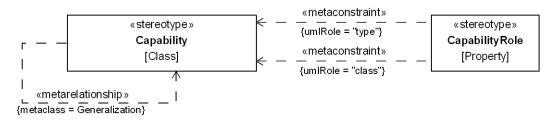


Figure 4:1 - Strategic Taxonomy

Elements

- Capability
- CapabilityRole

View Specifications::Strategic::Structure

Stakeholders: PMs, Enterprise Architects, Executives.

Concerns: capability needs.

Definition: shows the relationship between EnterprisePhases and the Capabilities that are intended to be developed

during the enterprise phases, and the organizations involved in the enterprise.

Recommended Implementation: SysML Block Definition Diagram.

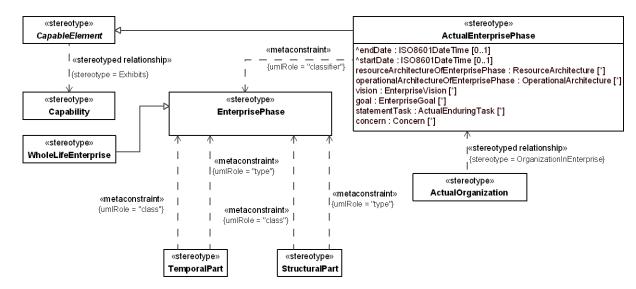


Figure 4:2 - Strategic Structure

- <u>ActualEnterprisePhase</u>
- ActualOrganization
- Capability
- CapableElement
- EnterprisePhase
- StructuralPart
- TemporalPart
- WholeLifeEnterprise

View Specifications::Strategic::Connectivity

Stakeholders: PMs, Executives, Enterprise Architects.

Concerns: capability dependencies.

Definition: describes the dependencies between planned capabilities.

Recommended Implementation: SysML Block Definition Diagram. SysML Internal Block Diagram.

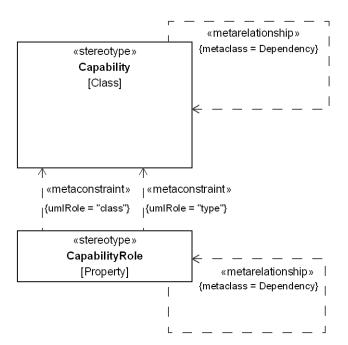


Figure 4:3 - Strategic Connectivity

- Capability
- CapabilityRole

View Specifications::Strategic::States

Stakeholders: PMs, Enterprise Architects.

Concerns: effects that the implementation(s) of capabilities are expected to deliver.

Definition: captures the relationships between capability(ies) and desired effect(s) that implementation(s) of capability(ies) should achieve.

Recommended Implementation: SysML Block Definition Diagram.

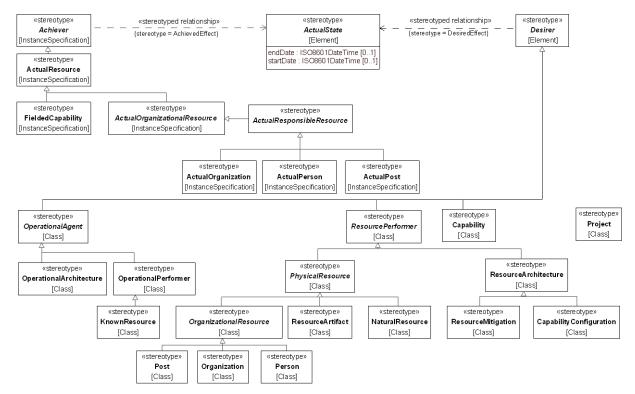
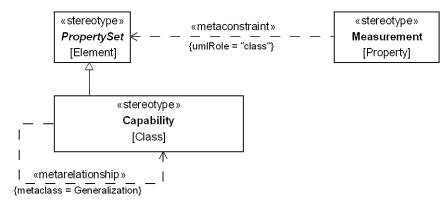


Figure 4:4 - Strategic States

- Achiever
- ActualOrganization
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualResource
- ActualResponsibleResource
- ActualState
- Capability
- <u>CapabilityConfiguration</u>
- Desirer
- FieldedCapability
- KnownResource
- NaturalResource
- OperationalAgent
- Operational Architecture
- OperationalPerformer
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- Project
- ResourceArchitecture
- ResourceArtifact
- ResourceMitigation
- ResourcePerformer


View Specifications::Strategic::Constraints

Stakeholders: PMs, Enterprise Architects.

Concerns: capability constraints.

Definition: details the measurements that set performance requirements constraining capabilities.

Recommended Implementation: tabular format, SysML Block Definition Diagram.

Figure 4:5 - Strategic Constraints

Elements

- Capability
- Measurement
- PropertySet

View Specifications::Strategic::Roadmap

Stakeholders: PMs, Executives, Enterprise Architects.

Concerns: capability deployment to organizations over time.

Definition: addresses the deployment of capability(ies) to actual organizations over time. Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

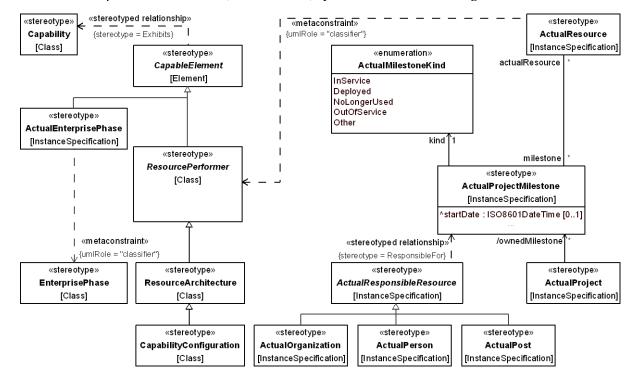


Figure 4:6 - Strategic Roadmap: Deployment

- ActualEnterprisePhase
- ActualMilestoneKind
- ActualOrganization
- ActualPerson
- ActualPost
- ActualProject
- ActualProjectMilestone
- ActualResource
- ActualResponsibleResource
- Capability
- CapabilityConfiguration
- CapableElement
- EnterprisePhase
- ResourceArchitecture
- ResourcePerformer

Stakeholders: PMs, Executives, Enterprise Architects.

Concerns: capability(ies) achievement over time.

Definition: the planned achievement of capability(ies) at different points in time or during specific periods of time. Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

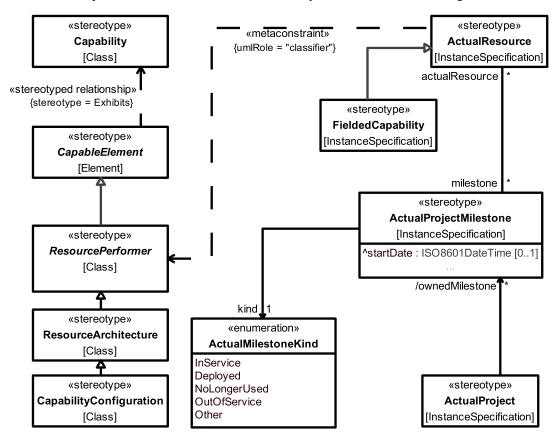


Figure 4:7 - Strategic Roadmap: Phasing

- ActualMilestoneKind
- ActualProject
- ActualProjectMilestone
- ActualResource

- Capability
- CapabilityConfiguration
- <u>CapableElement</u>
- <u>FieldedCapability</u>
- ResourceArchitecture
- ResourcePerformer

View Specifications::Strategic::Traceability

Stakeholders: PMs, Enterprise Architects, Business Architects.

Concerns: traceability between capabilities and operational activities.

Definition: describes the mapping between the capabilities required by an Enterprise and the supporting operational activities.

Recommended Implementation: matrix format, SysML Block Definition Diagram.

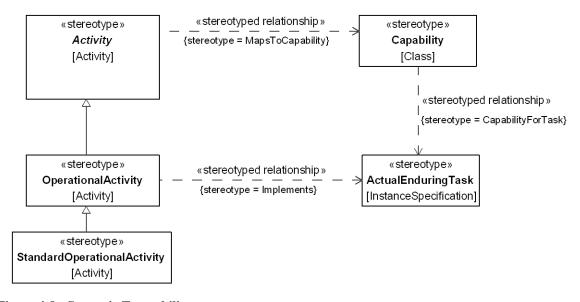


Figure 4:8 - Strategic Traceability

Elements

- Activity
- ActualEnduringTask
- Capability
- Operational Activity
- StandardOperationalActivity

4.1.2 View Specifications::Operational

Stakeholders: Business Architects, Executives

Concerns: illustrate the Logical Architecture of the enterprise.

Definition: describe the requirements, operational behavior, structure, and exchanges required to support (exhibit) capabilities. Defines all operational elements in an implementation/solution independent manner.

View Specifications::Operational::Taxonomy

Stakeholders: Business Architects, Systems Engineers, Enterprise Architects, Owners responsible for Operational Agents.

Concerns: Operational Agent types.

Definition: shows the taxonomy of types of Operational Agents.

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

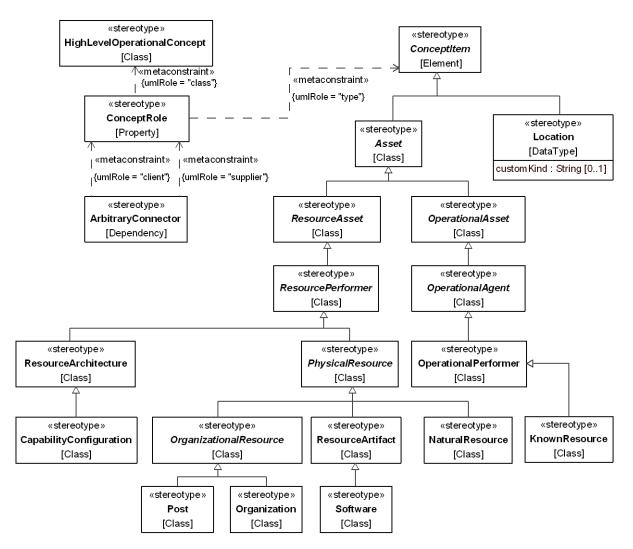


Figure 4:9 - Operational Taxonomy

- <u>ArbitraryConnector</u>
- <u>Asset</u>
- <u>CapabilityConfiguration</u>
- ConceptItem
- ConceptRole
- <u>HighLevelOperationalConcept</u>
- KnownResource
- Location
- NaturalResource
- OperationalAgent
- OperationalAsset
- OperationalPerformer
- Organization
- OrganizationalResource
- <u>PhysicalResource</u>
- Post
- ResourceArchitecture
- ResourceArtifact

- ResourceAsset
- ResourcePerformer
- Software

View Specifications::Operational::Structure

Stakeholders: Business Architects, Systems Engineers, Enterprise Architects, Owners responsible for Operational Agents.

Concerns: identifies the operational exchange requirements between OperationalPerformers.

Definition: defines operational architecture and exchange requirements necessary to support a specific set of Capability(ies).

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

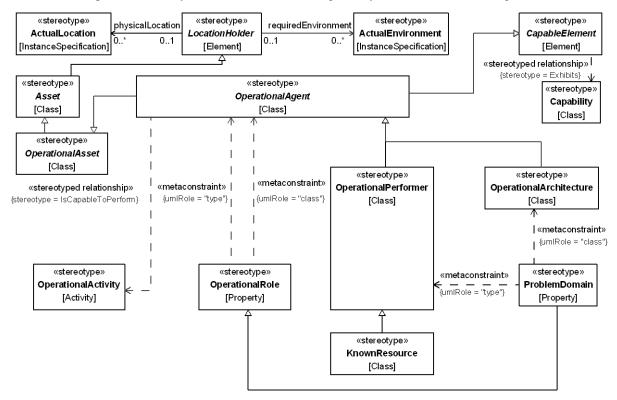


Figure 4:10 - Operational Structure

- ActualEnvironment
- ActualLocation
- Asset
- <u>Capability</u>
- CapableElement
- KnownResource
- LocationHolder
- Operational Activity
- Operational Agent
- Operational Architecture
- <u>OperationalAsset</u>
- <u>OperationalPerformer</u>
- OperationalRole
- <u>ProblemDomain</u>

View Specifications::Operational::Connectivity

Stakeholders: Systems Engineers, Architects, Solution Providers.

Concerns: capture the interfaces between OperationalPerformers.

Definition: summarizes logical exchanges between OperationalPerformers of information, systems, personnel, energy etc. and the logical activities that produce and consume them. Measurements can optionally be included. Recommended Implementation: SysML Internal Block Diagram, tabular format.

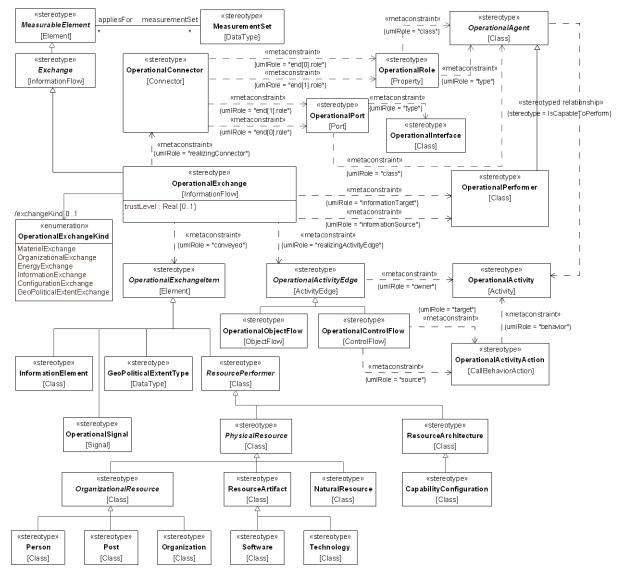
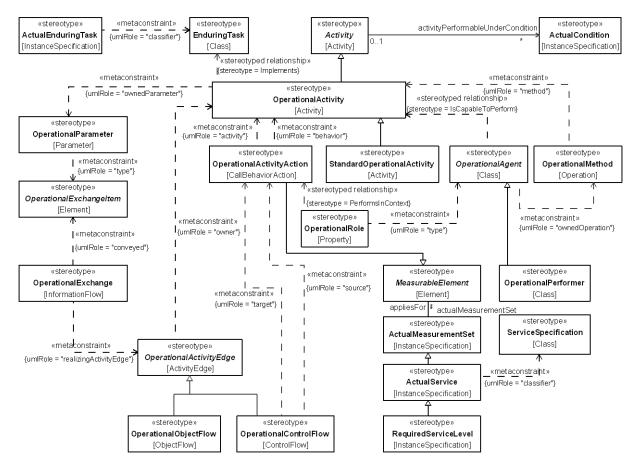


Figure 4:11 - Operational Connectivity

- <u>CapabilityConfiguration</u>
- Exchange
- <u>GeoPoliticalExtentType</u>
- <u>InformationElement</u>
- <u>MeasurableElement</u>
- MeasurementSet
- NaturalResource
- Operational Activity
- OperationalActivityAction
- OperationalActivityEdge


- Operational Agent
- OperationalConnector
- OperationalControlFlow
- OperationalExchange
- OperationalExchangeItem
- OperationalExchangeKind
- OperationalInterface
- OperationalObjectFlow
- OperationalPerformer
- OperationalPort
- OperationalRole
- OperationalSignal
- Organization
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- ResourceArchitecture
- ResourceArtifact
- ResourcePerformer
- Software
- <u>Technology</u>

View Specifications::Operational::Processes

Stakeholders: Business Architect, Systems Engineers, Enterprise Architects

Concerns: captures activity based behavior and flows.

Definition: describes the activities that are normally conducted in the course of achieving business goals that support a capability. It describes operational activities, their Inputs/Outputs, operational activity actions and flows between them. Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram, BPMN Process Diagram.

Figure 4:12 - Operational Processes

- Activity
- ActualCondition
- ActualEnduringTask
- ActualMeasurementSet
- ActualService
- EnduringTask
- MeasurableElement
- OperationalActivity
- Operational Activity Action
- OperationalActivityEdge
- OperationalAgent
- OperationalControlFlow
- OperationalExchange
- OperationalExchangeItem
- OperationalMethod
- OperationalObjectFlow
- OperationalParameter
- OperationalPerformer
- OperationalRole
- <u>RequiredServiceLevel</u>
- ServiceSpecification
- StandardOperationalActivity

View Specifications::Operational::States

Stakeholders: Systems Engineers, Software Engineers.

Concerns: capture state-based behavior of an operational OperationalPerformer.

Definition: it is a graphical representation of states of an operational OperationalPerformer and how that operational

OperationalPerformer responds to various events and actions.

Recommended Implementation: SysML State Machine Diagram.

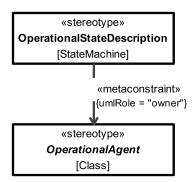


Figure 4:13 - Operational States

Elements

- Operational Agent
- OperationalStateDescription

View Specifications::Operational::Interaction Scenarios

Stakeholders: Systems Engineers, Business Architects.

Concerns: express a time ordered examination of the operational exchanges as a result of a particular operational scenario.

Definition: provides a time-ordered examination of the operational exchanges between participating nodes (OperationalPerformer roles) as a result of a particular operational scenario.

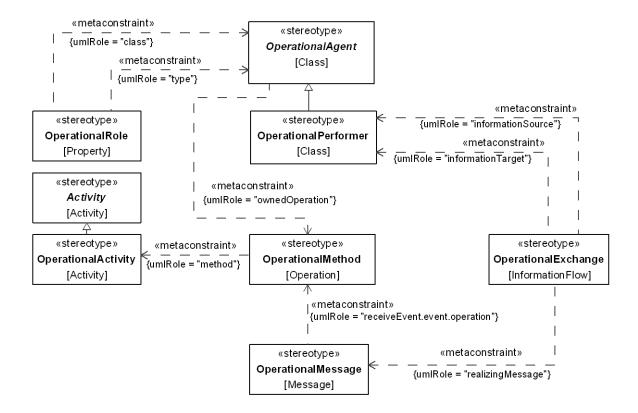


Figure 4:14 - Operational Interaction Scenarios

- Activity
- Operational Activity
- OperationalAgent
- OperationalExchange
- OperationalMessage
- OperationalMethod
- OperationalPerformer
- OperationalRole

View Specifications::Operational::Constraints

Stakeholders: Systems Engineers, Architects, Program Sponsors

Concerns: define operational limitations, constraints and performance parameters for the enterprise.

Definition: specifies traditional textual operational or business rules that are constraints on the way that business is done in the enterprise. The addition of SysML parametrics provides a computational means of defining operational constraints across the enterprise or within a specific operational context.

Recommended Implementation: tabular format, SysML Block Definition Diagram, SysML Parametric Diagram.

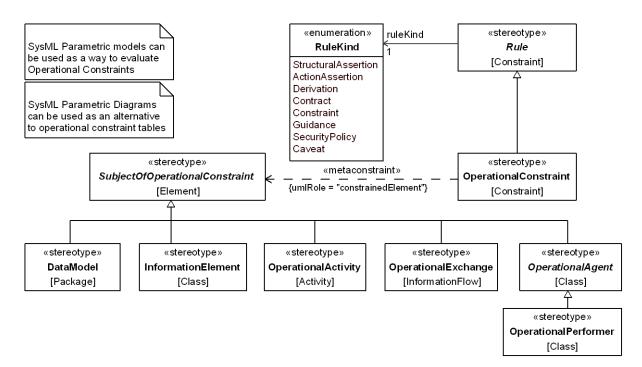


Figure 4:15 - Operational Constraints

- DataModel
- <u>InformationElement</u>
- Operational Activity
- OperationalAgent
- OperationalConstraint
- OperationalExchange
- OperationalPerformer
- Rule
- RuleKind
- <u>SubjectOfOperationalConstraint</u>

View Specifications::Operational::Traceability

Stakeholders: PMs, Enterprise Architects, Business Architects.

Concerns: traceability between capabilities and operational activities and capabilities and operational agents.

Definition: describes the mapping between the capabilities required by an Enterprise and the supporting operational activities and operational agents.

Recommended Implementation: matrix format, SysML Block Definition Diagram.

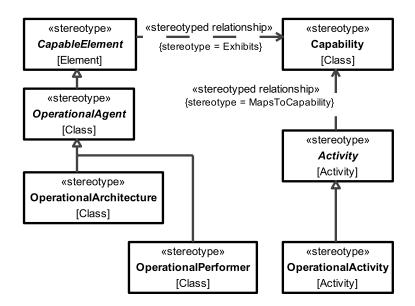


Figure 4:16 - Operational Traceability

- Activity
- Capability
- CapableElement
- Operational Activity
- OperationalAgent
- Operational Architecture
- OperationalPerformer

4.1.3 View Specifications::Services

Stakeholders: Enterprise Architects, Solution Providers, Systems Engineers, Software Architects, Business Architects..

Concerns: specifications of services required to exhibit a Capability.

Definition: shows Service Specifications and required and provided service levels of these specifications required to exhibit a Capability or to support an Operational Activity.

View Specifications::Services::Taxonomy

Stakeholders: Enterprise Architects, Solution Providers, Systems Engineers, Software Architects, Business Architects. Concerns: service specification types and required and provided service levels of these types.

Definition: shows the taxonomy of types of services and the level of service that they are expected to provide or are required to meet through the display of ActualMeasurements associated with the Provided and Required Service Level. Recommended Implementation: SysML Block Definition Diagram.

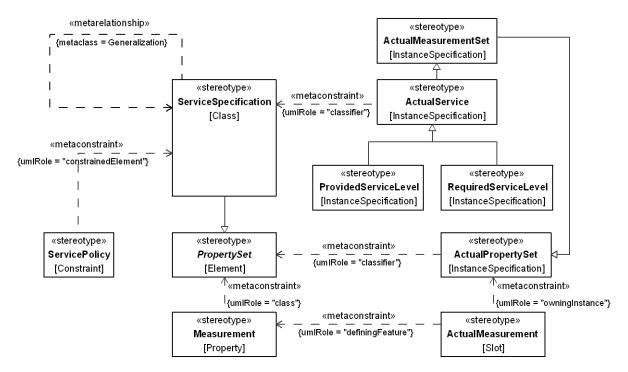


Figure 4:17 - Services Taxonomy

- <u>ActualMeasurement</u>
- ActualMeasurementSet
- ActualPropertySet
- ActualService
- Measurement
- PropertySet
- ProvidedServiceLevel
- RequiredServiceLevel
- ServicePolicy
- ServiceSpecification

View Specifications::Services::Structure

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: combination of services required to exhibit a capability.

Definition: shows the composition of services and how services are combined into a higher level service required to exhibit a capability or support an operational activity.

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

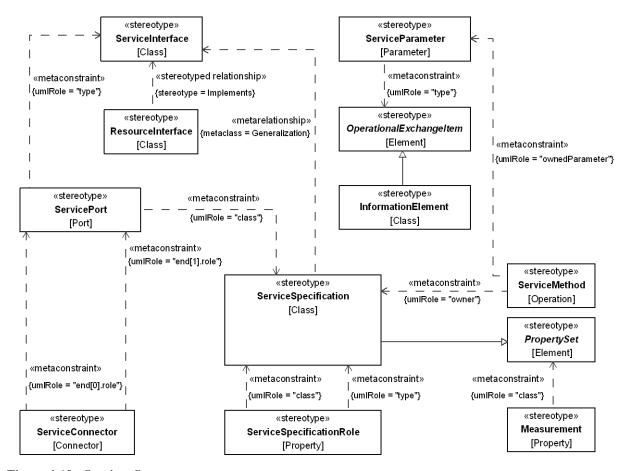


Figure 4:18 - Services Structure

- <u>InformationElement</u>
- Measurement
- OperationalExchangeItem
- PropertySet
- ResourceInterface
- ServiceConnector
- ServiceInterface
- ServiceMethod
- ServiceParameter
- ServicePort
- ServiceSpecification
- <u>ServiceSpecificationRole</u>

View Specifications::Services::Connectivity

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: interoperability among services

Definition: specifies service interfaces, e.g. provided and required service methods, signal receptions, and/or flow properties, to ensure compatibility and reusability of services.

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram, tabular format.

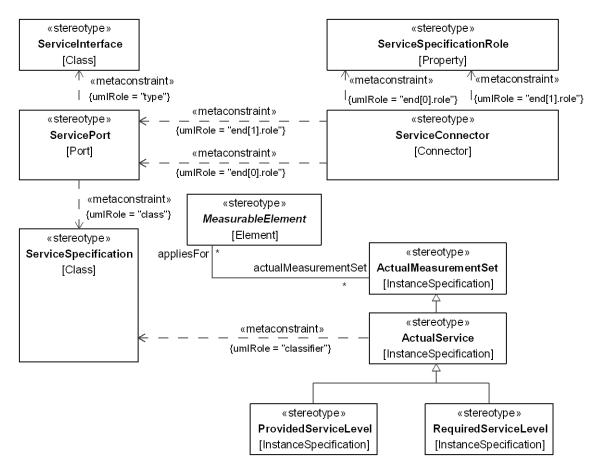


Figure 4:19 - Services Connectivity

- ActualMeasurementSet
- ActualService
- MeasurableElement
- ProvidedServiceLevel
- RequiredServiceLevel
- ServiceConnector
- <u>ServiceInterface</u>
- ServicePort
- <u>ServiceSpecification</u>
- ServiceSpecificationRole

View Specifications::Services::Processes

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: the behavior of a service in terms of the operational activities it is expected to support.

Definition: provides detailed information regarding the allocation of service functions to service specifications, and data flows between service functions.

Recommended Implementation: SysML Activity Diagram, BPMN Process Diagram, SysML Block Definition Diagram.

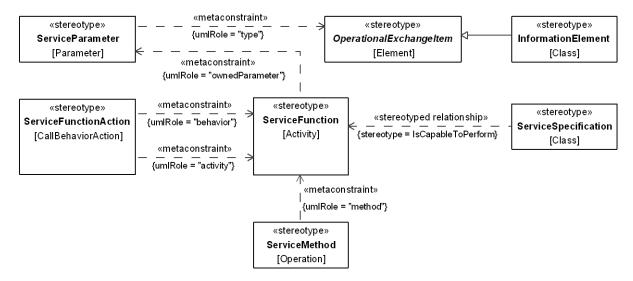


Figure 4:20 - Services Processes

- InformationElement
- OperationalExchangeItem
- ServiceFunction
- ServiceFunctionAction
- ServiceMethod
- ServiceParameter
- ServiceSpecification

View Specifications::Services::States

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: the behavior of a service specification in terms of states and events causing transitions between states. Definition: specifies the possible states a service specification may have, and the possible transitions between those states.

Recommended Implementation: SysML State Machine Diagram.

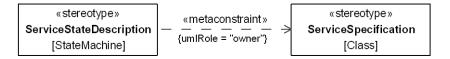


Figure 4:21 - Services States

Elements

- ServiceSpecification
- ServiceStateDescription

View Specifications::Services::Interaction Scenarios

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: the behavior of a service specification in terms of expected time-ordered examination of the interactions between service roles.

Definition: specifies how a service roles interact with each other, service providers and consumers, and the sequence and dependencies of those interactions.

Recommended Implementation: SysML Sequence Diagram.

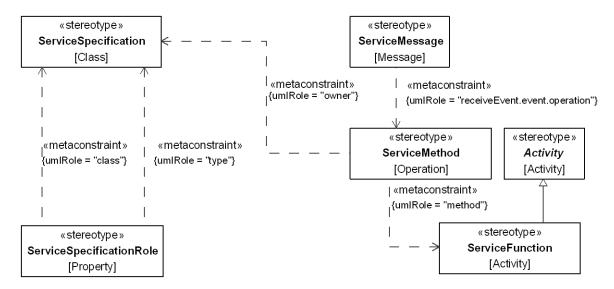


Figure 4:22 - Services Interaction Scenarios

- Activity
- ServiceFunction
- ServiceMessage
- ServiceMethod
- ServiceSpecification
- ServiceSpecificationRole

View Specifications::Services::Constraints

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: service policies that apply to implementations of service specifications.

Definition: specifies traditional textual service policies that are constraints on the way that service specifications are implemented within resources. The addition of SysML parametrics provide a computational means of defining service policies across the enterprise or within a specific service configuration.

Recommended Implementation: tabular format, SysML Parametric Diagram.

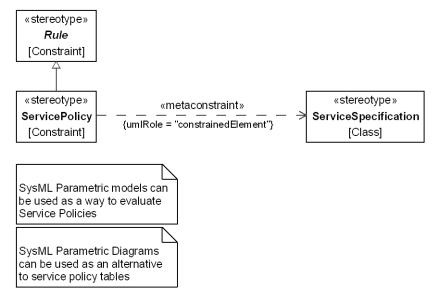


Figure 4:23 - Services Constraints

- Rule
- ServicePolicy
- ServiceSpecification

View Specifications::Services::Roadmap

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: service specification changes over time.

Definition: provides an overview of how a service specification changes over time. It shows the combination of several service specifications mapped against a timeline.

Recommended Implementation: timeline, SysML Block Definition Diagram, SysML Internal Block Diagram.

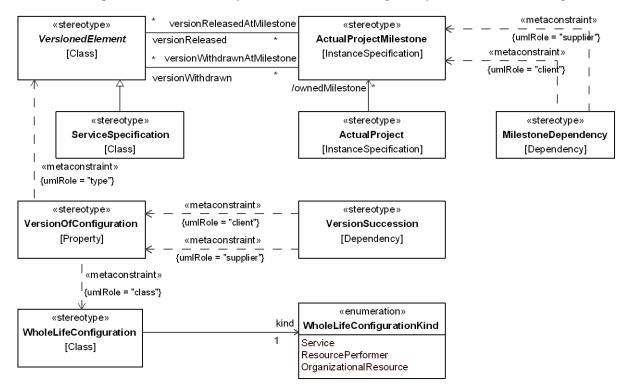


Figure 4:24 - Services Roadmap

Elements

- ActualProject
- ActualProjectMilestone
- <u>MilestoneDependency</u>
- <u>ServiceSpecification</u>
- <u>VersionedElement</u>
- VersionOfConfiguration
- VersionSuccession
- WholeLifeConfiguration
- WholeLifeConfigurationKind

View Specifications::Services::Traceability

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: traceability between operational activities and service specifications that support them.

Definition: depicts the mapping of service specifications to operational activities and how service specifications contribute to the achievement of a capability.

Recommended Implementation: tabular or matrix format.

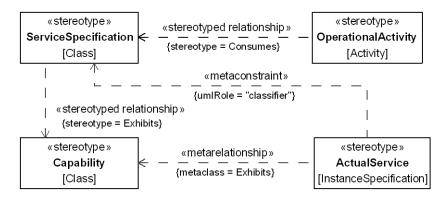


Figure 4:25 - Services Traceability

- ActualService
- Capability
- OperationalActivity
- ServiceSpecification

4.1.4 View Specifications::Personnel

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: human factors.

Definition: aims to clarify the role of Human Factors (HF) when creating architectures in order to facilitate both Human Factors Integration (HFI) and systems engineering (SE).

View Specifications::Personnel::Taxonomy

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: organizational resource types.

Definition: shows the taxonomy of types of organizational resources. Recommended Implementation: SysML Block Definition Diagram.

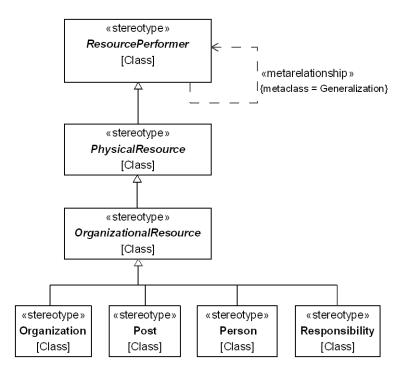


Figure 4:26 - Personnel Taxonomy

- Organization
- <u>OrganizationalResource</u>
- Person
- <u>PhysicalResource</u>
- Post
- ResourcePerformer
- Responsibility

View Specifications::Personnel::Structure

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: typical organizational structure used to support a capability(ies).

Definition: shows organizational structures and possible interactions between organizational resources. Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

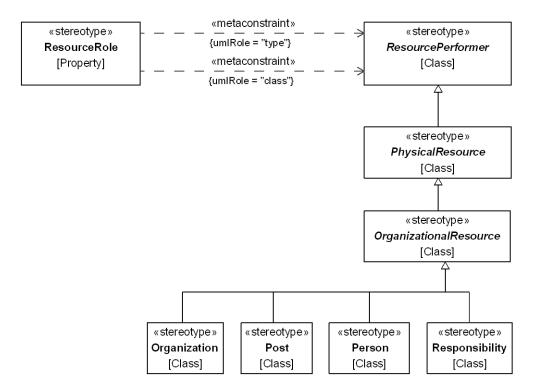


Figure 4:27 - Personnel Sructure

- Organization
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- ResourcePerformer
- ResourceRole
- Responsibility

View Specifications::Personnel::Connectivity

Stakeholders: Solution providers.

Concerns: interaction of organizational resources.

Definition: captures the possible interactions between organizational resources, including command and control relationships. Interactions typically illustrate the fundamental roles and management responsibilities. Recommended Implementation: tabular format.

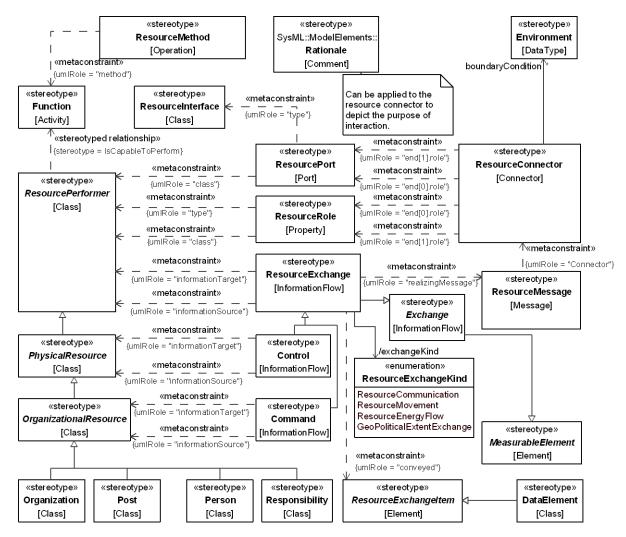


Figure 4:28 - Personnel Connectivity

- Command
- Control
- DataElement
- Environment
- Exchange
- Function
- MeasurableElement
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- Rationale
- ResourceConnector
- ResourceExchange
- ResourceExchangeItem
- ResourceExchangeKind
- ResourceInterface
- ResourceMessage

- ResourceMethod
- ResourcePerformer
- ResourcePort
- ResourceRole
- Responsibility

View Specifications::Personnel::Processes

Stakeholders: Systems engineers, Solution providers.

Concerns: functions that have to be carried out by organizational resources.

Definition: specifies organizational resource functions in relation to resource definitions.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram, BPMN Process Diagram.

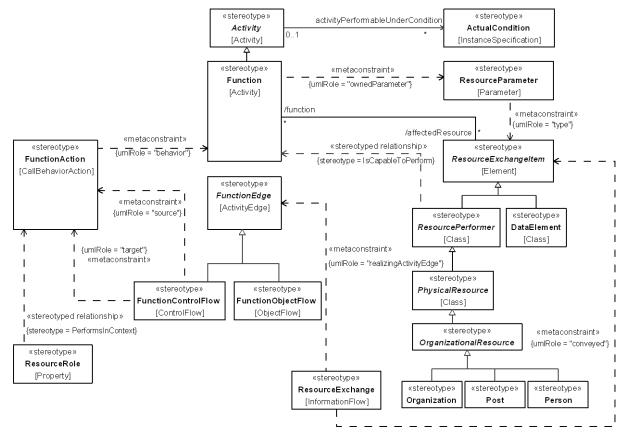


Figure 4:29 - Personnel Processes

- Activity
- ActualCondition
- <u>DataElement</u>
- Function
- FunctionAction
- FunctionControlFlow
- FunctionEdge
- FunctionObjectFlow
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post

- ResourceExchange
- ResourceExchangeItem
- ResourceParameter
- ResourcePerformer
- ResourceRole

View Specifications::Personnel::States

Stakeholders: Systems Engineers, Software Engineers.

Concerns: capture state-based behavior of an organizational resource.

Definition: it is a graphical representation of states of an organizational resource and how that organizational resource

responds to various events and actions.

Recommended Implementation: SysML State Machine Diagram.

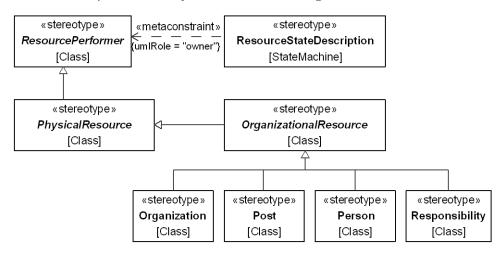


Figure 4:30 - Personnel States

Elements

- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- ResourcePerformer
- ResourceStateDescription
- Responsibility

View Specifications::Personnel::Interaction Scenarios

Stakeholders: Software Engineers, Systems Engineers.

Concerns: interactions between organizational resources (roles).

Definition: provides a time-ordered examination of the interactions between organizational resources.

Recommended Implementation: SysML Sequence Diagram, BPMN Collaboration Diagram.

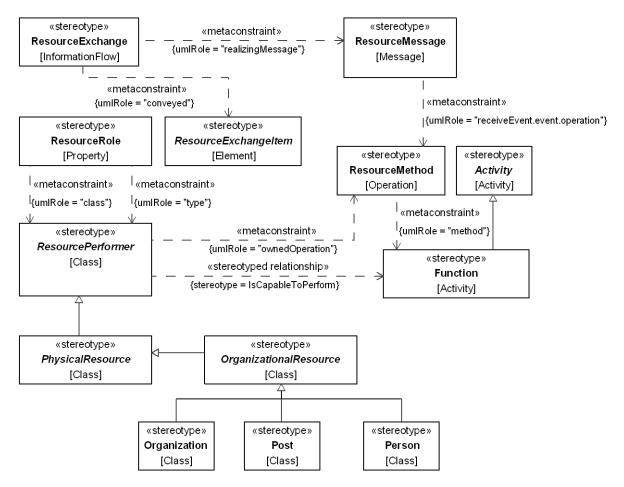


Figure 4:31 - Personnel Interaction Scenarios

- Activity
- Function
- Organization
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- ResourceExchange
- ResourceExchangeItem
- ResourceMessage
- ResourceMethod
- ResourcePerformer
- ResourceRole

View Specifications::Personnel::Constraints

Stakeholders: Systems engineers, Solution providers.

Concerns: allocation of competencies to actual posts.

Definition: specifies requirements for actual organizational resources – by linking competencies and actual posts.

Recommended Implementation: SysML Block Definition Diagram.

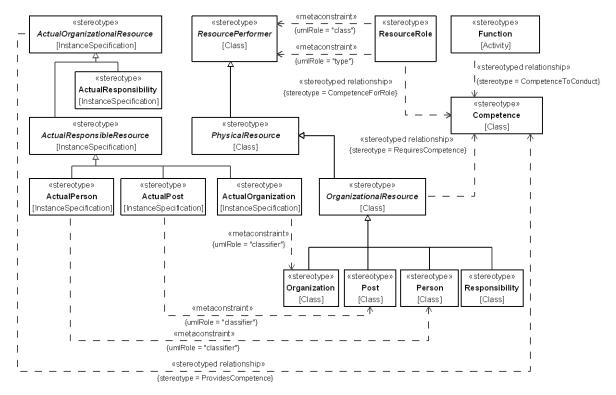


Figure 4:32 - Personnel Constraints: Competence

- ActualOrganization
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualResponsibility
- <u>ActualResponsibleResource</u>
- Competence
- Function
- Organization
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- ResourcePerformer
- ResourceRole
- Responsibility

Stakeholders: Systems engineers, Solution providers, Human resources.

Concerns: optimization of organizational resource behavior.

Definition: captures the factors that affect, constrain and characterize organizational resource behavior as the basis for performance predictions at the level of actual persons and actual organizations. It creates a bridge between static architectural definitions and behavior predictions through executable models.

Recommended Implementation: tabular format, SysML Parametric Diagram, SysML Block Definition Diagram.

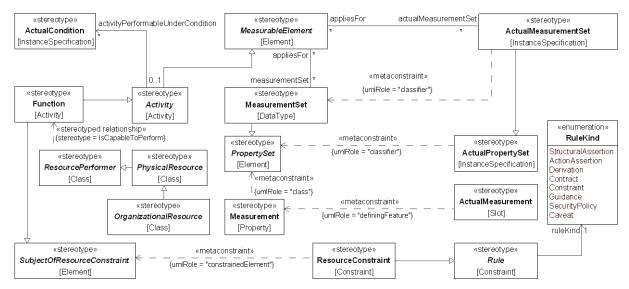


Figure 4:33 - Personnel Constraints: Drivers

- Activity
- ActualCondition
- <u>ActualMeasurement</u>
- ActualMeasurementSet
- ActualPropertySet
- Function
- MeasurableElement
- Measurement
- MeasurementSet
- OrganizationalResource
- PhysicalResource
- PropertySet
- ResourceConstraint
- ResourcePerformer
- Rule
- RuleKind
- <u>SubjectOfResourceConstraint</u>

Stakeholders: Human resources, solution providers.

Concerns: how well an actual organizational resource matches the needs of the actual organization.

Definition: provides a repository for human-related measures (i.e. quality objectives and performance criteria (HFI values)), targets and competences.

Recommended Implementation: SysML Block Definition Diagram.

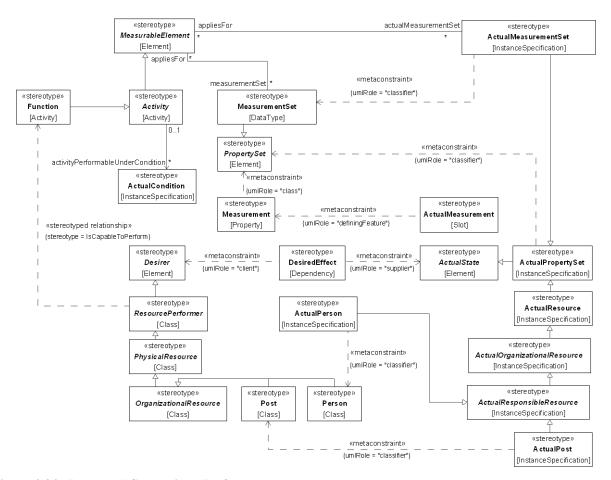


Figure 4:34 - Personnel Constraints: Performance

- Activity
- ActualCondition
- <u>ActualMeasurement</u>
- ActualMeasurementSet
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualPropertySet
- ActualResource
- ActualResponsibleResource
- ActualState
- DesiredEffect
- <u>Desirer</u>
- Function
- MeasurableElement
- <u>Measurement</u>
- MeasurementSet
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- PropertySet
- ResourcePerformer

View Specifications::Personnel::Roadmap

Stakeholders: Human Resources, Training, Logisticians, Solution Providers.

Concerns: the staffing and training of resources.

Definition: defines the requirements and functions to ensure that actual persons with the right competencies, and in the right numbers, are available to fulfill actual posts.

Recommended Implementation: Timeline, SysML Block Definition Diagram.

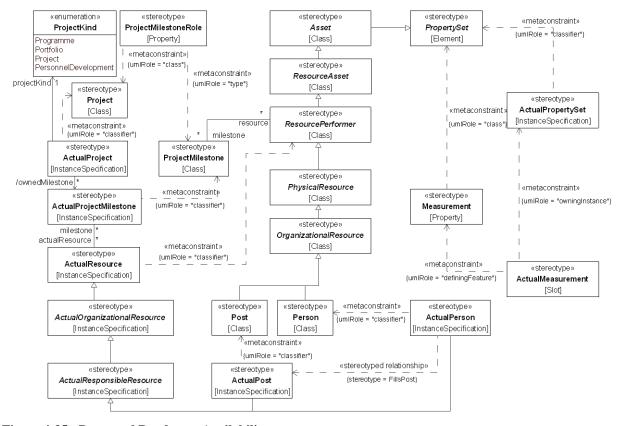


Figure 4:35 - Personnel Roadmap: Availability

- ActualMeasurement
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualProject
- ActualProjectMilestone
- ActualPropertySet
- ActualResource
- ActualResponsibleResource
- Asset
- <u>Measurement</u>
- OrganizationalResource
- Person
- PhysicalResource
- Post
- Project
- ProjectKind
- ProjectMilestone
- ProjectMilestoneRole

- PropertySet
- ResourceAsset
- ResourcePerformer

Stakeholders: Human resources, Solution Providers.

Concerns: organizational structure changes over time.

Definition: provides an overview of how a organizational structure changes over time. It shows the structure of several organizational structures mapped against a timeline.

Recommended Implementation: timeline, SysML Block Definition Diagram, SysML Internal Block Diagram.

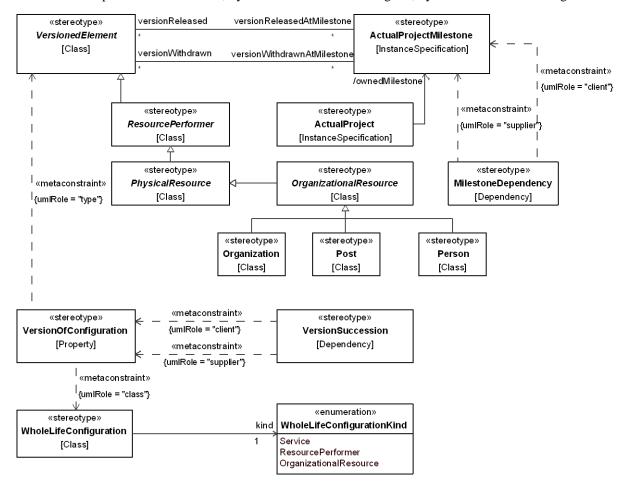


Figure 4:36 - Personnel Roadmap: Evolution

- ActualProject
- ActualProjectMilestone
- MilestoneDependency
- Organization
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- ResourcePerformer
- <u>VersionedElement</u>
- <u>VersionOfConfiguration</u>
- VersionSuccession
- WholeLifeConfiguration

• WholeLifeConfigurationKind

Stakeholders: Human resources, Logisticians, Solution Providers.

Concerns: competencies and skills forecast.

Definition: defines the underlying current and expected supporting competencies and skills of organizational resources.

Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

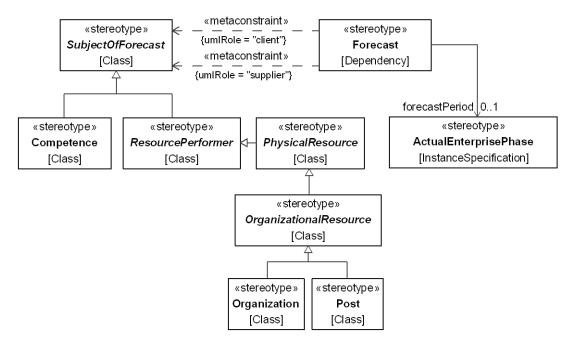


Figure 4:37 - Personnel Roadmap: Forecast

Elements

- ActualEnterprisePhase
- Competence
- Forecast
- Organization
- OrganizationalResource
- PhysicalResource
- Post
- ResourcePerformer
- SubjectOfForecast

View Specifications::Personnel::Traceability

Stakeholders: Systems Engineers, Enterprise Architects, Solution Providers, Business Architects.

Concerns: traceability between operational activities and functions that implements them.

Definition: depicts the mapping of functions (performed by organizational resources) to operational activities and thus identifies the transformation of an operational need into a purposeful function performed by an organizational resource or solution

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

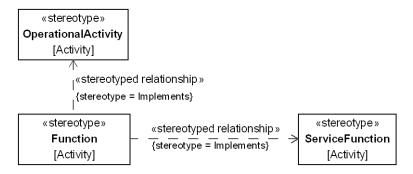


Figure 4:38 - Personnel Traceability

- Function
- OperationalActivity
- ServiceFunction

4.1.5 View Specifications::Resources

Stakeholders: Systems Engineers, Resource Owners, Implementers, Solution Providers, IT Architects.

Concerns: definition of solution architectures to implement operational requirements.

Definition: captures a solution architecture consisting of resources, e.g. organizational, software, artifacts, capability configurations, natural resources that implement the operational requirements. Further design of a resource is typically detailed in SysML or UML.

View Specifications::Resources::Taxonomy

Stakeholders: Solution Providers, Systems Engineers, IT Architects, Implementers.

Concerns: resource types.

Definition: shows the taxonomy of types of resources.

Recommended Implementation: SysML Block Definition Diagram.

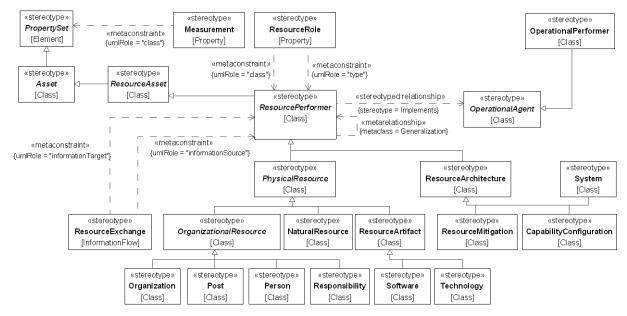


Figure 4:39 - Resources Taxonomy

- Asset
- CapabilityConfiguration
- Measurement
- NaturalResource
- OperationalAgent
- OperationalPerformer
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- PropertySet
- ResourceArchitecture
- ResourceArtifact
- ResourceAsset
- ResourceExchange
- ResourceMitigation
- ResourcePerformer
- ResourceRole
- Responsibility
- Software
- System
- <u>Technology</u>

View Specifications::Resources::Structure

Stakeholders: Systems Engineers, Resource Owners, Implementers, Solution Providers.

Concerns: reference the resource structure, connectors and interfaces in a specific context.

Definition: defines the physical resources, e.g. capability configuration(s)/system(s) and interactions necessary to implement a specific set of OperationalPerformer(s). Can be used to represent communications networks and pathways that link communications resources and provides details regarding their configuration.

Recommended Implementation: SysML Internal Block Diagram, SysML Bock Definition Diagram.

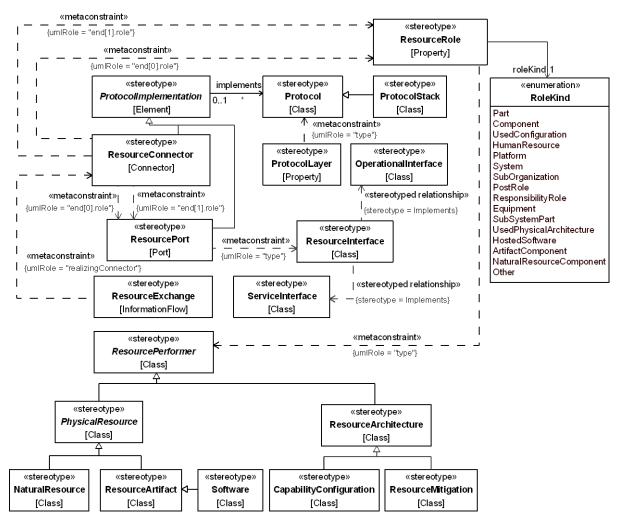


Figure 4:40 - Resources Structure

- <u>CapabilityConfiguration</u>
- NaturalResource
- OperationalInterface
- PhysicalResource
- Protocol
- <u>ProtocolImplementation</u>
- ProtocolLayer
- ProtocolStack
- ResourceArchitecture
- ResourceArtifact
- ResourceConnector
- ResourceExchange
- ResourceInterface
- ResourceMitigation
- ResourcePerformer
- ResourcePort
- ResourceRole
- RoleKind
- ServiceInterface

Software

View Specifications::Resources::Connectivity

Stakeholders: Systems Engineers, IT Architects, Solution Providers, Implementers.

Concerns: capture the interactions between resources.

Definition: summarizes interactions between resources of information, systems, personnel, natural resources etc. and the functions that produce and consume them. Measurements can optionally be included.

Recommended Implementation: SysML Internal Block Diagram, tabular format.

Figure 4:41 - Resources Connectivity

- CapabilityConfiguration
- DataElement
- Exchange
- Function
- FunctionAction
- <u>GeoPoliticalExtentType</u>
- MeasurableElement
- NaturalResource
- OperationalExchange
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- ResourceArchitecture
- ResourceArtifact

- ResourceConnector
- ResourceExchange
- ResourceExchangeItem
- ResourceExchangeKind
- ResourceInterface
- ResourceMitigation
- ResourcePerformer
- ResourcePort
- ResourceRole
- ResourceSignal
- Software
- Technology

View Specifications::Resources::Processes

Stakeholders: Solution Providers, Systems Engineers, IT Architects.

Concerns: captures activity based behavior and flows.

Definition: describes the functions that are normally conducted in the course of implementing operational activity(ies) in support of capability(ies). It describes the functions, their Inputs/Outputs, function actions and flows between them. Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

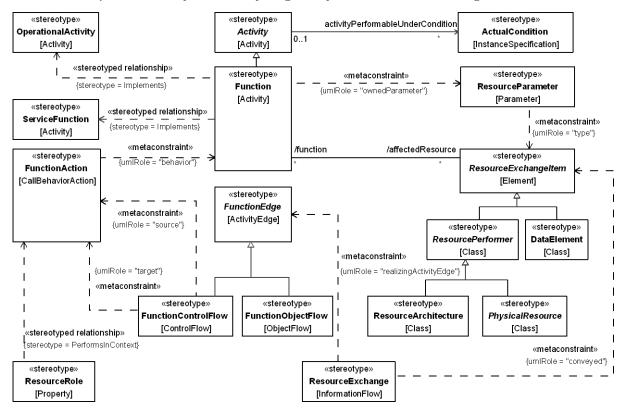


Figure 4:42 - Resources Processes

- Activity
- ActualCondition
- <u>DataElement</u>
- Function
- FunctionAction
- FunctionControlFlow
- FunctionEdge

- FunctionObjectFlow
- Operational Activity
- PhysicalResource
- ResourceArchitecture
- ResourceExchange
- ResourceExchangeItem
- ResourceParameter
- ResourcePerformer
- ResourceRole
- ServiceFunction

View Specifications::Resources::States

Stakeholders: Systems Engineers, Software Engineers. Concerns: capture state-based behavior of a resource.

Definition: it is a graphical representation of states of a resource and how that resource responds to various events and actions.

Recommended Implementation: SysML State Machine Diagram.

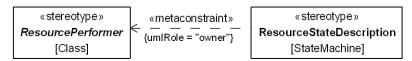


Figure 4:43 - Resources States

Elements

- ResourcePerformer
- ResourceStateDescription

View Specifications::Resources::Interaction Scenarios

Stakeholders: Software Engineers, Systems Engineers.

Concerns: interactions between resources (roles).

Definition: provides a time-ordered examination of the interactions between resources.

Recommended Implementation: SysML Sequence Diagram.

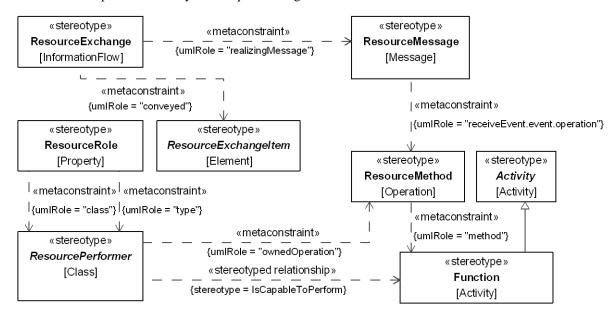


Figure 4:44 - Resources Interaction Scenarios

- Activity
- Function
- ResourceExchange
- ResourceExchangeItem
- ResourceMessage
- ResourceMethod
- ResourcePerformer
- ResourceRole

View Specifications::Resources::Constraints

Stakeholders: Systems Engineers, IT Architects, Solution Providers, Implementers.

Concerns: define limitations, constraints and performance parameters for resources, their interactions, performed functions, and data.

Definition: specifies traditional textual rules/non-functional requirements that are constraints on resources, their interactions, performed functions, and data. The addition of SysML parametrics provide a computational means of defining resource constraints within a specific context.

Recommended Implementation: tabular format, SysML Block Definition Diagram, SysML Parametric Diagram, OCL.

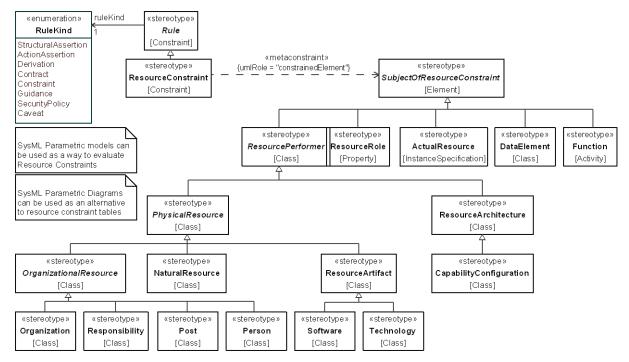


Figure 4:45 - Resources Constraints

- ActualResource
- CapabilityConfiguration
- <u>DataElement</u>
- Function
- <u>NaturalResource</u>
- Organization
- OrganizationalResource
- <u>Person</u>
- PhysicalResource
- Post
- ResourceArchitecture
- ResourceArtifact

- ResourceConstraint
- ResourcePerformer
- ResourceRole
- Responsibility
- Rule
- RuleKind
- Software
- SubjectOfResourceConstraint
- <u>Technology</u>

View Specifications::Resources::Roadmap

Stakeholders: Systems Engineers, IT Architects, Solution Providers, Implements.

Concerns: resource structure changes over time.

Definition: provides an overview of how a resource structure changes over time. It shows the structure of several resources mapped against a timeline.

Recommended Implementation: timeline, SysML Block Definition Diagram, SysML Internal Block Diagram.

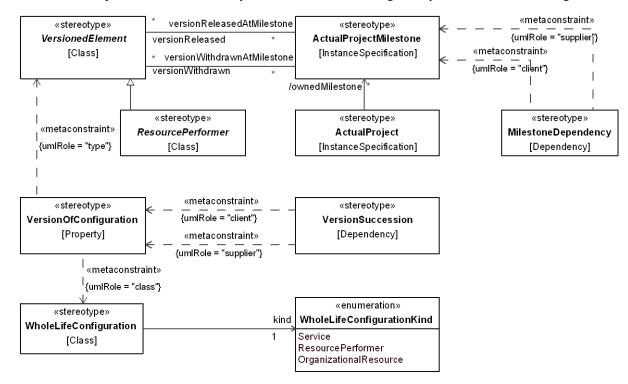


Figure 4:46 - Resources Roadmap: Evolution

Elements

- ActualProject
- ActualProjectMilestone
- MilestoneDependency
- ResourcePerformer
- VersionedElement
- VersionOfConfiguration
- <u>VersionSuccession</u>
- WholeLifeConfiguration
- WholeLifeConfigurationKind

Stakeholders: Solution Providers, Systems Engineers, IT Architects.

Concerns: technology forecast.

Definition: defines the underlying current and expected supporting technologies. Expected supporting technologies are

those that can be reasonably forecast given the current state of technology, and expected improvements / trends. Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

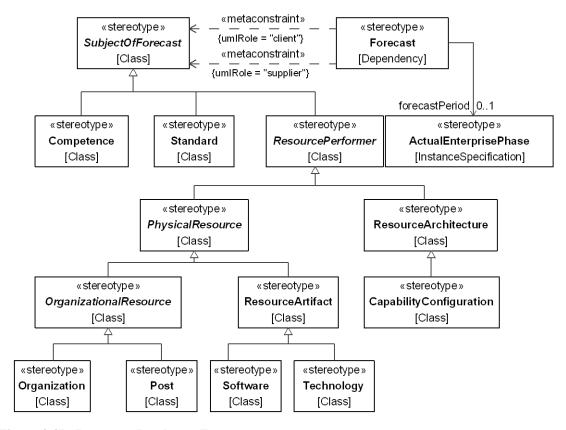


Figure 4:47 - Resources Roadmap: Forecast

Elements

- <u>ActualEnterprisePhase</u>
- CapabilityConfiguration
- <u>Competence</u>
- Forecast
- Organization
- OrganizationalResource
- PhysicalResource
- Post
- ResourceArchitecture
- ResourceArtifact
- ResourcePerformer
- Software
- Standard
- SubjectOfForecast
- <u>Technology</u>

View Specifications::Resources::Traceability

Stakeholders: Systems Engineers, Enterprise Architects, Solution Providers, Business Architects.

Concerns: traceability between operational activities and functions that implements them.

Definition: depicts the mapping of functions to operational activities and thus identifies the transformation of an operational need into a purposeful function performed by a resource or solution.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

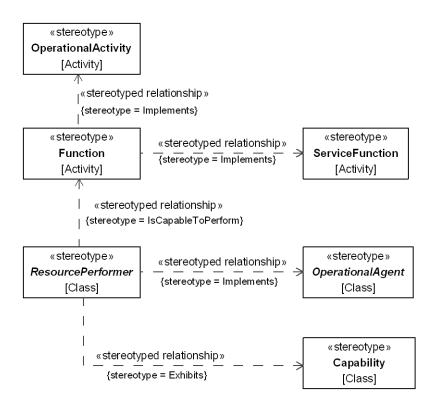


Figure 4:48 - Resources Traceability

- <u>Capability</u>
- Function
- Operational Activity
- Operational Agent
- ResourcePerformer
- ServiceFunction

4.1.6 View Specifications::Security

View Specifications::Security::Taxonomy

Stakeholders: Security Architects, Security Engineers.

Concerns: Security assets and security enclaves.

Definition: Defines the hierarchy of security assets and asset owners that are available to implement security, security

constraints (policy, guidance, laws and regulations) and details where they are located (security enclaves).

Recommended Implementation: tabular format, SysML Block Definition Diagram.

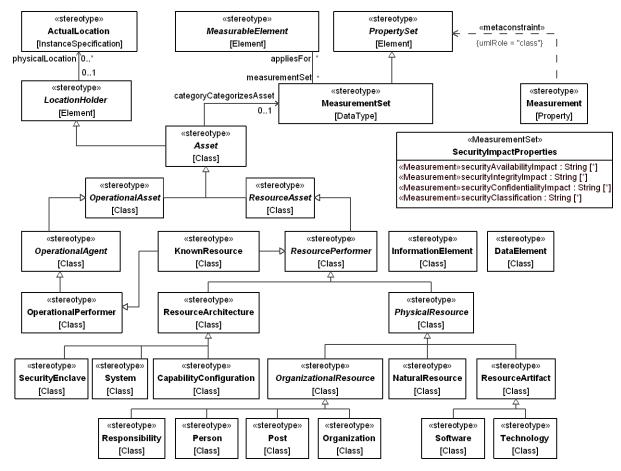


Figure 4:49 - Security Taxonomy

- ActualLocation
- Asset
- <u>CapabilityConfiguration</u>
- DataElement
- InformationElement
- KnownResource
- <u>LocationHolder</u>
- MeasurableElement
- Measurement
- MeasurementSet
- <u>NaturalResource</u>
- OperationalAgent
- OperationalAsset
- OperationalPerformer
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- PropertySet
- ResourceArchitecture
- ResourceArtifact

- ResourceAsset
- ResourcePerformer
- Responsibility
- SecurityEnclave
- SecurityImpactProperties
- Software
- System
- <u>Technology</u>

View Specifications::Security::Structure

Stakeholders: Security Architects, Security Engineers.

Concerns: The structure of security information and where it is used at the operational and resource level.

Definition: Captures the allocation of assets (operational and resource, information and data) across the security enclaves, shows applicable security controls necessary to protect organizations, systems and information during processing, while in storage (bdd), and during transmission (flows on an ibd). This view also captures Asset Aggregation and allocates the usage of the aggregated information at a location through the use of the SecurityProperty.

Recommended Implementation: SysML Internal Block Diagram, SysML Block Definition Diagram.

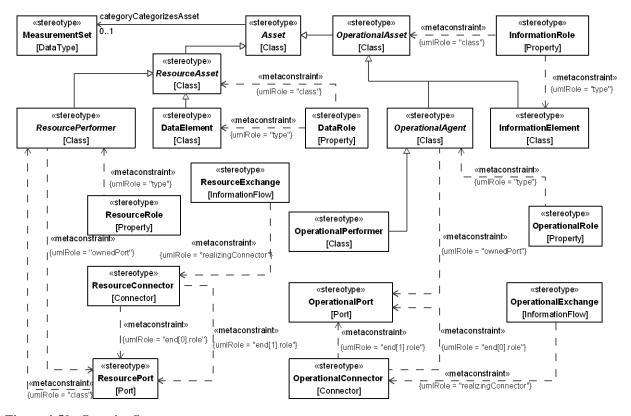


Figure 4:50 - Security Structure

- Asset
- DataElement
- DataRole
- InformationElement
- InformationRole
- MeasurementSet
- OperationalAgent
- OperationalAsset
- OperationalConnector

- OperationalExchange
- OperationalPerformer
- OperationalPort
- OperationalRole
- ResourceAsset
- ResourceConnector
- ResourceExchange
- ResourcePerformer
- ResourcePort
- ResourceRole

View Specifications::Security::Connectivity

Stakeholders: Security Architects, Security Engineers.

Concerns: Addresses the security constraints and information assurance attributes that exist on exchanges across resources and across performers.

Definition: Lists security exchanges across security assets; the applicable security controls; and the security enclaves that house the producers and consumers of the exchanges. Measurements can optionally be included. Recommended Implementation: SysML Internal Block Diagram, tabular format.

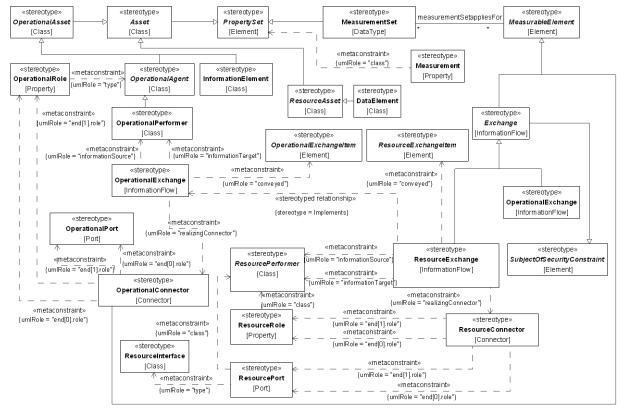


Figure 4:51 - Security Connectivity

- Asset
- <u>DataElement</u>
- Exchange
- InformationElement
- MeasurableElement
- <u>Measurement</u>
- <u>MeasurementSet</u>
- Operational Agent

- OperationalAsset
- OperationalConnector
- OperationalExchange
- OperationalExchangeItem
- OperationalPerformer
- OperationalPort
- OperationalRole
- PropertySet
- ResourceAsset
- ResourceConnector
- ResourceExchange
- ResourceExchangeItem
- ResourceInterface
- ResourcePerformer
- ResourcePort
- ResourceRole
- <u>SubjectOfSecurityConstraint</u>

View Specifications::Security::Processes

Stakeholders: Security Architects, Security Engineers.

Concerns: The specification of the Security Control families, security controls, and measures required to address a specific security baseline.

Definition: Provides a set of Security Controls and any possible enhancements as applicable to assets. The activity diagram describes operational or resource level processes that apply (operational level) or implement (resource level) security controls/enhancements to assets located in enclaves and across enclaves. This Security Process view can be instantiated either as a variant of an activity/flow diagram or as a hierarchical work breakdown structure. Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

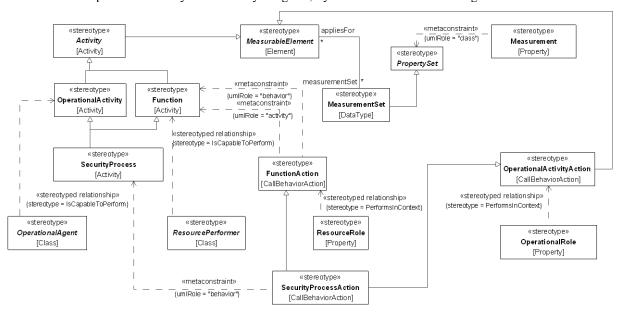
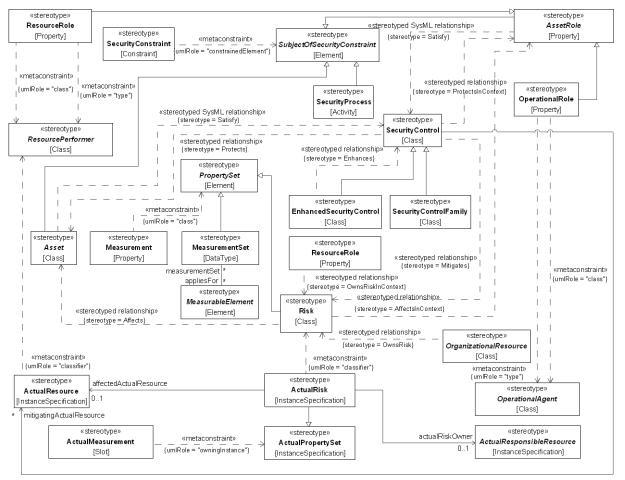


Figure 4:52 - Security Processes

- Activity
- Function
- FunctionAction
- MeasurableElement
- Measurement


- MeasurementSet
- Operational Activity
- Operational Activity Action
- Operational Agent
- OperationalRole
- PropertySet
- ResourcePerformer
- ResourceRole
- SecurityProcess
- <u>SecurityProcessAction</u>

View Specifications::Security::Constraints

Stakeholders: Security Architects, Security Engineers, Risk Analysts.

Concerns: (i) Security-related policy, guidance, laws and regulations as applicable to assets, (ii) threats, vulnerabilities, and risk assessments as applicable to assets.

Definition: (i) Specifies textual rules/non-functional requirements that are security constraints on resources, information and data (e.g. security-related in the form of rules (e.g. access control policy). A common way of representing access control policy is through the use of XACML (eXtensible Access Control Markup Language), it is expected that implementations of UAF allow users to link security constraints to external files represented in XACML. (ii) Identifies risks, specifies risk likelihood, impact, asset criticality, other measurements and enables risk assessment. Recommended Implementation: tabular or Matrix format, SysML Block Definition Diagram, SysML Parametric Diagram, or OCL.

Figure 4:53 - Security Constraints Elements

- <u>ActualMeasurement</u>
- ActualPropertySet
- ActualResource
- ActualResponsibleResource
- ActualRisk
- Asset
- AssetRole
- EnhancedSecurityControl
- MeasurableElement
- Measurement
- MeasurementSet
- OperationalAgent
- OperationalRole
- OrganizationalResource
- <u>PropertySet</u>
- ResourcePerformer
- ResourceRole
- Risk
- <u>SecurityConstraint</u>
- SecurityControl
- SecurityControlFamily
- <u>SecurityProcess</u>
- <u>SubjectOfSecurityConstraint</u>

View Specifications::Security::Traceability

Stakeholders: Security Architects, Security Engineers, Risk Analysts.

Concerns: traceability between risk and risk owner, risk mitigations, and affected asset roles.

Definition: depicts the mapping of a risk to each of the following: risk owner, risk mitigations, and affected asset roles.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

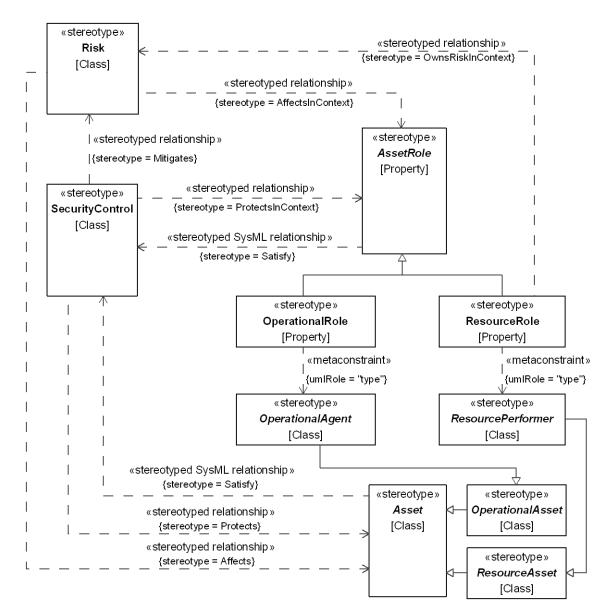


Figure 4:54 - Security Traceability

- Asset
- <u>AssetRole</u>
- OperationalAgent
- OperationalAsset
- OperationalRole
- ResourceAsset
- ResourcePerformer
- ResourceRole
- Risk
- <u>SecurityControl</u>

4.1.7 View Specifications::Projects

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects.

Concerns: project portfolio, projects and project milestones.

Definition: describes projects and project milestones, how those projects deliver capabilities, the organizations contributing to the projects and dependencies between projects.

View Specifications::Projects::Taxonomy

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects.

Concerns: types of projects and project milestones.

Definition: shows the taxonomy of types of projects and project milestones.

Recommended Implementation: SysML Block Definition Diagram.

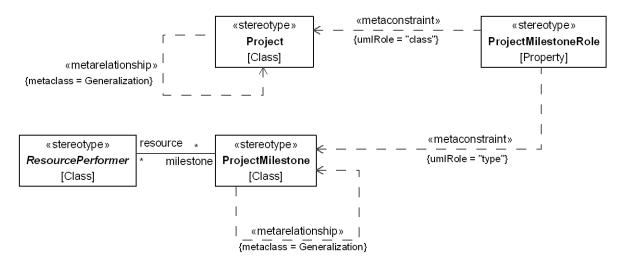


Figure 4:55 - Project Taxonomy

Elements

- Project
- ProjectMilestone
- <u>ProjectMilestoneRole</u>
- ResourcePerformer

View Specifications::Projects::Structure

Stakeholders: PMs.

Concerns: relationships between types of projects and project milestones.

Definition: provides a template for an actual project(s) road map(s) to be implemented.

Recommended Implementation: SysML Block Definition Diagram.

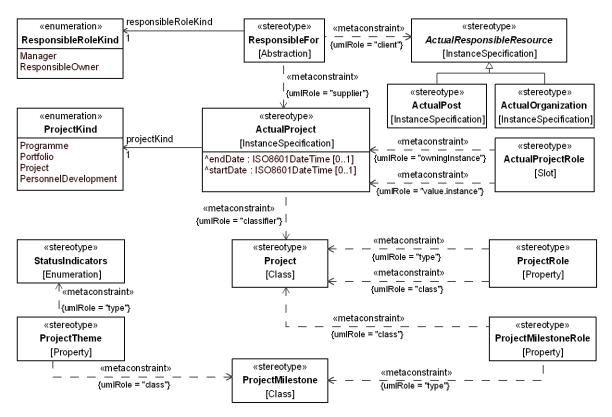


Figure 4:56 - Project Structure

- ActualOrganization
- ActualPost
- ActualProject
- ActualProjectRole
- ActualResponsibleResource
- Project
- ProjectKind
- ProjectMilestone
- <u>ProjectMilestoneRole</u>
- ProjectRole
- ProjectTheme
- ResponsibleFor
- ResponsibleRoleKind
- StatusIndicators

View Specifications::Projects::Connectivity

Stakeholders: PMs.

Concerns: relationships between projects and project milestones.

Definition: shows how projects and project milestones are related in sequence.

Recommended Implementation: SysML Block Definition Diagram.

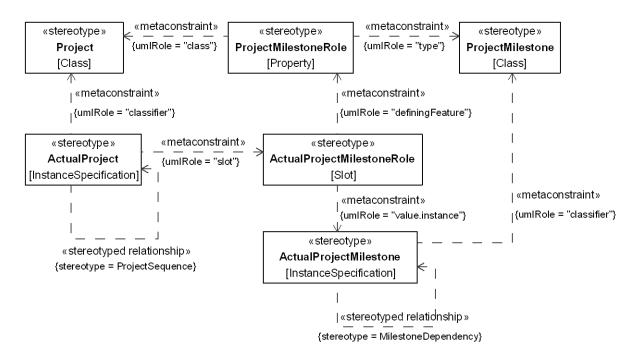


Figure 4:57 - Project Connectivity

- ActualProject
- ActualProjectMilestone
- ActualProjectMilestoneRole
- Project
- ProjectMilestone
- ProjectMilestoneRole

View Specifications::Projects::Processes

Stakeholders: PMs.

Concerns: captures project tasks (ProjectActivities) and flows between them.

Definition: describes the ProjectActivities that are normally conducted in the course of projects to support capability(ies) and implement resources. It describes the ProjectActivities, their Inputs/Outputs, ProjectActivityActions and flows between them.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

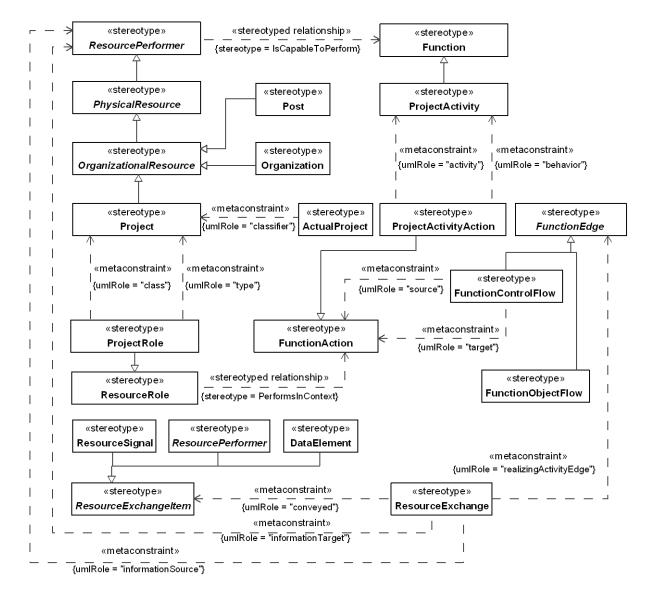
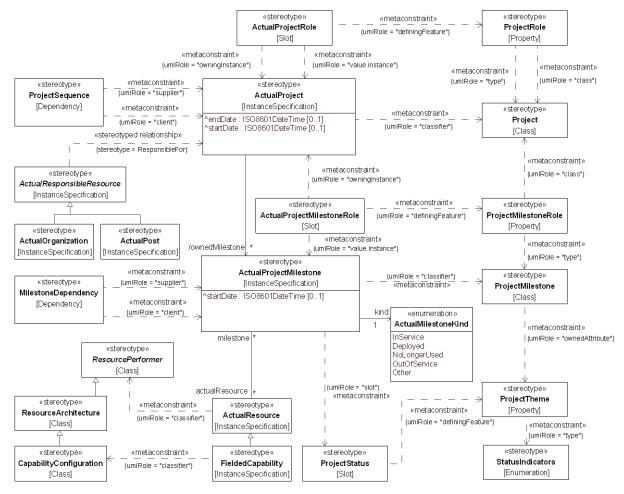


Figure 4:58 - Project Processes

- ActualProject
- <u>DataElement</u>
- Function
- FunctionAction
- <u>FunctionControlFlow</u>
- <u>FunctionEdge</u>
- <u>FunctionObjectFlow</u>
- Organization
- <u>OrganizationalResource</u>
- PhysicalResource
- Post
- Project
- ProjectActivity
- <u>ProjectActivityAction</u>
- ProjectRole
- ResourceExchange

- ResourceExchangeItem
- ResourcePerformer
- ResourceRole
- ResourceSignal


View Specifications::Projects::Roadmap

Stakeholders: PMs, Capability Owners, Solution Providers, Enterprise Architects.

Concerns: the product portfolio management; a planning of capability delivery.

Definition: provides a timeline perspective on programs or projects

Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

Figure 4:59 - Project Roadmap

- <u>ActualMilestoneKind</u>
- ActualOrganization
- ActualPost
- ActualProject
- ActualProjectMilestone
- ActualProjectMilestoneRole
- ActualProjectRole
- ActualResource
- ActualResponsibleResource
- CapabilityConfiguration
- FieldedCapability

- MilestoneDependency
- Project
- ProjectMilestone
- ProjectMilestoneRole
- ProjectRole
- ProjectSequence
- ProjectStatus
- ProjectTheme
- ResourceArchitecture
- ResourcePerformer
- StatusIndicators

View Specifications::Projects::Traceability

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects.

Concerns: traceability between capabilities and projects that deliver them.

Definition: depicts the mapping of projects to capabilities and thus identifies the transformation of a capability(ies) into a purposeful implementation via projects.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

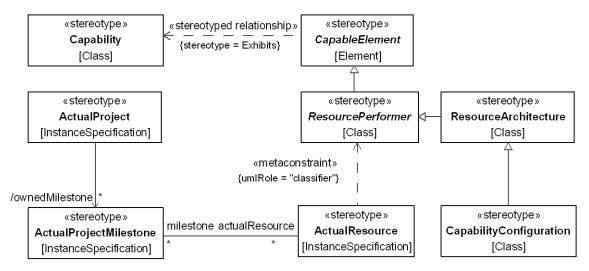


Figure 4:60 - Project Traceability

Elements

- ActualProject
- ActualProjectMilestone
- ActualResource
- Capability
- CapabilityConfiguration
- CapableElement
- ResourceArchitecture
- ResourcePerformer

4.1.8 View Specifications::Standards

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: technical and non-technical Standards applicable to the architecture.

Definition: shows the technical, operational, and business Standards applicable to the architecture. Defines the underlying current and expected Standards.

View Specifications::Standards::Taxonomy

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects. Concerns: technical and non-technical standards, guidance and policy applicable to the architecture.

Definition: shows the taxonomy of types of technical, operational, and business standards, guidance and policy applicable to the architecture.

Recommended Implementation: SysML Block Definition Diagram.

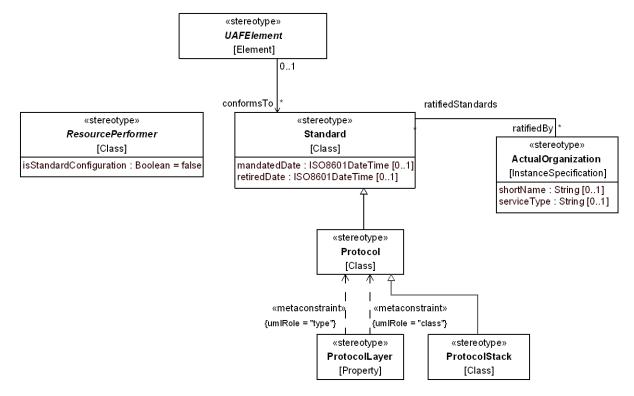


Figure 4:61 - Standards Taxonomy

Elements

- ActualOrganization
- Protocol
- ProtocolLayer
- ProtocolStack
- ResourcePerformer
- Standard
- UAFElement

View Specifications::Standards::Structure

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects.

Concerns: the specification of the protocol stack used in the architecture.

Definition: shows the composition of standards required to achieve the architecture's objectives.

Recommended Implementation: SysML Internal Block Diagram.

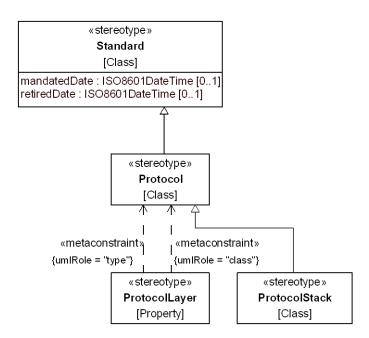


Figure 4:62 - Standards Structure

- Protocol
- ProtocolLayer
- ProtocolStack
- Standard

View Specifications::Standards::Roadmap

Stakeholders: Solution Providers, Systems Engineers, Systems Architects, Software Engineers, Business Architects. Concerns: expected changes in technology-related standards and conventions, operational standards, or business standards and conventions.

Definition: defines the underlying current and expected standards. Expected standards are those that can be reasonably forecast given the current state of technology, and expected improvements / trends.

Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

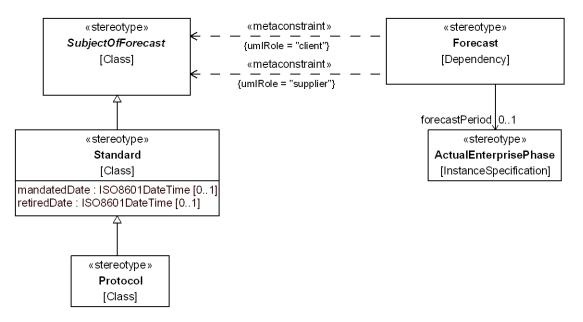


Figure 4:63 - Standards Roadmap

- ActualEnterprisePhase
- Forecast
- Protocol
- Standard
- SubjectOfForecast

View Specifications::Standards::Traceability

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects. Concerns: standards that need to be taken in account to ensure the interoperability of the implementation of architectural elements.

Definition: shows the applicability of standards to specific elements in the architecture.

Recommended Implementation: tabular format, matrix format, SysML Block Definition Diagram.

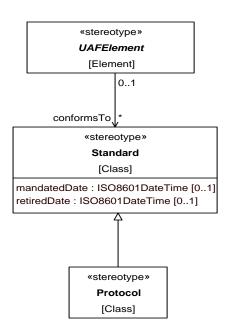


Figure 4:64 - Standards Traceability

- Protocol
- Standard
- UAFElement

4.1.9 View Specifications::Actual Resources

View Specifications::Actual Resources::Structure

Stakeholders: Solution Providers, Systems Engineers, Business Architects.

Concerns: the analysis, e.g. evaluation of different alternatives, what-if, trade-offs, V&V on the actual resource configurations as it provides a means to capture different solution architectures. The detailed analysis (trade-off, what-if etc.) is carried out using the Resource Constraints view.

Definition: illustrates the expected or achieved actual resource configurations required to meet an operational need. Recommended Implementation: SysML Block Definition Diagram.

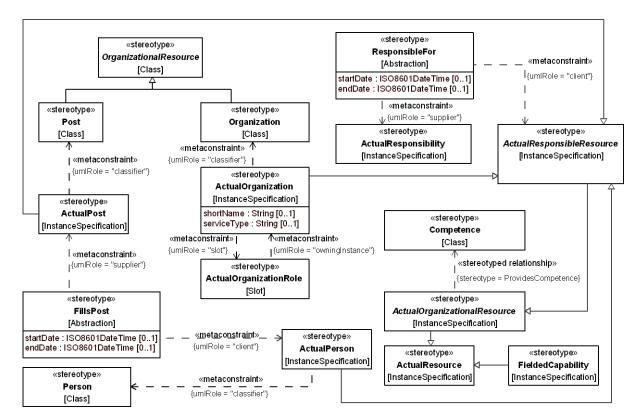


Figure 4:65 - Actual Resources Structure

- ActualOrganization
- <u>ActualOrganizationalResource</u>
- <u>ActualOrganizationRole</u>
- ActualPerson
- ActualPost
- ActualResource
- ActualResponsibility
- ActualResponsibleResource
- Competence
- FieldedCapability
- FillsPost
- Organization
- OrganizationalResource
- Person
- Post
- ResponsibleFor

View Specifications::Actual Resources::Connectivity

Stakeholders: Solution Providers, Systems Engineers, Business Architects.

Concerns: the communication of actual resource.

Definition: illustrates the actual resource configurations and actual relationships between them.

Recommended Implementation: tabular format, SysML Block Definition Diagram, SysML Internal Block Diagram, SysML Sequence Diagram.

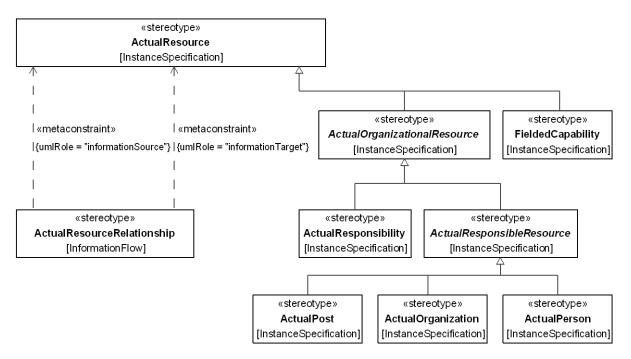


Figure 4:66 - Actual Resources Connectivity

- ActualOrganization
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualResource
- ActualResourceRelationship
- ActualResponsibility
- ActualResponsibleResource
- FieldedCapability

View Specifications::Actual Resources::Traceability

Stakeholders: Systems Engineers, Enterprise Architects, Solution Providers, Business Architects.

Concerns: traceability between operational activities and functions that implements them.

Definition: depicts the mapping of functions to operational activities and thus identifies the transformation of an operational need into a purposeful function performed by a resource or solution.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

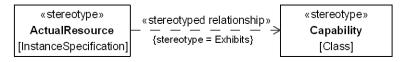


Figure 4:67 - Actual Resources Traceability

Elements

- ActualResource
- Capability

4.1.10 View Specifications::Dictionary

Stakeholders: Architects, users of the architecture, Capability Owners, Systems Engineers, Solution Providers.

Concerns: Definitions for all the elements in the architecture, libraries of environments and measurements.

Definition: Presents all the elements used in an architecture. Can be used specifically to capture:

- a. elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.
 - b. measurable properties that can be used to support analysis such as KPIs, MoEs, TPIs etc.

Recommended Implementation: Tabular format, SysML Block Definition Diagram.

View Specifications::Dictionary::Dictionary

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: provides a central reference for a given architecture's data and metadata. It enables the set of architecture description to stand alone, with minimal reference to outside resources.

Definition: contains definitions of terms used in the given architecture. It consists of textual definitions in the form of a glossary, their taxonomies, and their metadata (i.e., data about architecture data), including metadata for any custom-tailored views. Architects should use standard terms where possible (i.e., terms from existing, approved dictionaries, glossaries, and lexicons).

Recommended Implementation: text, table format.

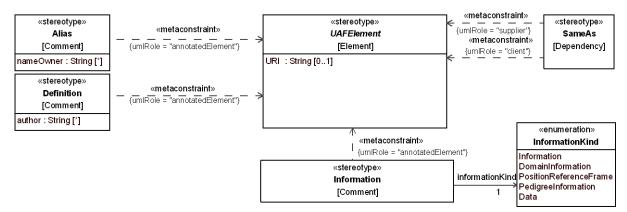


Figure 4:68 - Dictionary

Elements

- Alias
- Definition
- Information
- InformationKind
- SameAs
- UAFElement

4.1.11 View Specifications::Requirements

View Specifications::Requirements::Requirements

Stakeholders: Requirement Engineers, Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: provides a central reference for a set of stakeholder needs expressed as requirements, their relationship (via traceability) to more detailed requirements and the solution described by the architecture that will meet those requirements.

Definition: used to represent requirements, their properties, and relationships (trace, verify, satisfy, refine) between each other and to UAF architectural elements.

Recommended Implementation: SysML Requirement Diagram, tabular format, matrix format.

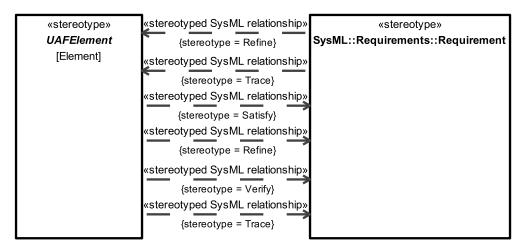


Figure 4:69 - Requirements

• <u>UAFElement</u>

4.1.12 View Specifications::Sumary & Overview

View Specifications::Sumary & Overview::Summary & Overview

Stakeholders: Decision makers, Solution Providers, Systems Engineers, Software Architects, Business Architects. Concerns: quick overview of an architecture description and summary of analysis. In the initial phases of architecture development, it serves as a planning guide. Upon completion of an architecture, it provides a summary of findings, and any conducted analysis.

Definition: provides executive-level summary information in a consistent form that allows quick reference and comparison among architectures. The Summary and Overview includes assumptions, constraints, and limitations that may affect high-level decision processes involving the architecture.

Recommended Implementation: text, free form diagram, table format.

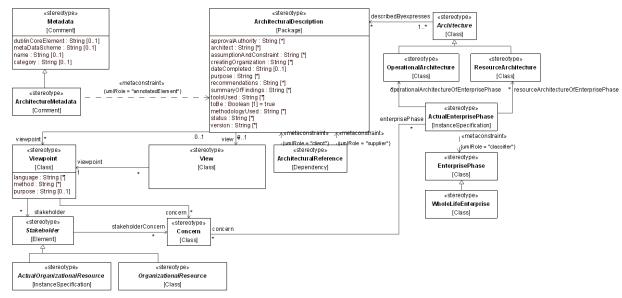


Figure 4:70 - Summary & Overview

- ActualEnterprisePhase
- ActualOrganizationalResource
- ArchitecturalDescription

- ArchitecturalReference
- Architecture
- ArchitectureMetadata
- Concern
- EnterprisePhase
- Metadata
- Operational Architecture
- OrganizationalResource
- ResourceArchitecture
- <u>Stakehold</u>er
- View
- Viewpoint
- WholeLifeEnterprise

4.1.13 View Specifications::Information

View Specifications::Information::Information Model

Stakeholders: Data Modelers, Software Engineers, Systems Engineers

Concerns: address the information perspective on operational, service, and resource architectures.

Definition: allows analysis of an architecture's information and data definition aspect, without consideration of implementation specific issues.

Recommended Implementation: SysML Block Definition Diagram.



Figure 4:71 - Information Model

- DataElement
- DataModel
- DataModelKind
- DataRole
- InformationElement
- InformationRole
- OperationalAsset
- ResourceAsset

4.1.14 View Specifications::Parameters

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: identifies measurable properties that can be used to support engineering analysis and environment for the Capabilities

Definition: Shows the measurable properties of something in the physical world and elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.

View Specifications::Parameters::Parameters: Environment

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: defines the environment for the capabilities.

Definition: shows the elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.

Recommended Implementation: SysML Block Definition Diagram.

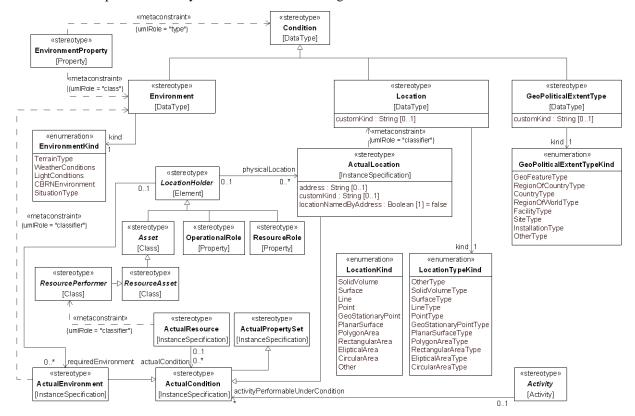


Figure 4:72 - Parameters: Environment

- Activity
- ActualCondition
- ActualEnvironment
- ActualLocation
- <u>ActualPropertySet</u>
- ActualResource
- Asset
- Condition
- Environment
- EnvironmentKind
- EnvironmentProperty
- GeoPoliticalExtentType
- GeoPoliticalExtentTypeKind

- Location
- LocationHolder
- LocationKind
- LocationTypeKind
- OperationalRole
- ResourceAsset
- ResourcePerformer
- ResourceRole

View Specifications::Parameters::Parameters: Measurements

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: identifies measurable properties that can be used to support analysis such as KPIs, MOs, TPIs etc.

Definition: Shows the measurable properties of something in the physical world, expressed in amounts of a unit of measure that can be associated with any element in the architecture.

Recommended Implementation: SysML Block Definition Diagram.

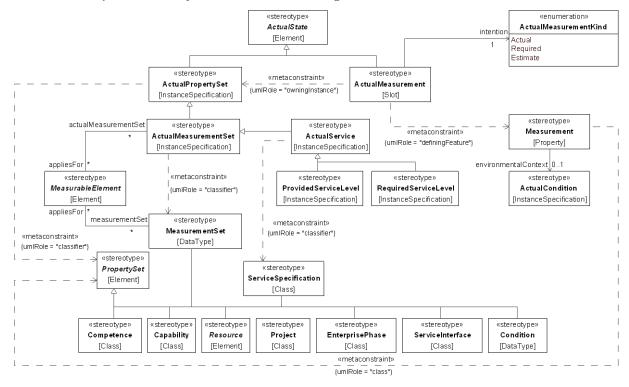


Figure 4:73 - Parameters: Measurements

- ActualCondition
- ActualMeasurement
- ActualMeasurementKind
- ActualMeasurementSet
- ActualPropertySet
- ActualService
- ActualScrvice
 ActualState
- Capability
- Competence
- Condition
- EnterprisePhase
- MeasurableElement
- Measurement

- <u>MeasurementSet</u>
- <u>Project</u>
- <u>PropertySet</u>
- ProvidedServiceLevel
- RequiredServiceLevel
- Resource
- ServiceInterface
- ServiceSpecification

5. Measurement Library

A library of Measurement Sets.

BillingItem

Package: Class Library

isAbstract: No Description

Properties indicating the assurance of a piece of information.

Attributes

cost: Cost[1] Details the cost of the BillingItem.

id: String[0..1] Details the unique identifier of the BillingItem. numberOfUses: Integer[0..1] Details the numberOfUses of the BillingItem.

paymentLocation: String[0..1] Details the location where payment should be made of the BillingItem.

paymentModality: PricingType[1] Details if a payment is based upon Quantity, Time or Use.

paymentPeriod : Periodicity[1] Details the frequency of a payment period.

paymentTimeDuration: Duration[*] Details the length of time the payments should be made i.e. 1 year.

periodDuration: Duration[0..1] Details the time period between payments. quantity: String[0..1] Details the number of units to be delivered.

unit : String[0..1] Details the units used for the BillingItem e.g. 1 gross.

ClassificationAttributes

Package: Class Library

isAbstract: No Description

W3C XML Schema for the Intelligence Community Metadata Standard for Information Security Marking (IC-ISM), which is part of the IC standards for Information Assurance.

Attributes

classificationReason: String[] One or more reason indicators or explanatory text describing the basis for an

original classification decision.

classifiedBy: String[] Details The identity, by name or personal identifier, and position title of the

original classification authority for a resource.

dateOfExemptedSource: String[] Details the specific year, month, and day of publication or release of a source

document, or the most recent source document, that was itself marked with a declassification constraint. This element is always used in conjunction with

typeOfExemptedSource element.

declassDate: String[] Details a specific year, month, and day upon which the information shall be

automatically declassified if not properly exempted from automatic

declassification.

declassException: String[] Details a single indicator describing an exemption to the nominal 25-year point

for automatic declassification. This element is used in conjunction with the

Declassification Date or Declassification Event.

DecalassManualReview: String[] Details a true/false indicator that a manual review is required for declassification.

Use this attribute to force the appearance of "//MR" in the header and footer marking titles. Use this attribute ONLY when it is necessary to override the business logic applied to classification and control markings in the document to

determine whether manual review is required.

derivedFrom: String[] Details a citation of the authoritative source or reference to multiple sources of

the classification markings used in a classified resource.

DisseminationControls: String[] Details one or more indicators identifying the expansion or limitation on the

distribution of information.

FGIsourceOpen: String[] Details one or more indicators identifying information which qualifies as foreign

government information for which the source(s) of the information is not

concealed.

FGIsourceProtected: String[] Details a single indicator that information qualifies as foreign government

information for which the source(s) of the information must be concealed. Within protected internal organizational spaces this element may be used to maintain a record of the one or more indicators identifying information which qualifies as foreign government information for which the source(s) of the information must be concealed. Measures must be taken prior to dissemination of the information

to conceal the source(s) of the foreign government information.

nonICmarkings: String[] Details one or more indicators of the expansion or limitation on the distribution

of an information resource or portion within the domain of information

originating from non-intelligence components.

ownerProducer: String[] Details one or more indicators identifying the national government or

international organization that have purview over the classification marking of an

information resource or portion therein. This element is always used in conjunction with the Classification element. Taken together, the two elements specify the classification category and the type of classification (US, non-US, or Joint). Within protected internal organizational spaces this element may include one or more indicators identifying information which qualifies as foreign government information for which the source(s) of the information must be

concealed. Measures must be taken prior to dissemination of the information to

conceal the source(s) of the foreign government information.

releasableTo: String[] Details one or more indicators identifying the country or countries and/or

international organization(s) to which classified information may be released based on the determination of an originator in accordance with established foreign disclosure procedures. This element is used in conjunction with the

Dissemination Controls element.

SARIdentifier: String[] Details the Authorized Special Access Required (SAR) program digraph(s) or

trigraph(s) preceded by "SAR-". Either (a) a single digraph or trigraph or (b) a space-delimited list of digraphs or trigraphs. Example: "SAR-ABC SAR-DEF ..."

SCIControls: String[] Details one or more indicators identifying sensitive compartmented information

control system(s).

typeOfExemptedSource: String[] Details a declassification marking of a source document that causes the current,

derivative document to be exempted from automatic declassification. This element is always used in conjunction with the Date Of Exempted Source

element.

Associations

taxonomy: String[] Details a single indicator of the highest level of classification applicable to an information

resource or portion within the domain of classified national security information. The Classification element is always used in conjunction with the Owner Producer element. Taken together, the two elements specify the classification category and the type of classification (US,

non-US, or Joint).

CommunicationsLinkProperties

Package: Class Library

isAbstract: No Description

Properties detailing aspects of Resource Interfaces.

Attributes

capacity: String[] Details how much information can be passed on the Communications Link.

infrastructureTechnology: String[] Details the technology to be used to provide the communications infrastructure.

DataElementProperties

Package: Class Library

isAbstract: No Description

Properties detailing the aspects of a DataElement.

Attributes

accuracy: String[] Details the accuracy of the data.

content: String[] Specifies content of the data element (i.e., actual data to be exchanged).

formatType : String[] Details the format of the data.

mediaType: String[] Details the media used to transmit the data.

scope: String[] Details in text a description of the extent or range of the data element content.

unitOfMeasurement: String[] Details the units of measurement of the data.

Duration

Package: Class Library

isAbstract: No Description

Properties detailing aspects Operational Activities.

Attributes

timeUnit: String[0..1] Details the units of time e.g. second, hour, day.

value : Integer[0..1] Details the value of the duration.

ExchangeProperties

Package: Class Library

isAbstract: No Description

Properties detailing aspects of exchange for Operational Exchange and/or Resource Interaction.

Attributes

accountability: String[*] Details who or what is responsible for the exchange.

periodicity: String[*] Details the frequency of the exchange.

size: String[*] Details the size (in KB) of data that be exchanged. throughput: String[*] Details how much information can be exchanged.

timeliness: String[*] Details the allowable time of delay this system data can tolerate and still be relevant to

the receiving system.

transactionType: String[*] Details the type of transactions used by the exchange.

InformationElementProperties

Package: Class Library

isAbstract: No Description

Predefined additional DoDAF properties for InformationElement.

Attributes

accuracy: String[*] Details the degree to which the information conforms to actual fact as required by the

information producer and consumer.

content: String[*] Specifies content of the information element (i.e., actual information to be exchanged).

language: String[*] Details the language used to capture the information.

scope: String[*] Details in text a description of the extent or range of the information element content.

Operational Activity Properties

Package: Class Library

isAbstract: No Description

Properties detailing aspects Operational Activities.

Attributes

cost: String[] Details the cost of an activity.

Periodicity

Package: Class Library

isAbstract: No Description

Enumeration of how often the information exchange occurs; may be an average or a worst case estimate and may include conditions. Its enumeration literals are:

- OnceAMonth Indicates that an event of some sort may occur monthly.
- OnceAWeek Indicates that an event of some sort may occur weekly.
- Anytime Indicates that an event of some sort may occur at anytime.
- OnRequest Indicates that an event of some sort may occur on request.

PricingType

Package: Class Library

isAbstract: No Description

Enumeration of a unit of measure of a resource. Its enumeration literals are:

- perTIme Indicates that the unit of measure of a resource is based on a unit of time.
- perUse Indicates that the unit of measure of a resource is based upon how often the resource is used.
- perQuantity Indicates that the unit of measure of a resource is based on a quantity.

SecurityControlAssessmentProperties

Package: Class Library

isAbstract: No Description

Properties detailing aspects of the Assessment and Authorization process.

Attributes

breadth of the assessment objects included in the assessment (e.g., types of objects to be assessed and the number of objects to

be assessed by type).

depthOfSecurityControlAssessment: String[*] Security controls assessment method that addresses the rigor and

level of detail associated with the application of the method.

effectivenessOfSecurityControl: String[*] Details if security control is satisfactory or not as assessed.

SecurityControlProperties

Package: Class Library

isAbstract: No Description

Properties detailing aspects of Security Controls.

Attributes

securityControlApplicability: String[1] Details how applicable a security control is to a given security objective. securityControlImportance: String[1] Details how important a security control is to a given security objective.

SecurityImpactProperties

Package: Class Library

isAbstract: No Description

Properties detailing aspects of Security Categories.

Attributes

securityAvailabilityImpact: String[*] Details the potential impact on organization or individuals if the

information is not available to those who need to access it.

securityClassification: String[*] Details a classification for the exchange.

securityConfidentialityImpact: String[*] Details the potential impact on organization or individuals due to

unauthorized disclosure of information.

 $securityIntegrityImpact: String[*] \\ Details the potential impact on organization or individuals due to \\$

modification or destruction of information, and includes ensuring

information non-repudiation and authenticity.