Date: June 2017

= %
/
OBJECT MANAGEMENT GROUP®

Unified Component Model for Distributed, Real-Time
And Embedded Systems

Version 1.0

OMG Document Number ptc/17-05-19
Normative reference: http://www.omg.org/spec/UCM/1.0

Associated Normative Machine Consumabile Files:

http://www.omg.org/spec/UCM/20170601/ucm_base.umlhitpHwww-omg-orgispee/dCM20160504

li

http://www.omg.org/spec/UCM/20170601 [core.xmlhttpiwww-omg-orglspecfdCMi20160504 eore-u

http://www.omg.org/spec/UCM/20170601/core.xml
http://www.omg.org/spec/UCM/20170601/ucm.xsd
http://www.omg.org/spec/UCM/20170601/ucm.xsd
http://www.omg.org/spec/UCM/20170601/ucm_base.uml

| emmxmmi

http#wwwemgﬁrg%speeﬁdewm%#ﬁmeﬁuemmmtp:ﬁwww.omq.orq/spec/UCM/2017! = [ti

mer.xml

| =]

http://www.omg.org/spec/UCM/20170601/execution.xml :

xeeutionuemxmt

xmthttp://www.omg.org/spec/UCM/2017

ctions.xml

xmthttp://www.omg.org/spec/UCM/20170

httpHAnwn-omg-ergispecidCM/20160504uem-dihttp://www.omg.org/spec/UCM/201 70601/ucm.idk

This OMG document replaces the submission document (mars/46-05-04ptc/16-07-04). It is an

OMG Adopted Beta specification and is currently in the finalization phase. Comments on the
content of this document are welcome, and should be entered by April 1, 2017 using the Issue
Reporting Form on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://issues.omg.org/issues/create-new-issue).

The FTF Recommendation and Report for this specification will be published on June 15, 2017. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

Copyright © 2016-2017 Thales, PrismTech
Copyright © 2016-2017 Object Management Group, Inc.

ii Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

- ’/Updated the document reference

numbers

-" Updated the document reference

number to specify Betal instead
of the initial submission

Thomas Vergnaud, 05/04/17
Updated the document reference numbers

Thomas Vergnaud, 05/04/17
Updated the document reference number to specify Beta1 instead of the initial submission

http://www.omg.org/spec/UCM/20170601/timer.xml
http://www.omg.org/spec/UCM/20170601/timer.xml
http://www.omg.org/spec/UCM/20170601/properties.xml
http://www.omg.org/spec/UCM/20170601/properties.xml
http://www.omg.org/spec/UCM/20170601/ucm.idl
http://www.omg.org/spec/UCM/20170601/interactions.xml
http://www.omg.org/spec/UCM/20170601/interactions.xml
http://www.omg.org/spec/UCM/20170601/execution.xml

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 iii

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software — Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, I[IOP™ | IMM™ | MOF™ , OMG Interface Definition Language (IDL)™ , and
OMG SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are
used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

iv Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http:/www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 v

Table of Contents

1. SPECIfiCAtiON OULINE.cutiiiieiieieiceiet ettt bbbttt b et bbbt et e bbbt et b e st et e et et ene e ene 4
1.1 Software architectures made Of COMPONENLS.......c.ccvvuvueueueririririereieieiirertrieee ettt ettt bese et st s besesenens 4
1.2 A component model to design portable real-time embedded SOftWare...........c.cueeueririrerieieiieririnieeeceer e 4
R TR 001 A T 0) OO 5
1.4 UCM programming MOGEL...........ccvueieueuiriirieieiiiiinieteiei ettt st ese et se ettt sttt st sebebe sttt sesenen 5
1.5 UCM levels Of CONFOITANCE.c.cueucuiriiriiiiieiciceitiet ettt ettt ettt b e bttt b bbb ss 6

2. SCOPE. .ttt ettt ettt ettt a e h e bt a Rt h et h et h et e h et a et h sttt a et st ettt n s 7

3. Rationale for a Unified Component MOMEel..........c.ccceiriruericininnieieeintrireeescie s sesereese s eseesaesesenes .8
3.1 Separation Of architeCtUre COMCEIMS.......ccuvueiruevireueuiriririeteteieieite ettt ettt ettt b bbb bbbt neneaes 8

3.1.1 Platform capabilities as MOAel lIDTATIES.........c..cerirueirieirieiieerei ettt ettt 8
3.1.2 Business 10giC @S COMPONENLS........ccueutrreririerieuiriererteteeent ettt sttt be bbbt et s e besesbe e eseee e saenens .8
3.2 TYPICAL UCM PIOCESS....cvuereerreneerenteiinteuteieutstestesestesesteseteststestssestesetsse s esese st st estebestebe st ebe st ebe s eseasentsbeseesentesesesentene 9

4. CONFOIIMANCE. ..ottt ettt et ae s s nenenns .10

5. NOIAtiVE REEIEICES.......ceiiiieiiiriieieici ettt ettt ettt st st b bttt st s sentsaessaesesenennne 10

6. Terms and DEfiNItIONS.......c.ovvueueuririiieeueiei ettt sttt et ea st be bt es e a ettt eaesaeae e sestseacnen 10

7 SYIMIDOLS ...ttt ettt b et ettt be st b e nnene W11

8. Additional INfOIMATION.c.ciuiiiiiiiiiicietet ettt e n e cacas 11
8.1 ACKNOWIEAGIMENLS.....c.evvvrieciieiiriniee ettt ettt et bttt st b ettt et bbbttt st st b b bttt st bsesesene et enen 11

9. Platform Independent Model fOr UCM........c.coiriruirieinieirieieienteieste ettt ettt ettt st ettt ettt ee et ebe e b ensebensenes 12
9.1 OVEIVIBW.....ouviiiiiiiiiicc et 12

9.1.1 Elements of the COMPONENt MOGEL........coueueuiririririeuiiiririeieieieirteeteet ettt ettt bste e saesssesenens 12
9.1.2 Configuration MECHANISIIIS.c.cvirieiriereaiiiieteieie ettt ettt sttt s bbb st be bbbt esebesese et ssensbene 13
9.1.3 Main packages of the Meta-MOGEL.............coeuiriruirririiirieceee ettt 14
9.1.4 Common meta-model defiNitionS........c.c.coeurirerceiueueriiririricteeiee ettt benenes 15
9.2 CONLTACE PACKAZE. ... venteeerteiirteiteterte ettt ettt ettt ettt et b et et eb ettt e b et e b et e bt b e e estt e st e b st ebe st ebenaenensenen 16
9.2.1 INIOAUCHION. ..ottt ettt st s et n st eseaeaenenens 16
9.2.2 ComMON EfINITIONS. ...c.covetrveueueiiiirteecrei ettt ettt es ettt st ettt s b b se st et s sebesentsanesaene 17
9.2.3 Standard data types: Primitive data LYPES.........c.eceereeiriereuietriiriereretsinteresereset st sesesestste et ese b et s eseseseseetenes 19
9.2.4 Standard data types: COMPLEX tYPES.....c.ceueutrueerreirteterirterteterteteseetesesteuet st e et ebe st b et be st besesbe st et e st st esetesesenenee 22
9.2.5 Standard data types: TeSIZaDLe tYPES......ccoueuirieuirieirieririerteet ettt ettt ettt ettt ettt 25
9.2.6 CONSLANES.c.cveuiiiiiiteietetetet ettt sttt ettt st e et st a et b e e s ettt b et b s sa et sn et ene s .27
9.2.7 Interfaces, methods and EXCEPLIONS.......c..e.evveuirueuirieirientriertet ettt ettt et ettt ettt et be e bt ebeneebenee 27
9.2.8 ADSIIact tyPe AECIATAtIONS......cc.eueeueutrteieieietetet ettt ettt ettt s bbb bbb st bt e b e st bes e bea e e be e ebe e ebe e es et eaenee 29
9.2.9 Annotations and configuration elements
vi Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

9.3 INLEraCtiONS PACKAGE.cueueerietetcueiciriee ettt sttt ettt ettt sttt sttt b et ettt sttt b b se et ntene 31

9.3, 1 OVEIVIBW.....cuiiiiiiiiiic ettt .31
9.3.2 INteraction MOAUIE........c.ccoiririiiiieiiiiiii ettt st s be et n b 31
9.3.3 INLETACLION PALEIMIS.veutiriieriirieiiietetetet ettt sttt et et st sb e s bt st ebt e b e sbesbe e e sse et e st et eebesbeebesae et e st esbebesbeasesaes 32
9.3.4 ConNector AefiNItiONS........cvveeeeiueieriieieii ettt b bt eae .33
9.3.5 POIt AEFINMItIONS........ceeeiiieeiceccice ettt 35

9.4 Nonfunctional aspects PACKAZE.c.ceueuerieuirieueiiteirerertei ettt ettt 35
.41 OVEIVIBW....uiiiiiiiiiiictctc e n e n e e .35
9.4.2 Nonfunctional aspect MOUIE...........c.ceririerieeeiiririeteec ettt ettt enenes 36
9.4.3 TECHNICAL POLICIES.....c.cevieerieeuiietrtet ettt ettt ettt sttt b ettt sttt a et st se b et s et beseeneneene 36
9.4.4 Supported programming laNGUAGES.........c.cevurueueuetrirtriereieetriet et rerestet et bere st sebese et se ettt ae s b ntees 37

9.5 COMPONENES PACKAGE.cvevvvireniiieteteteieittetstetetesere ettt be ettt ae sttt s a et et ta et et s bbb st s s bbb e s sesatssenebene 37
9.5.1 OVEIVIBW....coiiiiiiiiiiiicc e .37
9.5.2 ComPONENt MOGUIE........c.eriiiirieiitiireete ettt ettt ettt ettt eb s bbbt eb ettt eseseeae b sennen 38
9.5.3 Component tyPes and POItS.........e.euereeirueuereueuiriruereueetrieseresesetssesesesestsisssesesesessesesesestssesssesesesensesesenes .39
9.5.4 Atomic component implementations and technical POLICIES..........cocerueuirieriririeirirereeereeee e 42
9.5.5 Composite Component IMpPlemMentations...........eeeuetruetreriereniertreririerteteietsrestesessese b teseste e ssesessesseesesessenee 43

10. XML syntax for UCM deClarations.........c.cceeueveveveueririririresieneseitsiesssesesesestssesesesesesestssssesssesesesessssssesesesessssssssesesesenenes 47
11. Graphical guidelines (NON NOITNALIVE)........c.c.ertrurirueririiirieteieteetrie sttt beeae st se et st b ses et st eaesesesesesssaesesenennne 48
11,0 SRAPES....veveeiiitrtette ettt ettt bbbttt eneeat .48
11,2 C0l0TS .ttt ettt ettt b et a e b s bttt b et ae ettt s b nen 48
113 EXAIMPLE. ..ttt ettt e b et h et bt b bt a et e s et s e b st e bea e b et b et bbbt b et e st ene et et be e ene 48
12. IDL syntax for UCM deClarations............cccccueueuriiuiuicmiieeemi e sesessescscssaese st ssesesesesssssssssesesesensasisssens 50
12.1 Concerned IDL building BIOCKS.........c.c.ecetririririiieieiiiirineeteer ettt seb ettt s se s eaenes 50
12.2 Contracts 50
12.3 INTEIACTIOMS. ...ttt bbb bbb .50
12.4 TeChNICAl POLICIES......ueueeiirieiiteiirteet ettt ettt sttt b et be s .51

12.5 Components

13. Specification of UCM platform capabilities..............cccceocuemiiriieuimiiniiccieieiice e 52
13.1 Core UCM specifications (Normative, Mandatory)..........ccueeueerereeireeerrererecuenestsenseeesereserecsesessees 52
13.1.1 Restrictions on data type declarations...........c.ceeeueuerieuerieireninenieerteeeerreeee sttt ns .02
13.1.2 INtEraction TELUIM COUES......c.cuevemrmmrimremeriieniiemececenene et eese s sensesesese s s s s easaenesesene e saesesns .52
13.1.3 Standard component eXeCUtion POLICIES........c.coueuereveurririerereuitrintierereet ettt se s se et st bese st eeesenen 53
13.1.4 Clock and trace service.... 54
13.1.5 Service based INLErACtION.........c.cccciriiiueieuiiririitei ettt st b e nenen 57
13.1.6 Message based INMEETACHION.cc.eouruetereieieieictei ettt ettt ettt et sttt b bbb et be e ebeeene 58

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 vii

13.2 Standard properties (Normative, Not MANALOIY)........cveueueerrruerrrerertrentereeeretestrresereseeseeseseseseesesseseseseens 59

13.3 Advanced timer service (Normative, N0t MaNdatory)...........cceueueueerererieiruereuerereuenerenirieessesesenereeas ...59
13.3.1 ODjJECt-DASEA LIIMETS.cveueevenieienietiteieetet ettt ettt et ettt et bbbt st eb ettt e bt eb et ebentebe st ebesbebesbebesbenensenee 60
13.3.2 IndeX-based tIMETS........c.ccccuiriiiiiiiiiiiiii bbbt 61

13.4 Additional interactions (Normative, not mandatory) 63
13.4.1 ROQUEST-TESPOIISE.euteueeurententerueesensteueeuteutestestestesesbesbeesesseeseeatese e b easesaenbenseeseebeesteseeste st eabease st enbesaesbensesaeebeans 63
13.4.2 SHATEA dALA......ciiiiieiiiiie ettt e 66

13.5 Additional component execution policies (Normative, ot Mandatory)..........c.ceeereeuerirrereeererereeereseeeereeneeeneens 68
13.5.1 SPECIHTICALIONS.evrveeveveteieieiete ettt ettt ettt b et sttt ettt bbb b et s bt st e b beseaeneneneas 68
13.5.2 SEMIANTICS.cviuiuiiiiicrcictc ettt a s 69

14. UCM Programming MOGEL.........c.c.ceiiririniririeieieiiniienieieieeeret et seese ettt es ettt b bttt ae b eae s 71

14.1 RUNUIME EIELIES. ...ciiuiiiiiiiiiiiiicict bbb bbb a e eaea 71
14.1.1 Component implementation: COmponent BOAYeeeueueiririereriuininenieieieeeeniseseeeeesesesesseseseseeseeessesesesensens 71
14.1.2 Connector and technical policies implementation: Fragments.............cccoevueveeenernrererercrerennnnenes 71
14.1.3 COMLAINRT.....c.vuiiiiiieiiteict et et sae s .73

14.2 Container programming MOdel..........c.ccovueerieinieennennenreneeereeeseseceeaean 73
14.2.1 COMPONENE INEEITACES. ...cuevetererireririetsieteteestesteteteseres ettt tesesesetsbetebeseseseatstebebesesesetetssesebeseneneesesesesesenessnsesas 75
14.2.2 Container interfaces..........c.oeeevecuereururmneecreuemreseeeseneseseesenes .77
14.2.3 Component life CyCle ManAZeMENLT...........ouvveueiriririeieeerieeeieieie sttt ettt esese et bes bt se et et seeseseseessesenes 79

15. IDL Platform Specific Model fOr UCM.........cvuiuiririieiiieiniinieieitetrieeeeieesestese et sttt st sese e e sesenenes 81

15.1 Concerned IDL building DIOCKS.......ccceueiiueiiieirieirietce ettt bbbt 81

15.2 General notes on data types MAPPING......ccceeeuereruruertererterertenirtestrtenteuetesetesestesessesesseesesessestsseseeseseesensesessesessesenses 81

15.3 Primitive types Mapping.........cccoceeevverervererverervernnnenns .81
15.3.1 Mapping to IDL DaSiC tYPES....cccueurveverireuieiirinteieteieieetrtseetssesesesestaestes et be et set st s s seseenesnnes 81
15.3.2 ettt bbb bbb bRt st b ettt b ettt s bbbttt st enebene 82

15.4 Complex data types MAPPING.......ccceeeerueutrueirrereriererietertetetetestetetrte e tesestebestesestebesessesesesessesensene82
15.4.1 Mapping to IDL CONSITUCLEA tYPES.....ceveurrrerreeteuirietrreneerententriestesestesessesesteseesestesessestsseneeseseesesseneseneeseseesensens 82

15.5 CONStaNts MAPPING. ..c..cuerveuerrererrerierentertrtestrretereteresestssesessessesessestsesessestssessesensenesseneesenees .82

15.6 Interfaces and eXCEPLIONS MAPPING........c.erurueiruerirretrieierietertetertettrt et testetestebe st ebesesbesesbese st ese st esease et ebensesenteseneasen 82

15.7 UCM MOAUIE MAPPINEG....cveuerveuirtenirtiieteteenteiirt ettt sttt est st et b ettt e sttt et et sbestebe st sbe st ebe s ebentese st enesteneebenesbenessens 82

15.8 Component Mapping....

15.8.1 Component Type MapPiNg.......c.cecccuerecerreerrereruerererenrererierenseressereseereseene 83
15.8.2 Atomic Component Implementation MapPiNg.........coeeveveveeetrertreeerieeereerereerenereesesesereeseseesees 84
15.8.3 Ports elements mapping 85
15.8.4 POTS MAPPING...c.vevteuieuteuteteteteitestest et es ettt et et sbe b sbesbeebeeaeeb e et e at e be b et e besbe s tbeeb e st e st ent et e b e saebensesuebeens 85
15.8.5 Technical POLICY MapPPINE.......c.ceveerteririeieieieienteienteiestetstet et ie e b st b e teb st ettt et ebe e s e st ebestebesbe e seneeneneene 85

viii Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

15.9 Interaction Definition MapPPINg........cceeeirirreurreireinirieeereectsit ettt et s st ts et sest s s b sesees st et sesenenennene 86
15.10 Container Programming MOGel...........cccuvuirieiiiiuiniiniiiniecietnerieeteeetct sttt et s e sees 86
I5. 0T ek b bbbt b ettt et ene 88
15.12 Component Programming MOGEL............ccoueiriiirriiniiinieieieteetei ettt ettt ettt ettt eae e bt b 88
15.12.1 Middleware-agnostic language mappings........c.cocceeerueuerueererereruerenueeeeneereseeneseeneeensene .89
16. C++ Platform Specific Model for UCM.........coeueveuerieninininenrereeereeneninneeieseneseenenes 90
16.1 Primitive types Mapping.........ccoceeeruereerienrenerennineereeieeeseeneensenes .90
16.2 Complex data types MAPPING.......cceueeerueutrueirteririererirtesteseeeresteteststeesaesestsseseeseseesesessesesseensesensesenees .90
16.2.1 SEruCtUIe MAPPING. ...ccververuiiirreeiriiiteetinestett ettt et eb et st eb et e st eas et e st ess et e ae b ess et essennessesennennens 91
16.2.2 UNION MAPPING.....erveuirteuirieirieieieteitetetetet sttt ese ettt et st s s s sttt sa et ebestsse st sse s ene s eseasenessenesseeenenne 91
16.2.3 Enumeration MappPing.........ccccueueirueirieinieiiieeieeneeesieset ettt ss e ss e et 91
16.2.4 AITAY MAPPING......viuiiiimiiiiiitiiiieiet ettt b bbbt b e bbbt b et 91
16.2.5 Sequence MappPing..........coeeueveruerrenerenenineeeeeeseesrensesaenaens .92
16.2.6 SErING MAPPING. ...cveriertiriiriieterieiteet ettt sttt b e sttt b e st e be st be et et e s b e bt saesbb et e s esbesbesbesaneneennenne 92
16.2.7 Constant MAPPING........ceeueuiriiuiriiuiniiiiitiiteist ettt sttt et a bbb b e s b b esae e snesene s 92
16.3 UCM MOAUIE MAPPING.......ertiuiriemiieiirieirteietetestetestet st et st st ebestebe et ete st et et et be et ebessebenbebetebeneebeneebeneeseneebeneas 92
16.4 EXCEPLON MaAPPINE....cutiuiiiiieiintiietetetestete ettt ettt sae st sa e sh et s b b e s bt s bt s bt e bt st e bbbt sae e bt stesa et et ess et et esseseenenne 92
16.5 AtIIDULE IMIADPINEG. c.c.vveueeveieeteirteitetrtet sttt ettt ettt bbbt sttt ettt ea et e et s e s b bt st e b st eseaeese e eneenen 92
16.6 INterface MapPPiNg........c.eveueueueririreereiererereiesitsieseseseseaestseetsteseseses st stesaesebesesesenesaessesssenesenens .93
16.6.1 Operations MappPing..........ccecccveiriiuirieinieiieieeeeere ettt ae s snene .93
16.6.2 Interface Reference MapPiNg.........ccciverieieuineiininieeiiitniese ettt sttt se et st b e bttt be et e senes 93
16.7 COMPONENE MAPPING.ceuteiiutiriiiteetinieeeeitert et sttt st e st e sttt e st e st e sbesbe s bt eaeshtebe e b esbesbeebesaesbeenteueensentenbensesbensenaes 94
16.8 Ports elements interfaces MapPING...........ceuvucueuiueriirieiniiiiieieieiee ettt nenen 95
16.9 Component Programming MOdel...........ccccoveueueuirininininiieiniiniceiecent et ettt eae 95
16.10 Derived CH+03 PSM....c.ociiiiiiciiiiiieiiicieeitieiet ettt ettt sttt ettt st b et bbbt s bbb se s enes 96
16.10.1 AITAY MAPPIMEG ... ccvteuteuretererterteestrteeiteste st ete st esestesbe e st sseeste st e b eabesbeebeshee bt eatebt et e b esbesbesstebeeabe st esbentenbesesaesbeans 96
16.10.2 ENUMEeTation MAaPPINE.....c..ceeerirerririirieiiietineeiesteneesteteitestetesest et essestesse st ssensessessessessesbessensessessessessessessessens 96

16.10.3 Interface reference mapping....

17. XML examples of UCM declarations (NON-NOIMALIVE)..........cceueeueuememirememimiiiiceemerenenenesesstsecsesenenesesesensesesssescscsenes 98
17.1 Contracts. 98
17.1.1 Standard data types: primitive data types .98
17.1.2 Standard data types: COMPLEX LYPES......c.ceererurirrreerererererirertereteseeeesestststssesesesesesestessesesesesesesessesssseseseseseneaenes 98
17.1.3 Standard data types: TeSiZable tYPES........covueeueeriririereeiirirteiete ettt ettt 98
17.1.4 COMSANLS. ...ttt b e bbb bbb b bbb b b es e sa e 100
17.1.5 Interface, methods and EXCEPLIONS.ccueuetruerirueririeirteest ettt sttt sttt ettt ettt sttt bbb st ebeneene 100
17.1.6 AbStract type deClarations........cccoveueriereriereririerieteriei ettt ettt sttt ettt ettt se et eebenaenenee 100

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 ix

17.1.7 Annotation and configuration EleMENLS...........c.cccoveirieurueuereentriereieeeeretneee ettt ere et s et seseseseesesenes 100

17.2 INEETACHIONS. ...ttt b et 101
17.2.1 CONNECLOT @XTENMSION.iiiuiiiiiiiiiititei ittt 101
17.3 INONTUNCEONAL ASPECLS......vrueririrrieieieueteneaiitsieseteseteaestsetstetste e besese st et s bt ebeseseseseseaessesssesebesesenenetasesesesesesenensneas 101
17.3.1 Technical aspects and technical POLICIES.c.couvirurieuereucuiiririeiieet ettt sen s 101
17.3.2 Supported programming laNGUAGES..........c.cccevrueieueuiuiririiiererereiet ettt sese sttt es et ettt st s s s nes 101
17.4 COIMPOMNENLS......ctirtiririertiereriiesteteitest et esesaesseesesbe e st estebe et esbesbebe st e st she b teseeabe st et e b e sae b eabesbe bt eaesbt et enbenbenbenbesnesbens 101
17.4.1 COIMPONENT LYPES....c..teutiuriuierrereriisteentiitetetestestesstesesaestestesessessessessesstassestessessesessesesaseseensessessesessessessueseenne 101
17.4.2 Atomic component implementations and technical poliCies.........c.cccceeeererieirenerinincinerceercee e 102
17.4.3 Composite component implementations............c.ceeueeruerereeerteerererereeessesereeseseseseesesesesesesesesessnes 102

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Table of Figures

Figure 1: From components to software 4
Figure 2: Component implementation architecture and its integration within a UCM infrastructure.............coccoevvereruecnne 6
Figure 3: Relationship between components, connectors and technical Policies.............cccveioeuiueieiriniiccccennirrciccenenne 12
Figure 4: Main packages in the UCM meta-model...........cccceceetrinirucininnienciniiniereeeeeeeieseeessenesenene .14
FIGUIE 5: BASE CLASSES....c.tieiieiiiiiiiieiiet sttt sttt sttt b et et b et bbbttt b bbbt nan 15
Figure 6: ADSLIACt DASE CLASSES.....coveuerueuirtiuirtiietetet ettt ettt ettt b ettt et et b bt b et et ettt eb et e st se et e st et st eben 17
Figure 7: UCM contract base deClarations............ccceeerueriruenieinieenieenienierenteeneeessesessesseseseeessenesneneene

Figure 8: UCM PIimitiVe INTEGETS.....c.ccveirieuirieirieirieieietetne ettt sttt et se ettt es s s e e sae st saenesaenens .20
Figure 9: UCM floating point NUMDETS...........cceiueiiiiuemiieiiiriceeeeeeeiccee e eseesescessesenenenas .21
Figure 10: UCM PrimitivVe CHATACLETS.evvveurueutuiiirietrieeereieutetsit et setestaet sttt stae sttt et sebe sttt st et sebebeseseseaeesesenes 21
Figure 11: UCM pPrimitive DOOLEAN.ccueuiriiirieieiiiiiie ettt .22
Figure 12: UCM DPIIMItIVE OCLEL.....ccoveuirieirieiirieieieieteteretett ettt a e es et se e saese s e enennen .22
Figure 13: UCM COMPLEX QAL LYPES.....vvevveueuiretriereueuestuettsteteteueseseaestseasseseseseesestsssseseseseseseststssesssesesesesensasesssesesenenenens 23
Figure 14: UCM SIINE LYPL......cuovuiuiiiiiiiiiiiiieicieie ittt sttt ea et a e 25
Figure 15: UCM NALVE LYPC.....coveruireietieiiitieieitetet ettt ettt st s tese et et ea et e st e b et e sbe b se e bt st st sabestea b et et ebesbesbensesaeebeesesane 26
Figure 16: UCM SEQUEINICE........coerutrieeriererieeiiiitetetestestestee bttt she et sae st sttt e st e b et e s be bt sae s b e bt e st sbb et eabesbebesbesbesbebesaesbeesesane 26
Figure 17: UCM CONSLANLS.......cueveterriierteiesiestestestesieeestesteeesiee st et ssest et sssestessesessessessessessessessessessessessessessesseesssseessensenses 27
FiUIe 18: UCM INLEITACES.....c.eririrteeereeeuietrieeet ettt sttt ettt sttt st s ettt s e eae st et e bt s aese e st et benesenentstetsane 27
Figure 19: UCM aDSIIACE LYPES...c.cueeeuiuieieieieteteteteststestete st stestsbeststese st st ete st et et e bt ebe b ese s eb et b et et et st et ebesesbeneebesesbenestenes 29
Figure 20: UCM cONfigUration lEMENLS........c.vveveveueuiuiririerereieiesenteststesesesesesetsessesesesesesesesesssesesesesensssssesssenesenesssesssesesenes 30
Figure 21: Main classes of the UCM interaction PACKAZE.........ceveveveveverieririeirieieteserentnestessteseseesesesestssssesesesesesestseseseseseses 31
Figure 22: UCM interaction patterns 32
Figure 23: UCM COMNECLOTS......c..cutruiuiieirieieieieiiieiteteie sttt eae sttt et s st sa et st eb ettt a e a et s e ae s e ssene st sesaenesnens 33
Figure 24: UCM POTt LYPES......ccuiiiuiiiiiiiiiiiiitiit ettt ettt n s 35
Figure 25: Main classes of UCM technical poliCies PACKAZE........cecueueirueieueriiieieieteteteeet ettt 36
Figure 26: Main classes involved in UCM cOmMPONent PACKAZE........ccoeruruerieirieirieirienierentetneeeerese sttt saeseneene 38
Figure 27: UCM COMPONENE LYPES.......coiiuiieiiiiiiiiiiiiiitititeietetere sttt et ssess s s sttt ss e aesssnesane .39
Figure 28: UCM component ports 40
Figure 29: UCM atomic component implemMentations.........c..c.ceeeerueriruerteiertenirierieientetcseesessee st et ese et sse e esenaenenee 42
Figure 30: UCM teChniCal POLICIES.......coueueririirieieieicieietete ettt ettt ettt sttt ettt saenee 42
Figure 31: UCM composite component implementations 44
Figure 32: graphical eXAImMPIe.........c.cvcieirieiiuiuiriirieete ettt ettt ettt bttt ettt sttt ettt n b aen 49
Figure 33: Connector fragmentation eXampPle..........c.coeueueueueirininirieueiciieirieecseeete ettt sttt se et be e eas 72

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 xi

Figure 34: Technical policy fragmentation eXample............cccerueueueriririnrereerininieetctreseeeseee e seseesenes .73

Figure 35: UCM RUNHME INEEITACES.......c.coivieiiuiieiiiirieiiicicictriiet ettt ettt sttt bbbttt sene st 74
Figure 36: UCM Container Programming MOEL..........cc.eoueiriririnieinieinieerieieicteesteeie ettt ettt se e sne e 75
Figure 37: UCM Component BoOAY INEEITACES........c.cvirvereuereirinieieieiiinieieitietsieteseeesesie e e aese e sesessesesesenessesesesenensesenes 76
Figure 38: Container and CONtAINEr MANAGETc.cevuetruererereriuertrentrietrseseresestsest st ssesesesesesesestaestssesesesesesesesesetssesssesesesens 78
Figure 39: UCM Component Instance Life CYCle.........coviiiiiiiinininiiiceiciieeet ettt saens 80
Figure 40: generated IDL iNEITaCES.c.cvueuirieuirieirteierteirtet ettt ettt et b sttt ettt ettt b et st bt bebe st ebeeen 88

xii Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
+ CORBAI/IIOP
» Data Distribution Services
» Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
* UML, MOF, CWM, XMI
* UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
* CORBAServices
* CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 1

format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs @omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman/Liberation Serif - 10 pt.: Standard body text

HelveticalArial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://issues.omg.org/issues/create-new-issue

2 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

http://issues.omg.org/issues/create-new-issue

1. Specification Outline

1.1 Software architectures made of components

The Unified Component Model (UCM) enables the design of software applications based on the use of components.
Software applications are designed as a set of interconnected components. These components typically correspond to
the application business logic of a target solution. Components interact with each other through connectors. They can
also-beare also, associated with technical elements (named technical policies) that control their execution or provide
services.

From the descriptions of the components with their associated connectors and technical policies, software code is
organized in blocks to maintain separation between the business logic (the component body) and the technical part (the
fragments). Fragments control the component body and rely on underlying execution and communication libraries.
Thus, the business logic is isolated from the execution platform and can be ported or redeployed onto other platforms.
Figure 1 illustrates this transformation.

ort
| I Component

Technical policy ’l

architecture
\ J code _ J
' 2
a8 o
Component body Component body

Technical Technical Technical

fragment ’" fragment © fragment ©

Execution Communication Communication|| Execution
library library library library

Figure 1: From components to software

1.2 A component model to design portable real-time embedded
software

Design processes for real-time and embedded software systems usually have to address two opposing needs: firstly, to
enable code reuse and portability, and secondly, to support domain-specific execution and communication
infrastructures. UCM addresses both of these needs.

UCM consists of three main concepts: components, connectors and technical policies. Components represent the
application business logic. Connectors implement the interaction infrastructure. Technical policies provide the execution
infrastructure. Connectors and technical policies correspond to the execution platform capabilities. From an architecture
point of view, they are libraries that-can-beused by the components, just like a programming language standard library
ean-be-used-by-is used by the developer codA

Lused by tiefeveloper code. b

UCM defines a set of standard connectors and technical policies with simple APIs and semantics to ensure minimal
component code portability. UCM also allows for the definition of additional connectors and technical policies to

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 3

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-44/ UCM-52: create a
section for the graphical
guidelines

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/24/17
UCM-44 / UCM-52: create a section for the graphical guidelines

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

‘ address domain-specific needs without requiring the definition of any new concepts. Such definitions car-address both

API and nonfunctional parameters, such as FIFO size, priorities, etc. UCM thus supports the definition of domain-
specific (or possibly cross-domain) platforms that enable component portability.

1.3 UCM actors

There are five main roles identified for component-based application engineering:
¢ UCM framework provider;

¢ UCM platform provider;

* component designer;

e component developer;

» software architect.

The UCM framework provider typically implements a tool set that is able to host and execute UCM components,
connectors and technical policies. A UCM framework is considered to be the backbone of every UCM application.

The UCM platform provider defines connectors and technical policies, and provides the corresponding implementation
code for a given UCM framework. UCM is designed to support extensibility by enabling the definition of additional
platform elements (connectors and technical policies); several different vendors may define such platform elements.
Portability of platform elements across different frameworks is not mandatory: vendors may develop framework-
independent or framework-specific platform elements.

The component designer defines functional contracts and components, possibly complemented with nonfunctional
information or requirements. Components are specified with ports corresponding to connector contracts, and are

associated with the necessary technical policies.

Based on the components designed by the component designer, a component developer will be able to write business
code that implements the functional features of a component and fulfills the component contracts.

The software architect defines the architecture of a particular domain application. He or she specifies one or more
applications as an assembly of UCM components that rely on given UCM platforms.

These five roles ean-be-areclassified into two categories: the framework provider and the platform provider provide the

infrastructure; the component designer, the component developer and the software architect use the infrastructure.

A typical UCM design process may have several steps. It starts from the functional decomposition of the system into
high-level software components. Then, these high-level components can be refined if needed, and decomposed into
subcomponents. Component decomposition ultimately leads to leaf components that represent actual code, managed by
the UCM infrastructure. Hence, leaf components are defined from the initial functional concerns, driven by the non-
functional constraints, especially real-time ones (synchronization constraints, potential parallelism, etc.).

This proposal offers a hierarchical model that permits the definition of high-level components and leaf components with
the same language. In the following chapters, leaf components will be called atomic components; components that cas
be-aredecomposed will be called composite components.

drgdecomposed will be called composite components.

1.4 UCM programming model
The programming model of a UCM component relies on the principle of decoupling the business code from the
platform code. Only atomic components correspond to business logic; composite components are simple boxes that nest
subcomponents.
The component business part and the platform parts are managed by an entity called the container. A container is the

entity responsible for combining the business code written by the component developer with the infrastructure code

4 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

provided by the UCM framework provider. Its role includes enforcing the behavior specified by the software architect

in the specification of the components.

Containers will be capable of being generated automatically by the tooling that is associated to the target platform
implementation. The descriptions of the component and their associated platform elements provide enough information
to support this process.

Components with
connectors and
technical policies,
specified by

component <

designers

Interfaces for

UCM component
object

¢ >

Business element,
implemented by
component developers

UCM fragment
object Plat_form elements,
designed and
UCM fragment implemented by
. platform providers
object

deployment and life cycle

0

UCM container

}

Implemented by
framework vendors

Figure 2: Component implementation architecture and its integration within a UCM infrastructure

1.5 UCM levels of conformance

UCM addresses several needs. The first is code portability, which implies API compatibility across frameworks and
preservation of execution semantics with respect to real-time concerns. The second is extensibility to support domain-
specific features (specific interaction mechanisms, runtime capabilities, etc.).

A

Minimal portability is ensured by the definition of UCM core specifications (§ 13.1), which address the basic
interaction and technical policy APIs. All UCM platforms shall support the UCM core specifications. A#ny-component

G

shall

support the execut

8

ion of any component that conforms with t

G G
he UCM_core _specifica

Any UCM platform
ition, (provided the

implementation language is supported). Core specifications only guarantee code portability; they do not enforce precise
execution semantics.

Besides the core UCM specifications, platforms are capable of supporting additional capabilities, defined using UCM
interaction and technical policy packages (§ 9.3and 9.4). Such platforms are then said to conform to the extensions of

UCM.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

"UCM-44 / UCM-52: create a

section for the graphical
guidelines

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/24/17
UCM-44 / UCM-52: create a section for the graphical guidelines

2. Scope

For more than a decade, component-based software engineering has been considered a key enabler to increase software

reuse and reduce time to market. The OMG developed the CORBA Component Model [CCM] as an enterprise

component model for CORBA systems. It has been extended by a series of specifications to adapt it to different

domains and provide additional capabilities ((QoS4CCM], [DDS4CCM], [AMI4CCM], [D&C]).

The Lightweight CCM (LwCCM) profile is one such extension, targeting embedded systems. A prime concern with the

use of the LwCCM in embedded applications is that its mandatory dependency on the CORBA technology can lead to

an undesirable memory and storage footprint, particularly when alternative middleware implementations are used.

These problems have led the Robotics Domain Task Force at the OMG to define its own standard to resolve some of

these concerns, the Robotics Technology Component standard. Similarly, some CCM implementations have defined

their own custom language mappings to circumvent the concern of the C++ language mapping.

This specification defines a Unified Component Model (UCM) as new component model targeting Distributed, Real-

Time and Embedded (DRTE) Systems. UCM aims to be a simple yet complete, lightweight, middleware-agnostic, and

flexible component model.

This specification defines a Platform Independent Model for UCM including:

¢ The definition of primitive and composite data types taking into account the main constraints encountered in DRTE
developments and the need to master memory size on targets

« The definition of a functional component level allowing the design of software component architectures based on

functional definitions of components and interaction patterns without any dependencies with the underlying technical
environment.

¢ The definition of a Generic Interaction Support (GIS) based on connector principles allowing the specification of

standard interaction patterns or the definition of specific patterns using generic mechanisms. This part is based on the
GIS defined in the [DDS4CCM] specification.

¢ The definition of a component implementation level bringing hierarchical composition capabilities and allowing the
refinement of functional components to fine grained segments supporting their own execution behavior.

The document also defines a standard programming model for business components and platform elements that
mstshall be implemented by PSMs. It specifies the generic mapping rules that apply to all classes that are part of the

UCM PIM and specifically defines mappings to IDL and C++.

6 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

3. Rationale for a Unified Component Model

Several companies have adopted component-based software engineering for embedded real time or critical system. It
has shown various benefits in terms of productivity and reusability, as it allows the definition of well-structured
architectures and the use of code generation techniques. Due to domain constraints and the sometime very specific
execution environments, companies often tend to build their own component model and associated frameworks, or
make significant adaptations of existing standards (like IwCCM) to support these constraints.

This trend is due mainly to the non-functional aspects in DRTE (i.e. real time behavior, threading policies, memory
allocation policies...) having a strong impact on the system behavior and can be very different from one domain to
another. The capability to formally characterize these non-functional elements is mandatory to master behavioral
analysis on the software architectures (WCET calculation, RT scheduling, data protection...) Moreover, the existing
component models are usually defined with a specific underlying middleware and associated execution semantics that
do not fit all DRTE environments.

These issues have led to the proposition of the Unified Component Model. UCM relies on a clear separation of
architecture aspects between the specifications of platform capabilities and the design of application logic. It especially
supports the capture of nonfunctional parameters, for generic or domain-specific concerns.

3.1 Separation of architecture concerns

The UCM approach to the design of software architectures consists of two parts, the definition of the platform
capabilities (interactions and policies), and the specification of the functional elements (components), which \
be controlled by the platform. These two parts are specified using concepts defined in the UCM meta-model (section 9).

3141 Platform capabilities as model libraries

Platform capabilities are defined in model libraries, to be shipped with UCM tool chains. Connectors correspond to the
communication capabilities provided by a UCM platform. They define the interaction logic between functional
components. Technical policies correspond to the execution capabilities supported by a UCM platform. They define the
technical aspects that can be associated with functional components (threading policy, clock, logging service, etc.).

Connector and technical policy definitions . have configuration parameters to specify nonfunctional settings
related to the runtime implementation (e.g. execution periods, priorities, network addresses, etc.). As nonfunctional
elements, configuration parameters are manipulated by the platform, but not by the component business code.

A minimal set of definitions is specified by the UCM standard in order to ensure portability of UCM components across
UCM platforms. They cover standard interactions and standard technical policies. The UCM standard defines the
semantics and APIs of these capabilities, but leaves their actual implementation middleware-dependent. The UCM
standard thus guarantees portability across UCM platforms for functional code that relies on the minimal standard
capabilities. Core UCM specifications are described in section 13.

Additional definitions may be provided by UCM platforms to support additional capabilities specific to a given domain
or a given platform. UCM can thus support domain specific platform capabilities.

Connector and technical policy models ship with UCM platforms. They provide the specification of what is
implemented in the corresponding UCM platform.

3.1.2 Business logic as components

Components correspond to the business logic. Nonfunctional elements such as thread management should not be
handled by user code inside component bodies. Consequently, in UCM applications, all the functional code should be
nested in components, without any direct call to runtime libraries. Explicit system calls in user code should be
considered as bad practice, and limited to “technical” components that are not portable. It is good practice to integrate
runtime libraries into technical policies, allowing the functional code (in the component body) and nonfunctional code
(in a technical fragment) to interact through explicitly defined APIs; this eases code portability and integration.

Components have attributes. Attributes are functional parameters that be read (and written to, if ‘
allowed) by the business code.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 7

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

,UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
,UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

3.2 Typical UCM process

A complete UCM process involves five main actors: UCM framework provider, UCM platform provider, component
designer, component developer and software architect.

Infrastructure vendors provide a UCM framework and the associated libraries to support the execution of the business
software. The UCM platform provider defines and implements interaction libraries (connectors, section 9.3) and
container libraries (technical policies, section 9.4) with their APIs, configuration parameters and semantics. The UCM
framework provider ships a tool set that is able to host and execute UCM components, connectors and technical
policies. A UCM infrastructure is considered to be the backbone of every UCM application. A UCM framework
typically ships with a set of connectors and technical policies (at least the core ones defined in section 13.1, but possibly
additional ones).It might also allow the insertion of third-party libraries. Consequently, the platform provider and the
framework provider may be one or many separate entities.

Users rely on the UCM platform to design and implement their component-based software application. The component
designer first defines UCM functional contracts (section 9.2), then components (section 9.5), relying on connector
definitions and technical policies to specify how components interact with their environment. From the component
definitions, the component developer writes the content of the components, typically source code. The code is based
on the APIs corresponding to the component specifications: it implements the component functional features and fulfills
the component contracts.

Finally, the software architect defines the architecture of a particular domain application. This consists of assembling
components, connectors and technical policies, specifying allocations on execution resources and setting values of
configuration parameters.

The UCM standard provides all of the necessary concepts to support the work of the UCM platform provider, the UCM

framework provider, the component designer and the component developer. The software architect shall use additional
means to specify the component assembly and resource allocations.

8 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

4. Conformance

order to support specific application domains. Implementations of technical fragments may be specific to a given UCM
framework by relying on additional specific APIs.

5. Normative References \

* IETF RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels", March 1997.Available from
http://ietf.org/rfc/rfc2119.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 9

/UCM-71/ UCM-72: use the RFC
| 2119 vocabulary and be more
| specific

j“ /UCM-71/ UCM-72: use the RFC
'/ 2119 vocabulary and be more

specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

‘UCM-71/ UCM-72: use the REC

2119 vocabulary and be more
specific

UCM-65/ UCM-66: Rewrite the

references section

Thomas Vergnaud, 04/20/17
UCM-65 / UCM-66: Rewrite the references section

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

http://www.ecoa.technology/public_specifications.html

¢ Interface Definition Language (IDL) 4.0 - formal/2016-04-02

* Extensible Markup Language (XML) 1.1, September 2006. Available from https:/www.w3.org/TR/2006/REC-

xml11-20060816

* ISO/IEC 14882:2003, Information Technology - Programming languages — C++.

6. Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Components are the functional elements of an architecture; they represent business logic. A component definition
consists of two parts: a component type defines the ports for interaction with other components; a component
implementation references a component type and specifies the internal structure of the component. There are two kinds
of component implementations: composite component implementations are boxes with no execution semantics, they
contain subcomponents to structure applications; atomic component implementations actually contain business logic.

Components communicate one with another through interactions. Interaction are specified in two steps. An interaction
pattern defines the roles involved in the interaction (e.g. a client, a server) and the associated cardinality. A c onnector
definition references an interaction pattern and defines the port APIs corresponding to the roles; it mayear, also contain
configuration parameters to specify nonfunctional settings (e.g. queue size, communication protocol).

Atomic component implementations eanimay, be associated with technical policies. Technical policies are implemented

by component containers. They are defined in two steps. A technical aspect represents an abstract concept (e.g. a
component life cycle). A technical policy definition is an actual specification of a technical aspect; it mavean, define
APIs to interact with the component, and eanmay, also contain configuration parameters (e.g. execution period;.

Atomic component implementations consist of two parts: the functional code and the technical code. The functional
code is the business logic of the component; it is nested in the component body. The technical code controls the
business logic of the component; it is contained in technical fragments corresponding to bodies of connectors and
technical policies. Fragments and component body are controlled by the container.

7. Symbols

DRTE: distributed real-time and embedded
XML: extensible markup language
XMI: XML metadata interchange

IDL: interface description language

8. Additional Information

8.1 Acknowledgments
The following companies submitted this specification:
¢ THALES

¢ PrismTech Group Ltd

10 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-65/ UCM-66: Rewrite the
references section

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-18/ UCM-60: Fixthe
symbol typo

Thomas Vergnaud, 03/29/17
UCM-18 / UCM-60: Fix the symbol typo

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/20/17
UCM-65 / UCM-66: Rewrite the references section

The following companies supported this specification:

¢ CEA — Commissariat a 1’énergie atomique et aux énergies alternatives (French commission for atomic energy and
alternative energies)

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 11

9. Platform Independent Model for UCM

The Unified Component Model defines a set of concepts that are used to specify software architectures made of
interconnected functional components. All these concepts are formalized in a MOF-compliant meta-model that shall be
implemented in UCM tools. The UCM meta-model is specified in document ptc/17-05-04.

This chapter is the documentation of the UCM meta-model. It details the different entities defined by the meta-model.

9.1 Overview

9.1.1 Elements of the component model
Interaction Component Technical policy
(connectors)
uses c .
Porttype — [<======-~ OT;;);WH
' .
' realizes
L]
Component Technical
implementation . . . policy
is associated with

Figure 3: Relationship between components, connectors and technical policies

The Unified Component Model is decomposed into four main concerns:

¢ contracts and data types;

¢ components;

* connectors;

 technical policies.

Components encapsulate the application business logic. Connectors define the possible interactions between

components. Technical policies define the possible interactions between the component business code and the

12 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

underlying runtime libraries. Both connectors and technical policies define contracts that eanmay, be manipulated by the ‘

component business code. These contracts are attached to the components using ports (for connectors) or policies (for
technical policies).

Components are the central entities in UCM. They contain business logic and rely on connector and technical policy
definitions to specify interactions with their environment (see figure 3). Component types use ports types that are
provided by connectors to interact with other components. Component implementations realize component types and
are associated with technical policies to specify the possible interactions with the execution environment.

9.1.2 Configuration mechanisms

UCM provides three mechanisms to associate configurations with architecture entities: attributes, configuration
parameters and properties. All three are specified in two steps: a definition and a value. They differ by their semantics
and the entities they are defined in and associated with.

Attribute are functional elements: they ecanmay be manipulated by the business code nested in components.

Configuration parameters are nonfunctional elements: theycan-be-processed-by framework-tools; but-are-not-seenthey

should be processed by framework tools but should not be seen, by the business code. Properties are used to decorate

functional elements; though they are not manipulated by the Husiness code, they canbe-seen—asare like formatted
comments.

ake LG formatted |

Attributes are defined in component definitions and interfaces. Their values are set in component instance
configurations. For example, an interface that provides a method to compute the area of a circle from its diameter may
have an attribute to specify the value of Tt.

Configuration parameters are defined in declarations of platform entities: interaction patterns, connector definitions,
connector implementations and technical policy definitions. Their values are set in the deployment plans—which are
out of the UCM scope. For example, a technical policy that defines the periodic execution of a component may have a
configuration parameter to specify the execution period.

Properties are defined in contract modules. They are associated with functional entities: methods, attributes,
components (definitions and implementations) and component ports. For example, a component implementation may
have a property to specify the revision number of its functional code.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 13

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Main packages of the meta-model

ucm_contracts |

9.1.3

") Sey
,—" i ~
aemnT H Se
P . .~
Jpre / .~
- I ~
. . r "~~
ucm_interactions i =
— ' - -
H ucm_technicalpolicies
3
3
§....-___:______
. e
:
/
/
™. H
~‘\~ L lﬂ
.
. ucm_components R
0"
0”
o

Figure 4: Main packages in the UCM meta-model

The meta-model is broken down into packages, each one focusing on a specific aspect. The main four packages are

illustrated in 4 and are listed here, following a dependency order:

L]
The contract package provides a description of how application entities can declare contracts for exchanging

ucm_contracts (8§ 9.2)
information. For instance, it supports the definition of data types and interfaces that provide an abstraction of
the business domain. UCM defines a set of standard data types that are compatible with IDL data types.
interact, and how they can be UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

ucm_interactions (§ 9.3)

The interactions package provides the necessary concepts for the definition of interaction patterns. An
interaction pattern is a generic description of how application entities
connected through connectors realizing those patterns. This package depends on ucm_contracts to define

contracts dedicated to local interaction between a component and the connector.

ucm_technicalpolicies (§ 9.4)
The technical policies package provides the necessary concepts for the definition of technical policies that
represent requirements on component execution, and shall be ensured by the real-time architecture. Technical

L]
policies are typically implemented by containers. This package depends on ucm_contracts, as technical policies

may have typed parameters or define APIs.

ucm_components (§ 9.5)
Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

14

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

The components package defines the component model, which the description of application functional entities
relies on. Those entities, called components, combine specifications of interaction patterns (from
ucm_interactions) with contracts specifications (from ucm_contracts) to declare how they functionally interact.
This package depends on ucm_contracts to define application domain types that may be exchanged among
components. It also depends on ucm_interactions and ucm_technicalpolicies, as it references interaction
patterns and technical policies that apply to components

Packages ucm_interactions and ucm_technicalpolicies define the non-functional concepts implemented in UCM
platforms (§ 13.1 for the standard definitions). Package ucm_components defines concepts used to define the functional
part of architectures. All three package use the data types defines using the ucm_contracts package.

9.1.4 Common meta-model definitions
INamed
1 + name: EString [1]
+ comment
IComment »
IModule
SimpleGomment IApplicati I\ﬁ xtf Modul
+ text: EString [1] pplicationModule atformModule
+ submodule * *
+ submodule
1 1
ApplicationModule| PlatformModule
Figure 5: Base classes UCM-10/ UCM-39: replace ecore
A diagrams of section 9 with UML
A few classes are common ancestors for many others. class diagrams
9.1.4.1 INamed
All classes that correspond to a named entity derive from abstract class INamed. Fields are:
* nameidentifier: String [1-%] (owned ‘
* comment: IComment [0...*] (owned UCM-2 / UCM-27: change the
l—k *** ‘* ***** name of field identifier of class
9.1.4.2 IComment [l e

The purpose of abstract class IComment is to allow meta-model extensions for platform providers who would like to
define alternative comment mechanisms.

9.1.43 SimpleComment (IComment)

Class SimpleComment is the only standard class to create comments. It consists of a string.

e Texttext: String [1-~+] (owned UCM-28/ UCM-42: append
1—k 777 “(owned)” to items that
correspond to compositions

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 15

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/29/16
UCM-2 / UCM-27: change the name of field identifier of class INamed to name

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

9.1.4.4 IModule (INamed)

Abstract class IModule is the common ancestor for all module definitions. As it inherits INamed, all modules have a

A UCM model consists of a hierarchy of modules. There are two kinds of modules: application modules (component)
and platform modules (interactions and technical policies).

9.1.4.5 |ApplicationModule (IModule)

Abstract class IApplicationModule is the common ancestor of modules that contain application declarations:
components and contracts.

9.1.4.6 IPlatformModule (IModule)
Abstract class IPlatformModule is the common ancestor of modules that contain platform declarations: interactions,

technical policies and contracts.

9.1.4.7 ApplicationModule (IApplicationModule)

9.1.4.8 PlatformModule (IPlatformModule)

Class PlatformModule ean-beare used to gather several interactions, technical policy and contract modules.

algused to gather several Interactions, technical poliCy and contract modutes.

e submodule: IPlatformModule [0...*] (owned
9.2 Contract package

9.21 Introduction

The contract package holds the definitions of contracts for UCM applications. Contracts mainly cover the definitions of
interfaces and data types. The ucm_contracts package is complemented with a ucm_datatypes package that defines a
meta-model for standard data types.

The contract package gathers several classes. A set of standard data types is defined; it is also possible to create meta-
model extensions in order to define additional data types. Constants define specific values for a declared data type.
Interfaces define consistent sets of methods related to a given service. The contract package also provides mechanisms
to support the characterization of business and platform elements, using annotations and configuration parameters.

Among those declarations, only data types and interfaces are considered as types and canshall be used to specify

interactions between components. Constants and exceptions are used to enrich the domain application specifications but
do not directly contribute as the definition of contracts of interaction between components. Annotations and
configuration parameters are used to decorate declarations.

16 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

9.2.2 Common definitions

The contract package contains a set of abstract classes that define the basic concepts carried by contracts: type
declaration, annotation, configuration, etc. These abstract classes are extended by concrete classes; they canshall be ‘
used as hooks to support meta-model extensions.

1
ITypeDeclaration * type IHasType
T
| | | 1
IConcreteTypeDeclaration IAbstractTypeDeclaration lInterface IDataType + type IHasDatatype
é |
IAnnotable IConfigurable IConfigured
1 1
+ configurationParameter * + configurationValue £
IHasDefaultValue |Valued IConfigurationParameter IConfigurationParameterValue

Figure 6: Abstract base classes R

Figure 7 illustrates the definition of contract modules and the elements they contain. Contract modules mainly contain
data type declarations and interface declarations. They also contain definitions of constants and exceptions, and

annotations.

IApplicationModule - eulseEluiE IPlatformModule

1
ContractModule /D

+ datatyp
IDataType + exception Exception
linterface
* + annotationDefinition + constant
AnnotationDefinition Constant
Figure 7: UCM contract base declarations A
9.2.21 ITypeDeclaration (INamed)

Abstract class ITypeDeclaration is the common ancestor of all data type and interface declarations. As it inherits from
Inamed, all UCM type declarations have a named: anonymous declarations are not possible in UCM.

9.2.2.2 IDataType (ITypeDeclaration)

Abstract class IDataTypeBase is the common ancestor of all data type declarations.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 17

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

-~ UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

-~ UCM-10/ UCM-39: replace ecore

© diagrams of section 9 with UML

class diagrams

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

9.2.2.3 linterface (ITypeDeclaration)

Abstract class IInterfaceBase is the common ancestor of all interface declarations.

9.2.24 IHasDataType

Abstract class THasDataType is a base class used for entities that ea reference data types (typically, composite data
types or configuration parameters).

* type: IDataType [1...1]

Field type specifies the data type that is contained in the composite type. Abstract class IHasDatatype is used for

eoncepts-that-must-be-typed-withentities that are typed by, a data type — as opposed to with an Interface type. It is used

A
for any type declaration that itself refers to another type declaration, as for instance, in array definition.

9.2.2.5 IHasType

Abstract class IHasType is a base class used for entities that t—ereference either data types or interfaces (typically,
method parameters).

* type: ITypeDeclaration [1]

9.2.2.6 IValued

Abstract class IValued represents-a-concept-that-can-accept-a-valueThis¢clas ‘3 the common ancestor for data type
declarations that ear, have a value,

fpldve a value o

e value: stringString [1] (owned

Field value is a plain string. IDL syntax mstshall be used to specify values. See IDLDOC.

9.2.27 IHasDefaultValue

Abstract class IHasDefaultValue is similar to abstract class IValued. It is used for default values, while IValued is used
for actual values.

e defaultValue: stringString [1] (owned

9.2.2.8 |IAnnotable

Abstract class TAnnotable is the common ancestor for all classes that earmay, have annotations. See section 9.2.9

ay have annotations. oee secion 5.2.2

e annotation: Annotation [0...*] (owned
9.2.2.9 |AbstractTypeDeclaration

Abstract class IAbstractTypeDeclaration is the common ancestor for all classes that correspond to abstract types. See
section 9.2.8.

18 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more

specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

9.2.2.10 IConcreteTypeDeclaration (IAnnotable)
Abstract class IConcreteTypeDeclaration is the common ancestor for all types that have actual semantics, as opposed to
abstract types.

9.2.2.11 IConfigurationParameter (INamed)
Abstract class IConfigurationParameter is the ancestor of class ConfigurationParameter (§ 9.2.9). Its purpose is to allow
meta-model extensions.

9.2.2.12 IConfigurable

Abstract class IConfigurable is the common ancestor of all classes that eanmay, define configuration parameters. See ‘
sections 9.3 and 9.4).

1idy, deline contiguration parameters. see |

» configurationParameter: IConfigurationParameter [0...*] (owned ‘

9.2.2.13 IConfigurationParameterValue
Abstract class IConfigurationParameterValue is the ancestor of class ConfigurationParameterValue (§ 9.2.9). Its purpose
is to allow meta-model extensions.

9.2.2.14 IConfigured

Abstract class IConfigured is the common ancestor of all classes that eanmay, specify configuration parameter values. \
See section 9.4).

» configurationValue: IConfigurationParameterValue [0...*] (ow nedi ‘

tiay, specily configuration parameter values. |

9.2.2.15 ContractModule (IApplicationModule, IPlatformModule)

A contract module contains all kinds of declarations related with contracts: data types, constants, interfaces, exceptions.
Contract modules mayean, be nested in other contract modules to create hierarchies. Contract module also contain ‘

annotation definitions (§ 9.2.9). Fields are:

¢ submodule: ContractModule [0...*] (owned ‘
+ datatype: IDataType [0...*] (owned) |
« constant: Constant [0...*] (owned) ‘
* exception: Exception [0...*] (owned) ‘
« interface: IInterface [0...*] (owned ‘
« annotationDefinition: AnnotationDefinition [0...*] (owned ‘

Contract modules are comparable toean-5 ar ith, IDL modules (building blocks Core Data Types and Basic ‘

Interfaces). They are used both for platform contracts and application contracts.

9.2.3 Standard data types: primitive data types

The UCM standard defines a set of primitive data types. Primitive types correspond to usual primitive data types of
programming languages. These are integers, floating-point numbers, characters and Boolean. The semantics of UCM
primitive data types are aligned with the definitions of IDL 4 Core Data Types building block.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 19

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

IScalarType | [1Annotable |

PrimitiveB:

I/Concrete TypeDeclaration

IStandardDataType

PrimitiveChar

+ aliasedPrimitive: PrimitiveCharKind [1] [

«Enumeration»
PrimitiveIntegerKind

BYTE
SHORT
LONG
LONGLONG

ULONG
ULONGLONG

Primitivelnteger

PrimitiveFloat

«Enumeration»
PrimitiveCharKind

\| + aliasedPrimitive: PrimitiveFloatKind [1] |

| + aliasedPrimitive: PrimitivelntegerKind [1] |

\SS7<
IDiscrete Type

9.2.31

9.2.3.2

Figure 8: UCM primitive data types

IPrimitiveDataType

NS 727
IPrimitiveDataType

CHARS8
CHARS32

«Enumeration»
PrimitiveFloatKind

FLOAT
DOUBLE
LONGDOUBLE

IStandardDataType (IConcreteTypeDeclaration, IDataType)

Abstract class IStandardDataType is the common ancestor of all the UCM data types.

‘ Abstract class IPrimitiveDataType is the common ancestor of all UCM primitive data types.,

9.2.3.3
IScalarType)

Primitivelnteger (IStandardDataType, IPrimitiveDataType, IDiscreteType,

IStandardDataType

IScalarType

IDiscreteType

IPrimitiveDataType

Figure 9: UCM primitive integers

Primitivelntege
SHORT
LONG
LONGLONG

Primitivelnteger

‘ Class PrimitiveInteger corresponds to all kinds of integer types.

20

» aliasedPrimitive: PrimitiveIntegerKind [1] (owned

«Enumeration»

rKind|

USHORT
ULONG
ULONGLONG

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-29/ UCM-30: add a section
for IPrimitiveDataType

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 09/29/16
UCM-29 / UCM-30: add a section for IPrimitiveDataType

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Enumeration PrimitiveIntegerKind has these values:

ULONG, ULONGLONG,

UCM integer type ranges are detailed in the following table:

UCM integer type Lower bound Upper bound IDL equivalent

SHORT, LONG, LONGLONG

SHORT -2 251 short
LONG =23 231 long
LONGLONG -8 2551 long long
USHORT 0 2'%-1 unsigned short
ULONG 0 221 unsigned long
ULONGLONG 0 2%-1 unsigned long long,_|
9.2.34 PrimitiveFloat (IStandardDataType, IPrimitiveDataType, IScalarType)

IStandardDataType

IScalarType

PrimitiveFloat

Figure 10: UCM floating point numbers

Class PrimitiveFloat corresponds to all kinds of floating-point types.

¢ aliasedPrimitive: PrimitiveFloatKind [1]

IPrimitiveDataType

«Enumeration»
PrimitiveFloatKind

FLOAT

DOUBLE

LONGDOUBLE

Enumeration PrimitiveFloatKind has the following values: FLOAT, DOUBLE, LONGDOUBLE.

, USHORT,
UCM-47 / UCM-54: Align UCM

primitive types with IDL

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-47 / UCM-54: Align UCM
primitive types with IDL

‘ UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

The float types represent IEEE single-precision floating point numbers; the double type represents IEEE double-
precision floating point numbers. For a detailed specification, see IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985.

There is no support for fixed-point values as there is first-class support for them in few languages and if present, it is
often compiler-dependent (i.e., not part of the standard definition for the language).

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

21

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

9.2.3.5

PrimitiveChar (IStandardDataType, IPrimitiveDataType, IDiscreteType, IScalarType)

IStandardDataType IScalarType IDiscreteType IPrimitiveDataType
«Enumeration»
PrimitiveCharKind
— CHAR8
PrimitiveChar WCHAR

Figure 11: UCM primitive characters

Class PrimitiveChar corresponds to all kinds of character types.

¢ aliasedPrimitive: PrimitiveCharKind [1] (owned

Enumeration PrimitiveCharKind has two values: CHAR8 and WCHAREHARS32,

C H—\R8 corresponds to an ASC II 8 bit LI]J racter or a U ['F-8 character. WCHAR corresponds to a wide character, the

9.2.3.6

PrimitiveBoolean (IStandardDataType, IDiscreteType, IPrimitiveDataType,

IScalarType)

IStandardDataType

IScalarType

IDiscreteType

IPrimitiveDataType

N\

Figure 12: UCM primitive boolean

PrimitiveBoolean

Class PrimitiveBoolean corresponds to the boolean type.

22

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

/UCM-47 / UCM-54: Align UCM

primitive types with IDL

- UCM-28/ UCM-42: append

“(owned)” to items that
correspond to compositions

_~"UCM-47 / UCM-54: Align UCM

primitive types with IDL

.~ UCM-47 / UCM-54: Align UCM

primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

9.2.3.7 PrimitiveOctet (IStandardDataType, IPrimitiveDataType)

IStandardDataType IPrimitiveDataType

PrimitiveOctet

Figure 13: UCM primitive octet

Class PrimitiveOctet corresponds to an 8 bit buffer element, like the IDL octet type., U(.:M"47/ UCM-SA:A]jgn UucM
A - primitive types with IDL

9.24 Standard data types: complex types

Complex data types are aliases, arrays, structures, unions and enumerations.

IConcreteTypeD i N [Annotable
IDataType A IStandardDataType A
*+type IDiscrete Type
Structure Array Enumeration | * selectorType 1 =0
+ selectorName: EString [1]
1
1 1 1 1
IArrayDimension
‘Alias + d|mensu1)n‘
o +value Y 1.* + selectorValue + case 1.*
UnionCase
N + indexValue: ELong [0..1 .
+fieldy/ 1. T fndexvalu 9101} 4 1|+ defaultCase: EBoolean [1]
StructureField ArrayDimension
+ size: ELong [1]
+ indexType: PrimitivelntegerKind [1

IHasDatatype A

Figure 14: UCM complex data types UCM-10/ UCM-39: replace ecore
A diagrams of section 9 with UML

class diagrams

9.2.4.1 lindexable
Abstract class IIndexable is the common ancestor for data types that contain several elements of the same type:

sequences, strings, etc.
UCM-28/ UCM-42: append

¢ indexType: PrimitivelntegerKind [1] (owned
us 5 1—k *** “(owned)” to items that

Indexable types are indexed by an integer. correspond to compositions

9.24.2 Alias (IStandardDataType, IHasDataType)

An alias type references another data type declaration. It is a way to rename data types.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 23

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

9.24.3 Structure (IStandardDataType)

A structure declaration allows grouping heterogeneous types in fields. It has at least one structure field. Each field
mustshall have an identifier and a type.

shalhave anidentiherandatype.

¢ field: StructureField [1...*] mxnoda

9.24.4 StructureField (INamed, IAnnotable, IHasDataType)

A structure field has a name and references a data type declaration.

9.24.5 Union (IStandardDataType)

A union is a data type that can—taketakes values from different data types. It has at least one union case. Each case
represents the alternative fields for the value. To discriminate, at run time, which case is active, the union declares a
selector (or discriminant) by specifying a selector name and a selector type.

¢ selectorName: String [1] (owned

¢ selectorType: Enumeration [1]

¢ case: UnionCase [1...*] [mvned}

The discriminant of a standard UCM union type is an enumeration. This is a limitation compared with some
programming languages like Ada (which allow the use of any discrete type as discriminant); it ensure UCM union types
can be mapped on any programming language.

9.2.4.6 UnionCase (INamed, IAnnotable, IHasDataType)

Class UnionCase contains a name and a data type. It also specifies the value of the selector for which it represents the
union.

¢ selectorValue: Enumerator [1...*]

¢ defaultCase: boolean [1] (owned

Cases slmllﬁms}specify for which values of the selector they are active by setting the selector value. As unions are
discriminated

y an enumerated type, the selector values Sh(l“ﬁ’rﬂs—x be enumerators among the corresponding
enumeration.

If field defaultCase is set to true, then the union case is used for all enumerators that are not used by other union cases.

9.24.7 Enumeration (IStandardDataType, IDiscreteType, IScalarType, lindexable)

An enumeration is a type the values of which are known and finite in number. An enumeration is indexed, which means
it mustshall refer to an integer type from which it shallean take its values. An enumeration declares at least one

enumerator that describes the accepted values for the enumeration.

¢ value: Enumerator [1...*] (ow nedi

9.24.38 Enumerator (INamed)

An enumerator corresponds to a value literal.

24 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

e indexValue: Longteng [1] (ow ncd% ‘

The index value mtstshall be in the range of the primitive integer kind used as the index base for the enumeration. ‘

9.24.9 Array (IStandardDataType, IHasDataType)

Array declarations represent a vector of entities of the same type, which size is fixed. Arrays canmay, be ‘
multidimensionnal, each dimension having potentially different index types.

€

9.2.4.10 IArrayDimension

Abstract class IArrayDimension is meant to allow meta-model extensions. For example, the UCM meta-model
eottdmay, be extended to allow array dimensions that specify a lower bound and an upper bound, or to allow array ‘

dimensions indexed by an enumeration.

9.24.11 ArrayDimension (lindexable, IArrayDimension)
Class ArrayDimension specifies the dimension of an array.

e size: Longleng [1] (m\ncdi ‘

Size is a long integer. As ArrayDimension inherits from IIndexable, size mtstshall be in the range of the underlying J 77777
primitive integer. The corresponding array index ranges from 0 to size — 1

9.25 Standard data types: resizable types

A resizable data type is a data type the size of which can be adjusted.

IAnnotable

IResizable IStandardDataType
+ maxSize: ELong [1]

IConcrete TypeDeclaration

7]

NativeType Sequence StringType
+ charBase: PrimitiveCharKind [1]

lIndexable IHasDatatype
+ indexType: PrimitivelntegerKind [1]

Figure 15: UCM resizable data types N

9.2.51 IResizable

Abstract class IResizable is used for types that behave as collections of objects the size of which eanmay, vary. In order ‘
to respect the constraint that memory bound can be computed, this trait holds a property to define the maximum size.
Even though the trait is called resizable, this doesn’t entail any strategy for memory allocation and implementations

eanmay, choose to use either dynamic allocation or to pre-allocate the maximum size buffer. ‘

Class IResizable is the common ancestor of data types that have variable size, such as sequences.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 25

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-67 / UCM-68: replace the
standard data type diagram by
dedicated diagrams for string
type, native type and sequence

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 04/20/17
UCM-67 / UCM-68: replace the standard data type diagram by dedicated diagrams for string type, native type and sequence

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

‘ e maxSize: Longleng [1] (owned

‘ Where maxSize is a long integer. If there is no maximum size for the type, then maxSize shottdshall be set to “-1”.

9.2.5.2 StringType (IStandardDataType, IResizable)
IStandardDataType IResizable
«Enumeration»
PrimitiveCharKind
CHARS
WCHAR
StringType

+ charBase: PrimitiveCharKind [1]

Figure 16: UCM string type

A string type is a string of characters, either 8-bit characters or 32-bit characters. Strings have a maximum bound; this
bound eanshall be set to “-1” for unbounded strings.

e charBase: PrimitiveCharKind [1] (ow nodi

9.2.5.3 NativeType (IStandardDataType, IResizable)
IStandardDataType IResizable
NativeType

Figure 17: UCM native type

A native type represents a data type declaration specified using native constructions of a programming language. It has a
maximum size, so that memory footprint can be computed without knowing the exact definition of the data type.

Field maxSize corresponds to the size of the underlying native type, in bytes.

A native type represents a data type that is not represented in the UCM model but that is to be used within UCM
applications. Native types have several use cases, the main two being:

* Representing types available in a language that can’t be represented with UCM type model;

26 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

shaiybesetfo -1° forunbounded stngs. ...

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-67/ UCM-68: replace the
standard data type diagram by
dedicated diagrams for string
type, native type and sequence

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-67 / UCM-68: replace the
standard data type diagram by
dedicated diagrams for string
type, native type and sequence

Thomas Vergnaud, 04/20/17
UCM-67 / UCM-68: replace the standard data type diagram by dedicated diagrams for string type, native type and sequence

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/20/17
UCM-67 / UCM-68: replace the standard data type diagram by dedicated diagrams for string type, native type and sequence

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

* Representing types that are used at the frontier of integration of a UCM-based application and an external one. UCM-4/ UCM-22: replace

Whatever useful, it is recommend to avoid the use of native types, as they lead to major portability issues. IStandardTypeBase by
IStandardDataType and put more
9.2.5.4 Sequence (IStandardTypeBaselStandardDataType, IHasDataType, IResizable, precision in the text
IIndexabIeL 777

UCM-67 / UCM-68: replace the
standard data type diagram by
IHasDatatype IStandardDataType lindexable IResizable dedicated diagrams for string

type, native type and sequence

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Sequence
. UCM-71/ UCM-72: use the RFC
Figure 18: UCM sequence A 2119 vocabulary and be more
7777777777777 specific
Sequence declarations represent a vector of entities of the same type, the size of which eanmay, vary between 0 and ‘ 7

Hlay vary between D and |

maxSize.

UCM-4/ UCM-22: replace
IStandard TypeBase by
IStandardDataType and put more
precision in the text

9.2.6 Constants

IAnnotable IValued IHasDatatype
+ value: EString [1]

1 + type
Constant IDataType
Figure 19: UCM constants UCM-10/ UCM-39: replace ecore
A diagrams of section 9 with UML
9.2.6.1 Constant (INamed, IHasDataType, IValued, IAnnotable) class diagrams

Constant declaration only requires an identifier, a type and a value.

The data type value is a string that follows the IDL grammar dedicated to specifying values of constants. See building
block Core Data Type in IDLDOC.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 27

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 09/29/16
UCM-4 / UCM-22: replace IStandardTypeBase by IStandardDataType and put more precision in the text

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/20/17
UCM-67 / UCM-68: replace the standard data type diagram by dedicated diagrams for string type, native type and sequence

Thomas Vergnaud, 09/29/16
UCM-4 / UCM-22: replace IStandardTypeBase by IStandardDataType and put more precision in the text

9.2.7 Interfaces, methods and exceptions

«Enumeration»
AttributeMode

READ

READWRITE

IConcreteTypeDeclaration IHasType

ITypeDeclaration
+ type
ﬁk JAVAN

+ type
«Enumeration» /] IDataType typ

ParamDirection lInterface 1 1
IN

ouT
INOUT
RETURN

IHasDatatype

AN

Method Interface 1

+ method d

+ extends
1 1 1
+ raisedException 2 + parameter

Exception * Parameter
+ direction: ParamDirection [1]

+ attribute

Attribute
+ mode: AttributeMode [1]

ExceptionField

+ fiel

Figure 20: UCM interfaces

An interface allows for declaring a consistent set of functions related to a given service. An interface has 0 or more
attributes that hold the state of the interface instance. These attributes have a mode that specifies the read/write access.
An attribute may also have a default value; the syntax for this default value mﬂﬁt@kfollow the grammar used for
Constants — see section 9.2.6.

An interface has 0 or more methods that define actions possible on that object. A method only declares a signature, as a
list of parameters that have a direction among: IN, OUT, INOUT and RETURN. Methods have at most one
parameter with direction RETURN. Methods eanmay, also have exceptions, which correspond to return codes in case

11143, 150 have exceplions, which correspond o returi codes in case

of abnormal execution.
Interfaces refer to zero or more interfaces called inherited interfaces.

An exception declaration defines a kind of structure holding error information. This declaration is only used inside
interface declaration (see next sub-section) to specify how an interface method can fail and which failure details it
should provide to the caller. For that purpose, an exception has zero or many exception fields that have an identifier and
refer to a data type.

The notion of exception in UCM must not be confused with the notion of exception in programming languages. Indeed,
UCM exceptions are only data structures that rustshall, be provided to callers in case of abnormal execution. No

assumption is made regarding the way such data structures are transmitted to callers: this might be through plain
exception mechanism or through extra output parameters. The solution to choose is mapping-dependent.

9.2.71 Interface (linterfaceBasellnterface, IConcreteTypeDecIarationk
* extendsirheriteddnterface: Interface [O...*L

« attribute: Attribute [0...*] (owned)

¢ method: Method [0...*] omwda

28 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-15/ UCM-20: change the
title of section 9.2.7.1

UCM-8/ UCM-31: add composite
component implementation
refinement and update field
names for extension mechanism

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/29/16
UCM-8 / UCM-31: add composite component implementation refinement and update field names for extension mechanism

Thomas Vergnaud, 09/29/16
UCM-15 / UCM-20: change the title of section 9.2.7.1

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

An interface mayean inherit other interfaces. In these situations, the interface contains its own methods and attributes,

plus the methods and attributes of its ancestors.

Attributes are shortcuts to define access methods (get and set). They do not necessarily correspond to actual data.

9.2.7.2 Method (INamed, IAnnotable)
e parameter: Parameter [0...*] (owned

» raisedException: Exception [0...*]

9.2.7.3 Parameter (INamed, IHasType)
¢ direction: ParamDirection [1] (owned

Enumeration ParamDirection contains the following values: in, out, inout, return.

A parameter that has direction “return” is a return type of the method. Consequently, A given method %Iml\f—(nkhave at ‘

most one “return” parameter.

9.2.7.4 Attribute (INamed, IHasType, IAnnotable, IHasDefaultValue)
« mode: AttributeMode [1] (owned

AttributeMode is an enumeration withthat-canhave, the following values: read, readwrite.

AC TOTOWINE VAILES. TedE, Ted@wilte.
9.2.7.5 Exception (INamed)

« field: ExceptionField [0...*] m\nodi
9.2.7.6 ExceptionField (INamed, IHasDataType)

An exception field is similar to a structure field.

9.2.8 Abstract type declarations

Besides explicit data type and interface declarations, the UCM data model defines two additional declarations:
AbstractDataType and AbstractInterface. They are to be used as replacement for actual type declarations in port types
(89.3.5) and technical policy definitions (§ 9.4.3); they are eventually bound to an actual data type or interface

(89.5.3.7).
ITypeDeclaration
linterface IAbstractTypeDeclaration IDataType
Abstractinterface AbstractDataType|
Figure 21: UCM abstract typestemptate parameters
9.2.8.1 AbstractDataType (IAbstractTypeDeclaration, IDataType)

Class AbstractDataType is used for the declaration of a generic data type.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

29

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

9.2.8.2 Abstractinterface (IAbstractTypeDeclaration, linterface)

Class AbstractInterface is used for the declaration of a generic interfaces.

9.2.9 Annotations and configuration elements

UCM supports two mechanisms to specify architecture configuration: configuration parameters and annotations.
‘ Configuration parameters apply to platform elements (connectors and technical policies) while annotations mayﬁnlbe
associated with business elements (components, interfaces, methods, etc.).

IConfigured IAnnotable IConfigurable
IValued 14 X} 2\ ; ¢
+ value: EString [1] IHasDatatype
+ configurationValue * +annotation * * + configurationParameter
IConfigurationParameterValue Annotation IConfigurationParameter | IHasDefaultValue |
+ defaultValue: EString [0..1]
1
+ annotationDefinition 1
AnnotationDefinition
ConfigurationParameterValue + configurationParameter |ConfigurationParameter
1 1
Figure 22: UCM configuration elements L
9.2.9.1 ConfigurationParameter (IConfigurationParameter, IHasDataType, IHasDefaultValue)

‘ Configuration parameters are comparable to attributes. Attributes are functional elements, and therefore eanmay, be
manipulated by business code. Configuration parameters are nonfunctional elements: they have no direction, as they are
properties associated with platform elements. They should D(Jtﬁ\‘ﬁﬁﬂxbe manipulated by code, but are typically used to

create or configure the platform code. T

Values of configuration parameters should be specified in deployment models, which is out of the scope of the UCM
standard.

9.2.9.2 ConfigurationParameterValue (IValued, IConfigurationParameterValue)
A configuration parameter value associates a value to a configuration parameter definition.

¢ configurationParameter: ConfigurationParameter [1]
9.29.3 AnnotationDefinition (INamed, IConfigurable)

Class AnnotationDefinition contains a set of configuration parameters. Though annotations do not apply to platform
elements, annotation definitions contain a set of configuration parameters. This is for metamodel factorization.

30 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

9.29.4 Annotation (IConfigured)

An Annotation references an annocation definition. It is used to set values to the parameters declared in the annotation
definition.

« annotationDefinition: AnnotationDefinition [1]

L "UCM-71/ UCM-72: use the RFC
fff © 2119 vocabulary and be more

9.3 Interactions package specific

9.3.1 Overview

The UCM meta-model is independent from any specific communication middleware. Middleware specific declarations

eanshould, be provided as predefined elements. To do so, UCM defines a Generic Interaction Support (GIS) inspired by ‘ -~ UCM-71/ UCM-72: use the RFC
the CCM'GIS. e © 2119 vocabulary and be more

specific
The UCM standard specifies a generic mechanism for the definition of interactions between components. The
ucm_interactions package has three main goals:

* Specify roles and items involved in an interaction pattern.
* Specify port types, carried by connectors, to define explicit API.

* Specify configuration parameters, also carried by connectors, to support the configuration of the underlying
middleware.

Interaction patterns define the overall logic of an interaction. They define a set of roles involved in the interaction (e.g. J ! gﬁ‘g{;zgsﬂ (l:aM_Zli: dulig ;]ErEFC
data producer, data consumer) and the number of entities that shallﬁnxhave these roles in the interaction (e.g. a unique | / specific v
producer, one or more consumers). P

Connector definitions are refinements of interaction patterns. They define ports that associate APIs to roles. A connector
definition therefore defines the programming contracts involved in an interaction. A connector definition specifies the

semantics and API for a given interaction pattern. Several connector definitions muy:—(hxreference the same interaction ‘ -~ UCM-71/ UCM-72: use the RFC

pattern. 2119 vocabulary and be more
specific

Figtre B

Heractt Ater] < le—interact PUvON)} hick dof: + olace € UL S [T SOPRpp 2T oo

interaction-pattern-named-“example—interaction—pattern’-which-defines-tworoles: “emitterand-“receiver’-The-pattern

[T .)

e Dotl oloc paomiandorn oo 24 . 79 PPN 2. 4l ancthicipteractt 4ol 3 £ doen A
recetver—ootnroresmaniptrateanHemhamea—aata_ttem—,thSmeans-thsHteracton-transrers-one-piece-oraata—~xt

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 31

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

«Interaction Pattern»
example_interaction_pattern

lemitter [1,%] receiver [1,%]
D data_item

1 A N
! pattefn

«Port Type»

1
'
L)
'
'

'

example_emitter_port L

«Port Type»
example_receiver_port

v .
em itter_p&rt_element <<requires> receiver_[.:oft_element <<provides>>

(M) api_itf

+push (IN message : data_type_t)

TEMPLATE PARAMETER

data_t t

Figure 23: Example of interaction pattern and connector definition

32 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 33

7 UCM-11/ UCM-41: remove
example text from section 9

Thomas Vergnaud, 09/30/16
UCM-11 / UCM-41: remove example text from section 9

9.3.2 Interaction module

1

+ submodule

*

ContractModule | *+ contractModule 1| _InteractionDefinitionModule

+ pattern /- + connector *
1 InteractionPattern | * pattern 1| ConnectorDefinition + portType IPortType
i 1
1 I\ 0.1 4 * type
1
+ extends + extends
0.1 ¥
+role + port
InteractionRole + implements 1 ConnectorPort | ! PortType

+ lowerMultiplicity: ELong [1]
+ upperMultiplicity: ELong [1] 1

Figure 24: Main classes of the UCM interaction package

9.3.21 InteractionDefinitionModule (IPlatformModule)

Interaction definition modules contain the definitions of the possible interactions between components. In other words,
they contain the specification of the UCM interaction logics from an application point of view that maye&nxbe used in a
given architecture. An interaction definition module has the following information:

¢ contractModule: ContractModule [0...*] (owned
¢ submodule: InteractionDefinitionModule [0...*] (owned)
 pattern: InteractionPattern [0...*] (owned

« connector: ConnectorDefinition [0...*] (owned

e portType: IPortType [0...*] (owned

Interaction definition modules mayean have submodules, to allow hierarchical definitions. They earmay, also contain

9.3.2.2

XMLrepresentation

34 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that

' correspond to compositions

UCM-71/ UCM-72: use the RFC

' 2119 vocabulary and be more
| specific

- UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

«Enumeration»
InteractionltemKind
DATA
INTERFACE

Interactionltem

+ nature: InteractionltemKind [1]

InteractionPattern

+ involveditem

=

+ extends
0..1

+ role

InteractionRole

+ lowerMultiplicity: ELong [1]

Figure 25: UCM interaction patterns

Interaction patterns provide a definition of the roles different participants shalles
not entail any API; they only provide high-level semantics on which one ¢can:

components.

*

+ upperMultiplicity: ELong [1]

A

have in an interaction. These roles do
1shall, rely to define assemblies of |
slal, rely 10 deline asser

Designing an interaction pattern involves the combination of different entities that play different roles. For instance, a
publish / subscribe interaction pattern combines several publishers with several subscribers. A streaming interaction
pattern combines one writer with several readers. This notion of role is thus the placeholder for:

¢ A multiplicity that tells how many entities eanmay have a given role;

¢ An identifier that bears the semantic of that role;

« Interaction items related to this role.

9.3.31

linteractionDefinition (INamed)

Abstract class IInteractionDefinition is used as a common ancestor for both InteractionPattern and ConnectorDefinition.
This allows the specification of inter-component connections that eanmay, either reference a connector or an interaction ‘

pattern. See section 9.5.5.4.

9.3.3.2

InteractionPattern (linteractionPattern)

An interaction pattern is the main declaration entity. It defines the relationship between roles. It also indicates elements

that are manipulated by the interaction.

¢ role: InteractionRole [0...*] (owned)

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

35

UCM-12/ UCM-40: remove
sections that explains the xml
representation fromsection 9

UCM-13/ UCM-36: remove IDL
sections fromsection 9

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

_~"UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

‘ ¢ item: Interactionltem [0...*] owncda

'UCM-71/ UCM-72: use the RFC

¢ extends: InteractionPattern [0...1] ' 2119 vocabulary and be more
specific
‘ An interaction pattern eanmay extend another interaction pattern to define additional roles. Roles eannotshall nog be
redefined. T

UCM-71/ UCM-72: use the RFC

9.3.3.3 Interactionltem (INamed) 2119 vocabulary and be more
specific
Interaction items are used to specify the items manipulated by an interaction pattern. They are used to specify flows
through interaction patterns, to help ensure consistency when defining connectors.

+ nature: InteractionltemKind [1] (owned .~ UCM-28/ UCM-42: append
leway * “(owned)” to items that

InteractionItemKind is an enumerated type that has two possible values: “data” and “interface”. Hence, an interaction correspond to compositions

item defines a name that shall correspond either to a data type definition or to an interface definition.

9.3.34 InteractionRole (INamed)
‘ e lowerMultiplicity: Longteng [1] (owned) ,/ UCM-28/ UCM-42: append
“(owned)” to items that
‘ * upperMultiplicity: Longteng [1] 1ownod= / correspond to compositions

¢ invlovedItem: InteractionItem [0...*]

lowerMultiplicity and upperMultiplicity specify how many times the given role eanmay, be involved in a given .~ UCM-71/ UCM-72: use the RFC

interaction pattern. Field invlovedItem associates interaction items with the role. Roles that are associated with the same / 2119j\f/iocabulary and be more
specific

item shall correspond to connector ports that manipulate the same data type or interface.

9.3.3.5 Graphical-representation

-~ UCM-37/ UCM-38: remove
" sections that explain the
graphical representation

9.3.3.6 XMLrepresentation

36 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

—n n UCM-12/ UCM-40: remove
—ng n _n . S sections that explains the xml
’ representation fromsection 9

_~'UCM-13/ UCM-36: remove IDL
sections fromsection 9

9.3.4 Connector definitions

Connectors refine interaction pattern to specify explicit APIs and middleware configuration parameters.

. . IConfigurable
Interactionltem + interactionltem lITemBinding
+ nature: InteractionltemKind [1] 1
1
* R+ itemBindin
* + involvedIitem /\7 °
ItemBinding
1 1
ConnectorDefinition + extends
1 0..1
+ connectorltem 1
ITypeDeclaration 1 { 1
ConnectorPortConfiguration
+ portConfiguration
1 + port * 1
InteractionRole . ConnectorPort | 1z port
+ lowerMultiplicity: ELong [1] + implements 1 + type IPortType
+ upperMultiplicity: ELong [1]]]
1
Figure 26: UCM connectors _~ UCM-10/ UCM-39: replace ecore
A " diagrams of section 9 with UML
. . . . class diagrams
9.3.4.1 ConnectorDefinition (linteractionDefinition, IConfigurable) 8

Connector definitions specify possible interactions from a business point of view. That is, they describe the functional
ports involved in a given interaction and the parameters of this interaction. A connection definition has the following
information:

¢ pattern: InteractionPattern [1]

e port: ConnectorPort [0...*] (owned) ‘ UCM-9/ UCM-33: create class
« itemBinding: IltemBinding [0...*] (owned ‘ IitemBinding

» portConfiguration: ConnectorPortConfiguration [0...*] (ow ncd} ‘

¢ extends: ConnectorDefinition [0...1]

‘ 7 'UCM-71/ UCM-72: use the REC
*** 2119 vocabulary and be more

Configuration parameters allow for the specification of nonfunctional parameters of the whole connector (e.g. the specific

specification of a channel name). Port configurations have the same purpose, but dedicated to a given port (e.g. the

specification of a FIFO size). ‘

9.3.4.2 litemBinding |

Connectors have to specify what interaction items are bound to. This is a way to ensure consistency between the high
level specifications of interaction patterns and the detailed APIs of connector definitions. Abstract class IltemBinding
and its extension ItemBinding address this need. Extensions of the UCM standard may define _other ways of binding
interaction items by providing alternative extensions to abstract class IItemBinding.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 37

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-9 / UCM-33: create class IItemBinding

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

9.3.4.3

Connectors have to specify which data types or interfaces interaction items are bound to. This is a way to ensure
consistency between the high level specifications of interaction patterns and detailed APIs of connectors: a connector
mustshall associate all the items of its interaction pattern to data types or interfaces manipulated in its ports. An

* connectorltem: ITypeDeclaration [1]

9.3.44 ConnectorPort (INamed)

Connector ports correspond to the interaction points of a connector. They define the interaction APIs that witt-bear
offered to components and used through component ports. A connection port definition has the following information:

« implements: InteractionRole [1]
e type: IPortType [1]
A connector port references an interaction role of the interaction pattern referenced by the connector. The connector port

thus relies on the multiplicity defined for the corresponding role. This enables the definition of several ports for a given
role without confusions.

9.3.4.5 ConnectorPortConfiguration (IConfigurable)

Connector port configurations carry the definitions of the configuration parameters that apply to a given port of the
connector definition.

¢ port: ConnectorPort [1

The referenced port shall either be a port of the current connector definition or a port of an ancestor connector
definition

cetmmbon,

9.3.4.6 IPortType (INamed)

This class is abstract and corresponds to the specifications of detailed port API. In the UCM standard, it is extended by

9.3.4.7

S eal .

9.3.4.8

38 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

ltemBinding (lltemBinding) '

UCM-9 / UCM-33: create class
ItemBinding

/UCM-9/ UCM-33: create class
' IltemBinding

_~"UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

"UCM-9/ UCM-33: create class
ltemBinding

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

_~~ UCM-6/ UCM-23: add a section

for ConnectorPortConfiguration

/'UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

_ UCM-37/ UCM-38: remove

sections that explain the
graphical representation

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-6 / UCM-23: add a section for ConnectorPortConfiguration

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-9 / UCM-33: create class IItemBinding

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-9 / UCM-33: create class IItemBinding

Thomas Vergnaud, 09/29/16
UCM-9 / UCM-33: create class IItemBinding

9.3.5 Port definitions

IPortType
PortType + portElement PortElement
f <7 + kind: PortElementKind [1]
1
«Enumeration»
PortElementKind + interface\/ 1
;‘;8\6:253 linterface

Figure 27: UCM port types

9.3.5.1 PortType (IPortType)
A port type is a concrete realization of the IPortType class. It defines a set of port elements.

» portElement: PortElement [0...*] (owncdz

9.3.5.2 PortElement (INamed)
A port element either provides or require an interface.
e interfaceintf: IInterface [1] ‘

« kind: PortElementKind [1] jLnedk ‘

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 39

/UCM-12/ UCM-40: remove
sections that explains the xml
representation fromsection 9

~"UCM-13/ UCM-36: remove IDL

sections fromsection 9

- UCM-10/ UCM-39: replace ecore

diagrams of section 9 with UML
class diagrams

~~ UCM-28 / UCM-42: append

“(owned)” to items that
correspond to compositions

" UCM-8/ UCM-31: add composite

component implementation
implementation refinement and
update field names for extension
mechanisms

Thomas Vergnaud, 09/29/16
UCM-8 / UCM-31: add composite component implementation implementation refinement and update field names for extension mechanisms

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

It references an interface. PortElementKind is an enumerated type that has two values: “provided” or “required”.

9.3.5.3 Graphiealrepresentation

i} o . . e -~ UCM-37/ UCM-38: remove
POFESP I ’ A sections that explain the

graphical representation

9.3.5.4 XMLrepresentation

—%d%»p}% ' _~ UCM-12/ UCM-40: remove
’ A

** ~ sections that explains the xml
representation fromsection 9

- UCM-13/ UCM-36: remove IDL
sections fromsection 9

9.4 Nonfunctional aspects package

9.4.1 Overview
Nonfunctional aspects cover the relationship between the component business code and the execution environment.
They consist of the interactions between the components and the runtime libraries that support their executions, and also
the programming languages supported by the UCM tool chain.

Like interactions, nonfunctional aspects are defined in two steps. Technical aspects define general semantics. Technical
policy definitions specify the exact semantics and APIs if need be.

40 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

o «Technical Aspect»
execution_policy [exactlyOne]

4 b

1
1
technical pspect
1

\
1
1
1
! 1
1
1
A

technical pspect

@ activation_itf
A

+run ()

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

a1

9.4.2

Nonfunctional aspect module

The main entities of the nonfunctional aspects package are illustrated on figure 29. Technical aspects correspond to
abstract notions (e.g. component execution policy). Technical policy definitions are the actual means to specify the
nonfunctional aspect that witt-beare managed by econtainersthe p]alforn}i They eanmay define APIs-(as-in-theexample)
and eanmay have configuration parameters

submodule
: «Enumeration» «Enumeration»
IPlatformModule NonfunctionalAspectModule 1 TechnicalPolicyApplicability TechnicalAspectConstraint
ON_COMPONENT_ONLY ANY_NUMBER
1 ON_SOME_PORTS AT_MOST_ONE
1 1 ON_ALL_PORTS EXACTLY_ONE

AT_LEAST ONE

extends
0..1)£ supportedLanguage! B REcvRetniten 0.1 r

ProgramminglLanguages TechnicalPolicyDefinition
+ applicability: TechnicalPolicyApplicability [1]

14 B 1
1.* technicalAspect * 1 technicalAspect A\ PortElement

Language TechnicalAspect PortElement
+ multiplicity: TechnicalAspectConstraint [1]

contractModule

ContractModule

*

language

Figure 29: Main classes of UCM technical policies package

9.4.2.1 NonfunctionalAspectModule (IPlatformModule)

A nonfunctional aspect module gathers the declarations of technical policies and programming languages the platform
‘ supports. It eanmay contain submodules in order to create hierarchical declarations. It eanmay, also contain contract

modules for contracts that are associated with the technical policies.
‘ policyDefinition: TechnicalPolicyDefinition [0...*] (owned)

‘ ¢ submodule: Nonfunctional AspectModuleFeehniealPetieyMedule [0...*] (owned

‘ ¢ contractModule: ContractModule [0...*] (owned)

42 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

A

N

UCM-11/ UCM-41: remove
example text fromsection 9

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

“UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more
specific

/UCM-48 / UCM-55: Merge
, component technical policy and
| component port technical policy

' UCM-10/ UCM-39: replace ecore

diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more

specific

"UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-11 / UCM-41: remove example text from section 9

*]_ (owned ‘
« supportedLanguages: ProgrammingLanguages [0...1] (owncd} ‘

* technicalAspect: TechnicalAspect [0...

9.4.3 Technical policies

9.4.3.1
A technical aspect defines an abstract nonfunctional concept that shall be specified by a technical policy definition.

« multiplicity: Technical AspectConstraint [1] (owned ‘

TechnicalAspect (INamed)

Enumerated type TechmcalAspectConstramt defmes the p0551b1e multiplicity of technical policies. Feurpossibilitiesare
-Four _possiblities are defined: ANY NUMBER,

AT MOST ONE EXACTLY ONE and AT LEAST ()NEA

9.4.3.2

A technical policy definition specifies a capability of the container, either provided to components or enforced by the
container. It actually represents any kind of nonfunctional feature managed at container level or expected from the
component.

TechnicalPolicyDefinition (INamed, IConfigurable)

*]_(owned ‘
 technicalAspect: TechnicalAspect [1]

* portElement: PortElement [O...

* applicability: TechnicalPolicyApplicability [1] (owned) ‘
« extends: TechnicalPolicyDefinition [0,..1L ‘

Like a connector definition, a technical policy definition must be recognized and understood by a UCM framework to
be correctly interpreted and processed. Field portElement specifies possible APIs either provided to or required from the
component. Internal APIs will complement the component API.

A technical policy definition eanm ay, have configuration parameters to specify nonfunctional settings (e.g. execution ‘
period).

A technical policy definition eanmay, extend another one. In this situation, the technical policy definition inherits the ‘

port elements and configuration parameters defined in its ancestors. Redefinitions are forbidden.

Enumerated type TechnicalPolicyApplicability defines the valid associations of a technical policy. Three values are

ddm(d ON_COMPONENT_ONLY, ON_SOME_PORTS, ON_ALL_PORTS.Fhree-values-are-defined:-onComponent;

Value ON_SOME PORTS means the technical policy shall manage at least one port or policy. Value ON_ALL PORTS
means the technical policy definition is implicitly associated to all the ports and policies of the component. ,A technical

policy definition meant to be associated with a component usually corresponds to some technical capability managed by
the container (e.g. a periodic component execution with the associated API, or a passive execution. In the later case, the
container does actually nothmg) A technical policy meant to be assoc1ated w1th ports typlcally corresponds to port

mterceptlons

9.43.3

—n 1] —n n

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 43

UCM-28/ UCM-42: append

/ “(owned)” to items that

correspond to compositions

'UCM-28/ UCM-42: append
| “(owned)” to items that
I correspond to compositions

UCM-48/ UCM-55: Merge
component technical policy and
component port technical policy

UCM-28/ UCM-42: append

| “(owned)” to items that
| correspond to compositions

/ [UCM-71/ UCM-72: use the RFC
' /2119 vocabulary and be more
|| specific

'UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more

| specific

UCM-48/ UCM-55: Merge
component technical policy and

| component port technical policy

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

/' UCM-48 / UCM-55: Merge

component technical policy and
component port technical policy

UCM-48/ UCM-55: Merge
component technical policy and
component port technical policy

UCM-37/ UCM-38: remove
sections that explain the
graphical representation

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

-~ UCM-12/ UCM-40: remove
"~ sections that explains the xml
representation fromsection 9

-~ UCM-13/ UCM-36: remove IDL
sections fromsection 9

9.4.4 Supported programming languages

The programming languages supported by a given UCM framework are listed in nonfunctional aspect modules. UCM
frameworks should ship with a technical policy package that contains the list of the language they support.

9.4.4.1 ProgrammingLanguages

Programming languages are a list of language declarations.

* languagelanguages: Language [1...*] (0wned= ~~ UCM-28/ UCM-42: append

7

*** “(owned)” to items that
correspond to compositions

9.44.2 Language (INamed)

Field identifier of class Language should be the actual name of the language (e.g. “C”, “Ada”, etc.).

9.5 Components package

UCM components contain the business logic of the application. They are designed by users while interactions and
nonfunctional aspects are designed by platform providers.

9.5.1 Overview

Components hold the functional part of UCM architectures. The ucm_components package focuses on the definition of
these components as reusable blocks. The UCM standard makes a clear distinction between the specification of
functional blocks (called component types) and the specification of how those blocks should behave internally (called
component implementations).

Component types aggregate the functional contracts offered by the component to the rest of the application. Functional

contracts consist of interaction patterns (defined by ucm_interactions packages, see section 9.3) and associated data or
service (defined by ucm_types packages, see section 9.2. They are specified by ports.

44 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

/UCM-71/ UCM-72: use the RFC

/ 2119 vocabulary and be more
| specific
///
Component implementations describe the internal structures that correspond to component types. A given component /
type canmay, have several implementations. Component implementations eanmay, be either atomic or composite. | /" UCM-71/ UCM-72: use the RFC
Atomic component implementations encapsulate behaviors (i.e. source code) while composite component 2119 vocabulary and be more
implementations contain subcomponents, thus allowing for architecture breakdown. specific

«Port Type»
example_emitter_port

«Port Type»
example_receiver_port

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 45

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

"

—n

mant ot
Reat3oh

+Tmnl

Rt

At omi
At
At omi

NE3 dmplqn

lancuage=""C++11"

mant ot

+Tmnl

P

tyna=""C2 troncmitt

g

rEatoh—ahy

eSSt

=

"

—u

—Maoectiy

alkPali

+Tachni

+3EY

value=l121

alPali
albkali

Ilo-\v\-i

£T

Ml
iisy

hni

NntT

passtV
imnlqn

+3EY

Nt _nama—ro

eRt—hah

Manaaede

rraag

P

alPRali

hni

£T.

"

PortTuneSh
ey

"

PortTuneSh
ey

PortTuneSo

Tl

rt

P.

YR

PortTuneSo

+T
peReRtEHyp

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

46

) .
instance of "«
A

. instance of
* (definition

9.5.2 Component Module

Component modules contain the different declarations related with the business entities of architectures: components
with their ports, component implementations with their features or subcomponents.

The main entities of the component package are illustrated on figure 32.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 47

_~"UCM-11/ UCM-41: remove
example text fromsection 9

Thomas Vergnaud, 09/30/16
UCM-11 / UCM-41: remove example text from section 9

IApplicationModule

ComponentModule - el

ContractModule

+ contractModu

*

+ componentType

& type
’

ComponentType

+ technicalPolicy

IComponentimplementation

[1 .

CompositeComponentlmplementation AtomicComponentlmplementation

ComponentTechnicalPolicy

IComponent + policy

+ managedComponent

Figure 32: Main classes involved in UCM component package

9.5.2.1 ComponentModule (IApplicationModule)

The ComponentModule class is meant to contain all component definitions. It eanmay, contain submodules in order to

create hierarchies. It canmay, also contain contract modules for data type declarations that are directly related with
components.

Hidy, aiso contain contract modules tor data type decldrations that are directly related with

¢ submodule: ComponentModule [0...*] (owned)

¢ contractModule: ContractModule [0...*] (owned

* componentType: ComponentType [0...*] (owned

* componentImplementation: IComponentImplementation [0...*] (owned

« technicalPolicy: ComponentTechnicalPolicy [0...*] (ow ned}

9.5.2.2 IComponent (INamed, IAnnotable)

IComponent is an abstract class that represents any kind of component declaration (either component definition of
component implementation). It is meant to serve as a common ancestor for all these declarations.

All kinds of component declarations inherit from IComponent. Components canmay, have annotations to decorate the

majy have annofations fo decorate the

functional declarations.

48 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-28/ UCM-42: append
“(owned)” to items that
correspond to compositions

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

9.5.2.3 IComponentimplementation (IComponent)

Abstract class IComponentImplementation represents any kind of component implementation. The UCM standard
defines two concrete classes that extend
CompositeComponentImplementation (§ 9.5.5).

¢ type: ComponentType [1]

th

is class:

9.5.3 Component types and ports

AtomicComponentImplementation (8§ 9.5.4)

Component definitions are the functional contracts of components: they define component possible interactions.

«Enumeration»
AttributeMode
READ
READWRITE

IAnnotable

e

IComponent

2

IComponentimplementation

*

refines

type | ComponentType

port

refines

0.1
Port

14

attribute

*

Attribute

Figure 33: UCM component types

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

+ mode: AttributeMode [1]

and

A

49

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-46 / UCM-53: allow multiple
refinements for component types
and composite component
implementations

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

‘UCM—10/ UCM-39: replace ecore
diagrams of section 9 with UML
iclass diagrams

|

| UCM-28/ UCM-42: append
“(owned)” to items that
||correspond to compositions

+ refines Port *+Speq JPortSpec

e I
0.1 > ' UCM-46/ UCM-53: allow multiple
1 | refinements for component types
rand composite component

+port \implementations
|
|

PortRoleSpec PortTypeSpec |

5
|

ComponentType
|

|
i UCM-71/ UCM-72: use the RFC
1 4 11/ 2119 vocabulary and be more
1 specific

*

+role 1 «\/+ binding |+ binding +type 1 it
InteractionRole InteractionltemBinding AbstractTypeBinding PortType |
|

I
| /| UCM-71/ UCM-72: use the REC
/| 2119 vocabulary and be more
|

1 o
1 / ! || specific
* i | |
+involveditem +item J/ 1 + actualType 1 1 +actuaType * abstractType 1 iy
|

Interactionltem IConcrete TypeDeclaration IAbstractTypeDeclaration |
||/ UCM-71/ UCM-72: use the REC

|/l 2119 vocabulary and be more

11 specific

Figure 34: UCM component ports A I
,,,,,, I
|||/ UCM-71/ UCM-72: use the REC
9.5.3.1 ComponentType (IComponent) 1112119 vocabulary and be more
I' | specific

Component definitions specify the functional contracts that enable interactions between a given component and the rest i
(il

of the application. !
(
|/ UCM-46/ UCM-53: allow multiple

e port: Port [0...*] (owned)

Il11 refinements for component types
« attribute: Attribute [0...*] (ownedi /!11 | and composite component

’’ J‘C || implementations
* refines: ComponentType [0...iﬂ i
,, !

iy
Attribute definition is imported from the ucm_types package (§ 9.2.7.4). Attributes are used to specify functional I UCM-46/ UCM-53: allow multiple
parameters that shouldcosicbe handled by the business code inside components. Other components carnotshallnojsee | refinements for component types

/| and composite component

implementations
A component type canmay, refine anothercomponent-typeother component types, In this situation, the component type |
inherits the ports and attributes of its ancesterancestors,. It is important to note that component refinement is different
from the subtyping mechanism of object-oriented programming. In a given architecture, a component type eannotshall .
no(, be used in place of one of its ancestors. The refinement relationship is thus an inheritance relationship but not a UCM-71/ UCM-72: use the REC
sublyping relationship. 2119 vocabulary and be more
specific
In case of component refinement, the descendant component has the union of the ports and attributes of its direct
ancestors. In particular, consider the following situation: a component type A has a port pA, a component type B refines
A and refines pA into pB (i.e. pB replaces pA), a component type C also refines A, but does not refine any port (and
consequently has port pA). Then, if a component type D refines both B and C, it shall have ports pA (from C) and pB .
(from B) .~ UCM-46/ UCM-53: allow multiple
** "~ refinements for component types
and composite component
implementations

50 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

UCM-71/ UCM-72: use the
RFC 2119 vocabulary and be

mare snecific

A port of a given component type shall notes have the same name as a port of its ancestor, unless it refines it

: . UCM-71/ UCM-72: use the
9.5.3.2). An attribute eannotshall Eh
(§.) a uK . 31 . I?O .fa‘:* S o IRy D oSy B § RFC 2119 vocabulary and be

& o
mare snecific

9.5.3.2 Port (INamed, IAnnotable)

Ports specify component interaction points. They are associated with a port specification (§ 9.5.3.3). UCM-71/ UCM-72: use the

« spec: IPortSpec [1] RFC 2119 chabulary and be
more snecific
 refinesPort: Port [O... 1L ‘

As IPortSpec eanimay, correspond either to a port type specification or to a port role definition, a port is defined either by ‘

an explicit set of APIs or simply by a role. Consequently, a component definition is not necessarily a set of APIs: it UCM'B{ UCM-31: add
eanmay, be less precise than that, which allows iterative refinement when designing architectures. \ [SERESNE EoI JEEiE

imnlementation refinement and
The refinesPort field is used in case of port refinement. The refined port stshall be contained in an ancestor

UCM-71/ UCM-72: use the

Ports eanmay, have properties. Properties eanmay, be typically used to specify assumptions made by the component in ‘ RFC2119 _/f(i)cabulary and be
order to execute properly. For example, a property mayeotid be associated with a component port to indicate an \ USSP ES

9.5.3.3 IPortSpec |11 UCM-71/ UCM-72: use the
RFC 2119 vocabulary and be

Abstract class IPortSpec is referenced by component ports. It enables UCM frameworks to provide additional, |

framework-specific ways to define UCM ports specifications. The UCM standard defines two concrete classes that [
inherit this class: PortRoleSpec and PortTypeSpec. |

UCM-71/ UCM-72: use the
9.5.3.4 PortRoleSpec (IPortSpec) RFC 2119 vocabulary and be
A PortRoleSpec references an interaction role and specifies the binding of the interaction items with actual type more snecific
declarations. ‘

* role: InteractionRole [1]

I UCM-71/ UCM-72: use the

 binding;: InteractionItemBinding [0...*] (owned RFC 2119 vocabulary and be
¢ ¢ ‘ |1 mare snecific

Port role specifications mayean, be used to specify component ports in the early stages of the architecture definition ‘ 1

process. Referencing a role allows the specification of components with respect to interaction patterns, that is, with \
respect to an interaction logic, rather than actual APL.

|| UCM-71/ UCM-72: use the

I 1" RFC 2119 vocabulary and be
|1 more snecific

Class InteractionltemBinding defines the binding between an item of an interaction pattern and an actual type o

declaration (either data type or interface).

9.5.3.5 InteractionltemBinding

UCM-71/ UCM-72: use the
'RFC 2119 vocabulary and be
* actualType: IConcreteTypeDeclaration [1] imare snecific

¢ item: Interactionltem [1]

The class ITypeDeclaration is defined in the ucm_types package, and corresponds to any type declaration. ‘

UCM-71/ UCM-72: use the
RFC 2119 vocabulary and be
I

more snecific
I

9.5.3.6 PortTypeSpec (IPortSpec)

A PortTypeSpec is similar to a port role specification, except that it references a port type instead of an interaction role.
I

* type: PortType [1] |

¢ Dbinding: AbstractTypeBinding [0...*] (owned UCM-28/ UCM-42: append
. Gl . j—k *** | “(owned)” to items that
Port type specifications are used to completely specify component ports, as they reference a port type, that is, an API. |corresnond to camnositions
9.5.3.7 AbstractTypeBinding
Class AbstractTypeBinding defines the binding between an abstract type used in the port type referenced by the UCM-71/UCM-72: use the
component port and an actual type declaration (either data type or interface). RFC2119 vocabulary and be

more snecific

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 51 UCM-28/ UCM-42: append

“(owned)” to items that
corresnond to comnositinng

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-8 / UCM-31: add composite component implementation refinement and update field names for extension mechanism

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

* abtractType: IAbstractTypeDeclaration [1]

//UCM-S / UCM-19: replace
‘ * actualType: ¥FypePectarationlConcreteTypeDeclaration [1L ./ ITypeDeclaration by

IConcreteTypeDeclaration

-~ UCM-37/ UCM-38: remove
sections that explain the
graphical representation

-~ UCM-12/ UCM-40: remove
sections that explains the xml
representation fromsection 9

-~ UCM-13/ UCM-36: remove IDL
" sections fromsection 9

9.54 Atomic component implementations and technical policies

Atomic component implementations correspond to deployable entities that encapsulate behavior. As atomic component
implementations are the actual holders for business logic, they are controlled by containers.

52 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

Thomas Vergnaud, 09/29/16
UCM-5 / UCM-19: replace ITypeDeclaration by IConcreteTypeDeclaration

IComponentimplementation

AtomicComponentimplementation

1..*

programminglanguage

ComponentType | type
] =
. ¢
1
Language
* port
Port managedPort

* policy

TechnicalPolicy

managedComponent

managedPolicy * ;5

Figure 35: UCM atomic component implementations

Technical policies are associated with atomic component implementations to specify interactions with containers.

AtomicComponentimplementation

managedComponent 1.
policy

managedPort
Port E

TechnicalPolicyDefinition

1

TechnicalPolicy

/ definition

managedPolicy

* binding

I

actualType

AbstractTypeBinding

1

1

IConcrete TypeDeclaration

IAbstractTypeDeclaration

Figure 36: UCM technical policies

9.5.4.1

Class AtomicComponentImplementation represent actual business logic.

¢ programmingLanguage: Language [1]

- abstractType

AtomicComponentimplementation (IComponentimplementation)

Field programmingLanguage indicates the programming language used to write the implementation code. It references

a language among those defined in a technical policy definition module (§ 9.4.4).

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

53

UCM-48/ UCM-55: Merge
component technical policy and
component port technical policy

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-48/ UCM-55: Merge
component technical policy and
component port technical policy

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

UCM-48/ UCM-55: Merge
component technical policy and
component port technical policy

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

An atomic component implementation eanim. ay be associated with technical policies to specify interactions with or
configurations of the component container.

9.5.4.2 GompenentTechnicalPolicy (INamed, IConfigured)

Technical policiesComponent technieal-policies apply to atomic component implementations. They thus materialize the

application of a technical policy to one or several component implementations.
* managedComponent: AtomicComponentImplementation [1...*]

« definition: TechnicalPolicyDefinition [1]

¢ binding: AbstractTypeBinding [0...*] 1owned;

* managedPort: Port [0...*]

* managedPolicy: TechnicalPolicy [0...*

Attributes managedPort and managedPolicy are used to specify which interaction points the policy applies to if the
applicability _set in _its definition is ON_SOME_PORTS. If the definition applicability is set to

ON_COMPONENT_ONLY or ON_ALL_PORTS, fields managedPort and managedPolicy shall be empty.

to avoid the repetitive creation of too many technical policies. It is equivalent to creation of a techmcal policy for each
component. Configuration parameters defined in the corresponding technical policy definition may receive values.

Like a port type specification, a technical policy m have type bindings, to be used if the port elements of the technical

policy deflmtlon 1elV on abstlact tVDe declaratlons #rgweﬁfempeﬁeﬂﬁeehmeaﬁaeheyemﬁeﬂﬁahed-t&%evaﬂhﬁme

54 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

.~ "UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

.~ UCM-48/ UCM-55: Merge

component technical policy and
component port technical policy

~~ UCM-28/ UCM-42: append

“(owned)” to items that
correspond to compositions

-~ UCM-48/ UCM-55: Merge

component technical policy and
component port technical policy

./ UCM-48/ UCM-55: Merge

component technical policy and
component port technical policy

_~"UCM-37 / UCM-38: remove

sections that explain the
graphical representation

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 03/27/17
UCM-48 / UCM-55: Merge component technical policy and component port technical policy

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

UCM-12/ UCM-40: remove
/' sections that explains the xml
representation fromsection 9

"UCM-13/ UCM-36: remove IDL
sections fromsection 9

9.5.5 Composite Component Implementations

The definition of a composite component covers its internal decomposition into subcomponents and connections
between the ports of these subcomponents. Subcomponents are named AssemblyPart. A composite implementation also
contains port delegations to delegate its ports to ports of subcomponents.

An AssemblyPart references an IComponent. This means an assembly part may reference either a component J 77777 UCM-71/ UCM-72: use the RFC
definition or a component implementation.. The normal usage is to reference a component implementation to create 2119 jg)cabu]ary and be more
complete architectures. However, the UCM standard allows create assembly parts that reference component types in SECSCUIC

order to support high-level architecture designs.

Connections have ConnectionEnd elements, which are connected to an AssemblyPart and a Port of the corresponding
ComponentDefinition of the AssemblyPart.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 55

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

IComponent

lnteractionDefinition !
componentDefintion IComponentmplementation
1" | connectionDefinition [F
IAssembly CompositeComponentimplementation [
! fi
" refines
; ; T} Y
portDelegation
part \/ * *[1 part PortDelegation
AssemblyPart part :
o internalConnection <3
Connection | * 5 *\/ attributeDelegation
; 01 *\|AttributeDelegation| *
art
[} 2 refines
1 0.4 refines R
attribute
! Attribute
endpoint * * externalAttribute extemalPor) port
ConnectionEnd Port
port 1
* 1

Figure 37: UCM composite component implementations

9.5.5.1 IAssembly

Abstract class IAssembly defines assemblies. In the UCM standard, this concept is only extended by the

e part: AssemblyPart [0+...*] (owned
¢ internalConnection: Connection [0...*] (owned

Parts are sub-elements of the assembly.

9.5.5.2 CompositeComponentimplementation (IComponentimplementation, IAssembly)

A composite component implementation contains parts, internal connections—and, port delegations and attribute
delegations.

» portDelegation: PortDelegation [0...*] (owned)

e attributeDelegation: AttributeDelegation [0...*] (ow nvd)A

refines: CompositeComponentImplementation [0...*

A composite component implementation may refine another composite component implementation. In this case, it
inherits all the connections, parts and delegations of its ancestor. Additional connections, parts and delegations may be

declared.

56 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-46 / UCM-53: allow multiple
refinements for component types
I and composite component

I implementations

UCM-10/ UCM-39: replace ecore
diagrams of section 9 with UML
class diagrams

,/'UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

~~ UCM-34/ UCM-35: change

cardinality of field part in class
TAssembly

UCM-1/ UCM-32: create a new
class for attribute delegation

" UCM-46 / UCM-53: allow multiple

refinements for component types
and composite component
implementations

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

Thomas Vergnaud, 09/29/16
UCM-1 / UCM-32: create a new class for attribute delegation

Thomas Vergnaud, 09/29/16
UCM-34 / UCM-35: change cardinality of field part in class IAssembly

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/30/16
UCM-10 / UCM-39: replace ecore diagrams of section 9 with UML class diagrams

Thomas Vergnaud, 03/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

situations are possible. If the inherited part references a component type named CT, the refined part shall 1etelence a

component implementation the type of which is CT. If the inherited part references a component implementation, the
type of which is CT, then the refined part shall reference component type CT or another component implementation the

type of which is CT as well.

A refined connection may reference a connector definition that extends the connector definition referenced by the
inherited connection. It may also declare additional connection ends.

The underlying rationale for part and connection refinement is that port definitions (i.e. the referenced port types) shall
not be changed, in order to ensure consistency.,

9.5.5.3 AssemblyPart (INamed IAnnotabIek

An assembly part is a sub-component of an assembly. It references a component declaration (either component
definition or component implementation).

e componentDefinitioninstaneest: [Component [1]

» refines: AssemblyPart IO.“lI‘

Assembly parts mayes
types enables the defin

10n of composite implementation in the early stages of the archltecture definition process.

9.5.5.4

Connections are instances of connector definitions or interaction pattern definitions. They are used to connect ports of
sub-components.

Connection (INamed, IConfiguredk

» endpoint: ConnectionEnd [O...

« connectionDefinition: IInteractionDefinition [1]

» refines: Connection [0...1

Connections mayean, reference either a connector or an interaction pattern. The UCM standard thus enables early design

*]10w_nedk 77

of architectures, where the exact interaction mechanisms are not yet set.

9.5.5.5

Connection ends connect connections to ports of assembly parts.

ConnectionEnd (INamed. IConfiguredx

e part: AssemblyPart [1]
e port: Port [1]

9.5.5.6

@ﬂfﬁp@%—ﬁe—pﬁf—fport delegatlons allow the complete delegatlon of a port of a composite component implementation to a

PortDelegation M 777

e externalPort: Port [1]
* internatEndPoint-ConnectionEnd{Hpart: AssemblyPart [1
e port: Port [1

extemdl port shall belong to the Lomponem type (01 one of its ancestors) of the composite Lomponem 1leementdtmn

The part shall reference an assembly part of the composite component implementation, or an assembly part of one of its
ancestors. The port %hall reference a port of this assembly part (i.e. a port that belongs to the component definition

referenced by this part) Unlike connections, port delegations are not associated to a connector definition or an
interaction pattern: thev simply bind the external port to a])mt of a sub- Com])onent

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 57

/UCM-46/ UCM-53: allow
'multiple refinements for
comnonent tvnes nnd

| UCM-8/ UCM-31: add

composite component
imnlementation refinement and

1 /UCM-17/ UCM-24: add
./ inheritance to AssemblyPart

/'UCM-8/ UCM-31: add
/ composite component
| imnlementation refinement and

,/UCM-71/ UCM-72: use the
" RFC 2119 vocabulary and be

mare snecific

“ UCM-7 / UCM-26: make classes

Connection and
ConnectionFnd inherit from

UCM-28/ UCM-42: append
“(owned)” to items that
corresnond to comnositions

UCM-8/ UCM-31: add

composite component
imnlementation refinement and

UCM-71/ UCM-72: use the
RFC 2119 vocabulary and be

| more snecific

UCM-7 / UCM-26: make classes

Connection and
CannectinnFnd inherit fram

UCM-3/ UCM-21: add

'\ inheritance in section 9.5.5.6

“p UCM-1/ UCM-32: create a new
| class forattribute delegation

UCM-71/ UCM-72: use the
RFC 2119 vocabulary and be

mare snecific

UCM-1/ UCM-32: create a new
class for attribute delegation

Thomas Vergnaud, 09/29/16
UCM-1 / UCM-32: create a new class for attribute delegation

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-1 / UCM-32: create a new class for attribute delegation

Thomas Vergnaud, 09/29/16
UCM-3 / UCM-21: add inheritance in section 9.5.5.6

Thomas Vergnaud, 09/29/16
UCM-7 / UCM-26: make classes Connection and ConnectionEnd inherit from IConfigured

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-8 / UCM-31: add composite component implementation refinement and update field names for extension mechanism

Thomas Vergnaud, 09/30/16
UCM-28 / UCM-42: append “(owned)” to items that correspond to compositions

Thomas Vergnaud, 09/29/16
UCM-7 / UCM-26: make classes Connection and ConnectionEnd inherit from IConfigured

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 09/29/16
UCM-8 / UCM-31: add composite component implementation refinement and update field names for extension mechanism

Thomas Vergnaud, 09/29/16
UCM-17 / UCM-24: add inheritance to AssemblyPart

Thomas Vergnaud, 09/29/16
UCM-8 / UCM-31: add composite component implementation refinement and update field names for extension mechanism

Thomas Vergnaud, 04/24/17
UCM-46 / UCM-53: allow multiple refinements for component types and composite component implementations

9.5.5.7 AttributeDelegation (INamed)

Attribute delegations allow the complete delegation of a component attribute to an attribute of a sub-component. The
data type of both attributes shall be the same, but their modes (read only or read/write) may be different.

¢ externalAttribute: Attribute [1
e part: AssemblyPart [1
¢ attribute: Attribute [1

The attribute shall belong to the component definition (or to one of its ancestors) referenced by the part. The external
attribute shall belong to the component type of the composite component implementation.

An attribute may be delegated to several attributes of several sub-components inside a given composite component
implementation.

The semantics of an attribute delegation is the following: if an initial value is set for the attribute of the containing

component, this value is actually set for the attribute of the sub-component. If an initial value is also set for the attribute
of the sub-component, then it overrides the value set for the attribute of the containing component. This works

_~~ UCM-1/UCM-32: create a new
777 ~ class for attribute delegation

recursively in case of composites nested in cornDositesA

Thomas Vergnaud
29/09/2016 17:12

_~ UCM-37/ UCM-38: remove
" sections that explain the
graphical representation
Thomas Vergnaud
29/09/2016 18:25

] " =n . - "

58 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 09/29/16
UCM-37 / UCM-38: remove sections that explain the graphical representation

Thomas Vergnaud, 09/29/16
UCM-1 / UCM-32: create a new class for attribute delegation

—n n

—n . 5 "

—n ; 1]

9.5.5.9

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 59

 UCM-12/ UCM-40: remove
,/ sections that explains the xml
/ representation fromsection 9

_~"UCM-13/ UCM-36: remove IDL

sections fromsection 9

Thomas Vergnaud, 09/29/16
UCM-13 / UCM-36: remove IDL sections from section 9

Thomas Vergnaud, 09/30/16
UCM-12 / UCM-40: remove sections that explains the xml representation from section 9

| 10. XML syntax for UCM declarations

| UCM XML files shall conform to the XML schema for UCM. See ptc/17-05-07 for the definition of the XML schema.

elements are referenced by their name, formatted as follows: ::absolute::module::path::entity, or submodule::entity if the
entity is in a submodule. Elements of entities (e.g. component ports) are referenced with a dot, as follows:
module::component.port.

Examples of XML syntax are provided in section 13 and section 17.

Basically, every UCM concept described in the meta-model (see section [9]) corresponds to an XML tag. UCM

-~ UCM-43 / UCM-64: New sections
for the XMLsyntax

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 60

Thomas Vergnaud, 04/01/17
UCM-43 / UCM-64: New sections for the XML syntax

11. Graphical guidelines (non normative)

UCM has no standard graphical syntax; no UML profile has been defined yet. Nevertheless, diagrams are often helpful

to understand architectures. This section provides non-normative guidelines to graphically represent UCM elements.
The intent is to suggest how to represent illustrative, informal diagrams. The reference syntax is the XML syntax.

1.1 Shapes

UCM defines three main concepts: components, interactions and technical policies. Definitions (component t;
implementations, technical aspect, technical policies definitions, interaction patterns, connector definitions) may all be
represented by boxes with square corners, with different icons. Components may be represented with a square (m);
interactions may be represented with a circle (®); policies may be represented with a diamond (#). Component ports
may be represented by squares, possibly containing an icon that corresponds to the port type or the role they are
associated to.

Assembly parts may be represented by boxes with square corners. Connections may be represented by circles or boxes
with rounded corners.

Attributes and configuration parameters may be represented by triangles (A).

Relationships between entities (e.g. definition relationship, extension relationship, etc.) may be represented by lines or
arrow; it may be useful to specify the name of the relationship over the lines.

11.2 Colors

Application elements (i.e. component types and implementations) may be represented in blue. Platform elements
(interactions and technical policies) may be represented in purple. Contracts (data types, interfaces) may be represented
in yellow.

1.3 Example

The following diagram illustrates the graphical guidelines.

62 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Detector

detector_out

detector_in

o€ T
e l.--.. [Detector_composite ____l ______
O Detector_atomic -detector inj !detector out-
exec detector
filter H
’ exec_policy H
T defigition
defijtion ;
1 :
Y \/
’ prot_actv_comp @simple_msg_cnt

Figure 38: graphical example

, which has two ports: detector_in and deteuol out. No 1nf01mdtlon is

It IEDIQSE]][S a L()]ﬂDOnE]]t [VDE named “DE[QL{()]

“Detector_composite”.

Detector d[(JmlL is linked to a technical policy named “exec policy” (the same way the [V\(J ports are known as

-~ UCM-44/ UCM-52: create a
section for the graphical
guidelines

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 63

Thomas Vergnaud, 03/24/17
UCM-44 / UCM-52: create a section for the graphical guidelines

12. IDL syntax for UCM declarations

This section explains how to use IDL as a concrete syntax for some of the UCM concepts. IDL cannot represent all

UCM concepts, as many of them do not deal with APIs (e.g. composite component implementations).

Although it shares many definitions with it, it must not be confused with section 15, which describes the mapping of the
UCM programming model onto the IDL syntax.

12.1 Concerned IDL building blocks

From the IDL separation of the grammar in building blocks, the following blocks are used:

* BB Basic core — Core Data Types

* BB Annotations

* BB Interface — Basic

* BB Components — Basic

* BB Components — Ports and Connectors

* BB Template Modules

12.2 Contracts
UCM concepts for contracts (interfaces, methods, attributes and data types) are aligned with IDL concepts. See section

15 for the description of equivalences between IDL _and UCM data types. There is no anonymous types in UCM.
Therefore, the following IDL declaration has no equivalent in UCM:

interface intf1 {
long f(in short a);
14

The correct way of defining such an interface in UCM is to first define named types.

typedef long long_t;
typedef short short_t;

interface intf1
long_t f(in short_t a);

14

Abstract data types and abstract interfaces shall be represented by template parameters.

All UCM interfaces are local IDL interfaces. It is therefore not necessary to specify it.

12.3 Interactions

UCM connector definitions are similar to IDL connectors. UCM connector ports are IDL mirror ports. UCM port types
are IDL port types. Interaction patterns cannot be described in IDL.

64 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

124 Technical policies

UCM technical policies have no equivalent in IDL. Nevertheless, their port elements can be represented in IDL, using a
port type and the annotation “@policy”. Technical aspects cannot be described in IDL.

@policy
porttype policy_def1 {
provides intf1 service;

h

125 Components |

Only UCM component types and atomic component implementations can be represented in IDL. The internal structure
of composite component implementation is out of the IDL scope.

Atomic component implementations are represented by an IDL component. The component ports shall all be extended

ports; neither mirror ports, facets, receptacles, event sinks and event sources are allowed. Policies are ports decorated
with the “@policy” annotation.

component C1_impl {
port port_type1 p_in;

@policy
port policy def1 policy1;

h

‘ ~~ UCM-56/ UCM-57: Create a
******************************* " section for the IDLequivalent
| syntax

UCM component types are represented by IDL, components annotated by “@ty])e”i

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 65

Thomas Vergnaud, 03/28/17
UCM-56 / UCM-57: Create a section for the IDL equivalent syntax

13. Specification of UCM platform capabilities

This section describes the standard specifications of UCM platforms. These specifications define the semantics and
APIs for the component execution models, the component interaction models and the technical policies implemented by
containers.

These capabilities are declared in UCM interaction and nonfunctional aspect modules and associated contract modules.
The corresponding UCM models are provided in machine-readable document ptc/17-05-06.

13.1 Core UCM specifications (Normative, mandatory)

This section explains the capabilities that any UCM platform has to provide in order to conform with the core UCM
standard. The connector and technical policy definitions have no configuration parameters: they only define APIs to
remain portable. UCM frameworks should provide more detailed definitions by extending these, adding configuration
parameters that correspond to the targeted platform capabilities.

13.1.1 Restrictions on data type declarations

Native types (§ 9.2.5.3) can be used to manipulate framework-dependent data, and thus may prevent code portability.
The usage of native types is therefore not in the scope of the core UCM specifications. Frameworks that are compliant
with core UCM specifications reedmay, not support them.

inaynotsupport them. ...

Attribute declarations in interfaces (§ 9.2.7.4) represent access methods rather than actual data. To avoid ambiguities,
they are not part of the core UCM specifications. However, attribute declarations in components are supported.

13.1.2 Interaction return codes

Interactions should notify the business code whether communications succeeded or failed. The core UCM specifications
define three basic return code for this.

<contractModule name="return codes">
<enum indexType="short" name="comm_ecode'">
<value index="0Q" name="ok"/>
<value index="1" name="internal error"/>
<value index="2" name="comm error"/>
</enum>
</contractModule><CentractModule—name="return—codes™>
Enumeration—indexType="comm_ecode_enumerator—t' name="comm_ecodels
;E: }]E’;tz:*:;ﬂz:”f " 5} EZHQH {; o o
—<Engmerator—name=""trterpal—error—vatue=""/>
44444Eﬂﬁme%a{e¥fHame;LGBHMAe%Fg%14va}ue;l21#>
—</Enumeration>
PrimitiveTve kind="BYTE" name="co ccode_enumerator—£'/s

Value “ok” corresponds to normal behavior, where data is correctly transmitted. Value “internal_error” corresponds to
an error inside the connector. Value “comm_error” corresponds to an error during the transmission (e.g. a network
error).

The equivalent IDL declarations are the following.

module return_codes

{

enum comm_ecode

66 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

"UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

~"UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

OK
INTERNAL_ERROR,
COMM_ERROR

}:/lend of module return codesA

13.1.3 Standard component execution policies

The component execution model is managed by the comp exec asp technical aspect. A UCM component shall have
exactly one execution model technical policy. The UCM core library defines three technical policies: protected active,
protected passive and unprotected passive.

The standard defines another technical aspect, named comp trig asp, to specify policies that trigger component
execution if need be. A given component may be associated to zero or more triggering policies. The UCM core library
defines one policy for this technical aspect: self-executing component. Fhe-eompenent-execttion-model-is-managed-by

13.1.31 Specifications

<> «Technical Aspect»
component_execution_policy [exactlyOne]

~ .
technical,aspect N
L’ technical®aegect

B A g
0

Y

Y

Y

"

et

technicaljaspect technical’aspect
. .

Figure 39: Standard component execution model
The corresponding declarations is shown in XML syntax below.

<policyModule name="comp exec">
<contractModule name="api">
<interface name="comp exec intf">
<method name="run"/>
</interface>
</contractModule>
<policyDef applicability="on component only" aspect="comp_ trig asp"
name="self exec comp">
<comment>self-executing component</comment>
<portElement interface="api::comp_exec intf" kind="provided" name="activation"/>
</policyDef>
<policyDef applicability="on component only" aspect="comp exec asp"
name="unpr_pasv_comp">
<comment>unprotected passive component</comment>
</policyDef>

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 67

.~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

.~ UCM-45/ UCM-58: Update the

syntaxand the names for the
standard library

_~"UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

<policyDef applicability="on all ports" aspect="comp_exec asp" name="prot pasv_comp">
<comment>protected passive component</comment>

</policyDef>

<policyDef applicability="on_all ports" aspect="comp_exec_asp" name="prot actv_comp">
<comment>protected active component</comment>

</policyDef>

<technicalAspect constraint="exactly one" name="comp exec asp"/>

<technicalAspect constraint="any number" name="comp_ trig asp"/>

</policyModule>
<NonfunctionalAspectModule pame="component execution policies">

These four technical policies mtistshall be supported by any UCM platform. Additional, non standard technical policies
may be provided by platforms.

13.1.3.2 Semantics

The execution of a self-executing component is triggered by its container by calling a run() method. That is, the
component is triggered by itself, without requiring any data input. The expression of the triggering conditions (e.g. the
execution period in the case of a periodic trigger) is specific to each framework. A self-executing component is not
reentrant.

The protected active policy applies to one or several ports. The invocation of one of these ports triggers the execution of
the component. The execution is not reentrant. Like self-executing components, the execution details of active protected
components (e.g. periodic or sporadic execution, exact execution resource, etc.) is not covered by the core UCM
specifications; UCM framework may provide extended technical policies to manage configuration.

A passive protected component is not reentrant but does not execute by itself: it reacts to incoming calls. The container
shall guarantee that the component is only executed once at a time. There is no APL

A passive component is not self-executing. Unlike other policies, it mayeaixbe reentrant: several components eanma
i miR

13.1.3.3 Equivalent IDL syntax

Only the self-executing component technical policy defines an API. Therefore only this technical policy has an
equivalent in IDL syntax.

68 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

/UCM-45/ UCM-58: Update the

| syntaxand the names for the

! standard library
UCM-51/ UCM-59: Separate self-
execution policy from component
execution policy

_~"UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

'UCM-71/ UCM-72: use the RFC
12119 vocabulary and be more
1 specific

' /UCM-71/ UCM-72: use the RFC
1/ 2119 vocabulary and be more
! specific

-~ UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library
UCM-51 / UCM-59: Separate self-execution policy from component execution policy

module comp_exec

A
module api

L

interface comp_exec_intf
void run ();
—k
}:/lend of module api

N

@policy /UCM-45 / UCM-58: Update the
porttype self exec_comp / syntaxand the names for the
_{ | standard library
provides api::comp_exec_intf activation;
—k

}:/lend of module comp execA

** ' /UCM-71/ UCM-72: use the REC

13.1.4 Clock and trace service / gétgdgzcab“hry arel [e

13.1.41 Clock

The core UCM standard defines a technical aspect for a clock service that containers eanmay, provide to their }
tech

components. A UCM component eanmay, have at most one technical policy related with the clock technical aspect. The | _~~ UCM-71/ UCM-72: use the RFC

core UCM specification defines one technical policy with an API. UCM extensions may define alternative clock : g[l)ﬁi\;;cabulary and be more

technical policies.

: «Technical Aspect»
clock [atMostOne]

A

L]
technical hspect
L]

clock_api <<requires>>

@ clock_service_intf

+ get_local_time (OUT local_time : ucm_timeval_t)
+ get_synchronized_time (OUT synchronized_time : ucm_timeval_t)

'UCM-45/ UCM-58: Update the
syntaxand the names for the

Figure 40: Standard clock service N standard library

The standard clock technical policy defines an interface that is provided by the container to the component. This
interface contains two methods: get_local_time and get_synchronized_time.

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
! specific

Method get_local_time returns the time of the local node the component is deployed on. This is the “real” time. Method
get_synchronized_time returns the global time of the whole system.

13.1.4.2 Trace

The core UCM standard defines a technical aspect for a trace service that containers canmay, provide to their /
***** - UCM-71/ UCM-72: use the RFC

The core UCM specification defines one'technical policy with an API to be manipulated by component implementation ; igl)igci‘;izcabumry and be more

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 69

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

code, and one technical policy without API to be associated with ports. UCM extensions may define alternative trace
technical policies.

<> «Technical Aspect»
trace [anyNumber]

V\
technn:al afpect
techmcal dSpect
‘ trace_api <<requires>> _

hES

~

'UCM-45/ UCM-58: Update the
' syntaxand the names for the
; standard library

@ trace_service_intf

+ log (IN severity : log_severity_t, IN message : log_message_t)

' 'UCM-45/ UCM-58: Update the

) .) |/ syntaxand the names for the
Figure 41: Standard trace service +/ standard library

‘ /

13.1.4.3 Specificationi

‘ Definitions are gathered in a module named “containerservicesbasic svc”‘ which contains two submodules: one for the .~ UCM-45/ UCM-58: Update the

clock service, the other for the trace service. =~ syntax anc} the names for the
standard library

-~ UCM-45/ UCM-58: Update the
~ syntaxand the names for the
standard library

The API for the clock service is defined in a nested module, with two methods: get_local time and

get_synchronized_time.

L raramoter dircotion-n0UT pame="local_tine type=tucm_tinevaltiis

70 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

———</Interface>
———</ContractModule>

<policyModule name="basic_svc">
<policyModule name="clock">
<contractModule name="api">
<struct name="ucm_timeval t">
<comment>inspired from the 1ibC definitions</comment>
<field name="utv_sec" type="ucm_ time t"/>
<field name="ucm_usec" type="ucm_usecond_t"/>
</struct>
<integer kind="ulong" name="ucm time t"/>
<integer kind="long" name="ucm_usecond t"/>
<interface name="clk intf">
<method name="get local time">
<param dir="out" name="local time" type="ucm_timeval t"/>
</method>
<method name="get synchronized time">
<param dir="out" name="synchronized_time" type="ucm_timeval t"/>
</method>
</interface>
</contractModule>
<policyDef applicability="on component only" aspect="clock asp" name="clock">
<portElement interface="api::clk intf" kind="required" name="clock"/>
</policyDef>
<technicalAspect constraint="at most one" name="clock asp"/>

</policyModule>

The trace service has two technical policy definitions: one that applies to ports, the other that directly applies to
components. The later one defines an API to let component user code invoke the trace service.

<policyModule name="trace">
<contractModule name="api">

<string base="char8" name="method name t"/>
<enum indexType="ulong" name="log severity t">

<value index="0" name="TRACE"/>

<value index="1" name="DEBUG"/>

<value index="2" name="INFO"/>

<value index="3" name="WARNING"/>

<value index="4" name="ERROR"/>

<value index="5" name="CRITICAL"/>
</enum>
<string base="wchar" name="log message t"/>
<interface name="trace intf">

<method name="log">

<param dir="in" name="severity" type="log severity t"/>
<param dir="in" name="message" type="log message t"/>
</method>

</interface>
</contractModule>

<policyDef applicability="on_ component only" aspect="trace_asp" name="comp_trace">
<portElement interface="api::trace intf" kind="required" name="trace"/>
</policyDef>
<policyDef applicability="on some ports" aspect="trace asp" name="port trace">
<configParam name="methods to trace" type="api::method name t"/>
<configParam name="log severity" tvpe="api::log severity t"/>
__ </policyDef>
<technicalAspect constraint="any number" name="trace asp"/>
</policyModule>
</policyModule>

Nonf 3 1A Modil e T
u 1 e o 7t
TechniealPolievDefiniti L eal et in —u P u
Tiey tion—appiieabits £ PoRe Frex HOOReR o

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 71

_~"UCM-45/ UCM-58: Update the
" syntaxand the names for the
standard library
Thomas Vergnaud
28/03/2017 18:27

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

cechnical . u
hetealhss e
R - e . T
Por tinterfs race—apitttrace—service—tntfl kind=UREOUIRED
e "
pam sce—apt
Dech 1PolieyBefinit
liey
Tech 1Pelievbefiniti Lttt i . .
liey tienapplicabils porent! pame=lsert—tra
PO e u
heiealisy e
Conti i onp N e tlmethoda—tot e ; . u
gurationP terna methods—to—tra = race—apittmethod—nam
Conti tionP: . oy e I P
guration? ter mome=""teq— - rece—apiittog— ey —
PechnicalPolicvbefinits
liey
Comtrn et o e in
ntrae . race—apt
; Lethod u
— <String8 rmeme=lmethod mame—t
rion i I s e eu
tion Pype=lULONG! meme=llog—severity—t
tor—pame="trace—alue="0"
. et e
EOr—t—ii— oty e -
. wieom oo _wouw
. L et o Tisamtian
EOr—t—i— e o
. L b s
= . Mepipianit olyemus:
tor pame=lcriticall valy
= s
L . v N e
— <PrimitiveInteger kind=UBYIEU rometlcy = numerator
Strina32 s tu
String32 nome=llog message—
Erbans e g
Interface name=ltra eviee—dints
- ar iretionmLINY . Cen o s e e
B ter direction=1IN" non iyl typemllogseverity—
. for directionmtInt L R L
P b e e M o B I
Intexs
Com e oMo
Fechnicala e b e b el . e .
pect—muttipiet anyiamberl—rame ror
Nonfunct 12 ol
Nenfun P)
N o 1a e _~ UCM-45/ UCM-58: Update the
Nenfun:
: .
A syntaxand the names for the

standard library
‘ 13.1.4.4 Equivalent IDL syntax Thomas Vergnaud

28/03/2017 18:30
‘ The equivalent IDL declarations for the basic service APIs are as follows.

module basic_svc

module clock
A
module api
A
typedef unsigned long ucm_time_t;
typedef long ucm_second_t;
struct ucm_timeval_t
R |
ucm_time_t utv_sec;
ucm_usecond_t ucm_usec;

-k

interface clk_intf

R |
void get_local_time (out local_timeout ucm_timeval_t local_time);
void get_synchronized_time (out ucm_timeval_t synchronized_time);

}:/lend of module api

72 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

7@policy
porttype clock

uses api::clock_intf clock;

-
—k

}://lend of module clock

module trace

L.

module api
A

typedef string method_name_t;
enum log_severity_t

TRACE

DEBUG

INFO

WARNING

ERROR

CRITICAL
S H

typedef wstring log_message_t;

interface trace_intf

void log (in log_severity_t severity, in log_message_t message);

}:/lend of module api

@policy

porttype comp_trace
A
—k

}://lend of module trace

uses api::trace_intf trace;

ilend of module basic sve, |

13.1.5 Service based interaction

13.1.5.1 Description

Service interaction correspond to the cla551cal client / server interaction. It 1nvolves two roles a chent and a server.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 73

/UCM-45 / UCM-58: Update the
/syntaxand the names for the
/ standard library

/UCM-71/ UCM-72: use the RFC
| 12119 vocabulary and be more
'/ specific

‘ 'UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more
specific

_~UCM-45/ UCM-58: Update the

syntaxand the names for the
standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

«Interaction Pattern»
service_interaction_pattern

qierver 1,11

«Port Type»
service_server_port

«Port Type»

_~ UCM-45/ UCM-58: Update the
syntaxand the names for the

standard library

service_client_port

Figure 42: Service based interaction

On the server side, an interface is provided while on the client side, the same interface is required. The calls to the

methods of the interface are blocking.

Figure 43: Port types for service based interactions

syntaxand the names for the
standard library

Specifications

13.1.5.2

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

74

_~"UCM-45/ UCM-58: Update the

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/28/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

—nqn —Mearver" unparMultinliciyu="q"
Frer—apperMutt y=—-=%

<interactionModule name="services">

<contractModule name="api">
<abstractInterface name="service intf t"/>
</contractModule>
<pattern name="svc intr pat">
<role max="-1" min="1" name="client">
<item name="service item"/>
</role>
<role max="1" min="1" name="server'">
<item name="service_ item"/>
</role>
<item name="service item" nature="interface"/>
</pattern>
<portType name="svc srvr pt">
<portElement interface="api::service intf t" kind="provided" name="srvr_ pe"/>

</portType>
<portType name="svc cli pt">
<portElement interface="api::service intf t" kind="required" name="cli pe"/>
</portType>
<connectorDef name="simple svc cnt" pattern="svc intr pat">
<port name="client" role="svc_intr_pat.client" type="svc cli pt"/>
<port name="server" role="svc intr pat.server" type="svc srvr pt"/>
<itemBinding cItem="api::service intf t" pItem="svc intr pat.service item"/>
__</connectorDef>
</interactionModule>,

=/interactlonfoduies]

13.1.5.3 Equivalent IDL syntax

The equivalent IDL declarations for the service connector are as follows.
module services < interface SERVICE_INTF_T >

porttype svc_srvr_pt

provides SERVICE_INTF_T srvr_pe;
h

porttype svc_cli_pt

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

75

_~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library
Thomas Vergnaud
29/03/2017 11:33

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

uses SERVICE_INTF_T cli_pe;
_h

connector simple_svc_cnt

A
mirrorport svc_cli_pt client;
mirrorport svc_srvr_pt server;

13.1.6 Message based interaction

13.1.6.1 Description

The UCM message base interaction is inspired by CCM message ports.. The interaction pattern involves two roles: an

A standard connector is defined for this interaction pattern. The connector defines two ports: one corresponds to the

emltter role, r_he other corresponds to the receiver role fPhe—emﬁfer—peﬁ—refereﬂeeH—pﬁﬁ—speerﬁeaﬁ@ﬂ—nameé

smg’:e—pef%e%emﬁﬂ—ﬂ%e—pfeﬂde@—fheﬂﬁeﬂﬁfeﬁae& he emltter pon references a port type named * msg emtr pt” Thls
port type contains a single port element that requires interface “message intf”. The receiver port references a port type
named “msg_rcvr_pt”. This port type also contains a single port element the provides the same inter faceA

«Interaction Pattern»
message_interaction_pattern

[

«Port Type»
message_receiver_port

«Port Type»
message_emitter_port

Figure 44: Message based interaction

The two port specifications use the same interface named “message_intf”. This interface has a unique method, named
“push”; it takes one parameter “message”, the type of which is a data type template parameter named
“message_type_t”.

76 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

-~ UCM-45/ UCM-58: Update the

syntaxand the names for the
standard library

-~ UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

-~ UCM-45/ UCM-58: Update the

syntaxand the names for the
standard library

_~"UCM-45/ UCM-58: Update the

syntaxand the names for the
standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Figure 45: Port types for message based interactions

13.1.6.2 Specifications

—n "

<interactionModule name="messages">
<contractModule name="api">
<abstractDataType name="message_ type t"/>
<interface name="message intf">
<method name="push">

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

77

- UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library
Thomas Vergnaud
29/03/2017 11:59

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

<param dir="in" name="message" type="message type t"/>
<param dir="return" name="ecode" type="::core::return_codes::comm_ecode"/>

</method>
</interface>
</contractModule>
<pattern name="msg_intr pat">
<role max="-1" min="1" name="emitter">
<item name="message item"/>
</role>
<role max="-1" min="1" name="receiver">
<item name="message item"/>
</role>
<item name="message_item" nature="data"/>
</pattern>
<portType name="msg_emtr pt">
<portElement interface="api::message intf" kind="required" name="emtr_ pe"/>
</portType>
<portType name="msg rcvr pt">
<portElement interface="api::message intf" kind="provided" name="rcvr_pe"/>
</portType>
<connectorDef name="simple msg cnt" pattern="msg intr pat">
<port name="emitter" role="msg intr pat.emitter" type="msg emtr pt"/>
<port name="receiver" role="msg intr pat.receiver" type="msg rcvr pt"/>
<itemBinding cItem="api::message type t" pItem="msg intr_pat.message_item"/>
__</connectorDef>
</interactionModule>,

J

13.1.6.3 Equivalent IDL syntax

The equivalent IDL declarations for the message connector are the following.

module messages < typename MESSAGE TYPE T >

{
module api

L.

interface message intf

::core::return_codes::comm_ecode push (in MESSAGE _TYPE T message);

LLL

orttype msg emtr pt

|

uses api::message_intf emtr pe;

2

porttype msg _rcvr_pt

provides api::message int rcvr pe;

L L.

connector simple msg _cnt

L.

mirrorport msg emtr pt emitter;
mirrorport msg rcvr pt emitter;

2

78 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

- UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library
Thomas Vergnaud
29/03/2017 12:06

-/ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library
Thomas Vergnaud
29/03/2017 12:09

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

13.2 Standard properties (Normative, not mandatory)

This section defines standard properties. These properties mayeary be associated with components to provide | .~ UCM-71/ UCM-72: use the RFC
documentation. =~ S 2119 vocabulary and be more

specific
<contractModule name="std ann">
<string base="char8" name="prop_ str_t"/>
<annotationDef name="comp_descr'">
<comment>This annotation may apply to components</comment>
<configParam name="description" type="prop str t"/>
<configParam name="category" type="prop_ str t"/>
<configParam name="version" type="prop str t"/>
<configParam name="vendor" type="prop str_t"/>
</annotationDef>

</contractModule>

/UCM-45/ UCM-58: Update the
,/ syntaxand the names for the
****** " standard library

13.3 Advanced timer service (Normative, not mandatory)

The component execution policies defined in the core platform specifications (section 13.1.3) allow the definition of p
self-executing components: the business code of these components rmistshall implement a method run() that is called by | -~ UCM-71/ UCM-72: use the REC
the container. Though this minimalistic approach is convenient for nearly-hard real time applications, it may not be 2119 vocabulary and be more

sufficient for more flexible cases, when the user code needs to reprogram timers. This section details the specification of specific

user-programmable timers.

Two kinds of timers are defined: object-based and index-based. ‘

<> «Technical Aspect»
user_defined_timer [anyNumber]

« A3
. AN

’
technical dspect s
4

~
, technical aspfct

@’

Figure 46: Standard timer policies

~
~
~

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 79

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

,"UCM-45/ UCM-58: Update the

policies-ean-be-assoctated with-a-given-eompenenty ' syntaxand the names for the
””””””””””””””””””””””””””””” standard library

13.3.1 Object-based timers

The object-based timer policy implements a scheduler service that mayear deliver timer objects. 7 5234_71 / t}J(ljaM-n:du;e the RFC
************************************ - vocabulary and be more

specific

@ ott_scheduler

+ scheduler_trigger (RETURN returns : ott_timer, IN

trigger_handler : ott_handler, IN trigger_delay : timer_scheduler <<requires>>
ucm_timeval_t)

+ schedule_repeated_trigger (IN trigger_handler :

ott_handler, IN interval : ucm_timeval_t, IN max_rounds : ’

ott_round_t, IN start_delay : ucm_timeval_t)

@ ott_timer

+ cancel ()

+is_cancelled (RETURN returns : timer_bool_t)
+ READ ott_round_t rounds = default

+ READ ott_str_id id = default

® ott_handler

+ on_trigger (IN timer : ott_timer, IN delta_time :
ucm_timeval_t, IN round : ott_round_t)

Figure 47: Technical policy for object-based programmable timers

The deﬁnmon of the technical pohcy and assocmted contracts is speuﬁed by the following declaranons The-definition

. : : ’ .~ UCM-45/ UCM-58: Update the
specified-by the foHowing XMk-declarationsy .

** syntaxand the names for the
—u : " standard library

80 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

<policyModule name="ott timer">
<contractModule name="api">

<comment>UCM object-oriented timed trigger contract</comment>

<integer kind="ulong" name="ott round t"/>

<string base="char8" name="ott str id"/>

<bool name="ott bool t"/>

<interface name="ott handler">

<method name="on_trigger">

<param dir="in" name="timer" type="ott service intf"/>
<param dir="in" name="delta time"
type="::core::basic _svc::clock::api::ucm_timeval t"/>
name="round" type="ott round t'"/>

<param dir="in"

</method>

</interface>

<interface name="ott service intf">
<attribute defaultvValue="" mode="read" name="rounds" type="ott round t"/>
<attribute defaultvalue="" mode="read" name="id" type="ott str_id"/>

<method name="cancel"/>

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

81

<method name="is cancelled">
<param dir="return" name="returns" type="ott bool t"/>
</method>
</interface>
<interface name="ott_ scheduler">
<method name="scheduler_trigger">
<param dir="return" name="returns" type="ott service_ intf"/>
<param dir="in" name="trigger handler" type="ott handler"/>
<param dir="in" name="trigger_ delay"
type="::core::basic svc::clock::api::ucm timeval t"/>
</method>
<method name="schedule repeated trigger">
<param dir="in" name="trigger handler" type="ott handler"/>
<param dir="in" name="start delay"

type="::core::basic svc::clock::api::ucm_timeval t"/>
<param dir="in" name="interval"
type="::core::basic_svc::clock::api::ucm_timeval t"/>
<param dir="in" name="max_ rounds" type="ott round t"/>
</method>
</interface>
</contractModule>

<policyDef applicability="on component only" aspect="::core::comp _exec::comp_trig asp"
name="ott timer">

<portElement interface="api::ott scheduler" kind="required" name="timer_ scheduler"/>

</policyDef>

</policyModule> .~ UCM-45/ UCM-58: Update the
s/polievModules syntaxand the names for the
The equivalent IDL declarations are the following. standard library

UCM-51/ UCM-59: Separate self-
execution policy from component
execution policy

Thomas Vergnaud

29/03/2017 12:24

module ott_timer

__module api

typedef unsigned long ott_round_t;
typedef char ott_str_id;
typedef boolean ott_bool_t;

interface ott_service_intf

N

readonly attribute ott_round_t rounds;
readonly attribute ott_str_id id;

void cancel ();
ott bool_t is_canceled ();

L

___interface ott_handler

N

void on_trigger (in ott_service_intf timer, in ::core::basic_svc::clock::api::ucm_timeval_t
delta_time, in ott_round_t round);

_h
___interface ott_scheduler
A
ott_service_intf scheduler_trigger (in ott_handler trigger_handler,
in ::core::basic_svc::clock::api::ucm_timeval_t trigger_delay);
void schedule_repeated_trigger (in ott_handler trigger_handler,
in ::core::basic_svc::clock::api::ucm_timeval_t start_delay,
in ::core::basic_svc::clock::api::ucm_timeval_t interval,
in ott_round_t max_rounds);
_h

82 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library
UCM-51 / UCM-59: Separate self-execution policy from component execution policy

}illend of module api
@policy

porttype ott_timer

A

uses api::ott_scheduler timer_scheduler;

_k

}:/lend of module ott timerA

13.3.2 Index-based timers

Some real-time applications avoid relying on object-oriented concepts. For these applications, a simpler timer
mechanism is defined.

The definition of the technical policy and associated contracts is specified by the following declarations.

® itt_callback_intf

+on_timeout (IN time : timeout_t, IN timer_number : timer_number_t) timer_callback <<provides>>

~
~
b

O

® itt_service_intf
-

+ start_periodic_scheduler (IN timer_number : timer_number_t, IN
delay_time : timeout_t, IN rate : timeout_t)

+ start_sporadic_scheduler (IN timer_number : timer_number_t, IN timer_service <<requires>>
time : timeout_t)

+ cancel_timer (IN timer_number : timer_number_t)

+is_canceled (IN timer_number : timer_number_t, RETURN returns :

timer_bool_t)

Figure 48: Technical policy for index-based programmable timers

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 83

-~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

-~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

—n " —y s "

</NonfunctionalAspectModule>
<policyModule name="itt timer">
<contractModule name="api">

<comment>UCM id-based timed trigger contract</comment>

<struct name="timeout t">

<field name="time val" type="::core::basic svc::clock::api::ucm time t"/>

<field name="flag" type="timeout enum t"/>
</struct>

<enum_indexType="short" name="timeout enum_t">

<value index="0" name="ABSOLUTE TIME"/>

<value index="1" name="RELATIVE TIME"/>

</enum>

<integer kind="ulong" name="timer_id t"/>

<bool name="timer bool t"/>

<interface name="itt callback intf">

<method name="on timeout">

<param dir="in" name="time" type="timeout t"/>

<param dir="in" name="timer number" type="timer id t"/>

</method>

</interface>

<interface name="itt service_ intf">

<method name="start periodic_scheduler">

<param dir="in" name="timer_ id" type="timer_id t"/>

<param dir="in" name="delay time" type="timeout t"/>

<param dir="in" name="rate" type="timeout t"/>

</method>
<method name="start sporadic scheduler">

<param dir="in" name="timer_ id" type="timer id t"/>

<param dir="in" name="time" type="timeout t"/>

</method>
<method name="cancel timer">

<param dir="in" name="timer_ id" type="timer_id t"/>

84

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

</method>
<method name="is canceled">
<param dir="in" name="timer id" type="timer id t"/>
<param dir="return" name="returns" type="timer bool t"/>
</method>
</interface>
</contractModule>
<policyDef applicability="on_component only" aspect="::core::comp_exec::comp_trig asp"
name="itt timer">
<portElement interface="api::itt callback_intf" kind="provided"
name="timer_ callback"/>
<portElement interface="api::itt service intf" kind="required" name="timer service'"/>

</policyDef>

</policyModule>

The equivalent IDL declarations are the following.

module itt timer
_q
module api
_{

enum_timeout enum_t

ABSOLUTE_TIME,
RELATIVE TIME
Y

typedef short timer_id t;

typedef boolean timer bool t;

struct timeout t
::core::basic svc::clock::api::ucm timeval t time val;
timeout enum_t flag;

-

interface itt callback intf
_{
void on_timeout (in timeout t time, in timer_id t timer number);
I
interface itt service intf
_{
void start periodic scheduler (in timer id t timer_ id,
in timeout t delay time,
in timeout t rate);
void start sporadic scheduler (in timer_id t timer_ id,
in timeout t timer);
void cancel timer (in timer id t timer id);

timer bool t is canceled (in timer id t timer id);
I
};//end of module api

@policy
porttype itt timer

provides api::itt callback intf timer callback;
uses api::itt service intf timer service;

}:;//end of module itt tlmgg‘ 77

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 85

- UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library
Thomas Vergnaud
29/03/2017 13:53

-~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library
Thomas Vergnaud
29/03/2017 14:01

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Technical policy “itt_timer” has two port elements: one (“timer_callback”) is provided by the component executor, and
| mustshall be implemented by the business code. It has a unique method “on_timeout”, which silishall, be invoked upon

by the component container. It has several methods to initiate a timer. A periodic timer shallwﬂirepeat infinitely; a

sporadic timer shallswil] trigger once. Upon the initiation of a timer, the business code shall provide a timer number.

Timers can be canceled.

13.4 Additional interactions (Normative, not mandatory)

The core specifications defines APIs for service and message interactions (sections 13.1.5 and 13.1.6). This section
defines additional interactions that are common in architectures Request-response is actually a bidirectional message-
based interaction; it can easily be used for asynchronous communications. Shared data is a one-way data transmission in
which receivers are notified and have to fetch updated versions of data—allowing to ignore some.

13.4.1 Request-response

«Interaction Pattern»
request-response_interaction_pattern

«Port Type»
rrs_client_port

vy «Port Type»
Irs_server_port

«Port Type»
rra_client_port

«Port Type»
rra_server_port

’
rr_;wnchronous_server
’

l ~asynchronous_server

Figure 49: Request-response

86 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

/UCM-71/ UCM-72: use the RFC
| 2119 vocabulary and be more
| specific

'~ UCM-71/ UCM-72: use the RFC

2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more

|\ specific

" UCM-71/ UCM-72: use the RFC
1| 2119 vocabulary and be more
11 specific

' UCM-71/ UCM-72: use the RFC
| 2119 vocabulary and be more
1 specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Figure 50: Port types for request-response interaction

The request-response interaction is a two-way communication. It is defined in a module named request _reponse,
13.4.1.1 Specifications

<InteractionMedule—name="regquest—response’>

It involves two interaction items: the request data and the response data. Two roles are defined: client and server. A
request-response interaction involves a unique server, and at least one client.

Several APIs are defined: an interface rrsync_intf for synchronous communications (on client and server side), and a
couple of interfaces (rrasync_req_intf and rrasync_resp_intf) for asynchronous communications (on client and server
side). The interfaces for asynchronous communications allow for decoupling the reception of the request data and the
emission of the response data.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 87

_~"UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

-~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

-~ UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

_~UCM-45 / UCM-58: Update the
" syntaxand the names for the
standard library

/UCM-45/ UCM-58: Update the
,/ syntaxand the names for the
/ standard library

The connector definition itself defines four possible ports: two for the client role (synchronous and asynchronous), and
two for the server role (synchronous and asynchronous). As the interaction pattern specifies there shalleﬂlionly be a .

_~"UCM-71/ UCM-72: use the RFC
************* 2119 vocabulary and be more

unique server, either the synchronous server port or the asynchronous server port shall be connected. i
specific

<interactionModule name="request response'">
<contractModule name="api">
<abstractDataType name="req data t"/>
<abstractDataType name="resp data t"/>
<integer kind="ulong" name="rr_id t"/>

88 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

<interface name="rrsync intf">
<comment>interface for request-response synchronous client and server</comment>
<method name="request">
<param dir="in" name="request" type="req_ data t"/>
<param dir="out" name="response" type="resp data t"/>
<param dir="return" name="ecode" type="::core::return codes::comm ecode"/>
</method>
</interface>
<interface name="rrasync req server intf">
<comment>interface for request-response asynchronous server (request)</comment>
<method name="request">
<param dir="in" name="request" type="req data t"/>
<param dir="in" name="reqg_id" type="rr_id t"/>
<param dir="return" name="ecode" type="::core::return codes::comm_ecode"/>
</method>
</interface>
<interface name="rrasync resp_ intf">
<comment>interface for request-response asynchronous client and server
(response)</comment>
<method name="response">
<param dir="in" name="response" type="resp data t"/>
<param dir="in" name="resp id" type="rr_id t"/>
<param dir="return" name="ecode" type="::core::return codes::comm_ecode"/>
</method>
</interface>
<interface name="rrasync req client intf">
<comment>interface for request-response asynchronous client (request)</comment>
<method name="request">
<param dir="in" name="request" type="req data t"/>
<param dir="out" name="req id" type="rr_id_t"/>
<param dir="return" name="ecode" type="::core::return _codes::comm_ecode"/>
</method>
</interface>
</contractModule>
<pattern name="rr_ intr pat">
<role max="-1" min="1" name="rr_client">
<item name="req data"/>
<item name="resp data"/>
</role>
<role max="1" min="1" name="rr_server">
<item name="req data"/>
<item name="resp_data"/>
</role>
<item name="req data" nature="data"/>
<item name="resp data" nature="data"/>
</pattern>
<portType name="rrs cli pt">
<portElement interface="api::rrsync intf" kind="required" name="cli pe"/>
</portType>
<portType name="rrs srvr pt">
<portElement interface="api::rrsync_intf" kind="provided" name="srvr_pe"/>
</portType>
<portType name="rra cli pt">
<portElement interface="api::rrasync_req client intf" kind="required"
name="cli req pe"/>
<portElement interface="api::rrasync resp intf" kind="provided" name="cli resp pe"/>
</portType>
<portType name="rra srvr pt">
<portElement interface="api::rrasync req server intf" kind="provided"
name="srvr_reqg_pe"/>
<portElement interface="api::rrasync resp intf" kind="required" name="srvr resp pe'"/>

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 89

</portType>

<connectorDef name='"req_resp_cnt" pattern="rr_intr_pat">
<port name="rr_sync cli" role="rr intr pat.rr client" type="rrs cli pt"/>
<port name="rr_sync_srvr" role="rr_intr_pat.rr_server" type="rrs_srvr pt"/>
<port name="rr_async_cli" role="rr_intr_pat.rr _client" type="rra cli pt"/>
<port name="rr_async_srvr" role="rr_intr pat.rr_server" type="rra srvr pt"/>
<itemBinding cItem="api::reg data t" pItem="rr_intr pat.req data"/>
<itemBinding cItem="api::resp data t" pItem="rr intr pat.resp data"/>

</connectorDef>
</interactionModule>

13.4.1.2 Semantics
Synchronous client and server ports have the same execution semantics as in the service connector (§ 13.1.5): clients
send the request data to the server and await the reception of the response data.

Asynchronous ports allow deferred computation. The processing of the response data is performed by a callback in
asynchronous clients. On server side, incoming request data mayear, be stored to be processed later; the response AP
canmay, be invoked anytime. The identifier parameters req_id an

13.4.1.3 Equivalent IDL syntax

The equivalent IDL declarations are the following.

module request_response<typename REQ_DATA T, typename RESP_DATA T>

A
module api

L.

typedef unsigned long rr_id_t;
interface rrsync_intf

A
::core::return_codes::comm_ecode request (in REQ_DATA_T request,
out RESP_DATA_T response);
—k
interface rrasync_req_server_intf
A
::core::return_codes::comm_ecode request (in REQ_DATA_T request,
inrr_id_treq_id);
—k
90 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

/UCM-45/ UCM-58: Update the
| syntaxand the names for the
| standard library

' [UCM-71/ UCM-72: use the REC
| 2119 vocabulary and be more

| specific

/UCM-71/ UCM-72: use the RFC
i/ 2119 vocabulary and be more
'/ specific

.~ UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

interface rrasync_resp_intf

::core::return_codes::comm_ecode response (in RESP_DATA_T response,
inrr_id_t req_id);

L |k

interface rrasync_req_client_intf

::core::return_codes::comm_ecode request (in REQ_DATA_T request,
out rr_id_t req_id);

L |k

;/lend of module api

porttype rrs_cli_pt

L.

uses api::rrsync_intf cli_pe;

L

porttype rrs_srvr_pt

L.

prowdes api::rrsync_intf srvr_pe;

L

porttype rra_cli_pt

L.

uses api::rrasync_req_client_intf cli_req_pe;
prowdes api::rrasync_resp_intf cli_resp_pe;

L

porttype rra_srvr_pt

L.

provides api::rrasync_req_server_intf srvr_req_pe;
uses aDI -rrasync_resp. intf srvr resp_pe;

L

connector req_resp_cnt

L.

mirrorport rrs_cli_pt rr_sync_cli;
mirrorport rrs_srvr_pt rr_sync_srvr;
mirrorport rra_cli_pt rr_async_cli;
mirrorport rra_srvr_pt rr_async_srvr;

}i/lend of module request_response, -~ UCM-45/ UCM-58: Update the
A syntaxand the names for the
tandard lib
13.4.2 Shared data standard library

The shared data interaction is meant to be used for data transmission between several writers and several readers.
Unlike the message interaction (section 13.1.6), readers fetch data whenever they need to, instead of receiving
messages. On the writer side, data is written and sent (or canceled) using two different methods, thus allowing to set

data values and publish them at different paces. Figure Erretr——source-delaréférence non-trouvée iHustrates—the
definition-of the shared-data-interaction-

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 91

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

«Interaction Pattern»
shared-data_interaction_pattern

a writer [1,4] 1iata_reader [1,%]

«Port Type»
sd_writer_port

«Port Type»
sd_reader_port

Figure 51: Shared data

@ data_notification
+on_data_update ()
J
«Port Type»

® data_reader R sd_reader_port.

+ freeze_data (RETURN ecode : comm_ecode)
+ release_data (RETURN ecode : comm_ecode)
+read_data (OUT data : shared-data_t, RETURN ecode : comm_ecode)

ler_p <<requires>>

(1) data_writer

+write_data (IN data : shared-data_t, RETURN ecode : comm_ecode)
+ publish_data (RETURN ecode : comm_ecode)
+ cancel_data (RETURN ecode : comm_ecode)

«Port Type»
sd_writer_port ————

writer_p <<require

Figure 52: Port types for shared data interactions _~ UCM-45/ UCM-58: Update the
A * syntaxand the names for the
i
13421 Specifications standard library

The shared data interaction is defined in an interaction module

</InteractionModules -~ UCM-45/ UCM-58: Update the
A ~ syntaxand the names for the

Three interfaces are defined: one for the publication, one for update notification, and one for reception. They manipulate standard library

a template data parameter named “shared-data_t”, which represents the actual shared data.

92 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

<interactionModule name="shared data'">
<contractModule name="api">
<abstractDataType name="shr data t"/>
<interface name="data reader">
<method name="freeze data">

<param dir="return" name="ecode" type="::core::return codes::comm ecode"/>
</method>
<method name="release data">

<param dir="return" name="ecode" type="::core::return _codes::comm_ecode"/>
</method>

<method name="read data">
<param dir="out" name="data" type="shr data t"/>
<param dir="return" name="ecode" type="::core::return_codes::comm_ecode"/>
</method>
</interface>
<interface name="data notification">
<method name="on_data update">
<comment>no error code for this method, since it is called by the
connector</comment>
</method>
</interface>
<interface name="data writer">
<method name="write data'">
<param dir="in" name="data" type="shr data t"/>

<param dir="return" name="ecode" type="::core::return_codes::comm_ecode"/>
</method>
<method name="publish data">

<param dir="return" name="ecode" type="::core::return_codes::comm_ecode"/>
</method>

<method name="cancel data">
<param dir="return" name="ecode
</method>
</interface>
</contractModule>
<pattern name="sd intr pat">
<role max="-1" min="1" name="data writer">
<item name="shr_data"/>
</role>
<role max="-1" min="1" name="data reader">
<item name="shr_data"/>
</role>
<item name="shr_data" nature="data"/>
</pattern>
<portType name="sd writer pt">
<portElement interface="api::data writer" kind="required" name="wrtr_pe"/>
</portType>
<portType name="sd_reader pt">
<portElement interface="api::data reader" kind="required" name="rdr pe"/>
<portElement interface="api::data notification" kind="provided" name="notif pe"/>

type="::core::return_codes::comm_ecode"/>

</portType>
<connectorDef name="sd cnt" pattern="sd_intr_pat">
<port name="sd reader" role="sd intr pat.data reader" type="sd reader pt"/>
<port name="sd _writer" role="sd_intr_pat.data writer" type="sd writer pt"/>
<itemBinding cItem="api::shr_data t" pItem="sd intr pat.shr data"/>
</connectorDef>
</interactionModule>

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

93

94 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

13.4.2.2 Semantics
The reader API has two port elements: reacter—prdr pe, to fetch data, and netification—pnotif pe to be notified of data \

updates. The notification port is called by the connector upon data update. The reader port has three methods:
freeze_data(), release_data() and read_data().

Method read_data gets the current value of the shared data. Method freeze_data prevents the data value from being
updated, thus allowing the reader to work on a stable value. Method release_data is the opposite of freeze_data: it
allows the updates of the data value.

The writer API has one port element, which is provided by the connector. This port element has three methods:
write_data(), publish_data() and cancel_data().

Method write_data() sets a value for the shared data, but does not send it. Method publish_data() actually sends the data
value set by write_data(). Method cancel_data() voids the value set by write_data(). Consequently, calling
publish_data_() after cancel_data() shall have no effect. \

13.4.2.3 Equivalent IDL syntax |

The equivalent IDL declarations are the following. ‘

module shared_data<typename SHR_DATA_T>

A
module api
interface data_reader
A
::core::return_codes::comm_ecode freeze_data ();
::core::return_codes::comm_ecode release_data ();
::core::return_codes::comm_ecode read_data (out SHR_DATA_T data);
—k
interface data_notification
A
void on_data_update ();
—k
interface data_writer
A
::core::return_codes::comm_ecode write_data (in SHR_DATA_T data);
::core::return_codes::comm_ecode publish_data ();
::core::return_codes::comm_ecode cancel_data ();
—k

}:/lend of module api

porttype sd_writer_pt

L.

uses api::data_writer wrtr_pe;

porttype sd_reader_pt

uses api::data_reader rdr_pr;

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 95

/UCM-45/ UCM-58: Update the
/syntaxand the names for the
1 standard library

/UCM-45 / UCM-58: Update the
' syntaxand the names for the

' | standard library

/- UCM-45/ UCM-58: Update the

syntaxand the names for the
standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

provides api::data_notification notif pe;
-k
connector sd_cnt
A
mirrorport sd_reader_pt sd_reader;)
mirrorport sd_writer_pt sd_writer; / UCM-45/ UCM-58: Update the
) / syntaxand the names for the
/ standard library
}:/lend of module shared datai 777 //

13.5 Additional component execution policies (Normative, not oL SO s
; syntaxand the names for the
mandatory) / standard library
This section describes extensions to the “protected self-executing component” and “protected active component” /
| technical policiespolicy, (§13.1.3). Additional technical policies are defined to specify more detailed execution ' 'UCM-45/UCM-58: Update the
semantics: self-executing components with periodic or one-shot, background execution; active components with / syntaxand the names for the
periodic or sporadic execution. | standard library

13.5.1 Specifications

' /Editorial change
The two technical policies prdc self exec comp for periodic self execution: i and [/

background_self-executing_component extend technlcal policy self executlng_cornponent They add conflgurauon
\ parameters to specify task priority, etc. S <

Task priority is used for scheduler configuration and scheduling analysis

- UCM-45/ UCM-58: Update the
. syntaxand the names for the
standard library

corresponds to the delay between the start of the system and the actual start of the task.

/'UCM-45/ UCM-58: Update the
isyntaxand the names for the
| standard library

extends, extends

| (UCM-45/ UCM-58: Update the
I /syntaxand the names for the
|/ standard library

UCM-45/ UCM-58: Update the
syntaxand the names for the
'/ standard library

Figure 53: Extended technical policies for self-executing components

The two technical policies periedie—protected—aetive—ecomponentprdc_prot actv_comp for periodic active protected

componen and speradie—protected—aetive—compenentspdc_prot actv_comp for sporadic protected active component, P
extend protected—aetive—compenentthe protected actlve comnonent Doth deflned in the core llbrarv. They adt e UCI:/["‘S /dll(liM-S& Upfdattithe
conf1 uration parameters to specify task priority, etc. : syntaxand the names Ior the
& p pecity p ¥ standard library

96 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 05/09/17
Editorial change

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

extends

extends

Figure 54: Extended technical policies for active components

The following XML declarations correspond to the definition of the four technical policies.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

97

- UCM-45/ UCM-58: Update the
syntaxand the names for the
standard library

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

<policyModule name="ext comp exec">

<contractModule name="contracts">
<integer kind="ushort" name="priority t">
<comment>priority 1 is the highest</comment>
</integer>

</contractModule>
<policyDef applicability="on_component only" aspect="::core::comp_exec::comp trig asp"
extends="::core::comp_exec::self exec comp" name="prdc_self exec comp">

<comment>periodic self-executing component. It will invoke method run every
period.</comment>

<configParam name="psec period" type="::core::basic svc::clock::api::ucm timeval t"/>
<configParam name="psec_priority" type="contracts::priority t"/>
<configParam name="psec offset" type="::core::basic svc::clock::api::ucm_timeval t"/>

</policyDef>
<policyDef applicability="on_component_only" aspect="::core::comp_exec::comp_trig_asp"
extends="::core::comp_exec::self exec_comp" name="bgnd self exec_comp">
<comment>background self-executing component. It will invoke method run only
once.</comment>
<configParam name="bsec priority" type="contracts::priority t"/>

<configParam name="bsec offset" type="::core::basic svc::clock::api::ucm timeval t"/>
</policyDef>
<policyDef applicability="on_all ports" aspect="::core::comp_exec::comp_exec_asp"
extends="::core::comp_exec::prot_actv_comp" name="spdc_prot_actv_comp">

<comment>sporadic protected active component. It will trigger the component execution
whenever a port (or policy) is triggered.</comment>
<configParam name="spac_priority" type="contracts::priority t"/>
<configParam name="spac_min_period"
type="::core::basic svc::clock::api::ucm timeval t"/>
</policyDef>
<policyDef applicability="on all ports" aspect="::core::comp exec::comp_exec_asp"
extends="::core::comp_exec::prot actv_comp" name="prdc_prot actv_comp">
<comment>periodic protected active component. It will trigger the component execution
every period if a port (or policy) is triggered.</comment>
<configParam name="ppac_priority" type="contracts::priority t"/>
<configParam name="ppac_period" type="::core::basic_svc::clock::api::ucm_timeval t"/>
<configParam name="ppac_ offset" type="::core::basic svc::clock::api::ucm_ timeval t"/>

</policyDef>
</policyModule> 7 UCM-45/ UCM-58: Update the
O O e syntaxand the names for the
standard library

13.5.2 Semantics Thomas Vergnaud
29/03/2017 17:02

For periodic and background self-executing components, method run is called according to the configuration
parameters. Every period, with an offset for the periodic execution. Once, after the offset for the background execution.

98 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

For periodic and sporadic active components, the execution is triggered upon port invocation. For periodic Every
period, with an offset for the periodic execution. Whenever an invocation occurs, with a minimum delay between two
executions for the sporadic execution.

The extended technical policies make no assumptions regarding the underlying execution threads that would support the
executions. This depends on the actual implementation choices made by the platform provider. Priorities are used for
scheduling computation. |

13.5.2.1 Equivalent IDL syntax |

The technical policies extend the component execution policies and only add configuration parameters. The APIs are
the same - UCM-45/ UCM-58: Update the

e A ~ syntaxand the names for the
standard library

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 99

Thomas Vergnaud, 03/29/17
UCM-45 / UCM-58: Update the syntax and the names for the standard library

14. UCM Programming Model

This section describes the standard way component implementations are structured, and the corresponding API. The
main element is the container, which contains all the runtime elements of a component.

The container is the component's implementation runtime environment. It is a framework that integrates a set of
technical policies and connectors implementations with the component's behavior. It allows the component's
implementation to benefit from both the technical policies and the connectors support. The technical policies
implementations manage the technical aspects on behalf of the components. The connectors implementations ensure
inter-components interactions.

In order to enforce the UCM container extensibility, its capabilities are designed following a component-based
approach. Thus, the connectors and the technical policies implementations are themselves comparable to a set of
components implementations. Their interactions with the user business code of the component require explicit
connections between their port elements. This means that all the dependencies between the connectors, the technical
policies and the business logic inside a given component are clearly expressed by the ports (for connectors) or features
(for technical policies), whatever the dependency is on the infrastructure or on other application components. This
approach allows to leverage the components portability and reuse as all their dependencies are captured and managed
by their containers.

141 Runtime entities

1411 Component implementation: Component Body

The component body is the programmatic element that maps to the AtomicComponentImplementation element as
defined by the UCM PIM. It supplies the component business logic only. It concentrates on realizing the component
behavior without caring of any non functional aspect. The component body is hosted by a container that manages its life
cycle and complement it by the technical support that allows it to run. Concretely, the component body is a set of
programming language-specific artifacts that are defined by the different language mappings that are specified by the
UCM specification.

14.1.2 Connector and technical policies implementation: Fragments

The non functional support in a UCM runtime is provided by the technical policies and the connectors implementations
elements. They are designed as a set of components called “Fragments”. A fragment is similar to a functional
component body. This is because a connector implementation, as a component, owns a set of configuration attributes
and port elements. Similarly, a technical policy definition also owns a set of configuration attributes and port elements.
So, at the programming level, the components, the connectors and the technical policies may be managed in the same
way. This approach allows to modularize the UCM runtime as most as possible to ease its extensibility

A fragment is deployed in the same way as a user component. It is also hosted by a container that manages its life cycle.
If needed, the interactions between the components and the fragments are performed using explicit connections between
their ports elements. The difference between a fragment and a user component implementation is in its interactions with
its container. The fragment may need to collaborate with the container to perform its functionality. It has a special
access to the container interfaces. Although appreciated, the UCM specification does not target fragments portability
over different UCM frameworks. The complexity of some non functional behaviors may require a strong adherence of
the fragment implementation to the underlying framework. In fact, a technical policy may act in two ways. Either
explicitly, as a service that directly invokes the functional component and/or is invoked by it using port elements; and/or
implicitly, without any port element. In this last case, the fragment may need some extended capabilities that are out of
scope of this specification.

A connector implementation, as well as a technical policy implementation, are realized by one or more fragments. The
mapping of their definitions as defined by the UCM meta-model onto fragments is up to the platform provider. The

100 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

following two subsections provide some hints to how to transform a UCM Connector (resp. Technical Policy) to a set of
fragments.

14.1.21 From connectors to fragments (not normative)

As states by the UCM metamodel, a ConnectorDefinition owns a set of ConnectorPortDefinitions that include, similarly
to a component Port type, a set of PortElements, knowing that a PortElement is an abstraction of a provided or required
interface. A connector definition is concretely implemented by a set fragments. A fragment is necessarily co-localized to
the component using it. Each fragment will realize a part of the interaction, by implementing one or more PortElements.
The mapping of the connector PortElements to fragments is implementation-dependent. Figure 55 depicts an example
of that mapping. In that example, each PortElement is realized by a separate fragment.

Port element Connector port definition

2 Attributes Attributes
£(3 a

E) Component Connector Component
3

=}

p=

Port

5
= Attributes Attributes
5 Component Component
é Body Body

=

=
~

Figure 55: Connector fragmentation example

The communication between the fragments is connector-specific. It is typically based on the communication
mechanisms that the connector is intended to abstract. Ex: the fragments of DDS-based connector implementation will
typically interact via DDS (at least), the fragments of a shared memory-based connector will use that same mechanism
to interact.

14.1.2.2 From technical policies to fragments (not normative)

At the model level, the AtomicComponentImplementation that implements a given ComponentDefinition is associated
to a TechnicalPolicyDefinition. This latter owns also a set of PortElements. At runtime, these PortElements are
implemented by one or more fragments. As for the connector PortElements, the mapping to fragments is
implementation-dependent. Figure 56 shows an example where all the PortElements of the TechnicalPolicy are realized
by one fragment.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 101

UCM-44 / UCM-52: create a
section for the graphical
guidelines

Thomas Vergnaud, 03/24/17
UCM-44 / UCM-52: create a section for the graphical guidelines

Attributes

" o Component

& Definition

=

o .

@ implements

ks

= = Monolithic @

Component Technical policy
Implementation

" Component
2 Body

E

o

[}
£

=
&

Figure 56: Technical policy fragmentation example

14.1.3 Container

The container is the glue that allows the component implementations to collaborate with the fragments to make them
operational. The main container role is to manage the components life cycle and enable the communication between
them. It also enables some additional technical policies by managing and collaborating with them as a set of fragments.

A container may wrap multiple component implementations and multiple fragments. Multiple containers cotitdmay
coexist within a UCM runtime instance. Basically, a Container defines a technical management scope that is common to
all the belonging components. It typically defines a common life cycle management strategy applied to all the included

components. i

€ 54 55 Ste ; t0—ap €

1. £8 + £ o te—inat N H—d : 4 RN T S 4o . + st} - Y N,
strategyy
14.2 Container programming model

The container programming model defines the different standard interfaces between the different UCM runtime

elements, including the container, the Component body and the fragments. Figure 57 shows the different interactions

that eouldtypically, exist within a UCM runtime instance, and those that are specified by the UCM standard and those

that are not. The main goal of the container programming model is to be able to implement portable component bodies.
‘ That's why all the interactions of the Component body with its environment ﬂwst@l‘be clearly specified.

102 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-44/ UCM-52: create a
section for the graphical
guidelines

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/24/17
UCM-44 / UCM-52: create a section for the graphical guidelines

standard interfaces

¥

v —I—[éqmponentBody

Fragment

——

Fragment J

™

Container

/Fragment

Cund

Non standard interfaces

Figure 57: UCM Runtime Interfaces

Figure 58 depicts the UML model of the UCM container programming model elements. They are described in the

following.

«Interface»
ContainerManager

14

«Interface»
PortElementObject

* *

providedPortElement

requiredPortElement

manager

managedContainer

*

]
(] Q

executor
AV4
ey container componentObject
Container 0* i

Figure 58: UCM Container Programming Model

«Interface»
ComponentObject

«Interface»
FragmentObject

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

103

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

A Container is defined as an aggregation of ComponentObject entities representing component bodies, and
FragmentObject entities representing fragments. A ComponentObject, as a FragmentObject, includes a set of
PortElementObject entities representing their provided port elements, and references others representing their required
port elements. The following sections describe these entities.

14.2.1 Component interfaces

Figure 59 shows the different interfaces of a UCM component whatever it is a functional component or a fragment.

«Interface»

Connectable
+ on_connect(in from_port: String, in to_port: PortElementObject)
+ on_disconnect(in port_name: String)

i

«Interface»
ComponentObject ~_ executor providedPortElement «Interface»

+ on_init() 1 * PortElementObject

+ on_remove()

+ on_startup()
+ on_shutdown() * requiredPortElement

«Interface»
FragmentObject
+ set_container_interface(in container: Container)

Figure 59: UCM Component Body Interfaces

14.21.1 PortElementObject

The PortElementObject characterizes any UCM port element interface, whatever it belongs to a component or a
connector or a technical policy. All the UCM ports elements implementation shall support that interface. A
PortElementObject shall have the methods specified in the interface associated with the port element (§ 9.3.5.2), after
having applied the possible data type bindings (§ 9.5.3.7). It holds the business logic of that interface.

14.2.1.2 ComponentObject

The ComponentObject interface represents a UCM component body. It is the interface between the component body and
its container. It allows the container to notify the component of its lifetime changes from its creation to its removal
(8 14.2.3) passing by its operational phase. A ComponentObject creates its provided port elements represented by the
PortElementObject interface. The provided PortElementObjects hold the business logic of the provided ports elements.
A ComponentObject references its required PortElementObjects, in other words its dependencies. These dependencies
are resolved by the container and provided to the ComponentObject when it starts its operational phase.

The following items describes the ComponentObject methods:

104 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

Method on_init() is called by the container to allow the component to initialize its internal state prior to its startup. If
the component exhibits a set of attributes whose initialization is driven by an external deployment tool, the on_init
method should be called once the component attributes have been initialized.

Method on_remove() is called by the container to notify the component that it is about to be removed.

Method on_startup() is called by the container to allow the component to start its operational phase, where it is ready
to interact with other components. This call signals the end of the whole application configuration, including its
components initialization and connections. at OV - i tS eRees—

. tan of ¢ £o thho +hat+} + oo 4o 3 41 T} afar . + +}
parameter-ot-tne-on—startip-metnoa; so-that-the-component-can-—Sstart Usthg-them—1nese rererences-are presentes the

Method on_shutdown() notifies the component of the end of its operational phase. The component should typically
release any resources it acquired at startup time.

14.2.1.3 Connectable

The Connectable interface is a callback interface that the component body ean-eptionatlyshallt implement if it has
required port elements in order to be notified of each individual port element connection and disconnection, A

component may be interested in those events to initialize some data that is related to these connections. As this interface
is called while the component is still at its configuration phase, the component should not use its ports.

Method on_connect() notifies the component that its port element as named by the first parameter has been connected
to the PortElementObject as referenced by the second parameter. Hence, the on_connect method shallwill be called as
many times as the component has required ports elements.

alccaledas |

Method on_disconnect() notifies the component of the disconnection of the port element as named by this method
parameter.

14.21.4 FragmentObject

The FragmentObject interface represents a UCM fragment, whatever it is a connector fragment or a technical policy
fragment. As stated before, a fragment implementation is similar to a component body, that is why the FragmentObject
interface extends the ComponentObject one. A FragmentObject lifetime is managed by its container in the same way as
a ComponentObject. The only difference between the FragmentObject and the ComponentObject interfaces is the
ability of the first one to access to its container interface in order to collaborate with it when needed. This is the intent of
the set_container_interface method.

Method set_container_interface() is called by the container to provide the fragment of an access point to itself, so that

Note that the interface between the fragment and the container is not completely specified, as fragment portability is not
aimed in this specification. It is considered that the minimum that a container eottdshould exhibit to its fragments is
what it already exhibits to the deployment tool (the Container interface).

14.2.2 Container interfaces

Figure 60 depicts the Container-related interfaces.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 105

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

«Interface»
Container
+ add_component(in comp_obj_name: String, in properties: ConfigValues): Componentld
+ remove_component(in comp_instance: Componentld)
+ start()
+ stop()
+ connect(in comp_instance: Componentld, in port_name: String, in to_port: PortElementObject): Connectionld
+ disconnect(in connection: Connectionld)
+ get_portElement(in comp_instance: Componentld, in port_name: String): PortElementObject
+ get_components(): Componentids

managedContainer

manager 1

«Interface»
ContainerManager
+ create_container(in properties: ConfigValues): Container
+ remove_container(in container: Container)
+ destroy()

Figure 60: Container and container manager

14.2.21 Container

The Container interface exposes a management API that allows the deployment of a set of components and fragments.
A container is able to instantiate arbitrary ComponentObjects and FragmentObject instances and manage their lifetime.
It provides a set of methods that allows to instantiate, initialize, connect and start these entities. They are described in
the following items.

Method add_component() allows to create and initialize a given UCM component body or fragment instance from its
name, A set of configuration values are passed as parameter to provide the information needed to create a

ComponentObject or FragmentObject instance. add_component returns a unique identifier for the created entity.

Note that add_component() does not return a reference to ComponentObject or FragmentObject because these
interfaces are internal interfaces. They define the interaction between the container and its components only. They do
not have to be exhibited to third parties.

Method remove_component() allows to remove a given component identified by its identifier.

Method get_portElement() allows to get a provided PortElementObject reference of an existing ComponentObject
instance. This reference is typically used for connecting it to a component port element that requires it.

Method connect() allows to connect a component port element, identified by its name, to a PortElementObject provided
by another ComponentObject. It returns a connection identifier that witshall be used for undoing this connection.

shalybe used for undoing this connection.

Method disconnect() allows to disconnect a component-to-component connection previously established.

Method start() signals the completion of the configuration phase and the beginning of the operational phase for all the
ComponentObjects of the current Container. Calling this method shallwil] start all the included ComponentObjects.

Method stop() signals the completion of the operational phase for all the included ComponentObjects. Calling this

106 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Start all the included Lomponenttjbjects.

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

Method get_component() allows to get a list of all the included ComponentObjects identifiers.

14.2.2.2 ContainerManager

The ContainerManager interface characterizes the root container that represents a UCM runtime instance. It allows to
create and remove component bodies, fragments and other containers. In addition to the Container base methods, this
interface provides the following methods.

Method create_container() creates and configure a Container instance with the provided configuration values
parameter.

Method remove_container() removes an existing Container instance. The removal of a container instance implies the
shutdown and removal of its included entities.

Method destroy() terminates a UCM runtime instance and frees all associated resources by removing all the included
containers, components and fragments.

14.2.3 Component life cycle management

Two main phases should be distinguished in a UCM component lifetime at runtime: configuration phase and operational
phase.

In the configuration phase, a component instance is initialized and connected to its dependencies. A component
instance is initialized by setting its attributes. Component attributes are intended to be used to tune the component
behavior for a specific application use case. Once initialized, if the component has defined required ports element, these
ports are connected to other compatible ports elements. During this phase, the component ports are disabled. It
eannotshall not either invoke other components, or be invoked by others.

In the operational phase, all the application components instances are ready to run and to collaborate together to achieve
the application functional purpose. All the components interactions can start. Typically, this phase is where the
component execution policy goes in action.

Distinguishing between these two phases guarantees that all the application components are set up before they start to
run. It allows to avoid the errors that mayean happen if one component starts to interact with partially configured

components. Serializing between the configuration and the operational phases is particularly required in highly
connected component-based applications.

Figure 61 Shows the different states that the component passes through during these two phases.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 107

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

life cycle

configuration phase -

remove component / ComponentObiect.on\ remove()

add_component / ComponentObject.on_init()

Initialized

disconnect / Connectable.on_disconnect() connect / Connectable.on_connect()

(Configured)

stop / ComponentObiject.on_shutdown() start / ComponentObject.on_startup()

operational phase =
Ready

- J

Figure 61: UCM Component Instance Life Cycle

As stated before, a UCM component instance life cycle is driven by its container as follows:

The component instance is initialized when the add_component method is called on the Container. The component body

is then instantiated and its attributes are set. To finalize the component initialization, the Container wilishall call the
on_init method on the component body, i.e. the ComponentObject entity.

Then, the component instance is configured upon successive calls to the connect Container method that connect the
different component required ports. When all these ports are connected, the component instance state is set to
Configured. If the component body implements the Connectable interface, it is notified on each connection
establishment via a call to the on_connect method. The component instance may come back to the Initialized state if all
its connections are undone upon a call to the disconnect method on the container.

Once all the application components instances are properly configured, they become ready when the start method is
called on the container. This call signals the end of the configuration phase and the beginning of the operational phase.
Hence, each component instance is ready to run and to interact with its environment. The component instance may get
shutdown upon a call to the stop method on the container. That call moves the instance to the Configured state after
having notified the component body of its shutdown.

A component instance may be removed at any time using a call to the remove method of the container. To be removed, a
n instance should be shutdown then disconnected first

The Ready state is not the only state of an operational component instance. Typically, its execution policy mayean make

it evolve to other states that are specific to that policy and are handled by the fragments that implement that technical
policy.

108 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-50/ UCM-63: Connect port
elements using on_connect()
instead of on_startup()

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 03/31/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

15. IDL Platform Specific Model for UCM

This section presents the IDL mapping of the UCM meta-model. It provides a set of transformation rules that refine a
UCM model into an IDL description. The IDL PSM allows the UCM model to be driven towards its actual
implementation. Unlike the equivalent IDL description given earlier, this PSM represents a step towards the component
implementation. It is a way to specify the component implementation elements in a programming-language-independent
way. And to benefit from the different standard IDL to languages mappings to implement UCM applications.

15.1 Concerned IDL building blocks

It’s important to note that even if we rely on the following building blocks (BB), UCM does not (and should not) allow
representing their whole expressiveness. This means there are structures that can be defined in IDL with the following
building blocks which have no meaning in UCM. That isn’t a problem as we are stating a projection from UCM to IDL
and not the other way around.

From the IDL separation of the grammar in building blocks, we retained the following
* BB Basic core — Core Data Types
* BB Annotations

* BB Interface — Basic

15.2 General notes on data types mapping

The mapping of data types relies on existing IDL types augmented with UCM-dedicated annotations where needed.

These annotations shall be
taken into account for IDL compilers to be UCM compliant. Considering anonymous types, every UCM type has an
identifier. That facilitates the mapping to IDL in which anonymous types have been deprecated. Thus, several UCM
types will be matched on a combination of an IDL typedef and the corresponding type declaration. See section 15.4 for
more details.

15.3 Primitive types mapping

15.3.1 Mapping to IDL basic types

The mapping between the UCM built-in types defined in the UCM meta-model and the IDL data types are defined as
follows:

UCM primitive type IDL primitive type

SHORT short
LONG long
LONGLONG long long
USHORT unsigned short
ULONG unsigned long
ULONGLONG unsigned long
FLOAT float
DOUBLE double

char
WCHAR wchar

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 109

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-47/ UCM-54: Align UCM
primitive types with IDL

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-47 / UCM-54: Align UCM
primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/30/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

BOOLEAN bool

_~~UCM-47 / UCM-54: Align UCM
© primitive types with IDL

15.4 Complex data types mapping

15.4.1 Mapping to IDL constructed types

The mapping between the UCM composite types and the IDL data types is defined as follows:

15.4.1.1 Annotation for native types

A native type can be declared to as long as it provides enough information for performing memory footprint analysis.

/npL
@aAnnotation MemeoryFoetprintmemory_footprint {)
attribute-unsigned long max; /' UCM-61/ UCM-62: Align
k * annotations with the existing IDL
annotations
As an example, a native type of maximum size 1024 bytes should be defined like this:
/NDL .
| @MemeryFeotPrintmemory footprini(max=1024) -~ UCM-61/ UCM-62: Align

** annotations with the existing IDL

native MyNativeType; .
annotations

15.4.1.2 Annotation-for-speeifying-index-types

=20 =0 A%

110 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 03/31/17
UCM-61/ UCM-62: Align annotations with the existing IDL annotations

Thomas Vergnaud, 03/31/17
UCM-61/ UCM-62: Align annotations with the existing IDL annotations

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

UCM-61/ UCM-62: Align
annotations with the existing

ig=2 » I UCM-61/ UCM-62: Align
@IndexType = | ‘annotations with the existing
enum-Cotor{ o - - - ceoco- -
~RED;
—GREEN; [
—BLUE; /| [UCM-71/ UCM-72: use the
k 77 RFC 2119 vocabulary and be
15.4.1.3 Annotation for specifying default values
|
DL) | UCM-71/ UCM-72: use the
@Annotation-DefaultValue{ RFC 2119 vocabulary and be
—attribute-String-val; I
Use the standard IDL annotation @value. |
HBE UCM-69 / UCM-70: update the
@indexType{typeid="oetet”} !/ IDLand C++ sections to match
enum-Color{ e : T
—@DefaultValue(val=20xFF00002) [
~RED; |
-~ @DefaultValue(val="0x00FF00”) || UCM-69 / UCM-70: update the
—GREEN; |/ IDLand C++ sections to match
@Bsfa |t”allls(”al—”BHGBGGFF”) M- - === -—===0=—=== 31
—BLUE; "
I
A S o UCM—%Q/ IiCM-joz update thlvi
15_5 Constants mapplng “\ IDLand C++ sections to matc
I . 2 o
A UCM constant is simply translated to an IDL constant. /|
|
15.6 Interfaces and exceptions mapping " PD%M?(/; UCM-70: update thle1
an ++ sections to matc
UCM exceptions eaﬁ%aeﬂitranslated to IDL exceptions as they share the same representation. T : T
,, !
UCM interfaces arecan b tanslated to IDL interfaces with the same name and the same set of operations. UCM |
operations map naturally to IDL ones within the IDL interface. ' 'UCM-71/ UCM-72: use the

|1/ 'RFC 2119 vocabulary and be

15.7 UCM moduleamapping \ ¥

The UCM meta-model defines specific modules to organize the specification of the components, the contracts, the

interactions and the technical policies. All these modules realizes a common abstract meta-class which is IModule. All

the IModule-derived meta-classes, including ComponentModule, ContractModule, InteractionDefinitionModule, JLICk -2 D 710k gl e

/| 1 IDLand C++ sections to match

TFeechniealNonfunctional AspectModule, are mapped to IDL modules. Each IModule-derived element of a UCM model ‘ v
maps to an IDL module with the same name and including the IDL constructs that map to the IModule children /
elements. I
If the UCM IModule includes a——template——parameteran abstract type definition |/ /UCM-69/ UCM-70: update the
(IAbstractTypeDeclarationffempatted Parameter-derived meta-classes), the corresponding IDL module becomes a iy IPLand C++ sect‘io‘ns to match
template module whose parameter is the IModlﬁé template parameterabstract type. The IDL template parameter name |) '
shallwil, be the capitalized name of the IModule oneabstract tvpe. If this parameter is an | f
Interface templateParameterAbstractinterface, the idl parameter switlshall be tagged as an “interface”. If it is a -
DatalypetemplateParameteran AbstractDatalype, the idl module parameter witishall be tagged generically with the UCM-71 / UCM-72: use the
“typename” keyword. If a UCM IModule includes an element that uses an AbstractTypeDeclarationa v R chabulary el oz
HemplatedParaneier defined in a different UCM IModule, its equivalent module becomes a template one as well. |
Example
UCM-69/ UCM-70: update the

In UCM: ' IDLand C++ sections to match
<InteractionModul tservieces! ees Ve e
—Comtmoetiiodute
T Tememcontmaers © UCM-71/ UCM-72: use the

LT | RFC 2119 vocabulary and be
Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 111

UCM-69/ UCM-70: update the
IDLand C++ sections to match

v

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/20/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/21/17
UCM-61/ UCM-62: Align annotations with the existing IDL annotations

Thomas Vergnaud, 03/31/17
UCM-61/ UCM-62: Align annotations with the existing IDL annotations

Lol

tractDataType name
ractModule>

In IDL:

module services<interface SERVICE INTF_T>

module contracts<interface SERVICE_INTF T>

{
b5

module data<typename MESSAGE_TYPE_T>

{
b5

15.8 Component Mapping

This section defines the mapping of a UCM ComponentModule content including, ComponentType, Port,

The component mapping is used for driving the UCM components implementations. It describes the interfaces that shall
be used to implement them.

15.8.1 Component Type mapping

Each ComponentType maps to a single IDL interface called the component equivalent interface. This interface is
defined by the following rules:

* Each ComponentType named <component_name> maps to an interface having the same name as the component.

112 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

-~ UCM-69/ UCM-70: update the

IDLand C++ sections to match
the new metamodel, programming
model and xml names

.~ UCM-69/ UCM-70: update the

IDLand C++ sections to match
the new metamodel, programming
model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

* The equivalent interface declares the same set of attributes as the component.

» If the ComponentType has a base ComponentType, its equivalent interface inherits from the base ComponentType's
equivalent interface also.

* The ports included in each ComponentType are mapped to a set of IDL operations within the component equivalent
interface as presented in section 15.8.4

Example
UCMfinDE-synta .~ 'UCM-69/ UCM-70: update the
: - "~ IDLand C++ sections to match
<compType name="Tel > the new metamodel, programming
name="id" type="::data::: nd="read"/> model and xml names

name="teller">

- UCM-69 / UCM-70: update the

"~ IDLand C++ sections to match
IDL mapping: the new metamodel, programming
model and xml names

interface TellerComponent {
readonly attribute ::data::short_t id;
Il ports mapping operations

b

15.8.2 Atomic Component Implementation mapping

Each atomic component implementation maps to a single IDL interface, representing the component body interface.
This interface provides the component business logic implementation as well as the different callback operations needed
by its infrastructure.

The component body interface is defined as follows:

* For an implementation named <component_impl_name>, an interface named <component_impl_name>_Body is
generated.

* The body interface inherits from the component equivalent interface and the ComponentObject one (§ 14.2.1.2).

The body interface includes a set of additional operations mapped from its related technical policies if any. The details
are given in the following sections.

Example:

UCM:

<atomic language="::lang::cpp" name="TellerComponentImpl" type=" nent"
e="PrinterCom " nent"

13 £ Emptl
HHerComponentimpt

T ea e - I
TRt cppl—rar

-~ UCM-69/ UCM-70: update the

** " IDLand C++ sections to match
IDL: the new metamodel, programming
model and xml names

interface TellerComponentimpl_Body : ComponentObject,

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 113

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

TellerComponent {
I technical policies mapping operations

h

interface PrinterComponentimpl_Body: ComponentObject,
PrinterComponent {
Il technical policies mapping operations

b

15.8.3 Ports elements mapping

Each interface provided or required by a port element is mapped into an IDL interface with the same name and
inheriting from the PortElementObject interface (§14.2.1.1).

15.8.4 Ports mapping

Component ports refer to either a port role or to a port type as defined by the UCM meta-model. UCM port roles have
no IDL mapping, as they do not specify any APIL. A port-type, is associated to aPortAPfan [PortType, that has been

defined as an abstract element in the UCM meta-model. The mﬁbﬁf)¢, element has been proposed as a

equivalent interface. The getter operations allows the component to provide its provided ports elements to its
infrastructure. These operations are defined as follows:

e For each port named <port_name> having a type with a provided port element named
<provided_port_element_name>, a getter operation is generated as part of the component body interface; its name is
“get_<port_name>_<provided_port_element_name>”. This operation has no arguments and returns a reference to

the port element actual interface.
Example
Remember that the service_client_tport port definition (§ 13.1.5) includes a required port element named
'api, and the service_server tport port specification includes a provided element named 'api' as well. This
implies the following IDL mapping:

interface Hellolnterface : PortElementObject {

b

interface TellerComponent {

Hellolnterface get_teller_api();

b

interface PrinterComponent {

Il no getter operation because of no provided ports elements

b

15.8.5

ComponentTechnical policies mappingTechnical Policy MappingA

Technical policies eanmay, specify provided or required interfaces. Provided interfaces mtistshall be implemented by the
component code and the required ones shall
mapping, the component technical policies are mapped to a set of getter operations as part of the component body

interface.

114 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-69 / UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/24/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

For each TechnicalPolicy named <tech_policy> applied on a atomic component implementation and requiring a
PortElement named <callback>, a getter operation named “get_tp_<tech_policy>_<callback>" is generated as part of
the component body interface.

Example:

Assuming the example components implementation is tied to the predefined self-executing policy and Trace technical
policies. Lets recall that the self-executing policy requires an interface from the component, unlike the Trace policy that
provides one.

</AtemicComponentimplementation><policy name="ExecPolicy"

def="::policy mod::self exec comp">

</policy>

<policy name="TracePolicy" def="::policy mod::component trace">

</policy>

<atomic lanquage="cpp" name="TellerComponentImpl" type="TellerComponent">
<policy name="ExecPolicy”/>
<policy name="TracePolicy”/>

</atomic>

<atomic lanquage="::lang::cpp" name="PrinterComponentImpl" type="PrinterComponent">
<policy name="ExecPolicy” />
<policy name="TracePolicy” />

</atomic>,

IDL:

interface TellerComponentimpl_Body : TellerComponent,
ComponentObject {

I technical policies related operations
component_execution_intf get_tp_TellerExecPolicy_self_execution_api();

Il no operation for the Trace policy

b

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 115

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

15.9

Interaction-definitions-Mappinglnteraction Definition Mappin /

UCM interactions are specified using the elements included in the ucm_interactions package. These definitions are
provided by the platform provider. As stated previously, the UCM standard does not target connectors implementation
portability. As a result, there is no IDL mapping for the ConnectorDefinition, ConnectorPortDefinition,

15.10

Container Programming Model

The container programming model interfaces, as defined in the main UCM document, are defined in IDL as follows:

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

,/UCM-69 / UCM-70: update the
,// IDLand C++ sections to match
the new metamodel, programming

model and xml names

_~ UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Il base file for the UCM programming model

module ucm

{struct Property
g
string name;
string value;
_h

typedef sequence < Property > Properties;

_typedef long componentld;

typedef sequence < componentld > componentlds;

typedef long connectionlid;

exception NOT_FOUND
g
h
exception BAD_PARAMETER
g
h
exception UCM_ERROR

A
k

interface PortElementObject

A
k

interface ComponentObject
g
void on_init ();

void on_remove ();

void on_startup ();

void on_shutdown ();

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

117

PortElementObject get_portElement (in string provided);
h

interface Container;

interface FragmentObject

void set_container_interface (in Container container);

ks

interface Connectable

A

void on_connect (in string port_name, in PortElementObject required);

void on_disconnect (in string port_name);

B

interface Container

A

componentld add_component (in string name, in Properties configValues) raises (UCM_ERROR);

void remove_component (in componentld comp_instance)
raises (NOT_FOUND, UCM_ERROR);

PortElementObject get_port_element (in componentld comp_instance, in string port_name)
raises (NOT_FOUND, UCM_ERROR);

connectionld connect (in componentld instance, in string port_name, in PortElementObject

to_port)
raises (NOT_FOUND, BAD_PARAMETER, UCM_ERROR);

void disconnect (in connectionld connection)
raises (NOT_FOUND, UCM_ERROR);

void start ()
raises (UCM_ERROR);

void stop ()
raises (UCM_ERROR);

componentlds get_components ()

raises (UCM_ERROR);
h

interface ContainerManager:Container
g

Container create_container (in Properties configValues)

raises (UCM_ERROR);

void remove_container (in Container subContainer)
raises (NOT_FOUND, UCM_ERROR);

void destroy ()
raises (UCM_ERROR);
h

118 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

k I/l end of module ucm, | _~~ UCM-50/ UCM-63: Connect port
Lt elements using on_connect()

15.11 Standard FeechnicalPolicies Mapping | instead of on_startup()

15.11.1 ExecutionPolicies

15.11.3 Advanced-Fimer-Service
Jute-timer— iee{
—module-timer—eontraets{

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 119

Thomas Vergnaud, 04/01/17
UCM-50 / UCM-63: Connect port elements using on_connect() instead of on_startup()

- UCM-69/ UCM-70: update the
* IDLand C++ sections to match
the new metamodel, programming

15.12 Component Programming Model model and xml names

Given the IDL mapping rules described above, the component developer shall implement the component body IDL
interface as well as its provided ports elements interfaces. Figure 62 depicts this requirement.

<<IDLInterface>> <<IDLInterface>> <<IDLInterface>>
MyComponent ComponentObject PortElementObject
<<IDLInterface>> <<IDLInterface>>
MyComponentImpll_Body MyComponentInterface
3
rea?li‘zes rgaliie;

|- MyComponentImpl1

Figure 62: generated IDL interfaces

The component developer may provide one or more programing artifacts to implement the required IDL interfaces. In
an object-oriented programing, one or more classes may be used to implement the component body interface and all the
provided ports elements ones.

120 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

The component body implementation istshall, include:

» the business logic of the different life cycle methods that are defined in the base ComponentObject interface.The
on_startup method will provide the component dependencies references that should be stored by the component body
for further usage.

* the implementation of the getter operations that should return references to the provided ports elements
implementations.

* The component provided ports elements implementations #tistshall implement the business methods of the related
interface.

All the UCM interfaces mustshall be considered as local interfaces. They describe the interactions between the

components and their infrastructure that are necessarily co-localized. Any remote interfaces are managed by some
connector fragments and is beyond the scope of this specification.
15.12.1 Middleware-agnostic language mappings

As UCM aims to build middleware-agnostic component frameworks, it is highly recommended to use middleware-
agnostic programming-languages mappings for IDL. The class generated from an IDL interface shall not extend any
CORBA-specific object such as CORBA::Object or CORBA::LocalObject.

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 121

UCM-71/ UCM-72: use the RFC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

16. C++ Platform Specific Model for UCM

This section presents a native C++ PSM for the UCM metamodel. This PSM is proposed for those who would like to
not use IDL as an intermediate step for the components implementation. Given the concepts similarities between the
UCM meta-model and the IDL language, this PSM is mainly inspired from the IDL to C++11 standard. This latter
rethought the old C++ mapping in order to reduce the dependency to CORBA, to simplify it, and to exploit the modern
constructs and capabilities of the latest versions of C++. However, this mapping is still not completely independent
from CORBA as it still consider an IDL interface as a CORBA object and IDL exceptions as CORBA exceptions. The
proposed PSM lifts this requirement. It reuses most of the mapping rules of that standard except for the interfaces and
the exceptions. All UCM interfaces are considered as local C++ objects without any assumed middleware-specific
locality meaning. The current PSM is considered as an IDL-independent local C++ PSM derived from the IDL2CPP11
standard. This relationship with the IDL2CPP11 standard is meant to ease the portage of UCM applications from one
PSM to the other.

Given the slow adoption of C++11 in the DRTE era, a C++03 PSM is also proposed to not be tied to the specific C++11
features.

16.1 Primitive types mapping

The following table sums up the C++ mapping of all the UCM primitive types.

UCM primitive type C++ primitive type
uint8_t
SHORT intl6_t
LONG int32_t
LONGLONG int64_t
USHORT uint16_t
ULONG uint32_t
ULONGLONG uint64_t
FLOAT float
DOUBLE double
char
WCHAR wchar_t
BOOLEAN bool

16.2 Complex data types mapping

The following table sums up the mapping of the different UCM complex types to C++.

122 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-47 / UCM-54: Align UCM
primitive types with IDL

UCM-47 / UCM-54: Align UCM
primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

UCM composite type C++ type

Alias typedef

Sequence Bounded => std::array
Unbounded => std::vector

String8 std::string

String32 std::wstring

Structure C++ class

Union C++ class

Enumeration C++ typed enum

Array std::array

Constant const

Native C++ type

Every data declaration in the UCM model maps to a C++ data declaration whose identifier is the same as the UCM one
and the type is derived following the previous mapping table.

16.2.1 Structure mapping
A UCM structure is mapped to a C++ class as defined by the IDL2CPP11 specification.

16.2.2 Union mapping
A UCM union is mapped to a C++ class as defined by the IDL2CPP11 specification.

16.2.3 Enumeration mapping
A UCM enumeration maps to a C++11 enum as defined by the IDL2CPP11 specification.
An example is given below. In UCM:

UCM-69/ UCM-70: update the
IDLand C++ sections to match
In C++: the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 123 model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

16.2.4 Array mapping
A UCM array maps to the standard std::array<> type as defined in the IDL2CPP11 specification. The array dimension
maps naturally to the std::array size. The index type has no equivalent construct in C++.

16.2.5 Sequence mapping
A UCM sequence may be bounded if its max size is set to a positive non null integer, or unbounded if its max size is
not set or is set to a negative value. A bounded sequence maps to the C++ std::array<> type as it is a fixed size

collection of elements. An unbounded sequence maps to the C++ std::vector<> type that is a dynamic size collection of
elements. The index type has no equivalent construct in C++.

16.2.6 String mapping

A UCM CHARS base string type maps to std::string. A UCM WCHAR base string type maps to std::wstring. A-5&Mm

16.2.7 Constant mapping

A UCM constant maps to a C++ constant.

16.3 UCM Module mapping

A UCM IModule element maps to a C++ namespace with the same name. This namespace will include all the C++
definitions corresponding to the UCM elements included in the IModule.
16.4 Exception Mapping

A UCM exception maps to a C++ class following the same rules as the IDL2CPP11 standard, but without the CORBA-
specific concepts.

* All the UCM exceptions implement a common abstract class UCM::Exception that is similar to the Exception class

defined in IDL2CPP11, but without the rep_id() method. This method returns the repository id of the exception which
is a CORBA-specific concept.

* User exceptions does not inherit from CORBA::UserException. Instead, a UCM::UserException is defined as a root
to all user exceptions.
* System exception does not inherit from CORBA::SystemException. Instead, UCM::SystemException is defined as a

root to all runtime exceptions.

16.5 Attribute Mapping

Whether the attribute belongs to a UCM interface or a component type, its C++ mapping is the same. Each read-write
attribute maps to a pair of public pure virtual C++ functions having the same name as the UCM attribute. One accessor
function that returns the attribute value, and one mutator function that sets the attribute value. A read-only attribute will
map to an accessor function only. In UCM:

<Interfacename="tLogger’—>
—<Attributename="pame’ type="string8’ mode ="READY />

124 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-47 / UCM-54: Align UCM
primitive types with IDL

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

—<Attribute name="level” type="LoglLevelsEnum”/>
</Interface><interface name="Logger" >

<attribute name="name" type="string8_t" mode="read"/>
<attribute name="level" type="LogLevelsEnum"/>

</ilInterface>
e SeEn

In C++:
. .
class Abstract_Logger {
i i i name{) =0;
—virtualtegtevelsErum—level (=0
—virtual void level(lLoglLevelsEnum 1) = 0

};class Logger {

public:
virtual string8_t get _name() = 0;
virtual get_LogLevelsEnum level() = 0;
virtual void set level(LogLevelsEnum 1) = 0;

16.6 Interface Mapping

A UCM interface maps to a C++ abstract class to translate the general concepts that the UCM interface defines. It will
typically be used as a base class for concrete implementation classes. The C++ abstract class is named following the
pattern “Abstract_<interface name>”. It includes the C++ mapping of the attributes and the operations defined within
the UCM interface. If the UCM interface inheritsfromextends other interfaces, its equivalent C++ class will also inherit ‘

from the equivalent C++ classes of the base interfaces, using a public inheritance.

16.6.1

Each operation maps to a pure virtual function with the same name and the same set of parameters. The parameter
passing modes depend on their types and direction. All out and inout parameters are passed by reference whatever their
types. Primitive types defined as IN parameters are passed by value. The other types are rather passed as const
references. This is similar to the IDL2CPP11 specification.

Operations Mapping

UCM parameter direction of Primitive types C++ parameter passing

INT T
OUT T T&
INOUT T T&
RETURN T T

UCM parameter direction of non primitive C++ parameter passing

types
INT const T &
OUT T T&
INOUT T T&
RETURN T T

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 125

-~ UCM-69/ UCM-70: update the

IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

UCM-69 / UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

16.6.2 Interface Reference Mapping

A reference to a UCM interface within a UCM model maps to a C++ shared pointer (std::shared_ptr) to its related class.
A recurring theme for C++ programmers is the need to deal with memory allocations and deallocations in their
programs. It can be extremely difficult to ensure that a program does not leak resources, if ownership of dynamic
memory is not properly tracked. C++ shared pointers usage allows this problem to be resolved. It uses reference
counting to keep track of each class instance and, when the last reference disappears, automatically delete the instance.
Hence, when a UCM interface T is passed as a parameter of a given operation, its C++ mapping is given in the
following table:

UCM parameter direction of interface type C++ parameter passing
INT std::shared<T>
OUT T std::shared<T> &
INOUT T std::shared<T> &
RETURN T std::shared<T>

A shared pointer is created using std::make_shared.

16.7 Component Mapping
Both the UCM AtomicComponentImplementation and its related ComponentType map on a common C++ abstract
class. This class represents the interface that should be implemented by the component body. It includes a set of pure
virtual methods corresponding to the component attributes, ports and technical policies. Besides all the methods needed
to manage the component life cycle and to enable its operation at runtime.

e The class name is the same as the related atomic component implementation, prefixed by “Abstract_”

e Tt includes four life cycle management methods

© void on S[anup(eﬂﬁ%{—WﬁH—eeﬁﬁE&iﬁﬁ—&—w ///UCM—GB/ UCM-70: update the
- » - A IDLand C++ sections to match
o void on_init() the new metamodel, programming

model and xml names
© void on_shutdown()

© void on_remove()

e It also includes the port element connection methods:

o void on_connect (std::string port _name, const PortElementObjectPtr required);

o void on_disconnect (std::string port name);

]

+1
1

jan’ 40t +1 1 o H +1 + | H cafar N +
THe-oh—starttp-Mmetnoa proviaesthe-component-aepenaenciesreterencestot

+ 1 1 Faoreack ot |
1e-componentboay—Tor-eacnporthameea

126 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

¢ It includes the methods corresponding to the related component type attributes if any (section 16.5).

For each port, within the component type, named <port_name> having a port type with a provided port element
named <provided_port_element_name>, a public getter method is generated as part of the component body interface.
Its name is “get_<port_name>_<provided_port_element_name>”. This operation has no arguments and returns a
reference to the port element actual interface. It allows the component body to provide a reference to the
implementation of that interface.

For each technical policy, within the component atomic implementation, named <tech_policy> with a required port
element named <callback>, a getter operation named “get_tp_<tech_policy>_<callback>" is generated as part of the
component body interface. This method returns a reference to the port element actual interface. This method allows
the component to provide its implementation of the required interface to the platform.

In UCM:

<compType name="Filter">
<port name="Filter in">
<typeSpec type="Messages::message receiver_port">
<binding abstract="Messages::message_type t" actual="coordinate t"/>
</typeSpec>
</Port>
<port name="Filter_out">
<typeSpec type="Messages::message emitter port">
<binding abstract="message type t" actual="coordinate t"/>
</typeSpec>
</port>

</compType>
<atomic lanquage="::lang::cpp" name="Filter Impl" type="Filter'">

27;tomic><€empeﬂeﬁ£¥y964ﬂame=ﬂFii£eFﬂ>
Port_pame="Filter in"s

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 127

-~ UCM-69/ UCM-70: update the
IDLand C++ sections to match
the new metamodel, programming
model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

.] . - -~ UCM-69/ UCM-70: update the

*** ~ IDLand C++ sections to match
In C++: the new metamodel, programming
model and xml names

tvpgdef std: :shared ptr<PortElementObject> PortElementObjectPtr;

// the port element of Filter in emitter

class Filter in emitter port element: PortElementObject, Message Intf
{

1

class Filter_impl Abstract {

public:

// life cycle methods

virtual void on init() = 0
virtual void on_startup ()
virtual void on_shutdown()
virtual void on remove() =

©

(c}

O (Il |1l ~-

// port element connection methods

virtual void on_connect (std::string port_name, const PortElementObjectPtr
required) = 0;

virtual void on_disconnect (std::string port_name) = 0;

// provided port elements getters
Message Intf get Filter out receiver port element() = 0;

%. . -~ UCM-69/ UCM-70: update the
I el iHHo i ~ IDLand C++ sections to match
the new metamodel, programming
16.8 Ports elements interfaces mapping model and xml names

Each UCM interface referenced by a port element maps to a C++ abstract class, as defined in section 16.6, that y -
mustshall inherit from PortElementObject (§ 14.2.1.1). This latter has no operations. It is used for characterizing ports -~ UCM-71/ UCM-72: use the RFC

elements interfaces implementations. 2119 vocabulary and be more
specific

128 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

Thomas Vergnaud, 04/22/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

16.9 Component Programming Model
There are two strategies for the implementation of the component body:
* Typed component body class

In this case, the user will implement the abstract component body class as described in section 16.7. This class
is tailored for specific components types as it appears from its methods signatures. The interface between the
component implementation and its framework is component-type-dependant. It is heavily based on code
generation. All or part of the deployment code is generated to deal with specific component implementations.
This approach allows to have statically-typed code with less type casting and less dead code. This is because
the component framework manages the component implementations using their specific types. This approach
leads to faster, tighter and safer applications but increases the cost of change. Any change in the component
type may lead to a complete generation, re-compilation and re-qualification of the application.

* Generic component body class

In this case, the component body will implement the pre-defined ComponentObject (§ 14.2.1.2) interface. This
interface includes semantically-equivalent methods to the typed interface. The only differences are in the
methods signatures.

The platform provider may enable both or one of the two strategies for components implementation.

Whatever the chosen component implementation strategy, the developer mustshall provide the following
implementations:

* A concrete implementation for the component body abstract class (§ 16.7)

* Concrete implementations for the components provided ports elements abstract classes.

16.10 Derived C++03 PSM

Given the slow adoption of the C++11 language, this section defines an ISO C++ 2003 for UCM. It is derived from the
previously described C++11 PSM by substituting all the C++11 specific features by C++03 ones.

All the mapping rules stated previously for the C++11 language remains valid but with the constrains presented in the
following table:

C++11 feature C++03 feature

nullptr NULL or 0

std::shared_ptr ucm::shared_ptr

strongly typed enum ucm::safe_enum

constexpr “const”, but floats and double cannot be defined in
the header file
std::array ucm::array

R-value references Not available. No move semantics.

user defined literals Not supported

final/override Not supported

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 129

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

‘ Some of the C++11 specific features shall be replaced by others in C++03 like “nullptr” and “constexpr”. C++11

shared pointers, typed enumerations and arrays may be implemented by the UCM framework itself. The remaining
features cannot be supported and will then not be available in the C++03 PSM.

16.10.1 Array mapping

A UCM array maps to a C++ class or struct in the ucm namespace that provides std::array semantics.

16.10.2 Enumeration mapping

This PSM maps the UCM Enumeration to a C++ class which is similar to the DDS Enumeration mapping (formal/13-
11-01).

namespace ucm

template<typename def, typename inner = typename def::type>
class safe_enum : public def {

typedef typename def::type type;

inner val;

public:
safe_enum(type v) : val(v)

{3

inner underlying() const {
return val;

}
bool operator == (const safe_enum & s) const;
bool operator != (const safe_enum & s) const;

bool operator < (const safe_enum & s) const;
bool operator <= (const safe_enum & s) const;
bool operator > (const safe_enum & s) const;
bool operator >= (const safe_enum & s) const;

I
}

Hence, a UCM enumeration maps to:

* a C++ struct named following the pattern “<enum_name>_def”, and including an enum declaration named “type”
and having the same enumerators names as the corresponding UCM enumeration.

* aucm:safe_enum class instance type named as the UCM enumeration name and instanciated with two parameters:
the previous C++ struct and the type of the underlying enumerators.

An example is given below:

In UCM:

- : _n " —_n "
—_n ; ” —rrannr
- e ” — "

P ” —rronn

</Enumeration><enum name="Shape” indexType="ushort”>
<value name="triangle” index="10"/>

130 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

UCM-71/ UCM-72: use the REC
2119 vocabulary and be more
specific

Thomas Vergnaud, 04/25/17
UCM-71 / UCM-72: use the RFC 2119 vocabulary and be more specific

<value name="square” index="20"/>

—

<value name="circle” index="30"/>

_~ UCM-69/ UCM-70; update the

</enum>, .
e IDLand C++ sections to match
In C++: the new metamodel, programming

struct Shape def { model and xml names

enum type {
triangle = 10,
square = 20,
circle 30

_};

}; /
typedef ucm::safe _enum<Shape_def, uinsi6_t> - UCM-69/ UCM-70: update the
Shape; TR ~ IDLand G++ sections to match

the new metamodel, programming
// declaring a triangle shape model and xml names

Shape s = Shape::triangle;
16.10.3 Interface reference mapping

Interface references in a UCM model maps to a C++ template class ucm::shared_ptr that provides the std::shared_ptr ‘
semantics.

Summary-of UCMIDE annotations ‘
Listof) e ehing i | _
2 ionints-{

h 7 'UCM-47 / UCM-54: Align UCM
77 primitive types with IDL

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 131

Thomas Vergnaud, 03/27/17
UCM-47 / UCM-54: Align UCM primitive types with IDL

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

Thomas Vergnaud, 04/21/17
UCM-69 / UCM-70: update the IDL and C++ sections to match the new metamodel, programming model and xml names

| 17. XML examples of UCM declarations (non-normative)

This section is illustrative. It provides examples of the XML syntax for UCM declarations. All cases are not covered;
the purpose of this section is only to show typical example to help understand the syntax.

17.1 Contracts

1711 Standard data types: primitive data types

All UCM primitive have a name. Float, integer and char types also have a kind; the allowed values for the type kinds
are the ones defined in section 9.2.3.

<contractModule name="primitive types">
<integer kind="short" name="an interger type"/>
<bool name="a boolean type"/>
<octet name="an octet type"/>
<float kind="double" name="a float type"/>
<char kind="wchar" name="a character type"/>

</contractModule>

17.1.2 Standard data types: complex types

UCM complex types are enumerations, structures, unions and aliases. Enumerations have an integer index. Unions are
discriminated by an enumeration.

<contractModule name="complex types">

<enum indexType="ushort" name="coord t">

<value index="0" name="cartesian"/>
<value index="1" name="polar"/>
</enum>
<struct name="cartesian t">
<field name="x" type="::primitive types::an interger type"/>
<field name="y" type="::primitive types::an interger type"/>
</struct>

<union name="coordinate" selector="system" selectorType="coord t">
<case default="vyes" name="cart" type="cartesian t" when="cartesian"/>

<case name="pol" type="polar t" when="polar"/>
</union>
<struct name="polar t">
<field name="theta" type="::primitive types::a float type"/>
<field name="r" type="::primitive types::a float type"/>
</struct>
<alias name="rectangular t" type="cartesian t"/>
<array name="2d_vector" type="coordinate">

_n

<dim indexType="ulong" size="2"/>

<£arraz>

<array name="image t" type="color lébits">

<comment>800x600-16bit image</comment>
<dim indexType="ulong" size="480000"/>
<¢arra¥>
<integer kind="ushort" name="color 16bits"/>
</contractModule>

17.1.3 Standard data types: resizable types

Resizable types are strings, sequences and native types. Strings specify the base character kind. Sequences are indexed
by an integer kind.

<contractModule name="resizable type">
<string base="char8" maxSize="12" name="message t"/>

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 132

<sequence indexType="ulong" maxSize="7" name="message seq" type="message t"/>

<native maxSize="128" name="native type"/>

</contractModule>

171.4 Constants

Constants have a name, a type and a value.

<contractModule name="constants">

<constant name="pi" type="::primitive types::a float type" value="3.14"/>

</contractModule>

1715 Interface, methods and exceptions
Interfaces may extend other interfaces.

<contractModule name="interfaces">

<integer kind="short" name="error code t"/>

<sequence indexType="ulong" maxSize="256" name="buffer t"
type="::primitive types::an octet type"/>
<exception name="runtime error">

<field name="error code" type="error code t"/>

__</exception>

<interface name="read intf">

<method name="read">

<exception ref="runtime error"/>

<param dir="inout" name="returns" type="buffer t"/>

<param dir="out" name="size" type="::primitive types::an interger type"/>
</method>
</interface>

<interface name="read write intf">

<extends name="read intf"/>

<method name="write one">

<exception ref="runtime error"/>

<param dir="in" name="data" type="::primitive tvpes::an octet type"/>
</method>

<method name="read one">

<param dir="return" name="returns" type="
</method>
</interface>
</contractModule>

:primitive types::an octet type"/>

17.1.6 Abstract type declarations

Abstract data types and interfaces are declared like normal types. Complex and resizable types use abstract types like

any other type.

<contractModule name="abstract">

<abstractDataType name="abstract type"/>
<struct name="structure template">

<field name="id" type="id t"/>

<field name="payload" type="abstract type"/>
</struct>

<integer kind="longlong" name="id t"/>

<abstractInterface name="abstract interface"/>

</contractModule>

134 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

171.7 Annotation and configuration elements \
Annotation definitions contain configuration parameters. ‘

<contractModule name="config">
<integer kind="short" name="fifo size t"/>

<annotationDef name="expected period">
<configParam defaultValue="{0, 25000}" name="period param"

Lype="::core::basic svc::clock::api::ucm timeval t"/>
</annotationDef>

</contractModule>

17.2 Interactions |
Section 13 contains the definitions of the standard technical aspects and policies. ‘
17.2.1 Connector extension \

A connector definition may extend an existing one. This allows for the addition of configuration parameters for a
specific connector implementation.

<interactionModule name="connectors">

<connectorDef extends="::core::messages::simple msg cnt" name="rate msg cnt"
pattern:"::core::messaqes::msqfintripat">
<portConf port="::core::messages::simple msg cnt.receiver">
<configParam name="output fifo size" type="::config::fifo size t"/>

</portConf>
</connectorDef>

</interactionModule>

17.3 Nonfunctional aspects \

17.3.1 Technical aspects and technical policies \
Section 13 contains the definitions of the standard technical aspects and policies. ‘

17.3.2 Supported programming languages \

Supported programming language are mere names. Such names may be anything and carry no meaning in themselves.
UCM tool chains should ship with a set of supported language names and be able to handle these names.

<policyModule name="lang">
<supportedLanguages>

<language name="C++11"/>
</supportedLanguages>
</policyModule>

17.4 Components |

The examples of this section correspond to the example illustrated in section 11 |

17.41 Component types \

Component type Detector defines a component type meant to detect the position of an object in an image. It has two
ports. Port “detector_in” is associated with the standard message reception port type and bound to the image t type

declared in section 17.1.2. Port “detector _out” in associated with the standard message emission port type, and bound to
type cartesian_t.

This component is therefore meant to take either polar or cartesian coordinates as input, and produce only cartesian ‘
coordinates.

<componentModule name="comp_ types">
<compType name="Detector">

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0 135

<comment>Finds the position of an object in an image</comment>

<port name="detector in">
<annotation def="::config::expected period">
<config def="::config::expected period.period param" value="30"/>
</annotation>

<tvpeSpec type="::core::messages::msqg rcvr pt">
<binding abstract="::core::messages::api::message type t"
actual="::complex types::image t"/>
</typeSpec>
</port>

<port name="detector out">

<typeSpec type="::core::messages::msg_emtr pt">
<binding abstract="::core::messages::api::message type t"
actual="::complex types::cartesian t"/>
</typeSpec>
</port>
</compType>

</componentModule>

17.4.2 Atomic component implementations and technical policies

Atomic component “Detector atomic” is an implementation of component type “Detector”. It is associated with

technical policy “exec_policy”; this association is named “exec”, like the input port of Filter is named “in”. Technical
policy “exec_policy” also has a link to “Detector atomic”.

The component implementation also contains an annotation to specify an expected execution period. This may be used
to complement the functional contracts defined in the component type (i.e. the port type specifications) by specifyin

additional nonfunctional contracts.

<componentModule name="atomic">

<atomic language="::lang::C++11" name="Detector atomic"
type="::comp types::Detector">
<policy ref="exec policy"/>
<annotation def="::config::expected period">
<config def="::config::expected period.period param" value="{0, 27000}"/>
____</annotation>
</atomic>
<policy def="::core::comp_exec::prot actv_comp" name="exec policy">
<component name="Detector atomic"/>
</policy>

</componentModule>

17.4.3 Composite component implementations

The following declarations define a composite filter made of two subcomponents: the detector itself, and a filter which
performs some preprocessing on the image.

Composite component “Detector_composite” contains two subcomponents, named “filter” and “detector”. Connection
“cntl” connects port “filter out” of “filter” and port “detector in” of “detector”. Port “detector in” of
“Detector_composite” is delegated to port “filter in” of “filter”; port “detector out” of “Detector composite” is
delegated to port “detector_out” of “detector”.

<componentModule name="composite">

<composite name="Detector composite" type="::comp types::Detector">
<part name="detector" ref="::atomic::Detector atomic"/>
<part name="filter" ref="Filter atomic"/>
<connection name="cntl" ref="::core::messages::simple msg cnt">

<end name="cntl filter" part="filter" port="filter out"/>

136 Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

<end name="cntl detector" part="detector" port="detector in"/>
</connection>
<portDelegation extPort="detector in" name="filter in" part="filter"
port="filter in"/>
<portDelegation extPort="detector out" name="filter out" part="detector"
port="detector out"/>

</composite>

<atomic lanquage="::lang::C++11" name="Filter atomic" type="Filter">
<policy ref="passive filter"/>

</atomic>

<policy def="::core::comp_exec::unpr pasv_comp" name="passive filter">
<component name="Filter atomic"/>

</policy>

<compType name="Filter">
<port name="filter in">

<tvpeSpec type="::core::messages::msqg_rcvr pt">
<binding abstract="::core::messages::api::message type t"
actual="::complex types::image t"/>
</typeSpec>
</port>
<port name="filter out">
<typeSpec type="::core::messages::msg emtr pt">
<binding abstract="::core::messages::api::message type t"
actual="::complex types::image t"/>
</typeSpec>
</port>
</compType>

</componentModule>

Unified Component Model for Distributed, Real-Time And Embedded Systems 1.0

137

-~ UCM-43 / UCM-64: New sections
for the XML syntax

Thomas Vergnaud
25/04/2017 16:42

Thomas Vergnaud, 04/25/17
UCM-43 / UCM-64: New sections for the XML syntax

	1. Specification Outline
	1.1 Software architectures made of components
	1.2 A component model to design portable real-time embedded software
	1.3 UCM actors
	1.4 UCM programming model
	1.5 UCM levels of conformance

	2. Scope
	3. Rationale for a Unified Component Model
	3.1 Separation of architecture concerns
	3.1.1 Platform capabilities as model libraries
	3.1.2 Business logic as components

	3.2 Typical UCM process

	4. Conformance
	5. Normative References
	5.1 Normative references
	5.2 Non normative references

	6. Terms and Definitions
	7. Symbols
	8. Additional Information
	8.1 Acknowledgments

	9. Platform Independent Model for UCM
	9.1 Overview
	9.1.1 Elements of the component model
	9.1.2 Configuration mechanisms
	9.1.3 Main packages of the meta-model
	9.1.4 Common meta-model definitions
	9.1.4.1 INamed
	9.1.4.2 IComment
	9.1.4.3 SimpleComment (IComment)
	9.1.4.4 IModule (INamed)
	9.1.4.5 IApplicationModule (IModule)
	9.1.4.6 IPlatformModule (IModule)
	9.1.4.7 ApplicationModule (IApplicationModule)
	9.1.4.8 PlatformModule (IPlatformModule)

	9.2 Contract package
	9.2.1 Introduction
	9.2.2 Common definitions
	9.2.2.1 ITypeDeclaration (INamed)
	9.2.2.2 IDataType (ITypeDeclaration)
	9.2.2.3 IInterface (ITypeDeclaration)
	9.2.2.4 IHasDataType
	9.2.2.5 IHasType
	9.2.2.6 IValued
	9.2.2.7 IHasDefaultValue
	9.2.2.8 IAnnotable
	9.2.2.9 IAbstractTypeDeclaration
	9.2.2.10 IConcreteTypeDeclaration (IAnnotable)
	9.2.2.11 IConfigurationParameter (INamed)
	9.2.2.12 IConfigurable
	9.2.2.13 IConfigurationParameterValue
	9.2.2.14 IConfigured
	9.2.2.15 ContractModule (IApplicationModule, IPlatformModule)

	9.2.3 Standard data types: primitive data types
	9.2.3.1 IStandardDataType (IConcreteTypeDeclaration, IDataType)
	9.2.3.2 IPrimitiveDataType
	9.2.3.3 PrimitiveInteger (IStandardDataType, IPrimitiveDataType, IDiscreteType, IScalarType)
	9.2.3.4 PrimitiveFloat (IStandardDataType, IPrimitiveDataType, IScalarType)
	9.2.3.5 PrimitiveChar (IStandardDataType, IPrimitiveDataType, IDiscreteType, IScalarType)
	9.2.3.6 PrimitiveBoolean (IStandardDataType, IDiscreteType, IPrimitiveDataType, IScalarType)
	9.2.3.7 PrimitiveOctet (IStandardDataType, IPrimitiveDataType)

	9.2.4 Standard data types: complex types
	9.2.4.1 IIndexable
	9.2.4.2 Alias (IStandardDataType, IHasDataType)
	9.2.4.3 Structure (IStandardDataType)
	9.2.4.4 StructureField (INamed, IAnnotable, IHasDataType)
	9.2.4.5 Union (IStandardDataType)
	9.2.4.6 UnionCase (INamed, IAnnotable, IHasDataType)
	9.2.4.7 Enumeration (IStandardDataType, IDiscreteType, IScalarType, IIndexable)
	9.2.4.8 Enumerator (INamed)
	9.2.4.9 Array (IStandardDataType, IHasDataType)
	9.2.4.10 IArrayDimension
	9.2.4.11 ArrayDimension (IIndexable, IArrayDimension)

	9.2.5 Standard data types: resizable types
	9.2.5.1 IResizable
	9.2.5.2 StringType (IStandardDataType, IResizable)
	9.2.5.3 NativeType (IStandardDataType, IResizable)
	9.2.5.4 Sequence (IStandardTypeBaseIStandardDataType, IHasDataType, IResizable, IIndexable)

	9.2.6 Constants
	9.2.6.1 Constant (INamed, IHasDataType, IValued, IAnnotable)

	9.2.7 Interfaces, methods and exceptions
	9.2.7.1 Interface (IinterfaceBaseIInterface, IConcreteTypeDeclaration)
	9.2.7.2 Method (INamed, IAnnotable)
	9.2.7.3 Parameter (INamed, IHasType)
	9.2.7.4 Attribute (INamed, IHasType, IAnnotable, IHasDefaultValue)
	9.2.7.5 Exception (INamed)
	9.2.7.6 ExceptionField (INamed, IHasDataType)

	9.2.8 Abstract type declarations
	9.2.8.1 AbstractDataType (IAbstractTypeDeclaration, IDataType)
	9.2.8.2 AbstractInterface (IAbstractTypeDeclaration, IInterface)

	9.2.9 Annotations and configuration elements
	9.2.9.1 ConfigurationParameter (IConfigurationParameter, IHasDataType, IHasDefaultValue)
	9.2.9.2 ConfigurationParameterValue (IValued, IConfigurationParameterValue)
	9.2.9.3 AnnotationDefinition (INamed, IConfigurable)
	9.2.9.4 Annotation (IConfigured)

	9.3 Interactions package
	9.3.1 Overview
	9.3.2 Interaction module
	9.3.2.1 InteractionDefinitionModule (IPlatformModule)
	9.3.2.2 XML representation
	9.3.2.3 IDL equivalent syntax

	9.3.3 Interaction patterns
	9.3.3.1 IInteractionDefinition (INamed)
	9.3.3.2 InteractionPattern (IInteractionPattern)
	9.3.3.3 InteractionItem (INamed)
	9.3.3.4 InteractionRole (INamed)
	9.3.3.5 Graphical representation
	9.3.3.6 XML representation
	9.3.3.7 IDL equivalent syntax

	9.3.4 Connector definitions
	9.3.4.1 ConnectorDefinition (IInteractionDefinition, IConfigurable)
	9.3.4.2 IItemBinding
	9.3.4.3 ItemBinding (IItemBinding)
	9.3.4.4 ConnectorPort (INamed)
	9.3.4.5 ConnectorPortConfiguration (IConfigurable)
	9.3.4.6 IPortType (INamed)
	9.3.4.7 Graphical representation
	9.3.4.8 XML representation
	9.3.4.9 IDL equivalent syntax

	9.3.5 Port definitions
	9.3.5.1 PortType (IPortType)
	9.3.5.2 PortElement (INamed)
	9.3.5.3 Graphical representation
	9.3.5.4 XML representation
	9.3.5.5 IDL equivalent syntax

	9.4 Nonfunctional aspects package
	9.4.1 Overview
	9.4.2 Nonfunctional aspect module
	9.4.2.1 NonfunctionalAspectModule (IPlatformModule)

	9.4.3 Technical policies
	9.4.3.1 TechnicalAspect (INamed)
	9.4.3.2 TechnicalPolicyDefinition (INamed, IConfigurable)
	9.4.3.3 Graphical representation
	9.4.3.4 XML representation
	9.4.3.5 IDL equivalent syntax

	9.4.4 Supported programming languages
	9.4.4.1 ProgrammingLanguages
	9.4.4.2 Language (INamed)

	9.5 Components package
	9.5.1 Overview
	9.5.2 Component Module
	9.5.2.1 ComponentModule (IApplicationModule)
	9.5.2.2 IComponent (INamed, IAnnotable)
	9.5.2.3 IComponentImplementation (IComponent)

	9.5.3 Component types and ports
	9.5.3.1 ComponentType (IComponent)
	9.5.3.2 Port (INamed, IAnnotable)
	9.5.3.3 IPortSpec
	9.5.3.4 PortRoleSpec (IPortSpec)
	9.5.3.5 InteractionItemBinding
	9.5.3.6 PortTypeSpec (IPortSpec)
	9.5.3.7 AbstractTypeBinding
	Graphical representation
	9.5.3.8 XML representation
	9.5.3.9 IDL equivalent syntax

	9.5.4 Atomic component implementations and technical policies
	9.5.4.1 AtomicComponentImplementation (IComponentImplementation)
	9.5.4.2 ComponentTechnicalPolicy (INamed, IConfigured)
	9.5.4.3 ComponentPortTechnicalPolicy (ComponentTechnicalPolicy)
	9.5.4.4 Graphical representation
	9.5.4.5 XML representation
	9.5.4.6 IDL equivalent syntax

	9.5.5 Composite Component Implementations
	9.5.5.1 IAssembly
	9.5.5.2 CompositeComponentImplementation (IComponentImplementation, IAssembly)
	9.5.5.3 AssemblyPart (INamed, IAnnotable)
	9.5.5.4 Connection (INamed, IConfigured)
	9.5.5.5 ConnectionEnd (INamed, IConfigured)
	9.5.5.6 PortDelegation (INamed)
	9.5.5.7 AttributeDelegation (INamed)
	Graphical representation
	9.5.5.8 XML representation
	9.5.5.9 IDL equivalent syntax

	10. XML syntax for UCM declarations
	11. Graphical guidelines (non normative)
	11.1 Shapes
	11.2 Colors
	11.3 Example

	12. IDL syntax for UCM declarations
	12.1 Concerned IDL building blocks
	12.2 Contracts
	12.3 Interactions
	12.4 Technical policies
	12.5 Components

	13. Specification of UCM platform capabilities
	13.1 Core UCM specifications (Normative, mandatory)
	13.1.1 Restrictions on data type declarations
	13.1.2 Interaction return codes
	13.1.3 Standard component execution policies
	13.1.3.1 Specifications
	13.1.3.2 Semantics
	13.1.3.3 Equivalent IDL syntax

	13.1.4 Clock and trace service
	13.1.4.1 Clock
	13.1.4.2 Trace
	13.1.4.3 Specifications
	13.1.4.4 Equivalent IDL syntax

	13.1.5 Service based interaction
	13.1.5.1 Description
	13.1.5.2 Specifications
	13.1.5.3 Equivalent IDL syntax

	13.1.6 Message based interaction
	13.1.6.1 Description
	13.1.6.2 Specifications
	13.1.6.3 Equivalent IDL syntax

	13.2 Standard properties (Normative, not mandatory)
	13.3 Advanced timer service (Normative, not mandatory)
	13.3.1 Object-based timers
	13.3.2 Index-based timers

	13.4 Additional interactions (Normative, not mandatory)
	13.4.1 Request-response
	13.4.1.1 Specifications
	13.4.1.2 Semantics
	13.4.1.3 Equivalent IDL syntax

	13.4.2 Shared data
	13.4.2.1 Specifications
	13.4.2.2 Semantics
	13.4.2.3 Equivalent IDL syntax

	13.5 Additional component execution policies (Normative, not mandatory)
	13.5.1 Specifications
	13.5.2 Semantics
	13.5.2.1 Equivalent IDL syntax

	14. UCM Programming Model
	14.1 Runtime entities
	14.1.1 Component implementation: Component Body
	14.1.2 Connector and technical policies implementation: Fragments
	14.1.2.1 From connectors to fragments (not normative)
	14.1.2.2 From technical policies to fragments (not normative)

	14.1.3 Container

	14.2 Container programming model
	14.2.1 Component interfaces
	14.2.1.1 PortElementObject
	14.2.1.2 ComponentObject
	14.2.1.3 Connectable
	14.2.1.4 FragmentObject

	14.2.2 Container interfaces
	14.2.2.1 Container
	14.2.2.2 ContainerManager

	14.2.3 Component life cycle management

	15. IDL Platform Specific Model for UCM
	15.1 Concerned IDL building blocks
	15.2 General notes on data types mapping
	15.3 Primitive types mapping
	15.3.1 Mapping to IDL basic types
	15.3.2 Annotations for 8 bits integers

	15.4 Complex data types mapping
	15.4.1 Mapping to IDL constructed types
	15.4.1.1 Annotation for native types
	15.4.1.2 Annotation for specifying index types
	15.4.1.3 Annotation for specifying default values

	15.5 Constants mapping
	15.6 Interfaces and exceptions mapping
	15.7 UCM modules mapping
	15.8 Component Mapping
	15.8.1 Component Type mapping
	15.8.2 Atomic Component Implementation mapping
	15.8.3 Ports elements mapping
	15.8.4 Ports mapping
	15.8.5 Component Technical policies mappingTechnical Policy Mapping

	15.9 Interaction definitions MappingInteraction Definition Mapping
	15.10 Container Programming Model
	15.11 Standard Technical Policies Mapping
	15.11.1 Execution Policies
	15.11.2 Clock And Trace Services
	15.11.3 Advanced Timer Service

	15.12 Component Programming Model
	15.12.1 Middleware-agnostic language mappings

	16. C++ Platform Specific Model for UCM
	16.1 Primitive types mapping
	16.2 Complex data types mapping
	16.2.1 Structure mapping
	16.2.2 Union mapping
	16.2.3 Enumeration mapping
	16.2.4 Array mapping
	16.2.5 Sequence mapping
	16.2.6 String mapping
	16.2.7 Constant mapping

	16.3 UCM Module mapping
	16.4 Exception Mapping
	16.5 Attribute Mapping
	16.6 Interface Mapping
	16.6.1 Operations Mapping
	16.6.2 Interface Reference Mapping

	16.7 Component Mapping
	16.8 Ports elements interfaces mapping
	16.9 Component Programming Model
	16.10 Derived C++03 PSM
	16.10.1 Array mapping
	16.10.2 Enumeration mapping
	16.10.3 Interface reference mapping

	17. XML examples of UCM declarations (non-normative)
	17.1 Contracts
	17.1.1 Standard data types: primitive data types
	17.1.2 Standard data types: complex types
	17.1.3 Standard data types: resizable types
	17.1.4 Constants
	17.1.5 Interface, methods and exceptions
	17.1.6 Abstract type declarations
	17.1.7 Annotation and configuration elements

	17.2 Interactions
	17.2.1 Connector extension

	17.3 Nonfunctional aspects
	17.3.1 Technical aspects and technical policies
	17.3.2 Supported programming languages

	17.4 Components
	17.4.1 Component types
	17.4.2 Atomic component implementations and technical policies
	17.4.3 Composite component implementations

