

Date: November 2004

Unified Modeling Language (UML) Specification: Infrastructure

version 2.0

ptc/04-10-14

Accompanied by ptc/2004-10-16 (Normative XMI and XML Schema Files)

Finalized Convenience Document

Copyright © 2001-2003 Adaptive
Copyright © 2001-2003 Alcatel
Copyright © 2001-2003 Borland
Copyright © 2001-2003 Computer Associates
Copyright © 2001-2003 Domain Architects
Copyright © 2001-2003 Ericsson
Copyright © 2001-2003 Hewlett-Packard
Copyright © 2001-2003 I-Logix
Copyright © 2001-2003 International Business Machines
Copyright © 2001-2003 IONA
Copyright © 2001-2003 Kabira Technologies
Copyright © 2001-2003 MEGA International
Copyright © 2001-2003 Motorola
Copyright © 2001-2003 Oracle
Copyright © 2001-2003 Project Technology
Copyright © 2001-2003 SOFTEAM
Copyright © 2001-2003 Telelogic
Copyright © 2001-2003 Unisys
Copyright © 1997-2003 Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

Preface 1

1 Scope 1
2 Conformance 1

2.1 Language Units 1

2.2 Compliance Levels 2

2.3 Meaning and Types of Compliance 3

2.4 Compliance Level Contents 4
3 Normative References 5
4 Terms and Definitions 5
5 Symbols 5
6 Additional information 6

6.1 Changes to Adopted OMG Specifications 6

6.2 Architectural Alignment and MDA Support 6

6.3 How to Read this Specification 6
6.3.1Diagram format 6

6.4 Acknowledgments 7

Part I - Introduction 10

7 Language Architecture 11

7.1 Design Principles 11

7.2 Infrastructure Architecture 11
7.2.1Core 12
7.2.2Profiles 13
7.2.3Architectural Alignment between UML and MOF 14
7.2.4Superstructure Architecture 14
7.2.5Reusing Infrastructure 15
7.2.6The Kernel Package 15
7.2.7Metamodel layering 16
UML 2.0 Infrastructure i

7.2.8The four-layer metamodel hierarchy 16
7.2.9Metamodeling 17
7.2.10An example of the four-level metamodel hierarchy 18

8 Language Formalism 20

8.1 Levels of Formalism 20
8.1.1Diagrams 21
8.1.2Instance Model 21

8.2 Class Specification Structure 21
8.2.1Description 21
8.2.2Associations 22
8.2.3Constraints 22
8.2.4Additional Operations (optional) 22
8.2.5Semantics 22
8.2.6Semantic Variation Points (optional) 22
8.2.7Notation 23
8.2.8Presentation Options (optional) 23
8.2.9Style Guidelines (optional) 23
8.2.10Examples (optional) 23
8.2.11Rationale (optional) 23
8.2.12Changes from UML 1.4 23

8.3 Use of a Constraint Language 23

8.4 Use of Natural Language 24

8.5 Conventions and Typography 24

Part II - Infrastructure Library 27

9 Core::Abstractions 29

9.1 BehavioralFeatures package 30
9.1.1BehavioralFeature 31
9.1.2Parameter 32

9.2 Changeabilities package 33
9.2.1ChangeabilityKind 34
9.2.2StructuralFeature (as specialized) 34

9.3 Classifiers package 35
9.3.1Classifier 36
9.3.2Feature 37

9.4 Comments package 38
9.4.1Comment 38
ii UML 2.0 Infrastructure

9.4.2Element (as specialized) 39

9.5 Constraints package 40
9.5.1Constraint 41
9.5.2Namespace (as specialized) 44

9.6 Elements package 45
9.6.1Element 45

9.7 Expressions package 46
9.7.1Expression 46
9.7.2OpaqueExpression 47
9.7.3ValueSpecification 49

9.8 Generalizations package 50
9.8.1Classifier (as specialized) 51
9.8.2Generalization 52

9.9 Instances package 54
9.9.1InstanceSpecification 55
9.9.2InstanceValue 58
9.9.3Slot 59

9.10 Literals package 60
9.10.1LiteralBoolean 60
9.10.2LiteralInteger 61
9.10.3LiteralNull 62
9.10.4LiteralSpecification 63
9.10.5LiteralString 63
9.10.6LiteralUnlimitedNatural 64

9.11 Multiplicities package 65
9.11.1MultiplicityElement 66

9.12 MultiplicityExpressions package 69
9.12.1MultiplicityElement (specialized) 70

9.13 Namespaces package 72
9.13.1NamedElement 72
9.13.2Namespace 74

9.14 Ownerships package 75
9.14.1Element (as specialized) 76

9.15 Redefinitions package 77
9.15.1RedefinableElement 78

9.16 Relationships package 80
9.16.1DirectedRelationship 80
UML 2.0 Infrastructure iii

9.16.2Relationship 81

9.17 StructuralFeatures package 82
9.17.1StructuralFeature 82

9.18 Super package 83
9.18.1Classifier (as specialized) 84

9.19 TypedElements package 86
9.19.1Type 87
9.19.2TypedElement 88

9.20 Visibilities package 88
9.20.1NamedElement (as specialized) 89
9.20.2VisibilityKind 90

10 Core::Basic 91

10.1 Types diagram 92
10.1.1Comment 92
10.1.2Element 93
10.1.3NamedElement 94
10.1.4Type 94
10.1.5TypedElement 95

10.2 Classes diagram 96
10.2.1Class 96
10.2.2MultiplicityElement 97
10.2.3Operation 98
10.2.4Parameter 98
10.2.5Property 99

10.3 DataTypes diagram 100
10.3.1DataType 100
10.3.2Enumeration 101
10.3.3EnumerationLiteral 101
10.3.4PrimitiveType 102

10.4 Packages diagram 102
10.4.1Package 103
10.4.2Type (additional properties - see “Type” on page 94) 103

11 Core::Constructs 105

11.1 Root diagram 107
11.1.1Comment 108
11.1.2DirectedRelationship 108
11.1.3Element 109
11.1.4Relationship 110
iv UML 2.0 Infrastructure

11.2 Expressions diagram 110
11.2.1Expression 111
11.2.2OpaqueExpression 112
11.2.3ValueSpecification 113

11.3 Classes diagram 113
11.3.1Association 114
11.3.2Class 123
11.3.3Classifier (additional properties - see “Classifier” on page 134) 125
11.3.4Operation (additional properties - see “Operation” on page 157) 128
11.3.5Property 129

11.4 Classifiers diagram 133
11.4.1Classifier 134
11.4.2Feature 135
11.4.3MultiplicityElement 135
11.4.4RedefinableElement 136
11.4.5StructuralFeature 137
11.4.6Type 137
11.4.7TypedElement 138

11.5 Constraints diagram 139
11.5.1Constraint 139
11.5.2Namespace (additional properties - see “Namespace” on page 151) 140

11.6 DataTypes diagram 141
11.6.1DataType 142
11.6.2Enumeration 143
11.6.3EnumerationLiteral 144
11.6.4Operation (additional properties - see “Operation” on page 157) 145
11.6.5PrimitiveType 145
11.6.6Property (additional properties - see “Property” on page 129) 146

11.7 Namespaces diagram 147
11.7.1ElementImport 148
11.7.2NamedElement 150
11.7.3Namespace 151
11.7.4PackageableElement 152
11.7.5PackageImport 153

11.8 Operations diagram 155
11.8.1BehavioralFeature 156
11.8.2Operation 157
11.8.3Parameter 161

11.9 Packages diagram 163
11.9.1Type (additional properties - see “Type” on page 137) 163
11.9.2Package 164
UML 2.0 Infrastructure v

12 Core::PrimitiveTypes 177

12.1 PrimitiveTypes package 177
12.1.1Boolean 177
12.1.2Integer 178
12.1.3String 179
12.1.4UnlimitedNatural 180

13 Core::Profiles 181

13.1 Profiles package 183
13.1.1Class (from Constructs, Profiles) 184
13.1.2Extension (from Profiles) 185
13.1.3ExtensionEnd (from Profiles) 188
13.1.4Image (from Profiles) 189
13.1.5Package (from Constructs, Profiles) 190
13.1.6Profile (from Profiles) 191
13.1.7ProfileApplication (from Profiles) 196
13.1.8Stereotype (from Profiles) 198

Part III - Appendices 205

A XMI Serialization and Schema 207
B Support for Model Driven Architecture 209

Index 211
vi UML 2.0 Infrastructure

Preface

1 Scope

This UML 2.0: Infrastructure is the first of two complementary specifications that represent a major revision to the Object
Management Group’s Unified Modeling Language (UML), for which the previous current version was UML v1.5. The
second specification, which uses the architectural foundation provided by this specification, is the UML 2.0:
Superstructure.

The UML 2.0: Infrastructure defines the foundational language constructs required for UML 2.0. It is complemented by
UML 2.0: Superstructure, which defines the user level constructs required for UML 2.0.

Issue 6211 - Remove ‘Editorial Comment’ for FTF to review

2 Conformance

Issue 6211 - Remove ‘Editorial Comment’ for FTF to review

Issue 6248 - Replace Compliance Section

UML is a language with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to a large community of users. For that reason, this specification defines a small number of compliance
levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible language
subsets. However, in recognition of the need for flexibility in learning and using the language, UML also provides the
concept of language units.

2.1 Language Units
The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-
coupled modeling concepts that provide users with the power to represent aspects of the system under study according to
a particular paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete
UML 2.0: Infrastructure - Final Adopted Specification 1

event-driven behavior using a variant of the well-known statecharts formalism, while the Activities language unit
provides for modeling behavior based on a workflow-like paradigm. From the user's perspective, this partitioning of UML
means that they need only be concerned with those parts of the language that they consider necessary for their models. If
those needs change over time, further language units can be added to the user's repertoire as required. Hence, a UML user
does not have to know the full language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the
individual segments within this structure do not represent separate compliance points. The latter strategy would lead to an
excess of compliance points and result to the interoperability problems described above. Nevertheless, the groupings
provided by language units and their increments do serve to simplify the definition of UML compliance as explained
below.

2.2 Compliance Levels
The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of
modeling concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels.
Compliance levels cut across the various language units, although some language units are only present in the upper
levels. As their name suggests, each compliance level is a distinct compliance point.

For ease of model interchange, there are just two compliance levels defined for UML Infrastructure:

• Level 0 (L0). This contains a single language unit that provides for modeling the kinds of class-based structures
encountered in most popular object-oriented programming languages. As such, it provides an entry-level modeling
capability. More importantly, it represents a low-cost common denominator that can serve as a basis for interoperabil-
ity between different categories of modeling tools.

• Metamodel Constructs (LM). This adds an extra language unit for more advanced class-based structures used for build-
ing metamodels (using CMOF) such as UML itself.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this specification
for achieving this is package merge (see "PackageMerge"). Package merge allows modeling concepts defined at one level
to be extended with new features. Most importantly, this is achieved in the context of the same namespace, which enables
interchange of models at different levels of compliance as described in "Meaning and Types of Compliance".

For this reason, all compliance levels are defined as extensions to a single core "UML" package that defines the common
namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown below:
2 UML 2.0: Infrastructure - Final Adopted Specification

In this model, "UML" is originally an empty package that simply merges in the contents of the Basic package from the
UML Infrastructure. This package, contains elementary concepts such as Class, Package, DataType, Operation, etc.

At the next level (Level LM), the contents of the "UML" package, now including the packages merged into Level 0 and
their contents, are extended with the Constructs package.

2.3 Meaning and Types of Compliance
Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language units in all the levels below that level. "Full realization" for a language unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level
1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels
without loss of information.

There are two distinct types of compliance. They are:

• Abstract syntax compliance. For a given compliance level, this entails:

• compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged
UML metamodel for that compliance level and,

• the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

• Concrete syntax compliance. For a given compliance level, this entails:

• Compliance to the notation defined in the "Notation" sections in this specification for those metamodel elements
that are defined as part of the merged metamodel for that compliance level and, by implication, the diagram types
in which those elements may appear. And optionally:

• The ability to output diagrams and to read in diagrams based on the XMI schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the
notation.

Compliance for a given level can be expressed as:

• abstract syntax compliance

• concrete notation compliance

• abstract syntax with concrete notation compliance

• abstract syntax with concrete notation and diagram interchange compliance
UML 2.0: Infrastructure - Final Adopted Specification 3

For example, a compliance statement for a given implementation may take on the form shown in Table 1, "Example
compliance statement". In this example, the implementation is L0 compliant in terms of abstract syntax and LM
compliant in terms of concrete syntax.

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various "Semantics" subsections of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which
ones to support. Finally, it is recognized that some implementors and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this
potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementors and profile designers may
also provide informal feature support statements. These statements identify support for additional features in terms of
language such as presentation options and semantic variation points.

An example feature support statement is shown in Table 2 for an implementation whose compliance statement is given in
Table 1. In this case, the implementation adds two features from the higher level..

2.4 Compliance Level Contents
The following tables identify the packages by individual compliance levels in addition to those that are defined in lower
levels

Table 1 Example compliance statement

Compliance Summary

Compliance level Abstract Syntax Concrete Syntax Diagram Interchange Option

L0 YES YES NO

LM YES NO NO

Table 2 Example feature support statement

Feature Support Statement

Language Unit Feature

Constructs An Association A1 specializes another Asso-
ciation A2 iff each end of A1 subsets the cor-
responding end of A2

Constructs A redefining property must have the same
name as the redefined property
4 UML 2.0: Infrastructure - Final Adopted Specification

(as a rule, Level (N) includes all the packages supported by Level (N-1)). The set of actual modeling features added by
each of the packages are described in the appropriate chapters of the related language unit..

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• UML 2.0: Diagram Interchange

• OCL 2.0

• MOF 2.0: Core Specification

• MOF 2.0: XMI Mapping Specification

Issue 6211 - Remove ‘Editorial Comment’ for FTF to review and adjust references above

4 Terms and Definitions

Issue 6211 - Remove ‘Editorial Comment’ for FTF to review and replace entire glossary

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

Issue 6211 - Remove ‘Editorial Comment’ for FTF to review and add the following sentence

There are no symbols defined in this specification.

Table 3 Metamodel packages added to compliance levels

Level Metamodel
Package Added

L0 Basic

LM Constructs
UML 2.0: Infrastructure - Final Adopted Specification 5

6 Additional information

6.1 Changes to Adopted OMG Specifications
The specification, in conjunction with the specification that complements this, the UML 2.0: Superstructure, completely
replaces the current versions of UML 1.4.1 and UML 1.5 with Action Semantics, except for the “Model Interchange
Using CORBA IDL” (see Chapter 5, Section 5.3 of the OMG UML Specification v1.4, OMG document ad/01-02-17).
“Model Interchange Using CORBA IDL” is retired as an adopted technology because of lack of vendor and user interest.

6.2 Architectural Alignment and MDA Support
Chapter 7, “Language Architecture”, explains how the UML 2.0: Infrastructure is architecturally aligned with the UML
2.0: Superstructure that complements it. It also explains how the InfrastructureLibrary defined in the UML 2.0:
Infrastructure can be strictly reused by MOF 2.0 specifications.

The MOF 2.0: Core Specification is architecturally aligned with this specification.

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This specification’s support for MDA is discussed in Appendix B.

6.3 How to Read this Specification
The rest of this document contains the technical content of this specification. Readers are encouraged to first read Part
“Part I - Introduction” to familiarize themselves with the structure of the language and the formal approach used for its
specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Part “Part II -
Infrastructure Library”, or the UML::Classes::Kernel package which reuses it, described in the UML 2.0: Superstructure.
The former specifies the flexible metamodel library that is reused by the latter.

Readers who want to explore the user level constructs that are built upon the infrastructural constructs specified here
should investigate the specification that complements this, the UML 2.0: Superstructure.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

Issue 7606 - add diagram format conventions

6.3.1 Diagram format
The following conventions are adopted for all metamodel diagrams throughout this specification:

• An association with one end marked by a navigability arrow means that:

• the association is navigable in the direction of that end,

• the marked association end is owned by the classifier, and

• the opposite (unmarked) association end is owned by the association

• An association with neither end marked by navigability arrows means that:
6 UML 2.0: Infrastructure - Final Adopted Specification

• the association is navigable in both directions

• each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association)

• Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

• The constraint {subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

• A constraint {redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

• If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

• An unlabeled dependency between two packages is interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing this
specification, such as the unavailability of conforming modeling tools at the time the specification itself was being defined.
Therefore, they should not necessarily be deemed as recommendations for general use.

6.4 Acknowledgments
The following companies submitted and/or supported parts of this specification:

• Adaptive

• Boldsoft

• Borland Software Corporation

• Compuware

• Dresden University of Technology

• International Business Machines Corp.

• IONA

• Kabira Technologies, Inc.

• Kings College

• Klasse Objecten

• Oracle

• Project Technology, Inc.

• Rational Software Corporation

• Softeam

• Syntropy Ltd.

• Telelogic

• University of Bremen

• University of Kent

• University of York
UML 2.0: Infrastructure - Final Adopted Specification 7

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Björkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, Øystein
Haugen, Sridhar Iyengar, Cris Kobryn, Birger Møller-Pedersen, James Odell, Gunnar Övergaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson, Allan Kennedy, Stuart
Kent, Mitch Kokar, Thomas Kuehne, Michael Latta, Dave Mellor, Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji,
Ileana Ober, Barbara Price, Tom Rutt, Oliver Sims, Kendall Scott, Cameron Skinner, Jeff Smith, Doug Tolbert, and Ian
Wilkie.
8 UML 2.0: Infrastructure - Final Adopted Specification

UML 2.0: Infrastructure - Final Adopted Specification 9

10 UML 2.0 Infrastructure

Part I - Introduction
The Unified Modeling Language is a visual language for specifying, constructing and documenting the artifacts of
systems. It is a general-purpose modeling language that can be used with all major object and component methods, and
that can be applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation platforms
(e.g., J2EE, .NET).

The OMG adopted the UML 1.1 specification in November 1997. Since then UML Revision Task Forces have produced
several minor revisions, the most recent being the UML 1.4 specification, which was adopted in May 2001.

Under the stewardship of the OMG, the UML has emerged as the software industry’s dominant modeling language. It has
been successfully applied to a wide range of domains, ranging from health and finance to aerospace to e-commerce. As
should be expected, its extensive use has raised numerous application and implementation issues by modelers and
vendors. As of the time of this writing over 500 formal usage and implementation issues have been submitted to the
OMG for consideration.

Although many of the issues have been resolved in minor revisions by Revision Task Forces, other issues require major
changes to the language that are outside the scope of an RTF. Consequently, the OMG has issued four complementary
and architecturally aligned RFPs to define UML 2.0: UML 2.0 Infrastructure, UML 2.0 Superstructure, UML 2.0 Object
Constraint Language and UML 2.0 Diagram Interchange.

This UML 2.0 specification is organized into two volumes (UML 2.0: Infrastructure and UML 2.0: Superstructure),
consistent with the breakdown of modeling language requirements into two RFPs (UML 2.0 Infrastructure RFP and UML
2.0 Superstructure RFP). Since the two volumes cross-reference each other and the specifications are fully integrated,
these two volumes could easily be combined into a single volume at a later time.

The next two chapters describe the language architecture and the specification approach used to define UML 2.0.

7 Language Architecture
The UML specification is defined using a metamodeling approach (i.e., a metamodel is used to specify the model that
comprises UML) that adapts formal specification techniques. While this approach lacks some of the rigor of a formal
specification method, it offers the advantages of being more intuitive and pragmatic for most implementors and
practitioners.1 This chapter explains the architecture of the UML metamodel.

The following sections summarize the design principles followed, and show how they are applied to organize UML’s
Infrastructure and Superstructure. The last section explains how the UML metamodel conforms to a 4-layer metamodel
architectural pattern.

7.1 Design Principles
The UML metamodel has been architected with the following design principles in mind:

• Modularity. This principle of strong cohesion and loose coupling is applied to group constructs into packages and orga-
nize features into metaclasses.

• Layering. Layering is applied in two ways to the UML metamodel. First, the package structure is layered to separate
the metalanguage core constructs from the higher-level constructs that use them. Second, a 4-layer metamodel archi-
tectural pattern is consistently applied to separate concerns (especially regarding instantiation) across layers of abstrac-
tion.

• Partitioning. Partitioning is used to organize conceptual areas within the same layer. In the case of the InfrastructureLi-
brary, fine-grained partitioning is used to provide the flexibility required by current and future metamodeling stan-
dards. In the case of the UML metamodel, the partitioning is coarser-grained in order to increase the cohesion within
packages and loosing the coupling across packages.

• Extensibility. The UML can be extended in two ways: 1) a new dialect of UML can be defined by using Profiles to cus-
tomize the language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and domains (e.g., finance, telecommuni-
cations, aerospace); 2) a new language related to UML can be specified by reusing part of the InfrastructureLibrary
package and augmenting with appropriate metaclasses and metarelationships. The former case defines a new dialect of
UML, while the latter case defines a new member of the UML family of languages.

• Reuse. A fine-grained, flexible metamodel library is provided that is reused to define the UML metamodel, as well as
other architecturally related metamodels, such as the Meta Object Facility (MOF) and the Common Warehouse Model
(CWM).

7.2 Infrastructure Architecture
The Infrastructure of the UML is defined by the InfrastructureLibrary, which satisfies the following design requirements:

• Define a metalanguage core that can be reused to define a variety of metamodels, including UML, MOF and CWM.

• Architecturally align UML, MOF, and XMI so that model interchange is fully supported.

• Allow customization of UML through Profiles and creation of new languages (family of languages) based on the same
metalanguage core as UML.

1. It is important to note that the specification of UML as a metamodel does note preclude it from being specified via
a mathematically formal language (e.g., Object-Z or VDM) at a later time.
UML 2.0 Infrastructure 11

As is shown in Figure 1, Infrastructure is represented by the package InfrastructureLibrary, which consists of the
packages Core and Profiles, where the latter defines the mechanisms that are used to customize metamodels and the
former contains core concepts used when metamodeling.

7.2.1 Core
In its first capacity, the Core package is a complete metamodel particularly designed for high reusability, where other
metamodels at the same metalevel (see “Superstructure Architecture” on page 14) either import or specialize its specified
metaclasses. This is illustrated in Figure 2, where it is shown how UML, CWM, and MOF each depends on a common
core. Since these metamodels are at the very heart of the Model Driven Architecture (MDA), the common core may also
be considered the architectural kernel of MDA. The intent is for UML and other MDA metamodels to reuse all or parts of
the Core package, which allows other metamodels to benefit from the abstract syntax and semantics that have already
been defined.

Figure 1 - The InfrastructureLibrary packages

Figure 2 - The role of the common Core

InfrastructureLibrary

Core

Profiles

Core

UML

MOF

CWM

Profiles
12 UML 2.0 Infrastructure

In order to facilitate reuse, the Core package is subdivided into a number of packages: PrimitiveTypes, Abstractions,
Basic, and Constructs, as shown in Figure 3. As we will see in subsequent chapters, some of these are then further divided
into even more fine-grained packages to make it possible to pick and choose the relevant parts when defining a new
metamodel. Note, however, that choosing a specific package also implies choosing the dependent packages. The package
PrimitiveTypes simply contains a few predefined types that are commonly used when metamodeling, and is designed
specifically with the needs of UML and MOF in mind. Other metamodels may need other or overlapping sets of primitive
types. There are minor differences in the design rationale for the other two packages. The package Abstractions mostly
contains abstract metaclasses that are intended to be further specialized or that are expected to be commonly reused by
many metamodels. Very few assumptions are made about the metamodels that may want to reuse this package; for this
reason, the package Abstractions is also subdivided into several smaller packages. The package Constructs, on the other
hand, mostly contains concrete metaclasses that lend themselves primarily to object-oriented modeling; this package in
particular is reused by both MOF and UML, and represents a significant part of the work that has gone into aligning the
two metamodels. The package Basic represents a few constructs that are used as the basis for the produced XMI for
UML, MOF, and other metamodels based on the InfrastructureLibrary.

In its second capacity, the Core package is used to define the modeling constructs used to create metamodels. This is done
through instantiation of metaclasses in the InfrastructureLibrary (see “Metamodel layering” on page 16). While
instantiation of metaclasses is carried out through MOF, the InfrastructureLibrary defines the actual metaclasses that are
used to instantiate the elements of UML, MOF, CWM, and indeed the elements of the InfrastructureLibrary itself. In this
respect, the InfrastructureLibrary is said to be self-describing, or reflective.

7.2.2 Profiles
As was depicted in Figure 1, the Profiles package depends on the Core package, and defines the mechanisms used to
tailor existing metamodels towards specific platforms, such as C++, CORBA, or EJB, or domains, such as real-time,
business objects, or software process modeling. The primary target for profiles is UML, but it is possible to use profiles
together with any metamodel that is based on (i.e., instantiated from) the common core. A profile must be based on a
metamodel such as the UML that it extends, and is not very useful standalone.

Profiles have been aligned with the extension mechanism offered by MOF, but provide a more light-weight approach with
restrictions that are enforced to ensure that the implementation and usage of profiles should be straightforward and more
easily supported by tool vendors.

Figure 3 - The Core packages

Core

PrimitiveTypes

Basic

Abstractions

Constructs
UML 2.0 Infrastructure 13

7.2.3 Architectural Alignment between UML and MOF
One of the major goals of the Infrastructure has been to architecturally align UML and MOF. The first approach to
accomplish this has been to define the common core, which is realized as the package Core, in such a way that the model
elements are shared between UML and MOF. The second approach has been to make sure that UML is defined as a model
that is based on MOF used as a metamodel, as is illustrated in Figure 4. Note that MOF is used as the metamodel for not
only UML, but also for other languages such as CWM.

How these metalevel hierarchies work is explained in more detail in “Superstructure Architecture” on page 14. An
important aspect that deserves mentioning here is that every model element of UML is an instance of exactly one model
element in MOF. Note that the InfrastructureLibrary is used at both the M2 and M3 metalevels, since it is being reused
by UML and MOF, respectively, as was shown in Figure 2. In the case of MOF, the metaclasses of the
InfrastructureLibrary are used as is, while in the case of UML these model elements are given additional properties. The
reason for these differences is that the requirements when metamodeling differ slightly from the requirements when
modeling applications of a very diverse nature.

MOF defines for example how UML models are interchanged between tools using XML Metadata Interchange (XMI).
MOF also defines reflective interfaces (MOF::Reflection) for introspection that work for MOF itself, but also for CWM,
UML, and any other metamodel that is an instance of MOF. It further defines an extension mechanism that can be used to
extend metamodels as an alternative to or in conjunction with profiles (as described in Chapter 13, “Core::Profiles”). In
fact, profiles are defined to be a subset of the MOF extension mechanism.

7.2.4 Superstructure Architecture
The UML Superstructure metamodel is specified by the UML package, which is divided into a number of packages that
deal with structural and behavioral modeling, as shown in Figure 5.

Each of these areas is described in a separate chapter of the UML 2.0: Superstructure specification. Note that there are
some packages that are dependent on each other in circular dependencies. This is because the dependencies between the
top-level packages show a summary of all relationships between their subpackages; there are no circular dependencies
between subpackages of those packages.

Figure 4 - UML and MOF are at different metalevels

«metamodel»
MOF

«metamodel»
UML

«metamodel»
CWM

«instanceOf»«instanceOf»

M3

M2
14 UML 2.0 Infrastructure

Figure 5 - The top-level package structure of the UML 2.0 Superstructure

7.2.5 Reusing Infrastructure
One of the primary uses of the UML 2.0 Infrastructure specification is that it should be reused when creating other
metamodels. The UML metamodel reuses the InfrastructureLibrary in two different ways:

• All of the UML metamodel is instantiated from meta-metaclasses that are defined in the InfrastructureLibrary.

• The UML metamodel imports and specializes all metaclasses in the InfrastructureLibrary.

As was discussed earlier, it is possible for a model to be used as a metamodel, and here we make use of this fact. The
InfrastructureLibrary is in one capacity used as a meta-metamodel and in the other aspect as a metamodel, and is thus
reused in two dimensions.

7.2.6 The Kernel Package
The InfrastructureLibrary is primarily reused in the Kernel package of Classes in UML 2.0: Superstructure; this is done
by bringing together the different packages of the Infrastructure using package merge. The Kernel package is at the very
heart of UML, and the metaclasses of every other package are directly or indirectly dependent on it. The Kernel package
is very similar to the Constructs package of the InfrastructureLibrary, but adds more capabilities to the modeling
constructs that were not necessary to include for purposes of reuse or alignment with MOF.

UseCases

Actions

Activities AuxiliaryConstructs

ClassesCommonBehaviors

Components

CompositeStructures

Deployments

Interactions

Profiles

StateMachines
UML 2.0 Infrastructure 15

Because the Infrastructure has been designed for reuse, there are metaclasses—particularly in Abstractions—that are
partially defined in several different packages. These different aspects are for the most part brought together into a single
metaclass already in Constructs, but in some cases this is done only in Kernel. In general, if metaclasses with the same
name occurs in multiple packages, they are meant to represent the same metaclass, and each package where it is defined
(specialized) represents a specific factorization. This same pattern of partial definitions also occurs in Superstructure,
where some aspects of for example the metaclass Class are factored out into separate packages to form compliance points
(see below).

7.2.7 Metamodel layering
The architecture that is centered around the Core package is a complementary view of the four-layer metamodel hierarchy
on which the UML metamodel has traditionally been based. When dealing with meta-layers to define languages there are
generally three layers that always has to be taken into account:

• the language specification, or the metamodel,

• the user specification, or the model, and

• objects of the model.

This structure can be applied recursively many times so that we get a possibly infinite number of meta-layers; what is a
metamodel in one case can be a model in another case, and this is what happens with UML and MOF. UML is a language
specification (metamodel) from which users can define their own models. Similarly, MOF is also a language specification
(metamodel) from which users can define their own models. From the perspective of MOF, however, UML is viewed as
a user (i.e., the members of the OMG that have developed the language) specification that is based on MOF as a language
specification. In the four-layer metamodel hierarchy, MOF is commonly referred to as a meta-metamodel, even though
strictly speaking it is a metamodel.

7.2.8 The four-layer metamodel hierarchy
The meta-metamodeling layer forms the foundation of the metamodeling hierarchy. The primary responsibility of this
layer is to define the language for specifying a metamodel. The layer is often referred to as M3, and MOF is an example
of a meta-metamodel. A meta-metamodel is typically more compact than a metamodel that it describes, and often defines
several metamodels. It is generally desirable that related metamodels and meta-metamodels share common design
philosophies and constructs. However, each layer can be viewed independently of other layers, and needs to maintain its
own design integrity.

A metamodel is an instance of a meta-metamodel, meaning that every element of the metamodel is an instance of an
element in the meta-metamodel. The primary responsibility of the metamodel layer is to define a language for specifying
models. The layer is often referred to as M2; UML and the OMG Common Warehouse Metamodel (CWM) are examples
of metamodels. Metamodels are typically more elaborate than the meta-metamodels that describe them, especially when
they define dynamic semantics. The UML metamodel is an instance of the MOF (in effect, each UML metaclass is an
instance of an element in InfrastructureLibrary).

A model is an instance of a metamodel. The primary responsibility of the model layer is to define languages that describe
semantic domains, i.e., to allow users to model a wide variety of different problem domains, such as software, business
processes, and requirements. The things that are being modeled reside outside the metamodel hierarchy. This layer is
often referred to as M1. A user model is an instance of the UML metamodel. Note that the user model contains both
model elements and snapshots (illustrations) of instances of these model elements.

The metamodel hierarchy bottoms out at M0, which contains the run-time instances of model elements defined in a
model. The snapshots that are modeled at M1 are constrained versions of the M0 run-time instances.
16 UML 2.0 Infrastructure

When dealing with more than three meta-layers, it is usually the case that the ones above M2 gradually get smaller and
more compact the higher up they are in the hierarchy. In the case of MOF, which is at M3, it consequently only shares
some of the metaclasses that are defined in UML. A specific characteristic about metamodeling is the ability to define
languages as being reflective, i.e., languages that can be used to define themselves. The InfrastructureLibrary is an
example of this, since it contains all the metaclasses required to define itself. When a language is reflective, there is no
need to define another language to specify its semantics. MOF is reflective since it is based on the InfrastructureLibrary,
and there is thus no need to have additional meta-layers above MOF.

7.2.9 Metamodeling
When metamodeling, we primarily distinguish between metamodels and models. As already stated, a model that is
instantiated from a metamodel can in turn be used as a metamodel of another model in a recursive manner. A model
typically contains model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel
elements.

The typical role of a metamodel is to define the semantics for how model elements in a model gets instantiated. As an
example, consider Figure 8, where the metaclasses Association and Class are both defined as part of the UML metamodel.
These are instantiated in a user model in such a way that the classes Person and Car are both instances of the metaclass
Class, and the association Person.car between the classes is an instance of the metaclass Association.The semantics of
UML defines what happens when the user defined model elements are instantiated at M0, and we get an instance of
Person, an instance of Car, and a link (i.e,. an instance of the association) between them.

Figure 6 - An example of metamodeling; note that not all instance-of relationships are shown

The instances, which are sometimes referred to as “run-time” instances, that are created at M0 from for example Person
should not be confused with instances of the metaclass InstanceSpecification that are also defined as part of the UML
metamodel. An instance of an InstanceSpecification is defined in a model at the same level as the model elements that it
illustrates, as is depicted in Figure 7, where the instance specification Mike is an illustration (or a snapshot) of an instance
of class Person.

Association

Person Car

«instanceOf»

Class

«instanceOf»

*

car

metamodel

model
UML 2.0 Infrastructure 17

7.2.10 An example of the four-level metamodel hierarchy
An illustration of how these meta-layers relate to each other is shown in Figure 8. It should be noted that we are by no
means restricted to only these four meta-layers, and it would be possible to define additional ones. As is shown, the meta-
layers are usually numbered from M0 and upwards, depending on how many meta-layers are used. In this particular case,
the numbering goes up to M3, which corresponds to MOF.

Figure 7 - Giving an illustration of a class using an instance specification

InstanceSpecification

Person Mike: Person

«instanceOf»

Class

«instanceOf»

metamodel

model

age: Integer age = 11
18 UML 2.0 Infrastructure

.

Figure 8 - An example of the four-layer metamodel hierarchy

Class

Attribute Class

Video

+title: String

«instanceOf»«instanceOf»

: Video

title = "2001: A Space Odyssey"

«instanceOf»«instanceOf»

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

«instanceOf»

«instanceOf»

classifier

«instanceOf»

M0 (Run-time instances) aVideo

«instanceOf»

«snapshot»
UML 2.0 Infrastructure 19

8 Language Formalism
The UML specification is defined by using a metamodeling approach that adapts formal specification techniques. The
formal specification techniques are used to increase the precision and correctness of the specification. This chapter
explains the specification techniques used to define UML.

The following are the goals of the specifications techniques used to define UML:

• Correctness. The specification techniques should improve the correctness of the metamodel by helping to validate it.
For example, the well-formedness rules should help validate the abstract syntax and help identify errors.

• Precision. The specification techniques should increase the precision of both the syntax and semantics. The precision
should be sufficient so that there is no syntactic nor semantic ambiguity for either implementors or users.1

• Conciseness. The specification techniques should be parsimonious, so that the precise syntax and semantics are defined
without superfluous detail.

• Consistency. The specification techniques should complement the metamodeling approach by adding essential detail in
a consistent manner.

• Understandability. While increasing the precision and conciseness, the specification techniques should also improve
the readability of the specification. For this reason a less than strict formalism is applied, since a strict formalism for-
mal techniques

The specification technique used describes the metamodel in three views using both text and graphic presentations.

It is important to note that the current description is not a completely formal specification of the language because to do
so would have added significant complexity without clear benefit.

The structure of the language is nevertheless given a precise specification, which is required for tool interoperability. The
detailed semantics are described using natural language, although in a precise way so they can easily be understood.
Currently, the semantics are not considered essential for the development of tools; however, this will probably change in
the future.

8.1 Levels of Formalism
A common technique for specification of languages is to first define the syntax of the language and then to describe its
static and dynamic semantics. The syntax defines what constructs exist in the language and how the constructs are built
up in terms of other constructs. Sometimes, especially if the language has a graphic syntax, it is important to define the
syntax in a notation independent way (i.e., to define the abstract syntax of the language). The concrete syntax is then
defined by mapping the notation onto the abstract syntax.

The static semantics of a language define how an instance of a construct should be connected to other instances to be
meaningful, and the dynamic semantics define the meaning of a well-formed construct. The meaning of a description
written in the language is defined only if the description is well formed (i.e., if it fulfills the rules defined in the static
semantics).

1. By definition semantic variation points are an exception to this..
20 UML 2.0 Infrastructure

The specification uses a combination of languages - a subset of UML, an object constraint language, and precise natural
language to describe the abstract syntax and semantics of the full UML. The description is self-contained; no other
sources of information are needed to read the document2. Although this is a metacircular description3, understanding this
document is practical since only a small subset of UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify language constructs, using some of
the capabilities of UML. The main language constructs are reified into metaclasses in the metamodel. Other constructs, in
essence being variants of other ones, are defined as stereotypes of metaclasses in the metamodel. This mechanism allows
the semantics of the variant construct to be significantly different from the base metaclass. Another more “lightweight”
way of defining variants is to use metaattributes. As an example, the aggregation construct is specified by an attribute of
the metaclass AssociationEnd, which is used to indicate if an association is an ordinary aggregate, a composite aggregate,
or a common association.

Package Specification Structure
This section provides information for each package and each class in the UML metamodel. Each package has one or more
of the following subsections:

Class Descriptions
The section contains an enumeration of the classes specifying the constructs defined in the package. It begins with one
diagram or several diagrams depicting the abstract syntax of the constructs (i.e. the classes and their relationships) in the
package, together with some of the well-formedness requirements (multiplicity and ordering). Then follows a
specification of each class in alphabetic order (see below).

8.1.1 Diagrams
If a specific kind of diagram usually presents the constructs that are defined in the package, a section describing this kind
of diagram is included.

8.1.2 Instance Model
An example may be provided to show how an instance model of the contained classes may be populated. The elements in
the example are instance of the classes contained in the package (or in an imported package).

8.2 Class Specification Structure
The specification of a class starts with a presentation of the general meaning of the concept which sets the context for the
definition.

8.2.1 Description
The section includes an informal definition of the metaclass specifying the construct in UML. The section states if the
metaclass is abstract.

This section together with the following two constitute a description of the abstract syntax of the construct.

2. Although a comprehension of the UML’s four-layer metamodel architecture and its underlying meta-metamodel is helpful, it is
not essential to understand the UML semantics.

3. In order to understand the description of the UML semantics, you must understand some UML semantics.
UML 2.0 Infrastructure 21

Attributes
Each of the attributes of the class are enumerated together with a short explanation. The section states if the attribute is
derived, or if it is a specialization of another attribute. If the multiplicity of the attribute is suppressed if it is ‘1’ (default
in UML).

8.2.2 Associations
The opposite ends of associations connected to the class are also listed in the same way. The section states if the
association is derived, or if it is a specialization of another association. The multiplicity of an association end is
suppressed if it is ‘*’ (default in UML).

When directed associations are specified in lieu of attributes, the multiplicity on the undirected end is assumed to be ‘*’
(default in UML) and the role name should not be used.

8.2.3 Constraints
The well-formedness rules of the metaclass, except for multiplicity and ordering constraints that are defined in the
diagram at the beginning of the package section, are defined as a (possibly empty) set of invariants for the metaclass,
which must be satisfied by all instances of that metaclass for the model to be meaningful. The rules thus specify
constraints over attributes and associations defined in the metamodel. Most invariant is defined by an OCL expression
together with an informal explanation of the expression, but in some cases the invariant is expressed by other means (in
exceptional cases with natural language). The statement ‘No additional constraints’ means that all well-formedness rules
are expressed in the superclasses together with the multiplicity and type information expressed in the diagrams.

8.2.4 Additional Operations (optional)
In many cases, additional operations on the classes are needed for the OCL expressions. These are then defined in a
separate subsection after the constraints for the construct, using the same approach as the Constraints section: an informal
explanation followed by the OCL expression defining the operation.

8.2.5 Semantics
The meaning of a well-formed construct is defined using natural language.

8.2.6 Semantic Variation Points (optional)
The term semantic variation point is used throughout this document to denote a part of the UML specification whose
purpose in the overall specification is known but whose form or semantics may be varied in some way. The objective of
a semantic variation point is to enable specialization of that part of UML for a particular situation or domain.

There are several forms in which semantic variation points appear in the standard:

Changeable default: in this case, a single default specification for the semantic variation point is provided in the standard
but it may be replaced. For example, the standard provides a default set of rules for specializing state machines, but this
default can be overridden (e.g., in a profile) by a different set of rules (the choice typically depends on which definition
of behavioral compatibility is used).

Multiple choice: in this case, the standard explicitly specifies a number of possible mutually exclusive choices, one of
which may be marked as the default. Language designers may either select one of those alternatives or define a new one.
An example of this type of variation point can be found in the handling of unexpected events in state machines; the
choices include (a) ignoring the event (the default), (b) explicitly rejecting it, or (c) deferring it.
22 UML 2.0 Infrastructure

Undefined: in this case, the standard does not provide any pre-defined specifications for the semantic variation point. For
instance, the rules for selecting the method to be executed when a polymorphic operation is invoked are not defined in the
standard.

8.2.7 Notation
The notation of the construct is presented in this section.

8.2.8 Presentation Options (optional)
If there are different ways to show of the construct, e.g. it is not necessary to show all parts of the construct in every
occurrence, these possibilities are described in this section.

8.2.9 Style Guidelines (optional)
Often is an informal convention how to show (a part of) a construct, like the name of a class should be centered and in
bold. These conventions are presented in this section.

8.2.10 Examples (optional)
In this section, examples of how the construct is to be depicted are given.

8.2.11 Rationale (optional)
If there is a reason for why a construct is defined like it is, or why its notation is defined as it is, this reason is given in
this section.

8.2.12 Changes from UML 1.4
Here, changes compared with UML 1.4 are described and a migration approach from 1.4 to 2.0 is specified.

8.3 Use of a Constraint Language
The specification uses the Object Constraint Language (OCL), as defined in Chapter 6, “Object Constraint Language
Specification” of the UML 1.4 specification, for expressing well-formedness rules. The following conventions are used to
promote readability:

• Self - which can be omitted as a reference to the metaclass defining the context of the invariant, has been kept for clar-
ity.

• In expressions where a collection is iterated, an iterator is used for clarity, even when formally unnecessary. The type of
the iterator is usually omitted, but included when it adds to understanding.

• The ‘collect’ operation is left implicit where this is practical.

• The context part of an OCL constraint is not included explicitly, as it is well-defined in the section where the constraint
appears.
UML 2.0 Infrastructure 23

8.4 Use of Natural Language
We strove to be precise in our use of natural language, in this case English. For example, the description of UML
semantics includes phrases such as “X provides the ability to…” and “X is a Y.” In each of these cases, the usual English
meaning is assumed, although a deeply formal description would demand a specification of the semantics of even these
simple phrases.

The following general rules apply:

• When referring to an instance of some metaclass, we often omit the word “instance.” For example, instead of saying “a
Class instance” or “an Association instance,” we just say “a Class” or “an Association.” By prefixing it with an “a” or
“an,” assume that we mean “an instance of.” In the same way, by saying something like “Elements” we mean “a set (or
the set) of instances of the metaclass Element.”

• Every time a word coinciding with the name of some construct in UML is used, that construct is meant.

• Terms including one of the prefixes sub, super, or meta are written as one word (e.g., metamodel, subclass).

8.5 Conventions and Typography
In the description of UML, the following conventions have been used:

• When referring to constructs in UML, not their representation in the metamodel, normal text is used.

• Metaclass names that consist of appended nouns/adjectives, initial embedded capitals are used (e.g., ‘ModelElement,’
‘StructuralFeature’).

• Names of metaassociations are written in the same manner as metaclasses (e.g., ‘ElementReference’).

• Initial embedded capital is used for names that consist of appended nouns/adjectives (e.g., ‘ownedElement,’ ‘allCon-
tents’).

• Boolean metaattribute names always start with ‘is’ (e.g., ‘isAbstract’).

• Enumeration types always end with “Kind” (e.g., ‘AggregationKind’).

• While referring to metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they appear in the
model are always used.

• No visibilities are presented in the diagrams, as all elements are public.

• If a mandatory section does not apply for a metaclass, the text ‘No additional XXX’ is used, where ‘XXX’ is the name
of the heading. If an optional section is not applicable, it is not included.

Issue 7135 - Single notation for text syntax

For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify the legal formats. The conventions of
this BNF are:

• All non-terminals are in italics and enclosed between angle brackets (e.g. <non-terminal>)

• All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., 'or')

• Non-terminal production rule definitions are signified with the '::=' operator

• Repetition of an item is signified by an asterisk placed after that item: '*'
24 UML 2.0 Infrastructure

• Alternative choices in a production are separated by the '|' symbol; e.g.,
<alternative-A> | <alternative-B>

• Items that are optional are enclosed in square brackets (e.g., [<item-x>])

• Where items need to be grouped they are enclosed in simple parenthesis; for example,
 (<item-1> | <item-2>) *

signifies a sequence of one or more items, each of which is <item-1> or <item-2>
UML 2.0 Infrastructure 25

26 UML 2.0 Infrastructure

Part II - Infrastructure Library
This part describes the structure and contents of the Infrastructure Library for the UML metamodel and related
metamodels, such as the Meta Object Facility (MOF) and the Common Warehouse Model (CWM). The
InfrastructureLibrary package defines a reusable metalanguage kernel and a metamodel extension mechanism for UML.
The metalanguage kernel can be used to specify a variety of metamodels, including UML, MOF and CWM. In addition,
the library defines a profiling extension mechanism that can be used to customize UML for different platforms and
domains without supporting a complete metamodeling capability. The top-level packages of the InfrastructureLibrary are
shown in Figure 9.

Figure 9 - The Metamodel Library package contains the packages Core and Profiles

The Core package is the central reusable part of the InfrastructureLibrary, and is further subdivided as shown in Figure
10.

InfrastructureLibrary

Core

Profiles
UML 2.0 Infrastructure 27

Figure 10 - The Core package contains the packages PrimitiveTypes, Abstractions, Basic, and Constructs

The package PrimitiveTypes is a simple package that contains a number of predefined types that are commonly used when
metamodeling, and as such they are used both in the infrastructure library itself, but also in metamodels like MOF and
UML. The package Abstractions contains a number of fine-grained packages with only a few metaclasses each, most of
which are abstract. The purpose of this package is to provide a highly reusable set of metaclasses to be specialized when
defining new metamodels. The package Constructs also contains a number of fine-grained packages, and brings together
many of the aspects of the Abstractions. The metaclasses in Constructs tend to be concrete rather than abstract, and are
geared towards an object-oriented modeling paradigm. Looking at metamodels such as MOF and UML, they typically
import the Constructs package since the contents of the other packages of Core are then automatically included. The
package Basic contains a subset of Constructs that is used primarily for XMI purposes.

The Profiles package contains the mechanisms used to create profiles of specific metamodels, and in particular of UML.
This extension mechanism subsets the capabilities offered by the more general MOF extension mechanism.

The detailed structure and contents of the PrimitiveTypes, Abstractions, Basic, Constructs, and Profiles packages are
further described in subsequent chapters.

Core

Abstractions

Constructs

PrimitiveTypes

Basic
28 UML 2.0 Infrastructure

9 Core::Abstractions
The Abstractions package of InfrastructureLibrary::Core is divided into a number of finer-grained packages to facilitate
flexible reuse when creating metamodels.

Figure 11 - The Core package is owned by the InfrastructureLibrary pack and contains several subpackages

The subpackages of Abstractions are all shown in Figure 12.

Core

Abstractions

Constructs

PrimitiveTypes

Basic
UML 2.0 Infrastructure 29

Figure 12 - The Abstractions package contains several subpackages, all of which are specified in this chapter

 The contents of each subpackage of Abstractions is described in a separate section below.

9.1 BehavioralFeatures package
The BehavioralFeatures subpackage of the Abstractions package specifies the basic classes for modeling dynamic features
of model elements.

Abstractions

Ownerships

Namespaces

Comments
Relationships

Visibilities

Expressions

All relationships shown in this
figure are package imports.

BehavioralFeatures

Classifiers

Constraints
Generalizations

Instances

StructuralFeatures

MultiplicityExpressions RedefinitionsChangeabilities

Elements

SuperLiterals

Multiplicities

TypedElements
30 UML 2.0 Infrastructure

Figure 13 - The BehavioralFeatures package

Figure 14 - The elements defined in the BehavioralFeatures package

9.1.1 BehavioralFeature
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Description
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances. BehavioralFeature
is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled by subclasses of
BehavioralFeature.

Issue 7367 - add superclass pointers

Generalizations

• “Feature” on page 37

• “Namespace” on page 74

BehavioralFeatures

ClassifiersTypedElements

Feature
(from Classifiers)

TypedElement
(from TypedElements)

NamedElemen
(from Namespace

Namespace
(from Namespaces)

Parameter
BehavioralFeature

*0..1

/parameter

*{ordered,
subsets member,

union}

0..1
UML 2.0 Infrastructure 31

Attributes
No additional attributes.

Associations
• / parameter: Parameter[*] Specifies the parameters of the BehavioralFeature. Subsets Namespace::member. This is a

derived union and is ordered.

Constraints
No additional constraints.

Additional Operations
[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It

specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =

if n.oclIsKindOf(BehavioralFeature)
then

if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.parameter->collect(type))
else true
endif

else true
endif

Semantics
The list of parameters describes the order and type of arguments that can be given when the BehavioralFeature is invoked.

Notation
No additional notation.

9.1.2 Parameter
A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

Description
Parameter is an abstract metaclass specializing TypedElement and NamedElement.

Issue 7367 - add superclass pointers

Generalizations

• “TypedElement” on page 88

• “NamedElement” on page 72

Attributes
No additional attributes.
32 UML 2.0 Infrastructure

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
A parameter specifies arguments that are passed into or out of an invocation of a behavioral element like an operation. A
parameter’s type restricts what values can be passed.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

Notation
No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines
A parameter name typically starts with a lowercase letter.

9.2 Changeabilities package
The Changeabilities subpackage of the Abstractions package defines when a structural feature may be modified by a
client.

Figure 15 - The Changeabilities package

StructuralFeatures

Changeabilities
UML 2.0 Infrastructure 33

9.2.1 ChangeabilityKind
ChangeabilityKind is an enumeration type.

Issue 7367 - add superclass pointers

Generalizations

• None

Description
ChangeabilityKind is an enumeration of the following literal values:

• unrestricted: Indicates that there is no restriction no adding new values, changing a value, or removing values to an
occurrence of a StructuralFeature.

• readOnly: Indicates that adding new values, changing values, and removing values or an occurrence of a Structural-
Feature is not permitted.

• addOnly: Indicates that there is no restriction on adding new values to an occurrence of a StructuralFeature, but chang-
ing and removing values are restricted.

• removeOnly: Indicates that there is no restriction on removing values from an occurrence of a StructuralFeature, but
adding new values and changing values is not permitted.

9.2.2 StructuralFeature (as specialized)

Description
StructuralFeature is specialized to add an attribute that determines whether a client may modify its value.

Figure 16 - The elements defined in the Changeabilities package

StructuralFeature
isReadOnly : Boolean = false

StructuralFeature
(from StructuralFeatures)
34 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “StructuralFeature” on page 82

Attributes
• isReadOnly: Boolean States whether the feature’s value may be modified by a client. Default is false.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. A modifiable
structural feature is shown using {unrestricted} as part of the notation for the structural feature. This annotation may be
suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Option
It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.

9.3 Classifiers package
The Classifiers package in the Abstractions package specifies an abstract generalization for the classification of instances
according to their features.

Figure 17 - The Classifiers package

Namespaces

Classifiers
UML 2.0 Infrastructure 35

9.3.1 Classifier
A classifier is a classification of instances — it describes a set of instances that have features in common.

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “Namespace” on page 74

Attributes
No additional attributes.

Associations
• / feature : Feature [*] Specifies each feature defined in the classifier. Subsets Namespace::member. This is a

derived union.

Additional Operations
[1] The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as

inheritance, this will be a larger set than feature.

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

Constraints
No additional constraints.

Issue 6929 - change /featuringClassifier from 1..* to 0..*
Figure 18 - The elements defined in the Classifiers package

NamedElement
(from Namespaces)

Namespace
(from Namespaces)

Classifier Feature

0.. * *

/featuringClassifier

0.. * {union}

/ feature

*
{subsets member,

union}
36 UML 2.0 Infrastructure

Semantics
A classifier is a classification of instances according to their features.

Notation
The default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

Presentation Options
Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used
to remove ambiguity, if necessary.

9.3.2 Feature
A feature declares a behavioral or structural characteristic of instances of classifiers.

Description
A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Attributes
No additional attributes.

Associations

Issue 6929 - change /featuringClassifier from 1..* to 0..* (editorial - not explicit in resolution which just
changed the diagram)

• / featuringClassifier: Classifier [0..*]The Classifiers that have this Feature as a feature. This is a derived union.

Constraints
No additional constraints.

Semantics
A Feature represents some characteristic for its featuring classifiers. A Feature can be a feature of multiple classifiers.

Notation
No general notation. Subclasses define their specific notation.
UML 2.0 Infrastructure 37

9.4 Comments package
The Comments package of the Abstractions package defines the general capability of attaching comments to any element.

9.4.1 Comment
A comment is a textual annotation that can be attached to a set of elements.

Description
A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment may be owned by any element.

Figure 19 - The Comments package

Figure 20 - The elements defined in the Comments package

Ownerships

Comments

Element

Comment
body : String

0..1

*

0..1

ownedComment

* {subsets ownedElement}

Element
(from Ownerships)*

annotatedElement

*

38 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “Element (as specialized)” on page 39

Attributes
• body: String Specifies a string that is the comment

Associations
• annotatedElement: Element[*] References the Element(s) being commented.

Constraints
No additional constraints.

Semantics
A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the
model.

Notation
A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options
The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

Examples

9.4.2 Element (as specialized)

Description
An element can own comments.

Figure 21 - Comment notation

Account

This class was added
by Alan Wright after
meeting with the
mission planning team.
UML 2.0 Infrastructure 39

Attributes
No additional attributes.

Issue 7367 - add superclass pointers

Generalizations

• “Element (as specialized)” on page 76

Associations
• ownedComment: Comment[*] The Comments owned by this element. Subsets Element::ownedElement.

Constraints
No additional constraints.

Semantics
The comments for an Element add no semantics but may represent information useful to the reader of the model.

Notation
No additional notation.

9.5 Constraints package
The Constraints subpackage of the Abstractions package specifies the basic building blocks that can be used to add
additional semantic information to an element.

Figure 22 - The Constraints package

NamespacesExpressions

Constraints
40 UML 2.0 Infrastructure

9.5.1 Constraint
A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.

Description
Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be
appropriate for expressing a constraint. In other situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to the element.

Constraint contains an optional name, although they are commonly unnamed.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Attributes
No additional attributes.

Figure 23 - The elements defined in the Constraints package

NamedElement
(from Namespaces)

Namespace
ValueSpecification

(from Expressions)

Element
(from Ownerships)

Namespace
(from Namespaces)

Constraint

*0..1

ownedRule

*

{subsets ownedMember}

namespace

0..1 {subsets context} 10..1

specification

1
{subsets ownedElement}

0..1

*

constrainedElement

* {ordered}0..1

/context

0..1 {union}
UML 2.0 Infrastructure 41

Associations
• constrainedElement: Element[*]The ordered set of Elements referenced by this Constraint.

• / context: Namespace [0..1] Specifies the Namespace that is the context for evaluating this constraint. This is a
derived union.

• specification: ValueSpecification[0..1]A condition that must be true when evaluated in order for the constraint to be satis-
fied. Subsets Element::ownedElement.

Constraints
[1] The value specification for a constraint must evaluate to a boolean value.

Cannot be expressed in OCL.

self.specification.isOclKindOf(Boolean)

[2] Evaluating the value specification for a constraint must not have side effects.

Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.

not constrainedElement->includes(self)

Semantics
A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL ‘self’ is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation
A Constraint is shown as a text string in braces ({}) according to the following BNF:

Issue 7135 - Use consistent syntax for text
constraint ::= ‘{‘ [<name> ‘:’] <Boolean expression>’ }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 24 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.
42 UML 2.0 Infrastructure

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 25 shows an {xor} constraint
between two associations.

Presentation Options
The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 26 shows an example of a constraint in a note symbol.

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the
first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

Examples

Figure 24 - Constraint attached to an attribute.

Figure 25 - {xor} constraint

Stack

size: Integer {size >= 0}

push()
pop()

Account

Person

Corporation

{xor}
UML 2.0 Infrastructure 43

9.5.2 Namespace (as specialized)

Description
A namespace can own constraints. The constraint does not necessarily apply to the namespace itself, but may also apply
to elements in the namespace.

Issue 7367 - add superclass pointers

Generalizations

• “Namespace” on page 74

Attributes
No additional attributes.

Associations
• ownedRule: Constraint[*] Specifies a set of Constraints owned by this Namespace. Subsets Namespace::owned-

Member.

Constraints
No additional constraints.

Semantics
The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These
constraints are evaluated when determining if the model elements are well formed.

Notation
No additional notation.

Figure 26 - Constraint in a note symbol

Person Company
employee employer

* 0..1

boss0..1

{self.boss->isEmpty() or
self.employer = self.boss.employer}
44 UML 2.0 Infrastructure

9.6 Elements package
The Elements subpackage of the Abstractions package specifies the most basic abstract construct, Element.

9.6.1 Element
An element is a constituent of a model.

Description
Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library.

Issue 7367 - add superclass pointers

Generalizations

• None.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics
Subclasses of Element provide semantics appropriate to the concept they represent.

Notation
There is no general notation for an Element. The specific subclasses of Element define their own notation.

Figure 27 - The Elements package

Figure 28 - The elements defined in the Elements package

Elements

Element
UML 2.0 Infrastructure 45

9.7 Expressions package
The Expressions package in the Abstractions package specifies the general metaclass supporting the specification of
values, along with specializations for supporting structured expression trees and opaque, or uninterpreted, expressions.
Various UML constructs require or use expressions, which are linguistic formulas that yield values when evaluated in a
context.

9.7.1 Expression
An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Figure 29 - The Expressions package

Issue 3391 - Allow multiple languages
Figure 30 - The elements defined in the Expressions package

Ownerships

Expressions

OpaqueExpression
body : String
language : String

Element
(from Ownerships)

[0..1]

ValueSpecification

Expression
symbol : String

*

0..1

operan d

* {ordered, subsets ownedElement}

expression

0..1 {subsets owner}OpaqueExpression
body : String
language : String

Element
(from Ownerships)

[*] {ordered}

ValueSpecification

Expression
symbol : String

*

0..1

operand

* {ordered, subsets own edElement}

expression

0..1 {subsets owner}[1. .*] {ordered}
46 UML 2.0 Infrastructure

Description
An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands which are value specifications.

Issue 7367 - add superclass pointers

Generalizations

• “ValueSpecification” on page 49

Attributes
• symbol: String [1] The symbol associated with the node in the expression tree.

Associations
• operand: ValueSpecification[*] Specifies a sequence of operands. Subsets Element::ownedElement.

Constraints
No additional constraints.

Semantics
An expression represents a node in an expression tree. If there are no operands it represents a terminal node. If there are
operands it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Notation
By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples
xor
else
plus(x,1)
x+1

9.7.2 OpaqueExpression
An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

Description

Issue 3391 - Allow multiple languages

An opaque expression contains language-specific text strings used to describe a value or values, and an optional
specification of the languages.
UML 2.0 Infrastructure 47

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be
used.

Issue 7367 - add superclass pointers

Generalizations

• “ValueSpecification” on page 49

Attributes
• body: String [1..*] {ordered}] The text of the expression, possibly in multiple languages.

• language: String * {ordered} Specifies the languages in which the expression is stated. The interpretation of the expres-
sion body depends on the language. If languages are unspecified, it might be implicit from
the expression body or the context. Languages are matched to body strings by order.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
The interpretation of the expression bodies depends on the languages. Languages are matched to body strings by order. If
the languages are unspecified, it might be implicit from the expression bodies or the context.

It is assumed that a linguistic analyzer for the specified languages will evaluate the bodies. The time at which the bodies
will be evaluated is not specified.

Notation
An opaque expression is displayed as text string in particular languages. The syntax of the strings are the responsibility of
a tool and linguistic analyzers for the language.

An opaque expression is displayed as a part of the notation for its containing element.

The languages of an opaque expression, if specified, are often not shown on a diagram. Some modeling tools may impose
a particular language or assume a particular default language. The language is often implicit under the assumption that the
form of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({})
before the expression string to which it corresponds.

Style Guidelines
A language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use OCL, not ocl.

Examples
a > 0
{OCL} i > j and self.size > i
average hours worked per week
48 UML 2.0 Infrastructure

9.7.3 ValueSpecification
A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Description
ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Issue 7367 - add superclass pointers

Generalizations

• “Element (as specialized)” on page 76

Attributes
No additional attributes.

Associations
• expression: Expression[0..1] If this value specification is an operand, the owning expression. Subsets Element::owner.

Constraints
No additional constraints.

Additional Operations
These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may
be able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] The query isComputable() determines whether a value specification can be computed in a model. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value specifica-
tions that it can compute, and to compute all of those for which the operation is true. A conforming implementation is
expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false

[2] The query integerValue() gives a single Integer value when one can be computed.

ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query booleanValue() gives a single Boolean value when one can be computed.
ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[4] The query stringValue() gives a single String value when one can be computed.

ValueSpecification::stringValue() : [String];
stringValue = Set{}

[5] The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.

ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}
UML 2.0 Infrastructure 49

[6] The query isNull() returns true when it can be computed that the value is null.

ValueSpecification::isNull() : Boolean;
isNull = false

Semantics
A value specification yields zero or more values. It is required that the type and number of values is suitable for the
context where the value specification is used.

Notation
No specific notation.

9.8 Generalizations package
The Generalizations package of the Abstractions package provides mechanisms for specifying generalization relationships
between classifiers.

Figure 31 - The Generalizations package

Relationships
Super

Generalizations

TypedElements
50 UML 2.0 Infrastructure

9.8.1 Classifier (as specialized)

Description
A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers.

Attributes
No additional attributes.

Issue 7367 - add superclass pointers

Generalizations

• “Type” on page 87

• “Classifier (as specialized)” on page 84

Associations
• generalization: Generalization[*]Specifies the Generalization relationships for this Classifier. These Generalizations navi-

gate to more general classifiers in the generalization hierarchy. Subsets Ele-
ment::ownedElement.

• / general : Classifier[*] Specifies the general Classifiers for this Classifier. This is derived.

Figure 32 - The elements defined in the Generalizations package

DirectedRelationship
(from Relationships)

GeneralizationClassifier
*1

generalization

*
{subsets ownedElement}

specific

1
{subsets source,
subsets owner}

1

general

1 {subsets target}

*/general *

Classifier
(f rom Su per)

Type
(from TypedElements)
UML 2.0 Infrastructure 51

Constraints
[1] The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

Additional Operations
[1] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);
parents = generalization.general

[2] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example,
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))

Semantics
A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of the general Classifier. The specific semantics of how generalization affects each concrete
subtype of Classifier varies. A Classifier defines a type. Type conformance between generalizable Classifiers is defined so
that a Classifier conforms to itself and to all of its ancestors in the generalization hierarchy.

Notation
No additional notation.

Examples
See Generalization.

9.8.2 Generalization
A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an instance of the general classifier. Thus, the specific classifier indirectly has
features of the more general classifier.

Description
A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Issue 7367 - add superclass pointers

Generalizations

• “DirectedRelationship” on page 80

Attributes
No additional attributes.
52 UML 2.0 Infrastructure

Associations
• general: Classifier [1] References the general classifier in the Generalization relationship.

Subsets DirectedRelationship::target.

• specific: Classifier [1] References the specializing classifier in the Generalization relationship.
Subsets DirectedRelationship::source and Element::owner.

Constraints
No additional constraints

Semantics
Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Notation
A Generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style”. See the example section below.

Presentation Options
Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared
target style”. See the example section below.
UML 2.0 Infrastructure 53

Examples

9.9 Instances package
The Instances package in the Abstractions package provides for modeling instances of classifiers.

Figure 33 - Examples of generalizations between classes

Figure 34 - The Instances package

Shape

Polygon Ellipse Spline

Shape

Polygon Ellipse Spline

Separate target style

Shared target style

Expressions

Instances

StructuralFeatures
54 UML 2.0 Infrastructure

9.9.1 InstanceSpecification
An instance specification is a model element that represents an instance in a modeled system.

Description
An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description includes:

• Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified is
abstract, then the instance specification only partially describes the entity.

• The kind of instance, based on its classifier or classifiers — for example, an instance specification whose classifier is a
class describes an object of that class, while an instance specification whose classifier is an association describes a link
of that association.

• Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

• Specification of how to compute, derive or construct the instance (optional).

InstanceSpecification is a concrete class.

Figure 35 - The elements defined in the Instances package

Element
(from Ownerships)

Classifier
(f ro m C las si fi ers)

InstanceValue

ValueSpecif icat ion
(from Expressions)

InstanceSpecification

1.. * classifier1.. * 0..1

0..1

specification0..1
{subsets ownedElement}

0..11instance 1

StructuralFeature
(from StructuralFeatures)

Slot

*

0..1

value

* {ordered,
subsets ownedElement}

0..1

*
1

slot *
{subsets ownedElement }

owningInstance

1

{subsets owner}

1definingFeature 1

NamedElement
(from Namespaces)
UML 2.0 Infrastructure 55

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Attributes
No additional attributes.

Associations
• classifier : Classifier [1..*] The classifier or classifiers of the represented instance. If multiple classifiers are specified,

the instance is classified by all of them.

• slot : Slot [*] A slot giving the value or values of a structural feature of the instance. An instance speci-
fication can have one slot per structural feature of its classifiers, including inherited fea-
tures. It is not necessary to model a slot for each structural feature, in which case the
instance specification is a partial description. Subsets Element::ownedElement.

• specification : ValueSpecification [0..1]A specification of how to compute, derive, or construct the instance. Subsets Ele-
ment::ownedElement.

Constraints
[1] The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance specification.

Issue 6898 - add closing)

slot->forAll(s |
classifier->exists(c | c.allFeatures()->includes(s.definingFeature))
)

[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most
one slot in an instance specification.

classifier->forAll(c |
(c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)
)

Semantics
An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled
using multiple instance specifications, one for each snapshot.
56 UML 2.0 Infrastructure

When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does not
depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled
system, an instance specification represents part of that system. Instance specifications can be modeled incompletely —
required structural features can be omitted, and classifiers of an instance specification can be abstract, even though an
actual entity would have a concrete classification.

Notation

Issue 6160 - Notation for anonymous instance

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears
an underlined concatenation of the instance name, a colon (‘:’) and the classifier name or names. The convention for
showing multiple classifiers is to separate their names by commas.

Names are optional for UML 2 classifiers and instance specifications. The absence of a name in a diagram may reflect
its absence in the underlying model.

The standard notation for an anonymous instance specification of an unamed classifier is an underlined colon (' :').

If an instance specification has a value specification as its specification, the value specification is shown either after an
equal sign (“=”) following the name, or without an equal sign below the name. If the instance specification is shown using
an enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing
shape.

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign
(‘=’) and a value specification. Other properties of the feature, such as its type, can optionally be shown.

Figure 36 - Specification of an instance of String

Figure 37 - Slots with values

streetName: String

"S. Crown Ct."

streetName = "S. Crown Ct."
streetNumber : Integer = 381

myAddress: Address
UML 2.0 Infrastructure 57

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

Presentation Options
A slot value for an attribute can be shown using a notation similar to that for a link. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

9.9.2 InstanceValue
An instance value is a value specification that identifies an instance.

Description
An instance value specifies the value modeled by an instance specification.

Issue 7367 - add superclass pointers

Generalizations

• “ValueSpecification” on page 49

Attributes
No additional attributes.

Associations
• instance: InstanceSpecification [1]The instance that is the specified value.

Constraints
No additional constraints.

Semantics
The instance specification is the specified value.

Figure 38 - Instance specifications representing two objects connected by a link

Don : Person Josh : Personfather son
58 UML 2.0 Infrastructure

Notation
An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
slot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification”.

9.9.3 Slot
A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description
A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the slot.

Issue 7367 - add superclass pointers

Generalizations

• “Element (as specialized)” on page 76

Attributes
No additional attributes.

Associations
• definingFeature : StructuralFeature [1]The structural feature that specifies the values that may be held by the slot.

• owningInstance : InstanceSpecification [1]The instance specification that owns this slot. Subsets Element.owner.

• value : InstanceSpecification [*]The value or values corresponding to the defining feature for the owning instance specifi-
cation. This is an ordered association. Subsets Element.ownedElement.

Constraints
No additional constraints.

Semantics
A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The values in a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Notation
See “InstanceSpecification”.
UML 2.0 Infrastructure 59

9.10 Literals package
The Literals package in the Abstractions package specifies metaclasses for specifying literal values.

9.10.1 LiteralBoolean
A literal boolean is a specification of a boolean value.

Description
A literal boolean contains a Boolean-valued attribute.

Issue 7367 - add superclass pointers

Generalizations

• “LiteralSpecification” on page 63

Figure 39 - The Literals package

Figure 40 - The elements defined in the Literals package

Expressions

Literals

ValueSpecification
(from Expressions)

LiteralSpecification

LiteralInteger
value : Integer

Lit eralString
value : String

LiteralBoolean
value : Boolean

LiteralNull LiteralUnlimitedNatural
value : UnlimitedNatural
60 UML 2.0 Infrastructure

Attributes
• value: Boolean The specified Boolean value.

Associations
No additional associations.

Constraints
No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() gives the value.
LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

Semantics
A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word ‘false’, corresponding to its value.

9.10.2 LiteralInteger
A literal integer is a specification of an integer value.

Description
A literal integer contains an Integer-valued attribute.

Issue 7367 - add superclass pointers

Generalizations

• “LiteralSpecification” on page 63

Attributes
• value: Integer The specified Integer value.

Associations
No additional associations.

Constraints
No additional constraints.
UML 2.0 Infrastructure 61

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralInteger::isComputable(): Boolean;
isComputable = true

[2] The query integerValue() gives the value.

LiteralInteger::integerValue() : [Integer];
integerValue = value

Semantics
A LiteralInteger specifies a constant Integer value.

Notation
A LiteralInteger is typically shown as a sequence of digits.

9.10.3 LiteralNull
A literal null specifies the lack of a value.

Description
A literal null is used to represent null, i.e., the absence of a value.

Issue 7367 - add superclass pointers

Generalizations

• “LiteralSpecification” on page 63

Attributes
No additional attributes.

Associations
No additional associations.

Constraints

No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralNull::isComputable(): Boolean;
isComputable = true

[2] The query isNull() returns true.

LiteralNull::isNull() : Boolean;
isNull = true
62 UML 2.0 Infrastructure

Semantics
LiteralNull is intended to be used to explicitly model the lack of a value.

Notation
Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null’. Other notations are
described for specific uses.

9.10.4 LiteralSpecification
A literal specification identifies a literal constant being modeled.

Description
A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

Issue 7367 - add superclass pointers

Generalizations

• “ValueSpecification” on page 49

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics. Subclasses of LiteralSpecification are defined to specify literal values of different types.

Notation
No specific notation.

9.10.5 LiteralString
A literal string is a specification of a string value.

Description
A literal string contains a String-valued attribute.
UML 2.0 Infrastructure 63

Issue 7367 - add superclass pointers

Generalizations

• “LiteralSpecification” on page 63

Attributes
• value: String The specified String value.

Associations
No additional associations.

Constraints
No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralString::isComputable(): Boolean;
isComputable = true

[2] The query stringValue() gives the value.

LiteralString::stringValue() : [String];
stringValue = value

Semantics
A LiteralString specifies a constant String value.

Notation
A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.

9.10.6 LiteralUnlimitedNatural
A literal unlimited natural is a specification of an unlimited natural number.

Description
A literal unlimited natural contains a UnlimitedNatural-valued attribute.

Issue 7367 - add superclass pointers

Generalizations

• “LiteralSpecification” on page 63
64 UML 2.0 Infrastructure

Attributes
• value: UnlimitedNatural The specified UnlimitedNatural value.

Associations
No additional associations.

Constraints
No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() gives the value.

LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics
A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation
A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where the asterisk denotes
unlimited (and not infinity).

9.11 Multiplicities package
The Multiplicities subpackage of the Abstractions package defines the metamodel classes used to support the specification
of multiplicities for typed elements (such as association ends and attributes), and for specifying whether multivalued
elements are ordered or unique.

Figure 41 - The Multiplicities package

Elements

Multiplicities
UML 2.0 Infrastructure 65

9.11.1 MultiplicityElement
A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Description
A MultiplicityElement is an abstract metaclass which includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 45

Attributes
• isOrdered: Boolean For a multivalued multiplicity, this attribute specifies whether the values in an instantia-

tion of this element are sequentially ordered. Default is false.

• isUnique : Boolean For a multivalued multiplicity, this attributes specifies whether the values in an instantia-
tion of this element are unique. Default is true.

• lower : Integer [0..1] Specifies the lower bound of the multiplicity interval. Default is one.

• upper : UnlimitedNatural [0..1]Specifies the upper bound of the multiplicity interval. Default is one.

Associations
No additional associations.

Figure 42 - The elements defined in the Multiplicities package

Multiplic ityElement
isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1
upper : UnlimitedNatural = 1

[0. .1]
[0..1]

Element
(from Elements)
66 UML 2.0 Infrastructure

Constraints
These constraint must handle situations where the upper bound may be specified by an expression not computable in the
model. In this package such situations cannot arise but they can in subclasses.

[1] A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0

[2] The lower bound must be a non-negative integer literal.

lowerBound()->notEmpty() implies lowerBound() >= 0

[3] The upper bound must be greater than or equal to the lower bound.

(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

Additional Operations
[1] The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.

MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()
isMultivalued = (upperBound() > 1)

[2] The query includesCardinality() checks whether the specified cardinality is valid for this multiplicity.

MultiplicityElement::includesCardinality(C : Integer) : Boolean;
pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

[3] The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.

MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;
pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()

and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()
includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

[4] The query lowerBound() returns the lower bound of the multiplicity as an integer.

MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lower->notEmpty() then lower else 1 endif

[5] The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.

MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upper->notEmpty() then upper else 1 endif

Semantics
A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity M
if M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite)
upper bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a set of values. The
multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e. isOrdered is true), then the set of values in an instantiation of this
element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the set of
values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.
UML 2.0 Infrastructure 67

If the MultiplicityElement is specified as unordered (i.e. isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e. isUnique is true), then the set of values in an instantiation of this
element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

Notation
The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include
a multiplicity specification is shown as a text string containing the bounds of the interval, and a notation for showing the
optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:

Issue 7135 - Use consistent syntax for text
<lower-bound>’..’ <upper-bound>

where <lower-bound> is a non-negative integer and <upper-bound> is an unlimited natural number. The asterisk (*) is
used as part of a multiplicity specification to represent the unlimited (or infinite) upper bound.

If the Multiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 43 shows two multiplicity strings as part
of attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity
string is displayed without square brackets and may be placed near the symbol for the element. Figure 44 shows two
multiplicity strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation is to use a property string containing ordered or unordered to define the ordering,
and unique or nonunique to define the uniqueness.

Presentation Options
If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1”.

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing
a single asterisk “*” instead of “0..*”.

The following BNF defines the syntax for a multiplicity string, including support for the presentation options listed
above.

Issue 7135 - Use consistent syntax for text
<multiplicity> ::= <multiplicity-range>
<multiplicity-range> ::= [<lower> ‘..’] <upper>
<lower> ::= <integer>
<upper> ::= ‘*’ | <unlimited_natural>
<order-designator> ::= 'ordered' | 'unordered'
<uniqueness-designator> ::= 'unique' | 'nonunique'
68 UML 2.0 Infrastructure

Examples

Rationale
MultiplicityElement represents a design trade-off to improve some technology mappings (such as XMI).

9.12 MultiplicityExpressions package
The MultiplicityExpressions subpackage of the Abstractions package extends the multiplicity capabilities to support the
use of value expressions for the bounds.

Figure 43 - Multiplicity within a textual specification

Issue 6169 - Add comma in {ordered unique}
Figure 44 - Multiplicity as an adornment to a symbol

Figure 45 - The MultiplicityExpressions package

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Customer AccountPurchase
purchase account

0..5*
{ordered,
unique}

{unique}

Expressions

MultiplicityExpressions

Multipliciies
UML 2.0 Infrastructure 69

9.12.1 MultiplicityElement (specialized)

Description
MultiplicityElement is specialized to support the use of value specifications to define each bound of the multiplicity.

Issue 7367 - add superclass pointers

Generalizations

• “MultiplicityElement” on page 66

• “Element (as specialized)” on page 76

Attributes
• / lower : Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed as an integer. This

is a redefinition of the corresponding property from Multiplicities.

• / upper : UnlimitedNatural [0..1]Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited
natural. This is a redefinition of the corresponding property from Multiplicities.

Associations
• lowerValue: ValueSpecification [0..1]The specification of the lower bound for this multiplicity. Subsets Ele-

ment::ownedElement.

• upperValue: ValueSpecification [0..1]The specification of the upper bound for this multiplicity. Subsets Ele-
ment::ownedElement.

Constraints
[1] If a ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have side effects.

Cannot be expressed in OCL.

[2] If a ValueSpecification is used for the lower or upper bound, then that specification must be a constant expression.

Cannot be expressed in OCL.

Issue 6691 - rename ownerUpper and ownerLower
Figure 46 - The elements defined in the MultiplicityExpressions package

ValueSpecification
(from Expressions)

MultiplicityElement
/ lower : Integer
/ upper : UnlimitedNatural

0..10..1

upperValue

0..1

{subsets ownedElement}
+owningUpper

0..1

{subsets owner}

0..10..1

lowerValue

0..1

{subsets ownedElement}
+owningLower

0..1

{subsets owner}

MultiplicityElement
(from Multiplicities)

Element
(from Ownerships)

[0..1]
[0..1]
70 UML 2.0 Infrastructure

[3] The derived lower attribute must equal the lowerBound.

lower = lowerBound()

[4] The derived upper attribute must equal the upperBound.

upper = upperBound()

Additional Operations
[1] The query lowerBound() returns the lower bound of the multiplicity as an integer.

MultiplicityElement::lowerBound() : [Integer];
lowerBound =

if lowerValue->isEmpty() then
1

else
 lowerValue.integerValue()

endif

[2] The query upperBound() returns the upper bound of the multiplicity as an unlimited natural.

MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound =

if upperValue->isEmpty() then
1

else
upperValue.unlimitedValue()

endif

Semantics
The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions.

Notation
The notation for Multiplicities::MultiplicityElement (see page 66) is extended to support value specifications for the
bounds.

The following BNF defines the syntax for a multiplicity string, including support for the presentation options.
multiplicity ::= <multiplicity_range> [‘{‘ <order_designator> ‘}’]
multiplicity_range ::= [lower ‘..’] upper
lower ::= integer | value_specification
upper ::= unlimited_natural | ‘*’ | value_specification
<order_designator> ::= ordered | unordered
<uniqueness_designator> ::= unique | nonunique
UML 2.0 Infrastructure 71

9.13 Namespaces package
The Namespaces subpackage of the Abstractions package specifies the concepts used for defining model elements that
have names, and the containment and identification of these named elements within namespaces.

9.13.1 NamedElement
A named element is an element in a model that may have a name.

Figure 47 - The Namespaces package

Figure 48 - The elements defined in the Namespaces package

Ownerships

Namespaces

Element
(from Ownerships)

NamedElement
name : String
/ qualifiedName : String

Namespace

*

0..1

/ownedMember *
{subsets ownedElement,

subsets member,
union}

/namespace
0..1{subsets owner,

union}

*/member *
{union}

[0. .1]
[0..1]
72 UML 2.0 Infrastructure

Description
A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “Element (as specialized)” on page 76

Attributes
• name: String [0..1] The name of the NamedElement.

• / qualifiedName: String [0..1] A name which allows the NamedElement to be identified within a hierarchy of nested
Namespaces. It is constructed from the names of the containing namespaces starting at the
root of the hierarchy and ending with the name of the NamedElement itself. This is a
derived attribute.

Associations
• / namespace: Namespace [0..1] Specifies the namespace that owns the NamedElement. Subsets Element::owner. This is a

derived union.

Constraints
[1] If there is no name, or one of the containing namespaces has no name, there is no qualified name.

(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()

[2] When there is a name, and all of the containing namespaces have a name, the qualified name is constructed from the
names of the containing namespaces.

(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |

ns.name->union(self.separator())->union(result))

Additional Operations
[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.

NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =

if self.namespace->isEmpty()
then Sequence{}
else self.namespace.allNamespaces()->prepend(self.namespace)
endif

[2] The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but dif-
ferent names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =

if self.oclIsKindOf(n.oclType) or n.oclIsKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
UML 2.0 Infrastructure 73

else true
endif

[3] The query separator() gives the string that is used to separate names when constructing a qualified name.

NamedElement::separator(): String;
separator = ‘::’

Semantics
The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the attribute has a multiplicity of [0..1] which provides for the possibility of the absence of a name (which is
different from the empty name).

9.13.2 Namespace
A namespace is an element in a model that contains a set of named elements that can be identified by name.

Description
A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means e.g. importing or inheriting. Namespace is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “Namespace” on page 74

Attributes
No additional attributes.

Associations
• / member: NamedElement [*] A collection of NamedElements identifiable within the Namespace, either by being owned

or by being introduced by importing or inheritance. This is a derived union.

• / ownedMember: NamedElement [*]A collection of NamedElements owned by the Namespace. Subsets Ele-
ment::ownedElement and Namespace::member. This is a derived union.

Constraints
[1] All the members of a Namespace are distinguishable within it.

membersAreDistinguishable()

Additional Operations
[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a

member can have multiple names in a Namespace if it is imported more than once with different aliases. Those semantics
are specified by overriding the getNamesOfMember operation. The specification here simply returns a set containing a
single name, or the empty set if no name.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
74 UML 2.0 Infrastructure

getNamesOfMember =
if member->includes(element) then Set{}->including(element.name) else Set{} endif

[2] The Boolean query membersAreDistinguishable() determines whether all of the namespace’s members are distinguisha-
ble within it.

Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |

self.member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))

Semantics
A namespace provides a container for named elements. It provides a means for resolving composite names, such as
name1::name2::name3. The member association identifies all named elements in a namespace called N that can be
referred to by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelated types, or
related types but different names. This rule may be overridden for particular cases, such as operations which are
distinguished by their signature.

Notation
No additional notation. Concrete subclasses will define their own specific notation.

9.14 Ownerships package
The Ownerships subpackage of the Abstractions package extends the basic element to support ownership of other
elements.

Figure 49 - The Ownerships package

Elements

Ownerships
UML 2.0 Infrastructure 75

9.14.1 Element (as specialized)
An element is a constituent of a model. As such, it has the capability of owning other elements.

Description
Element has a derived composition association to itself to support the general capability for elements to own other
elements.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 45

Attributes
No additional attributes.

Associations
• / ownedElement: Element[*] The Elements owned by this element. This is a derived union.

• / owner: Element [0..1] The Element that owns this element. This is a derived union.

Constraints
[1] An element may not directly or indirectly own itself.

not self.allOwnedElements()->includes(self)

[2] Elements that must be owned must have an owner.

self.mustBeOwned() implies owner->notEmpty()

Additional Operations
[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.

Element::allOwnedElements(): Set(Element);

Figure 50 - The elements defined in the Ownerships package

Element
*

0..1

/ownedElement

* {union}

/owner

0..1{union}

Element
(from Elements)
76 UML 2.0 Infrastructure

allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do
not require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

Semantics
Subclasses of Element will provide semantics appropriate to the concept they represent.

The derived ownedElement association is subsetted (directly or indirectly) by all composed association ends in the
metamodel. Thus ownedElement provides a convenient way to access all the elements that are directly owned by an
Element.

Notation
There is no general notation for an Element. The specific subclasses of Element define their own notation.

9.15 Redefinitions package
The Redefinitions package in the Abstractions package specifies the general capability of redefining model elements in
the context of a generalization hierarchy.

Figure 51 - The Redefinitions package

Super

Redefinitions
UML 2.0 Infrastructure 77

9.15.1 RedefinableElement
A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Description
A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Attributes
No additional attributes.

Associations
• / redefinedElement: RedefinableElement[*]The redefinable element that is being redefined by this element. This is a

 derived union.

• / redefinitionContext: Classifier[*] References the contexts that this element may be redefined from. This is a
derived union.

Constraints
[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the redefinition

contexts for each redefined element.

Figure 52 - The elements defined in the Redefinitions package

Nam edElement
(f rom Namespa ces)

Classifier
(from Super)

RedefinableElement

*

/redefinedElement

* {union}

*

/redefini tionContext

*{union}
78 UML 2.0 Infrastructure

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))

[2] A redefining element must be consistent with each redefined element.

self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations
[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,

whether redefinition would be logically consistent. By default, this is false; this operation must be overridden for sub-
classes of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false

[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are prop-
erly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the other.
By default at least one of the redefinition contexts of this element must be a specialization of at least one of the redefini-
tion contexts of the specified element.

RedefinableElement::isRedefinitionContexValid(redefinable: RedefinableElement): Boolean;

Issue 7054 - correct errors in expression
RedefinableElement::isRedefinitionContextValid

(redefined:RedefinableElement):Boolean;
isRedifinitionContextValid =

redefinitionContext->exists(c |
c.allparents()->

includes (redefined.redefinitionContext))
)

Semantics
A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine
the element from the general classifier in order to augment, constrain, or override the specification as it applies more
specifically to instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details
that are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the
general context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple
inherited redefinable elements.

Semantic Variation Points
There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.
UML 2.0 Infrastructure 79

Notation
No general notation. See the subclasses of RedefinableElement for the specific notation used.

9.16 Relationships package
The Relationships subpackage of the Abstractions package adds support for directed relationships.

9.16.1 DirectedRelationship
A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.

Description
A directed relationship references one or more source elements and one or more target elements. DirectedRelationship is
an abstract metaclass.

Figure 53 - The Relationships package

Figure 54 - The elements defined in the Relationships package

Ownerships

Relationships

Element
(from Ownerships)

Relat ionship Element
(from Ownerships)

1..*

/relatedElement

1..*{union}

DirectedRelationship
1..*

/source

1..*

{subsets relatedElement, union}

1..*

/target

1..*

{subsets relatedElement, union}
80 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “Relationship” on page 81

Attributes
No additional attributes.

Associations
• / source: Element [1..*] Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedElement.

This is a derived union.

• / target: Element [1..*] Specifies the targets of the DirectedRelationship. Subsets Relationship::relatedElement.
This is a derived union.

Constraints
No additional constraints.

Semantics
DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation
There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

9.16.2 Relationship
Relationship is an abstract concept that specifies some kind of relationship between elements.

Description
A relationship references one or more related elements. Relationship is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “Element (as specialized)” on page 76

Attributes
No additional attributes.

Associations
• / relatedElement: Element [1..*] Specifies the elements related by the Relationship. This is a derived union.
UML 2.0 Infrastructure 81

Constraints
No additional constraints.

Semantics
Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

Notation
There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most cases the notation is a variation on a line drawn between the related elements.

9.17 StructuralFeatures package
The StructuralFeatures package of the Abstractions package specifies an abstract generalization of structural features of
classifiers.

9.17.1 StructuralFeature
A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

Figure 55 - The StructuralFeatures package

Figure 56 - The elements defined in the StructuralFeatures package

Classifiers

StructuralFeatures

TypedElements

TypedElement
(from TypedElements)

StructuralFeature

Feature
(from Classifiers)
82 UML 2.0 Infrastructure

Description
A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “TypedElement” on page 88

• “Feature” on page 37

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified
type.

Notation
No additional notation.

9.18 Super package
The Super package of the Abstractions package provides mechanisms for specifying generalization relationships between
classifiers.

Figure 57 - The Super package

Classifiers

Super
UML 2.0 Infrastructure 83

9.18.1 Classifier (as specialized)

Description
A classifier can specify a generalization hierarchy by referencing its general classifiers.

Issue 7367 - add superclass pointers

Generalizations

• “Classifier” on page 36

Attributes
• isAbstract: Boolean If true, the Classifier does not provide a complete declaration and can typically not be

instantiated. An abstract classifier is intended to be used by other classifiers e.g. as the tar-
get of general metarelationships or generalization relationships. Default value is false.

Associations
• general: Classifier[*] Specifies the more general classifiers in the generalization hierarchy for this Classifier.

• / inheritedMember: NamedElement[*]Specifies all elements inherited by this classifier from the general classifiers. Sub-
sets Namespace::member. This is derived.

Constraints
[1] Generalization hierarchies must be directed and acyclical. A classifier can not be both a transitively general and transi-

tively specific classifier of the same classifier.

not self.allParents()->includes(self)

[2] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

Figure 58 - The elements defined in the Super package

NamedElement
(f ro m Na mesp ace s)

Classifier
isAbstract : Boolean = false

*

/inheritedMember

*

{subsets member}

*general *

Classi fier
(from Classifiers)
84 UML 2.0 Infrastructure

[3] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Additional Operations
[1] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);
parents = general

[2] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

[3] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[4] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is
only called when the argument is something owned by a parent.

Issue 7056 - reflect modeled visibility in definition of operation

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)
if (self.inheritedMember->includes (n)) then
 hasVisibilityOf = (n.visibility <> #private)
else
 hasVisibilityOf = true

[5] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs

[6] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics
The specific semantics of how generalization affects each concrete subtype of Classifier varies.

An instance of a specific Classifier is also an (indirect) instance of each of the general Classifiers. Therefore, features
specified for instances of the general classifier are implicitly specified for instances of the specific classifier. Any
constraint applying to instances of the general classifier also applies to instances of the specific classifier.

Notation
The name of an abstract Classifier is shown in italics.
UML 2.0 Infrastructure 85

Generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as “separate
target style”. See the example section below.

Presentation Options
Multiple Classifiers that have the same general classifier can be shown together in the “shared target style”. See the
example section below.

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

Examples

9.19 TypedElements package
The TypedElements subpackage of the Abstractions package defines typed elements and their types.

Figure 59 - Example class generalization hierarchy

Figure 60 - The TypedElements package

Shape

Polygon Ellipse Spline

Shape

Polygon Ellipse Spline

Separate target style

Shared target style

TypedElements

Namespaces
86 UML 2.0 Infrastructure

9.19.1 Type
A type constrains the values represented by a typed element.

Description
A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Additional Operations

[1] The query conformsTo() gives true for a type that conforms to another. By default, two types do not conform to each other.
This query is intended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics
A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

Figure 61 - The elements defined in the TypedElements package

TypeTypedElement

0..1

type

0..1

NamedElement
(from Namespaces)
UML 2.0 Infrastructure 87

Notation
No general notation.

9.19.2 TypedElement
A typed element has a type.

Description
A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Attributes
No additional attributes.

Associations
• type: Type [0..1] The type of the TypedElement.

Constraints
No additional constraints.

Semantics
Values represented by the element are constrained to be instances of the type. A typed element with no associated type
may represent values of any type.

Notation
No general notation.

9.20 Visibilities package
The Visibility subpackage of the Abstractions package provides basic constructs from which visibility semantics can be
constructed.
88 UML 2.0 Infrastructure

9.20.1 NamedElement (as specialized)

Description
NamedElement has a visibility attribute.

Attributes
• visibility: VisibilityKind [0..1] Determines the visibility of the NamedElement within different Namespaces within the

overall model.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 72

Associations
No additional associations.

Figure 62 - The Visibilities package

Figure 63 - The elements defined in the Visibilities package

Namespaces

Visibilities

VisibilityKind
public
private

<<enumeration>>

NamedElement
visibility : VisibilityKind

NamedElement
(from Namespaces)

[0..1]
UML 2.0 Infrastructure 89

Constraints
[1] If a NamedElement is not owned by a Namespace, it does not have a visibility.

namespace->isEmpty() implies visibility->isEmpty()

Semantics
The visibility attribute provides the means to constrain the usage of a named element in different namespaces within a
model. It is intended for use in conjunction with import and generalization mechanisms.

9.20.2 VisibilityKind
VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model.

Issue 7367 - add superclass pointers

Generalizations

• None.

Description
VisibilityKind is an enumeration of the following literal values:

• public

• private

Additional Operations
[1] The query bestVisibility() examines a set of VisibilityKinds, and returns public as the preferred visibility.

VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics
VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations and Packages packages. Detailed semantics are specified with those mechanisms. If the Visibility package
is used without those packages, these literals will have different meanings, or no meanings.

• A public element is visible to all elements that can access the contents of the namespace that owns it.

• A private element is only visible inside the namespace that owns it.

In circumstances where a named element ends up with multiple visibilities, for example by being imported multiple times,
public visibility overrides private visibility, i.e., if an element is imported twice into the same namespace, once using
public import and once using private import, it will be public.
90 UML 2.0 Infrastructure

10 Core::Basic
The Basic package of InfrastructureLibrary::Core provides a minimal class-based modeling language on top of which
more complex languages can be built. It is intended for reuse by the Essential layer of the Meta-Object Facility (MOF).
The metaclasses in Basic are specified using four diagrams: Types, Classes, DataTypes and Packages. Basic can be
viewed as an instance of itself. More complex versions of the Basic constructs are defined in Constructs, which is
intended for reuse by the Complete layer of MOF as well as the UML Superstructure.

Issue 7956 - Infrastructure should not use Package Merge

Figure 64 illustrates the relationships between the Core packages and how they contribute to the origin and evolution of
package Basic. Package Basic imports model elements from package PrimitiveTypes. Basic also contains metaclasses
derived from shared metaclasses defined in packages contained in Abstractions. These shared metaclasses are included in
Basic by copy.

Figure 64 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

Core

Abstractions

Constructs

PrimitiveTypes

Basic
UML 2.0 Infrastructure 91

10.1 Types diagram
The Types diagram defines abstract metaclasses that deal with naming and typing of elements.

Issue 6279 - (Editorial) Remove ‘(as extended)’ from class headers

10.1.1 Comment

Description

Issue 7957 - Remove text erroneously copied from Constructs::Element as part of 7782

Basic::Comment reuses the definition of Comment from Abstractions::Comments.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 93

Issue 7782 - Move Comment to Basic (also inserts new 10.1.1 and renumbers other sections)

Issue 7623 - remove inconsistencies from package merge (editorial change since the issue resolution
overlooked Basic)

Figure 65 - The classes defined in the Types diagram

[0..1]

Typ eTypedElement

0 ..1

type

0 ..1

NamedElement

name : String
Comm ent

body : String
0..*

+annotatedElement

0..*

Element

0..*

0..1

+owned Comm ent0..*

0..1
92 UML 2.0 Infrastructure

Issue 7782 - Move Comment to Basic (also inserts new 10.1.1 and renumbers other sections)

Attributes
• body: String Specifies a string that is the comment

Associations
• annotatedElement: Element[*] Redefines the corresponding property in Abstractions.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

Issue 6279 - (Editorial) Copy from Abstractions to enable package merge

10.1.2 Element
An element is a constituent of a model.

Description
Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library.

Issue 7367 - add superclass pointers

Generalizations

• None.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics
Subclasses of Element provide semantics appropriate to the concept they represent.
UML 2.0 Infrastructure 93

Notation
There is no general notation for an Element. The specific subclasses of Element define their own notation.

10.1.3 NamedElement

Description
A named element represents elements with names.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 93

Attributes
• name: String [0..1]. The name of the element.

Semantics
Elements with names are instances of NamedElement. The name for a named element is optional. If specified, then any valid
string, including the empty string, may be used.

Notation
As an abstract class, Basic::NamedElement has no notation.

Issue (Editorial) Swapped sections to mainatin convention of alphabetic ordering

10.1.4 Type

Description
A type is a named element that is used as the type for a typed element

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 94

Attributes
No additional attributes.

Semantics
Type is the abstract class that represents the general notion of the type of a typed element and constrains the set of values
that the typed element may refer to.
94 UML 2.0 Infrastructure

Notation
As an abstract class, Basic::Type has no notation.

10.1.5 TypedElement

Description
A typed element is a kind of named element that represents elements with types.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 94

Attributes
• type: Type [0..1]. The type of the element.

Semantics
Elements with types are instances of TypedElement. A typed element may optionally have no type. The type of a typed
element constrains the set of values that the typed element may refer to.

Notation
As an abstract class, Basic::TypedElement has no notation.
UML 2.0 Infrastructure 95

10.2 Classes diagram
The Classes diagram defines the constructs for class-based modeling.

10.2.1 Class

Description
A class is a type that has objects as its instances.

Issue 7367 - add superclass pointers

Generalizations

• “Type” on page 94

Attributes
• isAbstract : Boolean True when a class is abstract. The default value is false.

• ownedAttribute : Property [*] The attributes owned by a class. These do not include the inherited attributes. Attributes
are represented by instances of Property.

• ownedOperation : Operation [*]The operations owned by a class. These do not include the inherited operations.

• superClass : Class[*] The immediate superclasses of a class, from which the class inherits.

Issue 7623 - remove inconsistencies from package merge (editorial change since the issue resolution
overlooked Basic)

Figure 66 - The classes defined in the Classes diagram

Type

TypedElement

TypedElement

Type

Parameter

Property
isReadOnly : Boolean = false
default : String
isComposite : Boolean = false
isDerived : Boolean = false 0..1

opposite

0..1

Operation

*

raisedException

*

*0..1

ownedParameter

* {ordered}

operation

0..1

Class
isAbstract : Boolean = false

*0..1

ownedAttribute

* {ordered}

class

0..1

*0..1

ownedOperation

*{ordered}

class

0..1

*

superClass

*

[0..1]

TypedElement

MultiplicityElement
isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1
upper : UnlimitedNatural = 1

MultiplicityElementMultiplicityElement
96 UML 2.0 Infrastructure

Semantics
Classes have attributes and operations and participate in inheritance hierarchies. Multiple inheritance is allowed. The
instances of a class are objects. When a class is abstract it cannot have any direct instances. Any direct instance of a
concrete (i.e. non-abstract) class is also an indirect instance of its class’s superclasses. An object has a slot for each of its
class’s direct and inherited attributes. An object permits the invocation of operations defined in its class and its class’s
superclasses. The context of such an invocation is the invoked object.

Notation
The notation for Basic::Class is the same as that for Constructs::Class with the omission of those aspects of the notation
that cannot be represented by the Basic model.

Issue 6279 - (Editorial) Copy from Abstractions to enable package merge

10.2.2 MultiplicityElement

Description
Basic::MultiplicityElement reuses the definition from Abstractions::MultiplicityElement.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 93

Description
Constructs::Relationship reuses the definition of Relationship from Abstractions::Relationships. It adds a specialization to
Constructs::Element.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 93

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.
UML 2.0 Infrastructure 97

Notation
No additional notation.

10.2.3 Operation

Description
An operation is owned by a class and may be invoked in the context of objects that are instances of that class. It is a typed
element and a multiplicity element.

Issue 7367 - add superclass pointers

Generalizations

• “TypedElement” on page 95

• “TypedElement” on page 95 - MultiplicityElement

Attributes

• class : Class [0..1] The class that owns the operation.

• ownedParameter : Parameter [*] {ordered, composite }The parameters to the operation.

• raisedException : Type [*] The exceptions that are declared as possible during an invocation of the operation.

Semantics
An operation belongs to a class. It is possible to invoke an operation on any object that is directly or indirectly an instance
of the class. Within such an invocation the execution context includes this object and the values of the parameters. The
type of the operation, if any, is the type of the result returned by the operation, and the multiplicity is the multiplicity of
the result. An operation can be associated with a set of types that represent possible exceptions that the operation may
raise.

Notation
The notation for Basic::Class is the same as that for Constructs::Class with the omission of those aspects of the notation
that cannot be represented by the Basic model.

10.2.4 Parameter

Description
A parameter is a typed element that represents a parameter of an operation.

Attributes
• operation: Operation [0..1] The operation that owns the parameter.

Semantics
When an operation is invoked, an argument may be passed to it for each parameter. Each parameter has a type and a
multiplicity. Every Basic::Parameter is associated with an operation, although subclasses of Parameter elsewhere in the
UML model do not have to be associated with an operation, hence the 0..1 multiplicity.
98 UML 2.0 Infrastructure

Notation
The notation for Basic::Parameter is the same as that for Constructs::Parameter with the omission of those aspects of the
notation that cannot be represented by the Basic model.

10.2.5 Property

Description
A property is a typed element that represents an attribute of a class.

Issue 7367 - add superclass pointers

Generalizations

• “TypedElement” on page 95

• “TypedElement” on page 95 - MultiplicityElement

Attributes
• class : Class [0..1] The class that owns the property, and of which the property is an attribute.

• default : String [0..1] A string that is evaluated to give a default value for the attribute when an object of the
owning class is instantiated.

• isComposite : Boolean If isComposite is true, the object containing the attribute is a container for the object or
value contained in the attribute. The default value is false.

• isDerived : Boolean If isDerived is true, the value of the attribute is derived from information elsewhere. The
default value is false.

• isReadOnly : Boolean If isReadOnly is true, the attribute may not be written to after initialization. The default
value is false.

• opposite : Property [0..1] Two attributes attr1 and attr2 of two objects o1 and o2 (which may be the same object)
may be paired with each other so that o1.attr1 refers to o2 if and only if o2.attr2 refers to
o1. In such a case attr1 is the opposite of attr2 and attr2 is the opposite of attr1.

Semantics
A property represents an attribute of a class. A property has a type and a multiplicity. When a property is paired with an
opposite they represent two mutually constrained attributes. The semantics of two properties that are mutual opposites are
the same as for bidirectionally navigable associations in Constructs, with the exception that the association has no explicit
links as instances, and has no name.

Notation
When a Basic::Property has no opposite, its notation is the same for Constructs::Property when used as an attribute with
the omission of those aspects of the notation that cannot be represented by the Basic model. Normally if the type of the
property is a data type the attribute is shown within the attribute compartment of the class box, and if the type of the
property is a class it is shown using the association-like arrow notation.

When a property has an opposite, the pair of attributes are shown using the same notation as for a Constructs::Association
with two navigable ends, with the omission of those aspects of the notation that cannot be represented by the Basic model.
UML 2.0 Infrastructure 99

10.3 DataTypes diagram
The DataTypes diagram defines the metaclasses that define data types.

10.3.1 DataType

Description
DataType is an abstract class that acts as a common superclass for different kinds of data types.

Issue 7367 - add superclass pointers

Generalizations

• “Type” on page 94

Attributes
No additional attributes.

Semantics
DataType is the abstract class that represents the general notion of being a data type, i.e. a type whose instances are
identified only by their value.

Notation
As an abstract class, Basic::DataType has no notation.

Figure 67 - The classes defined in the DataTypes diagram

Type

NamedElement

PrimitiveType EnumerationLiteralEnumeration

*0..1

ownedLiteral

*{ordered}

enumeration

0..1

DataType
100 UML 2.0 Infrastructure

10.3.2 Enumeration

Description
An enumeration defines a set of literals that can be used as its values.

Issue 7367 - add superclass pointers

Generalizations

• “DataType” on page 100

Attributes
• ownedLiteral: EnumerationLiteral [*] {ordered, composite}The ordered collection of literals for the enumeration.

Semantics
An enumeration defines a finite ordered set of values, such as {red, green, blue}.

The values denoted by typed elements whose type is an enumeration must be taken from this set.

Notation
The notation for Basic::Enumeration is the same as that for Constructs::Enumeration with the omission of those aspects
of the notation that cannot be represented by the Basic model.

10.3.3 EnumerationLiteral

Description
An enumeration literal is a value of an enumeration.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 94

Attributes
• enumeration: Enumeration [0..1]The enumeration that this literal belongs to.

Semantics
See Enumeration.

Notation
See Enumeration.
UML 2.0 Infrastructure 101

10.3.4 PrimitiveType

Description
A primitive type is a data type implemented by the underlying infrastructure and made available for modeling.

Issue 7367 - add superclass pointers

Generalizations

• “DataType” on page 100

Attributes
No additional attributes.

Semantics
Primitive types used in the Basic model itself are Integer, Boolean, String and UnlimitedNatural. Their specific semantics
is given by the tooling context, or in extensions of the metamodel (e.g. OCL).

Notation
The notation for a primitive type is implementation-dependent. Notation for the primitive types used in the UML
metamodel is given in the “PrimitiveTypes package” on page 177.

10.4 Packages diagram
The Packages diagram defines the Basic constructs related to Packages and their contents.

Figure 68 - The classes defined in the Packages diagram

NamedElement

TypePackage

*

0..1

nestedPackage

*

nestingPackage

0..1

*0..1

ownedType

*

package

0..1
102 UML 2.0 Infrastructure

10.4.1 Package

Description
A package is a container for types and other packages.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 94

Attributes
• nestedPackage : Package [*] {composite}The set of contained packages.

• nestingPackage : Package [0..1]The containing package.

• ownedType : Type [*] {composite}The set of contained types.

Semantics
Packages provide a way of grouping types and packages together, which can be useful for understanding and managing a
model. A package cannot contain itself.

Notation

Containment of packages and types in packages uses the same notation as for Constructs::Packages with the omission of
those aspects of the notation that cannot be represented by the Basic model.

10.4.2 Type (additional properties - see “Type” on page 94)

Description
A type can be contained in a package.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 94

Attributes
• package : Package [0..1] The containing package.

Semantics
No additional semantics.

Notation
Containment of types in packages uses the same notation as for Constructs::Packages with the omission of those aspects
of the notation that cannot be represented by the Basic model.
UML 2.0 Infrastructure 103

104 UML 2.0 Infrastructure

11 Core::Constructs
This chapter describes the Constructs package of InfrastructureLibrary::Core. The Constructs package is intended to be
reused by the Meta-Object Facility.

Figure 69 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

Core

Abstractions

Constructs

PrimitiveTypes

Basic
UML 2.0 Infrastructure 105

The Constructs package is specified by a number of diagrams each of which is described in a separate section below. The
constructs package is dependent on several other other packages, notably Basic and various packages from Abstractions,
as depicted in Figure 70.

Issue 7956 - Infrastructure should not use Package Merge

Figure 70 illustrates the relationships between the Core packages and how they contribute to the origin and evolution of
package Constructs. Package Constructs imports model elements from package PrimitiveTypes. Constructs also contains
metaclasses from Basic and shared metaclasses defined in packages contained in Abstractions. These shared metaclasses
are included in Constructs by copy. Figure 70 uses PackageMerge to illustrate the packages that contribute to the

Issue 7623 - Remove inconsistencies from package merge - replace <<import>> by <<merge>>
Figure 70 - The Constructs package depends on several other packages

BehavioralFeatures

Basic

Constructs

Ch an ge ab il i tie s

Classifiers
Comments

Constraints

Owne rsh ip s

Expressions

Namespaces

RedefinitionsRe lationship s
StructuralFeatures

Visibil ities
Multiplicities

Su pe r

TypedElements

<<me rg e>>

<<merge>>

<<merge>>

<<merg e>>
<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<me rge>>

<<merge>>
<<merge>>

<<merge>>

<<me rge>> <<merg e>>

<<me rg e>>

<<me rg e>>
106 UML 2.0 Infrastructure

definition of Constructs and how. The InfrastructureLibrary metamodel does not actually include these packages merges
as Constructs is a complete metamodel that already includes all the metaclasses in the referenced packages. This allows
Constructs to be understood and used without requiring the use of PackageMerge.

11.1 Root diagram
The Root diagram in the Constructs package specifies the Element, Relationship, DirectedRelationship, and Comment
constructs.

CommentElement

*

0..1

/ownedElement*

{union}

/owner

0..1 {union}

0..*0..1

+ownedComment

0..*{subsets ownedElement}

+owningElement

0..1
{subsets owner}

DirectedRelationship

Relationship Element

1..*

/source

1..*{union,
subsets relatedElement}

1..*

/target

1..*{union,
subsets relatedElement}

1..*

/relatedElement

1..*{union}

Comment

*

annotatedElement

*

UML 2.0 Infrastructure 107

Issue 7623 - Remove inconsistencies from package merge. Note that this also implies editorially removing
“(as extended)” from class headings - these are not annotated indivdually

Issue 7782 - Move Comment to Basic (also removes old 11.1.1 and renumbers other sections)

Issue 7957 - Partially undo 7782 and retain Comment in Constructs as well as in Basic
Figure 71 - The Root diagram of the Constructs package

Issue 7957 - Partially undo 7782 and retain Comment in Constructs as well as in Basic

11.1.1 Comment

Description
Constructs::Comment reuses the definition of Comment from Abstractions::Comments.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 109

Attributes
• body: String Specifies a string that is the comment

Associations
• annotatedElement: Element[*] Redefines the corresponding property in Abstractions.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.1.2 DirectedRelationship

Description
Constructs::DirectedRelationship reuses the definition of DirectedRelationship from Abstractions::Relationships. It adds a
specialization to Constructs::Relationship.
108 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “Relationship” on page 110

Attributes
No additional attributes.

Associations
• /source: Element[1..*] Redefines the corresponding property in Abstractions. Subsets Relationship::relat-

edElement. This is a derived union.

• /target: Element[1..*] Redefines the corresponding property in Abstractions. Subsets Relationship::relat-
edElement. This is a derived union.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.1.3 Element

Description
Constructs::Element reuses the definition of Element from Abstractions::Comments.

Issue 7367 - add superclass pointers

Generalizations

• None.

Attributes
No additional attributes.

Associations
• /ownedComment: Comment[*]Redefines the corresponding property in Abstractions. Subsets Element::ownedElement.

• /ownedElement: Element[*] Redefines the corresponding property in Abstractions. This is a derived union.

• /owner: Element[0..1] Redefines the corresponding property in Abstractions. This is a derived union.
UML 2.0 Infrastructure 109

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.1.4 Relationship

Description
Constructs::Relationship reuses the definition of Relationship from Abstractions::Relationships. It adds a specialization to
Constructs::Element.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 109

Attributes
No additional attributes.

Associations
• /relatedElement: Element[1..*] Redefines the corresponding property in Abstractions. This is a derived union.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.2 Expressions diagram
The Expressions diagram in the Constructs package specifies the ValueSpecification, Expression and OpaqueExpression
constructs.
110 UML 2.0 Infrastructure

Issue 7623 - Remove inconsistencies from package merge

Issue 6207 - Make ValueSpecification inherit from PackageableElement (Note this is an editorial change
since although the 6207 shared issue resolution did propose this change in Infrastructure and was
approved by the Superstructure FTF, it was mistakenly not balloted by the Infrastructure FTF.)

Figure 72 The Expressions diagram of the Constructs package

11.2.1 Expression

Description
Constructs::Expression reuses the definition of Expression from Abstractions::Expressions. It adds a specialization to
Constructs::ValueSpecification.

Issue 7367 - add superclass pointers

Generalizations

• “ValueSpecification” on page 113

OpaqueExpression

TypedElement

ValueSpecification

Expression

*

0..1

o perand

* {ordered, subsets ownedElement}

expression

0..1 {subsets own er}

PackageableElement
UML 2.0 Infrastructure 111

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.2.2 OpaqueExpression

Description
Constructs::OpaqueExpression reuses the definition of OpaqueExpression from Abstractions::Expressions. It adds a
specialization to Constructs::ValueSpecification.

Issue 7367 - add superclass pointers

Generalizations

• “PackageableElement” on page 152

• “TypedElement” on page 138

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.
112 UML 2.0 Infrastructure

11.2.3 ValueSpecification

Description
Constructs::ValueSpecification reuses the definition of ValueSpecification from Abstractions::Expressions. It adds a
specialization to Constructs::TypedElement.

Issue 7367 - add superclass pointers

Generalizations

• “Relationship” on page 110

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.3 Classes diagram
The Classes diagram of the Constructs package specifies the Association, Class, and Property constructs, and adds
features to the Classifier and Operation constructs.
UML 2.0 Infrastructure 113

Issue 6243 - Add new property Association::navigableOwnedEnd

Issue 7623 - Remove inconsistencies from package merge
Figure 73 The Classes diagram of the Constructs package

11.3.1 Association
An association describes a set of tuples whose values refers to typed instances. An instance of an association is called a
link.

Description
An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of an association may
have the same type.

StructuralFeature

[0..1]
[0..1]

Relationship
[0..1]

[0..1]

Operation

Class
isAbstract : Boolean = false

*0..1

ownedOperation

*{ordered,
subsets feature,

subsets ownedMember}

class

0..1 {subsets redefinitionContext,
sub se ts na mespace,

subsets fe aturing Classif ier}

*

sup erClass

* {re defines gen eral}

Classifier

Type

Property
isReadOnly : Boolean = false
isDerivedUnion : Boolean = false

*

redefined Prop erty

* {subsets redefinedElement}

*

subsettedProperty

*

0..1

/opposite

0..1

*0..1

ownedAttribute

*{ordered,
subsets attribute,

subsets ownedMember}

class

0..1 {subsets namespace,
sub se ts fe aturi ng Cl assifi er,

sub se ts cl assifi er}

*0..1

/attribute

*{subsets feature,
uni on }

c la ssi fie r

0..1 {subsets redefinitionContext}

Association
isDerived : Boolean = false

1..*/endType 1..*
{subsets relatedElement}

2..*0..1

memberEnd

2..*{ordered,
subsets member}

association

0..1

*0..1

ownedEnd

*{ordered,
subsets memberEnd,

subsets feature,
subsets ownedMember}

+owningAssociation

0..1
{subsets association,
subsets namespace,

subsets featuringClassifier}

*

+navigableOwnedEnd

*{subsets ownedEnd}
114 UML 2.0 Infrastructure

Issue 6243 - Association not affecting ends

Issue 6460 - Remove ‘Only binary associations may have navigable ends’

An end property of an association that is owned by an end class or that is a navigable owned end of the association
indicates that the association is navigable from the opposite ends, otherwise the association is not navigable from the
opposite ends.

Issue 7367 - add superclass pointers

Generalizations

• “Classifier” on page 134

• “Relationship” on page 110

Attributes
• isDerived : Boolean Specifies whether the association is derived from other model elements such as other asso-

ciations or constraints. The default value is false.

Associations
• memberEnd : Property [2..*] Each end represents participation of instances of the classifier connected to the end in

links of the association. This is an ordered association. Subsets Namespace::member.

Issue 6243 - Association not affecting ends

• ownedEnd : Property [*] The ends that are owned by the association itself. This is an ordered association. Subsets
Association::memberEnd, Classifier::feature, and Namespace::ownedMember.

• / endType: Type [1..*] References the classifiers that are used as types of the ends of the association.

• navigableOwnedEnd : Property [*] The navigable ends that are owned by the association itself. Subsets Associa-
tion.ownedEnd.

Constraints
[1] An association specializing another association has the same number of ends as the other association.

self.parents()->forAll(p | p.memberEnd.size() = self.memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endType is derived from the types of the member ends.

self.endType = self.memberEnd->collect(e | e.type)

Issue 2278 - Add constraint

[4] Only binary associations can be aggregations
self.memberEnd->exists(isComposite) implies self.memberEnd->size() = 2
UML 2.0 Infrastructure 115

Issue 6243 - Association not affecting ends - add constraint

[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2
then ownedEnd->includesAll(memberEnd)

Semantics
An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

Issue 6460 - Definition of navigability - new paragraph and replacement of sentences in next

A navigable end of an association means that it is intended to be traversed at runtime from objects participating in links
at the other end(s) of the association to objects participating in links at the navigable end. This is independent of
ownership of the end. Associations can have navigable ends regardless of how many ends they have. Implementations
can support traversal across non-navigable ends, but it is not required. Once an object is found by traversal, messages can
be sent to it like any other object.

Traversal of an n-ary association towards a navigable end requires that objects first be identified for the remaining n-1
ends. The result of traversal is a collection of objects for the navigable end derived from links in which the other n-1
objects participate. For binary associations n=2, in which case traversal proceeds from one object at the other end to a
collection of objects at the navigable end. The multiplicity of the association end constrains the size of this collection. If
the end is marked as ordered, this collection will be ordered. If the end is marked as unique, this collection is a set;
otherwise it allows duplicate elements.

An end of one association may be marked as a subset of an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the subsetting association conforms to a corresponding type
connected by the subsetted association. In this case, given a set of specific instances for the other ends of both
associations, the collection denoted by the subsetting end is fully included in the collection denoted by the subsetted end.

Issue 6157 - reflect the actual syntax ‘redefines’

An end of one association may be marked to show it redefines an end of another in circumstances where (a) both have the
same number of ends, and (b) each of the set of types connected by the redefing association conforms to a corresponding
type connected by the redefined association. In this case, given a set of specific instances for the other ends of both
associations, the collections denoted by the redefining and redefined ends are the same.

Associations may be specialized. The existence of a link of a specializing association implies the existence of a link
relating the same set of instances in a specialized association.
116 UML 2.0 Infrastructure

Issue 6232 - Add explanation of semantics of redefinition/subsetting’.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association
ends, not the association itself. It may additionally apply to the extents of classifiers generally. The collection represented
by one association end may be a subset of the collection represented by another association end without being a proper
subset. That is to say, for A to be a subset of B, it is not required that collection B has a member NOT in A. Proper
subsetting implies that the superset is not empty and that the subset has fewer members; subsetting does not have this
implication. Subsetting is a relationship in the domain of extensional semantics.

Specialization is in contrast to Subsetting a relationship in the domain of intensional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naïve but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In
the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition Redefinition is a relationship between features of classifiers within a specialization heirarchy. Redefinition
may be used to change the definition of a feature, and thereby introduce a specialized classifier in place of the original
featuring classifier, but this usage is incidental. The difference in domain (that redefinition applies to features)
differentiates redefinition from specialization.

Issue 6243 - Association not affecting ends: deleted ‘The semantics of navigable association ends are the
same as for attributes’.

For n-ary associations, the lower multiplicity of an end is typically 0. If the lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions define transitive asymmetric relationships—their links form a directed, acyclic graph. Composition is
represented by the isComposite attribute on the part end of the association being set to true.

Semantic Variation Points
The order and way in which part instances in a composite are created is not defined.

The logical relationship between the derivation of an association and the derivation of its ends is not defined.

The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation
Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.
UML 2.0 Infrastructure 117

A binary assocation is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to a tool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

• The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

• A slash appearing in front of the name of an association, or in place of the name if no name is shown, marks the associ-
ation as being derived.

Issue 6157 - property string syntax

• A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end. A property string is a comma-delimited list of property expressions enclosed in curly braces.
A property expression is, in the simplest case, a name such as 'redefines' or 'subsets'

• On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the associ-
ation and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends of
the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 74).

• Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

• A multiplicity.

Issue 6157 - property string syntax

• The BNF for property strings on association ends is:
<property-string> ::= '{' <end-property> [',' <end-property>]* '}'
<end-property> ::=

(
'subsets' <property-name> | 'redefines' <end-name>
)

where <property-name> and <end-name> are names of user-provided properties and association ends found in the
model context.

If an association end is navigable, attribute-properties defined for attributes are legal as end-properties in the property
string for that association end.

Note that by default an association end represents a set.

A stick arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’s
visibility as an attribute of the featuring classifier.
118 UML 2.0 Infrastructure

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

Issue 7575 - refer to Property for syntax

The notation for an attribute can be applied to a navigable end name as specified in the Notation subsection of “Property”
on page 129

A composite aggregation is shown using the same notation as a binary association, but with a solid, filled diamond at the
aggregate end.

Presentation Options
When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

• Show all arrows and xs. Navigation and its absence are made completely explicit.

• Suppress all arrows and xs. No inference can be drawn about navigation. This is similar to any situation in which infor-
mation is suppressed from a view.

• Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no nav-
igation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines
Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.
UML 2.0 Infrastructure 119

Examples
Figure 74 shows a binary association from Player to Year named PlayedInYear. The solid triangle indicates the order of

reading: Player PlayedInYear Year. The figure further shows a ternary association between Team, Year, and Player with
ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

Figure 75 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 75.

• Names a, b, and d on three of the ends.

• Multiplicities 0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.

• Specification of ordering on b.

• Subsetting on d. For an instance of class C, the collection d is a subset of the collection b. This is equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

Figure 74 - Binary and ternary associations

Team

Year

Player

PlayedInYear

year

*

*season

* *

goalieteam

BA

C D

b

{ordered}
*

a

0..1

d

{subsets b}
0..11
120 UML 2.0 Infrastructure

The following examples show notation for navigable ends.

In Figure 76:

• The top pair AB shows a binary association with two navigable ends.

• The second pair CD shows a binary association with two non-navigable ends.

• The third pair EF shows a binary association with unspecified navigability.

• The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

• The fifth pair IJ shows a binary association with one end navigable and the other having unspecified navigability.

Figure 76 - Examples of navigable ends

b
A B

2..51..4

a

E F
2..5

f

1..4

e

C D
2..5

d

1..4

c

h
G H

2..51..4

g

I J
2..5

j

1..4

i

b
A B

2..51..4

a

E F
2..5

f

1..4

e

C D
2..5

d

1..4

c

h
G H

2..51..4

g

I J
2..5

j

1..4

i

UML 2.0 Infrastructure 121

Issue 6243 - Add new property Association::navigableOwnedEnd

Figure 77 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end..

Figure 78 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the

attributes that subset it. In this case there is just one of these, A1::b1. So for an instance of the class A1, b1 is a subset of
b, and b is derived from b1.

Figure 77 - Example of attribute notation for navigable end owned by an end class.

Figure 78 - Example of a derived union.

A

b: B[*]

A B
0..*

/b {union}

0..1

a

A1 B1
0..*

b1

0..1

a

{subsets b}
122 UML 2.0 Infrastructure

Figure 79 shows the black diamond notation for composite aggregation.

11.3.2 Class
A class describes a set of objects that share the same specifications of features, constraints, and semantics.
Constructs::Class merges the definition of Basic::Class with Constructs::Classifier.

Description
Class is a kind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

Issue 7367 - add superclass pointers

Generalizations

• “Classifier” on page 134

Attributes
• isAbstract : Boolean This redefines the corresponding attributes in Basic::Class and Abstractions::Classifier.

Associations
• ownedAttribute : Property [*] The attributes (i.e. the properties) owned by the class. This is an ordered association. Sub-

sets Classifier::attribute and Namespace::ownedMember.

• ownedOperation : Operation [*]The operations owned by the class. This is an ordered association. Subsets Classi-
fier::feature and Namespace::ownedMember.

• superClass : Class [*] This gives the superclasses of a class. It redefines Classifier::general.

Constraints
No additional constraints.

Additional Operations
[1] The inherit operation is overridden to exclude redefined properties.

Figure 79 - Composite aggregation is depicted as a black diamond

Window

Slider
Header Panel

+scrollbar
+title +body

1
1

1

2 1 1
UML 2.0 Infrastructure 123

Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |

ownedMember->select(oclIsKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics
The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as a result, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

Notation
A class is shown using the classifier symbol. As class is the most widely used classifier, the word “class” need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options
A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines
• Center class name in boldface.

• Capitalize the first letter of class names (if the character set supports uppercase).

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Put the class name in italics if the class is abstract.

• Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a
class.
124 UML 2.0 Infrastructure

Examples

11.3.3 Classifier (additional properties - see “Classifier” on page 134)

Description
Constructs::Classifier is defined in the Classifiers diagram. A Classifier is a Type. The Classes diagram adds the
association between Classifier and Property that represents the attributes of the classifier.

Issue 7367 - add superclass pointers

Generalizations

• “Type” on page 137

• “Namespace” on page 151

Figure 80 -Class notation: details suppressed, analysis-level details, implementation-level details

Figure 81 - Class notation: attributes and operations grouped according to visibility.

Window

Window

size: Area
visibility: Boolean

display()
hide()

Window

+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- xWin: XWindow

display()
hide()
- attachX(xWin: XWindow)

Window

public
 size: Area = (100, 100)
 defaultSize: Rectangle
protected
 visibility: Boolean = true
private
 xWin: XWindow
public
 display()
 hide()
private
 attachX(xWin: XWindow)
UML 2.0 Infrastructure 125

Attributes
No additional attributes.

Associations
• attribute: Property [*] Refers to all of the Properties that are direct (i.e. not inherited or imported) attributes of

the classifier. Subsets Classifier::feature and is a derived union.

Constraints
No additional constraints.

Semantics
All instances of a classifier have values corresponding to the classifier’s attributes.

Semantic Variation Points
The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Issue 7135 - Standard sytax for text (changes applied changed by 7575 below)

Issue 7575 - Move syntax to Property

An attribute can be shown as a text string. The format of this string is specified in the Notation subsection of “Property”
on page 129

Issue 6215 - Make redefinition explicit

All redefinitions shall be made explicit with the use of a {redefines <x> } property string. Redefinition prevents
inheritance of a redefined element into the redefinition context, thereby making the name of the redefined element
available for reuse, either for the redefining element, or for some other.

Presentation Options
The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Issue 5979 - Description of DataType: style guidelines moved to here; also the remaining Presentation
Options immediately below (editorial interpretation of resolution)

The attribute compartment is often suppressed, especially when a data type does not contain attributes. The operation
compartment may be suppressed. A separator line is not drawn for a missing compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used
to remove ambiguity, if necessary.
126 UML 2.0 Infrastructure

Additional compartments may be supplied to show other predefined or user-defined model properties (for example, to
show business rules, responsibilities, variations, events handled, exceptions raised, and so on). Most compartments are
simply lists of strings, although more complicated formats are also possible. Appearance of each compartment should
preferably be implicit based on its contents. Compartment names may be used, if needed.

A data-type symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with the name of the data
type either inside the rectangle or below the icon. Other contents of the data type are suppressed.

Style Guidelines
• Center the name of the data type in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above data-type name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show full attributes and operations when needed and suppress them in other contexts or references

Attribute names typically begin with a lowercase letter. Multiword names are often formed by concatenating the words
and using lowercase for all letter except for upcasing the first letter of each word but the first.

Examples

The attributes in Figure 82 are explained below.

Figure 82 - Examples of attributes

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer
UML 2.0 Infrastructure 127

• ClassA::name is an attribute with type String.

• ClassA::shape is an attribute with type Rectangle.

• ClassA::size is a public attribute with type Integer with multiplicity 0..1.

• ClassA::area is a derived attribute with type Integer. It is marked as read-only.

• ClassA::height is an attribute of type Integer with a default initial value of 5.

• ClassA::width is an attribute of type Integer

• ClassB::id is an attribute that redefines ClassA::name.

• ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

• ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances which overrides
the ClassA default of 5.

• ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure
83.

11.3.4 Operation (additional properties - see “Operation” on page 157)

Description
Constructs::Operation is defined in the Operations diagram. The Classes diagram adds the association between Operation
and Class that represents the ownership of the operation by a class.

Issue 7367 - add superclass pointers

Generalizations

• “BehavioralFeature” on page 156

Attributes
No additional attributes.

Associations
• class : Class [0..1] Redefines the corresponding association in Basic. Subsets RedefinableElement::redefini-

tionContext, NamedElement::namespace and Feature::featuringClassifier.

Figure 83 - Association-like notation for attribute

AreaWindow
size

1

128 UML 2.0 Infrastructure

Constraints
No additional constraints.

Semantics
An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

11.3.5 Property
A property is a structural feature of a classifier that characterizes instances of the classifier. Constructs::Property merges
the definition of Basic::Property with Constructs::StructuralFeature.

Issue 6243 - Association not affecting ends

Issue 7324 - Property is owned by Classifier

A property related to a classifier other than an association by ownedAttribute represents an attribute, and might also
represent an association end. It relates an instance of the class to a value or set of values of the type of the attribute.

A property related to an association by memberEnd or its specializations represents an end of the association. The type
of the property is the type of the end of the association.

Description
Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can
be controlled by setting the property’s type.

Issue 7367 - add superclass pointers

Generalizations

• “StructuralFeature” on page 137

Attributes
• isDerivedUnion : Boolean Specifies whether the property is derived as the union of all of the properties that are con-

strained to subset it. The default value is false.

• isReadOnly : Boolean This redefines the corresponding attribute in Basic::Property and Abstractions::Structur-
alFeature. The default value is false.

Associations
• association: Association [0..1] References the association of which this property is a member, if any.

• owningAssociation: Association [0..1]References the owning association of this property, if any. Subsets Property::asso-
ciation, NamedElement::namespace, and Feature::featuringClassifier.
UML 2.0 Infrastructure 129

• redefinedProperty : Property [*]References the properties that are redefined by this property. Subsets RedefinableEle-
ment::redefinedElement.

• subsettedProperty : Property [*]References the properties of which this property is constrained to be a subset.

• / opposite : Property [0..1] In the case where the property is one navigable end of a binary association with both ends
navigable, this gives the other end.

Constraints
[1] If this property is owned by a class, associated with a binary association, and the other end of the association is also owned

by a class, then opposite gives the other end.

opposite =
if owningAssociation->notEmpty() and association.memberEnd->size() = 2 then

let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->notEmpty() then otherEnd else Set{} endif

else Set {}
endif

[2] A specialization of a composite aggregation is also a composite aggregation.

[3] A multiplicity of a composite aggregation must not have an upper bound greater than 1.

isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)

[4] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.

subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |

subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))

Issue 6243 - Association not affecting ends

[5] A navigable property can only be redefined or subsetted by a navigable property.
(subsettedProperty->exists(sp | sp.isNavigable()

implies isNavigable())
and
(redefinedProperty->exists(rp | rp.isNavigable

implies isNavigable())

[6] A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.

subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and

((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))

Issue 6243 - Association not affecting ends

[7] Only a navigable property can be marked as readOnly.

isReadOnly implies isNavigable()

[8] A derived union is derived.

isDerivedUnion implies isDerived

[9] A derived union is read only
isDerivedUnion implies isReadOnly
130 UML 2.0 Infrastructure

Additional Operations
[1] The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible, whether

redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conforms to the type of the redefined property, the multiplicity of the redefining property (if.speci-
fied) is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined prop-
erty is derived.

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.oclIsKindOf(Property) and

let prop: Property = redefinee.oclAsType(Property) in
type.conformsTo(prop.type) and
(lowerBound()->notEmpty and prop.lowerBound()->notEmpty() implies

lowerBound() >= prop.lowerBound()) and
(upperBound()->notEmpty and prop.upperBound()->notEmpty() implies

upperBound() <= prop.upperBound()) and
(prop.isDerived implies isDerived)

)

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.

Property::subsettingContext() : Set(Type)

subsettingContext =
if association->notEmpty()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif

Issue 6243 - Association not affecting ends

[3] The query isNavigable indicates whether it is possible to navigate across the property.

Property::isNavigable() : Boolean
IsNavigable = not classifier->isEmpty() or

association.owningAssociation.navigableOwnedEnd->includes(self)

Semantics

Issue 6243 - Association not affecting ends

Issue 7324 - Property is owned by Classifier

When a property is owned by a classifier other than an association via ownedAttribute, then it represents an attribute of
the class or data type. When related to an association via memberEnd or one of its specializations, it represents an end of
the association. In either case, when instantiated a property represents a value or collection of values associated with an
instance of one (or in the case of a ternary or higher-order association, more than one) type. This set of types is called the
context for the property; in the case of an attribute the context is the owning classifier, and in the case of an association
end the context is the set of types at the other end or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain
the size of the collection. Typically and by default the maximum bound is 1.
UML 2.0 Infrastructure 131

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of
values may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e. clients
cannot directly change values). But where a derived property is changeable, an implementation is expected to
appropriately change the source information of the derivation. The derivation for a derived property may be specified by
a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by
the derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the
redefining property’s default is used in place of the more general default from the redefined property.

Issue 6243 - Association not affecting ends

If a navigable property is marked as readOnly then it cannot be updated, once it has been assigned an initial value.

A property may be marked as a subset of another, as long as every element in the context of the subsetting property
conforms to the corresponding element in the context of the subsetted property. In this case, the collection associated with
an instance of the subsetting property must be included in (or the same as) the collection associated with the
corresponding instance of the subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in
some context is derived by being the strict union of all of the values denoted, in the same context, by properties defined
to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of all the subsets must be
null or the same.

Notation

Issue 7575 - replace first paragraph with complete notation for Property

The following general notation for properties is defined. Note that some specializations of Property may also have additional
notational forms. These are covered in the appropriate Notation sections of those classes.

<property> ::= [<visibility>] [‘/’] <name> [‘:’ <prop-type>] [‘[‘ <multiplicity> ‘]’] [‘=’ <default>]

Table 1 - Collection types for properties

isOrdered isUnique Collection type
false true Set
true true OrderedSet
false false Bag
true false Sequence
132 UML 2.0 Infrastructure

 [‘{‘ <prop-property > [‘,’ <prop-property >]* ’}’]

where:

• <visibility> is the visibility of the property (See “VisibilityKind” on page 90.)

<visibility> ::= ‘+’ | ‘-‘

• ‘/’ signifies that the property is derived

• <name> is the name of the property

• <prop-type> is the name of the Classifier that is the type of the property

• <multiplicity> is the multiplicity of the property. If this term is omitted it implies a multiplicity of 1 (exactly one). (See
“MultiplicityElement” on page 135)

• <default> is an expression that evaluates to the default value or values of the property.

• <prop-modifier > indicates a modifier that applies to the property

<prop-modifier> ::= ‘readOnly’ | ‘union’ | ‘subsets‘ <property-name> |

‘redefines’ <property-name> | ‘ordered’ | ‘unique’ | <prop-constraint>

where:

• readOnly means that the property is read only

• union means that the property is a derived union of its subsets

• subsets <property-name> means that the property is a proper subset of the property identified by <property-
name>

• redefines <property-name> means that the property redefines an inherited property identified by <property-
name>

• ordered means that the property is ordered

• unique means that there are no duplicates in a multi-valued property

• <prop-constraint> is an expression that specifies a constraint that applies to the property.

All redefinitions shall be made explicit with the use of a {redefines <x>} property string. Redefinition prevents inheritance of
a redefined element into the redefinition context thereby making the name of the redefined element available for reuse, either
for the redefining element, or for some other.

Issue Editorial - correct outline level of the heading for Classifiers diagram

11.4 Classifiers diagram
The Classifiers diagram of the Constructs package specifies the concepts Classifier, TypedElement, MultiplicityElement,
RedefinableElement, Feature and StructuralFeature. In each case these concepts are extended and redefined from their
corresponding definitions in Basic and Abstractions.
UML 2.0 Infrastructure 133

Issue 7623 - Remove inconsistencies from package merge
Figure 84 - The Classifiers diagram of the Constructs package

11.4.1 Classifier

Description
Constructs::Classifier merges the definitions of Classifier from Basic and Abstractions. It adds specializations from
Constructs::Namespace and Constructs::Type.

Issue 7367 - add superclass pointers

Generalizations

• “Type” on page 137

• “Namespace” on page 151

Attributes
No additional attributes.

Associations
• feature : Feature [*] Redefines the corresponding association in Abstractions. Subsets Namespace::member

and is a derived union. Note that there may be members of the Classifier that are of the
type Feature but are not included in this association, e.g. inherited features.

MultiplicityElement

Element

Namespace

StructuralFeature

TypedElement

RedefinableElement

*

/redefinedElement

* {union}

Feature

Classifier

*

/redefinitionContext

* {union}

0..

/feature

*{union,
subsets member}

/featuringClassifier

0..* {union}

*

+general

*

TypedElement Type
0..1

type

0..1

NamedElement

NamedElement NamedElement

Type
134 UML 2.0 Infrastructure

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4.2 Feature

Description
Constructs::Feature reuses the definition of Feature from Abstractions. It adds a specialization from
Constructs::RedefinableElement.

Issue 7367 - add superclass pointers

Generalizations

• “RedefinableElement” on page 136

Attributes
No additional attributes.

Associations
• featuringClassifier : Classifier [1..*]Redefines the corresponding association in Abstractions. This is a derived union.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4.3 MultiplicityElement

Description
Constructs::MultiplicityElement reuses the definition of MultiplicityElement from Abstractions. It adds a specialization
from Constructs::Element.
UML 2.0 Infrastructure 135

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 109

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4.4 RedefinableElement

Description
Constructs::RedefineableElement reuses the definition of RedefineableElement from Abstractions. It adds a specialization
from Constructs::NamedElement.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

Attributes
No additional attributes.

Associations
• /redefinedElement: RedefinableElement[*]This derived union is redefined from Abstractions

• /redefinitionContext: Classifier[*] This derived union is redefined from Abstractions.

Constraints
No additional constraints.
136 UML 2.0 Infrastructure

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4.5 StructuralFeature

Description
Constructs::StructuralFeature reuses the definition of StructuralFeature from Abstractions. It adds specializations from
Constructs::Feature, Constructs::TypedElement, and Constructs::MultiplicityElement.

By specializing MultiplicityElement, it supports a multiplicity that specifies valid cardinalities for the set of values
associated with an instantiation of the structural feature.

Issue 7367 - add superclass pointers

Generalizations

• “Feature” on page 135

• “TypedElement” on page 138

• “MultiplicityElement” on page 135

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4.6 Type

Description
Constructs::Type merges the definitions of Type from Basic and Abstractions. It adds a specialization from
Constructs::NamedElement.
UML 2.0 Infrastructure 137

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

• “PackageableElement” on page 152

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4.7 TypedElement

Description
Constructs::TypedElement merges the definitions of TypedElement from Basic and Abstractions. It adds a specialization
from Constructs::NamedElement.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

•

Attributes
• type: Classifier [1] Redefines the corresponding attributes in both Basic and Abstractions.

Associations
No additional associations.

Constraints
No additional constraints.
138 UML 2.0 Infrastructure

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.5 Constraints diagram
The Constraints diagram of the Constructs package specifies the Constraint construct and adds features to the Namespace
construct.

Issue 7623 - Remove inconsistencies from package merge
Figure 85 - The Classes diagram of the Constructs package

11.5.1 Constraint

Description
Constructs::Constraint reuses the definition of Constraint from Abstractions::Constraints. It adds a specialization to
PackageableElement.

Issue 7367 - add superclass pointers

Generalizations

• “PackageableElement” on page 152

Attributes
No additional attributes.

PackageableElement

Namespac e
Element

ValueSpecification

Constraint
0. .1

/context

0. .1 {union}

*0. .1

ownedRule

*
{subsets ownedMember}

namespace

0. .1{subsets context}

*

const ra inedElement

*{ordered}

1

0..1
specif ic ation

1

{subsets ownedElement}

owningConstraint

0..1

{s ubset s owner}
UML 2.0 Infrastructure 139

Associations
• constrainedElement: Element Redefines the corresponding property in Abstractions.

• / context: Namespace [0..1] Redefines the corresponding property in Abstractions. This is a derived union.

• specification: ValueSpecificationRedefines the corresponding property in Abstractions. Subsets Element.ownedElement.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.5.2 Namespace (additional properties - see “Namespace” on page 151)

Description
Constructs::Namespace is defined in the Namespaces diagram. The Constraints diagram shows the association between
Namespace and Constraint that represents the ownership of the constraint by a namespace.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

Attributes
No additional attributes.

Associations
• ownedRule : Constraint [*] Redefines the corresponding property in Abstractions. Subsets Namespace::ownedMem-

ber.

Constraints
No additional constraints.

Semantics
No additional semantics.
140 UML 2.0 Infrastructure

11.6 DataTypes diagram
The DataTypes diagram of the Constructs package specifies the DataType, Enumeration, EnumerationLiteral, and
PrimitiveType constructs, and adds features to the Property and Operation constructs. These constructs that are used for
defining primitive data types (such as Integer and String) and user-defined enumeration data types. The data types are
typically used for declaring the types of the class attributes.

Issue 7623 - Remove inconsistencies from package merge
Figure 86 - The classes defined in the DataTypes diagram

PrimitiveType EnumerationLiteralEnumeration

*0..1

ownedLiteral

*
{subsets ownedMember,

ordered}

enumeration

0..1
{subsets namespace}

Classifier

Property

Operation

DataType

*0..1

ownedAttribute

*{ordered
subsets attribute,

subsets ownedMember}

datatype

0..1 {subsets namespace,
subsets featuringClassifier,

subsets classifier}

*0..1

ownedOperation

*{ordered
subsets feature,

subsets ownedMember}

datatype

0..1
{subsets redefinitionContext,

subsets namespace,
subsets featuringClassifier}

NamedElement
UML 2.0 Infrastructure 141

Issue 5979 - Replace section to correct description and move style guidelines to Classifier

11.6.1 DataType

Description
A data type is a type whose instances are identified only by their value. A DataType may contain attributes to support the
modeling of structured data types.

A typical use of data types would be to represent programming language primitive types or CORBA basic types. For
example, integer and string types are often treated as data types.

Issue 7367 - add superclass pointers

Generalizations

• “Classifier” on page 134

Attributes
No additional attributes.

Associations

Issue 6596 - correct type of ownedAttribute to Property

• ownedAttribute: Property[*] The Attributes owned by the DataType. Subsets Classifier::attribute and Ele-
ment::ownedMember.

• ownedOperation: Operation[*] The Operations owned by the DataType. Subsets Classifier::feature and Ele-
ment::ownedMember.

Constraints
No additional constraints.

Semantics
A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are
identified only by their value.

All copies of an instance of a data type and any instances of that data type with the same value are considered to be the
same instance. Instances of a data type that has attributes (i.e. is a structured data type) are considered the be the same if
the structure is the same and the values of the corresponding attributes are the same.

If a data type has attributes, then instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points
Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.
142 UML 2.0 Infrastructure

Notation
A data type is shown using the classifier symbol with keyword «dataType» or, when it is referenced by e.g. an attribute,
shown as a string containing the name of the data type.

Examples

Figure 87 - Notation of data type: to the left is an icon denoting a data type and to the right is a reference to a data type
which is used in an attribute

11.6.2 Enumeration
An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Description
Constructs::Enumeration reuses the definition of Enumeration from Basic. It adds a specialization to
Constructs::DataType.

Enumeration is a kind of data type, whose instances may be any of a number of predefined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Issue 7367 - add superclass pointers

Generalizations

• “DataType” on page 142

Attributes
No additional attributes.

Associations
• ownedLiteral: EnumerationLiteral[*]The ordered set of literals for this Enumeration. Subsets Element::ownedMember.

Constraints
No additional constraints.

Semantics
The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

«dataType»
Integer

size: Integer
UML 2.0 Infrastructure 143

Notation
An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to a line, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

11.6.3 EnumerationLiteral
An enumeration literal is a user-defined data value for an enumeration.

Description
Constructs::EnumerationLiteral reuses the definition of Enumeration from Basic. It adds a specialization to
Constructs::NamedElement.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

Attributes
No additional attributes.

Associations
• enumeration: Enumeration[0..1]The Enumeration that this EnumerationLiteral is a member of. Subsets NamedEle-

ment::namespace.

Constraints
No additional constraints.

Semantics
An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

Figure 88 - Example of an enumeration

«enumeration»
VisibilityKind

public
private
144 UML 2.0 Infrastructure

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.

Notation
An EnumerationLiteral is typically shown as a name, one to a line, in the a compartment of the enumeration notation. See
“Enumeration”.

Examples
See “Enumeration”.

11.6.4 Operation (additional properties - see “Operation” on page 157)

Description
Constructs::Operation is defined in the Operations diagram. The DataTypes diagram shows the association between
Operation and DataType that represents the ownership of the operation by a data type.

Issue 7367 - add superclass pointers

Generalizations

• “BehavioralFeature” on page 156

Attributes
No additional attributes.

Associations
• datatype : DataType [0..1] The DataType that owns this Operation. Subsets NamedElement::namespace, Fea-

ture::featuringClassifier, and RedefinableElement::redefinitionContext.

Constraints
No additional constraints.

Semantics
An operation may be owned by and in the namespace of a datatype that provides the context for its possible redefinition.

11.6.5 PrimitiveType
A primitive type defines a predefined data type, without any relevant substructure (i.e. it has no parts). A primitive
datatype may have an algebra and operations defined outside of UML, for example, mathematically.

Description
Constructs::PrimitiveType reuses the definition of PrimitiveType from Basic. It adds a specialization to
Constructs::DataType.
UML 2.0 Infrastructure 145

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String (see Chapter
12, “Core::PrimitiveTypes”).

Issue 7367 - add superclass pointers

Generalizations

• “DataType” on page 142

Attributes
No addtional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

Notation
A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types (see Chapter 12, “Core::PrimitiveTypes”) may be denoted with the same
notation as provided for references to such instances (see the subtypes of “ValueSpecification”).

Examples
See Chapter 12, “Core::PrimitiveTypes” for examples.

11.6.6 Property (additional properties - see “Property” on page 129)

Description
Constructs::Property is defined in the Classes diagram. The DataTypes diagram shows the association between Property
and DataType that represents the ownership of the property by a data type.

Issue 7367 - add superclass pointers

Generalizations

• “StructuralFeature” on page 137
146 UML 2.0 Infrastructure

Attributes
No additional attributes.

Associations
• datatype : DataType [0..1] The DataType that owns this Property. Subsets NamedElement::namespace, Feature::fea-

turingClassifier, and Property::classifier.

Constraints
No additional constraints.

Semantics
A property may be owned by and in the namespace of a datatype.

11.7 Namespaces diagram
The Namespaces diagram of the Constructs package specifies Namespace and related constructs. It specifies how named
elements are defined as members of namespaces, and also specifies the general capability for any namespace to import all
or individual members of packages.

Issue 7623 - Remove inconsistencies from package merge
Figure 89 - The Namespaces diagram of the Constructs package

[0..1]

Element

DirectedRelationship

[0..1]

DirectedRelationship

[0..1]

NamedElement

name : St ri ng

Package ableElement

Package

Elemen tIm port

visibi l i ty : Visibil ityKind
alias : String

1

im porte dEl em ent

1{subse ts target}

PackageableElement

PackageImport
visibi li ty : Visib il i tyKind

1

importedPackage

1{subsets target}

NamedElementNamespace

1 *

importingNamespace

1 {subsets source,
subsets owner}

elementImport

*{subsets ownedElement}

*

/importedMember

* {subsets member}

1 *

importingNamespace

1 {subsets source,
subsets owner}

packageImport

*
{subsets owned Eleme nt}

*0..1

/ownedMember

*{union,
subsets member,

subsets ownedElement}

/namespace

0..1 {union,
subsets owner}

*

/member

*{union}
UML 2.0 Infrastructure 147

11.7.1 ElementImport
An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Description
An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Issue 7367 - add superclass pointers

Generalizations

• “DirectedRelationship” on page 108

Attributes
• visibility: VisibilityKind Specifies the visibility of the imported PackageableElement within the importing Package.

The default visibility is the same as that of the imported element. If the imported element
does not have a visibility, it is possible to add visibility to the element import.

• alias: String [0..1] Specifies the name that should be added to the namespace of the importing Package in lieu
of the name of the imported PackagableElement. The aliased name must not clash with
any other member name in the importing Package. By default, no alias is used.

Associations
• importedElement: PackageableElement [1]Specifies the PackageableElement whose name is to be added to a Namespace.

 Subsets DirectedRelationship::target.

• importingNamespace: Namespace [1]Specifies the Namespace that imports a PackageableElement from another Package.
 Subsets DirectedRelationship::source and Element::owner.

Constraints
[1] The visibility of an ElementImport is either public or private.

self.visibility = #public or self.visibility = #private

[2] An importedElement has either public visibility or no visibility at all.

self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations
[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing

namespace.

ElementImport::getName(): String;
getName =

if self.alias->notEmpty() then
self.alias

else
self.importedElement.name

endif
148 UML 2.0 Infrastructure

Semantics
An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

Issue 6164 - hyphenation typos

In case of a nameclash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an element import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the names of the imported elements must be qualified in order to be used and the elements are not added
to the importing namespace. If the name of an imported element is the same as the name of an element owned by the
importing namespace, the name of the imported element must be qualified in order to be used and is not added to the
importing namespace.

Issue 6168 - removed text about ‘member import’

An imported element can be further imported by other namespaces using either element or package imports.

The visibility of the ElementImport may be either the same or more restricted than that of the imported element.

Notation

Issue 6168 - explain <<access>>’

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public, otherwise the key-word
«access» is shown to indicate private visibility.

If an element import has an alias, this is used in lieu of the name of the imported element. The aliased name may be
shown after or below the keyword «import».

Presentation Options
If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

Issue 7135 - consistent syntax for text

‘{element import ‘ <qualifiedName> ‘} | ‘{element access ‘ <qualifiedName> ‘}’

Optionally, the aliased name may be show as well:

‘{element import ‘ <qualifiedName> ‘as’ <alias> ‘} | ‘{element access ‘ <qualifiedName> ‘as’ <alias> ‘}’
UML 2.0 Infrastructure 149

Examples

Issue 6168 - explain <<access>>

The element import that is shown in Figure 90 allows elements in the package Program to refer to the type Time in Types
without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not imported.
Type String can be used in the Program package but cannot be further imported from Program to other packages.

In Figure 91, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

11.7.2 NamedElement

Description
Constructs::NamedElement reuses the definition of NamedElement from Abstractions::Visibilitites. It adds specializations
from Constructs::Element and Basic::NamedElement.

Issue 7367 - add superclass pointers

Generalizations

• “Element” on page 109

Figure 90 - Example of element import

Figure 91 - Example of element import with aliasing

Types

«datatype»
Integer

«datatype»
Time

«import»

Program

Types
Shapes

«datatype»
Real Circle

radius: Double

«import»
Double
150 UML 2.0 Infrastructure

Attributes
• name: String [0..1] Redefines the corresponding attributes from Basic::NamedElement and Abstractions::Vis-

ibilities::NamedElement.

Associations
• namespace: NamedElement [0..1]The Namespace that owns this NamedElement. Redefines the corresponding property

 from Abstractions::Namespaces::NamedElement.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.7.3 Namespace

Description
Constructs::Namespace reuses the definition of Abstractions::Constraints::Namespace.

A namespace has the ability to import either individial members or all members of a package, thereby making it possible
to refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary
to use qualified names or aliases to disambiguate the referenced elements.

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

Attributes
No additional attributes.

Associations
• elementImport: ElementImport [*] References the ElementImports owned by the Namespace. Subsets

Element::ownedElement.

• /importedMember: PackageableElement [*]References the PackageableElements that are members of this Namespace as
 a result of either PackageImports or ElementImports. Subsets
 Namespace::member.

• /member: NamedElement [*] Redefines the corresponding property of Abstractions::Namespaces::Namespace.

• /ownedMember: NamedElement [*]Redefines the corresponding property of Abstractions::Namespaces::Namespace.

• packageImport: PackageImport [*] References the PackageImports owned by the Namespace. Subsets
 Element::ownedElement.
UML 2.0 Infrastructure 151

Constraints

Issue 6897 - correct typo ‘importedMember’ in the expression

[1] The importedMember property is derived from the ElementImports and the PackageImports.

self.importedMember->includesAll(self.importMembers(self.elementImport.importedElement.asSet()-
>union(self.packageImport.importedPackage->collect(p | p.visibleMembers()))))

Additional operations
[1] The query getNamesOfMember() is overridden to take account of importing. It gives back the set of names that an element

would have in an importing namespace, either because it is owned, or if not owned then imported individually, or if not
individually then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember=

if self.ownedMember ->includes(element)
then Set{}->include(element.name)

else let elementImports: ElementImport = self.elementImport->select(ei | ei.importedElement = element) in
if elementImports->notEmpty()

then elementImports->collect(el | el.getName())
else

self.packageImport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))

endif
endif

[2] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.
This excludes hidden ones, i.e., those which have names that conflict with names of owned members, and also excludes
elements which would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);
importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[3] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(imp1 | imps.exists(imp2 | not imp1.isDistinguishableFrom(imp2, self)))

Semantics
No additional semantics.

Notation
No additional notation.

11.7.4 PackageableElement
A packageable element indicates a named element that may be owned directly by a package.

Description
A packageable element indicates a named element that may be owned directly by a package.
152 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

11.7.5 PackageImport
A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Description
A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Issue 7367 - add superclass pointers

Generalizations

• “DirectedRelationship” on page 108

Attributes
• visibility: VisibilityKind Specifies the visibility of the imported PackageableElements within the importing

Namespace, i.e., whether imported elements will in turn be visible to other packages that
use that importingPackage as an importedPackage. If the PackageImport is public, the
imported elements will be visible outside the package, while if it is private they will not.
By default, the value of visibility is public.

Associations
• importedPackage: Package [1] Specifies the Package whose members are imported into a Namespace. Subsets

DirectedRelationship::target.
UML 2.0 Infrastructure 153

• importingNamespace: Namespace [1]Specifies the Namespace that imports the members from a Package. Subsets
 DirectedRelationship::source and Element::owner.

Constraints
[1] The visibility of a PackageImport is either public or private.

self.visibility = #public or self.visibility = #private

Semantics
A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

Notation

Issue 6168 - removed text about ‘member import’

A package import is shown using a dashed arrow with an open arrowhead from the importing package to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import that is intended. The
predefined keywords are «import» for a public package import , and «access» for a private package import.

Presentation options

Issue 6164 - hyphenation typo

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

Issue 7135 - consistent syntax for text

‘{‘import ‘ <qualifiedName> ‘}’ | ‘{access ‘ <qualifiedName> ‘}’

Examples
In Figure 92, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then
further imported WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be
referenced using unqualified names from WebShop.

Figure 92 - Examples of public and private package imports

Auxiliary

Types

ShoppingCart

WebShop«import»
«import»

«access»
154 UML 2.0 Infrastructure

11.8 Operations diagram
The Operations diagram of the Constructs package specifies the BehavioralFeature, Operation, and Parameter constructs.

Issue 7623 - Remove inconsistencies from package merge

Issue 7366 - Correct ‘subsets’ for Constraint

Issue 7344 - resolve return parameters
Figure 93 - The Operations diagram of the Constructs package

[0..1]

TypedElement

[0. .1]

Feature Namespace

[0..1]
[0..1]

[0..1]
Parameter

default : String
direction : ParameterDirectionKind = in

Type

BehavioralFeature

*0..1

+ownedParameter

*{ordered,
subsets ownedMember}

+ownerFormalParam

0..1 {subsets namespace}

*

raisedException

*

Multipl ic ityElement

ParameterDirectionKind
in
inout
out
return

<<enumeration>>

Constraint

Type

ParameterOperation
isQuery : Boolean = false
/ isOrdered : Boolean
/ isUnique : Boolean
/ lower : Integer
/ upper : UnlimitedNatural

*

redefinedOperat ion

* {subsets redefinedElement}

*

0..1 precondition

*{subsets ownedRule}preContext

0..1

{subsets namespace}

*

0..1 postcondition

*{subsets ownedRule}postContext

0..1

{subsets namespace}

0..1

0..1 bodyCondition

0..1
{subsets ownedRule}bodyContext

0..1

{subsets namespace}

0..1

/type

0..1

*

raisedException

*

*0..1

+ownedParameter

*

+operat ion

0..1
{subsets namespace}
UML 2.0 Infrastructure 155

11.8.1 BehavioralFeature

Description
Constructs::BehavioralFeature reuses the definition of BehavioralFeature from Abstractions::BehavioralFeatures. It adds
specializations to Constructs::Namespace and Constructs::Feature.

Issue 7367 - add superclass pointers

Generalizations

• “Feature” on page 135

• “Namespace” on page 151

Attributes
No additional attributes.

Associations

Issue 7344 - resolve return parameters: rename formalParameter to ownedParameter and remove subsets
parameter; delete returnResult

• ownedParameter: Parameter[*] Specifies the ordered set of formal parameters of this BehavioralFeature. Subsets
Namespace::ownedMember.

• raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this feature.

Constraints
No additional constraints.

Additional Operations
[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It

specifies that they have to have different signatures.

Issue 7344 - modify constraint to refer to ownedParameter (editorial from Superstructure resolution)

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =

if n.oclIsKindOf(BehavioralFeature)
then

if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->include(self)->include(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif

else true
endif
156 UML 2.0 Infrastructure

Semantics

Issue 7344 - replace old description (editorial from Superstructure resolution)

The list of owned parameters describes the order, type and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the BehavioralFeature terminates.

The owned parameters with direction in or inout define the type, and number, of arguments that must be provided when
invoking the BehavioralFeature. An owned parameter with direction out, inout, or return defines the type of the argument that
will be returned from a successful invocation. A BehavioralFeature may raise an exception during its invocation.

Notation
No additional notation.

11.8.2 Operation
An operation is a behavioral feature of a classfier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Description
Constructs::Operation reuses the definition of Operation from Basic. It adds a specialization to
Constructs::BehavioralFeature.

The specification of an operation defines what service it provides, not how this is done, and can include a list of pre- and
postconditions.

Issue 7367 - add superclass pointers

Generalizations

• “BehavioralFeature” on page 156

Attributes
• /isOrdered : Boolean Redefines the corresponding property from Basic to derive this information from the

return result for this Operation.

• isQuery : Boolean Specifies whether an execution of the BehavioralFeature leaves the state of the system
unchanged (isQuery=true) or whether side effects may occur (isQuery=false). The default
value is false.

• /isUnique : Boolean Redefines the corresponding property from Basic to derive this information from the
return result for this Operation.

• /lower : Integer[0..1] Redefines the corresponding property from Basic to derive this information from the
return result for this Operation.

• /upper : UnlimitedNatural[0..1]Redefines the corresponding property from Basic to derive this information from the
return result for this Operation.
UML 2.0 Infrastructure 157

Associations

Issue 7366 - Correct ‘subsets’ for Constraint

• bodyCondition: Constraint[0..1]An optional Constraint on the result values of an invocation of this Operation. Subsets
Namespace.ownedRule.

Issue 7344 - resolve return parameters: delete formalParameter

• postcondition: Constraint[*] An optional set of Constraints specifying the state of the system when the Operation is
completed. Subsets Namespace.ownedRule.

• precondition: Constraint[*] An optional set of Constraints on the state of the system when the Operation is invoked.
Subsets Namespace.ownedRule.

• raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this operation. Redefines Basic::Operation.raisedException and BehavioralFea-
ture.raisedException.

• redefinedOperation: Operation[*]References the Operations that are redefined by this Operation. Subsets RedefinableEle-
ment.redefinedElement.

• /type: Type[0..1] Redefines the corresponding property from Basic to derive this information from the
return result for this Operation.

Constraints

Issue 7344 - add constraint and modify existing ones to reflect new way of modeling return results

[1] An operation can have at most one return parameter; i.e., an owned parameter with the direction set to ‘return’
ownedParameter->select(par | par.direction = #return)->size() <= 1

[2] If this operation has a return parameter, isOrdered equals the value of isOrdered for that parameter. Otherwise isOrdered
is false.
isOrdered = if returnResult()->notEmpty() then returnResult()->any().isOrdered else false endif

[3] If this operation has a return parameter, isUnique equals the value of isUnique for that parameter. Otherwise isUnique is
true.
isUnique = if returnResult()->notEmpty() then returnResult()->any().isUnique else true endif

[4] If this operation has a return parameter, lower equals the value of lower for that parameter. Otherwise lower is not
defined.
lower = if returnResult()->notEmpty() then returnResult()->any().lower else Set{} endif

[5] If this operation has a return parameter, upper equals the value of upper for that parameter. Otherwise upper is not
defined.
upper = if returnResult()->notEmpty() then returnResult()->any().upper else Set{} endif

[6] If this operation has a return parameter, type equals the value of type for that parameter. Otherwise type is not defined.
type = if returnResult()->notEmpty() then returnResult()->any().type else Set{} endif

[7] A bodyCondition can only be specified for a query operation.

bodyCondition->notEmpty() implies isQuery
158 UML 2.0 Infrastructure

Additional Operations

Issue 6212 - Reduce ‘strength’ of definition

[1] The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be consistent in the sense of maintaining type covariance. Other senses of consistency may be
required, for example to determine consistency in the sense of contravariance. Users may define alternative queries under
names different from 'isConsistentWith()', as for example, users may define a query named 'isContravariantWith()'.

Issue 7344 - modify to reflect change from formalParameter to ownedParameter and add utility returnResult()
(editorial based on Supersteucture resulution)

Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.oclIsKindOf(Operation) and

let op: Operation = redefinee.oclAsType(Operation) in
self.ownedParameter.size() = op.ownedParameter.size() and
forAll(i | op.ownedParameter[i].type.conformsTo(self.ownedParameter[i].type))
)

[2] The query returnResult() returns the set containing the return parameter of the Operation if one exists, otherwise, it
returns an empty set
Operation::returnResult() : Set(Parameter);
returnResult = ownedParameter->select (par | par.direction = #return)

Semantics
An operation is invoked on an instance of the classifier for which the operation is a feature. A static operation is invoked
on the classifier owning the operation, hence it can be invoked without an instance.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation is completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of
the formal parameters or return results, add new preconditions or postconditions, add new raised exceptions, or otherwise
refine the specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model
(isQuery).

Semantic Variation Points
The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point.
UML 2.0 Infrastructure 159

Issue 6171 - new paragraph on covariance

When operations are redefined in a specialization, rules regarding invariance, covariance, or contravariance of types and
preconditions determine whether the specialized classifier is substitutable for its more general parent. Such rules
constitute semantic variation points with respect to redefinition of operations.

Notation

Issue 7135 - use standard BNF

Issue 5951 - operation vs attribute notation

An operation is shown as a text string of the form:

[<visibility>] <name> ‘(‘ [<parameter-list>] ‘)’ [‘:’ [<return-type>] ‘{‘ <oper-property> [‘,’ <oper-property>]* ‘}’]

where:

• <visibility> is the visibility of the operation (See “VisibilityKind” on page 90.)
<visibility> ::= ‘+’ | ‘-‘

• <name> is the name of the operation

• <return-type> is the type of the return result parameter if the operation has one defined

• <oper-property> indicates the properties of the operation

<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | ‘unique’ | <oper-constraint>

where:

• redefines <oper-name> means that the operation redefines an inherited operation identified by <oper-name>

• query means that the operation does not change the state of the system

• ordered means that the values of the return parameter are ordered

• unique means that the values returned by the parameter have no duplicates

• <oper-constraint> is a constraint that applies to the operation

• <parameter-list> is a list of parameters of the operation in the following format:
<parameter-list> ::= <parameter> [‘,’<parameter>]*
<parameter> ::= [<direction>] <parameter-name> ‘:’ <type-expression>

[‘[‘<multiplicity>’]’] [‘=’ <default>] [‘{‘ <parm-property> [‘,’ <parm-property>]* ‘}’]

where:
• <direction> ::= ‘in’ | ‘out’ | ‘inout’ (defaults to ‘in’ if omitted)
• <parameter-name> is the name of the parameter
• <type-expression> is an expression that specifies the type of the parameter
• <multiplicity> is the multiplicity of the parameter. (See “MultiplicityElement” on page 66.)
• <default> is an expression that defines the value specification for the default value of the parameter.
• <parm-property> indicates additional property values that apply to the parameter
160 UML 2.0 Infrastructure

Presentation Options

Issue 7344 - add explanation of return result

The parameter list can be suppressed. The return result of the operation can be expressed as a return parameter, or as the type
of the operation. For example:

toString(return : String)

means the same thing as
toString() : String

Style Guidelines
An operation name typically begins with a lowercase letter.

Examples
display ()

-hide ()

+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String {query}

11.8.3 Parameter
A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

Description
Constructs::Parameter merges the definitions of Parameter from Basic and Abstractions::BehavioralFeatures. It adds
specializations to TypedElement and MultiplicityElement.

A parameter is a kind of typed element in order to allow the specification of an optional multiplicity on parameters. In
addition, it supports the specification of an optional default value.

Issue 7367 - add superclass pointers

Generalizations

• “TypedElement” on page 138

• “MultiplicityElement” on page 135

Attributes
• default: String [0..1] Specifies a String that represents a value to be used when no argument is supplied for the

Parameter.

Issue 7344 - resolve return parameters - new ‘direction’ property

• direction: ParameterDirectionKind [1] Indicates whether a parameter is being sent into or out of a behavioral element. The
default value is in.
UML 2.0 Infrastructure 161

Associations
• /operation: Operation[0..1] References the Operation for which this is a formal parameter. Subsets NamedEle-

ment::namespace and redefines Basic::Parameter::operation.

Constraints
No additional constraints.

Semantics
A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The
type and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If a default is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter
if and only if no argument is supplied at invocation of the behavioral feature.

Notation
See Operation.

Issue 7344 - resolve return parameters

11.8.4 ParameterDirectionKind

Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Generalizations

• none

Description

ParameterDirectionKind is an enumeration of the following literal values:

• in Indicates that parameter values are passed into the behavioral element by the caller.

• inout Indicates that parameter values are passed into a behavioral element by the caller and then
back out to the caller from the behavioral element.

• out Indicates that parameter values are passed from a behavioral element out to the caller.

• return Indicates that parameter values are passed as return values from a behavioral element back
to the caller.
162 UML 2.0 Infrastructure

11.9 Packages diagram
The Packages diagram of the Constructs package specifies the Package and PackageMerge constructs.

11.9.1 Type (additional properties - see “Type” on page 137)

Description
Constructs::Type is defined in the Classifiers diagram. The Packages diagram adds the association between Type and
Package that represents the ownership of the type by a package.

Issue 6279 - Package Merge

Issue 7623 - Remove inconsistencies from package merge
Figure 94 - The Packages diagram of the Constructs package

DirectedRelationship

Pa ckag eableEle mentNamespace

PackageableElement

PackageMerge

Type

Pa ckag e
*0..1

ownedMember

*{redefines ownedMember}

owningPackage

0..1

{subsets namesp ace}

*

0..1

+/neste dPacka ge *
{su bsets own edM emb er}

nestingPackage

0..1 {subsets namespace}

*1

packageM erge

*

{subsets ownedElement}receivingPackage

1 {subsets source,
subsets owner}

1

mergedPackage

1 {su bsets ta rg et }

*0..1

/ownedType

*{subsets o wnedM ember}

package

0..1

{subsets namespace}
UML 2.0 Infrastructure 163

Issue 7367 - add superclass pointers

Generalizations

• “NamedElement” on page 150

• “PackageableElement” on page 152

Attributes
No additional attributes.

Associations
• package: Package [0..1] Specifies the owning package of this classifier, if any. Subsets NamedEle-

ment::namespace and redefines Basic::Type::package.

Constraints
No additional constraints.

Semantics
No additional semantics.

11.9.2 Package
A package is used to group elements, and provides a namespace for the grouped elements.

Description
A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other
packages, or all the members of other packages.

In addition a package can be merged with other packages.

Issue 7367 - add superclass pointers

Generalizations

• “PackageableElement” on page 152

• “Namespace” on page 151

Attributes
No additional attributes.
164 UML 2.0 Infrastructure

Associations

Issue 7623 - Remove inconsistencies from package merge: make nestedPackage derived

• /nestedPackage: Package [*] References the owned members that are Packages. Subsets Package::ownedMember and
redefines Basic::Package::nestedPackage.

• ownedMember: PackageableElement [*]Specifies the members that are owned by this Package. Redefines
Namespace::ownedMember.

• ownedType: Type [*] References the owned members that are Types. Subsets Package::ownedMember and
redefines Basic::Package::ownedType.

• package: Package [0..1] References the owning package of a package. Subsets NamedElement::namespace and
redefines Basic::Package::nestingPackage.

• packageMerge: Package [*] References the PackageMerges that are owned by this Package. Subsets Ele-
ment::ownedElement.

Constraints
[1] If an element that is owned by a package has visibility, it is public or private.

self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations
[1] The query mustBeOwned() indicates whether elements of this type must have an owner.

Package::mustBeOwned() : Boolean
mustBeOwned = false

[1] The query visibleMembers() defines which members of a Package can be accessed outside it.

Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

[2] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.

Issue 7068 - correct expression by expanding semantics

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)
makesVisible =

-- the element is in the package
(ownedMember->includes(el)) or
-- it is imported individually with public visibility
(elementImport->

select(ei|ei.visibility = #public)->
collect(ei|ei.importedElement)->includes(el)) or

-- it is imported through a package with public visibility
(packageImport->

select(pi|pi.visibility = #public)->
collect(pi|

pi.importedPackage.member->includes(el))->notEmpty())

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.
UML 2.0 Infrastructure 165

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,
and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package is always accessible outside the package through the use of qualified names.

Notation
A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by
branching lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end
attached to the namespace (package).

• If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

• If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

Issue 6379 - clarify Package visibility

The visibility of a package element may be indicated by preceding the name of the element by a visibility symbol (‘+’ for
public and ‘-’ for private). Package elements with defined visibility may not have protected or package visibility.

Presentation Options
A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level, e.g., only public elements. A diagram showing a package with
contents must not necessarily show all its contents; it may show a subset of the contained elements according to some
criterion.

Elements that become available for use in a importing package through a package import or an element import may have
a distinct color or be dimmed to indicate that they cannot be modified.
166 UML 2.0 Infrastructure

Examples
There are three representations of the same package Types in Figure 95. The one on the left just shows the package
without revealing any of its members. The middle one shows some of the members within the borders of the package, and
the one to the right shows some of the members using the alternative membership notation.

11.9.3 PackageMerge

Issue 6279 - change definition of package merge to new definition

A package merge defines how the contents of one package are extended by the contents of another package.

Issue 7367 - add superclass pointers

Generalizations

• “DirectedRelationship” on page 108

Description

A package merge is a directed relationship between two packages, that indicates that the contents of the two packages are to be
combined. It is very similar to Generalization in the sense that the source element conceptually adds the characteristics of the
target element to its own characteristics resulting in an element that combines the characteristics of both.

This mechanism should be used when elements defined in different packages have the same name and are intended to
represent the same concept. Most often it is used to provide different definitions of a given concept for different purposes,
starting from a common base definition. A given base concept is extended in increments, with each increment defined in a
separate merged package. By selecting which increments to merge, it is possible to obtain a custom definition of a concept for
a specific end. Package merge is particularly useful in meta-modeling and is extensively used in the definition of the UML
metamodel.

Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and produces a new
package that combines the contents of the packages involved in the merge. In terms of model semantics, there is no difference
between a model with explicit package merges, and a model in which all the merges have been performed.

Attributes

No additional attributes.

Figure 95 - Examples of a package with members

Types
Types

Integer

Time

PointShape

Types
UML 2.0 Infrastructure 167

Associations

• mergedPackage: Package [1] References the Package that is to be merged with the receiving package of the Package-
Merge. Subsets DirectedRelationship::target.

• receivingPackage: Package [1] References the Package that is being extended with the contents of the merged package of
the PackageMerge. Subsets Element::owner and DirectedRelationship::source.

Constraints

No additional constraints.

Semantics

A package merge between two packages implies a set of transformations, whereby the contents of the package to be merged
are combined with the contents of the receiving package. In cases in which certain elements in the two packages represent the
same entity, their contents are (conceptually) merged into a single resulting element according to the formal rules of package
merge specified below.

As with Generalization, a package merge between two packages in a model merely implies these transformations, but the
results are not themselves included in the model. Nevertheless, the receiving package and its contents are deemed to represent
the result of the merge, in the same way that a subclass of a class represents the aggregation of features of all of its superclasses
(and not merely the increment added by the class). Thus, within a model, any reference to a model element contained in the
receiving package implies a reference to the results of the merge rather than to the increment that is physically contained in
that package. This is illustrated by the example in Figure 96 in which package P1 and package P2 both define different incre-
ments of the same class A (identified as P1::A and P2::A respectively). Package P2 merges the contents of package P1, which
implies the merging of increment P1::A into increment P2::A. Package P3 imports the contents of P2 so that it can define a
subclass of A called SubA. In this case, element A in package P3 (P3::A) represents the result of the merge of P1::A into P2::A
and not just the increment P2::A. Note that, if another package were to import P1, then a reference to A in the importing pack-
age would represent the increment P1::A rather than the A resulting from merge.

To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities: the merged
increment (e.g., P1::A in Figure 96), the receiving increment (e.g., P2::A), and the result of the merge transformations. The
main difficulty comes from the fact that the receiving package and its contents represents both the operand and the results of
the package merge, depending on the context in which they are considered. For example, in Figure 96 , with respect to the
package merge operation, P2 represents the increment that is an operand for the merge. However, with respect to the import
operation, P2 represents the result of the merge. This dual interpretation of the same model element can be confusing, so it is
useful to introduce the following terminology that aids understanding:

• merged package - the first operand of the merge, that is, the package that is to be merged into the receiving package (this
is the package that is the target of the merge arrow in the diagrams).

Figure 96 - Illustration of the meaning of package merge

P1

A

P2

A
«merge»

P3

A
«import»

SubA
168 UML 2.0 Infrastructure

• receiving package - the second operand of the merge, that is, the package that, conceptually, contains the results of the
merge (and which is the source of the merge arrow in the diagrams). However, this term is used to refer to the package and
its contents before the merge transformations have been performed.

• resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, of course, the
same package as the receiving package, but this particular term is used to refer to the package and its contents after the
merge has been performed.

• merged element - refers to a model element that exists in the merged package.

• receiving element - is a model element in the receiving package. If the element has a matching merged element, the two
are combined to produce the resulting element (see below). This term is used to refer to the element before the merge has
been performed (i.e., the increment itself rather than the result).

• resulting element - is a model element in the resulting package after the merge was performed. For receiving elements that
have a matching merged element, this is the same element as the receiving element, but in the state after the merge was
performed. For merged elements that have no matching receiving element, this is the merged element. For receiving ele-
ments that have no matching merged element, this is the same as the receiving element.

• element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or StructuralFeature

• element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

This terminology is based on a conceptual view of package merge that is represented by the schematic diagram in Figure 97
(NB: this is not a UML diagram). The owned elements of packages A and B are all incorporated into the namespace of
package B. However, it is important to emphasize that this view is merely a convenience for describing the semantics of
package merge and is not reflected in the repository model, that is, the physical model itself is not transformed in any way by
the presence of package merges.

The semantics of package merge are defined by a set of constraints and transformations. The constraints specify the
preconditions for a valid package merge, while the transformations describe its semantic effects (i.e., postconditions). If any
constraints are violated, the package merge is ill formed and the resulting model that contains it is invalid. Different metatypes

Figure 97 - Conceptual view of the package merge semantics

merged
package

receiving
package

resulting
package

package
merge

«becomes»

A B

B'

A

B

«merge»
UML 2.0 Infrastructure 169

have different semantics, but the general principle is always the same: a resulting element will not be any less capable than it
was prior to the merge. This means, for instance, that the resulting navigability, multiplicity, visibility, etc. of a receiving
model element will not be reduced as a result of a package merge. One of the key consequences of this is that model elements
in the resulting package are compatible extensions of the corresponding elements in the (unmerged) receiving package in the
same namespace. This capability is particularly useful in defining metamodel compliance levels such that each successive
level is compatible with the previous level, including their corresponding XMI representations.

In this specification, explicit merge transformations are only defined for certain general metatypes found mostly in
metamodels (Packages, Classes, Associations, Properties, etc.), since the semantics of merging other kinds of metatypes (e.g.,
state machines, interactions) are complex and domain specific. Elements of all other kinds of metatypes are transformed
according to the default rule: they are simply deep copied into the resulting package. (This rule can be superseded for specific
metatypes through profiles or other kinds of language extensions.)

General package merge rules

A merged element and a receiving element match if they satisfy the matching rules for their metatype.

CONSTRAINTS:

1. There can be no cycles in the «merge» dependency graph.
2. A package cannot merge a package in which it is contained.
3. A package cannot merge a package that it contains.
4. A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association, Operation, Con-

straint, Enumeration, or EnumerationLiteral, cannot have a receiving element with the same name and metatype unless
that receiving element is an exact copy of the merged element (i.e., they are the same).

5. A package merge is valid if and only if all the constraints required to perform the merge are satisfied.
6. Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are classes or data

types, a conforming type is either the same type or a common supertype. For all other cases, conformance means that the
types must be the same.

7. A receiving element cannot have explicit references to any merged element.

TRANSFORMATIONS:

1. (The default rule) Merged or receiving elements for which there is no matching element are deep copied into the resulting
package.

2. The result of merging two elements with matching names and metatypes that are exact copies of each other is the receiv-
ing element.

3. Matching elements are combined according to the transformation rules specific to their metatype and the results included
in the resulting package.

4. All type references to typed elements that end up in the resulting package are transformed into references to the corre-
sponding resulting typed elements (i.e., not to their respective increments).

5. For all matching elements: if both matching elements have private visibility, the resulting element will have private visi-
bility, otherwise, the resulting element will have public visibility.

6. For all matching classifier elements: if both matching elements are abstract, the resulting element is abstract, otherwise,
the resulting element is non-abstract.

7. For all matching elements: if both matching elements are not derived, the resulting element is also not derived, otherwise,
the resulting element is derived.

8. For all matching multiplicity elements: the lower bound of the resulting multiplicity is the lesser of the lower bounds of
the multiplicities of the matching elements.

9. For all matching multiplicity elements: the upper bound of the resulting multiplicity is the greater of the upper bounds of
the multiplicities of the matching elements.

10. Any stereotypes applied to a model element in either a merged or receiving element are also applied to the corresponding
resulting element.
170 UML 2.0 Infrastructure

Package rules

Elements that are a kind of Package match by name and metatype (e.g., profiles match with profiles and regular packages with
regular packages).

TRANSFORMATIONS:

1. A nested package from the merged package is transformed into a nested package with the same name in the resulting
package, unless the receiving package already contains a matching nested package. In the latter case, the merged nested
package is recursively merged with the matching receiving nested package.

2. An element import owned by the receiving package is transformed into a corresponding element import in the resulting
package. Imported elements are not merged (unless there is also a package merge to the package owning the imported ele-
ment or its alias).

Class and DataType rules

Elements that are kinds of Class or DataType match by name and metatype.

TRANSFORMATIONS:

1. All properties from the merged classifier are merged with the receiving classifier to produce the resulting classifier
according to the property transformation rules specified below.

2. Nested classifiers are merged recursively according to the same rules.

Property rules

Elements that are kinds of Property match by name and metatype.

CONSTRAINTS:

1. The static (or non-static) characteristic of matching properties must be the same.
2. The uniqueness characteristic of matching properties must be the same.
3. Any constraints associated with matching properties must not be conflicting.
4. Any redefinitions associated with matching properties must not be conflicting.

TRANSFORMATIONS:

1. For merged properties that do not have a matching receiving property, the resulting property is a newly created property in
the resulting classifier that is the same as the merged property.

2. For merged properties that have a matching receiving property, the resulting property is a property with the same name
and characteristics except where these characteristics are different. Where these characteristics are different, the resulting
property characteristics are determined by application of the appropriate transformation rules.

3. For matching properties: if both properties are designated read-only, the resulting property is also designated read-only.
Otherwise, the resulting property is designated as not read-only.

4. For matching properties: if both properties are unordered, then the resulting property is also unordered. Otherwise, the
resulting property is ordered.

5. For matching properties: if neither property is designated as a subset of some derived union, then the resulting property
will not be designated as a subset. Otherwise, the resulting property will be designated as a subset of that derived union.

6. For matching properties: different redefinitions of matching properties are combined conjunctively.
7. For matching properties: different constraints of matching properties are combined conjunctively.
8. For matching properties: if either the merged and/or receiving elements are non-unique, the resulting element is non-

unique. Otherwise, the resulting element is designated as unique.
9. The resulting property type is transformed to refer to the corresponding type in the resulting package.
UML 2.0 Infrastructure 171

Association rules

Elements that are a kind of Association match by name (including if they have no name) and by their association ends where
those match by name and type (i.e., the same rule as properties). These rules are in addition to regular property rules described
above.

CONSTRAINTS:

1. These rules only apply to binary associations. (The default rule is used for merging n-ary associations.)
2. The receiving association end must be a composite if the matching merged association end is a composite.
3. The receiving association end must be owned by the association if the matching merged association end is owned by the

association

TRANSFORMATIONS:

1. A merge of matching associations is accomplished by merging the Association classifiers (using the merge rules for clas-
sifiers) and merging their corresponding owned end properties according to the rules for properties and association ends.

2. For matching association ends: if neither association end is navigable, then the resulting association end is also not navi-
gable. In all other cases, the resulting association end is navigable.

Operation rules

Elements that are a kind of Operation match by name, parameter order, and parameter types, not including any return type.

CONSTRAINTS:

1. Operation parameters and types must conform to the same rules for type and multiplicity as were defined for properties.
2. The receiving operation must be a query if the matching merged operation is a query.

TRANSFORMATIONS:

1. For merged operations that do not have a matching receiving operation, the resulting operation is an operation with the
same name and signature in the resulting classifier.

2. For merged operations that have a matching receiving operation, the resulting operation is the outcome of a merge of the
matching merged and receiving operations, with parameter transformations performed according to the property transfor-
mations defined above.

Enumeration rules

Elements that are a kind of EnumerationLiteral match by owning enumeration and literal name.

CONSTRAINTS:

1. Matching enumeration literals must be in the same order.

TRANSFORMATIONS:

1. Non-matching enumeration literals from the merged enumeration are concatenated to the receiving enumeration.

Constraint Rules

CONSTRAINTS:

1. Constraints must be mutually non-contradictory.

TRANSFORMATIONS:

1. The constraints of the merged model elements are conjunctively added to the constraints of the matching receiving model
elements.
172 UML 2.0 Infrastructure

Notation

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receiving package (the source) to the
merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Examples

In Figure 99, packages P and Q are being merged by package R, while package S merges only package Q.

The transformed packages R and S are shown in Figure 100. The expressions in square brackets indicating which individual
increments were merged into produce the final result, with the “@” character denoting the merge operator (note that these

Figure 98 - Notation for package merge

Figure 99 - Simple example of package merges

Source

Target
«merge»

P Q

R

S

A

B

A C

A

«merge»

«merge»

«merge»

A B

D

UML 2.0 Infrastructure 173

expressions are not part of the standard notation, but are included here for explanatory purposes).

In Figure 101, additional package merges are introduced by having package T, which is empty prior to execution of the merge
operation, merge packages R and S defined previously.

In Figure 102, the transformed version of package T is depicted. In this package, the partial definitions of A, B, C, and D have
all been brought together. Note that the types of the ends of the associations that were originally in the packages Q and S have

Figure 100 - Simple example of transformed packages following the merges in Figure
99

Figure 101 - Introducing additional package merges

R

B
[P::B]

A
[P::A@(Q::A@R::A)]

C
[Q::C]

S

B
[S::B]

A
[Q::A@S::A]

C
[Q::C]

D
[S::D]

R

S

T

«merge»

«merge»
174 UML 2.0 Infrastructure

all been updated to refer to the appropriate elements in package T.

Figure 102 - The result of the additional package merges in Figure 101

T

A
[(P::A@(Q::A@R::A))

@S::A]

C
[Q::C]

D
[S::D]

B
[P::B@S::B]
UML 2.0 Infrastructure 175

176 UML 2.0 Infrastructure

12 Core::PrimitiveTypes
The PrimitiveTypes package of InfrastructureLibrary::Core contains a number of predefined types used when defining the
abstract syntax of metamodels.

Figure 102 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

12.1 PrimitiveTypes package
The PrimitiveTypes subpackage within the Core package defines the different types of primitive values that are used to
define the Core metamodel. It is also intended that every metamodel based on Core will reuse the following primitive
types.

In Core and the UML metamodel, these primitive types are predefined and available to the Core and UML extensions at
all time. These predefined value types are independent of any object model and part of the definition of the Core.

12.1.1 Boolean
A boolean type is used for logical expression, consisting of the predefined values true and false.

Description
Boolean is an instance of PrimitiveType. In the metamodel, Boolean defines an enumeration that denotes a logical
condition. Its enumeration literals are:

• true The Boolean condition is satisfied.

• false The Boolean condition is not satisfied.

It is used for boolean attribute and boolean expressions in the metamodel, such as OCL expression.

Attributes
No additional attributes.

Figure 103 - The classes defined in the PrimitiveTypes package

Core

PrimitiveTypes

Integer
<<primitive>>

Boolean
<<primitive>>

String
<<primitive>>

UnlimitedNatural
<<primitive>>
UML 2.0 Infrastructure 177

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
Boolean is an instance of PrimitiveType.

Notation
Boolean will appear as the type of attributes in the metamodel. Boolean instances will be values associated to slots, and
can have literally the following values: true, or false.

Examples

12.1.2 Integer
An integer is a primitive type representing integer values.

Description
An instance of Integer is an element in the (infinite) set of integers (…-2, -1, 0, 1, 2…). It is used for integer attributes
and integer expressions in the metamodel.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
Integer is an instance of PrimitiveType.

Figure 104 - An example of a boolean attribute

Car

isAutomatic: Boolean = true
178 UML 2.0 Infrastructure

Notation
Integer will appear as the type of attributes in the metamodel. Integer instances will be values associated to slots such as
1, -5, 2, 34, 26524, etc.

Examples

12.1.3 String
A string is a sequence of characters in some suitable character set used to display information about the model. Character
sets may include non-Roman alphabets and characters.

Description
An instance of String defines a piece of text. The semantics of the string itself depends on its purpose, it can be a
comment, computational language expression, OCL expression, etc. It is used for String attributes and String expressions
in the metamodel.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
String is an instance of PrimitiveType.

Notation
String appears as the type of attributes in the metamodel. String instances are values associated to slots. The value is a
sequence of characters surrounded by double quotes ("). It is assumed that the underlying character set is sufficient for
representing multibyte characters in various human languages; in particular, the traditional 8-bit ASCII character set is
insufficient. It is assumed that tools and computers manipulate and store strings correctly, including escape conventions
for special characters, and this document will assume that arbitrary strings can be used.

A string is displayed as a text string graphic. Normal printable characters should be displayed directly. The display of
nonprintable characters is unspecified and platform-dependent.

Figure 105 - An example of an integer attribute

Magazine

pages: Integer = 64
UML 2.0 Infrastructure 179

Examples

12.1.4 UnlimitedNatural
An unlimited natural is a primitive type representing unlimited natural values.

Description
An instance of UnlimitedNatural is an element in the (infinite) set of naturals (0, 1, 2…). The value of infinity is shown
using an asterisk (‘*’).

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
UnlimitedNatural is an instance of PrimitiveType.

Notation
UnlimitedNatural will appear as the type of upper bounds of multiplicities in the metamodel. UnlimitedNatural instances
will be values associated to slots such as 1, 5, 398475, etc. The value infinity may be shown using an asterisk (‘*’).

Examples

Figure 106 - An example of a string attribute

Figure 107 - An example of an unlimited natural

Book

author: String = "Joe"

Teacher Student
*

student
180 UML 2.0 Infrastructure

13 Core::Profiles
The Profiles package of the InfrastructureLibrary contains mechanisms that allow metaclasses from existing metamodels
to be extended to adapt them for different purposes. This includes the ability to tailor the UML metamodel for different
platforms (such as J2EE or .NET) or domains (such as real-time or business process modeling). The profiles mechanism
is consistent with the OMG Meta Object Facility (MOF).

Issue 6347 - clarify profiles

Positioning profiles versus metamodels, MOF and UML
The infrastructure specification is reused at several meta-levels in various OMG specifications that deal with modeling. For
example, MOF uses it to provide the ability to model metamodels, whereas the UML superstructure uses it to model the UML
model. This chapter deals with use cases comparable to the MOF at the meta-meta-level, which is one level higher than the
rest of the superstructure specification. Thus, in this chapter, when we mention “Class”, in most cases we are dealing with the
meta-metaclass “Class” (used to define every meta class in the UML superstructure specification (Activity, Class, State, Use
Case, etc.).

Profiles History and design requirements
The Profile mechanism has been specifically defined for providing a lightweight extension mechanism to the UML standard.
In UML 1.1, stereotypes and tagged values were used as string-based extensions that could be attached to UML model
elements in a flexible way. In subsequent revisions of UML, the notion of a Profile was defined in order to provide more
structure and precision to the definition of Stereotypes and Tagged values. The UML2.0 infrastructure and superstructure
specifications have carried this further, by defining it as a specific meta-modelling technique. Stereotypes are specific
metaclasses, tagged values are standard metaattributes, and profiles are specific kinds of packages.

The following requirements have driven the definition of profile semantics from inception:

1. A profile must provide mechanisms for specializing a reference metamodel (such as a set of UML packages) in such
a way that the specialized semantics do not contradict the semantics of the reference metamodel. That is, profile con-
straints may typically define well-formedness rules that are more constraining (but consistent with) those specified by
the reference metamodel.

2. It must be possible to interchange profiles between tools, together with models to which they have been applied, by
using the UML XMI interchange mechanisms. A profile must therefore be defined as an interchangeable UML
model. In addition to exchanging profiles together with models between tools, profile application should also be
definable “by reference” (e.g. “import by name”); that is, a profile does not need to be interchanged if it is already
present in the importing tool.

3. A profile must be able to reference domain-specific UML libraries where certain model elements are pre-defined.

4. It must be possible to specify which profiles are being applied to a given Package (or any of specializations of that
concept). This is particularly useful during model interchange so that an importing environment can interpret a model
correctly.

5. It should be possible to define a UML extension that combines profiles and model libraries (including template librar-
ies) into a single logical unit. However, within such a unit, for definitional clarity and for ease of interchange (e.g.
‘reference by name’), it should still be possible to keep the libraries and the profiles distinct from each other.

6. A profile should be able to specialize the semantics of standard UML metamodel elements, e.g., in a model with the
profile “Java model” generalization of classes should be able to be restricted to single inheritance, without having to
UML 2.0 Infrastructure 181

explicitly assign a stereotype «Java class» to each and every class instance.

7. A notational convention for graphical stereotype definitions as part of a profile should be provided.

8. In order to satisfy requirement [1] above, UML Profiles should form a metamodel extension mechanism that imposes
certain restrictions on how the UML metamodel can be modified. The reference metamodel is considered as a “read
only” model, that is extended without changes by profiles. It is therefore forbidden to insert new metaclasses in the
UML metaclass hierarchy (i.e. new super-classes for standard UML metaclasses) or to modify the standard UML
metaclass definitions, e.g. by adding meta-associations. Such restrictions do not apply in a MOF context where in
principle any metamodel can be reworked in any direction.

9. The vast majority of UML case tools should be able to implement Profiles. The design of UML profiles should there-
fore not constraint these tools to have an internal implementation based on a meta-metamodel/metamodel architec-
ture.

10. Profiles can be dynamically applied to or retracted from a model. It is possible on an existing model to apply new pro-
files, or to change the set of applied profiles.

11. Profiles can be dynamically combined. Frequently, several profiles will be applied at the same time on the same
model. This profile combination may not be foreseen at profile definition time.

12. Models can be exchanged regardless of the profiles known by the destination target. The destination of the exchange
of a model extended by a profile may not know the profile, and is not required to interpret a specific profile descrip-
tion. The destination environment interprets extensions only if it possesses the required profiles.

Extensibility
The profiles mechanism is not a first-class extension mechanism, i.e., it does not allow for modifying existing
metamodels. Rather, the intention of profiles is to give a straightforward mechanism for adapting an existing metamodel
with constructs that are specific to a particular domain, platform, or method. Each such adaption is grouped in a profile.
It is not possible to take away any of the constraints that apply to a metamodel such as UML using a profile, but it is
possible to add new constraints that are specific to the profile. The only other restrictions are those inherent in the profiles
mechanism; there is nothing else that is intended to limit the way in which a metamodel is customized.

First-class extensibility is handled through MOF, where there are no restrictions on what you are allowed to do with a
metamodel: you can add and remove metaclasses and relationships as you find necessary. Of course, it is then possible to
impose methodology restrictions that you are not allowed to modify existing metamodels, but only extend them. In this
case, the mechanisms for first-class extensibility and profiles start coalescing.

There are several reasons why you may want to customize a metamodel:

• Give a terminology that is adapted to a particular platform or domain (such as capturing EJB terminology like home
interfaces, enterprise java beans, and archives).

• Give a syntax for constructs that do not have a notation (such as in the case of actions).

• Give a different notation for already existing symbols (such as being able to use a picture of a computer instead of the
ordinary node symbol to represent a computer in a network).

• Add semantics that is left unspecified in the metamodel (such as how to deal with priority when receiving signals in a
statemachine).

• Add semantics that does not exist in the metamodel (such as defining a timer, clock, or continuous time)

• Add constraints that restrict the way you may use the metamodel and its constructs (such as disallowing actions from
182 UML 2.0 Infrastructure

being able to execute in parallel within a single transition).

• Add information that can be used when transforming a model to another model or code (such as defining mapping rules
between a model and Java code).

Profiles and Metamodels
There is no simple answer for when you should create a new metamodel and when you instead should create a new
profile.

13.1 Profiles package
The Profiles package is dependent on the Constructs package from Core, as is depicted in Figure 108.

Figure 108 - The Profiles package is owned by the InfrastructureLibrary package

InfrastructureLibrary

Profiles

Core::
Constructs
UML 2.0 Infrastructure 183

The classes of the Profiles package are depicted in Figure 109, and subsequently specified textually.

Issue Editorial - Reorder sections for alphabetic order and consistency with Superstructure

13.1.1 Class (from Constructs, Profiles)

Description
Class has derived association that indicates how it may be extended through one or more stereotypes.

Issue 7664 - replace sentence

Stereotype is the only kind of metaclass that cannot be extended by stereotypes.

Issue 7367 - add superclass pointers

Generalizations

• None.

Attributes
No additional attributes.

Associations
• / extension: Extension [*] References the Extensions that specify additional properties of the metaclass. The prop-

erty is derived from the extensions whose memberEnds are typed by the Class.

Issue 6280 - Add Image class

Issue 7623 - Remove inconsistencies from package merge
Figure 109 - The classes defined in the Profiles package

Property
(from Constructs)

Association
(from Constructs)

Class Extension
/ isRequired : Boolean

*1

/extension

*

/metaclass

1 /

Package ExtensionEnd

11

ownedEnd

11

Image

Prof ileApplication

1 *1

appliedProf ile

*

{subsets packageImport}

PackageImport
(from Constructs)

Stereoty pe
1

*

ty pe

1

*

*
*

+icon*
*

ElementImport
(from Constructs)

Prof ile
1

*

importedProf ile

1 {subsets importedPackage}

*

*0..1

metamodelRef erence

*{subsets packageImport}0..1

*1

ownedStereoty pe

*{subs ets ownedMember}1

*0..1

metaclassRef erence

*{subs ets elem entImport}0..1

Pac kageImport
(from Constructs)Namespace

(from Constructs)

Element
184 UML 2.0 Infrastructure

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
No additional notation.

Presentation Option

Issue 4219 - metaclass is a stereotype

A Class that is extended by a Stereotype may be extended by the optional stereotype «metaclass» (see Superstructure
appendix B: standard stereotypes, basic) shown above or before its name.

Examples
In Figure 110, an example is given where it is made explicit that the extended class Interface is in fact a metaclass (from
a reference metamodel).

Changes from UML 1.4
A link typed by UML 1.4 ModelElement::stereotype is mapped to a link that is typed by Class::extension.

13.1.2 Extension (from Profiles)
An extension is used to indicate that the properties of a metaclass are extended through a stereotype, and gives the ability
to flexibly add (and later remove) stereotypes to classes.

Description
Extension is a kind of Association. One end of the Extension is an ordinary Property and the other end is an
ExtensionEnd. The former ties the Extension to a Class, while the latter ties the Extension to a Stereotype that extends the
Class.

Issue 7367 - add superclass pointers

Generalizations

• “Association” on page 114

Figure 110 - Showing that the extended class is a metaclass

«metaclass»
Interface

«stereotype»
Remote
UML 2.0 Infrastructure 185

Attributes
• package : Package [0..1] The containing package.

• / isRequired: Boolean Indicates whether an instance of the extending stereotype must be created when an
instance of the extended class is created. The attribute value is derived from the multiplic-
ity of Extension::ownedEnd; a multiplicity of 1 means that isRequired is true, but other-
wise it is false. Since the default multiplicity of an ExtensionEnd is 0..1, the default value
of isRequired is false.

Associations
• ownedEnd: ExtensionEnd [1] References the end of the extension that is typed by a Stereotype. Redefines Associa-

tion::ownedEnd.

• / metaclass: Class [1] References the Class that is extended through an Extension. The property is derived from
the type of the memberEnd that is not the ownedEnd.

Constraints
[1] The non-owned end of an Extension is typed by a Class.

metaclassEnd()->notEmpty() and metaclass()->oclIsKindOf(Class)

[2] An Extension is binary, i.e., it has only two memberEnds.

self.memberEnd->size() = 2

Additional Operations
[1] The query metaclassEnd() returns the Property that is typed by a metaclass (as opposed to a stereotype)

Extension::metaclassEnd(): Property;
metaclassEnd = memberEnd->reject(ownedEnd)

[2] The query metaclass() returns the metaclass that is being extended (as opposed to the extending stereotype).

Extension::metaclass(): Class;
metaclass = metaclassEnd().type

[3] The query isRequired() is true if the owned end has a multiplicity with the lower bound of 1.

Extension::isRequired(): Boolean;
isRequired = (ownedEnd->lowerBound() = 1)

Semantics
A required extension means that an instance of a stereotype must always be linked to an instance of the extended
metaclass. The instance of the stereotype is typically deleted only when either the instance of the extended metaclass is
deleted, or when the profile defining the stereotype is removed from the applied profiles of the package. The model is not
well-formed if an instance of the stereotype is not present when isRequired is true.

A non-required extension means that an instance of a stereotype can be linked to an instance of an extended metaclass at
will, and also later deleted at will; however, there is no requirement that each instance of a metaclass be extended. An
instance of a stereotype is further deleted when either the instance of the extended metaclass is deleted, or when the
profile defining the stereotype is removed from the applied profiles of the package.

profile defining the stereotype is removed from the applied profiles of the package.
186 UML 2.0 Infrastructure

Issue 6347 - clarify profiles

Issue 7276 - redefine naming convention to avoid conflicts

The equivalence to a MOF construction is shown in Figure 111 . This figure illustrates the case shown in Figure 113 , where
the “Home” stereotype extends the “Interface” metaclass. The MOF construct equivalent to an extension is an aggregation
from the extended metaclass to the extension stereotype, navigable from the extension stereotype to the extended metaclass.
When the extension is required, then the cardinality on the extension stereotype is “1”. The role names are provided using the
following rule: The name of the role of the extended metaclass is:

‘base$’ extendedMetaclassName

The name of the role of the extension stereotype is:

‘extension$’ stereotypeName

Constraints are frequently added to stereotypes. The role names will be used for expressing OCL navigations. For example, the
following OCL expression states that a Home interface shall not have attributes:

self.baseInterface.ownedAttributes->size() = 0

Issue 7276 - fix diagram to conform to naming conventions that avoid conflicts

Figure 111 MOF model equivalent to extending “interface” by the “Home” stereotype

Notation
The notation for an Extension is an arrow pointing from a Stereotype to the extended Class, where the arrowhead is
shown as a filled triangle. An Extension may have the same adornments as an ordinary association, but navigability
arrows are never shown. If isRequired is true, the property {required} is shown near the ExtensionEnd.

Presentation Option
It is possible to use the multiplicities 0..1 or 1 on the ExtensionEnd as an alternative to the property {required}. Due to
how isRequired is derived, the multiplicity 0..1 corresponds to isRequired being false.

Style Guidelines
Adornments of an Extension are typically elided.

Figure 112 - The notation for an Extension

Interface Home
base$Interface

1

extension$Home

0..1
UML 2.0 Infrastructure 187

Examples
In Figure 113, a simple example of using an extension is shown, where the stereotype Home extends the metaclass
Interface.

An instance of the stereotype Home can be added to and deleted from an instance of the class Interface at will, which
provides for a flexible approach of dynamically adding (and removing) information specific to a profile to a model.

In Figure 114, an instance of the stereotype Bean always needs to be linked to an instance of class Component since the
Extension is defined to be required. (Since the stereotype Bean is abstract, this means that an instance of one of its
concrete subclasses always has to be linked to an instance of class Component.) The model is not well-formed unless such
a stereotype is applied. This provides for a way to express extensions that should always be present for all instances of the
base metaclass depending on which profiles are applied. .

Changes from UML 1.4
Extension did not exist as a metaclass in UML 1.x.

Occurrences of Stereotype::baseClass of UML 1.4 is mapped to an instance of Extension, where the ownedEnd is typed
by Stereotype and the other end is typed by the metaclass that is indicated by the baseClass.

13.1.3 ExtensionEnd (from Profiles)
An extension end is used to tie an extension to a stereotype when extending a metaclass.

Description
ExtensionEnd is a kind of Property that is always typed by a Stereotype.

An ExtensionEnd is never navigable. If it was navigable, it would be a property of the extended classifier. Since a profile
is not allowed to changed the referenced metamodel, it is not possible to add properties to the extended classifier. As a
consequence, an ExtensionEnd can only be owned by an Extension.

The aggregation of an ExtensionEnd is always composite.

The default multiplicity of an ExtensionEnd is 0..1.

Figure 113 - An example of using an Extension

Figure 114 - An example of a required Extension

«stereotype»
HomeInterface

Component «stereotype»
Bean

{required}
188 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “Property” on page 129

Attributes
No additional attributes.

Associations
• type: Stereotype [1] References the type of the ExtensionEnd. Note that this association restricts the possible

types of an ExtensionEnd to only be Stereotypes. Redefines Property::type.

Constraints
[1] The multiplicity of ExtensionEnd is 0..1 or 1.

(self->lowerBound() = 0 or self->lowerBound() = 1) and self->upperBound() = 1

[2] The aggregation of an ExtensionEnd is composite.

self.aggregation = #composite

Additional Operations
[1] The query lowerBound() returns the lower bound of the multiplicity as an Integer. This is a redefinition of the default

lower bound, which was 1.

ExtensionEnd::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 0 else lowerValue->IntegerValue() endif

Semantics
No additional semantics.

Notation
No additional notation.

Examples
See “Extension (from Profiles)” on page 185.

Changes from UML 1.4
ExtensionEnd did not exist as a metaclass in UML 1.4. See “Extension (from Profiles)” on page 185 for further details.

Issue 6280 - Add Image metaclass

13.1.4 Image (from Profiles)
Physical definition of a graphical image.
UML 2.0 Infrastructure 189

Generalizations

• None.

Description
The Image class provides the necessary information to display an Image in a diagram. Icons are typically handled through the
Image class.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics
Information such as physical localization or format is provided by the Image class. The Image class is abstract. It must be con-
cretely defined within specifications dedicated to graphic handling (see, for example, the UML 2.0 Diagram Interchange OMG
adopted specification).

13.1.5 Package (from Constructs, Profiles)

Description
A Package can have one or more ProfileApplications to indicate which profiles have been applied.

Because a profile is a package, it is possible to apply a profile not only to packages, but also to profiles.

Issue 7367 - add superclass pointers

Generalizations

• “Namespace” on page 151

Attributes
No additional attributes.

Associations
• appliedProfile: ProfileApplication [*]References the ProfileApplications that indicate which profiles have been applied to

the Package. Subsets Package::packageImport.

Constraints
No additional constraints.
190 UML 2.0 Infrastructure

Semantics

Issue 6347 - clarify profiles

The association “appliedProfile” between a package and a profile crosses metalevels: It links one element from a model
(a kind of package) to an element of its metamodel and represents the set of profiles that define the extensions applicable
to the package. Although this kind of situation is rare in the UML metamodel, this only shows that model and metamodel
can coexist on the same space, and can have links between them.

Notation
No additional notation.

Changes from UML 1.4
In UML 1.4, it was not possible to indicate which profiles were applied to a package.

13.1.6 Profile (from Profiles)
A profile defines limited extensions to a reference metamodel with the purpose of adapting the metamodel to a specific
platform or domain.

Description
A Profile is a kind of Package that extends a reference metamodel. The primary extension construct is the Stereotype,
which are defined as part of Profiles.

A profile introduces several constraints, or restrictions, on ordinary metamodeling through the use of the metaclasses
defined in this package.

A profile is a restricted form of a metamodel that must always be related to a reference metamodel, such as UML, as
described below. A profile cannot be used without its reference metamodel, and defines a limited capability to extend
metaclasses of the reference metamodel. The extensions are defined as stereotypes that apply to existing metaclasses.

Issue 7367 - add superclass pointers

Generalizations

• “Package (from Constructs, Profiles)” on page 190

Attributes
No additional attributes.

Associations
• metaclassReference: ElementImport [*]References a metaclass that may be extended. Subsets Package::elementImport.

• metamodelReference: PackageImport [*] References a package containing (directly or indirectly) metaclasses that may
be extended. Subsets Package::packageImport.

• ownedStereotype: Stereotype [*] References the Stereotypes that are owned by the Profile. Subsets Package::ownedMem-
ber.
UML 2.0 Infrastructure 191

Constraints
[1] An element imported as a metaclassReference is not specialized or generalized in a Profile.

self.metaclassReference.importedElement->
select(c | c.oclIsKindOf(Classifier) and
(c.generalization.namespace = self or
(c.specialization.namespace = self))->isEmpty()

[2] All elements imported either as metaclassReferences or through metamodelReferences are members of the same base ref-
erence metamodel.

self.metamodelReference.importedPackage.elementImport.importedElement.allOwningPackages())->
union(self.metaclassReference.importedElement.allOwningPackages())->notEmpty()

Additional Operations
[1] The query allOwningPackages() returns all the directly or indirectly owning packages.

NamedElement::allOwningPackages(): Set(Package)
allOwningPackages = self.namespace->select(p | p.oclIsKindOf(Package))->

union(p.allOwningPackages())

Semantics

Issue 7664 - remove reference to extending another profile

A profile by definition extends a reference metamodel. It is not possible to define a standalone profile that does not
directly or indirectly extend an existing metamodel. The profile mechanism may be used with any metamodel that is
created from MOF, including UML and CWM.

A reference metamodel typically consists of metaclasses that are either imported or locally owned. All metaclasses that
are extended by a profile have to be members of the same reference metamodel. A tool can make use of the information
about which metaclasses are extended in different ways, for example to filter or hide elements when a profile is applied,
or to provide specific tool bars that apply to certain profiles. However, elements of a package or model cannot be deleted
simply through the application of a profile. Each profile thus provides a simple viewing mechanism.

Issue 7665 - clarify that metaassociations cannot be specialized and add examples of ways of achieving
similar effects

As part of a profile, it is not possible to have an association between two stereotypes or between a stereotype and a
metaclass. The effect of new (meta)associations within profiles can be achieved in limited ways either by:

1. adding new constraints within a profile that specialize the usage of some associations of the reference metamodel, or

2. extending the Dependency metaclass by a stereotype and defining specific constraint on this stereotype.

As an illustration of the first approach, the examples in Figure 113 and Figure 114 could be extended by adding a
“HomeRealization” stereotype that extends the “InterfaceRealization” UML metaclass. The “Bean” stereotype will
introduce the constraint that the “interfaceRealization” association can only target “InterfaceRealization” elements
extended by a “HomeRealization” stereotype and the “HomeRealization” stereotype will add the constraint that the
“contract” association can only target interfaces extended by a “Home” stereotype. As an illustration of second approach,
one can define a stereotype “Sclass” extending Class and a stereotype “Sstate” extending State. In order to specify the
default state of an “Sclass”, a “DefaultState” stereotype extending “Dependency” can be defined, with the constraints that
a DefaultState Dependency can only exist between an Sclass and an Sstate.
192 UML 2.0 Infrastructure

Issue 6347 - clarify profiles

The most direct implementation of the Profile mechanism that a tool can provide, is by having a metamodel based
implementation, similar to the Profile metamodel. However, this is not a requirement of the current standard, which requires
only the support of the specified notions, and the standard XMI based interchange capacities. The profile mechanism has been
designed to be implementable by tools that do not have a metamodel-based implementation. Practically any mechanism used
to attach new values to model elements can serve as a valid profile implementation. As an example, the UML1.4 profile
metamodel could be the basis for implementing a UML2.0-compliant profile tool.

Issue 6242 - clarify how XMI works for profiles

Using XMI to exchange Profiles

As shown Figure 110 on page 185 (Extension : Semantics), there is a direct correspondence between a profile definition and a
MOF metamodel. XMI can therefore be directly applied to exchange Profiles. We will take the example Figure 113 on
page 188 (Extension : Notation) of a profile that we will call “HomeExample” to illustrate how a profile can be exchanged.
We will see that a profile can be exchanged as a model, as a XMI schema definition, and that models extended by the profile
can also interchange their definition and extension.

Figure 113 on page 188 shows a “Home” stereotype extending the “Interface” UML2 metaclass. Figure on page 187
illustrates the MOF correspondence for that example, basically by introducing an association from the “Home” MOF class to
the “Interface” MOF class. For illustration purpose, we add a property (tagged value definition in UML1.4) called
“magic:String” to the “Home” stereotype.

The first serialization below shows how the model Figure 449 (instance of the profile and UML2 metamodel) can be
exchanged.

<?xml version="1.0" encoding="UTF-8"?>
<XMI xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mof="http://schema.omg.org/spec/MOF/2.0"
xmlns:uml="http://schema.omg.org/spec/UML/2.0">
<uml:Profile xmi:id="id1" name="HomeExample">

<ownedStereotype xsi:type="uml:Stereotype" xmi:id="id2" name="Home">
 <ownedAttribute xmi:id="id3" name="base_Interface" association="id5" type=”id9”/>
 <ownedAttribute xmi:id="id4" name="magic" type=”id10”/>
</ownedStereotype>

<ownedMember xsi:type="uml:Extension" xmi:id="id5" memberEnd="id3 id6">
 <ownedEnd xsi:type="uml:ExtensionEnd" name="extensionHome" xmi:id="id6"
 type="id2" association="id5" isComposite="true" lower="0"/>
</ownedMember>

<!--There should be metaclass reference between the profile and the extended metaclass -->
<metaclassReference xmi:id="id8">
 <uml:elementImport xsi:type="uml:ElementImport" importedElement=”id9”/>
</metaclassReference>
</uml:Profile>

<mof:Class xmi:id=”id9” href="http://schema.omg.org/spec/UML/2.0/uml.xml#Interface"/>
<mof:PrimitiveType xmi:id=”id10” href="http://schema.omg.org/spec/UML/2.0/uml.xml#String"/>
UML 2.0 Infrastructure 193

<mof:Tag name="org.omg.xmi.nsURI"
value="http://www.mycompany.com/schemas/HomeExample.xmi" element="id1"/>
<mof:Tag name="org.omg.xmi.nsPrefix" value="HomeExample" element="id1"/>
<mof:Tag name="org.omg.xmi.xmiName" value="base_Interface" element="id3"/>

</XMI>

We will now obtain a XMI definition from the «HomeExample» profile. That XMI description will itself define in XML how
the models extended by the HomeExample will be exchanged in XMI. We can see here that a XMI schema separated from the
standard UML2 schema can be obtained. This XMI definition is stored in a file called “HomeExample.xmi”.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace =
"http://www.mycompany.com/schemas/HomeExample.xmi"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:uml="http://www.omg.org/spec/UML/2.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import namespace="http://schema.omg.org/spec/XMI/2.1" schemaLocation="XMI.xsd"/>
<xsd:import namespace="http://schema.omg.org/spec/UML/2.0" schemaLocation="UML20.xsd"/>

 <xsd:complexType name="Home">
 <xsd:choice minOccurs="0" maxOccurs ="unbounded">
 <xsd:element name="base_Interface" type="xmi:Any"/>
 <xsd:element name="magic" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="base_Interface" type="uml:Interface"
 <xsd:attribute name="magic" type="xsd:string" use="optional"/>
 use="optional"/>
 </xsd:complexType>

 <xsd:element name="Home" type="Home"/>
</xsd:schema>

Let us provide an example of an Interface extended by the Home stereotype.

Now the XMI code below shows how this model extended by the profile is serialized. A tool importing that XMI file can filter
out the elements related to the “HomeExample” schema, if the tool does not have this schema (profile) definition.

Figure 115 - Using the “HomeExample” profile to extend a model

<<Home>>
Client

ClientPackage
194 UML 2.0 Infrastructure

<?xml version="1.0" encoding="UTF-8"?>
<XMI xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:uml="http://schema.omg.org/spec/UML/2.0 "
xmlns:HomeExample="http://www.mycompany.com/schemas/HomeExample.xmi">

<uml:Package xmi:id="id1" name="ClientPackage">
 <ownedMember xsi:type="uml:Interface" xmi:id="id2" name="Client"/>
 <packageImport xsi:type="uml:ProfileApplication" xmi:id="id3">
 <importedProfile href="HomeExample.xmi#id1"/>
 </packageImport>
</uml:Package>

<!-- Stereotypes -->
<HomeExample:Home base_Interface="id2" magic="1234"/>

</XMI>

Notation
A Profile uses the same notation as a Package, with the addition that the keyword «profile» is shown before or above the
name of the Package. Profile::metaclassReference and Profile::metamodelReference uses the same notation as
Package::elementImport and Package::packageImport, respectively.

Examples
In Figure 116, a simple example of an EJB profile is shown.

Figure 116 - Defining a simple EJB profile

«profile» EJB

«metaclass»
Interface

«stereotype»
Remote

«stereotype»
Home

Artifact «stereotype»
JARComponent «stereotype»

Bean
{required}

«stereotype»
Entity

«stereotype»
Session

«enumeration»
StateKind

{A component
cannot be
generalized or
specialized. }

{A Bean must
realize exactly
one Home
interface.}

stateless
stateful

state: StateKind
UML 2.0 Infrastructure 195

The profile states that the abstract stereotype Bean is required to be applied to metaclass Component, which means that an
instance of either of the concrete subclasses Entity and Session of Bean must be linked to each instance of Component.
The constraints that are part of the profile are evaluated when the profile has been applied to a package, and need to be
satisfied in order for the model to be well formed.

In Figure 117, the package Types is imported from the profile Manufacturer. The data type Color is then used as the type
of one of the properties of the stereotype Device, just like the predefined type String is also used. Note that the class
JavaInteger may also be used as the type of a property.

If the profile Manufacturer is later applied to a package, then the types from Types are also available for use in the
package to which the profile is applied (since profile application is a kind of import). This means that for example the
class JavaInteger can be used as both a metaproperty (as part of the stereotype Device) and an ordinary property (as part
of the class TV). Note how the metaproperty is given a value when the stereotype Device is applied to the class TV.

13.1.7 ProfileApplication (from Profiles)
A profile application is used to show which profiles have been applied to a package.

Description
ProfileApplication is a kind of PackageImport that adds the capability to state that a Profile is applied to a Package.

Figure 117 - Importing a package from a profile

«profile»
Manufacturer

«metaclass»
Class

«stereotype»
Device

author: String
color: Color
volume: JavaInteger

Types

«enumeration»
Color

red
green
blue

JavaInteger

«import»

Factory

«device»
TV

channel: JavaInteger

«apply»

«device»
volume=10
196 UML 2.0 Infrastructure

Issue 7367 - add superclass pointers

Generalizations

• “PackageImport” on page 153

Attributes
No additional attributes.

Associations
• importedProfile: Profile [1] References the Profiles that is applied to a Package through this ProfileApplication.. Sub-

sets PackageImport::importedPackage.

Constraints
No additional constraints.

Semantics
One or more profiles may be applied at will to a package that is created from the same metamodel that is extended by the
profile. Applying a profile means that it is allowed, but not necessarily required, to apply the stereotypes that are defined
as part of the profile. It is possible to apply multiple profiles to a package as long as they do not have conflicting
constraints. If a profile that is being applied depends on other profiles, then those profiles must be applied first.

When a profile is applied, instances of the appropriate stereotypes should be created for those elements that are instances
of metaclasses with required extensions. The model is not well-formed without these instances.

Once a profile has been applied to a package, it is allowed to remove the applied profile at will. Removing a profile
implies that all elements that are instances of elements defined in a profile are deleted. A profile that has been applied
cannot be removed unless other applied profiles that depend on it are first removed.

The removal of an applied profile leaves the instances of elements from the referenced metamodel intact. It is only the
instances of the elements from the profile that are deleted. This means that for example a profiled UML model can always
be interchanged with another tool that does not support the profile and be interpreted as a pure UML model.

Notation
The names of Profiles are shown using a dashed arrow with an open stick arrowhead from the package to the applied
profile. The keyword «apply» is shown near the arrow.

If multiple applied profiles have stereotypes with the same name, it may be necessary to qualify the name of the
stereotype (with the profile name).
UML 2.0 Infrastructure 197

Examples
Given the profiles Java and EJB, Figure 118 shows how these have been applied to the package WebShopping.

13.1.8 Stereotype (from Profiles)

Issue 7664 - change definition to remove reference to stereotyping stereotypes

A stereotype defines how an existing metaclass may be extended, and enables the use of platform or domain specific
terminology or notation in place of or in addition to the ones used for the extended metaclass.

Description
Stereotype is a kind of Class that extends Classes through Extensions.

Just like a class, a stereotype may have properties, which may be referred to as tag definitions. When a stereotype is
applied to a model element, the values of the properties may be referred to as tagged values.

Issue 7367 - add superclass pointers

Generalizations

• “Class” on page 123

Attributes
No additional attributes.

Associations

Issue 6280 - add new association for Image

• icon : Image [*] Stereotype can change the graphical appearance of the extended model element by using
attached icons. When this association is not null, it references the location of the icon con-
tent to be displayed within diagrams presenting the extended model elements.

Figure 118 - Profiles applied to a package

WebShopping

«profile»
Java «profile»

EJB

«apply»
«apply»
198 UML 2.0 Infrastructure

Constraints
[1] A Stereotype may only generalize or specialize another Stereotype.

Issue 7232 Correct OCL
generalization.general->forAll(e |e.oclIsKindOf(Stereotype)) and

generalization.specific->forAll(e | e.oclIsKindOf(Stereotype))

Issue 7233 Delete redundant constraint [2]

Issue 6280 - add new constraint

[2] Stereotype names should not clash with keyword names for the extended model element.

Semantics

Issue 4726 - any metaclass can be extended (resolution text later replaced by 6347)

Issue 6347 - clarify profiles

A stereotype is a limited kind of metaclass that cannot be used by itself, but must always be used in conjunction with one
of the metaclasses it extends. Each stereotype may extend one or more classes through extensions as part of a profile.
Similarly, a class may be extended by one or more stereotypes.

An instance “S” of Stereotype is a kind of (meta) class. Relating it to a metaclass “C” from the reference metamodel
(typically UML) using an “Extension” (which is a specific kind of association), signifies that model elements of type C
can be extended by an instance of “S” (see example Figure 119). At the model level (such as in Figure 124) instances of
“S” are related to “C” model elements (instances of “C”) by links (occurrences of the association/extension from “S’ to
“C”).

Any model element from the reference metamodel (any UML model element) can be extended by a stereotype. For
example in UML, States, Transitions, Activities, Use cases, Components, Attributes, Dependencies, etc. can all be
extended with stereotypes.

Notation
A Stereotype uses the same notation as a Class, with the addition that the keyword «stereotype» is shown before or above
the name of the Class.

Issue 6280 - Clarify use of stereotypes with keywords

When a stereotype is applied to a model element (an instance of a stereotype is linked to an instance of a metaclass), the
name of the stereotype is shown within a pair of guillemets above or before the name of the model element. If multiple
stereotypes are applied, the names of the applied stereotypes are shown as a comma-separated list with a pair of
guillemets. When the extended model element has a keyword, then the stereotype name will be displayed close to the
keyword, within separate guillemets (example: «interface» «Clock»).
UML 2.0 Infrastructure 199

Presentation Options

Issue 7234 remove option for multiple stereotypes in separate guillemets

The values of a stereotype that has been applied to a model element can be shown as part of a comment symbol tied to
the model element. The values from a specific stereotype are optionally preceded with the name of the applied stereotype
within a pair of guillemets, which is useful if values of more than one applied stereotype should be shown.

If the extension end is given a name, this name can be used in lieu of the stereotype name within the pair of guillemets
when the stereotype is applied to a model element.

It is possible to attach a specific notation to a stereotype that can be used in lieu of the notation of a model element to
which the stereotype is applied.

Issue 6453 changes from UML 1.4

It is a semantic variation point that a tool can choose to display or not stereotypes. In particular, some tools can choose
not to display "required stereotypes", but to display only their attributes (tagged values) if any.

Issue 6280 - describe option for Icon presentations

Icon presentation

When a stereotype includes the definition of an icon, this icon can be graphically attached to the model elements extended
by the stereotype. Every model element that has a graphical presentation can have an attached icon. When model elements
are graphically expressed as:

• Boxes (see Figure 120): the box can be replaced by the icon, and the name of the model element appears below the icon.
This presentation option can be used only when a model element is extended by one single stereotype and when properties of
the model element (i.e., attributes, operations of a class) are not presented. As another option, the icon can be presented in a
reduced shape, inside and on top of the box representing the model element. When several stereotypes are applied, several
icons can be presented within the box.

• Links: the icon can be placed close to the link.

• Textual notation: the icon can be presented to the left of the textual notation.

Several icons can be attached to a stereotype. The interpretation of the different attached icons in that case is a semantic
variation point. Some tools may different images for the icon replacing the box, for the reduced icon inside the box, for
icons within explorers, etc. Depending on the image format, other tools may choose to display one single icon into
different sizes.

Some model elements are already using an icon for their default presentation. A typical example of this is the Actor
model element, which uses the “stickman” icon. In that case, when a model element is extended by a stereotype with an
icon, the stereotype’s icon replaces the default presentation icon within diagrams.

Style Guidelines
The first letter of an applied stereotype should not be capitalized. The values of an applied stereotype are normally not
shown.
200 UML 2.0 Infrastructure

Examples
In Figure 119, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class.

Issue 6280 - add example of icon presentations

Issue 6347 - clarify profiles

In Figure 121 , an instance specification of the example in Figure 119 is shown. Note that the extension must be
composite, and that the derived isRequired” attribute in this case is false. Figure 121 shows the repository schema of the
stereotype “clock” defined in Figure 119 . In this schema, the extended instance (:Class; “name = Class”) is defined in the
UML2.0 (reference metamodel) repository. In a UML modeling tool these extended instances referring to the UML2.0
standard would typically be in a “read only” form, or presented as proxies to the metaclass being extended.

Figure 119 - Defining a stereotype

Figure 120 - Presentation options for an extended class

«metaclass»
Class

«stereotype»
Clock

resolution: Integer

«Clock»
StopWatch

«Creator, Clock»
StopWatch

StopWatch StopWatch

StopWatch
UML 2.0 Infrastructure 201

(It is therefore still at the same meta-level as UML, and does not show the instance model of a model extended by the
stereotype. An example of this is provided in Figure 123 and Figure 124 .) The Semantics sub-section of the Extension
concept explains the MOF equivalent, and how constraints can be attached to stereotypes.

In Figure 122, it is shown how the same stereotype Clock can extend either the metaclass Component or the metaclass
Class. It is also shown how different stereotypes can extend the same metaclass.

Figure 123 shows how the stereotype Clock, as defined in Figure 122, is applied to a class called StopWatch.

Figure 121 - An instance specification when defining a stereotype

Figure 122 - Defining multiple stereotypes on multiple stereotypes

Figure 123 - Using a stereotype

:Class
name="Class"

:Stereotype
name="Clock"

:Property :Extension :ExtensionEnd
ownedEnd,
memberEnd

memberEnd

type type

isRequired = false

metaclass

extension

ownedAttribute
:Property

name="resolution"

ownedAttribute

isComposite = trueisComposite = false

:PrimitiveType
name="Integer"

type

«metaclass»
Component

«stereotype»
Clock

resolution: Integer

«metaclass»
Class

«stereotype»
Creator

author: String
date: String

{required}

«clock»
StopWatch
202 UML 2.0 Infrastructure

Figure 122 shows an example instance model for when the stereotype Clock is applied to a class called StopWatch. The
extension between the stereotype and the metaclass results in a link between the instance of stereotype Clock and the
(user-defined) class StopWatch.

Next, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 125. Note that the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

Issue 6453 - add entire sub-section

Changes from UML 1.4
In UML 1.3, tagged values could extend a model element without requiring the presence of a stereotype. In UML 1.4, this
capability, although still supported, was deprecated, to be used only for backward compatibility reasons. In UML 2.0, a
tagged value can only be represented as an attribute defined on a stereotype. Therefore, a model element must be
extended by a stereotype in order to be extended by tagged values. However, the “required” extension mechanism can, in
effect, provide the 1.3 capability, since a tool can in those circumstances automatically define a stereotype to which
“unattached” attributes (tagged values) would be attached.

Issue 6347 - clarify profiles

Figure 124 - Showing values of stereotypes and a simple instance specification

Figure 125 - Using stereotypes and showing values

«clock»
StopWatch «clock»

resolution = 2

:Class
name="StopWatch"

:Clock
resolution = 2

baseClass

extensionClock

«clock»
resolution = 2

«creator»
author = "Jones"
date = "02-04-15"

«creator, clock»
StopWatch
UML 2.0 Infrastructure 203

204 UML 2.0 Infrastructure

Part III - Appendices
UML 2.0 Infrastructure 205

206 UML 2.0 Infrastructure

A XMI Serialization and Schema
UML 2.0 models are serialized in XMI according to the rules specified by the MOF 2.0: XMI Mapping Specification. The
XML schema for MOF 2.0 models that support the MOF 2.0: XMI Mapping specification is available in OMG document
ptc/04-10-17.

The XMI for serializing the UML 2.0: Infrastructure as an instance of MOF 2.0 according to the rules specified by the
MOF 2.0: XMI Mapping Specification is available in OMG document ptc/04-06-11. It is expected that the normative XMI
for this specification will be generated by a Finalization Task Force, which will architecturally align and finalize the
relevant specifications.

Issue 7783 - specify XMI parameters

XMI allows the use of tags to tailor the schemas that are produced and the documents that are produced using XMI. The
following have been explicitly set for the UML2 Infrastructure Model; the others are left at their default values:

• tag nsURI set to "http://schema.omg.org/spec/UML/2.0/umlL0.xml" for L0

• tag nsURI set to "http://schema.omg.org/spec/UML/2.0/umlLM.xml" for LM

• tag nsPrefix set to "uml" (for both cases)
UML 2.0 Infrastructure 207

208 UML 2.0 Infrastructure

B Support for Model Driven Architecture
The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an approach and a plan to achieve a set of cohesive set of model-driven
technology specifications.

The MDA initiative was initiated relatively recently, after the UML 2.0 RFPs were issued. However, as noted in the
OMG’s Executive Overview of MDA (www.omg.org/mda/executive_overview.htm): “[MDA] is built on the solid
foundation of well-established OMG standards, including: Unified Modeling Language™ (UML™), the ubiquitous
modeling notation used and supported by every major company in the software industry; XML Metadata Interchange
(XMI™), the standard for storing and exchanging models using XML; and CORBA™, the most popular open middleware
standard.” Consequently, it is expected that this proposed major revision to UML will play an important role in furthering
the goals of MDA.

At the time of this writing, there appears to be no official, nor commonly agreed upon definition of MDA or its
requirements. However, the OMG provides an executive summary for the initiative, along with a collection of white
papers and presentations at www.omg.org/mda. In addition, the OMG Object Reference Model Subcommittee has
produced a “Text for an MDA Guide” draft (ormsc/02-10-01) that is intended to be used in a future MDA Guide. This
MDA Guide draft characterizes MDA as follows:

“MDA provides an approach and tools for:
- specifying a system independently of the platform that supports it,
- specifying platforms,
- choosing a particular platform for the system, and
- transforming the system specification into one for a particular platform.”

In addition, this MDA Guide draft and many other MDA documents commonly refer to a “UML family of languages,”
which is described in the MDA Guide draft as: “Extensions to the UML language [that] will be standardized for specific
purposes. Many of these will be designed specifically for use in MDA.”

Given the nascent and evolving state of MDA, and the lack of common and precise definitions and requirements, it is
problematic to show strict architectural alignment with it. However, the following sections explain how UML 2.0
supports the most prominent concepts in the evolving MDA vision.

• Family of languages: UML is a general purpose language, that is expected to be customized for a wide variety of
domains, platforms and methods. Towards that end, this UML 2.0 proposal refines UML 1.x’s Profile mechanism so
that it is more robust and flexible, and significantly easier to implement and apply. Consequently, it can be used to
customize UML dialects for various domains (e.g., finance, telecommunications, aerospace), platforms (e.g., J2EE,
.NET), and methods (e.g., Unified Process, Agile methods). For those whose customization requirements exceed these
common anticipated usages, and who want to define their new languages via metamodels, the proposed
InfrastructureLibrary is intended to be reused by MOF 2.0. Tools that implement MOF 2.0 will allow users to define
entirely new languages via metamodels.

• Specifying a system independently of the platform that supports it: As was the case with its predecessor, the
general purpose UML 2.0 specification is intended to be used with a wide range of software methods. Consequently, it
includes support for software methods that distinguish between analysis or logical models, and design or physical
models. Since analysis or logical models are typically independent of implementation and platform specifics, they can
be considered “Platform Independent Models” (PIMs), consistent with the evolving MDA terminology. Some of the
proposed improvements to UML 2.0 that will make it easier for modelers to specify Platform Independent Modelers
include the ability to model logical as well as physical Classes and Components, consistent with either a class-based or
component-based approach.
UML 2.0 Infrastructure 209

• Specifying platforms: Although UML 1.x provided extremely limited support for modeling Platform Specific Models
(PSMs, the complement of PIMs), this proposal offers two significant improvements. First, the revised Profile
mechanism allows modelers to more efficiently customize UML for target platforms, such as J2EE or .NET. (Examples
of J2EE/EJB or .NET/COM micro-profiles can be found in the Superstructure part of this proposal.) Secondly, the
constructs for specifying component architectures, component containers (execution runtime environments), and
computational nodes are significantly enhanced, allowing modelers to fully specify target implementation
environments.

• Choosing a particular platform for the system: This is considered a method or approach requirement, rather than a
modeling requirement. Consequently, we will not address it here.

• Transforming the system specification into one for a particular platform: This refers to the transformation of a
Platform Independent Model into a Platform Specific Model. The Superstructure part of this proposal specifies various
relationships that can be used to specify the transformation of a PIM to a PSM, including Realization, Refine and
Trace. However, the specific manner in which these transformations are used will depend upon the profiles used for the
PSMs involved, as well as the method or approach applied to guide the transformation process Consequently, we will
not address it further here.
210 UML 2.0 Infrastructure

Index
Symbols
- 133, 160, 166
(" 179
* 68, 180
+ 133, 160, 166
.. 68
/ 133
= 57
{} 42, 48
“xor” constraint 41
A
abstract 84, 86, 97, 125
Abstract syntax compliance 3
access 154
acyclic graph 117
acyclical 84
addOnly 34
adorn 58
adorned 118
aggregation 117
alias 74, 148, 149, 151
allFeatures 36
allNamespaces 73
allOwnedElements 76
allOwningPackages 192
allParents 85
ancestor 52
annotatedElement 39, 93, 108
appliedProfile 190
argument 98
arrow 187

solid
for navigation 119

arrow notation 99
arrowhead 43, 53, 86, 118, 149, 154, 187
as 149
Association 114
association 129
association ends 65
association notation 128
association specialization 117
asterisk 65, 68, 180
attribute 99, 124, 125, 126, 131
attribute compartment 99, 126
attributes 65

B
Bag 132
behavioral compatibility 79
BehavioralFeature 31, 156
BehavioralFeatures 30

bestVisibility 90
bidirectionally navigable associations 99
binary association 130
binary associations 117
BNF 68
body 39, 48, 93, 108
bodyCondition 158, 159
boldface 124, 127
Boolean 61, 102, 146, 177
booleanValue 49, 61
bound 66, 131
braces 42, 48
C
cardinality 66
Changeabilities 33
ChangeabilityKind 34
character set 64, 179
Class 96, 123
class 98, 99, 125, 128
Class (as specialized) 184
class scope 125
Classifer 134
Classifier 36
classifier 56, 101
Classifier (additional properties) 103, 125
Classifier (as specialized) 51, 84
Classifiers 35
colon 57
color 119, 166
comma 57
Comment 38, 92, 108
Comments 38
common superclass 45, 93
compartment 37, 124, 126
Compartment name 37, 126
Compartment names 127
compliance level 1
compliance statement 4
composite 117, 130
composite aggregation 119
composite name 75
concrete 85
Concrete syntax compliance 3
conform 87
Conformance 1
conformsTo 52, 87
constant 63
constrainedElement 42, 140
Constraint 41, 139
constraint 67, 85, 88, 132, 157
constraint language 23
Constraints 40
constraints 124
context 42, 131, 140
contravariance 160
Core 12, 105, 177

Abstractions 29
Basic 91
Profiles 181
 211

covariance 160

D
dashed arrow 149, 154
dashed line 39, 43
DataType 100
datatype 145, 147
DataType (as specialized) 142
default 99, 124, 132, 161
definingFeature 59
derived 99, 132
derived union 132
diagram interchange 3
diamond 117, 119
digit 62, 65
dimmed 166
direct instance 97
directed 84
directed relationship 80
DirectedRelationship 80, 108
direction 161
distinguishable 73
double quotes 64, 179
E
Element 45, 93, 109
Element (as specialized) 39, 76
element access 149
element import 149
ElementImport 148
elementImport 151
Elements 45
empty name 74
endType 115
Enumeration 101, 143
enumeration 144, 144
EnumerationLiteral 101, 144
equal sign 57
exception 159
exceptions 98
excludeCollisions 152
Expression 46, 111
expression 49
Expressions 46
Extension 185
extension 184
ExtensionEnd 188

F
false 61
Feature 37, 135
feature 36, 134
feature support statement 4
featuringClassifier 37, 135
formalism 20
formalParameter 156

G
general 51, 53, 84
Generalization 52
generalization 51, 90
generalization arrow 118

generalization hierarchy 51, 77, 84
Generalizations 50
Generalizations between associations 119
getName 148
getNamesOfMember 74, 152
guillemets 37, 127, 199
H
hasVisibilityOf 85
hidden 152
hierarchy 73
hollow triangle 53, 86
I
icon 198
identity 146
Image 189
import 90, 149, 154
importedElement 148
importedMember 151
importedPackage 153
importedProfile 197
importingNamespace 148, 154
importMembers 152
in 160, 162
includesCardinality 67
infinite 66
infinity 180
inherit 85, 123
inheritableMembers 85
inheritedMember 84
initial 124, 132
initialization 99
inout 160, 162
Instance 55
instance 58
Instances 54
InstanceSpecification 55
InstanceValue 58
instantiated 84, 99, 124, 131
instantiation 66
Integer 61, 102, 146, 178
integerValue 49, 62
isAbstract 84, 96
isComposite 99
isComputable 49, 61, 62, 64, 65
isConsistentWith 79, 131, 159
isDerived 99, 115, 123, 129
isDistinguishableFrom 32, 73, 156
isMultivalued 67
isNavigable 131
isNull 50, 62
isOrdered 66, 157
isQuery 157
isReadOnly 35, 99, 129
isRedefinitionContextValid 79
isRequired 186
isUnique 66, 116, 157
italics 124
212

J
Java 41

K
keyword 127
L
L0 2
language 48
Language Architecture 11
language unit 1
Level 0 2
line width 119
link 114
literal 49, 101
LiteralBoolean 60
LiteralInteger 49, 61
LiteralNull 49, 62
Literals 60
LiteralSpecification 49, 63
LiteralString 49, 63
LiteralUnlimitedNatural 64
LM 2
lower 66, 70, 157
lowerBound 67, 71, 189
lowerValue 70

M
M0 18
M3 18
makesVisible 165
maySpecializeType 85
MDA 209
member 74, 151
memberEnd 115
membersAreDistinguishable 75
mergedPackage 168
mergingPackage 168
metaclass 185, 186
metaclassReference 191
Metamodel Construct 2
metamodelReference 191
Model Driven Architecture 209
MOF 12, 91, 181, 192, 207
Multiple inheritance 97
Multiplicities 65
multiplicity 7, 98, 117, 137
MultiplicityElement 66, 97, 135
MultiplicityElement (as specialized) 70
MultiplicityExpressions 69
multivalued 65
mustBeOwned 77, 165
mutually constrained 99
N
name 72, 73, 94, 132, 151
name compatibility 79
NamedElement 72, 94, 150
NamedElement (as specialized) 89
Namespace 74, 151
namespace 73, 151
Namespace (additional properties) 140

Namespace (as specialized) 44
Namespaces 72
natural language 24
navigability 6
navigability arrow 187
navigable 130, 188
navigation arrow 119
Navigation arrows 58
nested namespaces 73
nestedPackage 103, 165
nestingPackage 103
nonprintable characters 179
nonunique 68
note symbol 39, 43
null 62, 63
O
OCL 22, 41, 48, 48, 177, 179
OpaqueExpression 47, 112
operand 47
operands 47
Operation 98, 157
operation 98, 125, 162
Operation (additional properties) 128, 145
operation compartment 126
opposite 99, 130
ordered 66, 68, 116, 133, 160
OrderedSet 132
out 160, 162
overriding 74
ownedAttribute 96, 123, 142
ownedClassifier 103, 165
ownedComment 40, 109
ownedElement 76, 109
ownedEnd 115, 186
ownedLiteral 101, 143
ownedMember 74, 151, 165
ownedOperation 96, 123, 142
ownedParameter 98
ownedRule 44, 140
ownedStereotype 191
owner 76, 109
Ownerships 75
owningAssociation 129
owningInstance 59

P
Package 103, 164
package 103, 164, 165, 186
Package (as specialized) 190
package import 7, 149, 153
package merge 2
PackageableElement 152
PackageImport 153
packageImport 151
PackageMerge 167
packageMerge 165
Parameter 32, 98, 161
parameter 32
parameter list 161
ParameterDirectionKind (from Kernel) 162
 213

parameters 124
parents 52, 85
plus sign 166
postcondition 158
postconditions 159
precondition 158
preconditions 159
predefined 41, 177
primitive 146
PrimitiveType 102, 145
PrimitiveTypes 177
printable characters 179
private 90
Profile 191
ProfileApplication 196
Profiles 13, 183
Property 99, 123, 129
Property (additional properties) 146
property string 68, 118
public 90, 166

Q
qualified 149
qualified name 73, 151, 166
qualifiedName 73
query 160
R
raisedException 98, 156, 158
readOnly 34, 35, 132, 133
rectangle 39, 57, 144, 166
RedefinableElement 78, 136
redefine 132
redefined 159
redefinedElement 78, 136
redefinedOperation 158
redefinedProperty 130
redefines 7, 126, 133, 160
redefining 116
redefinition 7
redefinitionContext 78, 136
Redefinitions 77
redefinitions 126
reference metamodel 191
relatedElement 81, 110
Relationship 81, 110
Relationships 80
removeOnly 34
return 162
returnResult 159
root 73
round parentheses 47
run-time extension 144
S
segments 118, 119
self 42
semicircular jog 119
separate target style 53, 86
separator 74
Sequence 132

Set 132
shared target style 53, 86
side effect 70
slash 118
Slot 59
slot 56, 83, 97
snapshot 56
solid line 117
solid path 58
solid-outline rectangle 37
source 81, 109
specialization 7
specialized 116
specific 53
specification 42, 56, 140
square brackets 68
state 159
static operation 159
Stereotype 198
stereotype 185
String 64, 102, 146, 179
stringValue 49, 64
structural compatibility 79
StructuralFeature 82, 137
StructuralFeature (as specialized) 34
StructuralFeatures 82
subset 116, 132
subsets 7, 133
subsettedProperty 130
subsetting 130
subsettingContext 131
substitutable 160
Super 83
superClass 96, 123
Superstructure 91
symbol 47

T
tab 166
target 81, 109
ternary association 120, 120
tree 119
true 61
tuple 116
tuples 114
Type 87, 94, 103, 137, 163
type 87, 88, 95, 138, 158, 189
Type (as specialized) 137
Type conformance 52
TypedElement 87, 88, 95, 138
TypedElements 86
U
underlined name 58
union 133
unique 66, 68, 116, 133, 160
unlabeled dependency 7
unlimited 64, 180
UnlimitedNatural 102, 146, 180
unlimitedValue 49, 65
unordered 68
214

unrestricted 34, 35
upper 66, 70, 157
upperBound 67, 71
upperValue 70

V
value 59, 61, 64, 65
ValueSpecification 49, 113
Visibilities 88
visibility 88, 89, 132, 148, 153, 165
visibility keyword 124
visibility symbol 118
VisibilityKind 90
visibleMembers 165
X
XMI 207
 215

216

	Table of Contents
	Preface
	1 Scope
	2 Conformance
	2.1 Language Units
	2.2 Compliance Levels
	2.3 Meaning and Types of Compliance
	2.4 Compliance Level Contents

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional information
	6.1 Changes to Adopted OMG Specifications
	6.2 Architectural Alignment and MDA Support
	6.3 How to Read this Specification
	6.3.1 Diagram format

	6.4 Acknowledgments

	Part I - Introduction
	7 Language Architecture
	7.1 Design Principles
	7.2 Infrastructure Architecture
	7.2.1 Core
	7.2.2 Profiles
	7.2.3 Architectural Alignment between UML and MOF
	7.2.4 Superstructure Architecture
	7.2.5 Reusing Infrastructure
	7.2.6 The Kernel Package
	7.2.7 Metamodel layering
	7.2.8 The four-layer metamodel hierarchy
	7.2.9 Metamodeling
	7.2.10 An example of the four-level metamodel hierarchy

	8 Language Formalism
	8.1 Levels of Formalism
	8.1.1 Diagrams
	8.1.2 Instance Model

	8.2 Class Specification Structure
	8.2.1 Description
	8.2.2 Associations
	8.2.3 Constraints
	8.2.4 Additional Operations (optional)
	8.2.5 Semantics
	8.2.6 Semantic Variation Points (optional)
	8.2.7 Notation
	8.2.8 Presentation Options (optional)
	8.2.9 Style Guidelines (optional)
	8.2.10 Examples (optional)
	8.2.11 Rationale (optional)
	8.2.12 Changes from UML 1.4

	8.3 Use of a Constraint Language
	8.4 Use of Natural Language
	8.5 Conventions and Typography

	Part II - Infrastructure Library
	9 Core::Abstractions
	9.1 BehavioralFeatures package
	9.1.1 BehavioralFeature
	9.1.2 Parameter

	9.2 Changeabilities package
	9.2.1 ChangeabilityKind
	9.2.2 StructuralFeature (as specialized)

	9.3 Classifiers package
	9.3.1 Classifier
	9.3.2 Feature

	9.4 Comments package
	9.4.1 Comment
	9.4.2 Element (as specialized)

	9.5 Constraints package
	9.5.1 Constraint
	9.5.2 Namespace (as specialized)

	9.6 Elements package
	9.6.1 Element

	9.7 Expressions package
	9.7.1 Expression
	9.7.2 OpaqueExpression
	9.7.3 ValueSpecification

	9.8 Generalizations package
	9.8.1 Classifier (as specialized)
	9.8.2 Generalization

	9.9 Instances package
	9.9.1 InstanceSpecification
	9.9.2 InstanceValue
	9.9.3 Slot

	9.10 Literals package
	9.10.1 LiteralBoolean
	9.10.2 LiteralInteger
	9.10.3 LiteralNull
	9.10.4 LiteralSpecification
	9.10.5 LiteralString
	9.10.6 LiteralUnlimitedNatural

	9.11 Multiplicities package
	9.11.1 MultiplicityElement

	9.12 MultiplicityExpressions package
	9.12.1 MultiplicityElement (specialized)

	9.13 Namespaces package
	9.13.1 NamedElement
	9.13.2 Namespace

	9.14 Ownerships package
	9.14.1 Element (as specialized)

	9.15 Redefinitions package
	9.15.1 RedefinableElement

	9.16 Relationships package
	9.16.1 DirectedRelationship
	9.16.2 Relationship

	9.17 StructuralFeatures package
	9.17.1 StructuralFeature

	9.18 Super package
	9.18.1 Classifier (as specialized)

	9.19 TypedElements package
	9.19.1 Type
	9.19.2 TypedElement

	9.20 Visibilities package
	9.20.1 NamedElement (as specialized)
	9.20.2 VisibilityKind

	10 Core::Basic
	10.1 Types diagram
	10.1.1 Comment
	10.1.2 Element
	10.1.3 NamedElement
	10.1.4 Type
	10.1.5 TypedElement

	10.2 Classes diagram
	10.2.1 Class
	10.2.2 MultiplicityElement
	10.2.3 Operation
	10.2.4 Parameter
	10.2.5 Property

	10.3 DataTypes diagram
	10.3.1 DataType
	10.3.2 Enumeration
	10.3.3 EnumerationLiteral
	10.3.4 PrimitiveType

	10.4 Packages diagram
	10.4.1 Package
	10.4.2 Type (additional properties - see “Type” on page�94)

	11 Core::Constructs
	11.1 Root diagram
	11.1.1 Comment
	11.1.2 DirectedRelationship
	11.1.3 Element
	11.1.4 Relationship

	11.2 Expressions diagram
	11.2.1 Expression
	11.2.2 OpaqueExpression
	11.2.3 ValueSpecification

	11.3 Classes diagram
	11.3.1 Association
	11.3.2 Class
	11.3.3 Classifier (additional properties - see “Classifier” on page�134)
	11.3.4 Operation (additional properties - see “Operation” on page�157)
	11.3.5 Property

	11.4 Classifiers diagram
	11.4.1 Classifier
	11.4.2 Feature
	11.4.3 MultiplicityElement
	11.4.4 RedefinableElement
	11.4.5 StructuralFeature
	11.4.6 Type
	11.4.7 TypedElement

	11.5 Constraints diagram
	11.5.1 Constraint
	11.5.2 Namespace (additional properties - see “Namespace” on page�151)

	11.6 DataTypes diagram
	11.6.1 DataType
	11.6.2 Enumeration
	11.6.3 EnumerationLiteral
	11.6.4 Operation (additional properties - see “Operation” on page�157)
	11.6.5 PrimitiveType
	11.6.6 Property (additional properties - see “Property” on page�129)

	11.7 Namespaces diagram
	11.7.1 ElementImport
	11.7.2 NamedElement
	11.7.3 Namespace
	11.7.4 PackageableElement
	11.7.5 PackageImport

	11.8 Operations diagram
	11.8.1 BehavioralFeature
	11.8.2 Operation
	11.8.3 Parameter

	11.9 Packages diagram
	11.9.1 Type (additional properties - see “Type” on page�137)
	11.9.2 Package

	12 Core::PrimitiveTypes
	12.1 PrimitiveTypes package
	12.1.1 Boolean
	12.1.2 Integer
	12.1.3 String
	12.1.4 UnlimitedNatural

	13 Core::Profiles
	13.1 Profiles package
	13.1.1 Class (from Constructs, Profiles)
	13.1.2 Extension (from Profiles)
	13.1.3 ExtensionEnd (from Profiles)
	13.1.4 Image (from Profiles)
	13.1.5 Package (from Constructs, Profiles)
	13.1.6 Profile (from Profiles)
	13.1.7 ProfileApplication (from Profiles)
	13.1.8 Stereotype (from Profiles)

	Part III - Appendices
	A XMI Serialization and Schema
	B Support for Model Driven Architecture
	Index

