Date: November 2007

UNIFIED °

MODELING
LANGUAGE

OMG Unified Modeling Language (OMG UML),
Superstructure, V2.1.2

OMG Available Specification
with change bars

OMG Document Number: formal/2007-11-01

Standard document URL: http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

Associated Schema Files:
http://www.omg.org/spec/UML/20061012/Superstructure.cmof
http://www.omg.org/spec/UML/20061012/uml-LO-model.xmi
http://www.omg.org/spec/UML/20061012/uml-LM-model.xmi
http://www.omg.org/spec/UML/20061012/uml-L1-model.xmi
http://www.omg.org/spec/UML/20061012/uml-L2-model.xmi

http://www.omg.org/spec/UML/20061012/uml-L3-model.xmi

* original .zip file: ptc/06-10-06

Version 2.1.2 is a minor revision to the UML 2.1.1 specification. It supersedes both change barred
and non-change barred versions (formal/2007-02-03 and formal/2007-02-05).

Copyright © 2001-2003 Adaptive Ltd.

Copyright © 2001-2003 Alcatel

Copyright © 2001-2003 Borland Software Corporation
Copyright © 2001-2003 Computer Associates International, Inc.
Copyright © 2001-2003 Telefonaktiebolaget LM Ericsson
Copyright © 2001-2003 Fujitsu

Copyright © 2001-2003 Hewlett-Packard Company

Copyright © 2001-2003 I-Logix Inc.

Copyright © 2001-2003 International Business Machines Corporation
Copyright © 2001-2003 IONA Technologies

Copyright © 2001-2003 Kabira Technologies, Inc.

Copyright © 2001-2003 MEGA International

Copyright © 2001-2003 Motorola, Inc.

Copyright © 1997-2007 Object Management Group.

Copyright © 2001-2003 Oracle Corporation

Copyright © 2001-2003 SOFTEAM

Copyright © 2001-2003 Telelogic AB

Copyright © 2001-2003 Unisys

Copyright © 2001-2003 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS
MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered

trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ |, Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMl

Logo™, CWM™ CWM Logo™, IOP™ , MOF™ | OMG Interface Definition Language (IDL)™, and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/
agreement.htm).

UML Superstructure Specification, v2.1.2

UML Superstructure Specification, v2.1.2

Table of Contents

L. SCOPE . e 1
2. Conformance 1
2.1 Language UnitsS 2

2.2 Compliance Levels e 2

2.3 Meaning and Types of Compliance 6

2.4 Compliance Level Contents 8

3. Normative References 10
4. Terms and Definitions i 10
5. Symbols 10
6. Additional Information 10
6.1 Changes to Adopted OMG Specifications 10

6.2 Architectural Alignmentand MDA Support 10

6.3 Onthe Run-Time Semanticsof UML 11

6.3.1 TRE BASIC PrEIMISESovviiiiiiiiiie i e et e e e e e e e e e e e e e e e e eeeeeeeeaberaraees 11

6.3.2 The SEMaNtiCS ArChItECIUIEuuiiii i eeeanns 11

6.3.3 The Basic Causality MOEIccuiiiiiiiiiiiie e 12

6.3.4 Semantics Descriptions in the Specificationcccccciiiiii e 13

6.4 The UML Metamodel 13

6.4.1 Models and What They Model ... 13

6.4.2 Semantic Levels and NamMiNgooooiiiiiiiiiiii e 14

6.5 How to Read this Specification 15

6.5.1 SPEeCifiCatiON FOMMALeiiiiiiiiee e a e 15

6.5.2 DIagram fOIrMALuuiiiiiiiiiee et e e e e et e e e e e e e e 18

6.6 Acknowledgements 19

Part | - Structure 21
7. ClasSSeS ... e 23

| UML Superstructure Specification, v2.1.2

T.1 OVEIVIEW . o ot e e e e e e e e e 23

7.2 ADSIraCt SYNtax 24
7.3 Class DesCriptionNs 38
7.3.1 Abstraction (from Dependencies)couuiiiiiiiiiiiie e 38
7.3.2 AggregationKind (from Kernel)ooooiiiiiiiiiiiii e 38
7.3.3 Association (from Kernel)oc.eeiiiiiiiii e 39
7.3.4 AssociationClass (from AsSOCIatioNCIASSES)vvveeieiiiiiiiie i 47
7.3.5 BehavioralFeature (from Kernel) ... 48
7.3.6 BehavioredClassifier (from INterfaces) ..o 49
7.3.7 Class (from KErNel)ooiuiiiiiiiiee et 49
7.3.8 Classifier (from Kernel, Dependencies, POWEITYPES)ccooviiiiieeiiiiiieeeiiiiieeeennns 52
7.3.9 Comment (from KEINEl)ooiiiiiiiiie e 57
7.3.10 Constraint (from Kernel)cueiiiiiiiii e 58
7.3.11 DataType (from KEMMEI)ooveiiiiiiiiiee e 60
7.3.12 Dependency (from DependenCies)c.ueeeeiiiiiiiieiiiiiiee et 62
7.3.13 DirectedRelationship (from Kernel) ... 63
7.3.14 Element (from KEINEI)ooiiiiiiiiiiiiee ettt 64
7.3.15 Elementimport (from Kernel) ... 65
7.3.16 Enumeration (from Kernel)cooiiiiiiiiiii e 67
7.3.17 EnumerationLiteral (from Kernel) ... 68
7.3.18 Expression (from Kernel)ooo it 69
7.3.19 Feature (from KErNEl)ooo i 70
7.3.20 Generalization (from Kernel, POWEITYPES) ...ccoeiiiiiiiiiiiiiiieee it 71
7.3.21 GeneralizationSet (from POWEITYPES)veiiieiiiiiiiee ittt 75
7.3.22 InstanceSpecification (from Kernel) ... 82
7.3.23 InstanceValue (from Kernel) ... 85
7.3.24 Interface (from INTErfaCeS)ooiiiiiiiiii e 86
7.3.25 InterfaceRealization (from INtErfaces)oooiiiiiiiiiiiii e 89
7.3.26 LiteralBoolean (from Kernel)oooiiiiiiiiiiiiei e 89
7.3.27 Literallnteger (from Kernel)oooiiiiiiii e 90
7.3.28 LiteralNUll (from Kernel)ooueeieeiiiee et 91
7.3.29 LiteralSpecification (from Kernel) ... 92
7.3.30 LiteralString (from KerNel)ouveiiiiiiieeee e 92
7.3.31 LiteralUnlimitedNatural (from Kernel) ..o 93
7.3.32 MultiplicityElement (from Kernel)ooooiiiiiiiii e 94
7.3.33 NamedElement (from Kernel, DEpPendencies)ccccovuveeieiiiiiieieiiiiieee i 97
7.3.34 Namespace (from Kernel)ooooiiiiiioii e 99
7.3.35 OpaqueExpression (from Kernel) ... 101
7.3.36 Operation (from Kernel, INterfaces)cceeviiiiiiiiiiiie e 103
7.3.37 Package (from KEINEI)cooi i 107
7.3.38 PackageableElement (from Kernel)oocuveiiiiiiiii i 109
7.3.39 Packagelmport (from Kernel)oouveiiiiiiiiie e 110
7.3.40 PackageMerge (from Kernel)oouueiiiiiiiiiiiie e 111
7.3.41 Parameter (from Kernel, ASSOCIationClasSes)ccoovvvviiiiiiiiiiieiiiiiiice i 120
7.3.42 ParameterDirectionKind (from Kernel) ..., 122
7.3.43 PrimitiveType (from Kernel)oooo i 122
7.3.44 Property (from Kernel, ASSOCiationClasSESs)c.uvvvveiiiiiiieiiiiiiiee e 123
7.3.45 Realization (from DEPeNdENCIES)coicuviiiiiiiiiiiiie et 129
7.3.46 RedefinableElement (from Kernel) ... 130

UML Superstructure Specification, v2.1.2

7.3.47 Relationship (from Kernel) ... e e e e 132

ARSI ko I (o] (e ¢ A= =) O 132

7.3.49 StructuralFeature (from Kernel)ccooii i eeee e 133

7.3.50 Substitution (from Dependencies)cccoovviiiiiiieieiiiccce e 134

7.3.51 Type (frOM KEINEI) ..coeeeeeieeeeee e e e e e e e e e e e e eeeeeearaaanes 135

7.3.52 TypedElement (from KEernel)ccooo oo e e e e ee e 136

7.3.53 Usage (from DEPENUENCIES)uuuuiiieieii e ee et e e e e e e e e e e e eeeeeaanns 137

7.3.54 ValueSpecification (from Kernel)ooooiriiiiiiiiiiiii e 137

7.3.55 VisibilityKind (from Kernel)eeciiiiiii s e e e e e ee e 139

T4 Diagrams e 140
8. COMPONENTS 143
8.1 OVeIVIEW . . 143
8.2 ADbsStract Syntax 144
8.3 Class DesCriptions i e 146
8.3.1 Component (from BasicComponents, PackagingComponents)cccccevvvennes 146

8.3.2 Connector (from BasSiCCOMPONENLES)cvuvuvviuiiiiiiieieieeeeeeeee e 154

8.3.3 ConnectorKind (from BasicCCOMPONENtS)c.evvvrevuiiiiiiiieeieeeeeeeeeeeeeeeeeeeenennnens 157

8.3.4 ComponentRealization (from BasicComponents)ccccevveveeeeeiiieveeeieieiiiiiinn, 157

8.4 Diagrams 159
9. Composite StruCturesc i 161
9.1 OVeIVIBW .ot 161
9.2 ADStraCt Syntaxttt 161
9.3 Class DesCriptionst e e 166
9.3.1 Class (from StructuredClasSes)ccceviiiiiiiiiiieiiirre i e e e e e e e e e e e e e eeaaeenannes 166

9.3.2 Classifier (from Collaborations)cccceeeiiiiiii e 167

9.3.3 Collaboration (from Collaborations)euvuviiuiiiiiiiiiie e 168

9.3.4 CollaborationUse (from Collaborations)eeuuiiiiiiiiiiiiisieiee e, 171

9.3.5 ConnectableElement (from InternalStruCtures)ccccceceeeeieieiiiieeee e 174

9.3.6 Connector (from INternalStruCtures)oovvviviiiiiiiiiiiiisis e e e e e e e e e eeeeeeeenannes 174

9.3.7 ConnectorEnd (from InternalStructures, POrs)cccccceeeviiiiiiiiiieieeeieeeeeeeveeeeieinns 176

9.3.8 EncapsulatedClassifier (from POIMS)oovvviiiiiiiiiiiiiiis e 178

9.3.9 InvocationAction (from INVOCAtIONACLIONS)cevveviiiiiiiiiiiiei e eeeeeee e 178

9.3.10 Parameter (from Collaborations)ocoevviiiiiiiiiiciciris e 179

S IO T I I o T o (e e) PP 179

9.3.12 Property (from INternalStruCtures)oooevvviiiiiiiiiiiiiisie e s e e e e e e e eeeee e e eeeeeaeeaennes 183

9.3.13 StructuredClassifier (from InternalStrucCtures)cccccceceeeiieiiieieee e, 186

9.3.14 Trigger (from INVOCAtIONACLIONS)ccoiiiiiiiieieieiiiirres s e e e e e e e e e e e e e e e e e e eeeaaeennnes 190

9.3.15 Variable (from StructuredACHVItIES)ccevvvvieiiiiiiiiiire e e 191

9.4 DIAgramMS . ot 191
10. Deployments 193

UML Superstructure Specification, v2.1.2

10.1 OVEIVIEW . . .ot e e e e e e e 193

10.2 ADSEraCt SYNtaXo oot 193
10.3 Class DeSCriptioNSottt 197
10.3.1 Artifact (from Artifacts, NOUES)uuviiiiiiiiiiieeiiec e 197
10.3.2 CommunicationPath (from NOAES)ccueiiiiiiiiiiiiiii e 199
10.3.3 DeployedArtifact (from NOGES)eeeiiiiiiiiiiiiiiiii e 200
10.3.4 Deployment (from ComponentDeployments, NODES)cc.eeeeiiiiiiieeeiiiiiieeeennis 201
10.3.5 DeploymentSpecification (from ComponentDeployments)ccccceeevivveeeeennis 203
10.3.6 DeploymentTarget (from NOUES)cooeeiiiiiiiiiiiiiieee e 205
10.3.7 DeVvice (froM NOGES)eeiiiiiiiiiie ettt sbaeee e 206
10.3.8 ExecutionEnvironment (from NOAES)evviiiiiiiiiiiiiee e 207
10.3.9 InstanceSpecification (from NOES)c.uveiiiiiiiiiiiiei e 208
10.3.10 Manifestation (from ArtifactS)coocuieiiiiiii e 209
10.3.11 NOAE (frOM NOUES) ...eeeiiiiiiiiiie ittt e s ee e 210
10.3.12 Property (from NOUES)c.uviiiiieiiiiiiee sttt 212
10.4 DIagramst 212

Part Il - Behavior 215

11, ACHIONS .. 217
11,0 OVRIVIEW . e e 217
11.2 ADSIract Syntaxt 219
11.3 Class DesCriptions e e 234

11.3.1 AcceptCallAction (from CompleteACLIONS)cocouuiiiiiieiieeee e 234
11.3.2 AcceptEventAction (from CompleteACHIONS)uvviiiiiiiiiaieeeeie e 235
11.3.3 Action (from BaSICACHIONS)ueuiiiiiiiiiiiiiea ettt e e e e e e 237
11.3.4 ActioninputPin (from StructuredACHONS)cooeiiiiiiiiiieeee e 238
11.3.5 AddStructuralFeatureValueAction (from Intermediate Actions)cccccceeeeenn. 239
11.3.6 AddVariableValueAction (from StructuredACtioNS)ccooeveiiiiiiiiiiiiiiiiieieeeeeeenn, 241
11.3.7 BroadcastSignalAction (from Intermediate ACtionS)ccccceeeiiiiiiiiiiiiiiieeeeeeenn. 242
11.3.8 CallAction (from BaSiCACLIONS)uuiiiiiiiiiiiaiiee e 243
11.3.9 CallBehaviorAction (from BasSiCACLONS)ccooiiiiiiiiiiiiiiiiieieee e 244
11.3.10 CallOperationAction (from BaSiCACHONS)ccoiviiiiiiiiiiiiieieeae e 246
11.3.11 ClearAssociationAction (from Intermediate ACtionS)cccccceeeviiiiiiiiiiiiieeneeeenn. 247
11.3.12 ClearStructuralFeatureAction (from Intermediate Actions)cccccvveeeeeeeeneennn. 248
11.3.13 ClearVariableAction (from StructuredACtiONS)ccoviiieiiiiiiiiiiiiiiiiee e 249
11.3.14 CreateLinkAction (from Intermediate ACtionS)cc.uuevieeeiiiieiiiiiiiiiiieeeeee e 250
11.3.15 CreateLinkObjectAction (from CompleteACtioNS)ccevveeeiriiiiiiiiiiiiiieeeeeeeenn, 251
11.3.16 CreateObjectAction (from Intermediate ACtioNS)ccooeeririiiiiiiiiiiiiiiiieeeeeeennn 252
11.3.17 DestroyLinkAction (from Intermediate ACtioNS)eeeeiiiiiiiiiiiiiiiiiiiiieeeeeeeeennn 254
11.3.18 DestroyObjectAction (from Intermediate ACtionS)coeveeeeiiiiiiiiiiiiiiiiieeeeeee, 255
11.3.19 InputPin (from BaSICACLONS)euiiiiiiiiiiiiie e 256
11.3.20 InvocationAction (from BaSiCACLONS)cooiiiiiiiiiiiiieiiiiee e 257

iv UML Superstructure Specification, v2.1.2

11.3.21 LinkAction (from Intermediate ACtioNS)ccoeeiiiiiiiiiceeee e 257

11.3.22 LinkEndCreationData (from Intermediate ACtions)cevvvvvviiiiiiiiiiiieeeeeeeen, 259
11.3.23 LinkEndData (from IntermediateActions, CompleteActions)cccceeeeveeeeeennn. 260
11.3.24 LinkEndDestructionData (from Intermediate ACtions)ccceeeevieiiieiiieeneeeeenn, 261
11.3.25 MultiplicityElement (from BaSiCACLONS)coceeieiiiiiiieeeeeee e 262
11.3.26 OpaqueAction (from BaSiCACLONS)cccevvviiiiiieieiiissss s e e e e e e e e e e e e eeeeaens 263
11.3.27 OutputPin (from BaSICACHIONS) ...uuuuiiiiiiiie e 263
11.3.28 Pin (from BASICACLIONS) ...evvvviriiiiiiiiiiiiei e eeeee e e ee et sn e n e e e e e e e e aaaaeees 264
11.3.29 QualifierValue (from CompleteACtiONS)cooviviiviiiiieiere e 265
11.3.30 RaiseExceptionAction (from StructuredActions)ooovvvvvviviiiiiiiiiiiiee e, 266
11.3.31 ReadExtentAction (from CompleteACtions)c.ovvvviiiiiiiiiiiiiiiiiie e, 267
11.3.32 ReadlsClassifiedObjectAction (from Complete ACtions)ccceceeveveieiiieeeeeeenn, 268
11.3.33 ReadLinkAction (from Intermediate ACtions)coovviiiiiiiiiiiiiiiciee e, 269
11.3.34 ReadLinkObjectEndAction (from CompleteACtions)ccccceeeeveiiiiiiiieeeeeeeeeee, 270
11.3.35 ReadLinkObjectEndQualifierAction (from Complete Actions)cccceeeeeeeeeen. 272
11.3.36 ReadSelfAction (from Intermediate ACtioNS)vvvvvivviiiiiiiie e eeeeeeeeeeaes 273
11.3.37 ReadStructuralFeatureAction (from Intermediate ACtions)ccccceeeveevieeeeeennn. 274
11.3.38 ReadVariableAction (from StructuredACtioNS)cccevvvviiviiiiiiiiiiiiiiiree e eeeeen, 275
11.3.39 ReclassifyObjectAction (from CompleteActions)coovvvviveieiiiiiiiiiiiiieeeeeeenn, 276
11.3.40 ReduceAction (from CompleteACLIONS)cccceeveeeeeeeieieeeeeee e 277
11.3.41 RemoveStructuralFeatureValueAction (from IntermediateActions) 279
11.3.42 RemoveVariableValueAction (from StructuredActions)cccicieiiiiieeeeennn. 280
11.3.43 ReplyAction (from CompleteACtiONS)coooeeiiiiiiiieeeeer e 281
11.3.44 SendObjectAction (from Intermediate ACtions)ooevvviviiiiviiiiiii e, 282
11.3.45 SendSignalAction (from BaSiCACLONS)ccoeeiviiiiiiiieeeeere e 283
11.3.46 StartClassifierBehaviorAction (from CompleteActions)c.uvvvvvvciiiiiieeeennnn. 284
11.3.47 StructuralFeatureAction (from Intermediate ACtions)cccceeeeviiiiiiiiieeeeeeeeeee, 285
11.3.48 TestldentityAction (from Intermediate ACtioNS)coevvvvviiviiniiiiiiiii e, 287
11.3.49 UnmarshallAction (from CompleteACtionsS)oevvveviiviiiiiiiiiiiinie e, 288
11.3.50 ValuePin (from BaSICACHIONS) ...uuuuiiiiiiie e e e e e e e 289
11.3.51 ValueSpecificationAction (from Intermediate ACtions)c.cevvvvveveiiiiiieieeeeennn. 290
11.3.52 VariableAction (from StructuredACLIONS)coceeviiiiiiiieer e 290
11.3.53 WriteLinkAction (from Intermediate ACtionS)oovvvveviiviiiiiiiiiiiinie e, 291
11.3.54 WriteStructuralFeatureAction (from Intermediate ACtions)cccceevvveviiieieeeenn. 292
11.3.55 WriteVariableAction (from StructuredAcCtions)cevvviiviiviiiiiiiiiiiineee e, 293
11.4DIagramsSottt e e 294
12, ACHIVILIES . .o 295
12,1 OVEIVIEBW . oottt 295
12.2 ADSIract Syntaxo e 297
12.3 Class DesCriptionsottt 309
12.3.1 AcceptEventAction (as specialized)ccccovvviei i 309
12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities) ... 311
12.3.3 ActionInputPin (as SpecCialiZed)uuiiiiiiiiii e 315

12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
SHHUCIUFEAACTIVITIES) wevviiiii i e s 315

12.3.5 ActivityEdge (from BasicActivities, CompleteActivities,

CompleteStructuredActivities,Intermediate ACtivities)cooevvvvvivvvviiiiiieinenn. 325

UML Superstructure Specification, v2.1.2

12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)cccceeee. 330

12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities)ccccceeeeveennnns 332

12.3.8 ActivityNode (from BasicActivities, CompleteActivities,
FundamentalActivities,IntermediateActivities, CompleteStructuredActivities) .. 333

12.3.9 ActivityParameterNode (from BaSiCACHVILIES)ceevvvvvvvviiiiiiiiiiei e eeeeeeeeeeeeeeans 336
12.3.10 ActivityPartition (from Intermediate ACtiVItIES)vvveeivieiiiiieiiieiiieeeeeeeeeeeiiians 339
12.3.11 AddVariableValueAction (as specialized)cccceeeeiiiiiiieiiiie e, 345
12.3.12 Behavior (from CompleteACtVItIES)covvvviiiiiiiiiiiiiiieie e e 346
12.3.13 BehavioralFeature (from CompleteACtiVItieS)oevvvvvviiiiiiiiiiei e, 346
12.3.14 CallBehaviorAction (as specialized)ooovvviiiiiiiiiiiiiiiieieie e e e eeaeaiaans 347
12.3.15 CallOperationAction (as specialized)oovvviiiiiiiiiiiiiiii e, 349
12.3.16 CentralBufferNode (from Intermediate ACtiVIties)cccceevveieiiiiieiiiiiiiiiiiiieeeeee, 350
12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities) 352
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities) 353
12.3.19 ControlFlow (from BaSiCACLIVITIES)cccvviiiiiieeeeiiieiicic i e e e e e e e e 355
12.3.20 ControlNode (from BaSiCACHVILIES)ccevvviviiiiiiiiiiiiiiiis e e e e e e e e e e e e e e 356
12.3.21 DataStoreNode (from CompleteACtiVItIES)cvvvvrviiiiiiiiieieie e 358
12.3.22 DecisionNode (from Intermediate ACtiVItIES)ceevvvvvviiiiiiiiiiiie e, 359
12.3.23 ExceptionHandler (from ExtraStructuredActiVities)cccceeeveieiiiieieeiiiiiiieieeinns 361
12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities) 364
12.3.25 ExpansionKind (from ExtraStructuredAcCtiVitieS)ccccceeeieieiiieeeeeieiiieieeeeeeeeiins 365
12.3.26 ExpansionNode (from ExtraStructuredAcCtiVities)cccceeeveieiiieeeeeeeieieeeeeeiiiinns 365
12.3.27 ExpansionRegion (from ExtraStructuredActivities)cccceeeveeieiiiiiieieeeieeeeeees 366
12.3.28 FinalNode (from Intermediate ACtiVItIES)cvvveveriiiiiiicceiie e 371
12.3.29 FlowFinalNode (from Intermediate ACtiVItIES)ceevvvviviiiiiiiiiiieiee e eeeeeeeeeeans 373
12.3.30 ForkNode (from Intermediate ACtiVItIES)cccovvviriiiiiiiieris e 374
12.3.31 InitiaINode (from BaSiCACHVILIES)ccovvviiiieieiiiccesss e 376
12.3.32 INputPin (s Specialized)coooiiriiiieecr e 377
12.3.33 InterruptibleActivityRegion (from Complete ACtivities)cccceeveveveieeeeiiiiiininninns 377
12.3.34 JoinNode (from CompleteActivities, IntermediateActivities)cccccevvveeenns 379
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities) 382
12.3.36 MergeNode (from Intermediate ACtiVItIES)covvvviiiiiiiiiiiiiiiir e 385
12.3.37 ObjectFlow (from BasicActivities, CompleteActivities)ccceevvvveviviieeiininns 386
12.3.38 ObjectNode (from BasicActivities, Complete ACtiVitieS)cccceeveveveeieiiiiiiiinennns 391
12.3.39 ObjectNodeOrderingKind (from Complete ACtiVities)cccccevevieiiiieeeiieiiiiiiennns 394
12.3.40 OULPULPIN .ottt e e et e e st bt e e s enbe e e e e s nntbaeeeesnnnnneeeean 394
12.3.41 Parameter (from CompleteACHVItIES)ocvvvveiriiiiiiiiiiiii e 394
12.3.42 ParameterEffectKind (from Complete ACtiVities)vvvveiiiiiiiiiiiieeieieiieeeeeens 396
12.3.43 ParameterSet (from CompleteACtiVItIES)covvvviiviiiiiiiiiiiiii e 397
12.3.44 Pin (from BasicActivities, CompleteACtiVItieS)uvvvvviiiiiiiieiieeeeeeieeeeeeeeiins 398
12.3.45 SendObjectAction (as specialiZed)uuuuruiiiiiiiiiiieie e 404
12.3.46 SendSignalAction (as specialized)uveiiiiiiiiiiiii e 405
12.3.47 SequenceNode (from StructuredACtiVItIES)ocevvvveiviiiiiiiiiie e 406
12.3.48 StructuredActivityNode (from CompleteStructuredActivities,

SHHUCIUIEACTIVITIES) .o 407
12.3.49 UnmarshallAction (as specialized)oovvvuiiiiiiiiiiiiiiiiiie e 409
12.3.50 ValuePin (as specialized)cccooiiiiiiiiii s 410
12.3.51 ValueSpecificationAction (as specialized)ccccovveeiiiiiieiiiiieee e, 411
12.3.52 Variable (from StructuredACHIVItIES)ccoieiiiiiieeeeerer e 412

12,4 DIagrams . .. ittt 413

UML Superstructure Specification, v2.1.2

13. Common Behaviors 419

13.1 OVEIVIEW . oottt et et e e e e e e e 419
13.2 Abstract Syntaxttt 423
13.3 Class DesCriptions ittt 428
13.3.1 AnyReceiveEvent (from COMMUNICAtIONS)eeeeiiiiiiiiiiiiiiiiiiiiieeee e ee e e 428

13.3.2 Behavior (from BasSiCBENAVIOIS)ccooiiiiiiiiiiiiiiiiieeeee e 428

13.3.3 BehavioralFeature (from BasicBehaviors, Communications)cccccccceevieuenee 431

13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)cccc.uee. 432

13.3.5 CallConcurrencyKind (from Communications)cooviiiiiiiiiiiiiiiiiieeee e 433

13.3.6 CallEvent (from COMMUNICAIONS)ccviiiiiiiiiiiiiiiiiiieeee et a e e 434

13.3.7 ChangeEvent (from COmMMUNICAtIONS)ooiiiiiiiiiiiiiiiee e 435

13.3.8 Class (from COMMUNICAIONS)eeiiiiiiiiaiaiiiiiiiiiie e e e e e e e 436

13.3.9 Duration (from SIMPIETIME)uuiiiiiiiiiiiiieie e 437

13.3.10 DurationConstraint (from SIMmpleTime)cc..uuuiiiiiiiiiiiaiee e 437

13.3.11 Durationinterval (from SImpleTime)oooiiiiiiiii e 439

13.3.12 DurationObservation (from SIMpPIETIME)euuiiiiiiiiiiiiiiiiiiieeee e 440

13.3.13 Event (from COMMUNICALIONS)veiiiiiiiaiaiiiiiiiiie e e e e e e e 440

13.3.14 FunctionBehavior (from BasicBEhaviors) ... 441

13.3.15 Interface (from COMMUNICALIONS)cooiiiiiiiiiiiiiiiiieiee e 442
13.3.16 Interval (from SIMPIETIME)uuiiiiiiiiiiia e 442

13.3.17 IntervalConstraint (from SImMpIeTIME)uuuiiiiiiiiiiiei e 443

13.3.18 MessageEvent (from CommuNiCatiONS)ccuuuiiiiiiiiiiaeeei i 444

13.3.19 Observation (from SIMPIETIME)eeiiiiiiiiiiiiiiei e 444

13.3.20 OpaqueBehavior (from BasicBEhaviors) ... 445

13.3.21 OpaqueExpression (from BasiCBENAVIOIS)cciiiiiiiiiiiiiiiiiiiiiieeee e 446

13.3.22 Operation (from COMMUNICAIONS)ccoeiiiiiiiiiiiiiieiee e 446
13.3.23 Reception (from COMMUNICAtIONS)cceiiiiiiiiiiiiiiiiiee e e e 447
13.3.24 Signal (from COMMUNICALIONS)eeiiiiiiiiaeiiiiiiiiie e a e 448

13.3.25 SignalEvent (from CommUNICAtIONS)cccuuiiiiiiiiiiiiee e 449

13.3.26 TimeConstraint (from SIMPIETIME)ccoiiiiiiiiiiiiie e 450

13.3.27 TimeEvent (from Communications, SImpleTime)cccccceeviiiiiieinniieiee e 451
13.3.28 TimeExpression (from SIMpIeTiMe)coocuiiiiiiiiiiiie e 452

13.3.29 Timelnterval (from SIMpPIETIME)ocuiiiiiiiiiie e 453

13.3.30 TimeObservation (from SIMPIETIME)cooiuiiiiiiiiiiiiee e 454

13.3.31 Trigger (from COMMUNICALIONS) ...ccooiivriiieiiiiiiee ettt e 454

14. InteraCtionst 457
141 OVEIVIEW . . ettt et i e e e e e e e e e e e e e 457
14.2 ADSIract SYNntax e 458
14.3 Class DeSCIIPLiONS oot 466
14.3.1 ActionExecutionSpecification (from Basiclnteractions)cccccccevveiiiniiieeeeeeen. 466

14.3.2 BehaviorExecutionSpecification (from Basiclnteractions)ccccceeeeeeeieieeneennn. 466

14.3.3 CombinedFragment (from Fragments)ccccooveiiieieiiieieeeeeeer e 467

14.3.4 ConsiderlgnoreFragment (from Fragments)ccooviviiiiiiieieiiiiccciie e 472

14.3.5 Continuation (from Fragments)cccooiiiiiiii e a e e e e 473

14.3.6 CreationEvent (from BasiCINteractions)ccccceeeeviiiieeeeeeee e 476

UML Superstructure Specification, v2.1.2

14.3.7 DestructionEvent (from BasicINteractions)cccccceeveiiiieieiiieeeeeeeeeeeee e 476

14.3.8 ExecutionEvent (from Basiclnteractions)uuvvivuiiiiiiiiiiiiee e eeeeeeeeeeeeeeeianns a77

14.3.9 ExecutionOccurrenceSpecification (from Basiclnteractions)ccccceeeeeees 478

14.3.10 ExecutionSpecification (from BasicInteractions)cccceeeeveveieeeieeeieieieieieieeinns 478

14.3.11 Gate (from FragmMentS)ccocoeiiiiiii i e e e e e e e e e e e e e e e e e eeaaeenranes 480

14.3.12 GeneralOrdering (from BasicInNteractions)coevvvviviiiiiiiiiiieieeeeeeeeeeeeeeeeeanns 480

14.3.13 Interaction (from Basiclnteraction, Fragments)ccccccceeeiiiiiinieeeeeeeeeeeeeeeeenns 481
14.3.14 InteractionConstraint (from Fragments)coovvviiiiiiiiiiiiiis e eeeee e 484

14.3.15 InteractionFragment (from Basiclnteractions, Fragments)ccccccceeevennnnn, 485

14.3.16 InteractionOperand (from Fragments)coooviiiriiiiiiiiiiiiiiiees e e, 485

14.3.17 InteractionOperatorKind (from Fragments)ovviiiiiiiiiiiinieieeeeeeeeeeeeeeeeiinns 486

14.3.18 InteractionUse (from Fragments)ccooiiiiiiiiiiiiiiieiccises e e e e e e e e e e e e eeeeeeeanens 487

14.3.19 Lifeline (from Basiclnteractions, Fragments)c.uuvviviiiiiiininieieeeeeeeeeeeeeeenens 490
14.3.20 Message (from BasiCINteraCtionS)ocevuiiuviiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeaaennnnns 491

14.3.21 MessageEnd (from BasiCINteracCtions)ccccovvvvviviieiiiiiiiiiiis i e e eeeeeeeeeennns 494

14.3.22 MessageKind (from BasicInteractions)ccccvvvvvvvviviiiiiiiisis e eeeeeeeeeeeeeninnns 495

14.3.23 MessageOccurrenceSpecification (from Basiclnteractions)cccccevevees 495

14.3.24 MessageSort (from BasiclNteractions)cccovvvviviieiiiiiiiiiiis e 496

14.3.25 OccurrenceSpecification (from BasicInNteractions)ccccceveveieeeeeeeveeeveeveeieeinnns 496

14.3.26 PartDecomposition (from Fragments)ooovvvviiiiiiiiiiiiiiiie e eeeeeeeeeeeeeenianns 497

14.3.27 ReceiveOperationEvent (from Basiclnteractions)cccccceveveieeeeeeeieveieeeieieeinns 500

14.3.28 ReceiveSignalEvent (from BasicINteraCtions)uvciiiiiiiiieiieeeeeeeeeeeeeeeinnns 501

14.3.29 SendOperationEvent (from BasicINteractions)ccccccceeeiiiiiiniiieeeeeeeeeeeieennnns 502

14.3.30 SendSignalEvent (from BasicINteractions)ccccccceeeeiiieiiiiieeeeeeeeeeeieeeeeiiiinnns 502

14.3.31 Statelnvariant (from BasiCINtEracCtions)uuvvveeiiiiisieiiiieeeeeeeeeeeeee e 503

144 DIagramsS 504
15. State Machines 523
15, L OVeIVIEW o 523
15.2 ADSIract Syntaxttt 524
15.3 Class DesCriptioNSt e 527
15.3.1 ConnectionPointReference (from BehaviorStateMachines)ccccccvvveeens 527

15.3.2 FinalState (from BehaviorStateMachings)ccccccceeiiiiiiiiiiii e 530

15.3.3 Interface (from ProtocolStateMachings)oooovvvviiiiiiiiiiiiiiis e 531

15.3.4 Port (from ProtocolStateMachings)cooviviriiiieiiciecs e 532

15.3.5 ProtocolConformance (from ProtocolStateMachings)cccccoeevviiiiiiieiiiiiiiinnnnn, 532

15.3.6 ProtocolStateMachine (from ProtocolStateMachings)cccceceeveiviiiiiiiiiininnnnnn, 533

15.3.7 ProtocolTransition (from ProtocolStateMachinges)cccccccceviieieiiieiiiieieeeeeeis 535

15.3.8 Pseudostate (from BehaviorStateMachings)viiiiiiiiiiiiiee e 538

15.3.9 PseudostateKind (from BehaviorStateMachings)ccccecevviiiiiiiiieieeeeieiiieieieas 545

15.3.10 Region (from BehaviorStateMachinges)cccccccviiiiiiiiniiii e 546

15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines) 548

15.3.12 StateMachine (from BehaviorStateMachings)vvviiiiiiiiiiiiiiieeceeeeeeeeeees 562

15.3.13 TimeEvent (from BehaviorStateMachings)cccccvciiiiiiiiiiiieeeeeeeeeeeeeeeiiins 569

15.3.14 Transition (from BehaviorStateMachines)oovvvviiiiiiiiinieie e, 570

15.3.15 TransitionKind (from BehaviorStateMachines)ccccvvvviiiiiiiiiie e, 578

15.3.16 Vertex (from BehaviorStateMachings)oouvvvvviiiiiiiiiiiiiiie e eeeeeeeeeeeeeeeannns 579

| viii UML Superstructure Specification, v2.1.2

15.4 DIagramsSottt e 580

16. Use CaseS ... 585
16.1 OVEIVIEW . .ottt e e 585
16.2 ADSIract Syntax e 585
16.3 Class DesCriptionNsottt 586

16.3.1 ACLOr (frOM USECASES) ..cevvverviiiiiiiiiii i i i e s e e e e e e et e et e e s e n e e e e e aaaaaaaeees 586
16.3.2 Classifier (from USECASES)uuuuuiiiiiiiiiii e eeeeeeeeeeeeee et n e n e e e e aaaaeaaees 588
16.3.3 EXtend (from USECASES)coevvviieeeeiiiiiiiiiii i s i e e e e e e et e e e e s a e e e e e aeaaees 589
16.3.4 ExtensionPoint (fromM USECASES)uuuiiiiiiiei et e e e e e e e 591
16.3.5 Include (fromM USECASES)cevvvrreiiiiiiiiiiie e eeeeee e ee et n e n e e e e e e e aaaaees 592
16.3.6 UseCase (fromM USECASES)uuurrruiiiiiiiiieeeieeeieeeee e e et an e nen e e e e aaaaaaaees 594
16.4 DIiagramsSottt e 599

Part Ill - Supplement 605

17. Auxiliary CONSEIIUCES o e 607
17,1 OVEIVIEW . oottt e e e e 607
17.2 InformationFIOWS 607

17.2.1 InformationFlow (from InformationFIOWS)eeeiiiiiiiiiiiii e 608
17.2.2 Informationltem (from InformationFIOWS)coooiiiiiiiiiiiii e 610
17.3Models 612
17.3.1 Model (from MOGEIS) ...t e e 613
17.4 Primitive TYPeS . oottt 614
17.4.1 Boolean (from PrimitiVETYPES) ...uuuuuiiiiiiiii i ettt e e e e e 615
17.4.2 Integer (from PrimitiVETYPES) ..uuuiiiieii it e e e e e e e e e e e e aeaeeees 616
17.4.3 String (from PrimitiVETYPES) wvvuveeiiiii i i a e e e e e e 617
17.4.4 UnlimitedNatural (from PrimitiveE TYPES)ccceeviiiiiiiieeeeeerr e 618
17.5 Templates 619
17.5.1 ParameterableElement (from Templates)coooeeeeeiiieiiieeeee e 621
17.5.2 TemplateableElement (from Templates)ccccorivriiiiiiiiiiccre e 623
17.5.3 TemplateBinding (from TEMPIALES)coeeviieiee e 625
17.5.4 TemplateParameter (from Templates)ccooriiiiiiiiieiecrr e 626
17.5.5 TemplateParameterSubstitution (from Templates)ccccccvvvviiciiiiiiiiiiieeeeeee, 628
17.5.6 TemplateSignature (from Templates)ccoeeeriiiiiieeeeec e 628
17.5.7 Classifier (from TEMPIALES)uuuuiiiiiiii e e a e e e 630
17.5.8 ClassifierTemplateParameter (from Templates)c.uvvvveiiiiiiiiiiiiiiiieeeeeeeee, 634
17.5.9 RedefinableTemplateSignature (from Templates)cccccvcciiiiiiiiiiiiiie e, 635
17.5.10 Package (from TemMPIALES)uvuuuruiiiiiiiiii i 637
17.5.11 PackageableElement (from Templates)ccccoeiiriiiiiieeeiicce e, 638

UML Superstructure Specification, v2.1.2

17.5.12 NamedElement (from Templates)ooovrveiiiiiiiiiiiiiiie e 639

17.5.13 StringExpression (from Templates)coooviviiiiiiiieiiircsess e e 641

17.5.14 Operation (from Templates)cccooiiiiiiriiiiecrrr e 642

17.5.15 Operation (from Templates)cccooiiiiiii i 643

17.5.16 OperationTemplateParameter (from Templates)cccceeeeveviieeeiiieiiiiiiieeeeiiinns 644

17.5.17 ConnectableElement (from Templates)oouvvviiiiiiiiiiii e 645

17.5.18 ConnectableElementTemplateParameter (from Templates)cccccevvvvnnnes 646

17.5.19 Property (from TemMPIAteS)cccceeiiiiiieieeeeecrr s e 647

17.5.20 ValueSpecification (from Templates)coovvviiiiiiiiiiiiiiiie e 648

18. Profiles e 651
18.1 OVBIVIEBW . e 651

18.1.1 Positioning profiles versus metamodels, MOF and UMLcccccooeeeiiiiiiiinnnnnn, 651

18.1.2 Profiles History and design reqUIrEMENtSccoevveeiiieriimiiiiinieieieeeeeeeeeeeeeeennnnns 651

18.2 ADSIract Syntaxttt 653

18.3 Class desCriptions e 654

18.3.1 Class (from ProfileS)uuuii e 654

18.3.2 Extension (from ProfileS) ... 655

18.3.3 ExtensionEnd (from ProfileS) ... 658

18.3.4 Image (from Profil@S)oouie i 659

18.3.5 Package (from Profil@S)cuuiiiiiiiiii et 660

18.3.6 Profile (from ProfileS)ooeiiiiiiiii e 661

18.3.7 ProfileApplication (from ProfileS)cciiiiiii e 668

18.3.8 Stereotype (from ProfileS) ... 670

18.4 DIagrams . ..ttt 676

Part IV - Annexes 679
ANNEX A: DIAQIAMS .ottt e e e e e e aa e e e 681
ANNEX B: KEYWOITS ..ottt ee e e e e e e e e e 687
Annex C: Standard StEreotYPEeScvieeieeiiiii e 693
Annex D: Component Profile Examplesccoooveiiiiiiiiiiiie 701
Annex E: Tabular NOtationNScccooeiiiiiiiiiiiice e 705
Annex F: Classifiers TaXONOmYyccooviiiiiiiiiiiiiiiine e 709
Annex G: XMI Serialization and Schemaccccooeviiiiiiiii i, 711
Annex H: UML Compliance Level XMI Documentsccccevvneennn. 713
MO X s 715

X UML Superstructure Specification, v2.1.2

1 Scope

Issue 11152 Replace text

This specification defines the Unified Modeling Language (UML), revision 2. The objective of UML is to provide system
architects, software engineers, and software developers with tools for analysis, design, and implementation of software-
based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly more
precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly improved
capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and notation is required. UML meets the following requirements:

« A formal definition of a common MOF-based metamodel that specifies the abstract syntax of the UML. The abstract
syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the rules for
combining these concepts to construct partial or complete UML models.

» A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a technology-
independent manner, how the UML concepts are to be realized by computers.

A specification of the human-readable notation elements for representing the individual UML modeling concepts as
well as rules for combining them into a variety of different diagram types corresponding to different aspects of modeled
systems.

« A detailed definition of ways in which UML tools can be made compliant with this specification. This is supported (in
a separate specification) with an XML-based specification of corresponding model interchange formats (XMI) that
must be realized by compliant tools.

2 Conformance

UML is a language with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to a large community of users. For that reason, this specification defines a small number of compliance
levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible language
subsets. However, in recognition of the need for flexibility in learning and using the language, UML also provides the
concept of language units.

UML Superstructure Specification, v2.1.2 1

2.1 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-
coupled modeling concepts that provide users with the power to represent aspects of the system under study according to
a particular paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete
event-driven behavior using a variant of the well-known statecharts formalism, while the Activities language unit
provides for modeling behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of
UML means that they need only be concerned with those parts of the language that they consider necessary for their
models. If those needs change over time, further language units can be added to the user’s repertoire as required. Hence,
a UML user does not have to know the full language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the
individual segments within this structure do not represent separate compliance points. The latter strategy would lead to an
excess of compliance points and result to the interoperability problems described above. Nevertheless, the groupings
provided by language units and their increments do serve to simplify the definition of UML compliance as explained
below.

2.2 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of
modeling concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels.
Compliance levels cut across the various language units, although some language units are only present in the upper
levels. As their name suggests, each compliance level is a distinct compliance point.

For ease of model interchange, there are just four compliance levels defined for the whole of UML.:

« Level 0 (LO). This compliance level is formally defined in the UML Infrastructure. It contains a single language unit
that provides for modeling the kinds of class-based structures encountered in most popular object-oriented
programming languages. As such, it provides an entry-level modeling capability. More importantly, it represents a low-
cost common denominator that can serve as a basis for interoperability between different categories of modeling tools.

« Level 1 (L1). This level adds new language units and extends the capabilities provided by Level 0. Specifically, it adds
language units for use cases, interactions, structures, actions, and activities.

« Level 2 (L2). This level extends the language units already provided in Level 1and adds language units for deployment,
state machine modeling, and profiles.

» Level 3 (L3). This level represents the complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, templates, and model packaging.

The contents of language units are defined by corresponding top-tier packages of the UML metamodel, while the contents
of their various increments are defined by second-tier packages within language unit packages. Therefore, the contents of
a compliance level are defined by the set of metamodel packages that belong to that level.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this specification
for achieving this is package merge (see “PackageMerge (from Kernel)” on page 112). Package merge allows modeling
concepts defined at one level to be extended with new features. Most importantly, this is achieved in the context of the
same namespace, which enables interchange of models at different levels of compliance as described in “Meaning and
Types of Compliance” on page 6.

2 UML Superstructure Specification, v2.1.2

For this reason, all compliance levels are ultimately merged into a single core “UML” model package that defines the
common namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown in Figure
2.1. In this model, “L0” is originally an empty package that simply merges in the contents of the Basic package from the
UML Infrastructure. This package is then merged into the UML model. Package LO contains elementary concepts such as
Class, Package, DataType, Operation, etc. merged in from Basic and Primitive Types (see the Unified Modeling
Language: Infrastructure specification for the complete list of contents of these two packages).

1 1
Primitive Types Basic
wirnpar e
Ao)
~ . i MErges
wrhepges ;

Lo

Figure 2.1 - Level 0 package diagram

At the next level (Level 1) the packages merged into Level 0 and their contents are extended with additional packages as
shown in Figure 2.2 on page 4. Note that each of the four packages shown in the figure merges in additional packages that
are not shown in the diagram. They are defined in the corresponding package diagrams in this specification.
Consequently, the set of language units that results from this model is more than is indicated by the top-level model in the
diagram. The specific packages included at this level are listed in Table 2.3 on page 8.

UML Superstructure Specification, v2.1.2 3

1

1

Dependencies

BasicActions

[1

Karnel

1
Interfaces
-
1
BasicBehaviors
1 £

Communications

«mefges

k- - - mmm oo

«merges |

«IMErfes

.
«Merges .
h

.
B

il

——

v -
' -

.]

-

_&merges

7

InteralStructures

amerges

1

SFRBKEEY. _x,

FundarmentalActivities

T gmEr e

. k) -
l . -
- . -

. .
f armerges

b —

.

"

.
.

" BasicActivities

1

lUgeCases

Basiclnteractions

Figure 2.2 - Level 1 top-level package merges

Level 2 adds further language units and extensions to those provided by the Level 1. The actual language units and

packages included at this level of compliance are listed in Table 2.4 on page 9.

UML Superstructure Specification, v2.1.2

1 1 1
SimpleTime L1 Ports
— ™ A gl —
InwocationActions Y . S Intermediatectivities
. “Imerges H LMerggs v
o <<|J'nerge>> ff’ e
. : R StructuredActivities
emerge:s 3 : E #MErges.
Structuredactions Tl . ! K T >
wmerges _oo--077
<<me_r-gé“>>' e e TR L
L2 FMerges -
________________________ BasicCompaonents
e S RRELEEETIEES -
L Emergey i
BehaviorStateMachines [~ LT . el emerges
merges
L7 cmerges “energe Intermediatedctions
Fragments emérges emerges .
= Profiles
Modes E 8
v E—
Artifacts StructuredClasses

Figure 2.3 - Level 2 top-level package merges

Finally, Level3, incorporating the full UML definition, is shown in Figure 2.4 on

Table 2.5 on page 9.

UML Superstructure Specification, v2.1.2

page 6. Its contents are described in

1 1
[AzzocistionClasses
PowerTypes haciels
[0
™) A Ki
ProtocolStateMachines " L J o InformationFloves
T amefges \ “MmErge: AMBrges e
e " “hnerges ' . LT
\ - I“, ;I’ L ‘ «merge».""‘ -
ComponentDeplayments MEFYE: . . h . T CompleteActions
a \\ I‘\ r'J ,’/ e
f .. v L smerges
fiEreee. TP S A e
- . VLT LT __,..--"-
L3 . “MErgEs
- o amergesTTTTTL T T SRR S ----o-3y| Complstedctiviies
PackagingCompanents g---- ; .-
i - o : T T amerges
| aimierges Ja’ ': ‘\\
— o : “amerges e
- & . «MErges . Templstes
Collaborations ! | .
R 1=l = ' .
s | Y
; | 1
L v Complete=tructuredActivities
StructuredActivities ExtraStructuredActiviies

Figure 2.4 - Level 3 top-level package merges

2.3

Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language units in all the levels below that level. “Full realization” for a language unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level
1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels

without loss of information.
There are two distinct types of compliance. They are:

« Abstract syntax compliance. For a given compliance level, this entails:
« compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged

UML metamodel for that compliance level and,

UML Superstructure Specification, v2.1.2

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.
« Concrete syntax compliance. For a given compliance level, this entails:

« Compliance to the notation defined in the “Notation” clauses in this specification for those metamodel elements
that are defined as part of the merged metamodel for that compliance level and, by implication, the diagram types
in which those elements may appear. And, optionally:

« the ability to output diagrams and to read in diagrams based on the XMl schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the
notation.

Compliance for a given level can be expressed as:

« abstract syntax compliance

« concrete syntax compliance

« abstract syntax with concrete syntax compliance

- abstract syntax with concrete syntax and diagram interchange compliance

Table 2.1 Example compliance statement

Compliance Summary

Compliance level Abstract Syntax Concrete Syntax Diagram Interchange Option
Level O YES YES YES

Level 1 YES YES NO

Level 2 YES NO NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various “Semantics” sub clauses of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which
ones to support. Finally, it is recognized that some implementors and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this
potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementors and profile designers may
also provide informal feature support statements. These statements identify support for additional features in terms of
language units and/or individual metamodel packages, as well as for less precisely defined dimensions such as
presentation options and semantic variation points.

UML Superstructure Specification, v2.1.2 7

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given
in Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
Deployments Deployments::Artifacts (L2) YES YES Note (4) Note (5)
Deployments::Nodes (L2)
State Machines StateMachines::BehaviorStateMachines (L2) | Note (1) YES Note (2) Note (3)
StateMachines::ProtocolStateMachines (L3)

Note (1): States and state machines are limited to a single region
Shallow history pseudostates not supported

Note (2): FIFO queueing in event pool

Note (3): Inherited elements indicated using grey-toned lines, etc.

2.4 Compliance Level Contents

The following tables identify the packages by individual compliance levels in addition to those that are defined in lower
levels (as a rule, Level (N) includes all the packages supported by Level (N-1)). The set of actual modeling features added
by each of the packages are described in the appropriate clauses of the related language unit.

Table 2.3 Metamodel packages added in Level 1

Language Unit

Metamodel Packages

Actions Actions::BasicActions

Activities Activities::Fundamental Activities
Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior

CommonBehaviors::BasicBehaviors

CommonBehaviors::Communications

Structures

CompositeStructure::InternalStructures

Interactions

Interactions::Basiclnteractions

UseCases

UseCases

UML Superstructure Specification, v2.1.2

Table 2.4 Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Actions Actions::StructuredActions
Actions::IntermediateActions

Activities Activities::IntermediateActivities
Activities::StructuredActivities

Components Components::BasicComponents

Deployments

Deployments::Artifacts

Deployments::Nodes

General Behavior

CommonBehaviors::SimpleTime

Interactions

Interactions::Fragments

Profiles

AuxilliaryConstructs::Profiles

Structures

CompositeStructures::InvocationActions

CompositeStructures::Ports

CompositeStructures::StructuredClasses

State Machines

StateMachines::BehaviorStateMachines

Table 2.5 Metamodel packages added in Level 3

Language Unit

Metamodel Packages

Action Actions::CompleteActions

Activities Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes::AssociationClasses
Classes::PowerTypes

Components Components::PackagingComponents

Deployments

Deployments::ComponentDeployments

Information Flows

AuxilliaryConstructs::InformationFlows

Models

AuxilliaryConstructs::Models

State Machines

StateMachines::ProtocolStateMachines

Structures CompositeStructures::Collaborations
CompositeStructures::StructuredActivities
Templates AuxilliaryConstructs:: Templates

UML Superstructure Specification, v2.1.2

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« UML 2.0 Superstructure RFP
« UML 2. Infrastructure Specification

» MOF 2.0 Specification

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Architectural Alignment and MDA Support

Clause 1, “Language Architecture” of the Unified Modeling Language: Infrastructure explains how the Unified Modeling
Language: Infrastructure is architecturally aligned with the Unified Modeling Language: Superstructure that
complements it. It also explains how the InfrastructureLibrary defined in the Unified Modeling Language: Infrastructure
can be strictly reused by MOF 2.0 specifications.

It is the intent that the unified MOF 2.0 Core specification must be architecturally aligned with the Unified Modeling
Language: Infrastructure part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification
must be architecturally aligned with the Unified Modeling Language: Superstructure part of this specification.

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This specification’s support for MDA is discussed in the Unified Modeling Language:
Infrastructure Annex B, “Support for Model Driven Architecture.”

6.2 On the Run-Time Semantics of UML

The purpose of this sub clause of the document is to provide a very high-level view of the run-time semantics of UML

and to point out where the various elements of that view are covered in the specification. The term “run-time” is used to
refer to the execution environment. Run-time semantics, therefore, are specified as a mapping of modeling concepts into
corresponding program execution phenomena. There are, of course, other semantics relevant to UML specifications, such

10 UML Superstructure Specification, v2.1.2

as the repository semantics, that is, how a UML model behaves in a model repository. However, those semantics are
really part of the definition of the MOF. Still, it is worth remarking that not every concept in UML models a run-time
phenomenon (e.g., the “package” concept).

6.2.1 The Basic Premises

There are two fundamental premises regarding the nature of UML semantics. The first is the assumption that all behavior
in a modeled system is ultimately caused by actions executed by so-called “active” objects (see “Class (from
Communications)” on page 436). This includes behaviors, which are objects in UML 2, which can be active and
coordinate other behaviors. The second is that UML behavioral semantics only deal with event-driven, or discrete,
behaviors. However, UML does not dictate the amount of time between events, which can be as small as needed by the
application, for example, when simulating continuous behaviors.

6.2.2 The Semantics Architecture

Figure 6.1 identifies the key semantic areas covered by the current standard and how they relate to each other. The items
in the upper layers depend on the items in the lower layers but not the other way around. (Note that the structure of
metamodel package dependencies is somewhat similar to the dependency structure indicated here. However, they are not
the same and should be distinguished. This is because package dependencies specify repository dependencies not
necessarily run-time dependencies.)

Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

At the highest level of abstraction, it is possible to distinguish three distinct composite layers of semantic definitions. The
foundational layer is structural. This reflects the premise that there is no disembodied behavior in UML — all behavior is
the consequence of the actions of structural entities. The next layer is behavioral and provides the foundation for the
semantic description of all the higher-level behavioral formalisms (the term “behavioral formalism” refers to a formalized
framework for describing behavior, such as state machines, Petri nets, data flow graphs, etc.). This layer, represented by
the shaded box in Figure 6.1, is the behavioral semantic base and consists of three separate sub areas arranged into two
sub layers. The bottom sub layer consists of the inter-object behavior base, which deals with how structural entities
communicate with each other, and the intra-object behavior base, which addresses the behavior occurring within
structural entities. The actions sub layer is placed on top of these two. It defines the semantics of individual actions.
Actions are the fundamental units of behavior in UML and are used to define fine-grained behaviors. Their resolution and
expressive power are comparable to the executable instructions in traditional programming languages. Actions in this sub

UML Superstructure Specification, v2.1.2 11

layer are available to any of the higher-level formalisms to be used for describing detailed behaviors. The topmost layer
in the semantics hierarchy defines the semantics of the higher-level behavioral formalisms of UML.: activities, state
machines, and interactions. Other behavioral formalisms may be added to this layer in the future.

6.2.3 The Basic Causality Model

The “causality model” is a specification of how things happen at run time and is described in detail in the Common
Behaviors clause on page 419. It is briefly summarized here for convenience, using the example depicted in the
communication diagram in Figure 6.2. The example shows two independent and possibly concurrent threads of causally
chained interactions. The first, identified by the thread prefix ‘A’ consists of a sequence of events that commence with
activeObject-1 sending signal sl to activeObject-2. In turn, activeObject-2 responds by invoking operation op1() on
passiveObject-1 after which it sends signal s2 to activeObject-3. The second thread, distinguished by the thread prefix
‘B, starts with activeObject-4 invoking operation op2() on passiveObject-1. The latter responds by executing the method
that realizes this operation in which it sends signal s3 to activeObject-2.

The causality model is quite straightforward: Objects respond to messages that are generated by objects executing
communication actions. When these messages arrive, the receiving objects eventually respond by executing the behavior
that is matched to that message. The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML specification (i.e., it is a semantic
variation point).

Al: sl A3: s2
activeObject-1 activeObject-2 activeObject-3

A2: op]()l IBl.l: s3

B1: op2()
- - —» - -
activeObject-4 passiveObject-1

Figure 6.2 - Example illustrating the basic causality model of UML

The causality model also subsumes behaviors invoking each other and passing information to each other through
arguments to parameters of the invoked behavior, as enabled by CallBehaviorAction (see “CallBehaviorAction (from
BasicActions)” on page 244). This purely “procedural” or “process” model can be used by itself or in conjunction with
the object-oriented model of the previous example.

6.2.4 Semantics Descriptions in the Specification

The general causality model is described in the introductory part of Clause 13 (CommonBehaviors) and also, in part, in
the introduction to Clause 14 (Interactions) and the sub clause on Interaction (14.3.13) and Message (14.3.20).

The structural foundations are mostly covered in two clauses. The elementary level is mostly covered in Clause 7, where
the root concepts of UML are specified. In particular, the clauses on InstanceSpecifications (7.3.22), Classes (7.3.7)
Associations (7.3.3), and Features (7.3.19). The composites level is described primarily in Clause 9 (Composite
Structures), with most of the information related to semantics contained in sub clauses 9.3.12 (Property concept) and
9.3.13 (StructuredClassifier). In addition, the introduction to this clause contains a high-level view of some aspects of
composite structures.

12 UML Superstructure Specification, v2.1.2

The relationship between structure and behavior and the general properties of the Behavior concept, which are at the core
of the behavioral base are described in CommonBehaviors (in the introduction to Clause 13 and in sub clause 13.3.2 in
particular).

Inter-object behavior is covered in three separate clauses. The basic semantics of communications actions are described in
the introduction to Clause 11 (Actions) and, in more detail, in the clauses describing the specific actions. These can
potentially be used by an object on itself, so can be inter- or intra-object. The read/write actions can also be used by one
object to access other objects, so are potentially inter- or intra-object. These actions can be used by any of the behavior
formalisms in UML, so all are potentially inter-object behaviors. However, the interactions diagram is designed
specifically to highlight inter-object behavior, under its concept of message. These are defined in the Interactions clause
(sub clauses 14.3.20 and 14.3.21), while the concepts of events and triggers are defined in the Communications package
of CommonBehaviors (Clause 13). Occurrence specifications are defined in sub clause 14.3.25 of the Interactions clause.
The other two behavior formalisms can be translated to interactions when they use inter-object actions.

All the behavior formalisms are potentially intra-object, if they are specified to be executed by and access only one
object. However, state machines are designed specifically to model the state of a single object and respond to events
arriving at that object. Activities can be used in a similar way, but also highlight input and output dependency between
behaviors, which may reside in multiple objects. Interactions are potentially intra-object, but generally not designed for
that purpose.

The various shared actions and their semantics are described in Clause 13.

Finally, the higher-level behavioral formalisms are each described in their own clauses: Activities in Clause 12,
Interactions in Clause 14, and State Machines in Clause 15.

6.3 The UML Metamodel

6.3.1 Models and What They Model

A model contains three major categories of elements: Classifiers, events, and behaviors. Each major category models
individuals in an incarnation of the system being modeled. A classifier describes a set of objects; an object is an
individual thing with a state and relationships to other objects. An event describes a set of possible occurrences; an
occurrence is something that happens that has some consequence within the system. A behavior describes a set of possible
executions; an execution is the performance of an algorithm according to a set of rules. Models do not contain objects,
occurrences, and executions, because those things are the subject of models, not their content. Classes, events, and
behaviors model sets of objects, occurrences, and executions with similar properties. Value specifications, occurrence
specifications, and execution specifications model individual objects, occurrences, and executions within a particular
context. The distinction between objects and models of objects, for example, may appear subtle, but it is important.
Objects (and occurrences and executions) are the domain of a model and, as such, are always complete, precise, and
concrete. Models of objects (such as value specifications) can be incomplete, imprecise, and abstract according to their
purpose in the model.

6.3.2 Semantic Levels and Naming

A large number of UML metaclasses can be arranged into 4 levels with metasemantic relationships among the
metaclasses in the different levels that transcend different semantic categories (e.g., classifiers, events, behaviors). We
have tried (with incomplete success) to provide a consistent naming pattern across the various categories to place
elements into levels and emphasize metarelationships among related elements in different levels. The following 4 levels
are important:

UML Superstructure Specification, v2.1.2 13

Type level — Represents generic types of entities in models, such as classes, states, activities, events, etc. These are the
most common constituents of models because models are primarily about making generic specifications.

Instance level — These are the things that models represent at runtime. They don’t appear in models directly (except very
occasionally as detailed examples), but they are necessary to explain the semantics of what models mean. These classes
do not appear at all in the UML2 metamodel or in UML models, but they underlie the meaning of models. We provide a
brief runtime metamodel in the Common Behavior clause, but we do not formally define the semantics of UML using the
runtime metamodel. Such a formal definition would be a major amount of work.

Value specifications — A realization of UML2, compared to UML, is that values can be specified at various levels of
precision. The specification of a value is not necessarily an instance; it might be a large set of possible instances
consistent with certain conditions. What appears in models is usually not instances (individual values) but specifications
of values that may or may not be limited to a single value. In any case, models contain specifications of values, not values
themselves, which are runtime entities.

Individual appearances of a type within a context — These are roles within a generic, reusable context. When their context
is instantiated, they are also bound to contained instances, but as model elements they are reusable structural parts of their
context; they are not instances themselves. A realization of UML2 was that the things called instances in UML1 were
mostly roles: they map to instances in an instance of their container, but they are model elements, not instances, because
they are generic and can be used many times to generate many different instances.

We have established the following naming patterns:
Types : Instances : Values : Uses

Classifier, Class : Instance, Object : InstanceSpecification : Part, Role, Attribute,
XXXUse (e.g., CollaborationUse)

Event : Occurrence : OccurrenceSpecification : various (e.g., Trigger)

Behavior : Execution : ExecutionSpecification : various (e.g., ActivityNode, State),
XXXUse (e.g., InteractionUse)

The appearances category has too wide a variety of elements to reduce to a single pattern, although the form XXXUse is
suggested for simple cases where an appearance of an element is contained in a definition of the same kind of element.

In particular, the word “event” has been used inconsistently in the past to mean both type and instance. The word “event”
now means the type and the word “occurrence” means the instance. When necessary, the phrases “event type” (for event)
and “event occurrence” (for occurrence) may be used. Note that this is consistent with the frequent English usage “an
event occurs” = the occurrence of an event of a given type; so to describe a runtime situation, one could say “event X
occurs” or “an occurrence of event X” depending on which form is more convenient in a sentence. It is redundant and
incorrect to say “an event occurrence occurs.”

6.4 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the UML.: Infrastructure specification that complements this specification. Part I,
“Introduction” of UML.: Infrastructure explains the language architecture structure and the formal approach used for its
specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Part 11,
“Infrastructure Library,” or the Classes::Kernel package that reuses it, described in Clause 7, “Classes.” The former
specifies the flexible metamodel library that is reused by the latter; the latter defines the basic constructs used to define
the UML metamodel.

14 UML Superstructure Specification, v2.1.2

With that background the reader should be well prepared to explore the user level constructs defined in this UML.:
Superstructure specification. These concepts are organized into three parts: Part | - “Structure,” Part 11 - “Behavior,” and
Part 11l - “Supplement.” “Part I. Structure” defines the static, structural constructs (e.g., classes, components, nodes
artifacts) used in various structural diagrams, such as class diagrams, component diagrams, and deployment diagrams.
Part “Part Il - Behavior” specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used
in various behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams. “Part 1.
Structure” defines auxiliary constructs (e.g., information flows, models, templates, primitive types) and the profiles used
to customize UML for various domains, platforms, and methods.

Although the clauses are organized in a logical manner and can be read sequentially, this is a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.4.1 Specification format

The concepts of UML are grouped into three major parts:
« Part I: Concepts related to the modeling of structure
« Part Il: Concepts related to the modeling of behavior
« Part I1l: Supplementary concepts

Within each part, the concepts are grouped into clauses according to modeling capability. A capability typically covers a
specific modeling formalism. For instance, all concepts related to the state machine modeling capability are gathered in

the State Machines clause and all concepts related to the activities modeling capability are in the Activities clause. The

Capability clauses in each part are presented in alphabetical order.

Within each clause, there is first a brief informal description of the capability described in that clause. This is followed by
a sub clause describing the abstract syntax for that capability. The abstract syntax is defined by a CMOF model (i.e., the
UML metamodel) with each modeling concept represented by an instance of a MOF class or association. The model is
decomposed into packages according to capabilities. In the specification, this model is described by a set of UML class
and package diagrams showing the concepts and their relationships. The diagrams were designed to provide
comprehensive information about a related set of concepts, but it should be noted that, in many cases, the representation
of a concept in a given diagram displays only a subset of its features (the subset that is relevant in that context). The same
concept may appear in multiple diagrams with different feature subsets. For a complete specification of the features of a
concept, readers should refer to its formal concept description (explained below). When the concepts in the capability are
grouped into sub packages, the diagrams are also grouped accordingly with a heading identifying the sub package
preceding each group of diagrams. In addition, the name of the owning package is included in each figure caption.

The “Concept Definitions” sub clause follows the abstract syntax sub clause. This sub clause includes formal
specifications of all concepts belonging to that capability, listed in alphabetical order. Each concept is described
separately according to the format explained below.

The final sub clause in most clauses gives an overview of the diagrams, diagram elements, and notational rules and
conventions that are specific to that capability.

The formal concept descriptions of individual concepts are broken down into sub clauses corresponding to different
aspects. In cases where a given aspect does not apply, its sub clause may be omitted entirely from the class description.
The following sub clauses and conventions are used to specify a concept:

« The heading gives the formal name of the concept and indicates, in parentheses, the sub package in which the concept
is defined. In some cases, there may be more than one sub package name listed. This occurs when a concept is defined
in multiple package merge increments — one per package. In a few instances, there is no package name, but the phrase

UML Superstructure Specification, v2.1.2 15

16

“as specialized” appears in parentheses. This indicates a “semantic” increment, which does not involve a new
increment in the metamodel and which, therefore, does not change the abstract syntax, but which adds new semantics
to previous increments (e.g., additional constraints).

In some cases, following the heading is a brief, one- or two-sentence informal description of the meaning of a concept.
This is intended as a quick reference for those who want only the basic information about a concept.

All the direct generalizations of a concept are listed, alphabetically, in the “Generalizations” sub clause. A “direct”
generalization of a concept is a concept (e.g., a class) that is immediately above it in the hierarchy of its ancestors (i.e.,
its “parent”). Note that these items are hyperlinked in electronic versions of the document to facilitate navigation
through the metamodel class hierarchy. Readers of hardcopy versions can use the page numbers listed with the names
to rapidly locate the description of the superclass. This sub clause is omitted for enumerations.

A more detailed description of the purpose, nature, and potential usage of the concept may be provided in the
“Description” sub clause. This too is informal. If a concept is defined in multiple increments, then the first part of the
description covers the top-level package and is followed, in turn, by successive description increments for each sub
package. The individual increments are identified by a sub package heading such as

Package PowerTypes

This indicates that the text that follows the heading describes the increment that was added in the PowerTypes sub
package. The description continues either until the end of the sub clause or until the next sub package increment head-
ing is encountered.

This convention for describing sub package increments is applied to all other sub clauses related to the concept.

The “Attributes” sub clause of a concept description lists each of the attributes that are defined for that metaclass. Each
attribute is specified by its formal name, its type, and multiplicity. If no multiplicity is listed, it defaults to 0..*. This is
followed by a textual description of the purpose and meaning of the attribute. If an attribute is derived, the name will be
preceded by a slash. For example:

*body: String[1] Specifies a string that is the comment

specifies an attribute called “body” whose type is “String” and whose multiplicity is 1.

If an attribute is derived, where possible, the definition will also include a specification (usually expressed as an OCL
constraint) specifying how that attribute is derived. For instance:
/isComposite : Boolean A state with isComposite = true is said to be a composite state. A composite state is a state that
contains at least one region>

isComposite = (region > 1)

The “Associations” sub clause lists all the association ends owned by the concept. The format for these is the same as
the one for attributes described above. Association ends that are specializations or redefinitions of other association
ends in superclasses are flagged appropriately. For example:

elowerValue: ValueSpecification[0..1] {subsets Element::ownedElement} The specification of the lower bound for this
multiplicity.

specifies an association end called “lowerValue” that is connected to the “ValueSpecification” class and whose multi-
plicity is 0..1. Furthermore, it is a specialization of the “ownedElement” association end of the class “Element.”

As with derived attributes, if an association end is derived, where possible, the definition will also include a
specification (usually expressed as an OCL constraint) specifying how that association end is derived.

The “Constraints” sub clause contains a numerical list of all the constraints that define additional well-formedness rules

UML Superstructure Specification, v2.1.2

that apply to this concept. Each constraint consists of a textual description and may be followed by a formal constraint
expressed in OCL. Note that in a few cases, it may not be possible to express the constraint in OCL, in which case the
formal expression is omitted.

- “Additional Operations” contains a numerical list of operations that are applicable to the concept. These may be queries
or utility operations that are used to define constraints or other operations. Where possible, operations are specified
using OCL.

» The “Semantics” sub clause describes the meaning of the concept in terms of its concrete manifestation. This is a
specification of the set of things that the concept models (represents) including, where appropriate, a description of the
behavior of those things (i.e., the dynamic semantics of the concept).

« “Semantic Variation Points” explicitly identifies the areas where the semantics are intentionally under specified to
provide leeway for domain-specific refinements of the general UML semantics (e.g., by using stereotypes and profiles).

» The “Notation” sub clause gives the basic notational forms used to represent a concept and its features in diagrams.
Only concepts that can appear in diagrams will have a notation specified. This typically includes a simple example
illustrating the basic notation. For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify
the legal formats. The conventions of this BNF are:

« All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

« All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

« Non-terminal production rule definitions are signified with the “::=" operator.

« Repetition of an item is signified by an asterisk placed after that item: “*.

« Alternative choices in a production are separated by the ‘|” symbol (e.g., <alternative-A> | <alternative-B>).
« Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *

signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

» The “Presentation Options” sub clause supplements the “Notation” clause by providing alternative representations for
the concept or its parts. Users have the choice to use either the forms described in this sub clause or the forms described
in the “Notation” sub clause.

« “Style Guidelines” identifies notational conventions recommended by the specification. These are not normative but, if
applied consistently, will facilitate communication and understanding. For example, there is a style guideline that
suggests that the names of classes should be capitalized and another one that recommends that the names of abstract
classes be written out in italic font. (Note that these specific recommendations only make sense in certain writing
systems, which is why they cannot be normative.)

« The “Examples” sub clause, if present, includes additional illustrations of the application of the concept and its
notation.

- “Changes from previous UML” identifies the main differences in the specification of the concept relative to UML
versions 1.5 and earlier.

6.4.2 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this specification:

UML Superstructure Specification, v2.1.2 17

« An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and
« the opposite (unmarked) association end is owned by the association.
(NOTE: This convention was inherited from UML 1.x and was used in the initial versions of the specification because
there was no explicit notation for indicating association end ownership. Such a notation was introduced in revision 2.1.1
(see the notation sub clause of the Association metaclass on page 39) but was not applied to the diagrams in the
specification due to lack of tool support. In accord with the new notation, the ownership of an association end by the
association would continue to be shown by leaving the end unmarked, but the ownership of an end by the classifier would
be shown by marking that classifier-owned end with a dot.)
 An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,
« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).
« Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

« The constraint {subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

« A constraint {redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.
- If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

- If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. (Note that, by convention, non-navigable association ends are
often left unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal
constraints - although they may be needed for other purposes, such as MOF language bindings that use the metamodel.)

+ Associations that are not explicitly named, are given names that are constructed according to the following production
rule:

"A " <association-end-namel> <association-end-name2>

where <association-end-namel> is the name of the first association end and <association-end-name2> is the name of
the second association end.

« An unlabeled dependency between two packages is interpreted as a package import relationship.
Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing
this specification, such as the unavailability of conforming modeling tools at the time the specification itself was being
defined. Therefore, they should not necessarily be deemed as recommendations for general use.
6.5 Acknowledgements

The following companies submitted and/or supported parts of this specification:

o 7irene
« 88solutions
« Adaptive

18 UML Superstructure Specification, v2.1.2

« Advanced Concepts Center LLC
 Alcatel

 Artisan

» Borland

» Ceira Technologies

« Commissariat a L'Energie Atomique
« Computer Associates

« Compuware

» DaimlerChrysler

« Domain Architects

« Embarcadero Technologies

» Enea Business Software
 Ericsson

« France Telecom

 Fraunhofer FOKUS

« Fujitsu

» Gentleware

« Intellicorp

» Hewlett-Packard

» |-Logix

« International Business Machines
« IONA

+ Jaczone

- Kabira Technologies

« Kennedy Carter

» Kilasse Objecten

» KLOCwork

» Lockheed Martin

« MEGA International

» Mercury Computer

« Motorola

« MSC.Software

» Northeastern University
« o0ose Innovative Informatik GmbH
» Oracle

» Popkin Software

» Proforma

 Project Technology

UML Superstructure Specification, v2.1.2

 Sims Associates

« SOFTEAM

+ Sun Microsystems

« Syntropy Ltd.

 Telelogic

« Thales Group

« TNI-Valiosys

+ Unisys

« University of Kaiserslautern

« University of Kent

- VERIMAG

+ WebGain

« X-Change Technologies
The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Bjorkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, @ystein

Haugen, Sridhar lyengar, Cris Kobryn, Birger Mgller-Pedersen, James Odell, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert, and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Karl Frank, William Frank, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson,
Allan Kennedy, Mitch Kokar, Thomas Kuehne, Michael Latta, Antoine Lonjon, Nikolai Mansurov, Sumeet Malhotra,
Dave Mellor, Stephen Mellor, Joaquin Miller, Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji, lleana Ober, Barbara
Price, Tom Rutt, Kendall Scott, Oliver Sims, Cameron Skinner, Jeff Smith, Doug Tolbert, Tim Weilkiens, and lan Wilkie.

The authors are grateful to Pavel Hruby for his drawing tool stencil for UML, which was used to create many of the UML
diagrams in this document.

20 UML Superstructure Specification, v2.1.2

Part | - Structure

This part defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural
diagrams, such as class diagrams, component diagrams, and deployment diagrams. The UML packages that support
structural modeling are shown in the figure below.

1

Clazses

M

<<imr:u:|rt>>
:

CompositeStructures

I

lrnpaorts

:

Components

)

<<!mp|:|rt>>

.

Deployiments

Part I, Figure 1 - UML packages that support structural modeling

The function and contents of these packages are described in following clauses, which are organized by major subject areas.

UML Superstructure Specification, v2.1.2 21

22

UML Superstructure Specification, v2.1.2

7 Classes

7.1 Overview

The Classes package contains sub packages that deal with the basic modeling concepts of UML, and in particular classes
and their relationships.

Reusing packages from UML 2 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages.
This part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used
in, for example, MOF. The Kernel package is the central part of the UML, and reuses the Constructs and PrimitiveTypes
packages of the InfrastructureLibrary.

In many cases, the reused classes are extended in the Kernel with additional features, associations, or superclasses. In
subsequent diagrams showing abstract syntax, the subclassing of elements from the infrastructure library is always elided
since this information only adds to the complexity without increasing understandability. Each metaclass is completely
described as part of this clause; the text from the infrastructure library is repeated here.

It should also be noted that Kernel is a flat structure that like Constructs only contains metaclasses and no sub-packages.
The reason for this distinction is that parts of the infrastructure library have been designed for flexibility and reuse, while
the Kernel in reusing the infrastructure library has to bring together the different aspects of the reused metaclasses.

The packages that are explicitly merged from the InfrastructureLibrary are the following:
 PrimitiveTypes
 Constructs

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged.

1

«imports
Constructs [p __________ > FrimitiveTypes

I
EMErges

| afnErges

Kernel

Figure 7.1 - InfrastructureLibrary packages that are merged by Kernel (all dependencies in the picture
represent package merges)

UML Superstructure Specification, v2.1.2 23

7.2 Abstract Syntax

Figure 7.2 shows the package dependencies of the Kernel packages.

1

Kernel

™

~
-

zmerges’

~

4

ernerges
-7 @merges: i

E— 1! e

AzzocistionClasses Dependencies

PowerTypes

A

QCFI"IEI'GI]E&

1 1

Interfaces @:mer_geg-_:_} BasicBehaviors

Figure 7.2 - Subpackages of the Classes package and their dependencies

24 UML Superstructure Specification, v2.1.2

Package Kernel

I=ubsets owner} {subsets ownedElerment}t
+ ovwningElement
Efement - — g

HEaR ok o

=

%

+ fow ner

TreadCrly, uniond

+ owvnedComment Comment
E]

freadcnly, union}d
Rofationsiip

+ IrelatedElement Element

+ annotatedElemernt

1%

TreadCnly, union,
subisets relatedElernent}
ractedRefationsiip + fAarget
1..*
+ JZOUFCE
1. =
TreadCnly, union,
subisets relatedElerent}

*

Figure 7.3 - Root diagram of the Kernel package

UML Superstructure Specification, v2.1.2

=

*

Comment

by @ String

25

Element

NamedElement

Name : String [
visibility : VisibilityKind
/qualifiedName : String

8o
et

<<enumeration>>
VisibilityKind

public
private
protected
package

{readOnly, subsets member}

greadOnIy, union}
+

PackageableElement

+importedMember |

visibility : VisibilityKind

{readOnly, union,
subsets owner}

+ importingNamespace
*

{subsets source, subsets owner}

'member
NamedElement
* > NamedEfemen |

* | +/ownedMember

{readOnly, union, subsets

+/namespace member, subsets ownedElement}
g—————————————————————
0.1 ‘ DirectedRelationship ‘

{subsets target}
+ importedElement

Elementimport

1 +elementimport

{subsets
ownedElement}

{subsets source,
subsets owner}
+importingNamespace

{subsets owned

Figure 7.4 - Namespaces diagram of the Kernel package

26

+packagelmp0rt visibility : VisibilityKind |
lement}

%‘ PackageableElement
1 1

visibility : VisibilityKind
alias : String [0..1]

DirectedRelationship ‘

{subsets target}
+ importedPackage

Package
oL |

Packagelmport

UML Superstructure Specification, v2.1.2

Element

i

MultiplicityE lemment
isCOrdered : Boolean

Tsubsets owrner
+ owningUpper

{=ubsets ownedElement}

+ uppervalue

isUnique : Boolean
fupper - Unlimitediiatural [0..1]

0.1
{subsets ownert

{subsets lenedEIement}

0.1

+ lowervalue

ValueSpecification

0.1

PackageableElement

T‘

flower : Integer [0..1] + owninglower
0.1
NamedEfement
TypedElement +type
* 0.1

Figure 7.5 - Multiplicities diagram of the Kernel package

UML Superstructure Specification, v2.1.2

Type

27

‘ TypedEfa... | | PackaqeabieElomont

{subsets ownedElerment, Drdered}‘T‘ ‘T
+ operand T
| VizlneSpecification |

Tsubsets ownert)
+ expression - - — + instance —
73 Expression ! iteraiSpecification | | InstanceValue I—‘3’1 | InstanceSpecification
- symbol : String '
LiteralBoolean Literallnteger LiteralString LiteralUnlimite dHatural Literallull
walue | Boolean value : Integer walue : String value : Unlimitedhatural

OpaqueExpression
bady String
language ; String

Figure 7.6 - Expressions diagram of the Kernel package

PackageablaFlamant

Ar fordered}

+ constrainedElement

Constraint Eiontent
MNantespace R *
{subsets {subsets owner: {subsets ownedElement?
{subsets namespace} gwnedMamber} + oweningCanstraint + specification ValweSpecification
+ context + ovrnedRule 01 1
0.1 *

Figure 7.7 - Constraints diagram of the Kernel package

28 UML Superstructure Specification, v2.1.2

PackageabioFlamont |

{subsets owner:
+ ovwvninginstance

InstanceSpecification 1

feubsets ownert

+ owvninginstanceSpec

0.1

A
subsets
éwnedEIement} ;{SDL\"E;??SE[W”EI’} {;;Jé:;gcé}uwnedﬂement,
+ it oot s + value ! ValueSpecification |
* 0.1 *
* + definingFeature
> StructuraliFeature
{subsets pwnedElerment’ 1
+ specificatiol r
k! VaineSpecification |

+ classifier, —
Classifier
®

Figure 7.8 - Instances diagram of the Kernel package

MamoedEfenront

{readCnly, union}

+ fredefintionCaontext

f

| RedefinzbieEfomont ‘ MNamrespace

Classifiar

Type

{subsets target}
+ general

DirectedRelationship

RadefinabfeFlament
Isleaf : Booleah

£
freadOnly, union}:
+ fredefinedElement

3

freadOnly, union, {subsets

*

subsets feature} redefinitionContest
Property + fattribute ' + clagsifier ;
* K]

Isd pstract | Booleah

1

{subsets source,

subsets ownert
+ specific

Generalization
isSubstitutable : Boalean

{subzets

ownedElerment}
+ generalization

1

*

{readOnly, subsets member}

+ finheritecdhember, MamedElement

3

{subsets redefinedElerment}

+ redefinedClassifier

%

+ Jgeneral

Figure 7.9 - Classifiers diagram of the Kernel package

UML Superstructure Specification, v2.1.2

29

RedefinableEfemaent

HE LIS ation:
{readOrly, unian+ TreadOnly, union} ParameterDirectionKind
— + ffesturingClassifier + feature Feature in
Crassifier N = Sk inout
IsStatic | Boolean
i) aut
return

Multiplicity Eh ¢ TypedElement Na.
| ot Elemer ‘ - espaee TypedEfenant ‘ MuttiplicityEiement |

BehavioralFeature Parameter
StructarafFeature fsubsats direction : ParameterDirectionkind
JsReadOnly . Boolean owhedMernber fdefault © String
f
ordered}
0.1 + owvnedParameter
+ owvnerFormalParam *

{subsets namespace}

{subzets ownert
0.1 |+ owningParameter

{subsets ownedElernent}

+ raizedException
ot Tvpe
R *
0.1 [+ defaulyalue

VaireSpecification

Figure 7.10 - Features diagram of the Kernel package

30 UML Superstructure Specification, v2.1.2

BehavioraiFeature

|

Operation

izQuery . Boolean
fizOrdered : Boolean
fisUnigue : Boolean
Nowwer © Integer

fupper - UnlimitedMatural

[0.1]
[0.1]

{subsets namespace) fredefines ownedPararneter:

> operstion + owvnedParameter Parameter
0.1 *
subsets context {subsets ownedRule:
{+ pre(?orrtexp ¥ + precondtion -
0.1 * Constraint
{subsets context} fsubsets owrnedrule}
+ postContext + postocondition -
0.1 *
{subsets contesxt} {subsets ownedRule:
+ bodyContext + hodyCondition
0.1 0.1
+ hype | Type
* 0.1
redefines raisedExceptio
* { ¥ ra%sed%?cce
ol

faubsets redefinedElement

+ redefinedCperation
-

-

Figure 7.11 - Operations diagram of the Kernel package

UML Superstructure Specification, v2.1.2

31

Classifier

% {redefines general}

t+ /superClass
Class P

B

{subsets classifier,
Subsets namespace,

+subsettedPropert

StructuralFeature

Relationship‘ ‘ Classifier

Property

{subsets member, ordered}
+memberEnd

isDerived : Boolean
isReadOnly : Boolean
isDerivedUnion : Boolean
[default : String

*

/IsComposite : Boolean

{subsets namespace,
subsets redefinitionContext}
+class

.

N " {subsets attribute,
iug;tsetss featuringClassifier} ¢ e ownedMember,
ordered}
+ownedAttribute
g «
0.1

{subsets redefinedElement}
+ redefinedProperty

I

*

aggregation : AggregationKind

+association

Association

2.%

{subsets memberEnd,
subsets feature, subsets
ownedMember, ordered
+ownedEnd

{subsets association,
subsets namespace,|
ubsets featuringClassifier}
+owningAssociation

0.1
isDerived : Boolean

isubs_ets owner}
navigableOwnedEnd

P
0.1

*

{subsets owner}
+owningProperty

(subsets ownedElement}
+defaultValue

0.1

ValueSpecification

0.1 0.1

+/opposite
0.1

{subsets ownedMember, ordered}
+nestedClassifier

Classifier

0.1

{subsets redefinitionContext,
subsets namespace,

subsets featuringClassifier}
+class

o

{subsets feature, subsets
ownedMember, ordered}
+ownedOperation

Operation

0.1

Figure 7.12 - Classes diagram of the Kernel package

32

<<enumeration>>
AggregationKind

none
shared
composite

{readOnly, odered}
+/endType

Type

UML Superstructure Specification, v2.1.2

Classifier

{subsets namespace,

subsets featuringClassifier, {subsets attribute,
subsets classifier} subsets ownedMerber, ordered)
+ datatype + ovyvned Sttribute EI
DataType ht 0.1 * roperty
{subsets namespace,
subsets redefinitionConkesxt, {subsets Feature,
subsets FeaturingClassifier: subsets ownedMember, ardered}

+ datatype dOperati
o P + owenedOperation @I
0.1 *

InstanceSpecification

{aubsets ownedMember, T‘

{subsets namespace} ordered}
b Enumerstion + ovvnedLiteral
Primitive Type Enumeration b " EnumerationLiteral
| 0.4

Figure 7.13 - DataTypes diagram of the Kernel package

UML Superstructure Specification, v2.1.2

Tsubsets namespace

Namospace | | PackageabieFlemant |

{subsets namespace-
+ owyningPackage

{aubzets ownedhMernberd
+ packagedElement__l

Package e

fsubsets namespace-
+ package

{zubsets packagedElement

T PackageabieFlemant

Type

+ fowened Type

0.1

feubsets source,
subsats owner:
+ receivingPackage

*

| DirectedRelztionship

feubsets ownedElerment:
+ packageMerge

*

+mergedPackage [subsets target)

. | PackageMerge

1

{subsets packagedElement’}
+ InestedPackage

*

+ nestingPackage |01

Figure 7.14 - The Packages diagram of the Kernel package

34

UML Superstructure Specification, v2.1.2

Package Dependencies

UML::Classes:: UML::Classes::
Kernel:: Dependencies::
DirectedRelationship PackageableElement

+supplier ~ *supplierDependency

NamedElement | 1.* {subsets target} * Dependency UML::Classes::
Kernel::Element

+client +clientDependency

1.* {subsets source} * ﬂ&
{subsets
ownedElement
UML::Classes:: +mapping Abstraction Usage NamedElement {readOnly
o Kergel..] ¢ <> + JownedMember
paqueExpression [~ o1 -
Realization Namespace . }rr]%?:]jeos"‘)';’é .
——————
0.1

{subsets supplier} Z%

+contract Classifier
* T

Substitution

{subsets client}
+substitutingClassifier
+substitution ->
{subsets ownedElement
subsets clientDependency}

*

Figure 7.15 - Contents of Dependencies package

UML Superstructure Specification, v2.1.2

Package Interfaces

| UML_::ClassesKernel::StructuralFeature |

Property

{subsets ownedMember, ordered}

UML::Classes::Kernel::
BehavioralFeature

i

Operation

UML ::Classes::
Kernel::Classifier

‘T‘

UML.::Classes:: + nestedClassifier
Kernel::Classifier "
{subsets attribute,
sUbsets gwnedhMernber, ordered
+ nwnedE\ttnEute + 0.1 Interface
* EZEE;‘?:SHEIF‘E:;T;;&E 0..1 {subsets namespace,
: subsets redefinitionContesxt
subsets featuringClassifier) ¥
{eubsets feature, {subsets redefinedElernent’:
subsets ownedMermber, {subsets + redefinedinterface
Drdere%}) redefinitionContesxt} "
+ ownedOperation + Interface
* 0.1 *
I
+ contract |1

BehavioredClassifier

[

1

{subsets suppliert

{subsets ownedElerment,

*

subsets clentDependency’
+ interfaceRealization

InterfaceRealization

+ implementing
{subsets client}

*

lagsifiar

J;

UML::Classes::
Dependencies:

Realization

Figure 7.16 - Contents of Interfaces package

36

UML Superstructure Specification, v2.1.2

Package AssociationClasses

UML::ClassesKernel::
StructuraiFeature

fsubsets ownert {subsets ownedElement, ordered}
Propelty + azsociationEnd + gualifier Propelty
0.1 *
UML::Classes:: UML::Classes::
Kernel::Class Kernel::Association

AssociationClass

Figure 7.17 - Contents of AssociationClasses package

Package PowerTypes

Classifier LML :Classes::ernel:: Generalization
PackageableElement

+ poweertype 0.1 + generalization |*

GeneralizationSet

+ povwvertypeExtent + generalizstionet

isCovering : Boolean
E] . e
isDisjoint ; Boolean

Figure 7.18 - Contents of PowerTypes package

UML Superstructure Specification, v2.1.2

7.3 Class Descriptions

7.3.1 Abstraction (from Dependencies)

Generalizations

- “Dependency (from Dependencies)” on page 62

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. In the metamodel, an Abstraction is a Dependency in which there is a
mapping between the supplier and the client.

Attributes

No additional attributes

Associations

e mapping: Expression[0..1]
A composition of an Expression that states the abstraction relationship between the supplier and the client. In
some cases, such as Derivation, it is usually formal and unidirectional. In other cases, such as Trace, it is usually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the elements is not specified.

Constraints

No additional constraints

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional
or bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») that are defined in the
Standard Profiles clause. If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific
predefined stereotype name.

7.3.2 AggregationKind (from Kernel)
AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Generalizations

None

38 UML Superstructure Specification, v2.1.2

Description

AggregationKind is an enumeration of the following literal values:

e none
Indicates that the property has no aggregation.

e shared
Indicates that the property has a shared aggregation.

e composite
Indicates that the property is aggregated compositely, i.e., the composite object has responsibility for the existence
and storage of the composed objects (parts).

Semantic Variation Points

Precise semantics of shared aggregation varies by application area and modeler.
The order and way in which part instances are created is not defined.

7.3.3 Association (from Kernel)

An association describes a set of tuples whose values refer to typed instances. An instance of an association is called a
link.

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52
» “Relationship (from Kernel)” on page 132

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association may
have the same type.

An end property of an association that is owned by an end class or that is a navigable owned end of the association
indicates that the association is navigable from the opposite ends; otherwise, the association is not navigable from the
opposite ends.

Attributes

e isDerived : Boolean
Specifies whether the association is derived from other model elements such as other associations or constraints. The
default value is false.

Associations

e memberEnd : Property [2..*]
Each end represents participation of instances of the classifier connected to the end in links of the association. This is
an ordered association. Subsets Namespace::member.

e ownedEnd : Property [*]
The ends that are owned by the association itself. This is an ordered association. Subsets Association::memberEnd,
Classifier::feature, and Namespace::ownedMember.

UML Superstructure Specification, v2.1.2 39

« navigableOwnedEnd : Property [*]
The navigable ends that are owned by the association itself. Subsets Association::ownedEnd.

e [endType: Type [1..*]
References the classifiers that are used as types of the ends of the association.

Constraints

[1] An association specializing another association has the same number of ends as the other association.
self.parents()->forAll(p | p.memberEnd.size() = self. memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endType is derived from the types of the member ends.

self.endType = self. memberEnd->collect(e | e.type)
[4] Only binary associations can be aggregations.

self. memberEnd->exists(aggregation <> Aggregation::none) implies self. memberEnd->size() = 2
[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2 then ownedEnd->includesAll(memberEnd)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise, it allows duplicate elements.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association ends,
not to the association itself. It means that the subsetting association end is a collection that is either equal to the collection
that it is subsetting or a proper subset of that collection. (Proper subsetting implies that the superset is not empty and that
the subset has fewer members.) Subsetting is a relationship in the domain of extensional semantics.

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naive but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In
the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition is a relationship between features of classifiers within a specialization hierarchy. Redefinition may be used to
change the definition of a feature, and thereby introduce a specialized classifier in place of the original featuring
classifier, but this usage is incidental. The difference in domain (that redefinition applies to features) differentiates
redefinition from specialization.

40 UML Superstructure Specification, v2.1.2

Note — For n-ary associations, the lower multiplicity of an end is typically 0. A lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of all elements of the subgraph below that element.
Composition is represented by the isComposite attribute on the part end of the association being set to true.

Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently
from instances participating in links at the other ends of the association. The precise mechanism by which such access is
achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible,
and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating
associations from non-navigable ends.

Semantic Variation Points

» The order and way in which part instances in a composite are created is not defined.
« The logical relationship between the derivation of an association and the derivation of its ends is not defined.
- The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary association is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to a tool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

» The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

« Aslash appearing in front of the name of an association, or in place of the name if no name is shown, marks the
association as being derived.

- A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 7.21). This notation is for documentation purposes only
and has no general semantic interpretation. It is used to capture some application-specific detail of the relationship
between the associated classifiers.

 Generalizations between associations can be shown using a generalization arrow between the association symbols.

UML Superstructure Specification, v2.1.2 41

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

« A multiplicity

« A property string enclosed in curly braces. The following property strings can be applied to an association end:
« {subsets <property-name>} to show that the end is a subset of the property called <property-name>.
« {redefines <end-name>} to show that the end redefines the one named <end-name>.
« {union} to show that the end is derived by being the union of its subsets.
« {ordered} to show that the end represents an ordered set.
« {bag} to show that the end represents a collection that permits the same element to appear more than once.
« {sequence} or {seq} to show that the end represents a sequence (an ordered bag).
« If the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

An open arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’s
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a navigable end name as specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses)” on page 123.

An association with aggregationKind = shared differs in notation from binary associations in adding a hollow diamond as
a terminal adornment at the aggregate end of the association line. The diamond shall be noticeably smaller than the
diamond notation for associations. An association with aggregationKind = composite likewise has a diamond at the
aggregate end, but differs in having the diamond filled in.

Ownership of association ends by an associated Classifier may be indicated graphically by a small filled circle, which for
brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets the
classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of the dot
shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This avoids
visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line.

This standard does not mandate the use of explicit end-ownership notation, but defines a notation which shall apply in
models where such use is elected. The dot notation must be applied at the level of complete associations or higher, so that
the absence of the dot signifies ownership by the association. Stated otherwise, when applying this notation to a binary
association in a user model, the dot will be omitted only for ends which are not owned by a classifier. In this way, in
contexts where the notation is used, the absence of the dot on certain ends does not leave the ownership of those ends
ambiguous.

This notation may only be used on association ends which may, consistent with the metamodel, be owned by classifiers.
Users may conceptualize the dot as showing that the model includes a property of the type represented by the classifier
touched by the dot. This property is owned by the classifier at the other end.

42 UML Superstructure Specification, v2.1.2

The dot may be used in combination with the other graphic line-path notations for properties of associations and
association ends. These include aggregation type and navigability.

The dot is illustrated in Figure 7.19, at the maximum allowed size. The diagram shows endA to be owned by classifier B,
and because of the rule requiring the notation be applied at the level of complete associations (or above), this diagram
also shows unambiguously that end B is owned by BinaryAssociationAB.

endA endB

* *

BinaryAssociationAB

Figure 7.19 - Graphic notation indicating exactly one association end owned by the association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the association whereas navigable ends were assumed to be owned by the classifier at the
opposite end. This convention is now deprecated.

Aggregation type, navigability, and end ownership are orthogonal concepts, each with their own explicit notation. The
notational standard now provides for combining these notations as shown in Figure 7.20, where the associated nodes use
the default rectangular notation for Classifiers. The dot is outside the perimeter of the rectangle. If non-rectangular
notations represent the associated Classifiers, the rule is to put the dot just outside the boundary of the node.

Figure 7.20 - Combining line path graphics

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

« Show all arrows and x’s. Navigation and its absence are made completely explicit.

» Suppress all arrows and x’s. No inference can be drawn about navigation. This is similar to any situation in which
information is suppressed from a view.

UML Superstructure Specification, v2.1.2 43

« Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no
navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.
Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.
Examples

Figure 7.21 shows a binary association from Player to Year named PlayedInYear.

* « PlayedinYear

Year

year

season| *

* *

Team Player
team goalie

Figure 7.21 - Binary and ternary associations

The solid triangle indicates the order of reading: Player PlayedInYear Year. The figure further shows a ternary association
between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0.1 {ordered}
d
C D
1 0..1

{subsets b}

Figure 7.22 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 7.22.
« Names a, b, and d on three of the ends.

44 UML Superstructure Specification, v2.1.2

« Multiplicities 0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.

- Specification of ordering on b.

« Subsetting on d. For an instance of class C, the collection d is a subset of the collection b. This is equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

The following examples show notation for navigable ends.

a b
A B
1..4 2.5
c d
C D
1..4 2.5
e f
E F
1..4 2.5
g h
G H
1..4 2.5
i j
| J
1..4 2.5

Figure 7.23 - Examples of navigable ends

In Figure 7.23:

L]

L]

The top pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

The fifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 7.24 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end.

b: B[]

Figure 7.24 - Example of attribute notation for navigable end owned by an end class

UML Superstructure Specification, v2.1.2 45

Figure 7.25 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, Al::b1. So for an instance of the class Al, b1 is a subset of
b, and b is derived from b1l.

/b {union}
a
A B
0.1 0..*
a bl
Al B1
0.1 0..*

{subsets b}

Figure 7.25 - Derived supersets (union)

Figure 7.26 shows the black diamond notation for composite aggregation.

1 1
1
+scrollbar
2 +title 1 +body 1
Slider
Header Panel

Figure 7.26 - Composite aggregation is depicted as a black diamond

Changes from previous UML

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association. The metaatribute targetScope
that characterized AssociationEnd in prior UML is no longer supported. Fundamental changes in the abstract syntax make
it impossible to continue targetScope or replace it by a new metaattribute, or even a standard tag, there being no
appropriate model element to tag. In UML 2, the type of the property determines the nature of the values represented by
the members of an Association.

7.3.4 AssociationClass (from AssociationClasses)
A model element that has both association and class properties. An AssociationClass can be seen as an association that
also has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also

defines a set of features that belong to the relationship itself and not to any of the classifiers.

Generalizations

» “Association (from Kernel)” on page 39
« “Class (from Kernel)” on page 49

46 UML Superstructure Specification, v2.1.2

Description

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is both an Association and a Class.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An AssociationClass cannot be defined between itself and something else.
self.endType->excludes(self) and self.endType>collect(et|et.allparents()->excludes(self))

Additional Operations

[1] The operation allConnections results in the set of all AssociationEnds of the Association.

AssaociationClass::allConnections () : Set (Property);
allConnections = memberEnd->union (self.parents ()->collect (p | p.allConnections ())

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an
association, connecting a set of classifiers and a class, and as such have features and be included in other associations.
The semantics of an association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence
have a set of common properties, like being able to have features, having a name, etc. As these properties are inherited
from the same construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and
has the set of features that are defined for classes and associations. The constraints defined for class and association also
are applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.

Note — It should be noted that in an instance of an association class, there is only one instance of the associated classifiers at
each end, i.e., from the instance point of view, the multiplicity of the associations ends are ‘1.

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path
and the association class symbol represent the same underlying model element, which has a single name. The hame may
be placed on the path, in the class symbol, or on both, but they must be the same name.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct.
The association class symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the class symbol.

UML Superstructure Specification, v2.1.2 47

* Job 1.*
Person T Company
person | company
|
|
Job
salary

Figure 7.27 - An AssociationClass is depicted by an association symbol (a line) and a class symbol (a box) connected
with a dashed line. The diagram shows the association class Job, which is defined between the two classes Person
and Company.

7.3.5 BehavioralFeature (from Kernel)
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Generalizations

» “Feature (from Kernel)” on page 70
« “Namespace (from Kernel)” on page 99
Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled
by subclasses of BehavioralFeature.

Attributes

No additional attributes

Associations

e ownedParameter: Parameter[*]
Specifies the ordered set of formal parameters owned by this BehavioralFeature. The parameter direction can be
‘in,” “inout,” “out,” or ‘return’ to specify input, output, or return parameters. Subsets Namespace::ownedMember

e raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation.

Constraints

No additional constraints

Additional Operations

[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It
specifies that they have to have different signatures.

48 UML Superstructure Specification, v2.1.2

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif
else true
endif
Semantics

The list of owned parameters describes the order, type, and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the BehavioralFeature terminates.

The owned parameters with direction in or inout define the type, and number of arguments that must be provided when
invoking the BehavioralFeature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A BehavioralFeature may raise an exception during its invocation.
Notation

No additional notation

7.3.6 BehavioredClassifier (from Interfaces)

Generalizations

- “BehavioredClassifier (from BasicBehaviors, Communications)” on page 432 (merge increment)

Description

A BehavioredClassifier may have an interface realization.

Associations

» interfaceRealization: InterfaceRealization [*]
(Subsets Element::ownedElement and Realization::clientDependency.)

7.3.7 Class (from Kernel)
A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52

Description

Class is a kind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

UML Superstructure Specification, v2.1.2 49

Attributes

No additional attributes

Associations

« nestedClassifier: Classifier [*]
References all the Classifiers that are defined (nested) within the Class. Subsets Element::ownedMember

« ownedAttribute : Property [*]
The attributes (i.e., the properties) owned by the class. The association is ordered. Subsets Classifier::attribute and
Namespace::ownedMember

e ownedOperation : Operation [*]
The operations owned by the class. The association is ordered. Subsets Classifier::feature and
Namespace::ownedMember

e [superClass : Class [*]
This gives the superclasses of a class. It redefines Classifier::general. This is derived.

Constraints

No additional constraints

Additional Operations

[1] The inherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as a result, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

A class cannot access private features of another class, or protected features on another class that is not its supertype.
When creating and deleting associations, at least one end must allow access to the class.

50 UML Superstructure Specification, v2.1.2

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class” need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

L]

Center class name in boldface.

Capitalize the first letter of class names (if the character set supports uppercase).

Left justify attributes and operations in plain face.

Begin attribute and operation names with a lowercase letter.

Put the class name in italics if the class is abstract.

Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples
Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- XWin: XWindow
Window display()
size: Area hide() _ _
visibility: Boolean - attachX(xWin: XWindow)
display()
hide()

Figure 7.28 - Class notation: details suppressed, analysis-level details, implementation-level details

UML Superstructure Specification, v2.1.2 51

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a classification of instances, it describes a set of instances that have features in common.

Generalizations

« “Namespace (from Kernel)” on page 99
» “RedefinableElement (from Kernel)” on page 130
+ “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

* isAbstract: Boolean
If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization
relationships). Default value is false.

Associations

e /attribute: Property [*]
Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets
Classifier::feature and is a derived union.

« [feature : Feature [*]
Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

e /[general : Classifier[*]
Specifies the general Classifiers for this Classifier. This is derived.

52 UML Superstructure Specification, v2.1.2

e generalization: Generalization[*]
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general
classifiers in the generalization hierarchy. Subsets Element::ownedElement

¢ [inheritedMember: NamedElement[*]
Specifies all elements inherited by this classifier from the general classifiers. Subsets Namespace::member. This is
derived.

« redefinedClassifier: Classifier [*]
References the Classifiers that are redefined by this Classifier. Subsets RedefinableElement::redefinedElement

Package Dependencies

e substitution : Substitution
References the substitutions that are owned by this Classifier. Subsets Element::ownedElement and
NamedElement::clientDependency.)

Package PowerTypes

e powertypeExtent : GeneralizationSet
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1] The general classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.
self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances also be its subclasses.

Additional Operations
[1] The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, this will be a larger set than feature.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general

UML Superstructure Specification, v2.1.2 53

[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is
only called when the argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then
hasVisibilityOf = (n.visibility <> #private)
else

hasVisibilityOf = true
[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[7]1 The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of

the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.ocllsKindOf(c.oclType)

Semantics
A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a
classifier have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms
to itself and to all of its ancestors in the generalization hierarchy.

54 UML Superstructure Specification, v2.1.2

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets
for that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses)” on page 123.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used
to remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines
- Attribute names typically begin with a lowercase letter. Multi-word names are often formed by concatenating the words
and using lowercase for all letters except for upcasing the first letter of each word but the first.
« Center the name of the classifier in boldface.
» Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

« For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

« Left justify attributes and operations in plain face.
« Begin attribute and operation names with a lowercase letter.
» Show full attributes and operations when needed and suppress them in other contexts or references.

UML Superstructure Specification, v2.1.2 55

Examples

ClassA

name: String

shape: Rectangle

+ size: Integer [0..1]

[area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 7.30 - Examples of attributes

The attributes in Figure 7.30 are explained below.
 ClassA::name is an attribute with type String.
» ClassA::shape is an attribute with type Rectangle.
 ClassA::size is a public attribute of type Integer with multiplicity 0..1.
» ClassA::area is a derived attribute with type Integer. It is marked as read-only.
 ClassA::height is an attribute of type Integer with a default initial value of 5.
« ClassA::width is an attribute of type Integer.
 ClassB::id is an attribute that redefines ClassA::name.
» ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

« ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the
ClassA default of 5.

« ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure
7.31.

] size
Window > Area

Figure 7.31 - Association-like notation for attribute

56 UML Superstructure Specification, v2.1.2

Package PowerTypes

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account
has two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings
Account, then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings
Account are both: instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and
examples, see Examples in the GeneralizationSet clause, below.)

7.3.9 Comment (from Kernel)
A comment is a textual annotation that can be attached to a set of elements.

Generalizations

» “Element (from Kernel)” on page 64.

Description
A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment can be owned by any element.

Attributes

e multiplicitybody: String [0..1]
Specifies a string that is the comment.

Associations

e annotatedElement: Element[*]
References the Element(s) being commented.

Constraints
No additional constraints

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the
model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

UML Superstructure Specification, v2.1.2 57

Examples

This class was added

by Alan Wright after

meeting with the T e———
mission planning team. ——| Account

Figure 7.32 - Comment notation

7.3.10 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.
Generalizations

» “PackageableElement (from Kernel)” on page 109

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be
appropriate for expressing a constraint. In other situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to that element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes

No additional attributes

Associations

e constrainedElement: Element[*]
The ordered set of Elements referenced by this Constraint.

« /context: Namespace [0..1]
Specifies the Namespace that is the context for evaluating this constraint. Subsets NamedElement::namespace.

« specification: ValueSpecification[1]
A condition that must be true when evaluated in order for the constraint to be satisfied. Subsets
Element::ownedElement.

Constraints

[1] The value specification for a constraint must evaluate to a Boolean value.
Cannot be expressed in OCL.

58 UML Superstructure Specification, v2.1.2

[2] Evaluating the value specification for a constraint must not have side effects.
Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.
not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL “self” is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
<constraint> ::= ‘{* [<name> ‘:’] <Boolean-expression> * }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 7.33 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 7.34 shows an {xor} constraint
between two associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 7.35 shows an example of a constraint in a note symbol.

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the
first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

UML Superstructure Specification, v2.1.2 59

Examples

Stack
size: Integer {size >= 0}
push()
pop()

Figure 7.33 - Constraint attached to an attribute

/ Person
\
‘

|
!
Account

Corporation

Figure 7.34 - {xor} constraint

0.1/, boss
employee employer
Person Company
* 0..1
{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 7.35 - Constraint in a note symbol

7.3.11 DataType (from Kernel)

Generalizations

 “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52.

60

UML Superstructure Specification, v2.1.2

Description

A data type is a type whose instances are identified only by their value. A DataType may contain attributes to support the
modeling of structured data types.

A typical use of data types would be to represent programming language primitive types or CORBA basic types. For
example, integer and string types are often treated as data types.

Attributes

No additional attributes

Associations

« ownedAttribute: Property[*]
The Attributes owned by the DataType. This is an ordered collection. Subsets Classifier::attribute and
Element::ownedMember

e ownedOperation: Operation[*]
The Operations owned by the DataType. This is an ordered collection. Subsets Classifier::feature and
Element::ownedMember

Constraints

No additional constraints

Semantics

A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are
identified only by their value.

All copies of an instance of a data type and any instances of that data type with the same value are considered to be the
same instance. Instances of a data type that have attributes (i.e., is a structured data type) are considered to be the same if
the structure is the same and the values of the corresponding attributes are the same. If a data type has attributes, then
instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by (e.g., an
attribute) denoted by a string containing the name of the data type.

Examples

«dataType» size: Integer
Integer

Figure 7.36 - Notation of data type: to the left is an icon denoting a data type and to the right is a reference to a data
type that is used in an attribute.

UML Superstructure Specification, v2.1.2 61

7.3.12 Dependency (from Dependencies)

Generalizations

- “DirectedRelationship (from Kernel)” on page 63
» “PackageableElement (from Kernel)” on page 109

Description

A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for
their specification or implementation. This means that the complete semantics of the depending elements is either
semantically or structurally dependent on the definition of the supplier element(s).

Attributes

No additional attributes

Associations

e client: NamedElement [1..*]
The element(s) dependent on the supplier element(s). In some cases (such as a Trace Abstraction) the assignment of
direction (that is, the designation of the client element) is at the discretion of the modeler, and is a stipulation. Subsets
DirectedRelationship::source.

e supplier: NamedElement [1..*]
The element(s) independent of the client element(s), in the same respect and the same dependency relationship. In
some directed dependency relationships (such as Refinement Abstractions), a common convention in the domain of
class-based OO software is to put the more abstract element in this role. Despite this convention, users of UML may
stipulate a sense of dependency suitable for their domain, which makes a more abstract element dependent on that
which is more specific. Subsets DirectedRelationship::target.

Constraints

No additional constraints

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier.
The presence of dependency relationships in a model does not have any runtime semantics implications, it is all given in
terms of the model-elements that participate in the relationship, not in terms of their instances.

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the
client) depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional
stereotype and an optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more
arrows with their tails on the clients are connected to the tails of one or more arrows with their heads on the suppliers. A
small dot can be placed on the junction if desired. A note on the dependency should be attached at the junction point.

62 UML Superstructure Specification, v2.1.2

«dependencyName»

NamedElement-1- — — — — — — = NamedElement-2

Figure 7.37 - Notation for a dependency between two elements

Examples

In the example below, the Car class has a dependency on the CarFactory class. In this case, the dependency is an
instantiate dependency, where the Car class is an instance of the CarFactory class.

«instantiate»
CarFactory f — — — — — = Car

Figure 7.38 - An example of an instantiate dependency
7.3.13 DirectedRelationship (from Kernel)

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.
Generalizations

» “Relationship (from Kernel)” on page 132

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship is
an abstract metaclass.

Attributes
No additional attributes

Associations

e /source: Element [1..*]
Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedElement. This is a derived union.

e [target: Element [1..*]
Specifies the targets of the DirectedRelationship. Subsets Relationship::relatedElement. This is a derived union.

Constraints

No additional constraints

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

UML Superstructure Specification, v2.1.2 63

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

7.3.14 Element (from Kernel)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Generalizations

None

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library. Element has a derived composition association to itself to support the general capability for
elements to own other elements.

Attributes
No additional attributes

Associations
« ownedComment: Comment[*]
The Comments owned by this element. Subsets Element::ownedElement.

* |/ ownedElement: Element[*]
The Elements owned by this element. This is a derived union.

e [owner: Element [0..1]
The Element that owns this element. This is a derived union.

Constraints

[1] An element may not directly or indirectly own itself.
not self.allOwnedElements()->includes(self)

[2] Elements that must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

Additional Operations

[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.
Element::allOwnedElements(): Set(Element);
allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do not
require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

64 UML Superstructure Specification, v2.1.2

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.
7.3.15 Elementimport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Generalizations

» “DirectedRelationship (from Kernel)” on page 63

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Attributes

« visibility: VisibilityKind
Specifies the visibility of the imported PackageableElement within the importing Package. The default visibility is
the same as that of the imported element. If the imported element does not have a visibility, it is possible to add
visibility to the element import. Default value is public.

e alias: String [0..1]
Specifies the name that should be added to the namespace of the importing Package in lieu of the name of the
imported PackagableElement. The aliased name must not clash with any other member name in the importing
Package. By default, no alias is used.

Associations
e importedElement: PackageableElement [1]
Specifies the PackageableElement whose name is to be added to a Namespace. Subsets DirectedRelationship::target.

e importingNamespace: Namespace [1]
Specifies the Namespace that imports a PackageableElement from another Package. Subsets
DirectedRelationship::source and Element::owner.

Constraints

[1] The visibility of an Elementimport is either public or private.
self.visibility = #public or self.visibility = #private

[2] An importedElement has either public visibility or no visibility at all.
self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

UML Superstructure Specification, v2.1.2 65

Additional Operations

[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.

Elementimport::getName(): String;
getName =
if self.alias->notEmpty() then
self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

In case of a name clash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an element import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the elements are not added to the importing namespace and the names of those elements must be
qualified in order to be used in that namespace. If the name of an imported element is the same as the name of an element
owned by the importing namespace, that element is not added to the importing namespace and the name of that element
must be qualified in order to be used.

An imported element can be further imported by other namespaces using either element or package imports.

The visibility of the ElementImport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public; otherwise, the keyword
«access» is shown to indicate private visibility.

If an element import has an alias, this is used in lieu of the name of the imported element. The aliased name may be
shown after or below the keyword «import».

Presentation options
If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

‘{element import” <qualified-name> ‘}’ | ‘{element access * <qualified-name> ‘}’
Optionally, the aliased name may be shown as well:

‘{element import * <qualified-name> * as ’ <alias> ‘}’ | ‘{element access * <qualified-name> ‘as’ <alias> ‘}’

66 UML Superstructure Specification, v2.1.2

Examples

The element import that is shown in Figure 7.39 allows elements in the package Program to refer to the type Time in
Types without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not
imported. The Type string can be used in the Program package but cannot be further imported from that package.

Types

«datatype»
7 String
«access» /,/
7 «datatype»
Integer
Program «daTtiant]yéae»
«import»

Figure 7.39 - Example of element import

In Figure 7.40, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

Types Shapes

«import» -
«datatype» Double Circle

Real radius : Double

Figure 7.40 - Example of element import with aliasing
7.3.16 Enumeration (from Kernel)
An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Generalizations

- “DataType (from Kernel)” on page 60

Description
Enumeration is a kind of data type, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Attributes

No additional attributes

UML Superstructure Specification, v2.1.2

Associations

e ownedLiteral: EnumerationLiteral[*]
The ordered set of literals for this Enumeration. Subsets Element::ownedMember

Constraints

No additional constraints

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to a line, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

«enumeration»
VisibilityKind
public
private
protected
package

Figure 7.41 - Example of an enumeration
7.3.17 EnumerationLiteral (from Kernel)
An enumeration literal is a user-defined data value for an enumeration.

Generalizations

» “InstanceSpecification (from Kernel)” on page 82

Description

An enumeration literal is a user-defined data value for an enumeration.

Attributes

No additional attributes

68 UML Superstructure Specification, v2.1.2

Associations

e enumeration: Enumeration[0..1]
The Enumeration that this EnumerationLiteral is a member of. Subsets NamedElement::namespace

Constraints

No additional constraints

Semantics
An EnumerationL.iteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.

Notation

An EnumerationL.iteral is typically shown as a name, one to a line, in the compartment of the enumeration notation.
7.3.18 Expression (from Kernel)
An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Generalizations

» “ValueSpecification (from Kernel)” on page 137

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

Attributes

e symbol: String [0..1]
The symbol associated with the node in the expression tree.

Associations

e operand: ValueSpecification[*]
Specifies a sequence of operands. Subsets Element::ownedElement.

Constraints

No additional constraints

Semantics

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

UML Superstructure Specification, v2.1.2 69

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples

xor
else
plus(x,1)
x+1

7.3.19 Feature (from Kernel)
A feature declares a behavioral or structural characteristic of instances of classifiers.

Generalizations

» “RedefinableElement (from Kernel)” on page 130

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

e isStatic: Boolean
Specifies whether this feature characterizes individual instances classified by the classifier (false) or the classifier
itself (true). Default value is false.

Associations

o [featuringClassifier: Classifier [0..*]
The Classifiers that have this Feature as a feature. This is a derived union.

Constraints

No additional constraints

Semantics

A feature represents some characteristic for its featuring classifiers; this characteristic may be of the classifier’s instances
considered individually (not static), or of the classifier itself (static). A Feature can be a feature of multiple classifiers.
The same feature cannot be static in one context but not another.

Semantic Variation Points

With regard to static features, two alternative semantics are recognized. A static feature may have different values for
different featuring classifiers, or the same value for all featuring classifiers.

In accord with this semantic variation point, inheritance of values for static features is permitted but not required by UML
2. Such inheritance is encouraged when modeling systems will be coded in languages, such as C++, Java, and C#, which
stipulate inheritance of values for static features.

70 UML Superstructure Specification, v2.1.2

Notation

No general notation. Subclasses define their specific notation.
Static features are underlined.

Presentation Options

Only the names of static features are underlined.

An ellipsis (...) as the final element of a list of features indicates that additional features exist but are not shown in that
list.

Changes from previous UML

The property isStatic in UML 2 serves in place of the metaattribute ownerScope of Feature in UML 1. The enumerated
data type ScopeKind with two values, instance and classifier, provided in UML 1 as the type for ownerScope is no longer
needed because isStatic is Boolean.

7.3.20 Generalization (from Kernel, PowerTypes)

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits
the features of the more general classifier.

Generalizations

- “DirectedRelationship (from Kernel)” on page 63

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Package PowerTypes
A generalization can be designated as being a member of a particular generalization set.

Attributes

e isSubstitutable: Boolean [0..1]
Indicates whether the specific classifier can be used wherever the general classifier can be used. If true, the execution
traces of the specific classifier will be a superset of the execution traces of the general classifier.

Associations

e general: Classifier [1]
References the general classifier in the Generalization relationship. Subsets DirectedRelationship::target

e specific: Classifier [1]
References the specializing classifier in the Generalization relationship. Subsets DirectedRelationship::source and
Element::owner

Package PowerTypes

e generalizationSet
Designates a set in which instances of Generalization are considered members.

UML Superstructure Specification, v2.1.2 71

Constraints

No additional constraints

Package PowerTypes

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, all
Generalizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Package PowerTypes

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass).
Each GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which
a specific Classifier (or class) may be divided into subclasses. The generalizationSet associates those instances of a
Generalization with a particular GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific
Classifier. Another Generalization could also relate Person as a general Classifier, but have Male Person as the specific
Classifier. These two Generalizations could be associated with the same GeneralizationSet, because they specify one way
of partitioning the Person class.

Notation

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style.” See the example clause below.

Package PowerTypes

A generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named,
that name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name
(which it inherits since it is a subclass of PackageableElement). Therefore, all Generalization relationships with the same
GeneralizationSet name are part of the same GeneralizationSet. This notation form is depicted in a), Figure 7.42.

When two or more lines are drawn to the same arrowhead, as illustrated in b), Figure 7.42, the specific Classifiers are part
of the same GeneralizationSet. When diagrammed in this way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

Lastly in ¢), Figure 7.42, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set, as illustrated at the bottom of Figure 7.42. Here, as with b), the
GeneralizationSet may be labeled with a single name, instead of each line labeled separately. However, such labels are
optional because the GeneralizationSet is clearly designated.

72 UML Superstructure Specification, v2.1.2

another
Generalization Set

one Generalization Set

generalization

generalization
set name-2

generalization
set name-1

set name-1

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

Generc;r:?zation another' . generalization lﬁ generalization
A Generalization Set set name-1 set name-2
Set generalization
set name-1 generalization
set name-2

another
Generalization Set

one Generalization Set
b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

one another
Generalization P~ lizati Generalization Set
Set generalization generalization
set name-I~ - — - set name-2

c) GeneralizationSet sharing same general Classifier using the dashed-line notation.

Figure 7.42 - GeneralizationSet designation notations

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared

target style.” See the example clause below.

UML Superstructure Specification, v2.1.2

73

Examples

Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape 9 y
Polygon Ellipse Spline

Figure 7.43 - Examples of generalizations between classes
Package PowerTypes

In Figure 7.44, the Person class can be specialized as either a Female Person or a Male Person. Furthermore, Person’s can
be specialized as an Employee. Here, Female Person or a Male Person of Person constitute one GeneralizationSet and
Employee another. This illustration employs the notation forms depicted in the diagram above.

Person Person
A d ZFemployment
gender
ender, ender employment status
g g status -
emale
Employee
Male Person
Ezfrzaof Person Employee
Male
Person
Person Person
employment
gender status - —_—— -
Female Male c | Yo
Employee emale Emplovee
Person Person ploy Ao oorale ploy

Figure 7.44 - Multiple subtype partitions (GeneralizationSets) example

74 UML Superstructure Specification, v2.1.2

7.3.21 GeneralizationSet (from PowerTypes)

A GeneralizationSet is a PackageableElement (from Kernel) whose instances define collections of subsets of
Generalization relationships.

Generalizations

» “PackageableElement (from Kernel)” on page 109

Description

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., from a class
to its superclasses). Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. For example, a GeneralizationSet
could define a partitioning of the class Person into two subclasses: Male Person and Female Person. Here, the
GeneralizationSet would associate two instances of Generalization. Both instances would have Person as the general
classifier; however, one Generalization would involve Male Person as the specific Classifier and the other would involve
Female Person as the specific classifier. In other words, the class Person can here be said to be partitioned into two
subclasses: Male Person and Female Person. Person could also be divided into North American Person, Asian Person,
European Person, or something else. This collection of subsets would define a different GeneralizationSet that would
associate with three other Generalization relationships. All three would have Person as the general Classifier; only the
specific classifiers would differ (i.e., North American Person, Asian Person, and European Person).

Attributes

« isCovering : Boolean
Indicates (via the associated Generalizations) whether or not the set of specific Classifiers are covering for a
particular general classifier. When isCovering is true, every instance of a particular general Classifier is also an
instance of at least one of its specific Classifiers for the GeneralizationSet. When isCovering is false, there are one or
more instances of the particular general Classifier that are not instances of at least one of its specific Classifiers
defined for the GeneralizationSet. For example, Person could have two Generalization relationships each with a
different specific Classifier: Male Person and Female Person. This GeneralizationSet would be covering because
every instance of Person would be an instance of Male Person or Female Person. In contrast, Person could have a
three Generalization relationship involving three specific Classifiers: North American Person, Asian Person, and
European Person. This GeneralizationSet would not be covering because there are instances of Person for which
these three specific Classifiers do not apply. The first example, then, could be read: any Person would be specialized
as either being a Male Person or a Female Person— and nothing else; the second could be read: any Person would be
specialized as being North American Person, Asian Person, European Person, or something else. Default value is
false.

* isDisjoint : Boolean
Indicates whether or not the set of specific Classifiers in a Generalization relationship have instance in common. If
isDisjoint is true, the specific Classifiers for a particular GeneralizationSet have no members in common; that is, their
intersection is empty. If isDisjoint is false, the specific Classifiers in a particular GeneralizationSet have one or more
members in common; that is, their intersection is not empty. For example, Person could have two Generalization
relationships, each with the different specific Classifier: Manager or Staff. This would be disjoint because every
instance of Person must either be a Manager or Staff. In contrast, Person could have two Generalization relationships
involving two specific (and non- covering) Classifiers: Sales Person and Manager. This GeneralizationSet would not
be disjoint because there are instances of Person that can be a Sales Person and a Manager. Default value is false.

UML Superstructure Specification, v2.1.2 75

Associations

e generalization : Generalization [*]
Designates the instances of Generalization that are members of a given GeneralizationSet (see constraint [1] below).

« powertype : Classifier [0..1]
Designates the Classifier that is defined as the power type for the associated GeneralizationSet (see constraint [2]
below).

Constraints

[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.
generalization->collect(g | g.general)->asSet()->size() <= 1

[2] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances be its subclasses.

Semantics

The generalizationSet association designates the collection of subsets to which the Generalization link belongs. All of the
Generalization links that share a given general Classifier are divided into subsets (e.g., partitions or overlapping subset
groups) using the generalizationSet association. Each collection of subsets represents an orthogonal dimension of
specialization of the general Classifier.

As mentioned above, in essence, a power type is a class whose instances are subclasses of another class. Power types,
then, are metaclasses with an extra twist: the instances can also be subclasses. The powertype association relates a
classifier to the instances of that classifier, which are the specific classifiers identified for a GeneralizationSet. For
example, the Bank Account Type classifier could associate with a GeneralizationSet that has Generalizations with specific
classifiers of Checking Account and Savings Account. Here, then, Checking Account and Savings Account are instances
of Bank Account Type. Furthermore, if the Generalization relationship has a general classifier of Bank Account, then
Checking Account and Savings Account are also subclasses of Bank Account. Therefore, Checking Account and Savings
Account are both instances of Bank Account Type and subclasses of Bank Account. (For more explanation and examples
see “Examples” on page 78.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets was presented in the Notation clause of
Generalization, above. To indicate whether or not a generalization set is covering and disjoint, each set should be labeled
with one of the constraints indicated below.

{complete, disjoint} - Indicates the generalization set is covering and its specific Classifiers have no common
instances.

{incomplete, disjoint} - Indicates the generalization set is not covering and its specific Classifiers have no common
instances*.

{complete, overlapping} - Indicates the generalization set is covering and its specific Classifiers do share common
instances.

{incomplete, overlapping} - Indicates the generalization set is not covering and its specific Classifiers do share common
instances.
* default is {incomplete, disjoint}

Figure 7.45 - Generalization set constraint notation

76 UML Superstructure Specification, v2.1.2

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, as illustrated below..

{Generalization {Generalization
Set constraint-1} Set constraint-2}

(a) GeneralizationSet constraint when sharing common generalization arrowhead.

{Generalization

Set constrain_t—S} —_ — - {Generalization

Set constraint-4}

(b) GeneralizationSet constraint using dashed-line notation.

Figure 7.46 - GeneralizationSet constraint notation

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to the
GeneralizationSet graphically containing the specific classifiers that are the instances of the power type. The illustration
below indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation for
GeneralizationSets.

UML Superstructure Specification, v2.1.2 77

(a) Power type specification when sharing common generalization arrowhead

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-1

A

: powertype classifier-2

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-

A

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

(b) Power type specification using dashed-line notation

Figure 7.47 - Power type notation

Examples

: powertype classifier-2

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
GeneralizationSet is partitioned (i.e., is constrained to be complete and disjoint), each instance of Person must either be a
Female Person or a Male Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class
because a Person object may not exist without being either a Female Person or a Male Person.) Furthermore, a Person
object can be specialized as an Employee. The generalization set here is expressed as {incomplete, disjoint}, which means
that instances of Persons can be subset as Employees or some other unnamed collection that consists of all non-Employee
instances. In other words, Persons can either be an Employee or in the complement of Employee, and not both. Taken
together, the diagram indicates that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or
not. When expressed in this manner, it is possible to partition the instances of a classifier using a disjunctive normal form

(DNF).

78

UML Superstructure Specification, v2.1.2

Person

{complete, {incomplete,
disjoint} disjoint}

An incomplete partition
Female indicating that a Person
A complete partition Employee can also be an Employee
indicating that a Person Person or not.

may be subtyped as
either a Female Person

or a Male Person.

Male
Person

Figure 7.48 - Multiple ways of dividing subtypes (generalization sets) and constraint examples

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one
of the ways botanists organize trees is by species. In this way, each tree we see can be classified as an American elm,
sugar maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of the
instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local nursery.
Instances of Tree Species, such as sugar maple and apricot. Furthermore, this figure indicates the relationships that exist
between these two sets of objects. For instance, the tree in your front yard might be classified as a sugar maple, your
neighbor’s tree as an apricot, and so on. This class diagram expresses that each Tree Species classifies zero or more
instances of Tree, and each Tree is classified as exactly one Tree Species. It also indicates that each Tree Species is
identified with a Leaf Pattern and has a general location in any number of Geographic Locations. For example, the
saguaro cactus has leaves reduced to large spines and is generally found in southern Arizona and northern Sonora.
Additionally, this figure indicates each Tree has an actual location at a particular Geographic Location. In this way, a
particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

Lastly, this diagram illustrates that Tree is subtyped as American EIm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly
maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila
Woodpecker, and so on. At first glance, it would seem that a modeler should only use either the Tree Species class or the
subclasses of Tree—since the instances of Tree Species are the same as the subclasses of tree. In other words, it seems
redundant to represent both on the same diagram. Furthermore, having both would seem to cause potential diagram
maintenance issues. For instance, if botanists got together and decided that the American elm should no longer be a
species of tree, the American EIm object would then be removed as an instance of Tree Species. To maintain the integrity
of our model in such a situation, the American EIm subtype of Tree must also be removed. Additionally, if a new species
were added as a subtype of Tree, that new species would have to be added as an instance of Tree Species. The same kind
of situation exists if the name of a tree species were changed—both the subtype of Tree and the instance of Tree Species
would have to be modified accordingly.

As it turns out, this apparent redundancy is not a redundancy semantically (although it may be implemented that way).
Different modeling approaches depicted above are not really all that different. In reality, the subtypes of Tree and the
instances of Tree Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species.
Furthermore, the instances of Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called
sugar maple and a subtype of Tree is called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple
subtype are the same object. The instances of Tree Species are—as the name implies—types of trees. The subtypes of
Tree are—by definition—types of trees. While Tree may be divided into various collections of subsets (based on size or

UML Superstructure Specification, v2.1.2 79

age, for example), in this example it is divided on the basis of species. Therefore, the integrity issue mentioned above is
not really an issue here. Deleting the American EIm subtype from the collection of Tree subtypes does not require also
deleting the corresponding Tree Species instance, because the American EIm subtype and the corresponding Tree Species
instance are the same object.

tree tree species
— peces 1 Tree
Tree Species
* * 1
actual general leaf
{disjoint, location locations pattern
incomplete} 1 * 1
: Tree Species Geographic Leaf
Location Pattern
_— Sugar
Maple
— Apricot
American
Elm
] Saguaro

Figure 7.49 - Power type example and notation

As established above, the instances of Classifiers can also be Classifiers. (This is the stuff that metamodels are made of.)
These same instances, however, can also be specific classifiers (i.e., subclasses) of another classifier. When this occurs,
we have what is called a power type. Formally, a power type is a classifier whose instances are also subclasses of another
classifier.

In the examples above, Tree Species is a power type on the Tree type. Therefore, the instances of Tree Species are
subtypes of Tree. This concept applies to many situations within many lines of business. Figure 7.50 depicts other
examples of power types. The name on the generalization set beginning with a colon indicates the power type. In other
words, this name is the name of the type of which the subtypes are instances.

Diagram (a) in the figure below, then, can be interpreted as: each instance of Account is classified with exactly one
instance of Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This
means that each instance of Checking Account can have its own attributes (based on those defined for Checking Account
and those inherited from Account), such as account number and balance. Additionally, it means that Checking Account as
an object in its own right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes
are sometimes referred to as class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling
example. Here, each Vehicle can be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car
are instances of Vehicle Type. In (c), Disease Occurrence classifies each occurrence of disease (e.g., my chicken pox and
your measles). Disease Classification is the power type whose instances are classes such as Chicken Pox and Measles.

80 UML Superstructure Specification, v2.1.2

account classifier vehicle category
Account 1 Vehicle
Account [% Type Vehicle [+ Type
account classified vehicle
{disjoint, incomplete} {disjoint, incomplete}
Chocking :Account Type :Vehicle Type
Account Truck
Savings Car
Account
(a) Bank account/account type example (b) Vehicle/vehicle type example
disease classifier service category
Disease 1| Disease Installed 1| Telephone
0 Classification Telephone I~ Service
e . installed service
ceurrence classified disease Service Category

{disjoint, incomplete}
: Telephone Service Category

{disjoint, incomplete}

: Disease Classification
Chicken Call
Pox Waiting
Measles Call
Transferring

(c) Disease Occurrence/Disease Classification example (d) Telephone service example

Figure 7.50 - Other power type examples

Labeling collections of subtypes with the power type becomes increasingly important when a type has more than one
power type. The figure below is one such example. Without knowing which subtype collection contains Policy Coverage
Types and which Insurance Lines, clarity is compromised. This figure depicts an even more complex situation. Here, a
power type is expressed with multiple collections of subtypes. For instance, a Policy can be subtyped as either a Life,
Health, Property/Casualty, or some other Insurance Line. Furthermore, a Property/Casualty policy can be further subtyped
as Automobile, Equipment, Inland Marine, or some other Property/Casualty line of insurance. In other words, the
subtypes in the collection labeled Insurance Line are all instances of the Insurance Line power type.

| UML Superstructure Specification, v2.1.2 81

Policy issued p0“CZ insurance Iini
Coverage I Policy Insurance
Type . . Line
coverage type issued policy
{disjoint, complete}4 {disjoint, complete}

:Policy Coverage Type :Insurance Line
Group Life
Policy | Policy

Individual Health
Policy —| Policy
Property/
Casualty
Policy

Figure 7.51 - Other power type examples

Power types are a conceptual, or analysis, notion. They express a real-world situation; however, implementing them may
not be easy and efficient. To implement power types with a relational database would mean that the instances of a relation
could also be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation cannot directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) a data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, if a new subclass of Policy were added, a new instance
must also be added to the appropriate power type.

7.3.22 InstanceSpecification (from Kernel)
An instance specification is a model element that represents an instance in a modeled system.

Generalizations

» “PackageableElement (from Kernel)” on page 109

Description

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description may include:
« Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified is
abstract, then the instance specification only partially describes the entity.

» The kind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier is a
class describes an object of that class, while an instance specification whose classifier is an association describes a link
of that association.

82 UML Superstructure Specification, v2.1.2

« Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

- Specification of how to compute, derive, or construct the instance (optional).

InstanceSpecification is a concrete class.

Attributes

No additional attributes

Associations

o classifier : Classifier [0..*]
The classifier or classifiers of the represented instance. If multiple classifiers are specified, the instance is classified
by all of them.

e slot: Slot [*]
A slot giving the value or values of a structural feature of the instance. An instance specification can have one slot
perstructural feature of its classifiers, including inherited features. It is not necessary to model a slot for each
structural feature, in which case the instance specification is a partial description. Subsets Element::ownedElement

» specification : ValueSpecification [0..1]
A specification of how to compute, derive, or construct the instance. Subsets Element::ownedElement

Constraints

[1] The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance specification.
slot->forAll(s | classifier->exists (c | c.allFeatures()->includes (s.definingFeature)))

[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most one
slot in an instance specification.

classifier->forAll(c | (c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)))

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled
using multiple instance specifications, one for each snapshot.

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the dynamic
element that it is modeling. Therefore, one should not expect the dynamic semantics of InstanceSpecification model
elements in a model repository to conform to the semantics of the dynamic elements that they represent.

Note — When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does
not depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely — required

UML Superstructure Specification, v2.1.2 83

structural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity
would have a concrete classification.

Notation

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears
an underlined concatenation of the instance name (if any), a colon (*:”) and the classifier name or names. The convention
for showing multiple classifiers is to separate their names by commas.

Names are optional for UML classifiers and instance specifications. The absence of a name in a diagram may reflect its
absence in the underlying model.

The standard notation for an anonymous instance specification of an unnamed classifier is an underlined colon (*:’).

If an instance specification has a value specification as its specification, the value specification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the instance specification is shown using
an enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing
shape.

streetName: String
"S. Crown Ct."

Figure 7.52 - Specification of an instance of String

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign
(“=") and a value specification. Other properties of the feature, such as its type, can optionally be shown.

myAddress: Address

streetName ="S. Crown Ct."
streetNumber : Integer = 381

Figure 7.53 - Slots with values

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

84 UML Superstructure Specification, v2.1.2

Don : Person | father son | Josh: Person

Figure 7.54 - Instance specifications representing two objects connected by a link

Presentation Options

A slot value for an attribute can be shown using a notation similar to that for a link. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

7.3.23 InstanceValue (from Kernel)
An instance value is a value specification that identifies an instance.

Generalizations
« “ValueSpecification (from Kernel)” on page 137

Description

An instance value specifies the value modeled by an instance specification.

Attributes

No additional attributes

Associations

e instance: InstanceSpecification [1]
The instance that is the specified value.

Constraints

No additional constraints

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
slot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification.”

UML Superstructure Specification, v2.1.2 85

7.3.24 Interface (from Interfaces)

Generalizations

 “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52

Description

An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An
interface specifies a contract; any instance of a classifier that realizes the interface must fulfill that contract. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented by an
instance of an instantiable classifier, which means that the instantiable classifier presents a public facade that conforms to
the interface specification. Note that a given classifier may implement more than one interface and that an interface may
be implemented by a number of different classifiers (see “InterfaceRealization (from Interfaces)” on page 89).

Attributes

No additional attributes

Associations

« ownedAttribute: Property
References all the properties owned by the Interface. (Subsets Namespace::ownedMember and Classifier::feature)

« ownedOperation: Operation
References all the operations owned by the Interface. (Subsets Namespace::ownedMember and Classifier::feature)

» nestedClassifier: Classifier
(References all the Classifiers owned by the Interface. (Subsets Namespace::ownedMember)

» redefinedlInterface: Interface
(References all the Interfaces redefined by this Interface. (Subsets Element::redefinedElement)

Constraints

[1] The visibility of all features owned by an interface must be public.
self.feature->forAll(f | f.visibility = #public)

Semantics

An interface declares a set of public features and obligations that constitute a coherent service offered by a classifier.
Interfaces provide a way to partition and characterize groups of properties that realizing classifier instances must possess.
An interface does not specify how it is to be implemented, but merely what needs to be supported by realizing instances.
That is, such instances must provide a public facade (attributes, operations, externally observable behavior) that conforms
to the interface. Thus, if an interface declares an attribute, this does not necessarily mean that the realizing instance will
necessarily have such an attribute in its implementation, only that it will appear so to external observers.

Because an interface is merely a declaration it is not an instantiable model element; that is, there are no instances of
interfaces at run time.

86 UML Superstructure Specification, v2.1.2

The set of interfaces realized by a classifier are its provided interfaces, which represent the obligations that instances of
that classifier have to their clients. They describe the services that the instances of that classifier offer to their clients.
Interfaces may also be used to specify required interfaces, which are specified by a usage dependency between the
classifier and the corresponding interfaces. Required interfaces specify services that a classifier needs in order to perform
its function and fulfill its own obligations to its clients.

Properties owned by interfaces are abstract and imply that the conforming instance should maintain information
corresponding to the type and multiplicity of the property and facilitate retrieval and modification of that information. A
property declared on an Interface does not necessarily imply that there will be such a property on a classifier realizing that
Interface (e.g., it may be realized by equivalent get and set operations). Interfaces may also own constraints that impose
constraints on the features of the implementing classifier.

An association between an interface and any other classifier implies that a conforming association must exist between any
implementation of that interface and that other classifier. In particular, an association between interfaces implies that a
conforming association must exist between implementations of the interfaces.

An interface cannot be directly instantiated. Instantiable classifiers, such as classes, must implement an interface (see
“InterfaceRealization (from Interfaces)”).

Notation
As a classifier, an interface may be shown using a rectangle symbol with the keyword «interface» preceding the name.

The interface realization dependency from a classifier to an interface is shown by representing the interface by a circle or
ball, labeled with the name of the interface, attached by a solid line to the classifier that realizes this interface (see Figure
7.55).

O— ProximitySensor

ISensor

Figure 7.55 - Isensor is the provided interface of ProximitySensor

The usage dependency from a classifier to an interface is shown by representing the interface by a half-circle or socket,
labeled with the name of the interface, attached by a solid line to the classifier that requires this interface (see Figure
7.56).

TheftAlarm

—C

ISensor

Figure 7.56 - Isensor is the required interface of TheftAlarm

Presentation Options

Alternatively, in cases where interfaces are represented using the rectangle notation, interface realization and usage
dependencies are denoted with appropriate dependency arrows (see Figure 7.57). The classifier at the tail of the arrow
implements the interface at the head of the arrow or uses that interface, respectively.

UML Superstructure Specification, v2.1.2 87

«interface»
ISensor
TheftAlarm ——— > <]— — — —] ProximitySensor

activate()
read()

Figure 7.57 - Alternative notation for the situation depicted in Figure 7.55 and Figure 7.56

It is often the case in practice that two or more interfaces are mutually coupled through application-specific dependencies.
In such situations, each interface represents a specific role in a multi-party “protocol.” These types of protocol role
couplings can be captured by associations between interfaces as shown in the example in Figure 7.58.

) «interface»
«interface» theAlarm the Sensor 1Sensor
IAlarm
1 1 .
, activate
notity() read() 0

Figure 7.58 - Alarm is the required interface for any classifier implementing Isensor; conversely, Isensor is the required
interface for any classifier implementing IAlarm.

Examples

The following example shows a set of associated interfaces that specify an alarm system. (These interfaces may be
defined independently or as part of a collaboration.) Figure 7.59 shows the specification of three interfaces, IAlarm,
ISensor, and 1Buzzer. IAlarm and Isensor are shown as engaged in a bidirectional protocol; IBuzzer describes the required
interface for instances of classifiers implementing 1Alarm, as depicted by their respective associations.

«interface»
IBuzzer ; «interface»
interface
theBuzzer « Al » theAlarm the Sensor ISensor

Volume 1 1 1
. activate()

Start() notify() read()

Reset()

Figure 7.59 - A set of collaborating interfaces

Three classes: DoorSensor, DoorAlarm, and DoorBell implement the above interfaces (see Figure 7.60). These classifiers
are completely decoupled. Nevertheless, instances of these classifiers are able to interact by virtue of the conforming
associations declared by the associations between the interfaces that they realize.

ﬁ) ISensor ﬁ) IAlarm ﬁ) IBuzzer

DoorSensor DoorAlarm DoorBell

Figure 7.60 - Classifiers implementing the above interfaces

88 UML Superstructure Specification, v2.1.2

7.3.25 InterfaceRealization (from Interfaces)

Generalizations

» “Realization (from Dependencies)” on page 129

Description

An InterfaceRealization is a specialized Realization relationship between a Classifier and an Interface. This relationship
signifies that the realizing classifier conforms to the contract specified by the Interface.
Attributes

No additional attributes

Associations

e contract: Interface [1]
References the Interface specifying the conformance contract. (Subsets Dependency::supplier).

¢ implementingClassifier: BehavioredClassifier [1]
References the BehavioredClassifier that owns this Interfacerealization (i.e., the classifier that realizes the Interface
to which it points). (Subsets Dependency::client, Element::owner.)

Constraints

No additional constraints

Semantics

A classifier that implements an interface specifies instances that are conforming to the interface and to any of its
ancestors. A classifier may implement a number of interfaces. The set of interfaces implemented by the classifier are its
provided interfaces and signify the set of services the classifier offers to its clients. A classifier implementing an interface
supports the set of features owned by the interface. In addition to supporting the features, a classifier must comply with
the constraints owned by the interface.

An interface realization relationship between a classifier and an interface implies that the classifier supports the set of
features owned by the interface, and any of its parent interfaces. For behavioral features, the implementing classifier will
have an operation or reception for every operation or reception, respectively, defined by the interface. For properties, the
realizing classifier will provide functionality that maintains the state represented by the property. While such may be done
by direct mapping to a property of the realizing classifier, it may also be supported by the state machine of the classifier
or by a pair of operations that support the retrieval of the state information and an operation that changes the state
information.

Notation

See “Interface (from Interfaces)”
7.3.26 LiteralBoolean (from Kernel)

A literal Boolean is a specification of a Boolean value.

UML Superstructure Specification, v2.1.2 89

Generalizations

« “LiteralSpecification (from Kernel)” on page 92

Description

A literal Boolean contains a Boolean-valued attribute. Default value is false.

Attributes

« value: Boolean
The specified Boolean value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() gives the value.
LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

Semantics

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word “false,” corresponding to its value.
7.3.27 Literallnteger (from Kernel)

A literal integer is a specification of an integer value.

Generalizations

 “LiteralSpecification (from Kernel)” on page 92

Description

A literal integer contains an Integer-valued attribute.

Attributes

e value: Integer
The specified Integer value. Default value is 0.

90 UML Superstructure Specification, v2.1.2

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
Literallnteger::isComputable(): Boolean;
isComputable = true

[2] The query integerValue() gives the value.
Literallnteger::integerValue() : [Integer];
integerValue = value

Semantics

A Literallnteger specifies a constant Integer value.

Notation

A Literallnteger is shown as a sequence of digits.
7.3.28 LiteralNull (from Kernel)

A literal null specifies the lack of a value.

Generalizations

« “LiteralSpecification (from Kernel)” on page 92

Description

A literal null is used to represent null (i.e., the absence of a value).

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

[1] The query isComputable() is redefined to be true.
LiteralNull::isComputable(): Boolean;
isComputable = true

UML Superstructure Specification, v2.1.2

[2] The query isNull() returns true.
LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word “null.” Other notations are
described for specific uses.

7.3.29 LiteralSpecification (from Kernel)

A literal specification identifies a literal constant being modeled.

Generalizations

« “ValueSpecification (from Kernel)” on page 137

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics. Subclasses of LiteralSpecification are defined to specify literal values of different types.

Notation

No specific notation
7.3.30 LiteralString (from Kernel)
A literal string is a specification of a string value.

Generalizations

« “LiteralSpecification (from Kernel)” on page 92.

92 UML Superstructure Specification, v2.1.2

Description

A literal string contains a String-valued attribute.

Attributes

e value: String [0..1]
The specified String value

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralString::isComputable(): Boolean;
isComputable = true

[2] The query stringValue() gives the value.
LiteralString::stringValue() : [String];
stringValue = value

Semantics

A LiteralString specifies a constant String value.

Notation
A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.

7.3.31 LiteralUnlimitedNatural (from Kernel)

A literal unlimited natural is a specification of an unlimited natural number.

Generalizations

« “LiteralSpecification (from Kernel)” on page 92

Description

A literal unlimited natural contains an UnlimitedNatural-valued attribute.

Attributes

¢ value: UnlimitedNatural
The specified UnlimitedNatural value. Default value is 0.

UML Superstructure Specification, v2.1.2

93

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() gives the value.
LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk denotes
unlimited (and not infinity).

7.3.32 MultiplicityElement (from Kernel)

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Generalizations

« “Element (from Kernel)” on page 64

Description

A MultiplicityElement is an abstract metaclass that includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Attributes

* isOrdered : Boolean
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this element are
sequentially ordered. Default is false.

e isUnique : Boolean
For a multivalued multiplicity, this attributes specifies whether the values in an instantiation of this element are
unique. Default is true.

94 UML Superstructure Specification, v2.1.2

e [lower : Integer [0..1]
Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

e [upper : UnlimitedNatural [0..1]
Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited natural.

Associations

¢ lowerValue: ValueSpecification [0..1]
The specification of the lower bound for this multiplicity. Subsets Element::ownedElement

e upperValue: ValueSpecification [0..1]
The specification of the upper bound for this multiplicity. Subsets Element::ownedElement

Constraints

These constraints must handle situations where the upper bound may be specified by an expression not computable in the
model.
[1] A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0
[2] The lower bound must be a non-negative integer literal.
lowerBound()->notEmpty() implies lowerBound() >= 0
[3] The upper bound must be greater than or equal to the lower bound.
(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

[4] If a non-literal ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have
side effects.

Cannot be expressed in OCL.

[5] If a non-literal ValueSpecification is used for the lower or upper bound, then that specification must be a constant
expression.

Cannot be expressed in OCL.

[6] The derived lower attribute must equal the lowerBound.
lower = lowerBound()

[7]1 The derived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations

[1] The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.
MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()
isMultivalued = (upperBound() > 1)

[2] The query includesCardinality() checks whether the specified cardinality is valid for this multiplicity.
MultiplicityElement::includesCardinality(C : Integer) : Boolean;
pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

[3] The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.

UML Superstructure Specification, v2.1.2 95

MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()
and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()

includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())
[4] The query lowerBound() returns the lower bound of the multiplicity as an integer.
MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 1 else lowerValue.integerValue() endif
[5] The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.
MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upperValue->isEmpty() then 1 else upperValue.unlimitedValue() endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity M
if M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite)
upper bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a collection of
values. The multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic
effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions.

Notation

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include
a multiplicity specification, which is shown as a text string containing the bounds of the interval, and a notation for
showing the optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
<lower-bound> *..” <upper-bound>

where <lower-bound> is an integer and <upper-bound> is an unlimited natural number. The star character (*) is used as
part of a multiplicity specification to represent the unlimited (or infinite) upper bound.

If the Multiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 7.61 shows two multiplicity strings as
part of attribute specifications within a class symbol.

96 UML Superstructure Specification, v2.1.2

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity
string is displayed without square brackets and may be placed near the symbol for the element. Figure 7.62 shows two
multiplicity strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation is to use a property string containing ordered or unordered to define the ordering,
and unique or non-unique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1.”

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing
a single star “*” instead of “0..*.”

The following BNF defines the syntax for a multiplicity string, including support for the presentation options:
<multiplicity> ::= <multiplicity-range>
[[{* <order-designator> [‘,” <uniqueness-designator>1‘}"]|
[“{* <uniqueness-designator> [*,” <order-designator>1] ‘}" 11
<multiplicity-range> ::= [<lower> *..”] <upper>
<lower> ::= <integer> | <value-specification>
<upper> ::= “*’ | <value-specification>
<order-designator> ::= ‘ordered’ | ‘unordered’
<uniqueness-designator> ::= ‘unique’ | ‘nonunique’

Examples

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Figure 7.61 - Multiplicity within a textual specification

purchase account
Purchase Customer Account
 {ordered, {unique}
unique} 0.5

Figure 7.62 - Multiplicity as an adornment to a symbol

UML Superstructure Specification, v2.1.2 97

7.3.33 NamedElement (from Kernel, Dependencies)
A named element is an element in a model that may have a name.

Generalizations

« “Element (from Kernel)” on page 64

Description

A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes

e name: String [0..1]
The name of the NamedElement.

e [qualifiedName: String [0..1]
A name that allows the NamedElement to be identified within a hierarchy of nested Namespaces. It is constructed
from the names of the containing namespaces starting at the root of the hierarchy and ending with the name of the
NamedElement itself. This is a derived attribute.

« visibility: VisibilityKind [0..1]
Determines where the NamedElement appears within different Namespaces within the overall model, and its
accessibility..

Package Dependencies

« clientDependency: Dependency[*]
Indicates the dependencies that reference the client.

Associations

« [namespace: Namespace [0..1]
Specifies the namespace that owns the NamedElement. Subsets Element::owner. This is a derived union.

Constraints
[1] If there is no name, or one of the containing namespaces has no name, there is no qualified name.
(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()

[2] When there is a name, and all of the containing namespaces have a hame, the qualified name is constructed from the
names of the containing namespaces.

(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->union(result))
[3] If a NamedElement is not owned by a Namespace, it does not have a visibility.
namespace->isEmpty() implies visibility->isEmpty()

98 UML Superstructure Specification, v2.1.2

Additional Operations
[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.
NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =
if self.namespace->isEmpty()
then Sequence{}
else self.namespace.allNamespaces()->prepend(self.namespace)
endif

[2] The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but
different names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =
if self.oclisKindOf(n.oclType) or n.oclisKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isSEmpty()
else true
endif
[3] The query separator() gives the string that is used to separate names when constructing a qualified name.
NamedElement::separator(): String;
separator = %’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the attribute has a multiplicity of [0..1] that provides for the possibility of the absence of a name (which is different
from the empty name).

The visibility attribute provides the means to constrain the usage of a named element, either in namespaces or in access
to the element. It is intended for use in conjunction with import, generalization, and access mechanisms.

Notation
No additional notation

7.3.34 Namespace (from Kernel)
A namespace is an element in a model that contains a set of named elements that can be identified by name.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 98

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

UML Superstructure Specification, v2.1.2 99

A namespace can own constraints. A constraint associated with a namespace may either apply to the namespace itself, or
it may apply to elements in the namespace.

A namespace has the ability to import either individual members or all members of a package, thereby making it possible
to refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary
to use qualified names or aliases to disambiguate the referenced elements.

Attributes

No additional attributes

Associations
e elementimport: Elementimport [*]
References the Elementimports owned by the Namespace. Subsets Element::ownedElement

« |/ importedMember: PackageableElement [*]
References the PackageableElements that are members of this Namespace as a result of either Packagelmports or
Elementimports. Subsets Namespace::member

e/ member: NamedElement [*]
A collection of NamedElements identifiable within the Namespace, either by being owned or by being introduced by
importing or inheritance. This is a derived union.

* / ownedMember: NamedElement [*]
A collection of NamedElements owned by the Namespace. Subsets Element::ownedElement and
Namespace::member. This is a derived union.

e ownedRule: Constraint[*]
Specifies a set of Constraints owned by this Namespace. Subsets Namespace::ownedMember

e packagelmport: Packagelmport [*]
References the Packagelmports owned by the Namespace. Subsets Element::ownedElement

Constraints
[1] All the members of a Namespace are distinguishable within it.
membersAreDistinguishable()
[2] The importedMember property is derived from the Elementimports and the Packagelmports.

elf.elementimport.importedElement.asSet()->union(self.packagelmport.importedPackage->collect(p |
p.visibleMembers()))))

Additional Operations

[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a
member can have multiple names in a Namespace if it is imported more than once with different aliases. The query takes
account of importing. It gives back the set of names that an element would have in an importing namespace, either
because it is owned; or if not owned, then imported individually; or if not individually, then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember =
if self.ownedMember ->includes(element)
then Set{}->include(element.name)
else let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = element) in

100 UML Superstructure Specification, v2.1.2

if elementimports->notEmpty()
then elementimports->collect(el | el.getName())
else
self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))
endif
endif
[2] The Boolean query membersAreDistinguishable() determines whether all of the namespace’s members are
distinguishable within it.
Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self. member->forAll(memb |
self.member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))
[3] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.

This excludes hidden ones, i.e., those that have names that conflict with names of owned members, and also excludes
elements that would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);

importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[4] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(impl | imps.exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
namel::name2::name3. The member association identifies all named elements in a namespace called N that can be
referred to by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelated types, or
related types but different names. This rule may be overridden for particular cases, such as operations that are
distinguished by their signature.

The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These
constraints are evaluated when determining if the model elements are well formed.

Notation

No additional notation. Concrete subclasses will define their own specific notation.
7.3.35 OpaqueExpression (from Kernel)

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

UML Superstructure Specification, v2.1.2 101

Generalizations

« “ValueSpecification (from Kernel)” on page 137

Description

An expression contains language-specific text strings used to describe a value or values, and an optional specification of
the languages.

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be
used.

Attributes

e body: String [0..*]
The text of the expression, possibly in multiple languages.
* language: String [0..*]
Specifies the languages in which the expression is stated. The interpretation of the expression body depends on the

languages. If the languages are unspecified, they might be implicit from the expression body or the context.
Languages are matched to body strings by order.

Associations

No additional associations

Constraints

[1] If the language attribute is not empty, then the size of the body and language arrays must be the same.
language->notEmpty() implies
(body->size() = language->size())

Additional Operations

These operations are not defined within the specification of UML. They should be defined within an implementation that

implements constraints so that constraints that use these operations can be evaluated.

[1] The query value() gives an integer value for an expression intended to produce one.
Expression::value(): Integer;
pre: self.isintegral()

[2] The query isIntegral() tells whether an expression is intended to produce an integer.
Expression::isintegral(): Boolean;

[3] The query isPositive() tells whether an integer expression has a positive value.
Expression::isPositive(): Boolean;
pre: self.isintegral()

[4] The query isNonNegative() tells whether an integer expression has a non-negative value.
Expression::isNonNegative(): Boolean;
pre: self.isintegral()

102 UML Superstructure Specification, v2.1.2

Semantics

The expression body may consist of a sequence of text strings - each in a different language - representing alternative
representations of the same content. When multiple language strings are provided, the language of each separate string is
determined by its corresponding entry in the "language" attribute (by sequence order). The interpretation of the text
strings is language specific. Languages are matched to body strings by order. If the languages are unspecified, they might
be implicit from the expression bodies or the context.

It is assumed that a linguistic analyzer for the specified languages will evaluate the bodies. The times at which the bodies
will be evaluated are not specified.

Notation

An opaque expression is displayed as text strings in particular languages. The syntax of the strings are the responsibility
of a tool and linguistic analyzers for the languages.

An opaque expression is displayed as a part of the notation for its containing element.

The languages of an opaque expression, if specified, are often not shown on a diagram. Some modeling tools may impose
a particular language or assume a particular default language. The language is often implicit under the assumption that the
form of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({})
before the expression string to which it corresponds.

Style Guidelines

A language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use OCL, not ocl.

Examples

a>0
{OCL}i>jand self.size > i
average hours worked per week

7.3.36 Operation (from Kernel, Interfaces)

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Generalizations

» “BehavioralFeature (from Kernel)” on page 48

Description

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Attributes

e /isOrdered : Boolean
Specifies whether the return parameter is ordered or not, if present. This is derived.

UML Superstructure Specification, v2.1.2 103

isQuery : Boolean
Specifies whether an execution of the BehavioralFeature leaves the state of the system unchanged (isQuery=true) or
whether side effects may occur (isQuery=false). The default value is false.

/isUnique : Boolean
Specifies whether the return parameter is unique or not, if present. This is derived.

/lower : Integer[0..1]
Specifies the lower multiplicity of the return parameter, if present. This is derived.

/upper : UnlimitedNatural[0..1]
Specifies the upper multiplicity of the return parameter, if present. This is derived.

Associations

class : Class [0..1]
The class that owns this operation. Subsets RedefinableElement::redefinitionContext, NamedElement::namespace
and Feature::featuringClassifier

bodyCondition: Constraint[0..1]
An optional Constraint on the result values of an invocation of this Operation. Subsets Namespace::ownedRule

ownedParameter: Parameter[*] {ordered}
Specifies the parameters owned by this Operation. Redefines BehavioralFeature::ownedParameter.

postcondition: Constraint[*]
An optional set of Constraints specifying the state of the system when the Operation is completed. Subsets
Namespace::ownedRule.

precondition: Constraint[*]
An optional set of Constraints on the state of the system when the Operation is invoked. Subsets
Namespace::ownedRule

raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation. Redefines
Basic::Operation.raisedException and BehavioralFeature::raisedException.

redefinedOperation:; Operation[*]
References the Operations that are redefined by this Operation. Subsets RedefinableElement::redefinedElement

Itype: Type[0..1]
Specifies the return result of the operation, if present. This is a derived value.

Package Interfaces

interface: Interface [0..1]
The Interface that owns this Operation. (Subsets RedefinableElement::redefinitionContext,
NamedElement::namespace and Feature::featuringClassifier)

Constraints

[1]

[2]

104

An operation can have at most one return parameter (i.e., an owned parameter with the direction set to ‘return’).
ownedParameter->select(par | par.direction = #return)->size() <= 1

If this operation has a return parameter, isOrdered equals the value of isOrdered for that parameter; otherwise, isOrdered
is false.

isOrdered = if returnResult()->notEmpty() then returnResult()->any().isOrdered else false endif

UML Superstructure Specification, v2.1.2

3]

(4]

(5]

(6]

(7]

If this operation has a return parameter, isUnique equals the value of isUnique for that parameter; otherwise, isUnique is
true.

isUnique = if returnResult()->notEmpty() then returnResult()->any().isUnique else true endif

If this operation has a return parameter, lower equals the value of lower for that parameter; otherwise, lower is not
defined.

lower = if returnResult()->notEmpty() then returnResult()->any().lower else Set{} endif

If this operation has a return parameter, upper equals the value of upper for that parameter; otherwise, upper is not
defined.

upper = if returnResult()->notEmpty() then returnResult()->any().upper else Set{} endif

If this operation has a return parameter, type equals the value of type for that parameter; otherwise, type is not defined.
type = if returnResult()->notEmpty() then returnResult()->any().type else Set{} endif

A bodyCondition can only be specified for a query operation.

bodyCondition->notEmpty() implies isQuery

Additional Operations

[1] The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with a redefined operation if it has the
same number of owned parameters, and the type of each owned parameter conforms to the type of the corresponding
redefined parameter.

A redefining operation is consistent with a redefined operation if it has the same number of formal parameters, the same
number of return results, and the type of each formal parameter and return result conforms to the type of the
corresponding redefined parameter or return result.
Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.oclisKindOf(Operation) and

let op: Operation = redefinee.oclAsType(Operation) in

self.ownedParameter.size() = op.ownedParameter.size() and

forAll(i | op.ownedParameter[i].type.conformsTo(self.ownedParameter[i].type))

)

[2] The query returnResult() returns the set containing the return parameter of the Operation if one exists; otherwise, it returns

an empty set.

Operation::returnResult() : Set(Parameter);

returnResult = ownedParameter->select (par | par.direction = #return)
Semantics

An operation is invoked on an instance of the classifier for which the operation is a feature.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

UML Superstructure Specification, v2.1.2 105

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of
the owned parameters, add new preconditions or postconditions, add new raised exceptions, or otherwise refine the
specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model
(isQuery).

An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

Semantic Variation Points

The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point. When
operations are redefined in a specialization, rules regarding invariance, covariance, or contravariance of types and
preconditions determine whether the specialized classifier is substitutable for its more general parent. Such rules
constitute semantic variation points with respect to redefinition of operations.

Notation
If shown in a diagram, an operation is shown as a text string of the form:
[<visibility>] <name> ‘(* [<parameter-list>] *)’ [*:” [<return-type>] [‘{* <oper-property> [*,” <oper-property>]* ‘}'1]
where:
- <uvisibility> is the visibility of the operation (See “VisibilityKind (from Kernel)” on page 139).
<visibility> 1= “+" | - | "#" | *~’
« <name> is the name of the operation.

» <return-type> is the type of the return result parameter if the operation has one defined.
« <oper-property> indicates the properties of the operation.

<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | ‘unique’ | <oper-constraint>

where:
« redefines <oper-name> means that the operation redefines an inherited operation identified by <oper-name>.
« query means that the operation does not change the state of the system.
« ordered means that the values of the return parameter are ordered.
* unique means that the values returned by the parameter have no duplicates.
« <oper-constraint> is a constraint that applies to the operation.
« <parameter-list> is a list of parameters of the operation in the following format:

<parameter-list> ::= <parameter> [*,’<parameter>]*
<parameter> ::= [<direction>] <parameter-name> ‘.’ <type-expression>

106 UML Superstructure Specification, v2.1.2

[‘[‘<multiplicity>"]"] ['=" <default>] [‘{* <parm-property> [‘,” <parm-property>]* ‘}’]
where:
« <direction> ::=‘in’ | “out’ | “inout’ (defaults to ‘in’ if omitted).
» <parameter-name> is the name of the parameter.
» <type-expression> is an expression that specifies the type of the parameter.
« <multiplicity> is the multiplicity of the parameter. (See “MultiplicityElement (from Kernel)” on page 94).
 <default> is an expression that defines the value specification for the default value of the parameter.
« <parm-property> indicates additional property values that apply to the parameter.

Presentation Options

The parameter list can be suppressed. The return result of the operation can be expressed as a return parameter, or as the
type of the operation. For example:

toString(return : String)

means the same thing as
toString() : String

Style Guidelines

An operation name typically begins with a lowercase letter.

Examples
display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String
7.3.37 Package (from Kernel)
A package is used to group elements, and provides a namespace for the grouped elements.

Generalizations

« “Namespace (from Kernel)” on page 99

» “PackageableElement (from Kernel)” on page 109
Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other
packages, or all the members of other packages.

In addition a package can be merged with other packages.

UML Superstructure Specification, v2.1.2 107

Attributes

No additional attributes

Associations

« /nestedPackage: Package [*]
References the owned members that are Packages. Subsets Package: :packagedElement

« /packagedElement: PackageableElement [*]

Specifies the packageable elements that are owned by this Package. Subsets Namespace::ownedMember.
« JownedType: Type [*]

References the packaged elements that are Types. Subsets Package::packagedElement
« packageMerge: Package [*]

References the PackageMerges that are owned by this Package. Subsets Element::ownedElement

e nestingPackage: Package [0..1]
References the Package that owns this Package. Subsets NamedElement::namespace

Constraints

[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.
Package::mustBeOwned() : Boolean
mustBeOwned = false

[2] The query visibleMembers() defines which members of a Package can be accessed outside it.
Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.
Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)

makesVisible =
-- case: the element is in the package itself

(ownedMember->includes(el)) or

-- case: it is imported individually with public visibility

(elementimport->select(ei|ei.importedElement = #public)->collect(ei|ei.importedElement)->includes(el)) or

-- case: it is imported in a package with public visibility

(packagelmport->select(pi|pi.visibility = #public)->collect(pi|pi.importedPackage.member->includes(el))->notEmpty())

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,
and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

108 UML Superstructure Specification, v2.1.2

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package are always accessible outside the package through the use of qualified names.

Notation

A package is shown as a large rectangle with a small rectangle (a “tab™) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by
branching lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end
attached to the namespace (package).

« If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

« |If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by a visibility symbol (‘+* for
public and *-* for private). Package elements with defined visibility may not have protected or package visibility.

Presentation Options

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showing a package
with contents must not necessarily show all its contents; it may show a subset of the contained elements according to
some criterion.

Elements that become available for use in an importing package through a package import or an element import may have
a distinct color or be dimmed to indicate that they cannot be modified.

Examples

There are three representations of the same package Types in Figure 7.63. The one on the left just shows the package
without revealing any of its members. The middle one shows some of the members within the borders of the package, and
the one to the right shows some of the members using the alternative membership notation.

Types
Types Types
Integer O
Jr
Time
Shape Point

Figure 7.63 - Examples of a package with members
7.3.38 PackageableElement (from Kernel)

A packageable element indicates a named element that may be owned directly by a package.

UML Superstructure Specification, v2.1.2 109

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 98

Description

A packageable element indicates a named element that may be owned directly by a package.

Attributes

« visibility: VisibilityKind [1]
Indicates that packageable elements must always have a visibility (i.e., visibility is not optional). Redefines
NamedElement::visibility. Default value is false.

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics

Notation

No additional notation
7.3.39 Packagelmport (from Kernel)

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.
Generalizations

« “DirectedRelationship (from Kernel)” on page 63

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

» visibility: VisibilityKind
Specifies the visibility of the imported PackageableElements within the importing Namespace, i.e., whether imported
elements will in turn be visible to other packages that use that importingPackage as an importedPackage. If the
Packagelmport is public, the imported elements will be visible outside the package, while if it is private they will not.
By default, the value of visibility is public.

110 UML Superstructure Specification, v2.1.2

Associations

e importedPackage: Package [1]
Specifies the Package whose members are imported into a Namespace. Subsets DirectedRelationship::target

e importingNamespace: Namespace [1]
Specifies the Namespace that imports the members from a Package. Subsets DirectedRelationship::source and
Element::owner
Constraints
[1] The visibility of a Packagelmport is either public or private.
self.visibility = #public or self.visibility = #private

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

Notation

A package import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import is intended. The predefined
keywords are «import» for a public package import, and «access» for a private package import.

Presentation options

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

“{import * <qualified-name> ‘}’ | ‘{access ’ <qualified-name> ‘}’

Examples

In Figure 7.64, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then
further imported to WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be
referenced using unqualified names from WebShop.

]
AUXI|IaI’y << é(f(f:fss» —l —l
— _] shoppingCart [<- <722+ WebShop
TypeS é—'«‘ir:lport»

Figure 7.64 - Examples of public and private package imports

UML Superstructure Specification, v2.1.2 111

7.3.40 PackageMerge (from Kernel)
A package merge defines how the contents of one package are extended by the contents of another package.

Generalizations

« “DirectedRelationship (from Kernel)” on page 63

Description

A package merge is a directed relationship between two packages that indicates that the contents of the two packages are
to be combined. It is very similar to Generalization in the sense that the source element conceptually adds the
characteristics of the target element to its own characteristics resulting in an element that combines the characteristics of
both.

This mechanism should be used when elements defined in different packages have the same name and are intended to
represent the same concept. Most often it is used to provide different definitions of a given concept for different purposes,
starting from a common base definition. A given base concept is extended in increments, with each increment defined in
a separate merged package. By selecting which increments to merge, it is possible to obtain a custom definition of a
concept for a specific end. Package merge is particularly useful in meta-modeling and is extensively used in the definition
of the UML metamodel.

Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and produces a new
package that combines the contents of the packages involved in the merge. In terms of model semantics, there is no
difference between a model with explicit package merges, and a model in which all the merges have been performed.

Attributes

No additional attributes

Associations

« mergedPackage: Package [1]
References the Package that is to be merged with the receiving package of the PackageMerge. Subsets
DirectedRelationship::target

e receivingPackage: Package [1]
References the Package that is being extended with the contents of the merged package of the PackageMerge. Subsets
Element::owner and DirectedRelationship::source

Constraints

No additional constraints

Semantics

A package merge between two packages implies a set of transformations, whereby the contents of the package to be
merged are combined with the contents of the receiving package. In cases in which certain elements in the two packages
represent the same entity, their contents are (conceptually) merged into a single resulting element according to the formal
rules of package merge specified below.

As with Generalization, a package merge between two packages in a model merely implies these transformations, but the
results are not themselves included in the model. Nevertheless, the receiving package and its contents are deemed to
represent the result of the merge, in the same way that a subclass of a class represents the aggregation of features of all of

112 UML Superstructure Specification, v2.1.2

its superclasses (and not merely the increment added by the class). Thus, within a model, any reference to a model
element contained in the receiving package implies a reference to the results of the merge rather than to the increment that
is physically contained in that package. This is illustrated by the example in Figure 7.65 in which package P1 and package
P2 both define different increments of the same class A (identified as P1::A and P2::A respectively). Package P2 merges
the contents of package P1, which implies the merging of increment P1::A into increment P2::A. Package P3 imports the
contents of P2 so that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A) represents
the result of the merge of P1::A into P2::A and not just the increment P2::A. Note that if another package were to import
P1, then a reference to A in the importing package would represent the increment P1::A rather than the A resulting from
merge.

0 0]

«merge» «import»
A A A —— SubA

Figure 7.65 - lllustration of the meaning of package merge

To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities: the merged
increment (e.g., P1::A in Figure 7.65), the receiving increment (e.g., P2::A), and the result of the merge transformations.
The main difficulty comes from the fact that the receiving package and its contents represents both the operand and the
results of the package merge, depending on the context in which they are considered. For example, in Figure 7.65, with
respect to the package merge operation, P2 represents the increment that is an operand for the merge. However, with
respect to the import operation, P2 represents the result of the merge. This dual interpretation of the same model element
can be confusing, so it is useful to introduce the following terminology that aids understanding:

» merged package - the first operand of the merge, that is, the package that is to be merged into the receiving package

(this is the package that is the target of the merge arrow in the diagrams).
- receiving package - the second operand of the merge, that is, the package that, conceptually, contains the results of the

merge (and which is the source of the merge arrow in the diagrams). However, this term is used to refer to the package
and its contents before the merge transformations have been performed.

« resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, of course, the
same package as the receiving package, but this particular term is used to refer to the package and its contents after the
merge has been performed.

» merged element - refers to a model element that exists in the merged package.

« receiving element - is a model element in the receiving package. If the element has a matching merged element, the two
are combined to produce the resulting element (see below). This term is used to refer to the element before the merge
has been performed (i.e., the increment itself rather than the result).

« resulting element - is a model element in the resulting package after the merge was performed. For receiving elements
that have a matching merged element, this is the same element as the receiving element, but in the state after the merge
was performed. For merged elements that have no matching receiving element, this is the merged element. For
receiving elements that have no matching merged element, this is the same as the receiving element.

 element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or StructuralFeature.
« element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

UML Superstructure Specification, v2.1.2 113

This terminology is based on a conceptual view of package merge that is represented by the schematic diagram in Figure
7.66 (NB: this is not a UML diagram). The owned elements of packages A and B are all incorporated into the namespace
of package B. However, it is important to emphasize that this view is merely a convenience for describing the semantics
of package merge and is not reflected in the repository model, that is, the physical model itself is not transformed in any
way by the presence of package merges.

merged receiving
package package

A A B

R < 77

I . .

| b N /'/ /

|

I /

I package /

«merge» I merge

: «becomes»

| .

:)
— | e L/

|

! package | * l;
|

B B

Figure 7.66 - Conceptual view of the package merge semantics

The semantics of package merge are defined by a set of constraints and transformations. The constraints specify the
preconditions for a valid package merge, while the transformations describe its semantic effects (i.e., postconditions). If
any constraints are violated, the package merge is ill formed and the resulting model that contains it is invalid. Different
metatypes have different semantics, but the general principle is always the same: a resulting element will not be any less
capable than it was prior to the merge. This means, for instance, that the resulting navigability, multiplicity, visibility, etc.
of a receiving model element will not be reduced as a result of a package merge. One of the key consequences of this is
that model elements in the resulting package are compatible extensions of the corresponding elements in the (unmerged)
receiving package in the same namespace. This capability is particularly useful in defining metamodel compliance levels
such that each successive level is compatible with the previous level, including their corresponding XMI representations.

In this specification, explicit merge transformations are only defined for certain general metatypes found mostly in
metamodels (Packages, Classes, Associations, Properties, etc.), since the semantics of merging other kinds of metatypes
(e.g., state machines, interactions) are complex and domain specific. Elements of all other kinds of metatypes are
transformed according to the default rule: they are simply deep copied into the resulting package. (This rule can be
superseded for specific metatypes through profiles or other kinds of language extensions.)

General package merge rules
A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1. There can be no cycles in the «<merge» dependency graph.

2. A package cannot merge a package in which it is contained.

114 UML Superstructure Specification, v2.1.2

7.

A package cannot merge a package that it contains.

A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association, Operation,
Constraint, Enumeration, or EnumerationLiteral cannot have a receiving element with the same name and metatype
unless that receiving element is an exact copy of the merged element (i.e., they are the same).

A package merge is valid if and only if all the constraints required to perform the merge are satisfied.

Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are classes or data
types, a conforming type is either the same type or a common supertype. For all other cases, conformance means that
the types must be the same.

A receiving element cannot have explicit references to any merged element.

TRANSFORMATIONS:

1.

10.

(The default rule) Merged or receiving elements for which there is no matching element are deep copied into the
resulting package.

The result of merging two elements with matching names and metatypes that are exact copies of each other is the
receiving element.

Matching elements are combined according to the transformation rules specific to their metatype and the results
included in the resulting package.

All type references to typed elements that end up in the resulting package are transformed into references to the
corresponding resulting typed elements (i.e., not to their respective increments).

For all matching elements: if both matching elements have private visibility, the resulting element will have private
visibility; otherwise, the resulting element will have public visibility.

For all matching classifier elements: if both matching elements are abstract, the resulting element is abstract;
otherwise, the resulting element is non-abstract.

For all matching elements: if both matching elements are not derived, the resulting element is also not derived:;
otherwise, the resulting element is derived.

For all matching multiplicity elements: the lower bound of the resulting multiplicity is the lesser of the lower bounds
of the multiplicities of the matching elements.

For all matching multiplicity elements: the upper bound of the resulting multiplicity is the greater of the upper bounds
of the multiplicities of the matching elements.

Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting element.

Package rules

Elements that are a kind of Package match by name and metatype (e.g., profiles match with profiles and regular packages
with regular packages).

TRANSFORMATIONS:

1.

A nested package from the merged package is transformed into a nested package with the same name in the resulting
package, unless the receiving package already contains a matching nested package. In the latter case, the merged
nested package is recursively merged with the matching receiving nested package.

UML Superstructure Specification, v2.1.2 115

2. Anelement import owned by the receiving package is transformed into a corresponding element import in the
resulting package. Imported elements are not merged (unless there is also a package merge to the package owning the
imported element or its alias).

Class and DataType rules
Elements that are kinds of Class or DataType match by name and metatype.
TRANSFORMATIONS:

1. All properties from the merged classifier are merged with the receiving classifier to produce the resulting classifier
according to the property transformation rules specified below.

2. Nested classifiers are merged recursively according to the same rules.

Property rules
Elements that are kinds of Property match by name and metatype.
CONSTRAINTS:
1. The static (or non-static) characteristic of matching properties must be the same.
2. The uniqueness characteristic of matching properties must be the same.
3. Any constraints associated with matching properties must not be conflicting.
4. Any redefinitions associated with matching properties must not be conflicting.
TRANSFORMATIONS:

1. For merged properties that do not have a matching receiving property, the resulting property is a newly created
property in the resulting classifier that is the same as the merged property.

2. For merged properties that have a matching receiving property, the resulting property is a property with the same
name and characteristics except where these characteristics are different. Where these characteristics are different, the
resulting property characteristics are determined by application of the appropriate transformation rules.

3. For matching properties: if both properties are designated read-only, the resulting property is also designated read-
only; otherwise, the resulting property is designated as not read-only.

4. For matching properties: if both properties are unordered, then the resulting property is also unordered; otherwise, the
resulting property is ordered.

5. For matching properties: if neither property is designated as a subset of some derived union, then the resulting
property will not be designated as a subset; otherwise, the resulting property will be designated as a subset of that
derived union.

6. For matching properties: different redefinitions of matching properties are combined conjunctively.
7. For matching properties: different constraints of matching properties are combined conjunctively.

8. For matching properties: if either the merged and/or receiving elements are non-unique, the resulting element is non-
unique; otherwise, the resulting element is designated as unique.

9. The resulting property type is transformed to refer to the corresponding type in the resulting package.

116 UML Superstructure Specification, v2.1.2

Association rules

Elements that are a kind of Association match by name (including if they have no name) and by their association ends where
those match by name and type (i.e., the same rule as properties). These rules are in addition to regular property rules described
above.

CONSTRAINTS:
1. These rules only apply to binary associations. (The default rule is used for merging n-ary associations.)
2. The receiving association end must be a composite if the matching merged association end is a composite.

3. The receiving association end must be owned by the association if the matching merged association end is owned by
the association.

TRANSFORMATIONS:

1. A merge of matching associations is accomplished by merging the Association classifiers (using the merge rules for
classifiers) and merging their corresponding owned end properties according to the rules for properties and
association ends.

2. For matching association ends: if neither association end is navigable, then the resulting association end is also not
navigable. In all other cases, the resulting association end is navigable.

Operation rules
Elements that are a kind of Operation match by name, parameter order, and parameter types, not including any return type.

CONSTRAINTS:

1. Operation parameters and types must conform to the same rules for type and multiplicity as were defined for
properties.

2. The receiving operation must be a query if the matching merged operation is a query.
TRANSFORMATIONS:

1. For merged operations that do not have a matching receiving operation, the resulting operation is an operation with
the same name and signature in the resulting classifier.

2. For merged operations that have a matching receiving operation, the resulting operation is the outcome of a merge of
the matching merged and receiving operations, with parameter transformations performed according to the property
transformations defined above.

Enumeration rules
Elements that are a kind of EnumerationL.iteral match by owning enumeration and literal name.
CONSTRAINTS:
1. Matching enumeration literals must be in the same order.
TRANSFORMATIONS:

1. Non-matching enumeration literals from the merged enumeration are concatenated to the receiving enumeration.

UML Superstructure Specification, v2.1.2 117

Constraint Rules
CONSTRAINTS:

1. Constraints must be mutually non-contradictory.
TRANSFORMATIONS:

1. The constraints of the merged model elements are conjunctively added to the constraints of the matching receiving
model elements.

Notation

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receiving package (the source)
to the merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Target S

“-~-____«merge»

Source

Figure 7.67 - Notation for package merge

118 UML Superstructure Specification, v2.1.2

Examples

In Figure 7.68, packages P and Q are being merged by package R, while package S merges only package Q.

P Q
A A C
7 7
/ i
/ «merge» /
B /! /
/ !
7 !
/ !
/ /I
R / '
\ / S [«merge»
«merge» 1\ / ;
\
\\ //
/
\ /
R \ / D
\ L
A
A B

Figure 7.68 - Simple example of package merges

The transformed packages R and S are shown in Figure 7.69. The expressions in square brackets indicating which
individual increments were merged into produce the final result, with the “@” character denoting the merge operator (note
that these expressions are not part of the standard notation, but are included here for explanatory purposes).

R S
D
[S::D]
A | ﬂl
[P:A@(Q:A@R::A)] [Q:C]
L C
Zﬁ [Q:C]
A
B [Q:A@S::A] 5
[P::B]] [SuB]

Figure 7.69 - Simple example of transformed packages following the merges in Figure 7.68

UML Superstructure Specification, v2.1.2 119

In Figure 7.70, additional package merges are introduced by having package T, which is empty prior to execution of the
merge operation, merge packages R and S defined previously.

1
R
§1\\ «merge»
\\\\\
T
///‘

S " «merge»

Figure 7.70 - Introducing additional package merges

In Figure 7.71, the transformed version of package T is depicted. In this package, the partial definitions of A, B, C, and
D have all been brought together. Note that the types of the ends of the associations that were originally in the packages
Q and S have all been updated to refer to the appropriate elements in package T.

[(P:A@(Q::A@R::A))
@S::A]
B

[P::B@S::B]

[Q:C]

Figure 7.71 - The result of the additional package merges in Figure 7.70
7.3.41 Parameter (from Kernel, AssociationClasses)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

120 UML Superstructure Specification, v2.1.2

Generalizations
« “MultiplicityElement (from Kernel)” on page 94.
» “TypedElement (from Kernel)” on page 136.
Description
A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature. It has a type, and may have a multiplicity and an optional default value.
Attributes

e/ default: String [0..1]
Specifies a String that represents a value to be used when no argument is supplied for the Parameter. This is a derived
value.

e direction: ParameterDirectionKind [1]
Indicates whether a parameter is being sent into or out of a behavioral element. The default value is in.

Associations

e /operation: Operation[0..1]
References the Operation owning this parameter. Subsets NamedElement::namespace

e defaultValue: ValueSpecification [0..1]
Specifies a ValueSpecification that represents a value to be used when no argument is supplied for the Parameter.
Subsets Element::ownedElement

Constraints

No additional constraints

Semantics

A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The
type and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If a default is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter
if and only if no argument is supplied at invocation of the behavioral feature.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

The parameter direction specifies whether its value is passed into, out of, or both into and out of the owning behavioral
feature. A single parameter may be distinguished as a return parameter. If the behavioral feature is an operation, then the
type and multiplicity of this parameter is the same as the type and multiplicity of the operation itself.

Notation

No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines

A parameter name typically starts with a lowercase letter.

UML Superstructure Specification, v2.1.2 121

7.3.42 ParameterDirectionKind (from Kernel)
Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Generalizations

None

Description

ParameterDirectionKind is an enumeration of the following literal values:
e in Indicates that parameter values are passed into the behavioral element by the caller.

e inout Indicates that parameter values are passed into a behavioral element by the caller and then back out to the caller
from the behavioral element.

e out Indicates that parameter values are passed from a behavioral element out to the caller.

e return Indicates that parameter values are passed as return values from a behavioral element back to the caller.
7.3.43 PrimitiveType (from Kernel)

A primitive type defines a predefined data type, without any relevant substructure (i.e., it has no parts in the context of
UML). A primitive datatype may have an algebra and operations defined outside of UML, for example, mathematically.

Generalizations
» “DataType (from Kernel)” on page 60.
Description

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

122 UML Superstructure Specification, v2.1.2

Notation
A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types may be denoted with the same notation as provided for references to such
instances (see the subtypes of “ValueSpecification (from Kernel)”).

7.3.44 Property (from Kernel, AssociationClasses)

A property is a structural feature.

A property related to a classifier by ownedAttribute represents an attribute, and it may also represent an association end.
It relates an instance of the class to a value or collection of values of the type of the attribute.

A property related to an Association by memberEnd or its specializations represents an end of the association. The type
of property is the type of the end of the association.
Generalizations

» “StructuralFeature (from Kernel)” on page 133

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can
be controlled by setting the property’s type.

Package AssociationClasses

A property may have other properties (attributes) that serve as qualifiers.

Attributes

e aggregation: AggregationKind [1]
Specifies the kind of aggregation that applies to the Property. The default value is none.

e [default: String [0..1]
A String that is evaluated to give a default value for the Property when an object of the owning Classifier is
instantiated. This is a derived value.

e [isComposite: Boolean [1]
This is a derived value, indicating whether the aggregation of the Property is composite or not.

e isDerived: Boolean [1]
Specifies whether the Property is derived, i.e., whether its value or values can be computed from other information.
The default value is false.

e isDerivedUnion : Boolean
Specifies whether the property is derived as the union of all of the properties that are constrained to subset it. The
default value is false.

UML Superstructure Specification, v2.1.2 123

« isReadOnly : Boolean
If true, the attribute may only be read, and not written. The default value is false.

Associations

e association: Association [0..1]
References the association of which this property is a member, if any.

e owningAssociation: Association [0..1]
References the owning association of this property. Subsets Property::association, NamedElement::namespace,
Feature::featuringClassifier, and RedefinableElement::redefinitionContext.

e (datatype : DataType [0..1]
The DataType that owns this Property. Subsets NamedElement::namespace, Feature::featuringClassifier, and
Property::classifier.

e defaultValue: ValueSpecification [0..1]
A ValueSpecification that is evaluated to give a default value for the Property when an object of the owning Classifier
is instantiated. Subsets Element::ownedElement.

« redefinedProperty : Property [*]
References the properties that are redefined by this property. Subsets RedefinableElement::redefinedElement.

e subsettedProperty : Property [*]
References the properties of which this property is constrained to be a subset.

e [opposite : Property [0..1]
In the case where the property is one navigable end of a binary association with both ends navigable, this gives the
other end.

e class: Class [0..1]
References the Class that owns the Property. Subsets NamedElement::namespace, Feature::featuringClassifier

Package AssociationClasses

e associationEnd : Property [0..1]
Designates the optional association end that owns a qualifier attribute. Subsets Element::owner

e qualifier : Property [*]
An optional list of ordered qualifier attributes for the end. If the list is empty, then the Association is not qualified.
Subsets Element::ownedElement

Constraints
[1] If this property is owned by a class associated with a binary association, and the other end of the association is also owned
by a class, then opposite gives the other end.
opposite =
if owningAssociation->isEmpty() and association.memberEnd->size() = 2 then
let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->isEmpty() then otherEnd else Set{} endif
else Set {}
endif
[2] A multiplicity on an aggregate end of a composite aggregation must not have an upper bound greater than 1.
isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)

124 UML Superstructure Specification, v2.1.2

[3] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.
subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))
[4] A redefined property must be inherited from a more general classifier containing the redefining property.
if (redefinedProperty->notEmpty()) then
(redefinitionContext->notEmpty() and
redefinedProperty->forAll(rp|
((redefinitionContext->collect(fc|
fc.allParents()))->asSet())->
collect(c| c.allFeatures())->asSet()->
includes(rp))
[5] A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.
subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and
((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))
[6] Only a navigable property can be marked as readOnly.
isReadOnly implies isNavigable()
[7]1 A derived union is derived.
isDerivedUnion implies isDerived
[8] A derived union is read only.
isDerivedUnion implies isReadOnly
[9] The value of isComposite is true only if aggregation is composite.
isComposite = (self.aggregation = #composite)
[10] A Property cannot be subset by a Property with the same name
if (self.subsettedProperty->notEmpty()) then
self.subsettedProperty->forAll(sp | sp.name <> self.name)

Additional Operations

[1] The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conforms to the type of the redefined property, the multiplicity of the redefining property (if specified)
is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined attribute is

property.
Property::isConsistentWith(redefinee : RedefinableElement) : Boolean

pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = redefinee.oclisKindOf(Property) and
let prop : Property = redefinee.oclAsType(Property) in
(prop.type.conformsTo(self.type) and
((prop.lowerBound()->notEmpty() and self.lowerBound()->notEmpty()) implies
prop.lowerBound() >= self.lowerBound()) and
((prop.upperBound()->notEmpty() and self.upperBound()->notEmpty()) implies
prop.lowerBound() <= self.lowerBound()) and

| UML Superstructure Specification, v2.1.2 125

(self.isDerived implies prop.isDerived) and (self.isComposite implies prop.isComposite))

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.
Property::subsettingContext() : Set(Type)
subsettingContext =

if association->notEmpty/()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif
[3] The query isNavigable() indicates whether it is possible to navigate across the property.

Property::isNavigable() : Boolean
isNavigable = not classifier->isEmpty() or association.owningAssociation.navigableOwnedEnd->includes(self)

[4] The query isAttribute() is true if the Property is defined as an attribute of some classifier

context Property::isAttribute(p : Property) : Boolean
post: result = Classifier.allinstances->exists(c| c.attribute->includes(p))

Semantics

When a property is owned by a classifier other than an association via ownedAttribute, then it represents an attribute of
the class or data type. When related to an association via memberEnd or one of its specializations, it represents an end of
the association. In either case, when instantiated a property represents a value or collection of values associated with an
instance of one (or in the case of a ternary or higher-order association, more than one) type. This set of classifiers is called
the context for the property; in the case of an attribute the context is the owning classifier, and in the case of an
association end the context is the set of types at the other end or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain
the size of the collection. Typically and by default the maximum bound is 1.

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of
values may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

Table 7.1 - Collection types for properties

isOrdered isUnique Collection type
false true Set

true true OrderedSet

false false Bag

true false Sequence

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

126 UML Superstructure Specification, v2.1.2

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e. clients
cannot directly change values). But where a derived property is changeable, an implementation is expected to make
appropriate changes to the model in order for all the constraints to be met, in particular the derivation constraint for the
derived property. The derivation for a derived property may be specified by a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by
the derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the
redefining property’s default is used in place of the more general default from the redefined property.

If a navigable property is marked as readOnly, then it cannot be updated once it has been assigned an initial value.

A property may be marked as the subset of another, as long as every element in the context of subsetting property
conforms to the corresponding element in the context of the subsetted property. In this case, the collection associated with
an instance of the subsetting property must be included in (or the same as) the collection associated with the
corresponding instance of the subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in
some context is derived by being the strict union of all of the values denoted, in the same context, by properties defined
to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of all the subsets must be
null or the same.

A property may be owned by and in the namespace of a datatype.

Package AssociationClasses

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the
qualified instance is at the end to which the qualifier is attached). A qualifier instance comprises one value for each
qualifier attribute. Given a qualified object and a qualifier instance, the number of objects at the other end of the
association is constrained by the declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and designates at most one associated object. In the general case of
multiplicity 0..*, the set of associated instances is partitioned into subsets, each selected by a given qualifier instance. In
the case of multiplicity 1 or 0..1, the qualifier has both semantic and implementation consequences. In the case of
multiplicity 0..*, it has no real semantic consequences but suggests an implementation that facilitates easy access of sets
of associated instances linked by a given qualifier value.

Note — The multiplicity of a qualifier is given assuming that the qualifier value is supplied. The “raw” multiplicity without the
qualifier is assumed to be 0..*. This is not fully general but it is almost always adequate, as a situation in which the raw
multiplicity is 1 would best be modeled without a qualifier.

Note — A qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

UML Superstructure Specification, v2.1.2 127

Notation

The following general notation for properties is defined. Note that some specializations of Property may also have
additional notational forms. These are covered in the appropriate Notation clauses of those classes.

<property> ::= [<visibility>] [*/’] <name> [*:” <prop-type>] [‘[* <multiplicity> ‘]'] ['=" <default>]
[*{* <prop-modifier > [*,” <prop-modifier >]* "}’]
where:
« <visibility> is the visibility of the property. (See “VisibilityKind (from Kernel)” on page 139.)
<visibility> ;= “+" | - | ‘#" | *~’
 ‘I" signifies that the property is derived.
« <name> is the name of the property.

» <prop-type> is the name of the Classifier that is the type of the property.

« <multiplicity> is the multiplicity of the property. If this term is omitted, it implies a multiplicity of 1 (exactly one). (See
“MultiplicityElement (from Kernel)” on page 94.)

« <default> is an expression that evaluates to the default value or values of the property.
» <prop-modifier > indicates a modifier that applies to the property.
<prop-modifier> ::= ‘readOnly’ | “‘union’ | ‘subsets‘ <property-name> |
‘redefines’ <property-name> | ‘ordered’ | “‘unique’ | “nonunique’ | <prop-constraint>
where:
« readOnly means that the property is read only.
« union means that the property is a derived union of its subsets.

« subsets <property-name> means that the property is a proper subset of the property identified by <property-
name>.

« redefines <property-name> means that the property redefines an inherited property identified by <property-
name>.

« ordered means that the property is ordered.
* unique means that there are no duplicates in a multi-valued property.

 <prop-constraint> is an expression that specifies a constraint that applies to the property.
All redefinitions should be made explicit with the use of a {redefines <x>} property string. Matching features in
subclasses without an explicit redefinition result in a redefinition that need not be shown in the notation. Redefinition

prevents inheritance of a redefined element into the redefinition context thereby making the name of the redefined
element available for reuse, either for the redefining element, or for some other.

Package AssociationClasses

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier.
The qualifier is attached to the source end of the association.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a source instance and a qualifier value.

128 UML Superstructure Specification, v2.1.2

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to a line.

Qualifier attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single association.

A qualifier may not be suppressed.
Style Guidelines

Package AssociationClasses

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always practical.

Examples

Package AssociationClasses

Bank

accountNo

*

0..1

Person

Figure 7.72 - Qualified associations

Chessboard

rank : Rank
file : File

I

Square

7.3.45 Realization (from Dependencies)

Generalizations

« “Abstraction (from Dependencies)” on page 38

Description

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification

(the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

Attributes

No additional attributes

Associations

No additional associations

UML Superstructure Specification, v2.1.2

129

Constraints

No additional constraints

Semantics

A Realization signifies that the client set of elements are an implementation of the supplier set, which serves as the
specification. The meaning of ‘implementation’ is not strictly defined, but rather implies a more refined or elaborate form
in respect to a certain modeling context. It is possible to specify a mapping between the specification and implementation
elements, although it is not necessarily computable.

Notation

A Realization dependency is shown as a dashed line with a triangular arrowhead at the end that corresponds to the
realized element. Figure 7.73 illustrates an example in which the Business class is realized by a combination of Owner
and Employee classes.

Business

Owner Employee

Figure 7.73 - An example of a realization dependency
7.3.46 RedefinableElement (from Kernel)

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 98

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Attributes

» isLeaf: Boolean
Indicates whether it is possible to further specialize a RedefinableElement. If the value is true, then it is not possible
to further specialize the RedefinableElement. Default value is false.

130 UML Superstructure Specification, v2.1.2

Associations

¢ [redefinedElement: RedefinableElement[*]
The redefinable element that is being redefined by this element. This is a derived union.

e [redefinitionContext: Classifier[*]
References the contexts that this element may be redefined from. This is a derived union.

Constraints

[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.
self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))

[2] A redefining element must be consistent with each redefined element.
self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, this is false; this operation must be overridden for
subclasses of RedefinableElement to define the consistency conditions.
RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false

[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are
properly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the
other. By default at least one of the redefinition contexts of this element must be a specialization of at least one of the
redefinition contexts of the specified element.

RedefinableElement::isRedefinitionContextValid(redefined: RedefinableElement): Boolean;
isRedefinitionContextValid = redefinitionContext->exists(c | c.allParents()->includes(redefined.redefinitionContext))

Semantics

A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine
the element from the general classifier in order to augment, constrain, or override the specification as it applies more
specifically to instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details
that are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the
general context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple
inherited redefinable elements.

UML Superstructure Specification, v2.1.2 131

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.
7.3.47 Relationship (from Kernel)

Relationship is an abstract concept that specifies some kind of relationship between elements.

Generalizations

« “Element (from Kernel)” on page 64

Description

A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes
No additional attributes

Associations

e /relatedElement: Element [1..*]
Specifies the elements related by the Relationship. This is a derived union.

Constraints
No additional constraints

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most cases the notation is a variation on a line drawn between the related elements.

7.3.48 Slot (from Kernel)

A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Generalizations

« “Element (from Kernel)” on page 64

132 UML Superstructure Specification, v2.1.2

Description

A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the slot.

Attributes

No additional attributes

Associations

e definingFeature : StructuralFeature [1]
The structural feature that specifies the values that may be held by the slot.

< owninglnstance : InstanceSpecification [1]
The instance specification that owns this slot. Subsets Element::owner

e value : ValueSpecification [*]
The value or values corresponding to the defining feature for the owning instance specification. This is an ordered
association. Subsets Element::ownedElement

Constraints

No additional constraints

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The values in a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Notation

See “InstanceSpecification (from Kernel).”
7.3.49 StructuralFeature (from Kernel)
A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

Generalizations
» “Feature (from Kernel)” on page 70
« “MultiplicityElement (from Kernel)” on page 94
« “TypedElement (from Kernel)” on page 136

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

By specializing multiplicity element, it supports a multiplicity that specifies valid cardinalities for the collection of values
associated with an instantiation of the structural feature.

UML Superstructure Specification, v2.1.2 133

Attributes

* isReadOnly: Boolean
States whether the feature’s value may be modified by a client. Default is false.

Associations

No additional associations

Constraints

No additional constraints

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified
type.

Notation

A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. This annotation
may be suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Options

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.

Changes from previous UML
The meta-attribute targetScope, which characterized StructuralFeature and AssociationEnd in prior UML is no longer
supported.

7.3.50 Substitution (from Dependencies)

Generalizations

- “Realization (from Dependencies)” on page 129

Description

A substitution is a relationship between two classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract classifier are expected.

Associations

» contract: Classifier [1]
(Subsets Dependency::target.).

» substitutingClassifier: Classifier [1]
(Subsets Dependency::client).

134 UML Superstructure Specification, v2.1.2

Attributes

None

Constraints

No additional constraints

Semantics

The substitution relationship denotes runtime substitutability that is not based on specialization. Substitution, unlike

specialization, does not imply inheritance of structure, but only compliance of publicly available contracts. A substitution
like relationship is instrumental to specify runtime substitutability for domains that do not support specialization such as
certain component technologies. It requires that (1) interfaces implemented by the contract classifier are also implemented
by the substituting classifier, or else the substituting classifier implements a more specialized interface type. And, (2) the

any port owned by the contract classifier has a matching port (see ports) owned by the substituting classifier.

Notation

A Substitution dependency is shown as a dependency with the keyword «substitute» attached to it.

Examples

In the example below, a generic Window class is substituted in a particular environment by the Resizable Window class.

«Ssubstitute»
Window < - — — — — —

Resizable
Window

Figure 7.74 - An example of a substitute dependency

7.3.51 Type (from Kernel)

A type constrains the values represented by a typed element.

Generalizations

» “PackageableElement (from Kernel)” on page 109

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes

No additional attributes

Associations

No additional associations

UML Superstructure Specification, v2.1.2

135

Constraints

No additional constraints

Additional Operations

[1] The query conformsTo() gives true for a type that conforms to another. By default, two types do not conform to each other.
This query is intended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

Notation

No general notation
7.3.52 TypedElement (from Kernel)

A typed element has a type.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 98

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes

No additional attributes

Associations

o type: Type [0..1]
The type of the TypedElement.

Constraints

No additional constraints

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type
may represent values of any type.

Notation

No general notation

136 UML Superstructure Specification, v2.1.2

7.3.53 Usage (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 62

Description

A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or
operation. In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The usage dependency does not specify how the client uses the supplier other than the fact that the supplier is used by the
definition or implementation of the client.

Notation

A usage dependency is shown as a dependency with a «use» keyword attached to it.

Examples

In the example below, an Order class requires the Line Item class for its full implementation.

«use»

Line
Order | ——— —— — =

Item

Figure 7.75 - An example of a use dependency
7.3.54 ValueSpecification (from Kernel)
A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Generalizations

» “PackageableElement (from Kernel)” on page 109
« “TypedElement (from Kernel)” on page 136

UML Superstructure Specification, v2.1.2 137

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Attributes

No additional attributes.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may
be able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] The query isComputable() determines whether a value specification can be computed in a model. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value
specifications that it can compute, and to compute all of those for which the operation is true. A conforming
implementation is expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false

[2] The query integerValue() gives a single Integer value when one can be computed.
ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query booleanValue() gives a single Boolean value when one can be computed.
ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[4] The query stringValue() gives a single String value when one can be computed.
ValueSpecification::stringValue() : [String];
stringValue = Set{}

[5] The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.
ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}

[6] The query isNull() returns true when it can be computed that the value is null.
ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the
context where the value specification is used.

138 UML Superstructure Specification, v2.1.2

Notation

No general notation
7.3.55 VisibilityKind (from Kernel)
VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model.

Generalizations

None

Description

VisibilityKind is an enumeration of the following literal values:
e public

e private

e protected

e package

Additional Operations
[1] The query bestVisibility() examines a set of VisibilityKinds that includes only public and private, and returns public as the
preferred visibility.
VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
pre: not vis->includes(#protected) and not vis->includes(#package)
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations, Packages, and Classes packages. Detailed semantics are specified with those mechanisms. If the
Visibility package is used without those packages, these literals will have different meanings, or no meanings.

« A public element is visible to all elements that can access the contents of the namespace that owns it.
- A private element is only visible inside the namespace that owns it.
« A protected element is visible to elements that have a generalization relationship to the namespace that owns it.

» A package element is owned by a namespace that is not a package, and is visible to elements that are in the same
package as its owning namespace. Only named elements that are not owned by packages can be marked as having
package visibility. Any element marked as having package visibility is visible to all elements within the nearest
enclosing package (given that other owning elements have proper visibility). Outside the nearest enclosing package, an
element marked as having package visibility is not visible.

In circumstances where a named element ends up with multiple visibilities (for example, by being imported multiple
times) public visibility overrides private visibility. If an element is imported twice into the same namespace, once using a
public import and once using a private import, it will be public.

Notation

The following visual presentation options are available for representing VisibilityKind enumeration literal values:

UML Superstructure Specification, v2.1.2 139

e ‘+’ public

o ‘7 private
e ‘# protected
« ‘~’ package

7.4 Diagrams

Structure diagram

This clause outlines the graphic elements that may be shown in structure diagrams, and provides cross references where
detailed information about the semantics and concrete notation for each element can be found. It also furnishes examples
that illustrate how the graphic elements can be assembled into diagrams.

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 7.2.

Table 7.2 - Graphic nodes included in structure diagrams

NoDE TyPE NOTATION REFERENCE
Class See “Class (from Kernel)” on page 49.
ClassName
Interface See “Interface (from Interfaces)” on page 86.

InterfaceName
—0

<<interface>>
InterfaceName

InstanceSpecification

Instancename :

ClassName

See “InstanceSpecification (from Kernel)” on
page 82. (Note that instances of any classifier can
be shown by prefixing the classifier name by the
instance name followed by a colon and underlining
the complete name string.)

Package

PackageName

See “Package (from Kernel)” on page 107.

140

UML Superstructure Specification, v2.1.2

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 7.3.

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE

NOTATION

REFERENCE

Aggregation

See “AggregationKind (from Kernel)” on page 38.

Association See “Association (from Kernel)” on page 39.

Composition See “AggregationKind (from Kernel)” on page 38.
-

Dependency See “Dependency (from Dependencies)” on

page 62.

————————— >
Generalization See “Generalization (from Kernel, PowerTypes)”
~ | onpage71.
InterfaceRealization See “InterfaceRealization (from Interfaces)” on
page 89.
———————— ——
Realization See “Realization (from Dependencies)” on
page 129.
———————— -
Usage See “Usage (from Dependencies)” on page 137.
«use»
————————— >
Package Merge See “PackageMerge (from Kernel)” on page 112.
«merge»
————————— >

| UML Superstructure Specification, v2.1.2

141

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE
Packagelmport See “Packagelmport (from Kernel)” on page 110.
(public)
«import»
————————— >
Packagelmport See “Packagelmport (from Kernel)” on page 110.
(private)
«access»
————————— >
Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Class diagram

The following nodes and edges are typically drawn in a class diagram:
 Association
« Aggregation
« Class
« Composition
« Dependency
« Generalization

« Interface
« InterfaceRealization
« Realization

Package diagram

The following nodes and edges are typically drawn in a package diagram:
 Dependency
» Package
 PackageExtension
 Packagelmport

Object diagram

The following nodes and edges are typically drawn in an object diagram:
« InstanceSpecification
« Link (i.e., Association)

142 UML Superstructure Specification, v2.1.2

8 Components

8.1 Overview

The Components package specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity. In particular, the package specifies a component as a modular unit with well-defined interfaces that is
replaceable within its environment. The component concept addresses the area of component-based development and
component-based system structuring, where a component is modeled throughout the development life cycle and
successively refined into deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed components. A component
can always be considered an autonomous unit within a system or subsystem. It has one or more provided and/or required
interfaces (potentially exposed via ports), and its internals are hidden and inaccessible other than as provided by its
interfaces. Although it may be dependent on other elements in terms of interfaces that are required, a component is
encapsulated and its dependencies are designed such that it can be treated as independently as possible. As a result,
components and subsystems can be flexibly reused and replaced by connecting (“wiring”) them together via their
provided and required interfaces. The aspects of autonomy and reuse also extend to components at deployment time. The
artifacts that implement component are intended to be capable of being deployed and re-deployed independently, for
instance to update an existing system.

The Components package supports the specification of both logical components (e.g., business components, process
components) and physical components (e.g., EJB components, CORBA components, COM+ and .NET components,
WSDL components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and
executed. It is anticipated that profiles based around components will be developed for specific component technologies
and associated hardware and software environments.

Basic Components

The BasicComponents package focuses on defining a component as an executable element in a system. It defines the
concept of a component as a specialized class that has an external specification in the form of one or more provided and
required interfaces, and an internal implementation consisting of one or more classifiers that realize its behavior. In
addition, the BasicComponents package defines specialized connectors for ‘wiring” components together based on
interface compatibility.

Packaging Components

The PackagingComponents package focuses on defining a component as a coherent group of elements as part of the
development process. It extends the concept of a basic component to formalize the aspects of a component as a ‘building
block’ that may own and import a (potentially large) set of model elements.

UML Superstructure Specification, v2.1.2 143

8.2 Abstract Syntax

Figure 8.1 shows the dependencies of the Component packages.

-

StructuredClasses Dependencies

A e
7
‘ / <<merge>>

*‘ /

BasicComponents

<<merge>>

<<merge>>

PackagingComponents

Figure 8.1 - Dependencies between packages described in this clause (transitive dependencies to Kernel and

Interfaces packages are not shown).

144

UML Superstructure Specification, v2.1.2

Package BasicComponents

UV :
Depoandencies::
NamedEfenant

: Classes::

Fay

UNML:CompositeStructures::
StructuredClasses:iClass

UML::Classes::
Dependencies::
Realization

Lsubsets owner, {subsets

Component

subsets client}
+ abstraction

ownedElernent

Fiy

+ realization A
l ComponentRealization

izindirectlyinstantiated : Boolean ¢D q

*

{readCnly}
+ Jrequired

*

{read0

)
B = [+ J‘prnvidnra-l[}‘}
4

UML::
Classes:
Interfaces:
Interface

®

{subsets suppliert
+ realizingClassifier [1

*

LNV - Ciasses!:
Harnef::Classifior

Figure 8.2 - The metaclasses that define the basic Component construct

Connector

+ contract
T

kind : Connectorkind |*

gEnUmeration:
ConnectorKind

aszembly
delegation

| ComimonBehaviors:

*

L

BasicRehaviors::
Refravior

Figure 8.3 - The metaclasses that define the component wiring constructs

UML Superstructure Specification, v2.1.2

145

Package PackagingComponents

{subsets ownedMember}t

+ packagedElemert_ | UMEL:: Classes::
= Koermnol::

0.1 *
PackageabieFlament

Figure 8.4 - The packaging capabilities of Components

8.3 Class Descriptions

8.3.1 Component (from BasicComponents, PackagingComponents)

A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, a component serves as a type
whose conformance is defined by these provided and required interfaces (encompassing both their static as well as
dynamic semantics). One component may therefore be substituted by another only if the two are type conformant. Larger
pieces of a system’s functionality may be assembled by reusing components as parts in an encompassing component or
assembly of components, and wiring together their required and provided interfaces.

A component is modeled throughout the development life cycle and successively refined into deployment and run-time. A
component may be manifest by one or more artifacts, and in turn, that artifact may be deployed to its execution
environment. A deployment specification may define values that parameterize the component’s execution. (See
Deployment clause).

Generalizations
« “Class (from StructuredClasses)” on page 160

« “NamedElement (from Kernel, Dependencies)” on page 98
Description

BasicComponents

A component is a subtype of Class that provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations. A Component may form the abstraction for a set of realizingClassifiers
that realize its behavior. In addition, because a Class itself is a subtype of an EncapsulatedClassifier, a Component may
optionally have an internal structure and own a set of Ports that formalize its interaction points.

A component has a number of provided and required Interfaces, that form the basis for wiring components together, either
using Dependencies, or by using Connectors. A provided Interface is one that is either implemented directly by the
component or one of its realizingClassifiers, or it is the type of a provided Port of the Component. A required interface is
designated by a Usage Dependency from the Component or one of its realizingClassifiers, or it is the type of a required
Port.

146 UML Superstructure Specification, v2.1.2

PackagingComponents

A component is extended to define the grouping aspects of packaging components. This defines the Namespace aspects of
a Component through its inherited ownedMember and elementimport associations. In the namespace of a component, all
model elements that are involved in or related to its definition are either owned or imported explicitly. This may include,
for example, UseCases and Dependencies (e.g., mappings), Packages, Components, and Artifacts.

Attributes

Package BasicComponents

L]

isIndirectlyInstantiated : Boolean {default = true}

The kind of instantiation that applies to a Component. If false, the component is instantiated as an addressable object. If
true, the Component is defined at design-time, but at run-time (or execution-time) an object specified by the Component
does not exist, that is, the component is instantiated indirectly, through the instantiation of its realizing classifiers or parts.
Several standard stereotypes use this meta attribute (e.g., «specification», «focus», «subsystem»).

Associations

Package BasicComponents

L]

/provided: Interface [*]
The interfaces that the component exposes to its environment. These interfaces may be Realized by the Component
or any of its realizingClassifiers, or they may be the Interfaces that are provided by its public Ports. The provided
interfaces association is a derived association:

context Component::provided derive:
let implementedinterfaces = self.implementation->collect(impljimpl.contract) and
let realizedInterfaces = RealizedInterfaces(self) and
let realizingClassifierInterfaces = RealizedInterfaces(self.realizingClassifier) and
let typesOfRequiredPorts = self.ownedPort.provided in
(((implementedInterfaces->union(realizedInterfaces)->union(realizingClassifierinterfaces))->
union(typesOfRequiredPorts))->asSet()

Irequired: Interface [*]
The interfaces that the component requires from other components in its environment in order to be able to offer
its full set of provided functionality. These interfaces may be Used by the Component or any of its
realizingClassifiers, or they may be the Interfaces that are required by its public Ports. The required interfaces
association is a derived association:
context Component::required derive:
let usedinterfaces = UsedInterfaces(self) and
let realizingClassifierUsedInterfaces = UsedInterfaces(self.realizingClassifier) and
let typesOfUsedPorts = self.ownedPort.required in
((usedinterfaces->union(realizingClassifierUsedInterfaces))->
union(typesOfUsedPorts))->asSet()

realization: ComponentRealization [*]
The set of Realizations owned by the Component. These realizations reference the Classifiers of which the
Component is an abstraction (i.e., those that realize its behavior).

UML Superstructure Specification, v2.1.2 147

PackagingComponents

« packagedElement: PackageableElement [*]
The set of PackageableElements that a Component owns. In the namespace of a component, all model elements that
are involved in or related to its definition may be owned or imported explicitly. These may include e.g., Classes,
Interfaces, Components, Packages, Use cases, Dependencies (e.g., mappings), and Artifacts. Subsets
Namespace::ownedMember.

Constraints

No further constraints

Additional Operations

[1] Utility returning the set of realized interfaces of a component:

def: RealizedInterfaces : (classifier : Classifier) : Interface = (classifier.clientDependency->
select(dependency|dependency.oclisKindOf(Realization) and dependency.supplier.oclisKindOf(Interface)))->
collect(dependency|dependency.client)

[2] Utility returning the set of required interfaces of a component:

def: UsedInterfaces : (classifier : Classifier) : Interface = (classifier.supplierDependency->
select(dependency|dependency.oclisKindOf(Usage) and dependency.supplier.oclisKindOf(interface)))->
collect(dependency|dependency.supplier)

Semantics

A component is a self contained unit that encapsulates the state and behavior of a number of classifiers. A component
specifies a formal contract of the services that it provides to its clients and those that it requires from other components
or services in the system in terms of its provided and required interfaces.

A component is a substitutable unit that can be replaced at design time or run-time by a component that offers equivalent
functionality based on compatibility of its interfaces. As long as the environment obeys the constraints expressed by the
provided and required interfaces of a component, it will be able to interact with this environment. Similarly, a system can
be extended by adding new component types that add new functionality.

The required and provided interfaces of a component allow for the specification of structural features such as attributes
and association ends, as well as behavioral features such as operations and events. A component may implement a
provided interface directly, or, its realizing classifiers may do so. The required and provided interfaces may optionally be
organized through ports, these enable the definition of named sets of provided and required interfaces that are typically
(but not always) addressed at run-time.

A component has an external view (or “black-box” view) by means of its publicly visible properties and operations.
Optionally, a behavior such as a protocol state machine may be attached to an interface, port, and to the component itself,
to define the external view more precisely by making dynamic constraints in the sequence of operation calls explicit.
Other behaviors may also be associated with interfaces or connectors to define the ‘contract’ between participants in a
collaboration (e.g., in terms of use case, activity, or interaction specifications).

The wiring between components in a system or other context can be structurally defined by using dependencies between
component interfaces (typically on structure diagrams). Optionally, a more detailed specification of the structural
collaboration can be made using parts and connectors in composite structures, to specify the role or instance level
collaboration between components (See Clause Composite Structures).

148 UML Superstructure Specification, v2.1.2

A component also has an internal view (or “white-box” view) by means of its private properties and realizing classifiers.
This view shows how the external behavior is realized internally. The mapping between external and internal view is by
means of dependencies (on structure diagrams), or delegation connectors to internal parts (on composite structure
diagrams). Again, more detailed behavior specifications such as interactions and activities may be used to detail the
mapping from external to internal behavior.

A number of UML standard stereotypes exist that apply to component. For example, «subsystem» to model large-scale
components, and «specification» and «realization» to model components with distinct specification and realization
definitions, where one specification may have multiple realizations (see the UML Standard Elements Annex).

Notation

A component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
component icon can be displayed. This is a classifier rectangle with two smaller rectangles protruding from its left hand
side.

Quotelnf
O——1 «component» = |

QuoteService

Figure 8.5 - A Component with one provided interface

IltemAllocation

: «component» @ Person :

Tracking Order

Invoice i

J\Orderableltem

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external, or
black-box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments
of a component box (for scalability, tools may offer way of listing and abbreviating component properties and behavior).

UML Superstructure Specification, v2.1.2 149

«component» @
Order

«provided interfaces»
OrderEntry
Billing
«required interfaces»
Invoice
create (...)
registerPayment (...)

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

«Interface» @ «USE» «Interface»
«component»

OrderEntry e Order — Person
Create() FindbyName()
ValidateDetails() Create() .
AddOrderline() GetDetails()

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
as operation to be displayed (when desired).

An internal, or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

«component» @

Order

«provided interfaces»
OrderEntry
AccountPayable

«required interfaces»
Person

«realizations»
OrderHeader
Lineltem

«artifacts»
Order.jar

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed by means of general dependencies.
Alternatively, they may be nested within the component shape.

150 UML Superstructure Specification, v2.1.2

1

«component»
Customer

Customerimpl

CustomerColl

CustomerDef

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the

component shape.

OrderEntry
o— |

«component»

Order

OrderHeader

order 1
item *

Lineltem

5]

Person

Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of
parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names
to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is,
the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally,

specific instances (InstanceSpecifications) can also be referred to as in this notation.

Interfaces that are exposed by a Component and notated on a diagram, either directly or though a port definition, may be

inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the

interface by a forward slash. An example of this can be found in Figure 8.14, where “/orderedltem” is an interface that is
implemented by a supertype of the Product component.

UML Superstructure Specification, v2.1.2

151

«component» @
Store
OrderEntry

© L «delegate»
«component» @ Person «component» @
O—

OrderEntry :Order Person :Customer
Orderableltem Account i
«delegate»
Orderableltem
Account
«component» @
:Product

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components as
parts of its internal assembly.

Acrtifacts that implement components can be connected to them by physical containment or by an «implement»
relationship, which is an instance of the meta association between Component and Artifact.

Examples
«component» @ «component»
Order = f---------------3 Account

i
1
1
1
1
i
1
\V

«component»

Product 8

Figure 8.13 - Example of an overview diagram showing components and their general dependencies

152 UML Superstructure Specification, v2.1.2

«component» @

Account

account

AccountPayable

«component»

Order

«focus»

—--3> OrderHeader

concerns

fordereditem

1

(/33

«component» @
Product

¢

Lineltem

A\
Orderableltem

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces, and wir-
ing through dependencies on a structure diagram.

«component» @

:ShoppingCart

:BackOrder

«component» @ Person

OrderEntry
o

«component» @

:Service

OrderEntry

Orderableltem

«component» @

Person

«component» @

:Order

Orderableltem

9

‘ Orderableltem

«component» @

:Product

Person

(o

:Customer

«component» @

Client

:Organization

Figure 8.15 -Example of a composite structure of components, with connector wiring between provided and required

interfaces of parts (Note: “Client” interface is a subtype of “Person”).

The wiring of components can be represented on structure diagrams by means of classifiers and dependencies between

them (Note: the ball-and-socket notation from Figure 8.15 may be used as a notation option for dependency based

wiring). On composite structure diagrams, detailed wiring can be performed at the role or instance level by defining parts

and connectors.

UML Superstructure Specification, v2.1.2

153

Changes from previous UML
The following changes from UML 1.x have been made.

The component model has made a number of implicit concepts from the UML 1.x model explicit, and made the concept
more applicable throughout the modeling life cycle (rather than the implementation focus of UML 1.x). In particular, the
“resides” relationship from 1.x relied on namespace aspects to define both namespace aspects as well as ‘residence’
aspects. These two aspects have been separately modeled in the UML metamodel in 2.0. The basic residence relationship
in 1.x maps to the realizingClassifiers relationship in 2.0. The namespace aspects are defined through the basic namespace
aspects of Classifiers in UML 2.0, and extended in the PackagingComponents metamodel for optional namespace
relationships to elements other than classifiers.

In addition, the Component construct gains the capabilities from the general improvements in CompositeStructures
(around Parts, Ports, and Connectors).

In UML 2.0, a Component is notated by a classifier symbol that no longer has two protruding rectangles. These were
cumbersome to draw and did not scale well in all circumstances. Also, they interfered with any interface symbols on the
edge of the Component. Instead, a «component» keyword notation is used in UML 2.0. Optionally, a component icon that
is similar to the UML 1.4 icon can still be used in the upper right-hand corner of the component symbol. For backward
compatibility reasons, the UML 1.4 notation with protruding rectangles can still be used.

8.3.2 Connector (from BasicComponents)

The connector concept is extended in the Components package to include interface based constraints and notation.

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the
internal realization of that behavior by the component’s parts. It represents the forwarding of signals (operation requests
and events): a signal that arrives at a port that has a delegation connector to a part or to another port will be passed on to
that target for handling.

An assembly connector is a connector between two components that defines that one component provides the services that
another component requires. An assembly connector is a connector that is defined from a required interface or port to a
provided interface or port.

Generalizations

« “Connector (from InternalStructures)” on page 174 (merge increment)

Description

In the metamodel, a connector kind attribute is added to the Connector metaclass. Its value is an enumeration type with
valid values “assembly” or “delegation.”

Attributes

Package BasicComponents

¢ kind : ConnectorKind
Indicates the kind of connector.

154 UML Superstructure Specification, v2.1.2

Associations

e contract : Behavior [0..*]
The set of Behaviors that specify the valid interaction patterns across the connector.

Constraints

[1] A delegation connector must only be defined between used Interfaces or Ports of the same kind (e.g., between two
provided Ports or between two required Ports).

[2] If a delegation connector is defined between a used Interface or Port and an internal Part Classifier, then that Classifier
must have an “implements” relationship to the Interface type of that Port.

[3] If adelegation connector is defined between a source Interface or Port and a target Interface or Port, then the target
Interface must support a signature compatible subset of Operations of the source Interface or Port.

[4] Inacomplete model, if a source Port has delegation connectors to a set of delegated target Ports, then the union of the
Interfaces of these target Ports must be signature compatible with the Interface that types the source Port.

[5]1 An assembly connector must only be defined from a required Interface or Ports to a provided Interface or Port.

Semantics

A delegation connector is a declaration that behavior that is available on a component instance is not actually realized by
that component itself, but by another instance that has “compatible” capabilities. This may be another Component or a
(simple) Class. The latter situation is modeled through a delegation connector from a Component Interface or Port to a
contained Class that functions as a Part. In that case, the Class must have an implements relationship to the Interface of
the Port.

Delegation connectors are used to model the hierarchical decomposition of behavior, where services provided by a
component may ultimately be realized by one that is nested multiple levels deep within it. The word delegation suggests
that concrete message and signal flow will occur between the connected ports, possibly over multiple levels. It should be
noted that such signal flow is not always realized in all system environments or implementations (i.e., it may be design
time only).

A port may delegate to a set of ports on subordinate components. In that case, these subordinate ports must collectively
offer the delegated functionality of the delegating port. At execution time, signals will be delivered to the appropriate
port. In the cases where multiple target ports support the handling of the same signal, the signal will be delivered to all
these subordinate ports.

The execution time semantics for an assembly connector are that signals travel along an instance of a connector,
originating in a required port and delivered to a provided port. Multiple connectors directed from a single required
interface or port to provided interfaces on different components indicates that the instance that will handle the signal will
be determined at execution time. Similarly, multiple required ports that are connected to a single provided port indicates
that the request may originate from instances of different component types.

The interface compatibility between provided and required ports that are connected enables an existing component in a
system to be replaced by one that (minimally) offers the same set of services. Also, in contexts where components are
used to extend a system by offering existing services, but also adding new functionality, assembly connectors can be used
to link in the new component definition. That is, by adding the new component type that offers the same set of services
as existing types, and defining new assembly connectors to link up its provided and required ports to existing ports in an
assembly.

UML Superstructure Specification, v2.1.2 155

Notation

A delegation connector is notated as a Connector from the delegating source Port to the handling target Part, and vice
versa for required Interfaces or Ports.

«component» @
OrderEntry Order
o———1}
:OrderHeader
—C
Person
:Lineltem
order item
OrderHeader ®————— Lineltem
1

Figure 8.16 - Delegation connectors connect the externally provided interfaces of a component to the parts that realize
or require them.

An assembly connector is notated by a “ball-and-socket” connection between a provided interface and a required
interface. This notation allows for succinct graphical wiring of components, a requirement for scaling in complex
systems.

When this notation is used to connect “complex” ports that are typed by multiple provided and/or required interfaces, the
various interfaces are listed as an ordered set, designated with {provided} or {required} if needed.

OrderEntry «component» @ OrderEntry «component» @
O Order (J— :Order

Orderableltem

Orderableltem

«component»

O— Product @

Orderableltem Orderableltem

«component» @
:Product

Figure 8.17 - An assembly connector maps a required interface of a component to a provided interface of another
component in a certain context (definition of components, e.g., in a library on the left, an assembly of those compo-
nents on the right).

156 UML Superstructure Specification, v2.1.2

Where multiple components provide or require the same interface, a single symbol representing the interface can be
shown, and lines from the components can be drawn to that symbol, indicating that this interface is either a required or
provided interface for the components. This presentation option is applicable whether the interface is shown using "ball-
and-socket™ notation, as in Figure 8.18, or just using a required or provided interface symbol.

«component» @ P
erson
O— :BackOrder
OrderEntry
«component» «component»
% Person
O— :Order O :Customer
OrderEntry Person
«component»
:Organization

Note: Client interface is a subtype of Person interface

Figure 8.18 - As a notation abstraction, multiple wiring relationships can be visually grouped together in a component
assembly.

Changes from previous UML

The following changes from UML 1.x have been made — Connector is not defined in UML 1.4.
8.3.3 ConnectorKind (from BasicComponents)

Generalizations

None

Description
ConnectorKind is an enumeration of the following literal values:

e assembly
Indicates that the connector is an assembly connector.

e delegation
Indicates that the connector is a delegation connector.

8.3.4 ComponentRealization (from BasicComponents)
The ComponentRealization concept is specialized in the Components package to (optionally) define the Classifiers that

realize the contract offered by a component in terms of its provided and required interfaces. The component forms an
abstraction from these various Classifiers.

UML Superstructure Specification, v2.1.2 157

Generalizations

- “Realization (from Dependencies)” on page 129 (merge increment)

Description

In the metamodel, a ComponentRealization is a subtype of Dependencies::Realization.

Attributes

No additional attributes

Associations

e abstraction : Component [0..1]
The Component that own this Realization and which is implemented by its realizing classifiers.{Subsets
Element::owner, DirectedRelationship::source, Dependency::client}

» realizingClassifier : Classifier [1]
A classifier that is involved in the implementation of the Component that owns this Realization. {Subsets
Dependency::supplier, DirectedRelationship::target}

Constraints

No additional constraints

Semantics

A component’s behavior may typically be realized (or implemented) by a number of Classifiers. In effect, it forms an
abstraction for a collection of model elements. In that case, a component owns a set of Component Realization
Dependencies to these Classifiers. In effect, it forms an abstraction for a collection of model elements. In that case, a
component owns a set of Realization Dependencies to these Classifiers.

It should be noted that for the purpose of applications that require multiple different sets of realizations for a single
component specification, a set of standard stereotypes are defined in the UML Standard Profile. In particular,
«specification» and «realization» are defined there for this purpose.

Notation

A component realization is notated in the same way as the realization dependency (i.e., as a general dashed line with an
open arrow-head).

Changes from previous UML

The following changes from UML 1.x have been made: Realization is defined in UML 1.4 as a “free standing’ general
dependency - it is not extended to cover component realization specifically. These semantics have been made explicit in
UML 2.0.

158 UML Superstructure Specification, v2.1.2

8.4 Diagrams

Structure diagram

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 8.1.

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE
Component See “Component”
<<component>>
ComponentName

=1

ComponentName
Component implements Interface See “Interface”
«component» @
O— Name
Component has provided Port See “Port”

(typed by Interface)

«component» @

Name

Component uses Interface See “Interface”

«component» @

Name

UML Superstructure Specification, v2.1.2

159

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE
Component has required Port (typed See “Port”
by Interface) «component» @
Name
Component has complex Port (typed See “Port”
by provided and required Interfaces) o g
Name

Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 8.2.

Table 8.2 - Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “assembly connector.” Also used as notation option for
wiring between interfaces using Dependencies.

©

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Component diagram
The following nodes and edges are typically drawn in a component diagram:

« Component

« Interface

« ComponentRealization, Interface Realization, Usage Dependencies
» Class

- Artifact

« Port

160 UML Superstructure Specification, v2.1.2

9 Composite Structures

9.1 Overview

The term “structure” in this clause refers to a composition of interconnected elements, representing run-time instances
collaborating over communications links to achieve some common objectives.

Internal Structures

The InternalStructure subpackage provides mechanisms for specifying structures of interconnected elements that are
created within an instance of a containing classifier. A structure of this type represents a decomposition of that classifier
and is referred to as its “internal structure.”

Ports

The Ports subpackage provides mechanisms for isolating a classifier from its environment. This is achieved by providing
a point for conducting interactions between the internals of the classifier and its environment. This interaction point is
referred to as a “port.” Multiple ports can be defined for a classifier, enabling different interactions to be distinguished
based on the port through which they occur. By decoupling the internals of the classifier from its environment, ports allow
a classifier to be defined independently of its environment, making that classifier reusable in any environment that
conforms to the interaction constraints imposed by its ports.

Collaborations

Obijects in a system typically cooperate with each other to produce the behavior of a system. The behavior is the
functionality that the system is required to implement.

A behavior of a collaboration will eventually be exhibited by a set of cooperating instances (specified by classifiers) that
communicate with each other by sending signals or invoking operations. However, to understand the mechanisms used in
a design, it may be important to describe only those aspects of these classifiers and their interactions that are involved in
accomplishing a task or a related set of tasks, projected from these classifiers. Collaborations allow us to describe only
the relevant aspects of the cooperation of a set of instances by identifying the specific roles that the instances will play.
Interfaces allow the externally observable properties of an instance to be specified without determining the classifier that
will eventually be used to specify this instance. Consequentially, the roles in a collaboration will often be typed by
interfaces and will then prescribe properties that the participating instances must exhibit, but will not determine what class
will specify the participating instances.

StructuredClasses

The StructuredClasses subpackage supports the representation of classes that may have ports as well as internal structure.

Actions

The Actions subpackage adds actions that are specific to the features introduced by composite structures (e.g., the sending
of messages via ports).

9.2 Abstract Syntax

Figure 9.1 shows the dependencies of the CompositeStructures packages.

UML Superstructure Specification, v2.1.2 161

1
Interfaces
Communications
I

:
:
:
i
sMmErgEs
!
:
i
:
:
i
:

InternalStructures

H
H
:
amerdes
.
H
H
H
H H
H H

1
Ports amerges
__ =
Ak AT
ameres

Collzhaorations

" —| E
Structuredaclivities «merg'e»

!
| \
. .
\
|r .
! . BazicActions
“merges «merges
" ‘I
| \
J s
| i
! s
| .
; i A1 .
! \ f .
i K SISO «mefges:
| \ f N
/ \ ‘ .
s . .
‘
H
Structured Activities

1 :
InvocationActions

StructuredClasses

Figure 9.1 - Dependencies between packages described in this clause

UML Superstructure Specification, v2.1.2

162

Package InternalStructures

UML ::Classes::
Kernel::Classifier

StructuredClassifier

{readOrly, union, subsets mermbert

UML::Classes::
Kernel:
TypedElement

iy

UML::Classes::Kernel:

+ frole

ConnectableElement

StructuralFeature

+*

i

0.1

Figure 9.2 - Structured classifier

ConnectableElement

*

UML::Classes::Kernel::
MuttiplicityElement

i
{subsets role, -
subsets ownedMember, Property
subsets attribute, ordered}
+ owynedAttribute . + clazsifier Classifier
g 0 "
+ vt 91
{readCnlyt
t part {readonly
0.1 *
{subsets feature {subsets redefinedElernentt
N SubSEtSEFéNI"IEdMmeEr} + redefinedConnectaor
{subsets redefinitionContext: + owhedConnector Connector o

{subsets ownedElement,

Figure 9.3 - Connectors

+rols {Dfdeliﬂ}é ConnectorEnd {deeggd}
1 E 2.7
{readOnly}
+ /definingEnd (0.1
4
Property

UML Superstructure Specification, v2.1.2

UL ::Classes::Kernel::
Feature

Connector

0.1
4
UML::Classes::
Kernel::Association

+type

163

Package Ports

Issue 10992 Replace figure

StructuredClassifier

Property

T

EncapsulatedClassifier [subset {subsets p
SUDSELs ownedAttribute} ont
defiritionCortext : : {readOniv}
edefintionContexty +fownedPort, e Eehavior : Boolean +irequired | |pterface
0.1 * |isSernice : Boolean - *
subsets redefinedElemnent; readon|
ConnectorEnd { T redeﬁnedpm} i?provn:l‘é}él\
+ partithPort 0.1 *
Property

Figure 9.4 - The Port metaclass

Package StructuredClasses

UML ::CompositeStructures::
Ports::EncapsulatedClassifier

Class

Figure 9.5 - Classes with internal structure

164 UML Superstructure Specification, v2.1.2

Package Collaborations

L

CompositeStructures::

IntermalStructures::
StructuredClassifier

L

CommonBehaviors::
BasicBehaviors::
BehavioredClassifier

UL ::
CompositeStructures:: {subsets role

|

e

+ k
InternalStructures:: - collabaration
ConnectableElement

T‘

Parameter

Figure 9.6 - Collaboration

*

Ceollaboration

Tsubsets ownedElerment}:

UML::Classes:: roieBinding
* 0.

Dependencies::
Dependency

U Classes!:
Hornel:: Mamtespace

Classas::
Harpel::
Tvpe

Figure 9.7 - Collaboration.use and role bi

UML Superstructure Specification, v2.1.2

UML::Classes:: mw;‘;:ch-‘a}gses::
Kernel: narnel.:
NamedElement Redefinableiement
{subsets ownedElemeant}
+ collaborationlse
CollaborationUse [~ o 1"’
{subsets callaborationUse}
+ representation
* 0.1 0.1
+type 1
UML::
CompositeStructures
Collaborations::
Collaboration
nding

Classifier

7

165

Package InvocationActions

InvocationA ction + onPort UML:: port Trigger
e -
e CompositeStructures:
* - Ports::Port * *

Figure 9.8 - Actions specific to composite structures

Package StructuredActivities

UL ::
CompositeStructures::
InternalStructures::
ConnectableElement

|

Variable

Figure 9.9 - Extension to Variable

9.3 Class Descriptions

9.3.1 Class (from StructuredClasses)

Generalizations

» “EncapsulatedClassifier (from Ports)” on page 178.

Description

Extends the metaclass Class with the capability to have an internal structure and ports.

Semantics

See “Property (from InternalStructures)” on page 183, “Connector (from InternalStructures)” on page 174, and “Port
(from Ports)” on page 179 for the semantics of the features of Class. Initialization of the internal structure of a class is
discussed in clause “StructuredClassifier (from InternalStructures)” on page 186.

A class acts as the namespace for various kinds of classifiers defined within its scope, including classes. Nesting of
classifiers limits the visibility of the classifier to within the scope of the namespace of the containing class and is used for
reasons of information hiding. Nested classifiers are used like any other classifier in the containing class.

166 UML Superstructure Specification, v2.1.2

Notation

See “Class (from Kernel)” on page 49, “StructuredClassifier” on page 183, and “Port” on page 179.

Presentation Options

A usage dependency may relate an instance value to a constructor for a class, describing the single value returned by the
constructor operation. The operation is the client, the created instance the supplier. The instance value may reference
parameters declared by the operation. A constructor is an operation having a single return result parameter of the type of
the owning class. The instance value that is the supplier of the usage dependency represents the default value of the single
return result parameter of a constructor operation. (The constructor operation is typically denoted by the stereotype
“create,” as shown in Figure 9.10.)

Window
———————>f theW:Window

«create» make(...)

Figure 9.10 - Instance specification describes the return value of an operation

Changes from previous UML

Class has been extended with internal structure and ports.
9.3.2 Classifier (from Collaborations)

Generalizations

» 7.3.8, “Classifier (from Kernel, Dependencies, PowerTypes),” on page 52

Description

Classifier is extended with the capability to own collaboration uses. These collaboration uses link a collaboration with the
classifier to give a description of the workings of the classifier.

Associations

» collaborationUse: CollaborationUse
References the collaboration uses owned by the classifier. (Subsets Element::ownedElement)

* representation: CollaborationUse [0..1]
References a collaboration use which indicates the collaboration that represents this classifier. (Subsets
Classifier::collaborationUse)

Semantics

A classifier can own collaboration uses that relate (aspects of) this classifier to a collaboration. The collaboration
describes those aspects of this classifier.

UML Superstructure Specification, v2.1.2 167

One of the collaboration uses owned by a classifier may be singled out as representing the behavior of the classifier as a
whole. The collaboration that is related to the classifier by this collaboration use shows how the instances corresponding
to the structural features of this classifier (e.g., its attributes and parts) interact to generate the overall behavior of the
classifier. The representing collaboration may be used to provide a description of the behavior of the classifier at a
different level of abstraction than is offered by the internal structure of the classifier. The properties of the classifier are
mapped to roles in the collaboration by the role bindings of the collaboration use.

Notation

See “CollaborationUse (from Collaborations)” on page 171

Changes from previous UML

Replaces and widens the applicability of Collaboration.usedCollaboration. Together with the newly introduced internal
structure concept replaces Collaboration.representedClassifier.

9.3.3 Collaboration (from Collaborations)

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality. Its primary purpose is to explain how a system works and, therefore,
it typically only incorporates those aspects of reality that are deemed relevant to the explanation. Thus, details, such as the
identity or precise class of the actual participating instances are suppressed.

Generalizations
- “BehavioredClassifier (from BasicBehaviors, Communications)” on page 432

» “StructuredClassifier (from InternalStructures)” on page 186

Description

A collaboration is represented as a kind of classifier and defines a set of cooperating entities to be played by instances (its
roles), as well as a set of connectors that define communication paths between the participating instances. The
cooperating entities are the properties of the collaboration (see “Property (from InternalStructures)” on page 183).

A collaboration specifies a view (or projection) of a set of cooperating classifiers. It describes the required links between
instances that play the roles of the collaboration, as well as the features required of the classifiers that specify the
participating instances. Several collaborations may describe different projections of the same set of classifiers.

Attributes

No additional attributes

Associations

» collaborationRole: ConnectableElement [*]
References connectable elements (possibly owned by other classifiers), which represent roles that instances may play
in this collaboration. (Subsets StructuredClassifier.role)

Constraints

No additional constraints

168 UML Superstructure Specification, v2.1.2

Semantics

Collaborations are generally used to explain how a collection of cooperating instances achieve a joint task or set of tasks.
Therefore, a collaboration typically incorporates only those aspects that are necessary for its explanation and suppresses
everything else. Thus, a given object may be simultaneously playing roles in multiple different collaborations, but each
collaboration would only represent those aspects of that object that are relevant to its purpose.

A collaboration defines a set of cooperating participants that are needed for a given task. The roles of a collaboration will
be played by instances when interacting with each other. Their relationships relevant for the given task are shown as
connectors between the roles. Roles of collaborations define a usage of instances, while the classifiers typing these roles
specify all required properties of these instances. Thus, a collaboration specifies what properties instances must have to be
able to participate in the collaboration. A role specifies (through its type) the required set of features a participating
instance must have. The connectors between the roles specify what communication paths must exist between the
participating instances.

Neither all features nor all contents of the participating instances nor all links between these instances are always required
in a particular collaboration. Therefore, a collaboration is often defined in terms of roles typed by interfaces (see
“Interface (from Interfaces)” on page 86). An interface is a description of a set of properties (externally observable
features) required or provided by an instance. An interface can be viewed as a projection of the externally observable
features of a classifier realizing the interface. Instances of different classifiers can play a role defined by a given interface,
as long as these classifiers realize the interface (i.e., have all the required properties). Several interfaces may be realized
by the same classifier, even in the same context, but their features may be different subsets of the features of the realizing
classifier.

Collaborations may be specialized from other collaborations. If a role is extended in the specialization, the type of a role
in the specialized collaboration must conform to the type of the role in the general collaboration. The specialization of the
types of the roles does not imply corresponding specialization of the classifiers that realize those roles. It is sufficient that
they conform to the constraints defined by those roles.

A collaboration may be attached to an operation or a classifier through a CollaborationUse. A collaboration used in this
way describes how this operation or this classifier is realized by a set of cooperating instances. The connectors defined
within the collaboration specify links between the instances when they perform the behavior specified in the classifier.
The collaboration specifies the context in which behavior is performed. Such a collaboration may constrain the set of
valid interactions that may occur between the instances that are connected by a link.

A collaboration is not directly instantiable. Instead, the cooperation defined by the collaboration comes about as a
consequence of the actual cooperation between the instances that play the roles defined in the collaboration (the
collaboration is a selective view of that situation).

UML Superstructure Specification, v2.1.2 169

Notation

A collaboration is shown as a dashed ellipse icon containing the name of the collaboration. The internal structure of a
collaboration as comprised by roles and connectors may be shown in a compartment within the dashed ellipse icon.
Alternatively, a composite structure diagram can be used.

- - Observer ~~
;7 o
\ Subject : CallQueue Observer : SlidingBarlcon /\
~ ~ P ~

Figure 9.11 - The internal structure of the Observer collaboration shown inside the collaboration icon (a connection is
shown between the Subject and the Observer role).

Using an alternative notation for properties, a line may be drawn from the collaboration icon to each of the symbols
denoting classifiers that are the types of properties of the collaboration. Each line is labeled by the name of the property.
In this manner, a collaboration icon can show the use of a collaboration together with the actual classifiers that occur in
that particular use of the collaboration (see Figure 9.12).

CallOueue Subject idi
Queu Observer SlidingBarlcon

— - T - ~
queue: List of Call y h reading: Real
source: Object \ Observer \ color: Color
waitAlarm: Alarm N / range: Interval
capacity: Integer - -

- = =

Observer.reading = length (Subject.queue)
Observer.range = (0 .. Subject.capacity)

Figure 9.12 - In the Observer collaboration two roles, a Subject and an Observer, collaborate to produce the desired
behavior. Any instance playing the Subject role must possess the properties specified by CallQueue, and similarly for
the Observer role.

Rationale

The primary purpose of collaborations is to explain how a system of communicating entities collectively accomplish a
specific task or set of tasks without necessarily having to incorporate detail that is irrelevant to the explanation. It is
particularly useful as a means for capturing standard design patterns.

170 UML Superstructure Specification, v2.1.2

Changes from previous UML

The contents of a collaboration is specified as its internal structure relying on roles and connectors; the concepts of
ClassifierRole, AssociationRole, and AssociationEndRole have been superseded. A collaboration in UML 2.0 is a kind of
classifier, and can have any kind of behavioral descriptions associated. There is no loss in modeling capabilities.

9.3.4 CollaborationUse (from Collaborations)

A collaboration use represents the application of the pattern described by a collaboration to a specific situation involving
specific classes or instances playing the roles of the collaboration.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 98

Description

A collaboration use represents one particular use of a collaboration to explain the relationships between the properties of
a classifier. A collaboration use shows how the pattern described by a collaboration is applied in a given context, by
binding specific entities from that context to the roles of the collaboration. Depending on the context, these entities could
be structural features of a classifier, instance specifications, or even roles in some containing collaboration. There may be
multiple occurrences of a given collaboration within a classifier, each involving a different set of roles and connectors. A
given role or connector may be involved in multiple occurrences of the same or different collaborations.

Associated dependencies map features of the collaboration type to features in the classifier. These dependencies indicate
which role in the classifier plays which role in the collaboration.

Attributes

No additional attributes

Associations

e type: Collaboration [1]
The collaboration that is used in this occurrence. The collaboration defines the cooperation between its roles that are
mapped to properties of the classifier owning the collaboration use.

< roleBinding: Dependency [*]
A mapping between features of the collaboration type and features of the classifier or operation. This mapping
indicates which connectable element of the classifier or operation plays which role(s) in the collaboration. A
connectable element may be bound to multiple roles in the same collaboration use (that is, it may play multiple roles).

Constraints

[1] All the client elements of a roleBinding are in one classifier and all supplier elements of a roleBinding are in one
collaboration and they are compatible.

[2] Every role in the collaboration is bound within the collaboration use to a connectable element within the classifier or
operation.

[3] The connectors in the classifier connect according to the connectors in the collaboration.

UML Superstructure Specification, v2.1.2 171

Semantics

A collaboration use relates a feature in its collaboration type to a connectable element in the classifier or operation that
owns the collaboration use.

Any behavior attached to the collaboration type applies to the set of roles and connectors bound within a given
collaboration use. For example, an interaction among parts of a collaboration applies to the classifier parts bound to a
single collaboration use. If the same connectable element is used in both the collaboration and the represented element, no
role binding is required.

Semantic Variation Points

It is a semantic variation when client and supplier elements in role bindings are compatible.

Notation

A collaboration use is shown by a dashed ellipse containing the name of the occurrence, a colon, and the name of the
collaboration type. For every role binding, there is a dashed line from the ellipse to the client element; the dashed line is
labeled on the client end with the name of the supplier element.

Examples

This example shows the definition of two collaborations, Sale (Figure 9.13) and BrokeredSale (Figure 9.14). Sale is used
twice as part of the definition of BrokeredSale. Sale is a collaboration among two roles, a seller and a buyer. An
interaction, or other behavior specification, could be attached to Sale to specify the steps involved in making a Sale.

Figure 9.13 - The Sale collaboration

BrokeredSale is a collaboration among three roles, a producer, a broker, and a consumer. The specification of
BrokeredSale shows that it consists of two occurrences of the Sale collaboration, indicated by the dashed ellipses. The
occurrence wholesale indicates a Sale in which the producer is the seller and the broker is the buyer. The occurrence
retail indicates a Sale in which the broker is the seller and the consumer is the buyer. The connectors between sellers and
buyers are not shown in the two occurrences; these connectors are implicit in the BrokeredSale collaboration in virtue of
them being comprised of Sale. The BrokeredSale collaboration could itself be used as part of a larger collaboration.

172 UML Superstructure Specification, v2.1.2

\\
- e —— N
. /// [N AN
/ . A
, 7 wholesale: \ AN
/ - \ Sale ~ N
, broker |— ~_ e ~ N
/ buyer S ~ \
/ y ~ seller \
/ \ ~ \
/ seller \‘
| \ producer |
\]
\ I
\ \ j
\ /
\\ /,A‘\\ //
\ s N W
N / retail: N /
N
S . Sale J/ b 7
e
S == uyer -
\\ I — //
~_ —| consumer -

Figure 9.14 - The BrokeredSale collaboration

Figure 9.15 shows part of the BrokeredSale collaboration in a presentation option.

I «occurrence» " Sale -
//// T~ //,/////”/Z,,,,,,,a,e,,,,,,:>
- BrokeredSale < / N
———— e — = N /
e N \ buyer seller)
/ S 7 /
/ Y ~_ -
/ T \ :;x’; ,,,, -7
/ broker |
I e
\ T
\ producer -~
\ i
N -
\\ P

Figure 9.15 - A subset of the BrokeredSale collaboration

Rationale

A collaboration use is used to specify the application of a pattern specified by a collaboration to a specific situation. In
that regard, it acts as the invocation of a macro with specific values used for the parameters (roles).

Changes from previous UML

This metaclass has been added.

UML Superstructure Specification, v2.1.2 173

9.3.5 ConnectableElement (from InternalStructures)

Generalizations

« “TypedElement (from Kernel)” on page 136

Description

A ConnectableElement is an abstract metaclass representing a set of instances that play roles of a classifier. Connectable
elements may be joined by attached connectors and specify configurations of linked instances to be created within an
instance of the containing classifier.

Attributes

No additional attributes

Associations

¢ end: ConnectorEnd
Denotes a connector that attaches to this connectable element.

Constraints

No additional constraints

Semantics

The semantics of ConnectableElement is given by its concrete subtypes.

Notation

None

Rationale

This metaclass supports factoring out the ability of a model element to be linked by a connector.

Changes from previous UML

This metaclass generalizes the concept of classifier role from 1.x.
9.3.6 Connector (from InternalStructures)

Specifies a link that enables communication between two or more instances. This link may be an instance of an
association, or it may represent the possibility of the instances being able to communicate because their identities are
known by virtue of being passed in as parameters, held in variables or slots, or because the communicating instances are
the same instance. The link may be realized by something as simple as a pointer or by something as complex as a network
connection. In contrast to associations, which specify links between any instance of the associated classifiers, connectors
specify links between instances playing the connected parts only.

Generalizations

» “Feature (from Kernel)” on page 70

174 UML Superstructure Specification, v2.1.2

Description

Each connector may be attached to two or more connectable elements, each representing a set of instances. Each
connector end is distinct in the sense that it plays a distinct role in the communication realized over a connector. The
communications realized over a connector may be constrained by various constraints (including type constraints) that
apply to the attached connectable elements.

Attributes

No additional attributes

Associations

¢ end: ConnectorEnd [2..%]
A connector consists of at least two connector ends, each representing the participation of instances of the classifiers
typing the connectable elements attached to this end. The set of connector ends is ordered.
(SubsetsElement::ownedElement)

e type: Association [0..1]
An optional association that specifies the link corresponding to this connector.

¢ redefinedConnector: Connector [0..*]
A connector may be redefined when its containing classifier is specialized. The redefining connector may have a type
that specializes the type of the redefined connector. The types of the connector ends of the redefining connector may
specialize the types of the connector ends of the redefined connector. The properties of the connector ends of the
redefining connector may be replaced. (Subsets Element::redefinedElement)

Constraints

[1] The types of the connectable elements that the ends of a connector are attached to must conform to the types of the
association ends of the association that types the connector, if any.

[2] The connectable elements attached to the ends of a connector must be compatible.

[3] The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the Classifier
that owned the Connector, or they must be ports of such roles.

Semantics

If a connector between two roles of a classifier is a feature of an instantiable classifier, it declares that a link may exist
within an instance of that classifier. If a connector between two roles of a classifier is a feature of an uninstantiable
classifier, it declares that links may exist within an instance of the classifier that realizes the original classifier. These
links will connect instances corresponding to the parts joined by the connector.

Links corresponding to connectors may be created upon the creation of the instance of the containing classifier (see
“StructuredClassifier” on page 183). All such links corresponding to connectors are destroyed, when the containing
classifier instance is destroyed.

If the type of the connector is omitted, the type is inferred based on the connector, as follows: If the type of a role (i.e, the
connectable element attached to a connector end) realizes an interface that has a unique association to another interface

which is realized by the type of another role (or an interface compatible to that interface is realized by the type of another
role), then that association is the type of the connector between these parts. If the connector realizes a collaboration (that
is, a collaboration use maps the connector to a connector in an associated collaboration through role bindings), then the
type of the connector is an anonymous association with association ends corresponding to each connector end. The type
of each association end is the classifier that realizes the parts connected to the matching connector in the collaboration.

UML Superstructure Specification, v2.1.2 175

Any adornments on the connector ends (either the original connector or the connector in the collaboration) specify
adornments of the ends of the inferred association; otherwise, the type of the connector is an anonymously named
association with association ends corresponding to each connector end. The type of each association end is the type of the
part that each corresponding connector end is attached to. Any adornments on the connector ends specify adornments of
the ends of the inferred association. Any inferred associations are always bidirectionally navigable and are owned by the
containing classifier.

Semantic Variation Points

What makes connectable elements compatible is a semantic variation point.

Notation

A connector is drawn using the notation for association (see “Association (from Kernel)” on page 39). The optional name
string of the connector obeys the following syntax:

([name] “:” <classname>) | <name>

where <name> is the name of the connector, and <classname> is the name of the association that is its type. A stereotype
keyword within guillemets may be placed above or in front of the connector name. A property string may be placed after
or below the connector name.

Examples

Examples are shown in “StructuredClassifier” on page 183.

Changes from previous UML

Connector has been added in UML 2.0. The UML 1.4 concept of association roles is subsumed by connectors.
9.3.7 ConnectorEnd (from InternalStructures, Ports)

Generalizations

- “MultiplicityElement (from Kernel)” on page 94

Description

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector
end is part of one connector.

Attributes

No additional attributes
Associations

InternalStructures

* role: ConnectableElement [1]
The connectable element attached at this connector end. When an instance of the containing classifier is created, a
link may (depending on the multiplicities) be created to an instance of the classifier that types this connectable
element.

176 UML Superstructure Specification, v2.1.2

e definingEnd: Property [0..1]
A derived association referencing the corresponding association end on the association that types the connector
owing this connector end. This association is derived by selecting the association end at the same place in the
ordering of association ends as this connector end.

Ports
e partWithPort: Property [0..1]

Indicates the role of the internal structure of a classifier with the port to which the connector end is attached.
Constraints

[1] If a connector end is attached to a port of the containing classifier, partWithPort will be empty.

[2] If a connector end references both a role and a partWithPort, then the role must be a port that is defined by the type of the
partWithPort.

[3] The property held in self.partWithPort must not be a Port.

[4] The multiplicity of the connector end may not be more general than the multiplicity of the association typing the owning
connector.

Semantics

InternalStructures

A connector end describes which connectable element is attached to the connector owning that end. Its multiplicity
indicates the number of instances that may be linked to each instance of the property connected on the other end.

Notation

InternalStructures

Adornments may be shown on the connector end corresponding to adornments on association ends (see “Association
(from Kernel)” on page 39). In cases where there is no explicit association in the model typing the connector, these
adornments specify the multiplicities of an implicit association; otherwise, they show properties of that association, or
specializations of these on the connector.. The multiplicity indicates the number of instances that may be connected to
each instance of the role on the other end. If no multiplicity is specified, the multiplicity matches the multiplicity of the
role the end is attached to.

Ports

If the end is attached to a port on a part of the internal structure and no multiplicity is specified, the multiplicity matches
the multiplicity of the port multiplied by the multiplicity of the part (if any).

Changes from previous UML

Connector end has been added in UML 2.0. The UML 1.4 concept of association end roles is subsumed by connector
ends.

UML Superstructure Specification, v2.1.2 177

9.3.8 EncapsulatedClassifier (from Ports)

Generalizations

« “StructuredClassifier (from InternalStructures)” on page 186

Description

Extends a classifier with the ability to own ports as specific and type checked interaction points.

Attributes

No additional attributes

Associations

e JownedPort: Port [0..*]
The set of port attributes owned by EncapsulatedClassifier. (Subsets Class::ownedAttribute)

Constraints

No additional constraints

Semantics

See “Port” on page 179.

Notation

See “Port” on page 179.

Changes from previous UML

This metaclass has been added to UML.
9.3.9 InvocationAction (from InvocationActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 257 (merge increment)

Description

In addition to targeting an object, invocation actions can also invoke behavioral features on ports from where the
invocation requests are routed onwards on links deriving from attached connectors. Invocation actions may also be sent to
a target via a given port, either on the sending object or on another object.
Associations
e onPort: Port [0..1]

An optional port of the receiver object on which the behavioral feature is invoked.
Constraints

[1] The onPort must be a port on the receiver object.

178 UML Superstructure Specification, v2.1.2

Semantics

The target value of an invocation action may also be a port. In this case, the invocation request is sent to the object
owning this port as identified by the port identity, and is, upon arrival, handled as described in “Port” on page 179.

Notation

The optional port is identified by the phrase “via <port>" in the name string of the icon denoting the particular invocation
action.

9.3.10 Parameter (from Collaborations)

Generalizations
« “ConnectableElement (from InternalStructures)” on page 174

» “Parameter (from Kernel, AssociationClasses)” on page 120 (merge increment)

Description

Parameters are allowed to be treated as connectable elements.

Constraints

[1] A parameter may only be associated with a connector end within the context of a collaboration.

self.end->notEmpty() implies self.collaboration->notEmpty()
9.3.11 Port (from Ports)

A port is a property of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to properties of the classifier by
connectors through which requests can be made to invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the services that a classifier expects (requires) of its
environment.

Generalizations

» “Property (from InternalStructures)” on page 183

Description

Ports represent interaction points between a classifier and its environment. The interfaces associated with a port specify
the nature of the interactions that may occur over a port. The required interfaces of a port characterize the requests that
may be made from the classifier to its environment through this port. The provided interfaces of a port characterize
requests to the classifier that its environment may make through this port.

A port has the ability to specify that any requests arriving at this port are handled by the behavior of the instance of the
owning classifier, rather than being forwarded to any contained instances, if any.

Attributes

e isService: Boolean
If true, indicates that this port is used to provide the published functionality of a classifier. If false, this port is used to

UML Superstructure Specification, v2.1.2 179

implement the classifier but is not part of the essential externally-visible functionality of the classifier and can,
therefore, be altered or deleted along with the internal implementation of the classifier and other properties that are
considered part of its implementation. The default value for this attribute is true.

* isBehavior: Boolean
Specifies whether requests arriving at this port are sent to the classifier behavior of this classifier (see
“BehavioredClassifier (from BasicBehaviors, Communications)” on page 432). Such ports are referred to as behavior
port. Any invocation of a behavioral feature targeted at a behavior port will be handled by the instance of the owning
classifier itself, rather than by any instances that this classifier may contain. The default value is false.

Associations

e required: Interface
References the interfaces specifying the set of operations and receptions that the classifier expects its environment to
handle. This association is derived as the set of interfaces required by the type of the port or its supertypes.

e provided: Interface
References the interfaces specifying the set of operations and receptions that the classifier offers to its environment,
and which it will handle either directly or by forwarding it to a part of its internal structure. This association is derived
from the interfaces realized by the type of the port or by the type of the port, if the port was typed by an interface.

e redefinedPort: Port
A port may be redefined when its containing classifier is specialized. The redefining port may have additional
interfaces to those that are associated with the redefined port or it may replace an interface by one of its subtypes.
(Subsets Element::redefinedElement)

Constraints

[1] The required interfaces of a port must be provided by elements to which the port is connected.
[2] Port.aggregation must be composite.

[3] When a port is destroyed, all connectors attached to this port will be destroyed also.

[4] A defaultValue for port cannot be specified when the type of the Port is an Interface.

Semantics

A port represents an interaction point between a classifier instance and its environment or between a classifier instance
and instances it may contain. A port by default has public visibility. However, a behavior port may be hidden but does not
have to be.

The required interfaces characterize services that the owning classifier expects from its environment and that it may
access through this interaction point: Instances of this classifier expect that the features owned by its required interfaces
will be offered by one or more instances in its environment. The provided interfaces characterize the behavioral features
that the owning classifier offers to its environment at this interaction point. The owning classifier must offer the features
owned by the provided interfaces.

The provided and required interfaces completely characterize any interaction that may occur between a classifier and its
environment at a port with respect to the data communicated at this port and the behaviors that may be invoked through
this port. The interfaces do not necessarily establish the exact sequences of interactions across the port. When an instance
of a classifier is created, instances corresponding to each of its ports are created and held in the slots specified by the
ports, in accordance with its multiplicity. These instances are referred to as “interaction points” and provide unique
references. A link from that instance to the instance of the owning classifier is created through which communication is
forwarded to the instance of the owning classifier or through which the owning classifier communicates with its

180 UML Superstructure Specification, v2.1.2

environment. It is, therefore, possible for an instance to differentiate between requests for the invocation of a behavioral
feature targeted at its different ports. Similarly, it is possible to direct such requests at a port, and the requests will be
routed as specified by the links corresponding to connectors attached to this port. (In the following, “requests arriving at
a port” shall mean “request occurrences arriving at the interaction point of this instance corresponding to this port.”)

The interaction point object must be an instance of a classifier that realizes the provided interfaces of the port. If the port
was typed by an interface, the classifier typing the interaction point object realizes that interface. If the port was typed by
a class, the interaction point object will be an instance of that class. The latter case allows elaborate specification of the
communication over a port. For example, it may describe that communication is filtered, modified in some way, or routed
to other parts depending on its contents as specified by the classifier that types the port.

If connectors are attached to both the port when used on a property within the internal structure of a classifier and the port
on the container of an internal structure, the instance of the owning classifier will forward any requests arriving at this
port along the link specified by those connectors. If there is a connector attached to only one side of a port, any requests
arriving at this port will terminate at this port.

For a behavior port, the instance of the owning classifier will handle requests arriving at this port (as specified in the
behavior of the classifier, see Clause 13, “Common Behaviors”), if this classifier has any behavior. If there is no behavior
defined for this classifier, any communication arriving at a behavior port is lost.

Semantic Variation Points

If several connectors are attached on one side of a port, then any request arriving at this port on a link derived from a
connector on the other side of the port will be forwarded on links corresponding to these connectors. It is a semantic
variation point whether these requests will be forwarded on all links, or on only one of those links. In the latter case, one
possibility is that the link at which this request will be forwarded will be arbitrarily selected among those links leading to
an instance that had been specified as being able to handle this request (i.e., this request is specified in a provided
interface of the part corresponding to this instance).

Notation

A port of a classifier is shown as a small square symbol. The name of the port is placed near the square symbol. The port
symbol may be placed either overlapping the boundary of the rectangle symbol denoting that classifier or it may be shown
inside the rectangle symbol.

A port of a classifier may also be shown as a small square symbol overlapping the boundary of the rectangle symbol
denoting a part typed by that classifier (see Figure 9.16). The name of the port is shown near the port; the multiplicity
follows the name surrounded by brackets. Name and multiplicity may be elided.

The type of a port may be shown following the port name, separated by colon (“:”). A provided interface may be shown
using the “lollipop” notation (see “Interface (from Interfaces)” on page 86) attached to the port. A required interface may
be shown by the “socket” notation attached to the port. The presentation options shown there are also applicable to

interfaces of ports. Figure 9.16 shows the notation for ports: p is a port on the Engine class. The provided interface (also

UML Superstructure Specification, v2.1.2 181

its type) of port p is powertrain. The multiplicity of p is “1.” In addition, a required interface, power, is shown also. The
figure on the left shows the provided interface using the “lollipop” notation, while the figure on the right shows the
interface as the type of the port.

) Engine Engine
powertrain
p[1] p: powertrain [1]
;] ol
power power

Figure 9.16 - Port notation

A behavior port is indicated by a port being connected through a line to a small state symbol drawn inside the symbol
representing the containing classifier. (The small state symbol indicates the behavior of the containing classifier.) Figure
9.17 shows the behavior port p, as indicated by its connection to the state symbol representing the behavior of the Engine
class. Its provided interface is powertrain. In addition, a required interface, power, is shown also.

Engine
powertrain
C%>pt
power

Figure 9.17 - Behavior port notation

Presentation Options
The name of a port may be suppressed. Every depiction of an unnamed port denotes a different port from any other port.

If there are multiple interfaces associated with a port, these interfaces may be listed with the interface icon, separated by
commas. Figure 9.18 below shows a port OnlineServices on the OrderProcess class with two provided interfaces,
OrderEntry and Tracking, as well as a required interface Payment.

OrderProcess
Payment

Figure 9.18 - Port notation showing multiple provided interfaces

182 UML Superstructure Specification, v2.1.2

Examples

powertrain Engine Car

p

axle p
’) rear : Wheel [2] e: Engine
power

<<interface>>
powertrain

Boat

shaft p _
<<interface>> : Propeller e: Engine
power

Figure 9.19 - Port examples

Figure 9.19 shows a class Engine with a port p with a provided interface powertrain. This interface specifies the services
that the engine offers at this port (i.e., the operations and receptions that are accessible by communication arriving at this
port). The interface power is the required interface of the engine. The required interface specifies the services that the
engine expects its environment to provide. At port p, the Engine class is completely encapsulated; it can be specified
without any knowledge of the environment the engine will be embedded in. As long as the environment obeys the
constraints expressed by the provided and required interfaces of the engine, the engine will function properly.

Two uses of the Engine class are depicted: Both a boat and a car contain a part that is an engine. The Car class connects
port p of the engine to a set of wheels via the axle. The Boat class connects port p of the engine to a propeller via the

shaft. As long as the interaction between the Engine and the part linked to its port p obeys the constraints specified by the
provided and required interfaces, the engine will function as specified, whether it is an engine of a car or an engine of a
boat. (This example also shows that connectors need not necessarily attach to parts via ports (as shown in the Car class.)

Rationale

The required and provided interfaces of a port specify everything that is necessary for interactions through that interaction
point. If all interactions of a classifier with its environment are achieved through ports, then the internals of the classifier
are fully isolated from the environment. This allows such a classifier to be used in any context that satisfies the
constraints specified by its ports.

Changes from previous UML

This metaclass has been added to UML.
9.3.12 Property (from InternalStructures)

Generalizations

» “Property (from Kernel, AssociationClasses)” on page 123 (merge increment)

UML Superstructure Specification, v2.1.2 183

Description

A property represents a set of instances that are owned by a containing classifier instance.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

When an instance of the containing classifier is created, a set of instances corresponding to its properties may be created
either immediately or at some later time. These instances are instances of the classifier typing the property. A property
specifies that a set of instances may exist; this set of instances is a subset of the total set of instances specified by the
classifier typing the property.

A part declares that an instance of this classifier may contain a set of instances by composition. All such instances are
destroyed when the containing classifier instance is destroyed. Figure 9.20 shows two possible views of the Car class. In
subfigure (i), Car is shown as having a composition association with role name rear to a class Wheel and an association
with role name e to a class Engine. In subfigure (ii), the same is specified. However, in addition, in subfigure (ii) it is
specified that rear and e belong to the internal structure of the class Car. This allows specification of detail that holds
only for instances of the Wheel and Engine classes within the context of the class Car, but which will not hold for wheels
and engines in general. For example, subfigure (i) specifies that any instance of class Engine can be linked to an arbitrary
number of instances of class Wheel. Subfigure (ii), however, specifies that within the context of class Car, the instance
playing the role of e may only be connected to two instances playing the role of rear. In addition, the instances playing
the e and rear roles may only be linked if they are roles of the same instance of class Car.

In other words, subfigure (ii) asserts additional constraints on the instances of the classes Wheel and Engine, when they
are playing the respective roles within an instance of class Car. These constraints are not true for instances of Wheel and
Engine in general. Other wheels and engines may be arbitrarily linked as specified in subfigure (i).

184 UML Superstructure Specification, v2.1.2

Car

Car

e
rear 2 1 e a: Axle ! }
rear : Wheel [2] ———— e: Engine }
Wheel Axle Engine 2 1 [
e
* *
. ii
0 (i)

Figure 9.20 - Properties

Notation

A part is shown by graphical nesting of a box symbol with a solid outline representing the part within the symbol
representing the containing classifier in a separate compartment. A property specifying an instance that is not owned by
composition by the instance of the containing classifier is shown by graphical nesting of a box symbol with a dashed
outline.

The contained box symbol has only a name compartment, which contains a string according to the syntax defined in the
Notation sub clause of “Property (from Kernel, AssociationClasses)” on page 123. Detail may be shown within the box
symbol indicating specific values for properties of the type classifier when instances corresponding to the property
symbol are created.

Presentation Options
The multiplicity for a property may also be shown as a multiplicity mark in the top right corner of the part box.

A property symbol may be shown containing just a single name (without the colon) in its name string. This implies the
definition of an anonymously named class nested within the namespace of the containing class. The part has this
anonymous class as its type. Every occurrence of an anonymous class is different from any other occurrence. The
anonymously defined class has the properties specified with the part symbol. It is allowed to show compartments defining
attributes and operations of the anonymously named class.

UML Superstructure Specification, v2.1.2 185

Examples

w: Wheel

Figure 9.21 - Property examples

Figure 9.21 shows examples of properties. On the left, the property denotes that the containing instance will own four
instances of the Wheel class by composition. The multiplicity is shown using the presentation option discussed above. The
property on the right denotes that the containing instance will reference one or two instances of the Engine class. For
additional examples, see 9.3.13, “StructuredClassifier (from InternalStructures),” on page 186.

Changes from previous UML

A connectable element used in a collaboration subsumes the concept of ClassifierRole.
9.3.13 StructuredClassifier (from InternalStructures)

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52

Description

A structured classifier is an abstract metaclass that represents any classifier whose behavior can be fully or partly
described by the collaboration of owned or referenced instances.

Attributes

No additional attributes

Associations

e /role: ConnectableElement [0..*]
References the roles that instances may play in this classifier. (Abstract union; subsets Classifier::feature)

« ownedAttribute: Property [0..*]
References the properties owned by the classifier. (Subsets StructuredClassifier::role, Classifier.attribute, and
Namespace: :ownedMember)

e /part: Property [0..*]
References the properties specifying instances that the classifier owns by composition. This association is derived,
selecting those owned properties where isComposite is true.

e ownedConnector: Connector [0..*]
References the connectors owned by the classifier. (Subsets Classifier::feature and Namespace::ownedMember)

Constraints

[1] The multiplicities on connected elements must be consistent.

186 UML Superstructure Specification, v2.1.2

Semantics

The multiplicities on the structural features and connector ends indicate the number of instances (objects and links) that
may be created within an instance of the containing classifier, either when the instance of the containing classifier is
created, or in the case of links, when an object is added as the value of a role, or at a later time. The lower bound of the
multiplicity range indicates the number of instances that are created (unless indicated differently by an associated instance
specification or an invoked constructor function); the upper bound of the multiplicity range indicates the maximum
number of instances that may be created. The slots corresponding to the structural features are initialized with these
instances.

The manner of creation of the containing classifier may override the default instantiation. When an instance specification
is used to specify the initial instance to be created for a classifier (see “Class” on page 166), the multiplicities of its parts
determine the number of initial instances that will be created within that classifier. Initially, there will be as many
instances held in slots as indicated by the corresponding multiplicity. Multiplicity ranges on such instance specifications
may not contain upper bounds.

All instances corresponding to parts of a structured classifier are destroyed recursively, when an instance of that
structured classifier is deleted. The instance is removed from the extent of its classifier, and is itself destroyed.

When an instance is removed from a role of a composite object, links that exist due to connectors between that role and
others are destroyed.

Semantic Variation Points

The rules for matching the multiplicities of connector ends and those of parts and ports they interconnect are a semantic
variation point. Also, the specific topology that results from such multi-connectors will differ from system to system. One
possible approach to this is illustrated in Figure 9.22 and Figure 9.23.

For each instance playing a role in an internal structure, there will initially be as many links as indicated by the
multiplicity of the opposite ends of connectors attached to that role (see “ConnectorEnd” on page 176 for the semantics
where no multiplicities are given for an end). If the multiplicities of the ends match the multiplicities of the roles they are
attached to (see Figure 9.22 i), the initial configuration that will be created when an instance of the containing classifier
is created consists of the set of instances corresponding to the roles (as specified by the multiplicities on the roles) fully
connected by links (see the resultant instance, Figure 9.22 ii).

0] 2 2
a: b:
2 2
(ii)
la [b:
la [b:

Figure 9.22 - “Star” connector pattern

UML Superstructure Specification, v2.1.2 187

Multiplicities on connector ends serve to restrict the number of initial links created. Links will be created for each
instance playing the connected roles according to their ordering until the minimum connector end multiplicity is reached
for both ends of the connector (see the resultant instance, Figure 9.23 ii). In this example, only two links are created,
resulting in an array pattern.

0] 2 2
a b:
1 1
(if)
[a Lb:
lac Lb:

Figure 9.23 - “Array” connector pattern

Notation

The namestring of a role in an instance specification obeys the following syntax:
{<name> [‘/’ <rolename>] | ‘/’ <rolename>} [*:” <classifiername> [*,” <classifiername>]*]

The name of the instance specification may be followed by the name of the role which the instance plays. The role name
may only be present if the instance plays a role.

Examples

The following example shows two classes, Car and Wheel. The Car class has four parts, all of type Wheel, representing
the four wheels of the car. The front wheels and the rear wheels are linked via a connector representing the front and rear
axle, respectively. An implicit association is defined as the type of each axle with each end typed by the Wheel class.
Figure 9.24 specifies that whenever an instance of the Car class is created, four instances of the Wheel class are created
and held by composition within the car instance. In addition, one link each is created between the front wheel instances
and the rear wheel instances.

188 UML Superstructure Specification, v2.1.2

Wheel

Car
leftFront : frontaxie rightFront :
Wheel Wheel
leftRear : rearaxle rightRear :
Wheel Wheel

tire: String
size: String

Figure 9.24 - Connectors and parts in a structure diagram

Figure 9.25 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle

arrangement. This diagram specifies that there will be two instances of the left wheel and two instances of the right wheel
(as no multiplicity is specified for the connector at the right wheel, the multiplicity is taken from the attached role), with

each matching instance connected by a link deriving from the connector representing the axle. As specified by the
multiplicities, no additional instances of the Wheel class can be added as left or right parts for a Car instance.

Car

left:

Wheel [2]

axle

right: Wheel [2]

Wheel

tire: String
size: String

Figure 9.25 - Connectors and parts in a structure diagram using multiplicities

Figure 9.26 shows an instance of the Car class (as specified in Figure 9.24). It describes the internal structure of the Car
that it creates and how the four contained instances of Wheel will be initialized. In this case, every instance of Wheel will
have the predefined size and use the brand of tire as specified. The left wheel instances are given names, and all wheel

instances are shown as playing the respective roles. The types of the wheel instances have been suppressed.

UML Superstructure Specification, v2.1.2

189

Car Wheel
tire: String

11/ leftfront frontaxle Lrightfront size: String
tire = "Michelin" tire ="Michelin"
size = "215x95" size = "215x95"

12/ leftrear rearaxle Lrightrear Car
tire = "Firestone" tire = "Firestone"
size = "215x95" size ="215x95"

Figure 9.26 - A instance of the Car class

Finally, Figure 9.27 shows a constructor for the Car class (see “Class” on page 166). This constructor takes a parameter
brand of type String. It describes the internal structure of the Car that it creates and how the four contained instances of
Wheel will be initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire
passed as parameter. The left wheel instances are given names, and all wheel instances are shown as playing the parts.
The types of the wheel instances have been suppressed.

: Car
Car
_ 11 / leftfront frontaxle Lrightfront
«create» createCar(brand:String) ; -
tire = brand tire = brand
size = "215x95" size = "215x95"
12 / leftrear rearaxle [rightrear
tire = brand tire = brand
size = "215x95" size = "215x95"

Figure 9.27 - A constructor for the Car class
9.3.14 Trigger (from InvocationActions)

Generalizations

« “Trigger (from Communications)” on page 454 (merge increment)

Description

A trigger specification may be qualified by the port on which the event occurred.

190 UML Superstructure Specification, v2.1.2

Associations

e port: Port [*]

Specifies the ports at which a communication that caused an event may have arrived.

Semantics

Specifying one or more ports for an event implies that the event triggers the execution of an associated behavior only if
the event was received via one of the specified ports.

Notation

The ports of a trigger are specified following a trigger signature by a list of port names separated by comma, preceded by

the keyword «from»:

‘«from»’ <port-name> [‘,” <port-name>]*

9.3.15 Variable (from StructuredActivities)

Generalizations

» “Variable (from StructuredActivities)” on page 412 (merge increment)

Description

A variable is considered a connectable element.

Semantics

Extends variable to specialize connectable element.

9.4 Diagrams

Composite structure diagram

A composite structure diagram depicts the internal structure of a classifier, as well as the use of a collaboration in a

collaboration use.

Graphical nodes

Additional graphical nodes that can be included in composite structure diagrams are shown in Table 9.1.

Table 9.1 - Graphic nodes included in composite structure diagrams

Node Type Notation Reference

Part See “Property (from InternalStructures)” on page 183.
partName :
ClassName

UML Superstructure Specification, v2.1.2

191

Table 9.1 - Graphic nodes included in composite structure diagrams

Node Type Notation Reference
Port See “Ports” on page 179. A port may appear either on a contained
part representing a port on that part, or on the boundary of the class
portName: diagram, representing a port on the represented classifier itself.

ClassifierName The optional ClassifierName is only used if it is desired to specify

a class of an object that implements the port.

Collaboration See “Collaboration” on page 168.

-7 T

(Oollaborationl\hne\

~ /
-~

N~ —

~

CollaborationUse See “CollaborationUse (from Collaborations)” on page 171.

—— —

~
(usageName : N\
\CollaborationNan’e/

\—//

Graphical paths

Additional graphical paths that can be included in composite structure diagrams are shown in Table 9.2.

Table 9.2 - Graphic nodes included in composite structure diagrams

Path Type Notation Reference
Connector See “Connector” on page 174.
Role binding See “CollaborationUse (from Collaborations)” on page 171.

Structure diagram

All graphical nodes and paths shown on composite structure diagrams can also be shown on other structure diagrams.

192 UML Superstructure Specification, v2.1.2

10 Deployments

10.1 Overview

The Deployments package specifies a set of constructs that can be used to define the execution architecture of systems
that represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to create
network systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware
devices or software execution environments. Artifacts represent concrete elements in the physical world that are the result
of a development process.

The Deployment package supports a streamlined model of deployment that is deemed sufficient for the majority of
modern applications. Where more elaborate deployment models are required, it can be extended through profiles or meta
models to model specific hardware and software environments.

Artifacts

The Artifacts package defines the basic Artifact construct as a special kind of Classifier.

Nodes

The Nodes package defines the concept of Node, as well as the basic deployment relationship between Artifacts and
Nodes.

Component Deployments

The ComponentDeployments package extends the basic deployment model with capabilities to support deployment
mechanisms found in several common component technologies.

10.2 Abstract Syntax

Figure 10.1 shows the dependencies of the Deployments packages.

UML Superstructure Specification, v2.1.2 193

1

Dependencies

i
wirmports
1 1
Artifacts StructuredClasses
T I
#MEFGEs «merq'e»

>

amerdes
X
:
:

1

ComponentDeployvinents

Figure 10.1 - Dependencies between packages described in this clause

194 UML Superstructure Specification, v2.1.2

Package Artifacts

UML::Classes:: UML::Classes:: UML::Classes::
Kernel::Classifier Dependencies:: Dependencies::
NamedElement Abstraction

{subsets supplier}
+ utilizedElement

0.1
{subsets
{subsets ownedElement,
ownedMember} subsets clientDependency}
+nestedArtifact Avrtifact +manifestation
. A > Manifestation
fileName : String 1 * *
subsets redefinitionContext 0 # {subsets namespace, subsets
{subsets namespace, 0.1 0.1 featuringClassifier, subsets classifier}
subsets FeaturingClassifier}
{subsets feature,
subsets ownedMember,
ordered}
{subsets attribute, subsets
ownedMember, ordered}
+ownedOperation * +ownedAttribute
UML::Classes:: UML::Classes::

Figure 10.2 - The elements defined in the Artifacts package

UML Superstructure Specification, v2.1.2

Kernel::Operation

Kernel::Property

UML::Classes::
Kernel::
PackageableElement

195

Package Nodes

LIMIL::
CompositeStructures::
StructuredClasses:

Class
0.1 ‘
. HNoie UML::Classes::
Kernel:
+ nestediode Association
{zubsets cwnedMember Eﬁ
Device ExecutionEmvironmennt ComimumicationPath

Figure 10.3 - The definition of the Node concept

UV 2 Cfasses:: UML::Classes: UM Classes::
Depandencies:: Dependencies: Depandencies::
NamodFlamont Dependency NamodElamant

{subsets ownedElement,)
subsets cientDependency} {subsets supplier}
+ deployedrifact

UNRL:: ClassesiiFernels: |+ ideployedElement {suEslglEsa%iliD%nt} + deployment
PackageableEfenent (S —TEstOMTT | DeploymentTarget] L | Deployment - Deployedhrtitact
‘ ?

Hode Property InstanceSpecification Artifact

Figure 10.4 - Definition of the Deployment relationship between DeploymentTargets and DeployedArtifacts

196 UML Superstructure Specification, v2.1.2

Package ComponentDeployments

UNML::Classes: UML:
Dependencies: Deployments::
Dependency Nodes::Artifact
z‘) + denl ot {subsets ownedElement ;- T
Deployment SRS ImE + configuration —
‘5 p DeploymentSpecification
- * deploymentLocation : String

executionLocation : String

Figure 10.5 - Metaclasses that define component Deployment

10.3 Class Descriptions

10.3.1 Artifact (from Artifacts, Nodes)

An artifact is the specification of a physical piece of information that is used or produced by a software development process,
or by deployment and operation of a system. Examples of artifacts include model files, source files, scripts, and binary
executable files, a table in a database system, a development deliverable, or a word-processing document, a mail message.

Generalizations
« “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52
» “DeployedArtifact (from Nodes)” on page 200

» “NamedElement (from Kernel, Dependencies)” on page 98
Description

Package Artifacts

In the metamodel, an Artifact is a Classifier that represents a physical entity. Artifacts may have Properties that represent
features of the Artifact, and Operations that can be performed on its instances. Artifacts can be involved in Associations to
other Artifacts (e.g., composition associations). Artifacts can be instantiated to represent detailed copy semantics, where
different instances of the same Artifact may be deployed to various Node instances (and each may have separate property
values, e.g., for a ‘time-stamp’ property).

Package Node

As part of the Nodes package, an Artifact is extended to become the source of a deployment to a Node. This is achieved by
specializing the abstract superclass DeployedArtifact defined in the Nodes package.

UML Superstructure Specification, v2.1.2 197

Attributes

Package Artifacts

« fileName : String [0..1]
A concrete name that is used to refer to the Artifact in a physical context. Example: file system name, universal
resource locator.

Associations

Package Artifacts

« nestedArtifact: Artifact [*]
The Artifacts that are defined (nested) within the Artifact. The association is a specialization of the ownedMember
association from Namespace to NamedElement.

e ownedAttribute : Property [*]
The attributes or association ends defined for the Artifact. {Subsets Namespace::ownedMember}

e ownedOperation : Operation [*]
The Operations defined for the Artifact. {Subsets Namespace::ownedMember}

« manifestation : Manifestation [*]
The set of model elements that are manifested in the Artifact. That is, these model elements are utilized in the
construction (or generation) of the artifact. {Subsets NamedElement::clientDependency, Subsets
Element::ownedElement}

Constraints

No additional constraints

Semantics

An Artifact defined by the user represents a concrete element in the physical world. A particular instance (or ‘copy’) of
an artifact is deployed to a node instance. Artifacts may have composition associations to other artifacts that are nested
within it. For instance, a deployment descriptor artifact for a component may be contained within the artifact that
implements that component. In that way, the component and its descriptor are deployed to a node instance as one artifact
instance.

Specific profiles are expected to stereotype artifact to model sets of files (e.g., as characterized by a ‘file extension’ on a
file system). The UML Standard Profile defines several standard stereotypes that apply to Artifacts, e.g., «source» or
«executable» (See Annex C - Standard Stereotypes). These stereotypes can be further specialized into implementation and
platform specific stereotypes in profiles. For example, an EJB profile might define «jar» as a subclass of «executable» for
executable Java archives.

Notation

An artifact is presented using an ordinary class rectangle with the key-word «artifact». Alternatively, it may be depicted
by an icon.

Optionally, the underlining of the name of an artifact instance may be omitted, as the context is assumed to be known to
users.

198 UML Superstructure Specification, v2.1.2

«artifact» [}
Order .jar

Figure 10.6 - An Artifact instance

«component» @
Oi Order

A

! «manifest»

«artifact» D
Order jar

Figure 10.7 - A visual representation of the manifestation relationship between artifacts and components

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any PackageableElement (not just
Components, as in UML 1.x).

10.3.2 CommunicationPath (from Nodes)

A communication path is an association between two DeploymentTargets, through which they are able to exchange
signals and messages.

Generalizations

« “Association (from Kernel)” on page 39

Description

In the metamodel, CommunicationPath is a subclass of Association.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] The association ends of a CommunicationPath are typed by DeploymentTargets.

UML Superstructure Specification, v2.1.2 199

self.endType->forAll (t | t.oclisKindOf(DeploymentTarget))

Semantics

A communication path is an association that can only be defined between deployment targets, to model the exchange of
signals and messages between them.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: CommunicationPath was implicit in UML 1.x. It has been made
explicit to formalize the modeling of networks of complex Nodes.

10.3.3 DeployedArtifact (from Nodes)

A deployed artifact is an artifact or artifact instance that has been deployed to a deployment target.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 98

Description

In the metamodel, DeployedArtifact is an abstract metaclass that is a specialization of NamedElement. A
DeployedArtifact is involved in one or more Deployments to a DeploymentTarget.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Deployed artifacts are deployed to a deployment target.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: The capability to deploy artifacts and artifact instances to nodes
has been made explicit based on UML 2.0 instance modeling through the addition of this abstract metaclass.

200 UML Superstructure Specification, v2.1.2

10.3.4 Deployment (from ComponentDeployments, Nodes)

Package Nodes

A deployment is the allocation of an artifact or artifact instance to a deployment target.

Package ComponentDeployments

A component deployment is the deployment of one or more artifacts or artifact instances to a deployment target,
optionally parameterized by a deployment specification. Examples are executables and configuration files.

Generalizations

- “Dependency (from Dependencies)” on page 62

Description

In the metamodel, Deployment is a subtype of Dependency.

Attribute

No additional attributes
Associations

Package Nodes

¢ deployedArtifact : Artifact [*]
The Artifacts that are deployed onto a Node. This association specializes the supplier association.

e location : DeploymentTarget [1]
The DeploymentTarget that is the target of a Deployment. This association specializes the client association.
Package ComponentDeployments

< configuration : DeploymentSpecification [*]
The specification of properties that parameterize the deployment and execution of one or more Artifacts. This
association is specialized from the ownedMember association.

Constraints

No additional constraints

Semantics

The deployment relationship between a DeployedArtifact and a DeploymentTarget can be defined at the “type” level and
at the “instance level.” For example, a ‘type level’ deployment relationship can be defined between an “application
server” Node and an “order entry request handler” executable Artifact. At the “instance level’ 3 specific instances “app-
serverl” ... “app-server3” may be the deployment target for six “request handler*” instances. Finally, for modeling
complex deployment target models consisting of nodes with a composite structure defined through “parts,” a Property
(that functions as a part) may also be the target of a deployment.

UML Superstructure Specification, v2.1.2 201

Notation

Deployment diagrams show the allocation of Artifacts to Nodes according to the Deployments defined between them.

:AppServerl

«artifact» D
ShoppinCart.jar

«artifact»
Order.jar

D

Figure 10.8 - A visual representation of the deployment location of artifacts (including a dependency between the

artifacts).

An alternative notation to containing the deployed artifacts within a deployment target symbol is to use a dependency
labeled «deploy» that is drawn from the artifact to the deployment target.

:AppServerl
4 ﬂ “ N
«deploy» 7 . N «deploy»
«artifact» 0 «artifagt» W
ShoppinCart.jar Order jar

Figure 10.9 - Alternative deployment representation of using a dependency called «deploy»

:AppServerl

Order.jar
ShoppingCart.jar
Account.jar

Product.jar
BackOrder.jar

Service.jar

Figure 10.10 - Textual list based representation of the deployment location of artifacts

202

UML Superstructure Specification, v2.1.2

Changes from previous UML

The following changes from UML 1.x have been made — an association to DeploymentSpecification has been added.
10.3.5 DeploymentSpecification (from ComponentDeployments)

A deployment specification specifies a set of properties that determine execution parameters of a component artifact that
is deployed on a node. A deployment specification can be aimed at a specific type of container. An artifact that reifies or
implements deployment specification properties is a deployment descriptor.

Generalizations

» “Artifact (from Artifacts, Nodes)” on page 197

Description

In the metamodel, a DeploymentSpecification is a subtype of Artifact. It defines a set of deployment properties that are
specific to a certain Container type. An instance of a DeploymentSpecification with specific values for these properties
may be contained in a complex Artifact.

Attributes

ComponentDeployments Package

e deploymentLocation : String [0..1]
The location where an Artifact is deployed onto a Node. This is typically a 'directory' or ‘'memory address."'

e executionLocation : String [0..1]
The location where a component Artifact executes. This may be a local or remote location.

Associations

ComponentDeployments Package

e deployment : Deployment [0..1]
The deployment with which the DeploymentSpecification is associated.

Constraints

[1] The DeploymentTarget of a DeploymentSpecification is a kind of ExecutionEnvironment.
self.deployment->forAll (d | d.location..ocllsKindOf(ExecutionEnvironment))

[2] The deployedElements of a DeploymentTarget that are involved in a Deployment that has an associated
DeploymentSpecification is a kind of Component (i.e., the configured components).

self.deployment->forAll (d | d.location.deployedElements->forAll (de | de.oclisKindOf(Component)))

Semantics

A Deployment specification is a general mechanism to parameterize a Deployment relationship, as is common in various
hardware and software technologies. The deployment specification element is expected to be extended in specific
component profiles. Non-normative examples of the standard stereotypes that a profile might add to deployment
specification are, for example, «concurrencyMode» with tagged values {thread, process, none}, or «transactionMode»
with tagged values {transaction, nestedTransaction, none}.

UML Superstructure Specification, v2.1.2 203

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle (Figure 10.11) attached to a component
artifact deployed on a container using a regular dependency arrow.

«deployment spec» «deployment spec»
Name Name
execution: execKind executiqn: thread
transaction : Boolean transaction : true

Figure 10.11 - DeploymentSpecification for an artifact (specification and instance levels)

A rverl
«artifact» 0
ShoppingApp.ear
«artifacts [artifacts)
ShoppinCartjar — --------------m-osoeoeoooo > Order.jar
«deployment spec» «deployment spec»
ShoppingAppdesc.xml Orderdesc.xml

Figure 10.12 - DeploymentSpecifications related to the artifacts that they parameterize

«artifact» 0
Order jar

«deployment spec»

|
deplo
«aepioy> L Orderdesc.xml

:AppServer

Figure 10.13 - A DeploymentSpecification for an artifact

204 UML Superstructure Specification, v2.1.2

Changes from previous UML

The following changes from UML 1.x have been made — DeploymentSpecification does not exist in UML 1.x.
10.3.6 DeploymentTarget (from Nodes)
A deployment target is the location for a deployed artifact.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 98

Description

In the metamodel, DeploymentTarget is an abstract metaclass that is a specialization of NamedElement. A
DeploymentTarget owns a set of Deployments.

Attributes

No additional attributes
Associations

Nodes Package

e deployment : Deployment [*]
The set of Deployments for a DeploymentTarget. {Subsets NamedElement::clientDependency, Subsets
Element::ownedElement}

e [deployedElement : PackageableElement [*]
The set of elements that are manifested in an Artifact that is involved in Deployment to a DeploymentTarget.
The association is a derived association.

context DeploymentTarget::deployedElement derive:
((self.deployment->collect(deployedAtrtifact))->collect(manifestation))->collect(utilizedElement)

Constraints

No additional constraints

Semantics

Acrtifacts are deployed to a deployment target. The deployment target owns the set of deployments that target it.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: The capability to deploy artifacts and artifact instances to nodes
has been made explicit based on UML 2.0 instance modeling.

UML Superstructure Specification, v2.1.2 205

10.3.7 Device (from Nodes)

A Device is a physical computational resource with processing capability upon which artifacts may be deployed for

execution. Devices may be complex (i.e., they may consist of other devices).

Generalizations

« “Node (from Nodes)” on page 210

Description

In the metamodel, a Device is a subclass of Node.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace
ownership or through attributes that are typed by Devices.

Notation

A Device is notated by a perspective view of a cube tagged with the keyword «device».

«device»
:AppServer

«executionEnvironment»
:J2EEServer

Order.jar

ShoppingCart.jar
Account.jar
Product.jar
BackOrder.jar
Service.jar

Figure 10.14 - Notation for a Device

206

«device»
:DBServer

OrderSchema.ddl

ItemSchema.ddI

UML Superstructure Specification, v2.1.2

Changes from previous UML

The following changes from UML 1.x have been made — Device is not defined in UML 1.x.
10.3.8 ExecutionEnvironment (from Nodes)

An ExecutionEnvironment is a node that offers an execution environment for specific types of components that are
deployed on it in the form of executable artifacts.

Generalizations

» “Node (from Nodes)” on page 210

Description

In the metamodel, an ExecutionEnvironment is a subclass of Node. It is usually part of a general Node, representing the
physical hardware environment on which the ExecutionEnvironment resides. In that environment, the
ExecutionEnvironment implements a standard set of services that Components require at execution time (at the modeling
level these services are usually implicit). For each component Deployment, aspects of these services may be determined
by properties in a DeploymentSpecification for a particular kind of ExecutionEnvironment.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

ExecutionEnvironment instances are assigned to node instances by using composite associations between nodes and
ExecutionEnvironments, where the ExecutionEnvironment plays the role of the part. ExecutionEnvironments can be
nested (e.g., a database ExecutionEnvironment may be nested in an operating system ExecutionEnvironment).
Components of the appropriate type are then deployed to specific ExecutionEnvironment nodes.

Typical examples of standard ExecutionEnvironments that specific profiles might define stereotypes for are «OS»,
«workflow engine», «database system», and «J2EE container.

An ExecutionEnvironment can optionally have an explicit interface of system level services that can be called by the
deployed elements, in those cases where the modeler wants to make the ExecutionEnvironment software execution
environment services explicit.

UML Superstructure Specification, v2.1.2 207

Notation

A ExecutionEnvironment is notated by a Node annotated with the stereotype «executionEnvironment».

«executionEnvironment»
:J2EEServer

Order.jar
ShoppingCart.jar
Account.jar
Product.jar
BackOrder.jar

Service.jar

Figure 10.15 - Notation for a ExecutionEnvironment (example of an instance of a J2EEServer ExecutionEnvironment)

Changes from previous UML

The following changes from UML 1.x have been made — ExecutionEnvironment is not defined in UML 1.x.
10.3.9 InstanceSpecification (from Nodes)

An instance specification is extended with the capability of being a deployment target in a deployment relationship, in the
case that it is an instance of a node. It is also extended with the capability of being a deployed artifact, if it is an instance
of an artifact.

Generalizations
« “DeployedArtifact (from Nodes)” on page 200
» “DeploymentTarget (from Nodes)” on page 205

» “InstanceSpecification (from Kernel)” on page 82 (merge increment)

Description

In the metamodel, InstanceSpecification is a specialization of DeploymentTarget and DeployedArtifact.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An InstanceSpecification can be a DeploymentTarget if it is the instance specification of a Node and functions as a part in
the internal structure of an encompassing Node.

[2] An InstanceSpecification can be a DeployedArtifact if it is the instance specification of an Artifact.

208 UML Superstructure Specification, v2.1.2

Semantics

No additional semantics

Notation

An instance can be attached to a node using a deployment dependency, or it may be visually nested inside the node.

Changes from previous UML

The following changes from UML 1.x have been made — the capability to deploy artifact instances to node instances
existed in UML 1.x, and has been made explicit based on UML 2.0 instance modeling.

10.3.10 Manifestation (from Artifacts)
A manifestation is the concrete physical rendering of one or more model elements by an artifact.

Generalizations

» “Abstraction (from Dependencies)” on page 38

Description

In the metamodel, a Manifestation is a subtype of Abstraction. A Manifestation is owned by an Artifact.

Attributes

No additional attributes
Associations

Artifacts

e utilizedElement : PackageableElement [1]
The model element that is utilized in the manifestation in an Artifact. {Subsets Dependency::supplier}

Constraints

No additional associations

Semantics

An artifact embodies or manifests a number of model elements. The artifact owns the manifestations, each representing
the utilization of a packageable element.

Specific profiles are expected to stereotype the manifestation relationship to indicate particular forms of manifestation.
For example, <<tool generated>> and <<custom code>> might be two manifestations for different classes embodied in an
artifact.

Notation

A manifestation is notated in the same way as an abstraction dependency, i.e., as a general dashed line with an open
arrow-head labeled with the keyword <<manifest>>.

UML Superstructure Specification, v2.1.2 209

Changes from previous UML

The following changes from UML 1.x have been made: Manifestation is defined as a meta association in UML 1.x,
prohibiting stereotyping of manifestations. In UML 1.x, the concept of Manifestation was referred to as ‘implementation’
and annotated in the notation as <<implement>>. Since this was one of the many uses of the word ‘implementation’ this
has been replaced by <<manifest>>.

10.3.11 Node (from Nodes)

A node is computational resource upon which artifacts may be deployed for execution.

Nodes can be interconnected through communication paths to define network structures.

Generalizations
» “Class (from StructuredClasses)” on page 166

« “DeploymentTarget (from Nodes)” on page 205

Description

In the metamodel, a Node is a subclass of Class. It is associated with a Deployment of an Artifact. It is also associated
with a set of Elements that are deployed on it. This is a derived association in that these PackageableElements are
involved in a Manifestation of an Artifact that is deployed on the Node. Nodes may have an internal structure defined in
terms of parts and connectors associated with them for advanced modeling applications.

Attributes

No additional attributes
Associations

Nodes Package

« nestedNode : Node [*]
The Nodes that are defined (nested) within the Node. {Subsets Namespace::ownedMember}

Constraints

[1] The internal structure of a Node (if defined) consists solely of parts of type Node.

Semantics

Nodes can be connected to represent a network topology by using communication paths. Communication paths can be
defined between nodes such as “application server” and “client workstation” to define the possible communication paths
between nodes. Specific network topologies can then be defined through links between node instances.

Hierarchical nodes (i.e., nodes within nodes) can be modeled using composition associations, or by defining an internal
structure for advanced modeling applications.

Non-normative examples of nodes are «application server», «client workstation», «mobile device», «embedded device».

210 UML Superstructure Specification, v2.1.2

Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.

:AppServer

Figure 10.16 - An instance of a Node

Dashed arrows with the keyword «deploy» show the capability of a node type to support a component type. Alternatively,

this may be shown by nesting component symbols inside the node symbol.

Nodes may be connected by associations to other nodes. A link between node instances indicates a communication path

between the nodes.

AppServer 1 DBServer
*
=7 N
«deploy»,,,"" \\‘ «deploy»
Order.jar O RequestHandIer.jéu’D

Figure 10.17 - Communication path between two Node types with deployed Artifacts

Acrtifacts may be contained within node instance symbols. This indicates that the items are deployed on the node
instances.

:AppServerl

«artifact» D «artifact» D
; = N ¢

Figure 10.18 - A set of deployed component artifacts on a Node

Changes from previous UML

The following changes from UML 1.x have been made: to be written.

UML Superstructure Specification, v2.1.2

211

10.3.12 Property (from Nodes)

A Property is extended with the capability of being a DeploymentTarget in a Deployment relationship. This enables
modeling the deployment to hierarchical Nodes that have Properties functioning as internal parts.

Generalizations

« “Property (from InternalStructures)” on page 183 (merge increment)

Description

In the metamodel, Property is a specialization of DeploymentTarget.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A Property can be a DeploymentTarget if it is a kind of Node and functions as a part in the internal structure of an
encompassing Node.

Semantics

No additional semantics

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made — the capability to deploy to Nodes with an internal structure has
been added to UML 2.0.

10.4 Diagrams

Deployment diagram

Graphical nodes

The graphic nodes that can be included in deployment diagrams are shown in Table 10.1.

212 UML Superstructure Specification, v2.1.2

Table 10.1 - Graphic nodes included in deployment diagrams

ArtifactName

Node Type Notation Reference
Artifact See “Artifact.”
«artifact» 0O
ArtifactName
Node See “Node.”
NodeName
Artifact deployed on Node See “Deployment.”
«artifact» 0

Node with deployed Artifacts

Node

«artifact» [
ArtifactName

See “Deployment.”

Node with deployed Artifacts

«executionEnvironment»

NodeName
artifactl
artifact2

artifact3

See “Deployment” (alternative, textual notation).

Deployment specification

«deployment spec»

Name

See “Deployment Specification.”

Deployment specification - with
properties

«deployment spec»
Name

execution: execKind

transaction : Boolean

See “Deployment Specification.”

UML Superstructure Specification, v2.1.2

213

Table 10.1 - Graphic nodes included in deployment diagrams

Node Type Notation Reference

Deployment specification - with See “Deployment Specification.
property values

«deployment spec»
Name

execution: thread
transaction : true

Aurtifact with annotated See “Artifact.”
deployment properties

«artifact» 0O
ArtifactName

{execution=thread,
transaction =true}

Graphical paths

The graphic paths that can be included in deployment diagrams are shown in Table 10.2 .

Table 10.2 - Graphic nodes included in deployment diagrams

Path Type Notation Reference
Association See “Association (from Kernel)” on page 39. Used to model communication
paths between DeploymentTargets.
_—
Dependency See “Dependency (from Dependencies)” on page 62. Used to model general
_____ ~ dependencies. In Deployment diagrams, this notation is used to depict the
following metamodel associations: (i) the relationship between an Artifact
and the model element(s) that it implements, and (ii) the deployment of an
Acrtifact (instance) on a Node (instance).
Generalization See “Generalization (from Kernel, PowerTypes)” on page 71.
Deployment The Deployment relationship
«deploy»
______ 9
Manifestation The Manifestation relationship
«manifest»
______ 9

214 UML Superstructure Specification, v2.1.2

Part Il - Behavior

This part specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various
behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams. The UML packages that
support behavioral modeling, along with the structure packages they depend upon (CompositeStructures and Classes) are

shown in the figure below.

1
Claszes
A
<<imr:u:|rt>>
wirmnport: : ,
CommonBehaviors
prem e > SO R .
: «import:
A A
. -<-<|r|'|pDrt>>i <<!mr:u:|r - .
: : : :
Activities Interactions Statebdachines UzeCazes
™
«import»
.
Actions

Part Il, Figure 1 - UML packages that support behavioral modeling

The function and contents of these packages are described in following clauses, which are organized by major subject
areas.

UML Superstructure Specification, v2.1.2 215

216 UML Superstructure Specification, v2.1.2

11 Actions

11.1 Overview

Basic Concepts

An action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set
of outputs, though either or both sets may be empty. This clause defines semantics for a number of specialized actions, as
described below. Some of the actions modify the state of the system in which the action executes. The values that are the
inputs to an action may be described by value specifications, obtained from the output of actions that have one output (in
StructuredActions), or in ways specific to the behaviors that use them. For example, the activity flow model supports
providing inputs to actions from the outputs of other actions.

Actions are contained in behaviors, which provide their context. Behaviors provide constraints among actions to
determine when they execute and what inputs they have. The Actions clause is concerned with the semantics of
individual, primitive actions.

Basic actions include those that perform operation calls, signal sends, and direct behavior invocations. Operations are
specified in the model and can be dynamically selected only through polymorphism. Signals are specified by a signal
object, whose type represents the kind of message transmitted between objects, and can be dynamically created. Note that
operations may be bound to activities, state machine transitions, or other behaviors. The receipt of signals may be bound
to activities, state machine transitions, or other behaviors.

Intermediate Concepts

The intermediate level describes the various primitive actions. These primitive actions are defined in such a way as to
enable the maximum range of mappings. Specifically, a primitive action either carries out a computation or accesses
object memory, but never both. This approach enables clean mappings to a physical model, even those with data
organizations different from that suggested by the specification. In addition, any re-organization of the data structure will
leave the specification of the computation unaffected.

A surface action language would encompass both primitive actions and the control mechanisms provided by behaviors. In
addition, a surface language may map higher-level constructs to the actions. For example, creating an object may involve
initializing attribute values or creating objects for mandatory associations. The specification defines the create action to
only create the object, and requires further actions to initialize attribute values and create objects for mandatory
associations. A surface language could choose to define a creation operation with initialization as a single unit as a
shorthand for several actions.

A particular surface language could implement each semantic construct one-to-one, or it could define higher-level,
composite constructs to offer the modeler both power and convenience. This specification, then, expresses the
fundamental semantics in terms of primitive behavioral concepts that are conceptually simple to implement. Modelers can
work in terms of higher-level constructs as provided by their chosen surface language or notation.

The semantic primitives are defined to enable the construction of different execution engines, each of which may have
different performance characteristics. A model compiler builder can optimize the structure of the software to meet
specific performance requirements, so long as the semantic behavior of the specification and the implementation remain
the same. For example, one engine might be fully sequential within a single task, while another may separate the classes
into different processors based on potential overlapping of processing, and yet others may separate the classes in a client-
server, or even a three-tier model.

UML Superstructure Specification, v2.1.2 217

The modeler can provide “hints” to the execution engine when the modeler has special knowledge of the domain solution
that could be of value in optimizing the execution engine. For example, instances could—by design—be partitioned to
match the distribution selected, so tests based on this partitioning can be optimized on each processor. The execution
engines are not required to check or enforce such hints. An execution engine can either assume that the modeler is correct,
or just ignore it. An execution engine is not required to verify that the modeler’s assertion is true.

When an action violates aspects of static UML modeling that constrain runtime behavior, the semantics is left undefined.
For example, attempting to create an instance of an abstract class is undefined - some languages may make this action
illegal, others may create a partial instance for testing purposes. The semantics are also left undefined in situations that
require classes as values at runtime. However, in the execution of actions the lower multiplicity bound is ignored and no
error or undefined semantics is implied. (Otherwise, it is impossible to use actions to pass through the intermediate
configurations necessary to construct object configurations that satisfy multiplicity constraints.) The modeler must
determine when minimum multiplicity should be enforced, and these points cannot be everywhere or the configuration
cannot change.

Invocation Actions

More invocation actions are defined for broadcasting signals to the available “universe” and transmitting objects that are
not signals.

Read Write Actions

Objects, structural features, links, and variables have values that are available to actions. Objects can be created and
destroyed; structural features and variables have values; links can be created and destroyed, and can reference values
through their ends; all of which are available to actions. Read actions get values, while write actions modify values and
create and destroy objects and links. Read and write actions share the structures for identifying the structural features,
links, and variables they access.

Obiject actions create and destroy objects. Structural feature actions support the reading and writing of structural features.
The abstract metaclass StructuralFeatureAction statically specifies the structural feature being accessed. The object to
access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The semantics
for static features is undefined. Association actions operate on associations and links. In the description of these actions,
the term “associations” does not include those modeled with association classes, unless specifically indicated. Similarly, a
“link” is not a link object unless specifically indicated. The semantics of actions that read and write associations that have
a static end is undefined.

Value specifications cover various expressions ranging from implementation-dependent constants to complex expressions,
with side-effects. An action is defined for evaluating these. Also see “ValuePin (from BasicActions)” on page 289.

Complete Concepts

The major constructs associated with complete actions are outlined below.

Read Write Actions

Additional actions deal with the relation between object and class and link objects. These read the instances of a given
classifier, check which classifier an instance is classified by, and change the classifier of an instance. Link object actions
operate on instances of association classes. Also the reading and writing actions of associations are extended to support
qualifiers.

218 UML Superstructure Specification, v2.1.2

Other Actions

Actions are defined for accepting events, including operation calls, and retrieving the property values of an object all at
once. The StartClassifierBehaviorAction provides a way to indicate when the classifier behavior of a newly created object

should begin to execute.

Structured Concepts

These actions operate in the context of activities and structured nodes. Variable actions support the reading and writing of
variables. The abstract metaclass VariableAction statically specifies the variable being accessed. Variable actions can only
access variables within the activity of which the action is a part. An action is defined for raising exceptions and a kind of
input pin is defined for accepting the output of an action without using flows.

11.2 Abstract Syntax

The package dependencies of the Actions clause are shown in Figure 11.1.

1
Kernel
o)
Eccimport»
- : - &irmnpor
StructuredActivities Basichctions | > Communications
A TA
drmports Jpxﬂmpclrt» rmport»
1 .- 1 1 1
Structuredactions Irtermedistesctions Behavior=tateMachines AzzocistionClazses
A A 7
«mergé;}\ amerge»i ,KI{ITI[:IDI'D) _,,«‘iﬁwpurt»
Completesctions

Figure 11.1 - Dependencies of the Action packages

UML Superstructure Specification, v2.1.2

219

Package BasicActions

U »: Classas::
Hernpef::

MNamedElement

iy

TreadOnly X
- + foontext
Action
N 0.1
i

LV
Classas::
Herpef::

fassifior

{subsets input}

Opagquefction

body - String
language ; String

.1

*

+ inputialue i
.] InputPin
u]

{subsets output}
+ outputyalle

Figure 11.2 - Basic actions

220

o
0.1

. OutputPRin

UML Superstructure Specification, v2.1.2

{readonly, union,

subsets ownedElement,

ordered}

LIV :: Ciassas::
HKornaf::
TypadElamant

LML e fasse sk ernels
MiftipficityHement

i

Pin

owurputPin InputPin |}
{readonly, union,
subsets ownedElement,
+ fautput | ordered} +nput | *
‘ 0.1 ‘ 0.1
Action

ValuePin

0.1

+value, |)

UV o Classes!:
Harpef:
ValnaSpacification

Figure 11.3 - Basic pins

UML Superstructure Specification, v2.1.2

221

NI o assas::
Kernel:
NamedBlemernt

[

Action

{subsets inl_%ut, ordeted} [mvocationAction
InputPin + Argumed .

* 0.

utpantPin

Fa

{subsets output, b
ordered} | reaut

#

0.1 CaflAction
L sSknchronons | Boolean

1

SendSignalAction *

feubsets inputk] 1|+ signal
+target
CallOperationAction {subsets {HP%E} - k4
CallBehaviorAction + takg InputPin UML::
oA 1 CommonBehaviors:
h :Communications::
* * Signal
+ behavior |1 + operation |1
W W
UV UML:=Classes:
CommonBeRaviors: Kernel:Operation
BasicBefiaviors::Bafkavior

Figure 11.4 - Basic invocation actions

222 UML Superstructure Specification, v2.1.2

Package IntermediateActions

UG Actions::
BasfcActions!:
vocationAction

i

BroadcastSignalAction

SendObjectAction

*

=y

+ signal

UML::
CommonBehaviors:
Communications::
Signal

+ targ

1
Lsubsets input}

UML::
Actions::
BasicActions:
InpatPin

Figure 11.5 - Intermediate invocation actions

UML Superstructure Specification, v2.1.2

+ request

Tredefines
argurnent’

223

UV ::Actions::

BRaszicActions!:Action

i

CreateObjectAction DestroyOhjectAction TestldentityAction ReadSelfAction
izDestroyLinks : Boolean
B ’ izDestroyOwnedObjects | Boolean ’ ’ ’
0.1 0.1 0.1 0.1 |
0.1
Isubsets output {subsats input} {subsets Dutputk {subsets input}| {subsets input}| {subsets outputh
+ classifier | 1 + resu + target +result |1 +irst |1 +second | 1 +resutt (1
LA Ciasses:: UML:Actions:: UML::Actions:: UML::Actions:: UML::Actions:: UML::Actions:
Kernol:: Classifier BasicActions: BasicActions: BasicActions: BasicActions: BasicActions:
OutputPin InputPin OutputPin InputPin OutputPin
+ result
{subsets output}
UML::ClassesiKernel:: vl 0.1
ValueSpecification walue : " "
f < . WalueSpecificationAction
1 0.

Figure 11.6 - Object actions

224

UML Superstructure Specification, v2.1.2

U :: Actions::

BasicActions::Action
LAV o Classes:: él‘}‘ .
r— + structuralFesture fsubsets input} UML=Actions::
StructuralFesture 3 " StructuraliFeature Action P +DhjECt; BasicActionszinputPin
Z‘E 0. 1
ReadStructuralFeatureAction WriteStructuralFeature Action ClearStructuralFeatureAction
————*
0.1
0.1

{eubsets output}
+result |1

AddStructuralFeatureValueAction
izReplacedll : Boolean

UML::Actions:
BasicActions:
OutputPin

RemoveStructuralFeatureValueAction
izRemovebuplicates | Boolean

Tsubsets input} 0.1
+ valie

Tsubsets input}

UNML:Actions: + insertit
BasicActions: 0.1
InputPin + remaovedt 0.4
0.1

Taubsets input:

Figure 11.7 - Structural Feature Actions

UML Superstructure Specification, v2.1.2 225

U - Actions:: LIV . Ciasses:!
RasicActions:: Hormel::
Action Efentent
LinkAction + encdDats LinkEndData
1 2.x
*
0.1
0.1
w | +inputvalue 13+ end
1. {subsets input}
UML::Actions:: EI+1v:allue
BasicActions: a

1 Property must be

..... an associstion end . }

InputPin

UML::Classes:

Property

Figure 11.8 - Link identification

LinkAction

ReadLinkAction .

fsubsets output-

+ result

0.1

1

Figure 11.9 - Read link actions

226

UML:Actions:
BasicActions::
OutputPin

UML Superstructure Specification, v2.1.2

U - Actions::
BasicActions::Action

i

0.1

LinkAction ClearAssociationAction
) A
Tsubsets input}
+ ohject | 1
Weritel ink Action UML:Actions::

BasicActions:InputPin

f

CreateLinkAction

DestrovLinkAction

1
{fredefines endDatal
+ endbata | 2.%

LinkEndCreationData
izReplacesll : Boolean = falze

0.1

+ inzertit

{fredefines endDatal
+ encdData

+ azzociation 1

UML:Classes:
Kernel:
Association

Ve

LinkEndDestructionData

izDestroyDuplicates | Boolean

0.1

InputPin

UML:Actions:
== BasicActions:

0.1

L

LinkEndData <]

+ destroy st

0.1

;

UV o Cifasses::
Hernel::Elemont

Figure 11.10 - Write link actions

| UML Superstructure Specification, v2.1.2

227

UML ::Actions::
BasicActions::Action

ValueSpecificationAction

0.1 0.1

Jsubsets output}:
+resuft | 1

+wvalue |1
UML::Classes:: UML::Actions::
Kernel:: BasicActions:
ValueSpecification QutputPin

Figure 11.11 - Miscellaneous actions

228

UML Superstructure Specification, v2.1.2

Package CompleteActions

UNH :: Actions:: BasicActions:: Action

i

0.1 ReplyAction -
AcceptEventAction 0.1 UnmarshallAction |
izUnmarshall : Boolean = false ’
’ ~ | 0.1 * 0.1
“| +trigmer 1 K replyToCal 0.1
N 0.1

0.1 UML:: {subsets input}
CommonBehaviors:

s + returninformation | 4
:Communications::

Trigger b replyvalue UML:Actions: 1
_ - BasicActions:: i
* + object
{subsets input} InputPin

{subsets input}

| AcceptCallAction |

0.1
Tl ; + uninarshallType
{subsets output) HKarnol:: 1
+ returninformation |1 Classifior

{subsets output}

+ result UML:Actions:
BasicActions: + result
¥ OutputPin 1
{subsets outputH

Figure 11.12 - Accept event actions

UML Superstructure Specification, v2.1.2 229

UV Actions::
BasicActions::
Action

T

ReadExtentAction ReclassifyObjectAction ReadlsClassifiedObjectAction StartClassifierBehaviorAction

izReplacesl | Boolesn izDirect : Boolean

’ 0.1 0.1 . . N ’ 0.1

{subsets input} {subsets input}
+ ohject 1 + ohject
UML::Actions:: UML:Actions:
BasicActions:: BasicActions:z:
InputPin InputPin
{subsets output}
+reault | 1 v oldClssitier] = * |+ newCiassifier {subsets output]} {subsets input}]

W 1 |+ resul + ohject
UML:Actions: . N W
BasicActions: +classifier | umare: Classess: | + classifier UML:=:Actions:: UML::Actions:

OutputPin 17 Haernal:: 1 BasicActions: BasicActions:
Classifier utputPin InputPin

Figure 11.13 - Object actions (CompleteActions)

LinkEndData U - Classes::

Hoerpoli:Flopent

+ qualifier | *

QualifierValue

UML:Classes:
+ qualifier. AssociationClasses:

0.1

+ walue W 1

UML:Actions:
BasicActions:
InputPin

1 Property

{Property must
he a qualifier
attribute .}

Figure 11.14 - Link identification (CompleteActions)

230

UML Superstructure Specification, v2.1.2

U Actions::
BasfcActions::
Action

i

ReadLinkObjectEndAction

ReadLinkObjectEndGualifier Action

0.1 ¢4 4 0.1
0.1

oo 01 0.1 o1 ... :

E + gualifier |, 1 E

. +end |1 .

: W {subsets outputh UML:Classess :

E UML:Classes: resuft UML::Actions: ! AssociationClasses: E

E Kernel:Property 1 BasicAc‘tio_n&:: T result Property E

: OutputPin {subsets output} :

E Jsubsets input} UML=Actions: -Esggjseeés input} E

H +ohiect | BasicActionsz H

' - InputPin 1 !
1 Propetty must be an 1 1Property must be an
azsociation end.} qualifier attribute .}

Figure 11.15 - Read link actions (CompleteActions)
UML::Actions::
IntermediateActions::
CreateLinkAction
CreateLinkObjectAction 0.1 9 UML:Actions::
. - - !
- - BasicActions:
OutputPin
+ result
{subsets output}

Figure 11.16 - Write link actions (CompleteActions)

| UML Superstructure Specification, v2.1.2

231

Action

UM A ctions::
BasicActions::

Reduceaction

+ reducer

isCrdered ; Boolean

0.1 0.1
+ collection + result
fsubsets input} 1 1 |, tsubsets output}
UML::Actions:: UrL::Actions::
BasicActions:: BasicActions::
InputPin OutputPin

Figure 11.17 - ReduceAction (CompleteActions)

232

ML s CommonBehaviors::
BasicBehaviors: :Behavior

UML Superstructure Specification, v2.1.2

Package StructuredActions

LIV Actions::
BHasicActions:!Action

1

VariablaAction + variable UMLzActivities::)
» = StructuredActivities::
1 Variable

1

ReadVariableAction

{subsets output}

+ resutt [1

CutputPin

UNML::Actions::
BasicActions:

——fe| WriteVarizbieAction ClearVariableAction

:

AddVariable ValueAction RemoveVariable ValueAction
izReplace &l . Boolean izRemoveDuplicstes | Boaolean
0.1
+ inzertat
0.1 | {subsets input}
1 | UML:Actions:
Pl

BasicActions:InputPin
+ removedt

{subsets inputt

+ valug

{subsets input}k

Figure 11.18 - Variable actions

UV - Actions::
HBasicActions!!Action

RaiseExceptionAction

-

Tsubsets input}t
+ excep‘tiu:un_x UNML:Actions::

0.1

1 - BasicActions:inputPin

Figure 11.19 - Raise exception action

UML Superstructure Specification, v2.1.2

233

UML::Actions::
BasicActions::
InputPin

T {subzets ownedElerment}
ActionlnputPin

: UML::Actions::
+ frormAct
g romActen BasicActions::
1 Action

Figure 11.20 - Action input pin
11.3 Class Descriptions

11.3.1 AcceptCallAction (from CompleteActions)

Generalizations

« “AcceptEventAction (from CompleteActions)” on page 235

Description

AcceptCallAction is an accept event action representing the receipt of a synchronous call request. In addition to the
normal operation parameters, the action produces an output that is needed later to supply the information to the
ReplyAction necessary to return control to the caller.

This action is for synchronous calls. If it is used to handle an asynchronous call, execution of the subsequent reply action
will complete immediately with no effects.

Attributes

No additional attributes

Associations

e returninformation: OutputPin [1..1]
Pin where a value is placed containing sufficient information to perform a subsequent reply and return control to the
caller. The contents of this value are opaque. It can be passed and copied but it cannot be manipulated by the model.
{Subsets Action::output}

Constraints

[1] The result pins must match the in and inout parameters of the operation specified by the trigger event in number, type, and
order.

[2] The trigger event must be a CallEvent.
trigger.event.ocllsKindOf(CallEvent)

234 UML Superstructure Specification, v2.1.2

[3] isUnmarshall must be true for an AcceptCallAction.
isUnmarshall = true

Semantics

This action accepts (event) occurrences representing the receipt of calls on the operation specified by the trigger call
event. If an ongoing activity behavior has executed an accept call action that has not completed and the owning object has
an event occurrence representing a call of the specified operation, the accept call action claims the event occurrence and
removes it from the owning object. If several accept call actions concurrently request a call on the same operation, it is
unspecified which one claims the event occurrence, but one and only one action will claim the event. The argument
values of the call are placed on the result output pins of the action. Information sufficient to perform a subsequent reply
action is placed in the returninformation output pin. The execution of the accept call action is then complete. This return
information value is opaque and may only be used by ReplyAction.

Note that the target class must not define a method for the operation being received; otherwise, the operation call will be
dispatched to that method instead of being put in the event buffer to be handled by AcceptCallAction. In general, classes
determine how operation calls are handled, namely by a method, by a behavior owned directly by the class, by a state
machine transition, and so on. The class must ensure that the operation call is handled in a way that AcceptCallAction has
access to the call event.

11.3.2 AcceptEventAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 237

Description

AcceptEventAction is an action that waits for the occurrence of an event meeting specified condition.

Attributes
e isUnmarshall : Boolean = false

Indicates whether there is a single output pin for the event, or multiple output pins for attributes of the event.
Associations

e trigger: Trigger [1..%]
The type of events accepted by the action, as specified by triggers. For triggers with signal events, a signal of the
specified type or any subtype of the specified signal type is accepted.

e result: OutputPin [0..*]
Pins holding the received event objects or their attributes. Event objects may be copied in transmission, so identity
might not be preserved. {Subsets Action::output}

Constraints

[1] AcceptEventActions may have no input pins.

[2] There are no output pins if the trigger events are only ChangeEvents, or if they are only CallEvents when this action is an
instance of AcceptEventAction and not an instance of a descendant of AcceptEventAction (such as AcceptCallAction).

[3] If the trigger events are all TimeEvents, there is exactly one output pin.

UML Superstructure Specification, v2.1.2 235

[4] If isUnmarshalled is true, there must be exactly one trigger for events of type SignalEvent. The number of result output
pins must be the same as the number of attributes of the signal. The type and ordering of each result output pin must be the
same as the corresponding attribute of the signal. The multiplicity of each result output pin must be compatible with the
multiplicity of the corresponding attribute.

Semantics

Accept event actions handle event occurrences detected by the object owning the behavior (also see
“InterruptibleActivityRegion (from CompleteActivities)” on page 377). Event occurrences are detected by objects
independently of actions and the occurrences are stored by the object. The arrangement of detected event occurrences is
not defined, but it is expected that extensions or profiles will specify such arrangements. If the accept event action is
executed and the object detected an event occurrence matching one of the triggers on the action and the occurrence has
not been accepted by another action or otherwise consumed by another behavior, then the accept event action completes
and outputs a value describing the occurrence. If such a matching occurrence is not available, the action waits until such
an occurrence becomes available, at which point the action may accept it. In a system with concurrency, several actions
or other behaviors might contend for an available event occurrence. Unless otherwise specified by an extension or profile,
only one action accepts a given occurrence, even if the occurrence would satisfy multiple concurrently executing actions.

If the occurrence is a signal event occurrence and isUnmarshall is false, the result value contains a signal object whose
reception by the owning object caused the occurrence. If the occurrence is a signal event occurrence and isUnmarshall is
true, the attribute values of the signal are placed on the result output pins of the action. Signal objects may be copied in
transmission and storage by the owning object, so identity might not be preserved. An action whose trigger is a signal
event is informally called an accept signal action. If the occurrence is a time event occurrence, the result value contains
the time at which the occurrence transpired. Such an action is informally called a wait time action. If the occurrences are
all occurrences of ChangeEvent, or all CallEvent, or a combination of these, there are no output pins (however, see
“AcceptCallAction (from CompleteActions)” on page 234). See CommonBehavior for a description of Event
specifications. If the triggers are a combination of SignalEvents and ChangeEvents, the result is a null value if a change
event occurrence or a call event occurrence is accepted.

This action handles asynchronous messages, including asynchronous calls. It cannot be used with synchronous calls
(except see “AcceptCallAction (from CompleteActions)” on page 234).

Notation

An accept event action is notated with a concave pentagon. A wait time action is notated with an hour glass.

X

Accept event action Accept time event action

Figure 11.21 - Accept event notations

Examples

“AcceptEventAction (as specialized)” on page 309

236 UML Superstructure Specification, v2.1.2

Rationale

Accept event actions are introduced to handle processing of events during the execution of a behavior.

Changes from previous UML

AcceptEventAction is new in UML 2.0.
11.3.3 Action (from BasicActions)

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 98

Description

An action is a named element that is the fundamental unit of executable functionality. The execution of an action
represents some transformation or processing in the modeled system, be it a computer system or otherwise.

Attributes

No additional attributes

Associations

e /input: InputPin [*]
The ordered set of input pins connected to the Action. These are among the total set of inputs. {Specializes
Element::ownedElement}

e Joutput : OutputPin [*]
The ordered set of output pins connected to the Action. The action places its results onto pins in this set. {Specializes
Element::ownedElement}

e Jcontext : Classifier [0..1]
The classifier that owns the behavior of which this action is a part.

Constraints

No additional constraints

Semantics

An action execution represents the run-time behavior of executing an action within a specific behavior execution. As
Action is an abstract class, all action executions will be executions of specific kinds of actions. When the action executes,
and what its actual inputs are, is determined by the concrete action and the behaviors in which it is used.

Notation

No specific notation. See extensions in Activities clause.

Changes from previous UML

Action is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.

UML Superstructure Specification, v2.1.2 237

11.3.4 ActioninputPin (from StructuredActions)

Generalizations

+ “InputPin (from BasicActions)” on page 256

Description

An action input pin is a kind of pin that executes an action to determine the values to input to another.

Attributes

No additional attributes

Associations

e fromAction : Action [1]
The action used to provide values. {Subsets Element::ownedElement}

Constraints

[1] The fromAction of an action input pin must have exactly one output pin.

[2] The fromAction of an action input pin must only have action input pins as input pins.

[3] The fromAction of an action input pin cannot have control or data flows coming into or out of it or its pins.
Semantics

If an action is otherwise enabled, the fromActions on action input pins are enabled. The outputs of these are used as the
values of the corresponding input pins. The process recurs on the input pins of the fromActions, if they also have action
input pins. The recursion bottoms out at actions that have no inputs, such as for read variables or the self object. This
forms a tree that is an action model for nested expressions.

Notation

No specific notation

Example
Example (in action language provided just for example, not normative):
self.foo->bar(self.baz);

meaning get the foo attribute of self, then send a bar signal to it with argument from the baz attribute of self. The
repository model is shown below.

238 UML Superstructure Specification, v2.1.2

+signal

: SendSignalAction

bar: Signal

+target

il : ActioninputPin

+fromAction

gl : ReadStructuralFeatureAction

+structuralFeature

+object

i2_: ActionlnputPin

+fromAction

sl : ReadSelfAction

foo : Property
+result
ol : OutputPin
+result

02 : OutputPin

+argument

i3 : ActionlnputPin

+fromAction

+structural Feature

g2 : ReadStructualFe ature Action

baz :Property

+realt

+object

Figure 11.22 - Example repository model

Rationale

i4 : ActionlnputPin

+fromAction

s2 : ReadSelfAction

03 : OutputPin

+resul't
04 : OutputPin

ActionlnputPin is introduced to pass values between actions in expressions without using flows.

11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)

AddStructuralFeatureValueAction is a write structural feature action for adding values to a structural feature.

Generalizations

« “WriteStructuralFeatureAction (from IntermediateActions)” on page 292.

UML Superstructure Specification, v2.1.2

239

Description

Structural Features are potentially multi-valued and ordered, so the action supports specification of insertion points for
new values. It also supports the removal of existing values of the structural feature before the new value is added.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime.
The type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is
1.1

Attributes

* isReplaceAll : Boolean [1..1] = false
Specifies whether existing values of the structural feature of the object should be removed before adding the new
value.

Associations

e insertAt: InputPin [0..1]
Gives the position at which to insert a new value or move an existing value in ordered structural features. The type of
the pin is UnlimitedNatural, but the value cannot be zero. This pin is omitted for unordered structural features.
(Subsets Action::input)

Constraints

[1] Actions adding a value to ordered structural features must have a single input pin for the insertion point with type
UnlimitedNatural and multiplicity of 1..1; otherwise, the action has no input pin for the insertion point.
let insertAtPins : Collection = self.insertAt in
if self.structuralFeature.isOrdered = #false
then insertAtPins->size() = 0
else let insertAtPin : InputPin= insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))
endif

Semantics

If isReplaceAll is true, then the existing values of the structural feature are removed before the new one added, except if
the new value already exists, then it is not removed under this option. If isReplaceAll is false and the structural feature is
unordered and unique, then adding an existing value has no effect. If the feature is an association end, the semantics are
the same as creating a link, the participants of which are the object owning the structural feature and the new value.

Values of a structural feature may be ordered or unordered, even if the multiplicity maximum is 1. Adding values to
ordered structural features requires an insertion point for a new value using the insertAt input pin. The insertion point is
a positive integer giving the position to insert the value, or unlimited, to insert at the end. A positive integer less than or
equal to the current number of values means to insert the new value at that position in the sequence of existing values,
with the integer one meaning the new value will be first in the sequence. A value of unlimited for insertAt means to insert
the new value at the end of the sequence. The semantics is undefined for a value of zero or an integer greater than the
number of existing values. The insertion point is required for ordered structural features and omitted for unordered
structural features. Reinserting an existing value at a new position in an ordered unique structural feature moves the value
to that position (this works because structural feature values are sets). The insertion point is ignored when replacing all
values.

240 UML Superstructure Specification, v2.1.2

The semantics is undefined for adding a value that violates the upper multiplicity of the structural feature. Removing a
value succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler
must determine when minimum multiplicity of structural features should be enforced.

The semantics is undefined for adding a new value for a structural feature with isReadonly=true after initialization of the
owning object.

Notation

No specific notation

Rationale

AddStructuralFeatureValueAction is introduced to add structural feature values. isReplaceAll is introduced to replace and
add in a single action, with no intermediate states of the object where only some of the existing values are present.
Changes from previous UML

AddStructuralFeatureValueAction is new in UML 2.0. It generalizes AddAttributeAction in UML 1.5.
11.3.6 AddVariableValueAction (from StructuredActions)

AddVariableValueAction is a write variable action for adding values to a variable.

Generalizations

« “WriteVariableAction (from StructuredActions)” on page 293

Description

Variables are potentially multi-valued and ordered, so the action supports specification of insertion points for new values.
It also supports the removal of existing values of the variable before the new value is added.

Attributes

* isReplaceAll : Boolean [1..1] = false
Specifies whether existing values of the variable should be removed before adding the new value.

Associations

e insertAt : InputPin [0..1]
Gives the position at which to insert a new value or move an existing value in ordered variables. The type is
UnlimitedINatural, but the value cannot be zero. This pin is omitted for unordered variables. (Subsets Action::input)

Constraints

[1] Actions adding values to ordered variables must have a single input pin for the insertion point with type UnlimitedNatural
and multiplicity of 1..1; otherwise, the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in
if self.variable.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAt->asSequence()->first() in
insertAtPins->size() = 1

UML Superstructure Specification, v2.1.2 241

and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))
endif

Semantics

If isReplaceAll is true, then the existing values of the variable are removed before the new one added, except if the new
value already exists, then it is not removed under this option. If isReplaceAll is false and the variable is unordered and
non-unique, then adding an existing value has no effect.

Values of a variable may be ordered or unordered, even if the multiplicity maximum is 1. Adding values to ordered
variables requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive integer
giving the position to insert the value, or unlimited, to insert at the end. A positive integer less than or equal to the current
number of values means to insert the new value at that position in the sequence of existing values, with the integer one
meaning the new value will be first in the sequence. A value of unlimited for insertAt means to insert the new value at the
end of the sequence. The semantics is undefined for a value of zero or an integer greater than the number of existing
values. The insertion point is required for ordered variables and omitted for unordered variables. Reinserting an existing
value at a new position in an ordered unique variable moves the value to that position (this works because variable values
are sets). The insertion point is ignored when replacing all values.

The semantics is undefined for adding a value that violates the upper multiplicity of the variable. Removing a value
succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler must
determine when minimum multiplicity of variables should be enforced.

Notation

No specific notation

Rationale

AddVariableValueAction is introduced to add variable values. isReplaceAll is introduced to replace and add in a single
action, with no intermediate states of the variable where only some of the existing values are present.

Changes from previous UML

AddVariableValueAction is unchanged from UML 1.5.
11.3.7 BroadcastSignalAction (from IntermediateActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 257

Description

BroadcastSignalAction is an action that transmits a signal instance to all the potential target objects in the system, which
may cause the firing of a state machine transitions or the execution of associated activities of a target object. The
argument values are available to the execution of associated behaviors. The requestor continues execution immediately
after the signals are sent out. It does not wait for receipt. Any reply messages are ignored and are not transmitted to the
requestor.

242 UML Superstructure Specification, v2.1.2

Attributes

No additional attributes

Associations

e signal: Signal [1]
The specification of signal object transmitted to the target objects.

Constraints

[1] The number and order of argument pins must be the same as the number and order of attributes in the signal.
[2] The type, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.
Semantics

When all the prerequisites of the action execution are satisfied, a signal object is generated from the argument values
according to signal and this signal object is transmitted concurrently to each of the implicit broadcast target objects in the
system. The manner of identifying the set of objects that are broadcast targets is a semantic variation point and may be
limited to some subset of all the objects that exist. There is no restriction on the location of target objects. The manner of
transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions reach the
various target objects, and the path for reaching the target objects are undefined.

[1] When a transmission arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such
transmission is specified in Clause 13, “Common Behaviors.” Such effects include executing activities and firing state
machine transitions.

[2] A broadcast signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

Semantic Variation Points

The determination of the set of broadcast target objects is a semantic variation point.

Notation

No specific notation

Rationale

Sends a signal to a set of system defined target objects.

Changes from previous UML

Same as UML 1.5.
11.3.8 CallAction (from BasicActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 257.

UML Superstructure Specification, v2.1.2 243

Description

CallAction is an abstract class for actions that invoke behavior and receive return values.

Attributes
e isSynchronous: Boolean = true
If true, the call is synchronous and the caller waits for completion of the invoked behavior. If false, the call is
asynchronous and the caller proceeds immediately and does not expect a return value.
Associations
e result: OutputPin [0..*]
A list of output pins where the results of performing the invocation are placed. {Subsets Action::input}
Constraints
[1] Only synchronous call actions can have result pins.

[2] The number and order of argument pins must be the same as the number and order of parameters of the invoked behavior
or behavioral feature. Pins are matched to parameters by order.

[3] The type, ordering, and multiplicity of an argument pin must be the same as the corresponding parameter of the behavior
or behavioral feature.

Semantics

Parameters on behaviors and operations are totally ordered lists. To match parameters to pins on call actions, select the
sublist of that list that corresponds to in and inout owned parameters (i.e., Behavior.ownedParameter). The input pins on
Action::input are matched in order against these parameters in the sublist order. Then take the sublist of the parameter list
that corresponds to out, inout, and return parameters. The output pins on Action::output are matched in order against these
parameters in sublist order.

See children of CallAction.
11.3.9 CallBehaviorAction (from BasicActions)

Generalizations

- “CallAction (from BasicActions)” on page 243

Description

CallBehaviorAction is a call action that invokes a behavior directly rather than invoking a behavioral feature that, in turn,
results in the invocation of that behavior. The argument values of the action are available to the execution of the invoked
behavior. For synchronous calls the execution of the call behavior action waits until the execution of the invoked behavior
completes and a result is returned on its output pin. The action completes immediately without a result, if the call is
asynchronous.

Attributes

No additional attributes

244 UML Superstructure Specification, v2.1.2

Associations

L]

behavior : Behavior [1..1]
The invoked behavior. It must be capable of accepting and returning control.

Constraints

(1]
(2]
(3]

The number of argument pins and the number of parameters of the behavior of type in and in-out must be equal.
The number of result pins and the number of parameters of the behavior of type return, out, and in-out must be equal.

The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding parameter of the
behavior.

Semantics

(1]

(2]

(3]

(4]

(5]

When all the prerequisites of the action execution are satisfied, CallBehaviorAction invokes its specified behavior with
the values on the input pins as arguments. When the behavior is finished, the output values are put on the output pins.
Each parameter of the behavior of the action provides output to a pin or takes input from one. No other implementation
specifics are implied, such as call stacks, and so on. See “Pin (from BasicActions)” on page 264.

If the call is asynchronous, the action completes immediately. Execution of the invoked behavior proceeds without any
further dependency on the execution of the behavior containing the invoking action. Once the invocation of the behavior
has been initiated, execution of the asynchronous action is complete.

An asynchronous invocation completes when its behavior is started, or is at least ensured to be started at some point. Any
return or out values from the invoked behavior are not passed back to the containing behavior. When an asynchronous
invocation is done, the containing behavior continues regardless of the status of the invoked behavior. For example, the
containing behavior may complete even though the invoked behavior is not finished.

If the call is synchronous, execution of the calling action is blocked until it receives a reply from the invoked behavior.
The reply includes values for any return, out, or inout parameters.

If the call is synchronous, when the execution of the invoked behavior completes, the result values are placed on the result
pins of the call behavior action, and the execution of the action is complete (StructuredActions,
ExtraStructuredActivities). If the execution of the invoked behavior yields an exception, the exception is transmitted to
the call behavior action to begin search for a handler. See RaiseExceptionAction.

Notation

See specialization of “CallBehaviorAction (as specialized)” on page 347.

Presentation Options

See specialization of “CallBehaviorAction (as specialized)” on page 347.

Rationale

Invokes a behavior directly without the need for a behavioral feature.

Changes from previous UML

Same as UML 1.5

UML Superstructure Specification, v2.1.2 245

11.3.10 CallOperationAction (from BasicActions)

Generalizations

« “CallAction (from BasicActions)” on page 243

Description

CallOperationAction is an action that transmits an operation call request to the target object, where it may cause the
invocation of associated behavior. The argument values of the action are available to the execution of the invoked
behavior. If the action is marked synchronous, the execution of the call operation action waits until the execution of the
invoked behavior completes and a reply transmission is returned to the caller; otherwise, execution of the action is
complete when the invocation of the operation is established and the execution of the invoked operation proceeds
concurrently with the execution of the calling behavior. Any values returned as part of the reply transmission are put on
the result output pins of the call operation action. Upon receipt of the reply transmission, execution of the call operation
action is complete.

Attributes

No additional attributes

Associations

e operation: Operation [1]
The operation to be invoked by the action execution.

e target: InputPin [1]
The target object to which the request is sent. The classifier of the target object is used to dynamically determine a
behavior to invoke. This object constitutes the context of the execution of the operation. {Subsets Action::input}

Constraints
[1] The number of argument pins and the number of owned parameters of the operation of type in and in-out must be equal.

[2] The number of result pins and the number of owned parameters of the operation of type return, out, and in-out must be
equal.

[3] The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding owned parameter of
the operation.

[4] The type of the target pin must be the same as the type that owns the operation.

Semantics

The inputs to the action determine the target object and additional actual arguments of the call.

[1] When all the prerequisites of the action execution are satisfied, information comprising the operation and the argument
pin values of the action execution is created and transmitted to the target object. The target objects may be local or remote.
The manner of transmitting the call, the amount of time required to transmit it, the order in which the transmissions reach
the various target objects, and the path for reaching the target objects are undefined.

[2] When a call arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such call is
specified in Clause 13, “Common Behaviors.” Such effects include executing activities and firing state machine
transitions.

246 UML Superstructure Specification, v2.1.2

[3] If the call is synchronous, when the execution of the invoked behavior completes, its return results are transmitted back as
a reply to the calling action execution. The manner of transmitting the reply, the time required for transmission, the
representation of the reply transmission, and the transmission path are unspecified. If the execution of the invoked
behavior yields an exception, the exception is transmitted to the caller where it is reraised as an exception in the execution
of the calling action. Possible exception types may be specified by attaching them to the called Operation using the
raisedException association.

[4] If the call is asynchronous, the caller proceeds immediately and the execution of the call operation action is complete. Any
return or out values from the invoked operation are not passed back to the containing behavior. If the call is synchronous,
the caller is blocked from further execution until it receives a reply from the invoked behavior.

[51 When the reply transmission arrives at the invoking action execution, the return result values are placed on the result pins
of the call operation action, and the execution of the action is complete.

Semantic Variation Points

The mechanism for determining the method to be invoked as a result of a call operation is unspecified.

Notation

See “CallOperationAction (as specialized)” on page 349

Presentation Options

See “CallOperationAction (as specialized)” on page 349

Rationale

Calls an operation on a specified target object.

Changes from previous UML

Same as UML 1.5.
11.3.11 ClearAssociationAction (from IntermediateActions)
ClearAssociationAction is an action that destroys all links of an association in which a particular object participates.

Generalizations

« “Action (from BasicActions)” on page 237

Description

This action destroys all links of an association that have a particular object at one end.

Attributes

No additional attributes

Associations

e association : Association [1..1]
Association to be cleared.

UML Superstructure Specification, v2.1.2 247

e object: InputPin [1..1]
Gives the input pin from which is obtained the object whose participation in the association is to be cleared. (Subsets
Action::input)

Constraints

[1] The type of the input pin must be the same as the type of at least one of the association ends of the association.
self.association->exists(end.type = self.object.type)

[2] The multiplicity of the input pin is 1..1.
self.object.multiplicity.is(1,1)

Semantics

This action has a statically-specified association. It has an input pin for a runtime object that must be of the same type as
at least one of the association ends of the association. All links of the association in which the object participates are
destroyed even when that violates the minimum multiplicity of any of the association ends. If the association is a class,
then link object identities are destroyed.

Notation

No specific notation

Rationale

ClearAssociationAction is introduced to remove all links from an association in which an object participates in a single
action, with no intermediate states where only some of the existing links are present.

Changes from previous UML

ClearAssociationAction is unchanged from UML 1.5.
11.3.12 ClearStructuralFeatureAction (from IntermediateActions)

ClearStructuralFeatureAction is a structural feature action that removes all values of a structural feature.

Generalizations

» “StructuralFeatureAction (from IntermediateActions)” on page 285

Description

This action removes all values of a structural feature.

Attributes

No additional attributes

Associations

No additional associations

248 UML Superstructure Specification, v2.1.2

Constraints

No additional constraints

Semantics

All values are removed even when that violates the minimum multiplicity of the structural feature—the same as if the
minimum were zero. The semantics is undefined for a structural feature with isReadOnly = true after initialization of the
object owning the structural feature, unless the structural feature has no values. The action has no effect if the structural
feature has no values. If the feature is an association end, the semantics are the same as for ClearAssociationAction on the
object owning the structural feature.

Notation

No specific notation

Rationale

ClearStructuralFeatureAction is introduced to remove all values from a structural feature in a single action, with no
intermediate states where only some of the existing values are present.

Changes from previous UML

ClearStructuralFeatureAction is new in UML 2.0. It generalizes ClearAttributeAction from UML 1.5.
11.3.13 ClearVariableAction (from StructuredActions)

ClearVariableAction is a variable action that removes all values of a variable.

Generalizations

» “VariableAction (from StructuredActions)” on page 290

Description

This action removes all values of a variable.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

All values are removed even when that violates the minimum multiplicity of the variable—the same as if the minimum
were zero.

UML Superstructure Specification, v2.1.2 249

Notation

No specific notation

Rationale

ClearVariableAction is introduced to remove all values from a variable in a single action, with no intermediate states
where only some of the existing values are present.

Changes from previous UML

ClearVariableAction is unchanged from UML 1.5.
11.3.14 CreateLinkAction (from IntermediateActions)
(IntermediateActions) CreateLinkAction is a write link action for creating links.

Generalizations

« “WriteLinkAction (from IntermediateActions)” on page 291

Description

This action can be used to create links and link objects. There is no return value in either case. This is so that no change
of the action is required if the association is changed to an association class or vice versa. CreateLinkAction uses a
specialization of LinkEndData called LinkEndCreationData, to support ordered associations. The insertion point is
specified at runtime by an additional input pin, which is required for ordered association ends and omitted for unordered
ends. The insertion point is an integer greater than 0 giving the position to insert the link, or unlimited, to insert at the
end. Reinserting an existing end at a new position in an ordered unique structural feature moves the end to that position.

CreateLinkAction also uses LinkEndCreationData to support the destruction of existing links of the association that
connect any of the objects of the new link. When the link is created, this option is available on an end-by-end basis, and
causes all links of the association emanating from the specified ends to be destroyed before the new link is created.

Attributes

No additional attributes

Associations

e endData : LinkEndCreationData [2..*]
Specifies ends of association and inputs. (Redefines LinkAction::endData)

Constraints

[1] The association cannot be an abstract classifier.
self.association().isAbstract = #false

250 UML Superstructure Specification, v2.1.2

Semantics

CreateLinkAction creates a link or link object for an association or association class. It has no output pin, because links
are not necessarily values that can be passed to and from actions. When the action creates a link object, the object could
be returned on output pin, but it is not for consistency with links. This allows actions to remain unchanged when an
association is changed to an association class or vice versa. The semantics of CreateLinkObjectAction applies to creating
link objects with CreateLinkAction.

This action also supports the destruction of existing links of the association that connect any of the objects of the new
link. This option is available on an end-by-end basis, and causes all links of the association emanating from the specified
ends to be destroyed before the new link is created. If the link already exists, then it is not destroyed under this option;
otherwise, recreating an existing link has no effect if the structural feature is unordered and non-unique.

The semantics is undefined for creating a link for an association class that is abstract. The semantics is undefined for
creating a link that violates the upper multiplicity of one of its association ends. A new link violates the upper multiplicity
of an end if the cardinality of that end after the link is created would be greater than the upper multiplicity of that end.
The cardinality of an end is equal to the number of links with objects participating in the other ends that are the same as
those participating in those other ends in the new link, and with qualifier values on all ends the same as the new link, if
any.

The semantics is undefined for creating a link that has an association end with isReadOnly=true after initialization of the
other end objects, unless the link being created already exists. Objects participating in the association across from a
writeable end can have links created as long as the objects across from all read only ends are still being initialized. This
means that objects participating in links with two or more read only ends cannot have links created unless all the linked
objects are being initialized.

Creating ordered association ends requires an insertion point for a new link using the insertAt input pin of
LinkEndCreationData. The pin is of type UnlimitedNatural with multiplicity of 1..1. A pin value that is a positive integer
less than or equal to the current number of links means to insert the new link at that position in the sequence of existing
links, with the integer one meaning the new link will be first in the sequence. A value of unlimited for insertAt means to
insert the new link at the end of the sequence. The semantics is undefined for value of zero or an integer greater than the
number of existing links. The insertAt input pin does not exist for unordered association ends. Reinserting an existing end
at a new position in an ordered unique structural feature moves the end so that it is in the position specified after the
action is complete.

Notation

No specific notation

Rationale

CreateLinkAction is introduced to create links.

Changes from previous UML

CreateLinkAction is unchanged from UML 1.5.
11.3.15 CreateLinkObjectAction (from CompleteActions)

CreateLinkObjectAction creates a link object.

UML Superstructure Specification, v2.1.2 251

Generalizations

« “CreateLinkAction (from IntermediateActions)” on page 250

Description

This action is exclusively for creating links of association classes. It returns the created link object.

Attributes

No additional attributes

Associations

e result [1..1] : OutputPin [1..1]
Gives the output pin on which the result is put. (Subsets Action::output)

Constraints

[1] The association must be an association class.
self.association().ocllsKindOf(Class)

[2] The type of the result pin must be the same as the association of the action.
self.result.type = self.association()

[3] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

Semantics

CreateLinkObjectAction inherits the semantics and constraints of CreateLinkAction, except that it operates on association
classes to create a link object. The additional semantics over CreateLinkAction is that the new or found link object is put
on the output pin. If the link already exists, then the found link object is put on the output pin. The semantics of
CreateObjectAction applies to creating link objects with CreateLinkObjectAction.

Notation

No specific notation

Rationale

CreateLinkObjectAction is introduced to create link objects in a way that returns the link object. Compare
CreateLinkAction.

Changes from previous UML

CreateLinkObjectAction is unchanged from UML 1.5.
11.3.16 CreateObjectAction (from IntermediateActions)

CreateObjectAction is an action that creates an object that conforms to a statically specified classifier and puts it on an
output pin at runtime.

252 UML Superstructure Specification, v2.1.2

Generalizations

« “Action (from BasicActions)” on page 237

Description

This action instantiates a classifier.

Attributes

No additional attributes

Associations

e classifier : Classifier [1..1]
Classifier to be instantiated.

e result: OutputPin [1..1]
Gives the output pin on which the result is put. (Subsets Action::output)
Constraints

[1] The classifier cannot be abstract.
not (self.classifier.isAbstract = #true)
[2] The classifier cannot be an association class.
not self.classifier.oclisKindOf(AssociationClass)
[3] The type of the result pin must be the same as the classifier of the action.
self.result.type = self.classifier
[4] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

Semantics

The new object is created, and the classifier of the object is set to the given classifier. The new object is returned as the
value of the action. The action has no other effect. In particular, no behaviors are executed, no initial expressions are
evaluated, and no state machine transitions are triggered. The new object has no structural feature values and participates
in no links.

Notation

No specific notation

Rationale

CreateObjectAction is introduced for creating new objects.

Changes from previous UML

Same as UML 1.5

UML Superstructure Specification, v2.1.2 253

11.3.17 DestroyLinkAction (from IntermediateActions)
DestroyLinkAction is a write link action that destroys links and link objects.

Generalizations

» “WriteLinkAction (from IntermediateActions)” on page 291.

Description

This action destroys a link or a link object. Link objects can also be destroyed with DestroyObjectAction. The link is
specified in the same way as link creation, even for link objects. This allows actions to remain unchanged when their
associations are transformed from ordinary ones to association classes and vice versa.

DestroyLinkAction uses a specialization of LinkEndData, called LinkEndDestructionData, to support ordered non-unique
associations. The position of the link to be destroyed is specified at runtime by an additional input pin, which is required
for ordered non-unique association ends and omitted for other kinds of ends. This is a positive integer giving the position
of the link to destroy.

DestroyLinkAction also uses LinkEndDestructionData to support the destruction of duplicate links of the association on
ends that are non-unique. This option is available on an end-by-end basis, and causes all duplicate links of the association
emanating from the specified ends to be destroyed.

Attributes

No additional attributes

Associations

¢ endData : LinkEndDestructionData [2..*]
Specifies ends of association and inputs. {Redefines LinkAction::endData}

Constraints

No additional constraints

Semantics

Destroying a link that does not exist has no effect. The semantics of DestroyObjectAction applies to destroying a link that
has a link object with DestroyLinkAction.

The semantics is undefined for destroying a link that has an association end with isReadOnly = true after initialization of
the other end objects, unless the link being destroyed does not exist. Objects participating in the association across from
a writeable end can have links destroyed as long as the objects across from all read only ends are still being initialized.

This means objects participating in two or more readOnly ends cannot have links destroyed, unless all the linked objects
are being initialized.

Destroying links for non-unique ordered association ends requires identifying the position of the link using the input pin
of LinkEndDestructionData. The pin is of type UnlimitedNatural with multiplicity 1..1. A pin value that is a positive
integer less than or equal to the current number of links means to destroy the link at that position in the sequence of
existing links, with the integer one meaning the first link in the sequence. The semantics is undefined for value of zero,
for an integer greater than the number of existing links, and for unlimited. The destroyAt input pin only exists for ordered
non-unigue association ends.

254 UML Superstructure Specification, v2.1.2

Notation

No specific notation

Rationale

DestroyLinkAction is introduced for destroying links.

Changes from previous UML

DestroyLinkAction is unchanged from UML 1.5.
11.3.18 DestroyObjectAction (from IntermediateActions)

DestroyObjectAction is an action that destroys objects.

Generalizations

» “Action (from BasicActions)” on page 237

Description

This action destroys the object on its input pin at runtime. The object may be a link object, in which case the semantics
of DestroyLinkAction also applies.

Attributes

« isDestroyLinks : Boolean = false
Specifies whether links in which the object participates are destroyed along with the object. Default value is false.

« isDestroyOwnedObjects : Boolean = false
Specifies whether objects owned by the object through composite aggregation are destroyed along with the object.
Default value is false.

Associations
e target: InputPin [1..1]
The input pin providing the object to be destroyed. (Subsets Action::input)

Constraints

[1] The multiplicity of the input pin is 1..1.
self.target.multiplicity.is(1,1)

[2] The input pin has no type.
self.target.type->size() = 0

Semantics

The classifiers of the object are removed as its classifiers, and the object is destroyed. The default action has no other

effect. In particular, no behaviors are executed, no state machine transitions are triggered, and references to the destroyed
objects are unchanged. If isDestroyLinks is true, links in which the object participates are destroyed along with the object
according to the semantics of DestroyLinkAction, except for link objects, which are destroyed according to the semantics

UML Superstructure Specification, v2.1.2 255

of DestroyObjectAction with the same attribute values as the original DestroyObjectAction. If isDestroyOwnedObjects is
true, objects owned by the object through composite aggregation are destroyed according to the semantics of
DestroyObjectAction with the same attribute values as the original DestroyObjectAction.

Destroying an object that is already destroyed has no effect.

Notation

No specific notation

Rationale

DestroyObjectAction is introduced for destroying objects.

Changes from previous UML

Same as UML 1.5
11.3.19 InputPin (from BasicActions)

Generalizations

« “Pin (from BasicActions)” on page 264

Description

An input pin is a pin that holds input values to be consumed by an action.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An action cannot start execution if an input pin has fewer values than the lower multiplicity. The upper multiplicity
determines how many values are consumed by a single execution of the action.

Notation

No specific notation. See extensions in Activities.
Rationale
Changes from previous UML

InputPin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.

256 UML Superstructure Specification, v2.1.2

11.3.20 InvocationAction (from BasicActions)

Generalizations

« “Action (from BasicActions)” on page 237

Description

Invocation is an abstract class for the various actions that invoke behavior.

Attributes

No additional attributes

Associations

e argument : InputPin [0..*]
Specification of the ordered set of argument values that appear during execution.

Constraints
No additional constraints
Semantics

See children of InvocationAction.
11.3.21 LinkAction (from IntermediateActions)

LinkAction is an abstract class for all link actions that identify their links by the objects at the ends of the links and by
the qualifiers at ends of the links.

Generalizations

« “Action (from BasicActions)” on page 237

Description

A link action creates, destroys, or reads links, identifying a link by its end objects and qualifier values, if any.

Attributes

No additional attributes

Associations

¢ endData : LinkEndData [2..*]
Data identifying one end of a link by the objects on its ends and qualifiers.

e inputValue : InputPin [1..*]
Pins taking end objects and qualifier values as input. (Subsets Action::input)

UML Superstructure Specification, v2.1.2 257

Constraints
[1] The association ends of the link end data must all be from the same association and include all and only the association
ends of that association.
self.endData->collect(end) = self.association()->collect(connection)
[2] The association ends of the link end data must not be static.
self.endData->forall(end.oclisKindOf(NavigableEnd) implies end.isStatic = #false)
[3] The input pins of the action are the same as the pins of the link end data and insertion pins.
self.input->asSet() =
let ledpins : Set = self.endData->collect(value) in
if self.oclisKindOf(LinkEndCreationData)

then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Package CompleteActions

[4] The input pins of the action are the same as the pins of the link end data, qualifier values, and insertion pins.
self.input->asSet() =
let ledpins : Set =
if self.endData.oclisKindOf(CompleteActions::LinkEndData)
then self.endData->collect(value)->union(self.endData.qualifier.value)
else self.endData->collect(value) in
if self.oclisKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.
association();
association = self.endData->asSequence().first().end.association

Semantics

For actions that write links, all association ends must have a corresponding input pin so that all end objects are specified
when creating or deleting a link. An input pin identifies the end object by being given a value at runtime. It has the type
of the association end and multiplicity of 1..1 (see “LinkEndData (from IntermediateActions, CompleteActions)” on page
260), since a link always has exactly one object at its ends. The input pins owned by the action are referenced by the link
end data, and as insertion pins (see “LinkEndCreationData (from IntermediateActions)” on page 259), and qualifier value
pins in CompleteActions.

The behavior is undefined for links of associations that are static on any end.

For the semantics of link actions see the children of LinkAction.

Notation

No specific notation

258 UML Superstructure Specification, v2.1.2

Rationale
LinkAction is introduced to abstract aspects of link actions that identify links by the objects on their ends.

In CompleteActions, LinkAction is extended for qualifiers.

Changes from previous UML

LinkAction is unchanged from UML 1.5.
11.3.22 LinkEndCreationData (from IntermediateActions)

LinkEndCreationData is not an action. It is an element that identifies links. It identifies one end of a link to be created by
CreateLinkAction.

Generalizations

» “LinkEndData (from IntermediateActions, CompleteActions)” on page 260.

Description

This class is required when using CreateLinkAction to specify insertion points for ordered ends and for replacing all links
at end. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end objects and
qualifier values, as required. This requires more than one piece of data, namely, the statically-specified end in the user
model, the object on the end, and the qualifier values for that end. These pieces are brought together around
LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Qualifier values are used in CompleteActions to specify links to create.

Attributes

e isReplaceAll : Boolean [1..1] = false
Specifies whether the existing links emanating from the object on this end should be destroyed before creating a new
link.

Associations

e insertAt : InputPin [0..1]
Specifies where the new link should be inserted for ordered association ends, or where an existing link should be
moved to. The type of the input is UnlimitedNatural, but the input cannot be zero. This pin is omitted for association
ends that are not ordered.

Constraints
[1] LinkEndCreationData can only be end data for CreateLinkAction or one of its specializations.
self.LinkAction.ocllsKindOf(CreateLinkAction)

[2] Link end creation data for ordered association ends must have a single input pin for the insertion point with type
UnlimitedNatural and multiplicity of 1..1; otherwise, the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in

if self.end.ordering = #unordered
then insertAtPins->size() = 0

UML Superstructure Specification, v2.1.2 259

else let insertAtPin : InputPin = insertAts->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Semantics

See CreateLinkAction, also see LinkAction and all its children.

Notation

No specific notation

Rationale

LinkEndCreationData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndCreationData is unchanged from UML 1.5.
11.3.23 LinkEndData (from IntermediateActions, CompleteActions)

Generalizations

« “Element (from Kernel)” on page 64
Description

Package IntermediateActions

LinkEndData is not an action. It is an element that identifies links. It identifies one end of a link to be read or written by
the children of LinkAction. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified
by its end objects and qualifier values, if any. This requires more than one piece of data, namely, the statically-specified
end in the user model, the object on the end, and the qualifier values for that end, if any. These pieces are brought
together around LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Attributes

No additional attributes

Associations

e end: Property [1..1]
Association end for which this link-end data specifies values.

e value : InputPin [0..1]
Input pin that provides the specified object for the given end. This pin is omitted if the link-end data specifies an
“open” end for reading.

260 UML Superstructure Specification, v2.1.2

Associations

Package CompleteActions

e qualifier : QualifierValue [*]
List of qualifier values.

Constraints

[1] The property must be an association end.
self.end.association->size() = 1

[2] The type of the end object input pin is the same as the type of the association end.
self.value.type = self.end.type

[3] The multiplicity of the end object input pin must be “1..1.”
self.value.multiplicity.is(1,1)

Constraints

Package CompleteActions

[1] The qualifiers include all and only the qualifiers of the association end.
self.qualifier->collect(qualifier) = self.end.qualifier

[2] The end object input pin is not also a qualifier value input pin.
self.value->excludesAll(self.qualifier.value)

Semantics

See LinkAction and its children.

Notation

No specific notation

Rationale

LinkEndData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndData is unchanged from UML 1.5.
11.3.24 LinkEndDestructionData (from IntermediateActions)

LinkEndDestructionData is not an action. It is an element that identifies links. It identifies one end of a link to be
destroyed by DestroyLinkAction.

Generalizations

» “LinkEndData (from IntermediateActions, CompleteActions)” on page 260.

UML Superstructure Specification, v2.1.2

261

Description

This class is required when using DestroyLinkAction, to specify links to destroy for non-unique ordered ends. A link
cannot be passed as a runtime value to or from an action. See description of “LinkEndData (from IntermediateActions,
CompleteActions)” on page 260.

Qualifier values are used in CompleteActions to identify which links to destroy.

Attributes

« isDestroyDuplicates : Boolean = false
Specifies whether to destroy duplicates of the value in non-unique association ends.

Associations

e destroyAt : InputPin [0..1]
Specifies the position of an existing link to be destroyed in ordered non-unique association ends. The type of the pin
is UnlimitedNatural, but the value cannot be zero or unlimited.

Constraints
[1] LinkEndDestructionData can only be end data for DestroyLinkAction or one of its specializations.

[2] LinkEndDestructionData for ordered non-unique association ends must have a single destroyAt input pin if
isDestroyDuplicates is false. It must be of type UnlimitedNatural and have a multiplicity of 1..1; otherwise, the action has
no input pin for the removal position.

Semantics

See “DestroyLinkAction (from IntermediateActions)” on page 254, also see “LinkAction (from IntermediateActions)” on
page 257 and all of its subclasses.

Notation

No specific notation

Rationale

LinkEndDestructionData is introduced to indicate which links to destroy for ordered non-unique ends.
11.3.25 MultiplicityElement (from BasicActions)

Generalizations

« “MultiplicityElement (from Kernel)” on page 94 (merge increment)

Operations

[1] The operation compatibleWith takes another multiplicity as input. It checks if one multiplicity is compatible with another.
compatibleWith(other : Multiplicity) : Boolean;
compatibleWith(other) = Integer.allinstances()->
forAll(i : Integer | self.includesCardinality(i) implies other.includesCardinality(i))

262 UML Superstructure Specification, v2.1.2

[2] The operation determines if the upper and lower bound of the ranges are the ones given.

is(lowerbound : integer, upperbound : integer) : Boolean;
is(lowerbound, upperbound) = (lowerbound = self.lowerbound and upperbound = self.upperbound)

11.3.26 OpaqueAction (from BasicActions)

Generalizations

« “Action (from BasicActions)” on page 237

Description

An action with implementation-specific semantics.

Attributes

e body : String [0..*] {ordered}
Specifies the action in one or more languages.

e language : String [0..*] {ordered}
Languages the body strings use, in the same order as the body strings.

Associations

e inputValue : InputPin [0..*]
Provides input to the action. (Specializes Action::input)

e outputValue : OutputPin [0..*]
Takes output from the action. (Specializes Action::output)

Constraints

No additional constraints

Semantics

The semantics of the action are determined by the implementation.

Notation

No specific notation

Rationale

OpaqueAction is introduced for implementation-specific actions or for use as a temporary placeholder before some other
action is chosen.

11.3.27 OutputPin (from BasicActions)

Generalizations

« “Pin (from BasicActions)” on page 264

UML Superstructure Specification, v2.1.2 263

Description

An output pin is a pin that holds output values produced by an action.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An action cannot terminate itself if an output pin has fewer values than the lower multiplicity. An action may not put
more values in an output pin in a single execution than the upper multiplicity of the pin.

Notation

No specific notation. See extensions in Activities.

Changes from previous UML

OutputPin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.28 Pin (from BasicActions)

Generalizations
- “MultiplicityElement (from BasicActions)” on page 262
« “TypedElement (from Kernel)” on page 136

Description

A pin is a typed element and multiplicity element that provides values to actions and accepts result values from them.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] If the action is an invocation action, the number and types of pins must be the same as the number of parameters and
types of the invoked behavior or behavioral feature. Pins are matched to parameters by order.

264 UML Superstructure Specification, v2.1.2

Semantics

A pin represents an input to an action or an output from an action. The definition on an action assumes that pins are
ordered.

Pin multiplicity controls action execution, not the number of tokens in the pin (see upperBound on “ObjectNode (from
BasicActivities, CompleteActivities)” on page 391). See “InputPin (from BasicActions)” and “OutputPin (from
BasicActions)” for semantics of multiplicity. Pin multiplicity is not unique, because multiple tokens with the same value
can reside in an object node.

Notation

No specific notation. See extensions in Activities.

Rationale

Pins are introduced to model inputs and outputs of actions.

Changes from previous UML

Pin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.29 QualifierValue (from CompleteActions)

QualifierValue is not an action. It is an element that identifies links. It gives a single qualifier within a link end data
specification. See LinkEndData.

Generalizations

» “Element (from Kernel)” on page 64

Description

A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end objects and
qualifier values, as required. This requires more than one piece of data, namely, the end in the user model, the object on
the end, and the qualifier values for that end. These pieces are brought together around LinkEndData. Each association
end is identified separately with an instance of the LinkEndData class.

Attributes

No additional attributes

Associations

e qualifier : Property [1..1]
Attribute representing the qualifier for which the value is to be specified.

e value : InputPin [1..1]
Input pin from which the specified value for the qualifier is taken.
Constraints

[1] The qualifier attribute must be a qualifier of the association end of the link-end data.
self.LinkEndData.end->collect(qualifier)->includes(self.qualifier)

UML Superstructure Specification, v2.1.2 265

[2] The type of the qualifier value input pin is the same as the type of the qualifier attribute.
self.value.type = self.qualifier.type

[3] The multiplicity of the qualifier value input pin is “1..1.”
self.value.multiplicity.is(1,1)

Semantics

See LinkAction and its children.

Notation

No specific notation

Rationale

QualifierValue is introduced to indicate which inputs are for which link end qualifiers.

Changes from previous UML

QualifierValue is unchanged from UML 1.5.
11.3.30 RaiseExceptionAction (from StructuredActions)

Generalizations

« “Action (from BasicActions)” on page 237

Description

RaiseExceptionAction is an action that causes an exception to occur. The input value becomes the exception object.

Attributes

No additional attributes

Associations
e exception : InputPin [1..1]
An input pin whose value becomes an exception object. {Subsets Action::input}

Semantics

When a raise exception action is executed, the value on the input pin is raised as an exception. The value may be copied
in this process, so identity may not be preserved. Raising the exception terminates the immediately containing structured
node or activity and begins a search of enclosing nested scopes for an exception handler that matches the type of the
exception object. See “ExceptionHandler (from ExtraStructuredActivities)” on page 361 for details of handling
exceptions.

Notation

No specific notation

266 UML Superstructure Specification, v2.1.2

Rationale

Raise exception action allows models to generate exceptions; otherwise, the only exception types would be predefined
built-in exception types, which would be too restrictive.

Changes from previous UML
RaiseExceptionAction replaces JumpAction from UML 1.5. Their behavior is essentially the same, except that it is no
longer needed for performing simple control constructs such as break and continue.

11.3.31 ReadExtentAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 237

Description

ReadExtentAction is an action that retrieves the current instances of a classifier.

Attributes

No additional attributes

Associations

e classifier : Classifier [1..1]
The classifier whose instances are to be retrieved.

e result: OutputPin [1..1]
The runtime instances of the classifier. {Subsets Action::input}

Constraints
[1] The type of the result output pin is the classifier.

[2] The multiplicity of the result output pin is “0..*.”
self.result. multiplicity.is(0,#null)

Semantics

The extent of a classifier is the set of all instances of a classifier that exist at any one time.

Semantic Variation Points

It is not generally practical to require that reading the extent produce all the instances of the classifier that exist in the
entire universe. Rather, an execution engine typically manages only a limited subset of the total set of instances of any
classifier and may manage multiple distributed extents for any one classifier. It is not formally specified which managed
extent is actually read by a ReadExtentAction.

Notation

No specific notation

UML Superstructure Specification, v2.1.2 267

Rationale

ReadExtentAction is introduced to provide access to the runtime instances of a classifier.

Changes from previous UML

ReadExtentAction is unchanged from UML 1.5.
11.3.32 ReadlsClassifiedObjectAction (from CompleteActions)

ReadlsClassifiedObjectAction is an action that determines whether a runtime object is classified by a given classifier.

Generalizations

« “Action (from BasicActions)” on page 237

Description

This action tests the classification of an object against a given class. It can be restricted to testing direct instances.

Attributes

» isDirect : Boolean [1..1]
Indicates whether the classifier must directly classify the input object. The default value is false.

Associations

o classifier : Classifier [1..1]
The classifier against which the classification of the input object is tested.

* object: InputPin [1..1]
Holds the object whose classification is to be tested. (Subsets Action.input.)

e result: OutputPin [1..1]
After termination of the action, will hold the result of the test. (Subsets Action.output.)

Constraints

[1] The multiplicity of the input pin is 1..1.
self.object.multiplicity.is(1,1)

[2] The input pin has no type.
self.object.type->isEmpty()

[3] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

[4] The type of the output pin is Boolean.
self.result.type = Boolean

Semantics

The action returns true if the input object is classified by the specified classifier. It returns true if the isDirect attribute is
false and the input object is classified by the specified classifier, or by one of its (direct or indirect) descendents;
otherwise, the action returns false.

268 UML Superstructure Specification, v2.1.2

Notation

No specific notation

Rationale

ReadisClassifiedObjectAction is introduced for run-time type identification.

Changes from previous UML

ReadisClassifiedObjectAction is unchanged from UML 1.5.
11.3.33 ReadLinkAction (from IntermediateActions)
ReadLinkAction is a link action that navigates across associations to retrieve objects on one end.

Generalizations

» “LinkAction (from IntermediateActions)” on page 257

Description

This action navigates an association towards one end, which is the end that does not have an input pin to take its object
(the “open” end). The objects put on the result output pin are the ones participating in the association at the open end,
conforming to the specified qualifiers, in order if the end is ordered. The semantics is undefined for reading a link that
violates the navigability or visibility of the open end.

Attributes

No additional attributes

Associations

e result: OutputPin [1]
The pin on which are put the objects participating in the association at the end not specified by the inputs. (Subsets
Action::output)

Constraints

[1] Exactly one link-end data specification (the “open” end) must not have an end object input pin.
self.endData->select(ed | ed.value->size() = 0)->size() = 1
[2] The type and ordering of the result output pin are the same as the type and ordering of the open association end.
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
self.result.type = openend.type
and self.result.ordering = openend.ordering
[3] The multiplicity of the open association end must be compatible with the multiplicity of the result output pin.
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.multiplicity.compatibleWith(self.result.multiplicity)
[4] The open end must be navigable.
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.isNavigable()

UML Superstructure Specification, v2.1.2 269

[5] Visibility of the open end must allow access to the object performing the action.

let host : Classifier = self.context in
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in

openend.visibility = #public

or self.endData->exists(oed | not oed.end = openend

and (host = oed.end.participant
or (openend.visibility = #protected
and host.allSupertypes->includes(oed.end.participant))))

Semantics

Navigation of a binary association requires the specification of the source end of the link. The target end of the link is not
specified. When qualifiers are present, one navigates to a specific end by giving objects for the source end of the
association and qualifier values for all the ends. These inputs identify a subset of all the existing links of the association
that match the end objects and qualifier values. The result is the collection of objects for the end being navigated towards,
one object from each identified link.

In a ReadLinkAction, generalized for n-ary associations, one of the link-end data must have an unspecified object (the
“open” end). The result of the action is a collection of objects on the open end of links of the association, such that the
links have the given objects and qualifier values for the other ends and the given qualifier values for the open end. This
result is placed on the output pin of the action, which has a type and ordering given by the open end. The multiplicity of
the open end must be compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity
of this pin to support multiple values even when the open end only allows a single value. This way the action model will
be unaffected by changes in the multiplicity of the open end. The semantics are defined only when the open end is
navigable, and visible to the host object of the action.

Notation

No specific notation

Rationale

ReadLinkAction is introduced to navigate across links.

Changes from previous UML

ReadLinkAction is unchanged from UML 1.5.
11.3.34 ReadLinkObjectEndAction (from CompleteActions)

ReadLinkObjectEndAction is an action that retrieves an end object from a link object.

Generalizations

« “Action (from BasicActions)” on page 237

Description

This action reads the object on an end of a link object. The association end to retrieve the object from is specified
statically, and the link object to read is provided on the input pin at run time.

270 UML Superstructure Specification, v2.1.2

Attributes

No additional attributes

Associations

e end: Property [1..1]
Link end to be read.

e Object: InputPin [1..1]
Gives the input pin from which the link object is obtained. {Subsets Action::input}

e result: OutputPin [1..1]
Pin where the result value is placed. {Subsets Action::output}

Constraints

[1] The property must be an association end.
self.end.association.notEmpty()

[2] The association of the association end must be an association class.
self.end.Association.oclisKindOf(AssociationClass)

[3] The ends of the association must not be static.
self.end.association.memberEnd->forall(e | not e.isStatic)

[4] The type of the object input pin is the association class that owns the asso