Date: April 2006

Unified Modeling Language: Superstructure

version 2.1
ptc/2006-04-02

OBJECT MANAGEMENT GROUP

Copyright © 2001-2003 Adaptive Ltd.

Copyright © 2001-2003 Alcatel

Copyright © 2001-2003 Borland Software Corporation
Copyright © 2001-2003 Computer Associates International, Inc.
Copyright © 2001-2003 Telefonaktiebolaget LM Ericsson
Copyright © 2001-2003 Fujitsu

Copyright © 2001-2003 Hewlett-Packard Company

Copyright © 2001-2003 I-Logix Inc.

Copyright © 2001-2003 International Business Machines Corporation
Copyright © 2001-2003 IONA Technologies

Copyright © 2001-2003 Kabira Technologies, Inc.

Copyright © 2001-2003 MEGA International

Copyright © 2001-2003 Motorola, Inc.

Copyright © 1997-2005 Object Management Group.

Copyright © 2001-2003 Oracle Corporation

Copyright © 2001-2003 SOFTEAM

Copyright © 2001-2003 Telelogic AB

Copyright © 2001-2003 Unisys

Copyright © 2001-2003 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of

an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its

attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML™ Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use

certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software

developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/
agreement.htm).

UML Superstructure Specification, v2.1 1

UML Superstructure Specification, v2.1

Table of Contents

L. SCOPE . 1
2. ConformancCe i 1
2.1 Language Units e 1

2.2 Compliance Levels 1

2.3 Meaning and Types of Compliance 5

2.4 Compliance Level Contents 7

3. Normativereferences i, 9
4, Terms and Definitions 9
5. Symbols 9
6. Additional Information 9
6.1 Changes to Adopted OMG Specifications 9

6.2 Architectural Alignment and MDA Support 9

6.3 Onthe Run-Time Semanticsof UML 10

6.3.1 THE BASIC PIEIMHSES ...vvvvviitiiiiiiieieieiee e e eeeee ettt s e s e e e s e e e e eeeaeeeeeeeseeesseraraens 10

6.3.2 The SEMANtiCS ArChItECIUIEuue i eeeaaes 10

6.3.3 The Basic Causality MOAEIcccoeiiiiiiiiiiii e 11

6.3.4 Semantics Descriptions in the Specificationoouviiiiiiiiiiie e, 12

6.4 The UML Metamodel e 12

6.4.1 Models and What They MOE!ooeeviiiiiiiiiiic e 12

6.4.2 Semantic Levels and NamMiNguuvieiiiiiiireeeiieiiiciiieeee e e e e e eereeeeee e 13

6.5 How to Read this Specification 13

6.5.1 SPeCificatioN fOrMALcooiiiiiiiiii e 14

6.5.2 Diagram fOMMIEALccooiiiiiiiei et e bbb ee e e e s e e e e e anes 17

6.6 Acknowledgements 18

Part | - Structure i, 19
7. ClaSS S . i 21

| UML Superstructure Specification, v2.1

T.1 OVEIVIEW . o ot e e e e e e e e e 21

7.2 ADSIraCt SYNtax 22
7.3 Class DesCriptionNs 36
7.3.1 Abstraction (from Dependencies)couuiiiiiiiiiiiie e 36
7.3.2 AggregationKind (from Kernel)ooooiiiiiiiiiiiii e 36
7.3.3 Association (from Kernel)oc.eeiiiiiiiii e 37
7.3.4 AssociationClass (from AsSOCIatioNCIASSES)vvveeieiiiiiiiie i 45
7.3.5 BehavioralFeature (from Kernel) ... 47
7.3.6 BehavioredClassifier (from INterfaces) ..o 48
7.3.7 Class (from KErNel)ooiuiiiiiiiiee et 48
7.3.8 Classifier (from Kernel, Dependencies, POWEITYPES)ccooviiiiieeiiiiiieeeiiiiieeeennns 51
7.3.9 Comment (from KEINEl)ooiiiiiiiiie e 56
7.3.10 Constraint (from Kernel)cueiiiiiiiii e 57
7.3.11 DataType (from KEMMEI)ooveiiiiiiiiiee e 60
7.3.12 Dependency (from DependenCies)c.ueeeeiiiiiiiieiiiiiiee et 61
7.3.13 DirectedRelationship (from Kernel) ... 62
7.3.14 Element (from KEINEI)ooiiiiiiiiiiiiee ettt 63
7.3.15 Elementimport (from Kernel) ... 64
7.3.16 Enumeration (from Kernel)cooiiiiiiiiiii e 67
7.3.17 EnumerationLiteral (from Kernel) ... 68
7.3.18 Expression (from Kernel)ooo it 69
7.3.19 Feature (from KErNEl)ooo i 70
7.3.20 Generalization (from Kernel, POWEITYPES) ...ccoeiiiiiiiiiiiiiiieee it 71
7.3.21 GeneralizationSet (from POWEITYPES)veiiieiiiiiiiee ittt 75
7.3.22 InstanceSpecification (from Kernel) ... 83
7.3.23 InstanceValue (from Kernel) ... 86
7.3.24 Interface (from INTErfaCeS)ooiiiiiiiiii e 87
7.3.25 InterfaceRealization (from INtErfaces)oooiiiiiiiiiiiii e 20
7.3.26 LiteralBoolean (from Kernel)oooiiiiiiiiiiiiei e 91
7.3.27 Literallnteger (from Kernel)oooiiiiiiii e 92
7.3.28 LiteralNUll (from Kernel)ooueeieeiiiee et 93
7.3.29 LiteralSpecification (from Kernel) ... 93
7.3.30 LiteralString (from KerNel)ouveiiiiiiieeee e 94
7.3.31 LiteralUnlimitedNatural (from Kernel) ..o 95
7.3.32 MultiplicityElement (from Kernel)ooooiiiiiiiii e 96
7.3.33 NamedElement (from Kernel, DEpPendencies)ccccovuveeieiiiiiieieiiiiieee i 99
7.3.34 Namespace (from Kernel)ooooiiiiii e 101
7.3.35 OpaqueExpression (from Kernel) ... 103
7.3.36 Operation (from Kernel, INterfaces)cceeviiiiiiiiiiiie e 105
7.3.37 Package (from KEINEI)cooi i 109
7.3.38 PackageableElement (from Kernel)oocuveiiiiiiiii i 111
7.3.39 Packagelmport (from Kernel)oouveiiiiiiiiie e 112
7.3.40 PackageMerge (from Kernel)oouueiiiiiiiiiiiie e 113
7.3.41 Parameter (from Kernel, ASSOCIationClasSes)ccoovvvviiiiiiiiiiieiiiiiiice i 122
7.3.42 ParameterDirectionKind (from Kernel) ..., 124
7.3.43 PrimitiveType (from Kernel)oooo i 124
7.3.44 Property (from Kernel, ASSOCiationClasSESs)c.uvvvveiiiiiiieiiiiiiiee e 125
7.3.45 Realization (from DEPeNdENCIES)coicuviiiiiiiiiiiiie et 132
7.3.46 RedefinableElement (from Kernel) ... 133

UML Superstructure Specification, v2.1

7.3.47 Relationship (from Kernel) ... e e e e 134

ARSI ko I (o] (e ¢ A= =) O 135

7.3.49 StructuralFeature (from Kernel)ccooii i eeee e 136

7.3.50 Substitution (from Dependencies)cccoovviiiiiiieieiiiccce e 137

7.3.51 Type (frOM KEINEI) ..coeeeeeieeeeee e e e e e e e e e e e e eeeeeearaaanes 138

7.3.52 TypedElement (from KEernel)ccooo oo e e e e ee e 139

7.3.53 Usage (from DEPENUENCIES)uuuuiiieieii e ee et e e e e e e e e e e e eeeeeaanns 139

7.3.54 ValueSpecification (from Kernel)ooooiriiiiiiiiiiiii e 140

7.3.55 VisibilityKind (from Kernel)eeciiiiiii s e e e e e ee e 141

T4 Diagrams e 143
8. COMPONENTS 147
8.1 OVeIVIEW . . 147
8.2 ADbsStract Syntax 148
8.3 Class DesCriptions i e 150
8.3.1 Component (from BasicComponents, PackagingComponents)cccccevvvennes 150

8.3.2 Connector (from BasSiCCOMPONENLES)cvuvuvviuiiiiiiieieieeeeeeeee e 158

8.3.3 ConnectorKind (from BasicCCOMPONENtS)c.evvvrevuiiiiiiiieeieeeeeeeeeeeeeeeeeeeenennnens 161

8.3.4 ComponentRealization (from BasicComponents)ccccccveeeeeeeeiveveeeveeeiivinnn 162

8.4 Diagrams 163
9. Composite StruCturesc i 167
9.1 OVeIVIBW .ot 167
9.2 ADStraCt Syntaxttt 167
9.3 Class DesCriptionst e e 173
9.3.1 Class (from StructuredClasSes)ccceviiiiiiiiiiieiiirre i e e e e e e e e e e e e e eeaaeenannes 173

9.3.2 Classifier (from Collaborations)cccceeeiiiiiii e 174

9.3.3 Collaboration (from Collaborations)euvuviiuiiiiiiiiiie e 175

9.3.4 CollaborationUse (from Collaborations)eeuuiiiiiiiiiiiiisieiee e, 178

9.3.5 ConnectableElement (from InternalStruCtures)ccccceceeeeieieiiiieeee e 181

9.3.6 Connector (from INternalStruCtures)oovvviviiiiiiiiiiiiisis e e e e e e e e e eeeeeeeenannes 181

9.3.7 ConnectorEnd (from InternalStructures, POrs)cccccceeeviiiiiiiiiieieeeieeeeeeeveeeeieinns 183

9.3.8 EncapsulatedClassifier (from POIMS)oovvviiiiiiiiiiiiiiis e 185

9.3.9 InvocationAction (from INVOCAtIONACLIONS)cevveviiiiiiiiiiiiei e eeeeeee e 185

9.3.10 Parameter (from Collaborations)ocoevviiiiiiiiiiciciris e 186

S IO T I I o T o (e e) PP 186

9.3.12 Property (from INternalStruCtures)oooevvviiiiiiiiiiiiiisie e s e e e e e e e eeeee e e eeeeeaeeaennes 190

9.3.13 StructuredClassifier (from InternalStrucCtures)cccccceceeeiieiiieieee e, 193

9.3.14 Trigger (from INVOCAtIONACLIONS)ccoiiiiiiiieieieiiiirres s e e e e e e e e e e e e e e e e e e eeeaaeennnes 198

9.3.15 Variable (from StructuredACHVItIES)ccevvvvieiiiiiiiiiire e e 198

9.4 DIAgramMS . ot 198
10. Deployments 201

UML Superstructure Specification, v2.1

10.1 OVEIVIEW . . . ot e e e e e e e e 201

10.2 ADSEraCt SYNtaXo oot 201
10.3 Class DeSCrptioNSottt 204
10.3.1 Artifact (from Artifacts, NOUES)uuviiiiiiiiiiieeiiec e 204
10.3.2 CommunicationPath (from NOAES)ccueiiiiiiiiiiiiiii e 207
10.3.3 DeployedArtifact (from NOGES)eeeiiiiiiiiiiiiiiiii e 207
10.3.4 Deployment (from ComponentDeployments, NOdeS)ccoovviivviiiiiiiiiieeeeennnn, 208
10.3.5 DeploymentSpecification (from ComponentDeployments)ccccceeevivveeeeennis 210
10.3.6 DeploymentTarget (from NOUES)cooeeiiiiiiiiiiiiiieee e 213
10.3.7 DeVvice (froM NOGES)eeiiiiiiiiiie ettt sbaeee e 214
10.3.8 ExecutionEnvironment (from NOAES)evviiiiiiiiiiiiiee e 215
10.3.9 InstanceSpecification (from NOES)c.uveiiiiiiiiiiiiei e 216
10.3.10 Manifestation (from ArtifactS)coocuieiiiiiii e 217
10.3.11 NOAE (frOM NOUES) ...eeeiiiiiiiiiie ittt e s ee e 218
10.3.12 Property (from NOUES)c.uviiiiieiiiiiiee sttt 220
10.4 DIagrams 221

Part Il - Behavior 225

11, ACHIONS .. 227
11,0 OVRIVIEW . e 227
11.2 ADSIract Syntaxttt 230
11.3 Class DesCriptions 244

11.3.1 AcceptCallAction (from CompleteACLIONS)cccuuiiiiiiiiiiiee e 244
11.3.2 AcceptEventAction (from CompleteACHIONS)uvviiiiiiiiiaieeeeie e 245
11.3.3 Action (from BaSICACHIONS)ueuiiiiiiiiiiiiiea ettt e e e e e e 247
11.3.4 ActioninputPin (from StructuredACHONS)cooeiiiiiiiiiieeee e 248
11.3.5 AddStructuralFeatureValueAction (from Intermediate Actions)cccccceeeeenn. 250
11.3.6 AddVariableValueAction (from StructuredACtioNS)ccooeveiiiiiiiiiiiiiiiiieieeeeeeenn, 251
11.3.7 BroadcastSignalAction (from Intermediate ACtionS)ccccceeeiiiiiiiiiiiiiiieeeeeeenn. 253
11.3.8 CallAction (from BaSiCACLIONS)uuiiiiiiiiiiiaiiee e 254
11.3.9 CallBehaviorAction (from BasSiCACLONS)ccooiiiiiiiiiiiiiiiiieieee e 255
11.3.10 CallOperationAction (from BaSiCACHONS)ccoiviiiiiiiiiiiiieieeae e 256
11.3.11 ClearAssociationAction (from Intermediate ACtionS)cccccceeeviiiiiiiiiiiiieeneeeenn. 258
11.3.12 ClearStructuralFeatureAction (from Intermediate Actions)cccccvveeeeeeeeneennn. 259
11.3.13 ClearVariableAction (from StructuredACtiONS)ccoviiieiiiiiiiiiiiiiiiiee e 259
11.3.14 CreateLinkAction (from Intermediate ACtionS)cc.uuevieeeiiiieiiiiiiiiiiieeeeee e 260
11.3.15 CreateLinkObjectAction (from CompleteACtioNS)ccevveeeiriiiiiiiiiiiiiieeeeeeeenn, 262
11.3.16 CreateObjectAction (from Intermediate ACtioNS)ccooeeririiiiiiiiiiiiiiiiieeeeeeennn 263
11.3.17 DestroyLinkAction (from Intermediate ACtioNS)eeeeiiiiiiiiiiiiiiiiiiiiieeeeeeeeennn 264
11.3.18 DestroyObjectAction (from Intermediate ACtionS)coeveeeeiiiiiiiiiiiiiiiiieeeeeee, 265
11.3.19 InputPin (from BaSICACLONS)euiiiiiiiiiiiiie e 266
11.3.20 InvocationAction (from BaSiCACLONS)cooiiiiiiiiiiiiieiiiiee e 267

iv UML Superstructure Specification, v2.1

11.3.21 LinkAction (from Intermediate ACtioNS)ccoeeiiiiiiiiiceeee e 268

11.3.22 LinkEndCreationData (from Intermediate ACtions)cevvvvvviiiiiiiiiiiieeeeeeeen, 269

11.3.23 LinkEndData (from IntermediateActions, CompleteActions)cccceeeeveeeeeennn. 271
11.3.24 LinkEndDestructionData (from Intermediate ACtions)ccceeeevieiiieiiieeneeeeenn, 272
11.3.25 MultiplicityElement (from BaSiCACLONS)coceeieiiiiiiieeeeeee e 273

11.3.26 OpaqueAction (from BaSiCACLONS)cccevvviiiiiieieiiissss s e e e e e e e e e e e e eeeeaens 274

11.3.27 OutputPin (from BaSICACHIONS) ...uuuuiiiiiiiie e 275

11.3.28 Pin (from BASICACLIONS) ...evvvviriiiiiiiiiiiiei e eeeee e e ee et sn e n e e e e e e e e aaaaeees 275

11.3.29 QualifierValue (from CompleteACtiONS)cooviviiviiiiieiere e 276

11.3.30 RaiseExceptionAction (from StructuredActions)ooovvvvvviviiiiiiiiiiiiee e, 277

11.3.31 ReadExtentAction (from CompleteACtions)c.ovvvviiiiiiiiiiiiiiiiiie e, 278

11.3.32 ReadlsClassifiedObjectAction (from Complete ACtions)ccceceeveveieiiieeeeeeenn, 279

11.3.33 ReadLinkAction (from Intermediate ACtions)coovviiiiiiiiiiiiiiiciee e, 280

11.3.34 ReadLinkObjectEndAction (from CompleteACtions)ccccceeeeveiiiiiiiieeeeeeeeeee, 281

11.3.35 ReadLinkObjectEndQualifierAction (from Complete Actions)cccceeeeeeeeeen. 283

11.3.36 ReadSelfAction (from Intermediate ACtioNS)vvvvvivviiiiiiiie e eeeeeeeeeeaes 284

11.3.37 ReadStructuralFeatureAction (from Intermediate ACtions)ccccceeeveevieeeeeennn. 285
11.3.38 ReadVariableAction (from StructuredACtioNS)cccevvvviiviiiiiiiiiiiiiiiree e eeeeen, 286

11.3.39 ReclassifyObjectAction (from CompleteActions)coovvvviveieiiiiiiiiiiiiieeeeeeenn, 287

11.3.40 ReduceAction (from CompleteACLIONS)cccceeveeeeeeeieieeeeeee e 288

11.3.41 RemoveStructuralFeatureValueAction (from IntermediateActions) 290

11.3.42 RemoveVariableValueAction (from StructuredActions)cccicieiiiiieeeeennn. 291

11.3.43 ReplyAction (from CompleteACtiONS)coooeeiiiiiiiieeeeer e 292

11.3.44 SendObjectAction (from Intermediate ACtions)ooevvviviiiiviiiiiii e, 293

11.3.45 SendSignalAction (from BaSiCACLONS)ccoeeiviiiiiiiieeeeere e 295

11.3.46 StartClassifierBehaviorAction (from CompleteActions)c.uvvvvvvciiiiiieeeennnn. 296

11.3.47 StructuralFeatureAction (from Intermediate ACtions)cccceeeeviiiiiiiiieeeeeeeeeee, 297

11.3.48 TestldentityAction (from Intermediate ACtioNS)coevvvvviiviiniiiiiiiii e, 298

11.3.49 UnmarshallAction (from CompleteACtionsS)oevvveviiviiiiiiiiiiiinie e, 299

11.3.50 ValuePin (from BaSICACHIONS) ...uuuuiiiiiiie e e e e e e e 301

11.3.51 ValueSpecificationAction (from Intermediate ACtions)c.cevvvvveveiiiiiieieeeeennn. 301

11.3.52 VariableAction (from StructuredACLIONS)coceeviiiiiiiieer e 302

11.3.53 WriteLinkAction (from Intermediate ACtionS)oovvvveviiviiiiiiiiiiiinie e, 303

11.3.54 WriteStructuralFeatureAction (from Intermediate ACtions)cccceevvveviiieieeeenn. 304

11.3.55 WriteVariableAction (from StructuredAcCtions)cevvviiviiviiiiiiiiiiiineee e, 305
11.4DIagramsSottt e e 305
12, ACHIVILIES . .o 307
12,1 OVEIVIEBW . oottt 307
12.2 ADSIract Syntaxo e 309
12.3 Class DesCriptionsottt 321
12.3.1 AcceptEventAction (as specialized)ccccovvviei i 321

12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities) ... 323

12.3.3 ActionInputPin (as SpecCialiZed)uuiiiiiiiiii e 327

12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
StructuredActivities) 328

12.3.5 ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities,
IntermediateActivities) 338

UML Superstructure Specification, v2.1

12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)cccceeee. 343

12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities)ccccceeeeveennnns 346

12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,
IntermediateActivities, CompleteStructuredActivities) 347

12.3.9 ActivityParameterNode (from BaSiCACHVILIES)ceeevvvvvvviiiiiiiiiiiei e eeeeeeeeeeeeians 350
12.3.10 ActivityPartition (from Intermediate ACtiVItIES)vvvevivieiiiiiiieieieeeeeereeeeeeiiians 353
12.3.11 AddVariableValueAction (as specialized)cccceeeeiiiiiiiiiiiieieeieceeeeee e, 360
12.3.12 Behavior (from CompleteACtVItIES)oevvvviiiiiiiiiiiiesis e 361
12.3.13 BehavioralFeature (from CompleteACtiVItieS)ouvvvviiiiiiiiiieieee e 361
12.3.14 CallBehaviorAction (as specialized)ooovveiiiiiiiiiiiiiiiieieie e ee e eeaeeianns 362
12.3.15 CallOperationAction (as specialized)oovvviiiiiiiiiiiiiiii e 364
12.3.16 CentralBufferNode (from Intermediate ACtiVIties)cccceeeveieiiieieiiiiiiiiiiiieeeeeee, 365
12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities) 367
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities) 368
12.3.19 ControlFlow (from BaSiCACHIVITIES)ccevveviiiieeeiiieiicirse e e e e e e e e e e e 370
12.3.20 ControlNode (from BaSiCACHVILIES)ccevveviveiiiiiiiiiiiiis e e e e e e e e e e e e e 371
12.3.21 DataStoreNode (from CompleteACtiVItIES)cvvvveriiiiiiiiieiii e 373
12.3.22 DecisionNode (from Intermediate ACtiVItIeS)ceevvvviviiiiiiiiiieie e, 375
12.3.23 ExceptionHandler (from ExtraStructuredActivities)cccceeeevieieeieeeeeiiiiiieieeinns 377
12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities) 380
12.3.25 ExpansionKind (from ExtraStructuredAcCtiVitieS)ccccceevieieiiieeeiieiiiiiieeeeeieiians 381
12.3.26 ExpansionNode (from ExtraStructuredAcCtiVities)cccceeeveieiiieeeieeeieiiieeeeeiiiinns 381
12.3.27 ExpansionRegion (from ExtraStructuredActivities)ccccceeeeeiiniiiiiiireeieieeeeenes 382
12.3.28 FinalNode (from Intermediate ACtiVItIES)coevvvvieiiiiiiiiieiii e 387
12.3.29 FlowFinalNode (from Intermediate ACtiVItIES)cevvvvviviiuiiiiiiiiei e eeeeeeeeeeans 389
12.3.30 ForkNode (from Intermediate ACtiVItIES)ccoviviviiiiiieicceser e 390
12.3.31 InitiaINode (from BaSiCACHVILIES)coevvviiieeieiiices e 392
12.3.32 INputPin (s Specialized)cooiiiiiii e 393
12.3.33 InterruptibleActivityRegion (from Complete ACtivities)cccceveeveviieeeeiiiiiirinninns 394
12.3.34 JoinNode (from CompleteActivities, IntermediateActivities)ccccevvvevenns 396
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities) 399
12.3.36 MergeNode (from Intermediate ACtiVItIES)covvviiiiiiiiiiiiiiiiie e 402
12.3.37 ObjectFlow (from BasicActivities, CompleteActivities)ccceeevevveviveieeiinnnns 403
12.3.38 ObjectNode (from BasicActivities, Complete ACtiVitieS)cccceeveveveieeiiiriiiinnnnns 408
12.3.39 ObjectNodeOrderingKind (from Complete ACtiVities)cccccevevieiiiieeeeieniiiieennns 411
G IO @ 101 o101 1 = o [P RI 412
12.3.41 Parameter (from CompleteACHVILIES)ocvvvveiiiiiiiiiiiiieie e 412
12.3.42 ParameterEffectKind (from Complete ACtiVIties)vvvviiiiiiiiiiiieeeeeeeeeeieeenas 414
12.3.43 ParameterSet (from CompleteACtiVItIES)covvvveiviiiiiiiiiiii e 414
12.3.44 Pin (from BasicActivities, CompleteACtiVItiesS)uvvviiiiiiiiiiiiiieieeeeeeeeeeeeeiins 416
12.3.45 SendObjectAction (as specialiZed)uuruiuuiiiiiiiiiieie e eeee e 422
12.3.46 SendSignalAction (as specialized)eiiiiiiiiiiii e 423
12.3.47 SequenceNode (from StructuredACtiVItIES)ocvvvvvvviiiiiiiiiiiee e 424
12.3.48 StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities) 425
12.3.49 UnmarshallAction (as specialized)ooovveiiiiiiiiiiiiiiiiie e 428
12.3.50 ValuePin (as specialized)ccoiiiiiiiiiii e 429
12.3.51 ValueSpecificationAction (as specialized)cccccvvvieiiiiiiniiiiieee e 429
12.3.52 Variable (from StructuredACHiVItIES)ccoeviiiiiieerre e 431
12,4 DIagramsS . ..ttt 432

UML Superstructure Specification, v2.1

13. Common Behaviors 437

13.1 OVEIVIEW . oottt et et e e e e e e e 437
13.2 AbStract SyNtaxo 441
13.3 Class DesCriptions ittt 446
13.3.1 AnyReceiveEvent (from COMMUNICAtIONS)eeeeiiiiiiiiiiiiiiiiiiiiieeee e ee e e 446

13.3.2 Behavior (from BasSiCBENAVIOIS)ccooiiiiiiiiiiiiiiiiieeeee e 447

13.3.3 BehavioralFeature (from BasicBehaviors, Communications)cccccccceevieuenee 449

13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)cccc.uee. 451

13.3.5 CallConcurrencyKind (from Communications)cooviiiiiiiiiiiiiiiiiieeee e 452

13.3.6 CallEvent (from COMMUNICAIONS)ccviiiiiiiiiiiiiiiiiiieeee et a e e 453

13.3.7 ChangeEvent (from COmMMUNICAtIONS)ooiiiiiiiiiiiiiiiee e 454

13.3.8 Class (from COMMUNICAIONS)eeiiiiiiiiaiaiiiiiiiiiie e e e e e e e 455

13.3.9 Duration (from SIMPIETIME)uuiiiiiiiiiiiiieie e 456

13.3.10 DurationConstraint (from SIMmpleTime)cc..uuuiiiiiiiiiiiaiee e 457

13.3.11 Durationinterval (from SImpleTime)oooiiiiiiiii e 458

13.3.12 DurationObservation (from SIMpPIETIME)euuiiiiiiiiiiiiiiiiiiieeee e 459

13.3.13 Event (from COMMUNICALIONS)veiiiiiiiaiaiiiiiiiiie e e e e e e e 459

13.3.14 FunctionBehavior (from BasicBEhaviors) ... 460

13.3.15 Interface (from COMMUNICALIONS)cooiiiiiiiiiiiiiiiiieiee e 461
13.3.16 Interval (from SIMPIETIME)uuiiiiiiiiiiia e 461

13.3.17 IntervalConstraint (from SImMpIeTIME)uuuiiiiiiiiiiiei e 462

13.3.18 MessageEvent (from CommuNiCatiONS)ccuuuiiiiiiiiiiaeeei i 463

13.3.19 Observation (from SIMPIETIME)eeiiiiiiiiiiiiiiei e 463

13.3.20 OpaqueBehavior (from BasicBEhaviors) ... 464

13.3.21 OpaqueExpression (from BasiCBENAVIOIS)cciiiiiiiiiiiiiiiiiiiiiieeee e 465

13.3.22 Operation (from COMMUNICAIONS)ccoeiiiiiiiiiiiiiieiee e 465
13.3.23 Reception (from COMMUNICAtIONS)cceiiiiiiiiiiiiiiiiiee e e e 466
13.3.24 Signal (from COMMUNICALIONS)eeiiiiiiiiaeiiiiiiiiie e a e 467

13.3.25 SignalEvent (from CommUNICAtIONS)cccuuiiiiiiiiiiiiee e 468

13.3.26 TimeConstraint (from SIMPIETIME)ccoiiiiiiiiiiiiie e 469

13.3.27 TimeEvent (from Communications, SImpleTime)cccccceeviiiiiieinniieiee e 470
13.3.28 TimeExpression (from SIMpIeTiMe)coocuiiiiiiiiiiiie e 471

13.3.29 Timelnterval (from SIMpPIETIME)ocuiiiiiiiiiie e 472

13.3.30 TimeObservation (from SIMPIETIME)cooiuiiiiiiiiiiiiee e 473

13.3.31 Trigger (from COMMUNICALIONS) ...ccooiivriiieiiiiiiee ettt e 474

14. InteraCtionst 477
141 OVEIVIEW . . ettt et i e e e e e e e e e e e e e 477
14.2 ADSIracCt SYNtaX oottt e 478
14.3 Class DeSCIIPLONSottt 486
14.3.1 ActionExecutionSpecification (from Basiclnteractions)cccccccevveiiiniiieeeeeeen. 486

14.3.2 BehaviorExecutionSpecification (from Basiclnteractions)ccccceeeeeeeieieeneennn. 486

14.3.3 CombinedFragment (from Fragments)ccccooveiiieieiiieieeeeeeer e 487

14.3.4 ConsiderlgnoreFragment (from Fragments)ccooviviiiiiiieieiiiiccciie e 493

14.3.5 Continuation (from Fragments)cccooiiiiiiii e a e e e e 494

14.3.6 CreationEvent (from BasiCINteractions)ccccceeeeviiiieeeeeeee e 496

UML Superstructure Specification, v2.1

14.3.7 DestructionEvent (from BasicINteractions)cccccceeveiieieieiieieeeeeeeeeeeeeeeveiivninns 496

14.3.8 ExecutionEvent (from Basiclnteractions)uevvvviiiiiiisiiiiie e eeeeeeeeeeeeeeiainnns 497

14.3.9 ExecutionOccurrenceSpecification (from Basiclnteractions)ccccceeeeeen. 498

14.3.10 ExecutionSpecification (from Basiclnteractions)cccceeeeveviieeeieeeiieeieieieiiiinns 498

14.3.11 Gate (from FragmMentS)cccoiieeiiiiiiieeeeeeeee s e e e e e e e e e e e e e e e e eaaaeenrnnes 500

14.3.12 GeneralOrdering (from BasiclNteractions)covvvviiiiiiiiiiiiieieie e eeeeeeeeeeeaens 501

14.3.13 Interaction (from Basiclnteraction, Fragments)ccccvciiiiiiiiiiieiieieeeeeeeeeee, 501
14.3.14 InteractionConstraint (from Fragments)cooovviiiiiiiiiiiiiisie e eeeeeeeeeeeeeeeeans 504

14.3.15 InteractionFragment (from Basiclnteractions, Fragments)ccccceevennnnn, 505

14.3.16 InteractionOperand (from Fragments)ccccceeiiiiiiiiiiieee e 506

14.3.17 InteractionOperatorKind (from Fragments)covviiiiiiiiiiiiiinieeee e eeeeeeeeeeenns 507

14.3.18 InteractionUse (from Fragments)ccooviiiiiiiiiiiiiiiie i e e 508

14.3.19 Lifeline (from Basiclnteractions, Fragments)oooevvviiiiiiiiiiiiniiiieeeeeeeeeeeee 511
14.3.20 Message (from BasiCINteraCtionS)ocevviiviiiiiiiiiiiiisie e eeeeeeeeeee e e e eeevesaenennns 512

14.3.21 MessageEnd (from BasiCINteraCtions)cccovvvvviiiieiiiiiiiiiiie e e e eeeeeeeeenens 515

14.3.22 MessageKind (from Basiclnteractions)cccoevvvvviiiiiiiiiisis e eeeee e 516

14.3.23 MessageOccurrenceSpecification (from Basiclnteractions)ccccceeeveees 516

14.3.24 MessageSort (from Basiclnteractions)cccoovvviiiiiiiiiiiiiiieiie e 517

14.3.25 OccurrenceSpecification (from BasicInteractions)ccccceveveveeeeeeeveveieeveeiiiinns 517

14.3.26 PartDecomposition (from Fragments)oooviviviiiiiiiiiiiisieie e eeeeeee e e 518

14.3.27 ReceiveOperationEvent (from Basiclnteractions)ccceceeveveieeeeeeiiiieieeveeiiiinns 521

14.3.28 ReceiveSignalEvent (from BasicINteraCtions)cccvvviciiiiieieiiieeeeeieeeeeeeeeens 522

14.3.29 SendOperationEvent (from BasicINteractions)ccccccceerviiiiiiiiiiiiiieinieeeeeennn 523

14.3.30 SendSignalEvent (from BasicInteractions)ccccceceeeeiiiiiiieeeeeeieeeeeeeeeeeeiiiinnns 523

14.3.31 Statelnvariant (from BasiCINteracCtions)cooviiiiiiiiiiiiiiie e 524

144 DIagramsS . .. 525
15. State Machines e 545
15, L OVeIVIEW o 545
15.2 ADSIract Syntaxttt 546
15.3 Class DesCriptioNst e 549
15.3.1 ConnectionPointReference (from BehaviorStateMachines)ccccceeveeee, 549

15.3.2 FinalState (from BehaviorStateMachings)ccccccceiiiiiiiiiiiiiieeeeeeeeeeeeeeeeiiiias 552

15.3.3 Interface (from ProtocolStateMachings)ooovvviviiiiiiiiiiiiiii e, 553

15.3.4 Port (from ProtocolStateMachings)oooiviiiiiiiiicicice e 554

15.3.5 ProtocolConformance (from ProtocolStateMachings)ccccoceeveiiiiiiiiiieeennnnn, 554

15.3.6 ProtocolStateMachine (from ProtocolStateMachings)ccccccceveiviiiiiiiieeeennnn, 555

15.3.7 ProtocolTransition (from ProtocolStateMachinges)ccccccceveieeeiiiiiiiiciieceiiis 557

15.3.8 Pseudostate (from BehaviorStateMachings)cvciiiiiiiiiiiieeeeeeieeeeeeeeiiiinns 561

15.3.9 PseudostateKind (from BehaviorStateMachings)ccccceceeviiiieieiieieeieieiiieeiiinns 568

15.3.10 Region (from BehaviorStateMachinges)ccccvvcviiiiiiiiiiiiie e, 569

15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines) 571

15.3.12 StateMachine (from BehaviorStateMachings)coovviiiiiiiiiii e, 586

15.3.13 TimeEvent (from BehaviorStateMachings)cccccevveiiiiiiiiiiieeeceeeeeeeeeeiias 594

15.3.14 Transition (from BehaviorStateMachines)ccccoceiiiiiiiiiiiiiiiiiieee e 594

15.3.15 TransitionKind (from BehaviorStateMachines)cccccoiiiiiiiiiiiiiiiiiieeeee, 604

15.3.16 Vertex (from BehaviorStateMachines)coooiiiiiiiiiiiiiiiiieeeeee e 605

| il UML Superstructure Specification, v2.1

15.4 DIagramsSottt e 605

16. Use CaseS ... 611
16.1 OVEIVIEW . .ottt e e 611
16.2 ADSIracCt SYNtaXxot e 611
16.3 Class DesCriptionNsottt 612

16.3.1 ACLOr (frOM USECASES) ..cevvverviiiiiiiiiii i i i e s e e e e e e et e et e e s e n e e e e e aaaaaaaeees 612

16.3.2 Classifier (from USECASES)uuuuuiiiiiiiiiii e eeeeeeeeeeeeee et n e n e e e e aaaaeaaees 614

16.3.3 EXtend (from USECASES)coevvviieeeeiiiiiiiiiii i s i e e e e e e et e e e e s a e e e e e aeaaees 615

16.3.4 ExtensionPoint (fromM USECASES)uuuiiiiiiiei et e e e e e e e 617

16.3.5 InClude (fromM USECASES)uuuuueriiieiiiiiiieiee ettt e e et e e e e e e e e e e 619

16.3.6 UseCase (fromM USECASES)uuuirriiiiiiiiieaiie ittt e e e e st e e e e e e e e e e 620

16.4 DIiagramsSottt e 625
Part lll - Supplement 631

17. Auxiliary CONSEIIUCES o e 633
17,1 OVEIVIEW . oottt e e e e 633
17.2 InformationFIOWS 633

17.2.1 InformationFlow (from InformationFIOWS)eeiiiiiiiiiiiiiiie e 634
17.2.2 Informationltem (from InformationFIOWS)coooiiiiiiiiiiiii e 636
17.3Models 639
17.3.1 Model (from MOGEIS) ...t e e 639
17.4 Primitive TYPeS . oottt 641
17.4.1 Boolean (from PrimitiVETYPES) ...uuuuuiiiiiiiii i ettt e e e e e 641
17.4.2 Integer (from PrimitiVETYPES) ..uuuiiiieii it e e e e e e e e e e e e aeaeeees 642
17.4.3 String (from PrimitiVETYPES) wvvuveeiiiii i i a e e e e e e 643
17.4.4 UnlimitedNatural (from PrimitiveE TYPES)ccceeviiiiiiiieeeeeerr e 644
17.5 Templates 645
17.5.1 ParameterableElement (from Templates)coooeeeeeiiieiiieeeee e 647
17.5.2 TemplateableElement (from Templates)ccccorivriiiiiiiiiiccre e 649
17.5.3 TemplateBinding (from TEMPIALES)coeeviieiee e 651
17.5.4 TemplateParameter (from Templates)ccooriiiiiiiiieiecrr e 653
17.5.5 TemplateParameterSubstitution (from Templates)ccccccvvvviiciiiiiiiiiiieeeeeee, 654
17.5.6 TemplateSignature (from Templates)ccoeeeriiiiiieeeeec e 655
17.5.7 Classifier (from TEMPIALES)uuuuiiiiiiii e e a e e e 657
17.5.8 ClassifierTemplateParameter (from Templates)c.uvvvveiiiiiiiiiiiiiiiieeeeeeeee, 662
17.5.9 RedefinableTemplateSignature (from Templates)cccccvcciiiiiiiiiiiiiie e, 663
17.5.10 Package (from TemMPIALES)uvuuuruiiiiiiiiii i 664
17.5.11 PackageableElement (from Templates)ccccoeiiriiiiiieeeiicce e, 666

UML Superstructure Specification, v2.1

17.5.12 NamedElement (from Templates)ooovrveiiiiiiiiiiiiiiie e 667

17.5.13 StringExpression (from Templates)coooviviiiiiiiieiiircsess e e 669

17.5.14 Operation (from Templates)cccooiiiiiiriiiiecrrr e 670

17.5.15 Operation (from Templates)cccooiiiiiii i 672

17.5.16 OperationTemplateParameter (from Templates)cccceeeeveviieeeiiieiiiiiiieeeeiiinns 672

17.5.17 ConnectableElement (from Templates)oouvvviiiiiiiiiiii e 674

17.5.18 ConnectableElementTemplateParameter (from Templates)cccccevvvvnnnes 675

17.5.19 Property (from TemMPIAteS)cccceeiiiiiieieeeeecrr s e 676

17.5.20 ValueSpecification (from Templates)coovvviiiiiiiiiiiiiiiie e 677

18. Profiles e 679
18.1 OVeIVIEBW . 679

18.1.1 Positioning profiles versus metamodels, MOF and UMLcccccooeeeiiiiiiiinnnnnn, 679

18.1.2 Profiles History and design reqUIrEMENtSccoevveeiiieriimiiiiinieieieeeeeeeeeeeeeeennnnns 679

18.2 ADSIracCt SYNTAX vt 682

18.3 Class desCriptionNs 683

18.3.1 Class (from ProfileS)uuuii e 683

18.3.2 Extension (from ProfileS) ... 684

18.3.3 ExtensionEnd (from ProfileS) ... 688

18.3.4 Image (from Profil@S)oouie i 689

18.3.5 Package (from Profil@S)cuuiiiiiiiiii et 690

18.3.6 Profile (from ProfileS)ooeiiiiiiiii e 691

18.3.7 ProfileApplication (from ProfileS)cciiiiiii e 698

18.3.8 Stereotype (from ProfileS) ... 700

18.4 DIagrams . ..ttt 706

Part IV - Annexes 709
19. Annex A: Diagramst 711
20. Annex B: Keywords e 717
21. Annex C: Standard Stereotypes 723
21.1 StandardProfileL2 724

21.2 StandardProfileL3 728

22. Annex D: Component Profile Examples 731
22.1 J2EE/EJB Component Profile Example 731

22.2 COM Component Profile Example 732

22.3 .NET Component Profile Example 733

X UML Superstructure Specification, v2.1

22.4 CCM Component Profile Example 733

23. Annex E: Tabular Notations 735

23.1 Tabular Notation for Sequence Diagrams 735

23.2 Tabular Notation for Other Behavioral Diagrams 738
24. Annex F: Classifiers Taxonomy 739
25. Annex G: XMI Serialization and Schema 741
26. Annex H: UML Compliance Level XMI Documents 743
INdeX .. 745

UML Superstructure Specification, v2.1

Xi

Xii

UML Superstructure Specification, v2.1

1 Scope

This UML 2.0: Superstructure is the second of two complementary specifications that represent a major revision to the Object
Management Group’s Unified Modeling Language (UML), for which the most current version is UML v1.4. The first
specification, which serves as the architectural foundation for this specification, is the UML 2.0: Infrastructure.

This UML 2.0: Superstructure defines the user level constructs required for UML 2.0. It is complemented by UML 2.0:
Infrastructure which defines the foundational language constructs required for UML 2.0. The two complementary
specifications constitute a complete specification for the UML 2.0 modeling language.

2 Conformance

UML is a language with a very broad scope that covers a large and diverse set of application domains. Not all of its modeling
capabilities are necessarily useful in all domains or applications. This suggests that the language should be structured
modularly, with the ability to select only those parts of the language that are of direct interest. On the other hand, an excess of
this type of flexibility increases the likelihood that two different UML tools will be supporting different subsets of the
language, leading to interchange problems between them. Consequently, the definition of compliance for UML requires a
balance to be drawn between modularity and ease of interchange.

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of paramount
interest to a large community of users. For that reason, this specification defines a small number of compliance levels thereby
increasing the likelihood that two or more compliant tools will support the same or compatible language subsets. However, in
recognition of the need for flexibility in learning and using the language, UML also provides the concept of language units.

2.1 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-coupled
modeling concepts that provide users with the power to represent aspects of the system under study according to a particular
paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete event-driven
behavior using a variant of the well-known statecharts formalism, while the Activities language unit provides for modeling
behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of UML means that they need only
be concerned with those parts of the language that they consider necessary for their models. If those needs change over time,
further language units can be added to the user’s repertoire as required. Hence, a UML user does not have to know the full
language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the individual
segments within this structure do not represent separate compliance points. The latter strategy would lead to an excess of
compliance points and result to the interoperability problems described above. Nevertheless, the groupings provided by
language units and their increments do serve to simplify the definition of UML compliance as explained below.

2.2 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of modeling
concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels. Compliance levels cut
across the various language units, although some language units are only present in the upper levels. As their name suggests,
each compliance level is a distinct compliance point.

For ease of model interchange, there are just four compliance levels defined for the whole of UML.:

UML Superstructure Specification, v2.1 1

« Level 0 (LO). This compliance level is formally defined in the UML Infrastructure. It contains a single language unit
that provides for modeling the kinds of class-based structures encountered in most popular object-oriented
programming languages. As such, it provides an entry-level modeling capability. More importantly, it represents a low-
cost common denominator that can serve as a basis for interoperability between different categories of modeling tools.

« Level 1 (L1). This level adds new language units and extends the capabilities provided by Level 0. Specifically, it adds
language units for use cases, interactions, structures, actions, and activities.

« Level 2 (L2). This level extends the language units already provided in Level 1and adds language units for deployment,
state machine modeling, and profiles.

« Level 3 (L3). This level represents the complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, templates, and model packaging.

The contents of language units are defined by corresponding top-tier packages of the UML metamodel, while the contents of
their various increments are defined by second-tier packages within language unit packages. Therefore, the contents of a
compliance level are defined by the set of metamodel packages that belong to that level.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this specification for
achieving this is package merge (see “PackageMerge (from Kernel)” on page 113). Package merge allows modeling concepts
defined at one level to be extended with new features. Most importantly, this is achieved in the context of the same namespace,
which enables interchange of models at different levels of compliance as described in “Meaning and Types of Compliance” on
page 5.

Issue 9182 - clarify that UMLIis a model package; also replace ‘UML’ with ‘L0’

For this reason, all compliance levels are ultimately merged into a single core “UML” model package that defines the common
namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown in Figure 2.1. In this
model, “L0” is originally an empty package that simply merges in the contents of the Basic package from the UML
Infrastructure. This package is then merged into the UML model. Package L0 contains elementary concepts such as Class,
Package, DataType, Operation, etc. merged in from Basic and Primitive Types (see the UML 2.0 Infrastructure specification
for the complete list of contents of these two packages).

Issue 9180 - replace with new LO diagram

1 1
PrimitiveTypes Basic
oo onaaae
«importx
R A
. ' MEFgEs
«riierges ;
La

Figure 2.1 - Level 0 package diagram

2 UML Superstructure Specification, v2.1

Issue 9182 - remove reference to UML package

At the next level (Level 1), the packages merged into Level 0 and their contents, are extended with additional packages as
shown in Figure 2.2 on page 3. Note that each of the four packages shown in the figure merges in additional packages that are
not shown in the diagram. They are defined in the corresponding package diagrams in this specification. Consequently, the set
of language units that results from this model is more than is indicated by the top-level model in the diagram. The specific
packages included at this level are listed in Table 2.3 on page 7.

Issue 9182 - replace with new L1 diagram

Dependencies BasicActions 1
Kernel
™ A
- i 7
Interfaces " ; .
. 1 .
<. <<rhe\r\ge>> <<:i-nerge>> _anerge» Internalstructures
H“‘n \\ ' amerges .« 7|
“merges, —|* ' I
g “"-‘ 1
L1
BasicBehaviors oo ooo-mm-m-mmmmmmT e
< «rmerges SFREFEEY-. sl Fundamentalsctivities
. ’ “‘ngmerge»
«[rﬁfgé» X o
i B “merges Ty
1 £ Mmeryes .
Communications BasicActivities
Jrr —|\:j
L
UseCases Basiclnteractions

Figure 2.2 - Level 1 top-level package merges

Issue 9182 - remove reference to UML package

Level 2 adds further language units and extensions to those provided by the Level 1. The actual language units and packages
included at this level of compliance are listed in Table 2.4 on page 8.

UML Superstructure Specification, v2.1 3

Issue 9182 - replace with new L2 diagram
1 1 1
SimpleTime L1 Parts
N A gl
IrvacationActions ", ! I Intermediatedctivities
.. ZIMerges H £IMEerges ,,-’
T «Il'nerge» - T
— ;Fn"erge» L ! v amerges. -’ StructuredActivities
Structuredactions e L >
e amerges .-
<<mé}§é“>$ A L
L2 EMarges -
__________________________________ N BasicComponents
——1 smergey ™
BehaviorStatehlachines < i oL emerges
amerger S
rd,"f f” rra |\1 \\\ "'-__‘:>—|
o amEtges “energes IntermediateActions
Fragments L «MErges «ImMerges
™ desl&- Profiles
1% N
Artifacts StructuredClasses

Figure 2.3 - Level 2 top-level package merges

Table 2.5 on page 8.

Finally, Level3, incorporating the full UML definition, is shown in Figure 2.4 on page 5. Its contents are described in

UML Superstructure Specification, v2.1

Issue 9182 - replace with new L3 diagram
— 1 1 —
Lz AzsocistionClasses
Povwver Types Models
T~
™ ~. A 7
R N “: .’r . ’ .
ProtocolStatemachines . . ; L InfarmationFlows
.. ametges i sMerges smerges L
e . “inerge» i L T i
\ﬂ‘"n \“ I“ ‘: : ’ «merge»,"';
ComponentDeployments sMmErges . Y N . el Completections
- ‘“‘aﬂ \\ I‘. r'J ,” ,»"J PRL 4
‘{'—-‘__L__L L N | ; L et =MErgEs: PP
fecﬁ'i‘erge»_ﬂ B P S LT . IPPEE A
S — . 7L RS
L3 L sMEerges
- e e e e <eeooo3y| CompleteActiviies
PackagingComponents e------ . EE
’,xnférge» ,a’ ': \\ h“'u_“
L) K : “amerges S
- L o e e . Templates
Collzbor stions s ' i
- wmergen ' .
S H A
rJ I|
b A CompleteStructuredactivities
StructuredActivities ExtraStructuredctivities

Figure 2.4 - Level 3 top-level package merges

2.3

Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This also
implies full realization of all language units in all the levels below that level. “Full realization” for a language unit at a given
level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level 1. A
tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels without loss

of information.

There are two distinct types of compliance. They are:

« Abstract syntax compliance. For a given

compliance level, this entails:

« compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged

UML Superstructure Specification, v2.1

UML metamodel for that compliance level and,
« the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.
 Concrete syntax compliance. For a given compliance level, this entails

« Compliance to the notation defined in the “Notation” sections in this specification for those metamodel elements
that are defined as part of the merged metamodel for that compliance level and, by implication, the diagram types
in which those elements may appear. And, optionally:

« The ability to output diagrams and to read in diagrams based on the XMI schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the
notation.

Compliance for a given level can be expressed as:

« abstract syntax compliance.

« concrete syntax compliance .

- abstract syntax with concrete syntax compliance.

« abstract syntax with concrete syntax and diagram interchange compliance.

Table 2.1 Example compliance statement

Compliance Summary
Compliance level Abstract Syntax | Concrete Syntax | Diagram Interchange
Option
Level O YES YES YES
Level 1 YES YES NO
Level 2 YES NO NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various “Semantics” subsections of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the nhumber of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which ones to
support. Finally, it is recognized that some implementors and profile designers may want to support only a subset of features
from levels that are above their formal compliance level. (Note, however, that they can only claim compliance to the level that
they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this potential variability,
it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given implementation. To this
end, in addition to a formal statement of compliance, implementors and profile designers may also provide informal feature
support statements. These statements identify support for additional features in terms of language units and/or individual
metamodel packages, as well as for less precisely defined dimensions such as presentation options and semantic variation
points.

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given in

6 UML Superstructure Specification, v2.1

Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
Deployments Deployments::Artifacts (L2) YES YES Note (4) Note (5)
Deployments::Nodes (L2)
State Machines StateMachines::BehaviorStateMachines (L2) | Note (1) YES Note (2) Note (3)
StateMachines::ProtocolStateMachines (L3)

Note (1): States and state machines are limited to a single region
Shallow history pseudostates not supported

Note (2): FIFO queueing in event pool

Note (3): Inherited elements indicated using grey-toned lines, etc.

2.4 Compliance Level Contents

The following tables identify the packages by individual compliance levels in addition to those that are defined in lower levels
(asarule, Level (N) includes all the packages supported by Level (N-1)). The set of actual modeling features added by each of
the packages are described in the appropriate chapters of the related language unit.

Issue 8459 - add CommonBehaviors::Communications entry

Table 2.3 Metamodel packages added in Level 1

Language Unit Metamodel Packages
Actions Actions::BasicActions
Activities Activities::Fundamental Activities

Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors

CommonBehaviors::Communications

Structures CompositeStructure::Internal Structures
Interactions Interactions::Basiclnteractions
UseCases UseCases

UML Superstructure Specification, v2.1 7

| Issue 8459 - remove CommonBehaviors::Communications entry

Table 2.4 Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Actions Actions::StructuredActions
Actions::IntermediateActions

Activities Activities::IntermediateActivities
Activities::StructuredActivities

Components Components::BasicComponents

Deployments

Deployments:: Artifacts

Deployments::Nodes

| General Behavior

CommonBehaviors::SimpleTime

Interactions

Interactions::Fragments

Profiles

AuxilliaryConstructs::Profiles

Structures

CompositeStructures::InvocationActions

CompositeStructures::Ports

CompositeStructures::StructuredClasses

State Machines

StateMachines::BehaviorStateMachines

Table 2.5 Metamodel packages added in Level 3

Language Unit

Metamodel Packages

Action Actions:;:CompleteActions

Activities Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes::AssociationClasses
Classes::PowerTypes

Components Components::PackagingComponents

Deployments

Deployments::ComponentDeployments

Information Flows

AuxilliaryConstructs::InformationFlows

Models AucxilliaryConstructs::Models

State Machines StateMachines::ProtocolStateMachines

Structures CompositeStructures::Collaborations
CompositeStructures::StructuredActivities

Templates AuxilliaryConstructs:: Templates

UML Superstructure Specification, v2.1

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« UML 2.0 Superstructure RFP
» UML 2. Infrastructure Specification

» MOF 2.0 Specification

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification, in conjunction with the specification that complements it, the UML 2.0: Infrastructure, completely replaces
the UML 1.4.1 and UML 1.5 with Action Semantics specifications, except for the “Model Interchange Using CORBA IDL”
(see Chapter 5, Section 5.3 of the OMG UML Specification v1.4, OMG document ad/01-02-17). It is recommended that
“Model Interchange Using CORBA IDL” is retired as an adopted technology because of lack of vendor and user interest.

6.2 Architectural Alignment and MDA Support

Chapter 1, “Language Architecture” of the UML 2.0: Infrastructure explains how the UML 2.0: Infrastructure is
architecturally aligned with the UML 2.0: Superstructure that complements it. It also explains how the InfrastructureLibrary
defined in the UML 2.0: Infrastructure can be strictly reused by MOF 2.0 specifications.

It is the intent that the unified MOF 2.0 Core specification must be architecturally aligned with the UML 2.0: Infrastructure
part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification must be architecturally aligned
with the UML 2.0: Superstructure part of this specification.

UML Superstructure Specification, v2.1 9

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven technology
specifications. This specification’s support for MDA is discussed in the UML 2.0: Infrastructure Appendix B, “Support for
Model Driven Architecture.”

6.3 On the Run-Time Semantics of UML

The purpose of this section of the document is to provide a very high-level view of the run-time semantics of UML and to
point out where the various elements of that view are covered in the specification. The term “run-time” is used to refer to the
execution environment. Run-time semantics, therefore, are specified as a mapping of modeling concepts into corresponding
program execution phenomena. There are, of course, other semantics relevant to UML specifications, such as the repository
semantics, that is, how a UML model behaves in a model repository. However, those semantics are really part of the definition
of the MOF-. Still, it is worth remarking that not every concept in UML models a run-time phenomenon (e.g., the “package”
concept).

6.3.1 The Basic Premises

There are two fundamental premises regarding the nature of UML semantics. The first is the assumption that all behavior in a
modeled system is ultimately caused by actions executed by so-called “active” objects (see “Class (from Communications)”
on page 455). This includes behaviors, which are objects in UML 2, which can be active and coordinate other behaviors. The
second is that UML behavioral semantics only deal with event-driven, or discrete, behaviors. However, UML does not dictate
the amount of time between events, which can be as small as needed by the application, for example, when simulating
continuous behaviors.

6.3.2 The Semantics Architecture

Figure 6.1 identifies the key semantic areas covered by the current standard and how they relate to each other. The items in the
upper layers depend on the items in the lower layers but not the other way around. (Note that the structure of metamodel
package dependencies is somewhat similar to the dependency structure indicated here. However, they are not the same and

should be distinguished. This is because package dependencies specify repository dependencies not necessarily run-time
dependencies.)

Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

10 UML Superstructure Specification, v2.1

At the highest level of abstraction, it is possible to distinguish three distinct composite layers of semantic definitions. The
foundational layer is structural. This reflects the premise that there is no disembodied behavior in UML — all behavior is the
consequence of the actions of structural entities. The next layer is behavioral and provides the foundation for the semantic
description of all the higher-level behavioral formalisms (the term “behavioral formalism” refers to a formalized framework
for describing behavior, such as state machines, Petri nets, data flow graphs, etc.). This layer, represented by the shaded box in
Figure 6.1, is the behavioral semantic base and consists of three separate sub areas arranged into two sub layers. The bottom
sub layer consists of the inter-object behavior base, which deals with how structural entities communicate with each other, and
the intra-object behavior base, which addresses the behavior occurring within structural entities. The actions sub layer is
placed on top of these two. It defines the semantics of individual actions. Actions are the fundamental units of behavior in
UML and are used to define fine-grained behaviors. Their resolution and expressive power are comparable to the executable
instructions in traditional programming languages. Actions in this sub layer are available to any of the higher-level formalisms
to be used for describing detailed behaviors. The topmost layer in the semantics hierarchy defines the semantics of the higher-
level behavioral formalisms of UML.: activities, state machines, and interactions. Other behavioral formalisms may be added
to this layer in the future.

6.3.3 The Basic Causality Model

The “causality model” is a specification of how things happen at run time and is described in detail in the Common Behaviors
chapter on page 437. It is briefly summarized here for convenience, using the example depicted in the communication diagram
in Figure 6.2. The example shows two independent and possibly concurrent threads of causally chained interactions. The first,
identified by the thread prefix ‘A’ consists of a sequence of events that commence with activeObject-1 sending signal s1 to
activeObject-2. In turn, activeObject-2 responds by invoking operation op1() on passiveObject-1 after which it sends signal s2
to activeObject-3. The second thread, distinguished by the thread prefix ‘B,’ starts with activeObject-4 invoking operation
op2() on passiveObject-1. The latter responds by executing the method that realizes this operation in which it sends signal s3
to activeObject-2.

The causality model is quite straightforward: Objects respond to messages that are generated by objects executing
communication actions. When these messages arrive, the receiving objects eventually respond by executing the behavior that
is matched to that message. The dispatching method by which a particular behavior is associated with a given message
depends on the higher-level formalism used and is not defined in the UML specification (i.e., it is a semantic variation point).

Al:sl A3:s2
—> —>
activeObject-1 activeObject-2 activeObject-3
A2 Opl()l T B.1.1:s3
B.1: op2 ()
_> . .
activeObject-4 passiveObject-1

Figure 6.2 - Example illustrating the basic causality model of UML

The causality model also subsumes behaviors invoking each other and passing information to each other through arguments to
parameters of the invoked behavior, as enabled by CallBehaviorAction (see “CallBehaviorAction (from BasicActions)” on
page 255). This purely “procedural” or “process” model can be used by itself or in conjunction with the object-oriented model
of the previous example.

UML Superstructure Specification, v2.1 11

6.3.4 Semantics Descriptions in the Specification

The general causality model is described in the introductory part of Chapter 13 (CommonBehaviors) and also, in part, in the
introduction to Chapter 14 (Interactions) and the section on Interaction (14.3.13) and Message (14.3.20).

The structural foundations are mostly covered in two chapters. The elementary level is mostly covered in Chapter 7, where the
root concepts of UML are specified. In particular, the sections on InstanceSpecifications (7.3.22), Classes (7.3.7) Associations
(7.3.3), and Features (7.3.19). The composites level is described primarily in Chapter 9 (Composite Structures), with most of
the information related to semantics contained in sections 9.3.12 (Property concept) and 9.3.13 (StructuredClassifier). In
addition, the introduction to this chapter contains a high-level view of some aspects of composite structures.

The relationship between structure and behavior and the general properties of the Behavior concept, which are at the core of
the behavioral base are described in CommonBehaviors (in the introduction to Chapter 13 and in section 13.3.2 in particular).

Inter-object behavior is covered in three separate chapters. The basic semantics of communications actions are described in the
introduction to Chapter F (Actions) and, in more detail, in the sections describing the specific actions. These can potentially be
used by an object on itself, so can be inter- or intra-object. The read/write actions can also be used by one object to access
other objects, so are potentially inter- or intra-object. These actions can be used by any of the behavior formalisms in UML, so
all are potentially inter-object behaviors. However, the interactions diagram is designed specifically to highlight inter-object
behavior, under its concept of message. These are defined in the Interactions chapter (sections 14.3.20 and 14.3.21), while the
concepts of events and triggers are defined in the Communications package of CommonBehaviors (Chapter 13). Occurrence
specifications are defined in section 14.3.25 of the Interactions chapter. The other two behavior formalisms can be translated
to interactions when they use inter-object actions.

All the behavior formalisms are potentially intra-object, if they are specified to be executed by and access only one object.
However, state machines are designed specifically to model the state of a single object and respond to events arriving at that
object. Activities can be used in a similar way, but also highlight input and output dependency between behaviors, which may
reside in multiple objects. Interactions are potentially intra-object, but generally not designed for that purpose.

The various shared actions and their semantics are described in Chapter 13.

Finally, the higher-level behavioral formalisms are each described in their own chapters: Activities in Chapter 12, Interactions
in Chapter 14, and State Machines in Chapter 15.

6.4 The UML Metamodel

6.4.1 Models and What They Model

A model contains three major categories of elements: Classifiers, events, and behaviors. Each major category models
individuals in an incarnation of the system being modeled. A classifier describes a set of objects; an object is an individual
thing with a state and relationships to other objects. An event describes a set of possible occurrences; an occurrence is
something that happens that has some consequence within the system. A behavior describes a set of possible executions; an
execution is the performance of an algorithm according to a set of rules. Models do not contain objects, occurrences, and
executions, because those things are the subject of models, not their content. Classes, events, and behaviors model sets of
objects, occurrences, and executions with similar properties. Value specifications, occurrence specifications, and execution
specifications model individual objects, occurrences, and executions within a particular context. The distinction between
objects and models of objects, for example, may appear subtle, but it is important. Objects (and occurrences and executions)
are the domain of a model and, as such, are always complete, precise, and concrete. Models of objects (such as value
specifications) can be incomplete, imprecise, and abstract according to their purpose in the model.

12 UML Superstructure Specification, v2.1

6.4.2 Semantic Levels and Naming

A large number of UML metaclasses can be arranged into 4 levels with metasemantic relationships among the metaclasses in
the different levels that transcend different semantic categories (e.g., classifiers, events, behaviors). We have tried (with
incomplete success) to provide a consistent naming pattern across the various categories to place elements into levels and
emphasize metarelationships among related elements in different levels. The following 4 levels are important:

Type level — Represents generic types of entities in models, such as classes, states, activities, events, etc. These are the most
common constituents of models because models are primarily about making generic specifications.

Instance level — These are the things that models represent at runtime. They don’t appear in models directly (except very
occasionally as detailed examples), but they are necessary to explain the semantics of what models mean. These classes do not
appear at all in the UML2 metamodel or in UML models, but they underlie the meaning of models. We provide a brief runtime
metamodel in the Common Behavior chapter, but we do not formally define the semantics of UML using the runtime
metamodel. Such a formal definition would be a major amount of work.

Value specifications — A realization of UML2, compared to UML, is that values can be specified at various levels of precision.
The specification of a value is not necessarily an instance; it might be a large set of possible instances consistent with certain
conditions. What appears in models is usually not instances (individual values) but specifications of values that may or may
not be limited to a single value. In any case, models contain specifications of values, not values themselves, which are runtime
entities.

Individual appearances of a type within a context — These are roles within a generic, reusable context. When their context is
instantiated, they are also bound to contained instances, but as model elements they are reusable structural parts of their
context; they are not instances themselves. A realization of UML2 was that the things called instances in UML1 were mostly
roles: they map to instances in an instance of their container, but they are model elements, not instances, because they are
generic and can be used many times to generate many different instances.

We have established the following naming patterns:

Types : Instances : Values : Uses

Classifier, Class : Instance, Object : InstanceSpecification : Part, Role, Attribute, XXXUse (e.g., CollaborationUse)
Event : Occurrence : OccurrenceSpecification : various (e.g., Trigger)

Behavior : Execution : ExecutionSpecification : various (e.g., ActivityNode, State), XXXUse (e.g., InteractionUse)

The appearances category has too wide a variety of elements to reduce to a single pattern, although the form XXXUse is
suggested for simple cases where an appearance of an element is contained in a definition of the same kind of element.

In particular, the word “event” has been used inconsistently in the past to mean both type and instance. The word “event” now
means the type and the word “occurrence” means the instance. When necessary, the phrases “event type” (for event) and
“event occurrence” (for occurrence) may be used. Note that this is consistent with the frequent English usage “an event
occurs” = the occurrence of an event of a given type; so to describe a runtime situation, one could say “event X occurs” or “an
occurrence of event X” depending on which form is more convenient in a sentence. It is redundant and incorrect to say “an
event occurrence occurs.”

6.5 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers are
encouraged to first read the UML: Infrastructure specification that complements this specification. Part I, “Introduction” of
UML.: Infrastructure explains the language architecture structure and the formal approach used for its specification.
Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Part I, “Infrastructure Library,” or
the Classes::Kernel package that reuses it, described in Chapter 1, “Classes.” The former specifies the flexible metamodel

UML Superstructure Specification, v2.1 13

library that is reused by the latter; the latter defines the basic constructs used to define the UML metamodel.

With that background the reader should be well prepared to explore the user level constructs defined in this UML:
Superstructure specification. These concepts are organized into three parts: Part | - “Structure,” Part 11 - “Behavior,” and Part
111 - “Supplement.” “Part . Structure” defines the static, structural constructs (e.g., classes, components, nodes artifacts) used
in various structural diagrams, such as class diagrams, component diagrams, and deployment diagrams. Part “Part I1 -
Behavior” specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various
behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams. “Part . Structure” defines
auxiliary constructs (e.g., information flows, models, templates, primitive types) and the profiles used to customize UML for
various domains, platforms, and methods.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification and is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate browsing
and search.

6.5.1 Specification format

The concepts of UML are grouped into three major parts:
« Part I: Concepts related to the modeling of structure
- Part II: Concepts related to the modeling of behavior

« Part l1l: Supplementary concepts

Within each part, the concepts are grouped into chapters according to modeling capability. A capability typically covers a
specific modeling formalism. For instance, all concepts related to the state machine modeling capability are gathered in the
State Machines chapter and all concepts related to the activities modeling capability are in the Activities chapter. The
Capability chapters in each part are presented in alphabetical order.

Within each chapter, there is first a brief informal description of the capability described in that chapter. This is followed by a
section describing the abstract syntax for that capability. The abstract syntax is defined by a CMOF model (i.e., the UML
metamodel) with each modeling concept represented by an instance of a MOF class or association. The model is decomposed
into packages according to capabilities. In the specification, this model is described by a set of UML class and package
diagrams showing the concepts and their relationships. The diagrams were designed to provide comprehensive information
about a related set of concepts, but it should be noted that, in many cases, the representation of a concept in a given diagram
displays only a subset of its features (the subset that is relevant in that context). The same concept may appear in multiple
diagrams with different feature subsets. For a complete specification of the features of a concept, readers should refer to its
formal concept description (explained below). When the concepts in the capability are grouped into sub packages, the
diagrams are also grouped accordingly with a heading identifying the sub package preceding each group of diagrams. In
addition, the name of the owning package is included in each figure caption.

The “Concept Definitions” section follows the abstract syntax section. This section includes formal specifications of all
concepts belonging to that capability, listed in alphabetical order. Each concept is described separately according to the format
explained below.

The final section in most chapters gives an overview of the diagrams, diagram elements, and notational rules and conventions
that are specific to that capability.

The formal concept descriptions of individual concepts are broken down into sub sections corresponding to different aspects.
In cases where a given aspect does not apply, its sub section may be omitted entirely from the class description. The following
sub sections and conventions are used to specify a concept:

« The heading gives the formal name of the concept and indicates, in parentheses, the sub package in which the concept
is defined. In some cases, there may be more than one sub package name listed. This occurs when a concept is defined

14 UML Superstructure Specification, v2.1

in multiple package merge increments — one per package. In a few instances, there is no package name, but the phrase
“as specialized” appears in parentheses. This indicates a “semantic” increment, which does not involve a new
increment in the metamodel and which, therefore, does not change the abstract syntax, but which adds new semantics
to previous increments (e.g., additional constraints).

In some cases, following the heading is a brief, one- or two-sentence informal description of the meaning of a concept.
This is intended as a quick reference for those who want only the basic information about a concept.

All the direct generalizations of a concept are listed, alphabetically, in the “Generalizations” sub section. A “direct”
generalization of a concept is a concept (e.g., a class) that is immediately above it in the hierarchy of its ancestors (i.e.,
its “parent”). Note that these items are hyperlinked in electronic versions of the document to facilitate navigation
through the metamodel class hierarchy. Readers of hardcopy versions can use the page numbers listed with the names
to rapidly locate the description of the superclass. This sub section is omitted for enumerations.

A more detailed description of the purpose, nature, and potential usage of the concept may be provided in the
“Description” sub section. This too is informal. If a concept is defined in multiple increments, then the first part of the
description covers the top-level package and is followed, in turn, by successive description increments for each sub
package. The individual increments are identified by a sub package heading such as

Package PowerTypes

This indicates that the text that follows the heading describes the increment that was added in the PowerTypes sub
package. The description continues either until the end of the sub section or until the next sub package increment head-
ing is encountered.

This convention for describing sub package increments is applied to all other sub sections related to the concept.

The “Attributes” sub section of a concept description lists each of the attributes that are defined for that metaclass. Each
attribute is specified by its formal name, its type, and multiplicity. If no multiplicity is listed, it defaults to 0..*. This is
followed by a textual description of the purpose and meaning of the attribute. If an attribute is derived, the name will be
preceded by a slash. For example:

*body: String[1] Specifies a string that is the comment

specifies an attribute called “body” whose type is “String” and whose multiplicity is 1.
If an attribute is derived, where possible, the definition will also include a specification (usually expressed as an OCL
constraint) specifying how that attribute is derived. For instance:
«/isComposite : Boolean A state with isComposite = true is said to be a composite state. A composite state is a state that
contains at least one region>

isComposite = (region > 1)

The “Associations” sub section lists all the association ends owned by the concept. The format for these is the same as
the one for attributes described above. Association ends that are specializations or redefinitions of other association
ends in superclasses are flagged appropriately. For example:
lowerValue: ValueSpecification[0..1] {subsets Element::ownedElement} The specification of the lower bound for this
multiplicity.

specifies an association end called “lowerValue” that is connected to the “ValueSpecification” class and whose multi-
plicity is 0..1. Furthermore, it is a specialization of the “ownedElement” association end of the class “Element.”

As with derived attributes, if an association end is derived, where possible, the definition will also include a
specification (usually expressed as an OCL constraint) specifying how that association end is derived.

UML Superstructure Specification, v2.1 15

16

The “Constraints” sub section contains a numerical list of all the constraints that define additional well-formedness
rules that apply to this concept. Each constraint consists of a textual description and may be followed by a formal
constraint expressed in OCL. Note that in a few cases, it may not be possible to express the constraint in OCL, in which
case the formal expression is omitted.

“Additional Operations” contains a numerical list of operations that are applicable to the concept. These may be queries
or utility operations that are used to define constraints or other operations. Where possible, operations are specified
using OCL.

The “Semantics” sub section describes the meaning of the concept in terms of its concrete manifestation. This is a
specification of the set of things that the concept models (represents) including, where appropriate, a description of the
behavior of those things (i.e., the dynamic semantics of the concept).

“Semantic Variation Points” explicitly identifies the areas where the semantics are intentionally under specified to
provide leeway for domain-specific refinements of the general UML semantics (e.g., by using stereotypes and profiles).

The “Notation” sub section gives the basic notational forms used to represent a concept and its features in diagrams.
Only concepts that can appear in diagrams will have a notation specified. This typically includes a simple example
illustrating the basic notation. For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify
the legal formats. The conventions of this BNF are:

« All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

« All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

« Non-terminal production rule definitions are signified with the “::=" operator.

« Repetition of an item is signified by an asterisk placed after that item: “*’,

« Alternative choices in a production are separated by the ‘| symbol (e.g., <alternative-A> | <alternative-B>).
« Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

» Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *

signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

The “Presentation Options” sub section supplements the “Notation” section by providing alternative representations for
the concept or its parts. Users have the choice to use either the forms described in this sub section or the forms
described in the “Notation” sub section.

“Style Guidelines” identifies notational conventions recommended by the specification. These are not normative but, if
applied consistently, will facilitate communication and understanding. For example, there is a style guideline that
suggests that the names of classes should be capitalized and another one that recommends that the names of abstract
classes be written out in italic font. (Note that these specific recommendations only make sense in certain writing
systems, which is why they cannot be normative.)

The “Examples” sub section, if present, includes additional illustrations of the application of the concept and its
notation.

“Changes from previous UML” identifies the main differences in the specification of the concept relative to UML
versions 1.5 and earlier.

UML Superstructure Specification, v2.1

6.5.2 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this specification:

» An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and

« the opposite (unmarked) association end is owned by the association.

Issue 8956 - explain why the notation for owned association ends was not used in the spec

(NOTE: This convention was inherited from UML 1.x and was used in the initial versions of the specification

because there was no explicit notation for indicating association end ownership. Such a notation was introduced
in revision 2.1 (see the notation subsection of the Association metaclass on page 37) but was not applied to the
diagrams in the specification due to lack of tool support. In accord with the new notation, the ownership of an
association end by the association would continue to be shown by leaving the end unmarked, but the ownership
of an end by the classifier would be shown by marking that classifier-owned end with a dot.)

» An association with neither end marked by navigability arrows means that:

« the association is navigable in both directions,
« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).
» Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

« The constraint {subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

« A constraint {redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

« If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

Issue 6492 - Clarifying conventions used for unlabeled (unnamed) association ends.

- If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. (Note that, by convention, non-navigable association ends are
often left unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal
constraints - although there may be needed for other purposes, such as MOF language bindings that use the
metamodel.)

 Associations that are not explicitly named, are given names that are constructed according to the following production
rule:
"A " <association-end-namel>" " <association-end-name2>
where <association-end-namel> is the name of the first association end and <association-end-name2> is the name of
the second association end.

« An unlabeled dependency between two packages is interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing this
specification, such as the unavailability of conforming modeling tools at the time the specification itself was being defined.
Therefore, they should not necessarily be deemed as recommendations for general use.

UML Superstructure Specification, v2.1 17

6.6

The following companies submitted and/or supported parts of this specification:

18

Acknowledgements

Tirene

88solutions

Adaptive

Advanced Concepts Center LLC
Alcatel

Artisan

Borland

Ceira Technologies
Commissariat a L'Energie Atomique
Computer Associates
Compuware
DaimlerChrysler

Domain Architects
Embarcadero Technologies
Enea Business Software
Ericsson

France Telecom
Fraunhofer FOKUS
Fujitsu

Gentleware

Intellicorp
Hewlett-Packard

I-Logix

International Business Machines
IONA

Jaczone

Kabira Technologies
Kennedy Carter

Klasse Objecten
KLOCwork

Lockheed Martin

MEGA International
Mercury Computer
Motorola

MSC.Software
Northeastern University
oose Innovative Informatik GmbH
Oracle

Popkin Software

Proforma

Project Technology

UML Superstructure Specification, v2.1

« Sims Associates

« SOFTEAM

» Sun Microsystems

« Syntropy Ltd.
 Telelogic

» Thales Group

« TNI-Valiosys
 Unisys

 University of Kaiserslautern
« University of Kent

« VERIMAG

» WebGain

« X-Change Technologies

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Bjorkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, @ystein
Haugen, Sridhar lyengar, Cris Kobryn, Birger Mgller-Pedersen, James Odell, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Karl Frank, William Frank, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson,
Allan Kennedy, Mitch Kokar, Thomas Kuehne, Michael Latta, Antoine Lonjon, Nikolai Mansurov, Sumeet Malhotra, Dave
Mellor, Stephen Mellor, Joaquin Miller, Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji, lleana Ober, Barbara Price,
Tom Rutt, Kendall Scott, Oliver Sims, Cameron Skinner, Jeff Smith, Doug Tolbert, Tim Weilkiens, and lan Wilkie.

Issue Editorial change: add acknowledgement of Pavel Hruby

The authors are grateful to Pavel Hruby for his drawing tool stencil for UML, which was used to create many of the UML
diagrams in this document.

UML Superstructure Specification, v2.1 19

20

UML Superstructure Specification, v2.1

Part | - Structure

This part defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural
diagrams, such as class diagrams, component diagrams, and deployment diagrams. The UML packages that support
structural modeling are shown in the figure below.

Issue 8458 - sort out imports and merges

1]

Classes

3

alrporte

:

Composite=Structures

7

slmports

1]

Components

)

<<!mp|:|rt>>

.

Deployments

Part |, Figure 1 - UML packages that support structural modeling

The function and contents of these packages are described in following chapters, which are organized by major subject areas.

UML Superstructure Specification, v2.1 19

20

UML Superstructure Specification, v2.1

7 Classes

7.1 Overview

The Classes package contains sub packages that deal with the basic modeling concepts of UML, and in particular classes
and their relationships.

Issue Editorial change: The original figure 7.1 and accompanying text incorrectly specified that the Kernel
merges in elements of Abstractions. The editor felt that this could lead to crucial misunderstanding of
the structure of the Kernel pacakge and introduced the following change. NB: this is deemed a purely
editorial change since the text accurately reflects the current metamodel approved by the RTF and
makes no technical changes.

Reusing packages from UML 2 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages.
This part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used
in, for example, MOF. The Kernel package is the central part of the UML, and reuses the Constructs and PrimitiveTypes
packages of the InfrastructureLibrary.

In many cases, the reused classes are extended in the Kernel with additional features, associations, or superclasses. In
subsequent diagrams showing abstract syntax, the subclassing of elements from the infrastructure library is always elided
since this information only adds to the complexity without increasing understandability. Each metaclass is completely
described as part of this chapter; the text from the infrastructure library is repeated here.

It should also be noted that Kernel is a flat structure that like Constructs only contains metaclasses and no sub-packages.
The reason for this distinction is that parts of the infrastructure library have been designed for flexibility and reuse, while
the Kernel in reusing the infrastructure library has to bring together the different aspects of the reused metaclasses.
The packages that are explicitly merged from the InfrastructureLibrary are the following:

» PrimitiveTypes

« Constructs

UML Superstructure Specification, v2.1 21

| All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged

“imports
Construsts | p __________ > PrimitiveTypes
-‘ﬁ|\\ p'-’
E«merge» f,«'n'?erge»
— -
Kermsl

| Figure 7.1 - InfrastructureLibrary packages that are merged by Kernel (all dependencies in the picture represent pack-
age merges)

7.2 Abstract Syntax

Figure 7.2 shows the package dependencies of the Kernel packages.

]

Kernel

=

~

- ~

amergas’

4

ZMEr]Es
L Eerges L

E— 1 ——

AzzocistionClasses Dependencies

PowverTypes

A

«merée»

1 1

Interfaces ﬁmer_g@:_b_} BaszicBehaviors

Figure 7.2 - Subpackages of the Classes package and their dependencies

| 22 UML Superstructure Specification, v2.1

Package Kernel

Issue

9191 - add multiplicity to Comment::body

+ owvningElement
Efement il

{subsets ownert {subsets ownedElermentt

readCnly, union
i:r.fn:-wnedgement b

*

!h.j

+ lowener
freadCnly, uniont

+ owvnedComment ~[comment
0.1 e

freadOnly, union}

Relgtionship + IrelatedElement |

1.27

freadOnly, union,
subsets relatedElernent}
+ farget -

1.7

DivectedRelationshiy

freadOnly, union,
subsets relatedElerment’

+ [BOUMCE.,
Eal

Element

+ annotatedElement

1.%

Figure 7.3 - Root diagram of the Kernel package

UML Superstructure Specification, v2.1

*

Camment

body String [0..1]

23

il

«enumeration:
NamedElement V'_S'b'mYK'”d
name : String [0.1] qul;i:
wisibitity : Visibilibyiing [0.1] pr::t ; "
igualifiedame String [0.1] protecte
package
{readOnly, union}
{readOnly, subsets member * imember. I NamedEiement
PackageableElement + .ﬂmportyédMember ¥ MNamespace . I_eme il dor _ heat
visibility | Visibiiiek ined * + |+ fownedhember {readOnly, union, subsets
{redefines _namespace} IreadOrly, union, mernber, subsets ownedElerment}
subsets owner}
+ namespace

0.1
DirectedRelationship

i
{subsets target)
{subsets source, subsets owner} [EP—— + importedElement
+ importingtamespace % EMENmpol %‘
vigibility : Visihilitykind 1
1 +elementinpart | e String [0.1]
{subsets
ownedElernent}
{subsets source,

DirectedRelationship
subsets ownert
*

+ importinghlamespace
P i P Pach Import

1 + packagelmport|—— — |
{subsets ownedElament) vigihility : Wisibilitykind

{subsets target)
+ importedPackage Package

1

Figure 7.4 - Namespaces diagram of the Kernel package

Element
MutiphcityE ferment {subsets owner} Tsubsets ownedElementt
i50rdered : Boolean ¢+ owningUpper + uppervalue ValueSpecification
isUnigue - Boolean 0.1 0.1
fupper . UnlimitedNatural [0..1] Lsubsets ownerk {subsats ownadElament’
fower ;- Integer [0..1] + awningLower * lower/alue
o1 0.1
NamedElement FackageableElement
+type
TypedElement
vp 07 Type

Figure 7.5 - Multiplicities diagram of the Kernel package

24 UML Superstructure Specification, v2.1

Issue 9191 - add multiplicities to Expression::symbol, LiteralString::value; change lower bound of

OpaqueExpression::body

TepedElament

PackageableElement

{subsets ownedElerment, ordered}
+ operand

*

lralueSpecification

{subsets ownerd
+ expression

0.1

Expression
symbal : String [0..1]

+ instance

| LiteralSpecification | | Instance/alue Iﬁ| InstanceSpecification

i

Figure 7.6 - Expressions diagram of the Kernel package

UML Superstructure Specification, v2.1

LiteralBoolesn Literalirteger Literal=tring Literalnlimitedtatursl Literaltul
value : Boolean value : Irteger walue - String [0..1] walue : Unlimitedhlstural
fordered}
+ body
OpagueExpression - 1 " String

{ordered}
+ language
- p -

25

Issue 6699 - Make Constraint::namespace navigable
9086 - remove Constraint::context and requalify Constraint::namespace as Constraint::context
PackageabieEisment
IT‘ Jorderedt
Conatraint + conEtrainedElzment Efameant
Namespace #
faubsets owner} {subsets ownedElement!
VYalueSpecification

+ context

{subsets namespace}

{subsets

owhnedMernber

+ ovvnedRule

0.1

%

Figure 7.7 - Constraints diagram of the Kernel package

Package ableElement

+owninglnstance
L

Element

7

+slot Slot

InstanceSpecification

+owninglnstanceSpec
{subsets owner}

1 {subsetsowner} {subsetsownedElement} =*

+specification

+ owyningConstraint

+ specification

0.

+owningSlot
{subsets owner}

1

+value
ValueSpecification

0.1

{ordered,
subsets ownedElement} *
+definingFe ature

StructuralFeature

0.1

{subsets ownedElement} 0..1
+d assifier

ValueSpecification

Classifier

26

0..*

Figure 7.8 - Instances diagram of the Kernel package

UML Superstructure Specification, v2.1

NamedElenent

RedefinableElement

RedefinableElenent

Namespace

Type

7

P17

Classifier

+general

+/IredefinitionContext

isLeaf : Boolean = false

{union} «

+/redefi nedElement

isAbstract : Boolean = false

DirectedRelationship

]

Generalization

1 {subsetstarget}

isSubdtitutable : Boolean

+specific +generalization
> {subsets source,
{subsetsownedElement
subsets owner}

+/i nheri ted Member

+redefinedClassifier

* {subsetsredefinedElement}

» {union}
’ 1
Property 0..
+attribute +d assifier
{union, {subsetsredefinitionContex}
subsets feature}

+/general

Figure 7.9 - Classifiers diagram of the Kernel package

UML Superstructure Specification, v2.1

{subsetsmember}

NamedElenent

27

<<enumeration>>
ParameterDirectionKind

RedefinableElement

+/featuringClassifier 4/feature in
Classifier - Feature inout
0.* {union} funion} « [isstatic : Boolean = false out
return

‘ Namespace
‘ TypedElement ‘ MultiplicityElement

Structural Feature BehavioralFeature
isReadOnly : Boolean = false

‘ MultiplicityElement

‘ TypedElement

Parameter

direction : ParameterDirectionKind = in
/ default : String

+ownerFormalParam

{subsets nam espace} +ownedParameter
0.1 {ordered, *
subsets ownedMember}

+owningP ammeter
{subsets owner}

Type

+raisedException

+defaultvalue
0.1 {subse ts owned Eleme nt}

ValueSpecification

Figure 7.10 - Features diagram of the Kernel package

28 UML Superstructure Specification, v2.1

Issue Editorial change - Operation::ownedParameter must be ordered; also expose redefines constraint

BehavioralFeatire
T‘ fsuhsets namespace} {redefines ownedPararmeter:
+ gperation + owvnedParameter | Parameter

Cperation *D y -
izizuery : Boolean

: subsets context {zubsets ownedRula}
.ﬂSOrFﬂE[‘Ed - Boolean {+ preContext } + precondition
NizUnique : Boolean > constraint
Novweer Integer [@.1] 0.1 *

Jupper . Unlimitediatural [0..1]

{subsets context} Tsubsets ownedrule}

+ postContest + postcondtion |

0.4 e

{subsets context} {subsets ownedRule}
+ bodyContext + bodyCandition

et =
0.1 0.

P
+ ftype s Ype
0.1

{redefines raisedException}
+ raizedException -

ol
{aubsets redefinedElement *

+ redefinedOperation
=
[

*

Figure 7.11 - Operations diagram of the Kernel package

UML Superstructure Specification, v2.1

N

+clas

Class

+ownedAttribute
0.1 {subsets classfier, {fordered, *
subsets namespace, subsets attribute,
subsetsfeaturingClassifier} qibsets ownedMember}

+/superClass

Hredefinesgenera}

+class

0.1 {subsets namespace,
subsets red

+clas

onContext} subsets ownedMembel

+subsettedProperty

*

+redefinedProperty

{subsets redefinedElement} »

Property

isDerived: Boolean = false
isReadOnly : Boolean = false
isDerivedUnion : Boolean =false

/ default: Stiing

aggregation : AggregationKind = none
/ isComposite : Boolean

+memberEnd
{ordered, aibsets member}

Relationship

N

+association

Association

2.* 0..
+ownedEnd +owni ngAssociation
* {ordered, fubsetsassociation, 0..1]
subsets memberEnd, subsets namespace,
subsetsfeature, subsets featuringClassifier}
subsets ownedMember}
+navigableOwnedEnd

* {subsets owned End}

0.1

+owningProperty

+nesed Classifier

{ordered, *

+ownedOperation
0.1 {subsetsredefinitionContext, {ordered,
subsets namespace, subsets feature,
subsets featuringClassifier} subsets
ownedMember}

+/opposite

Operation

Figure 7.12 - Classes diagram of the Kernel package

30

{subsets owner}

{subsets ownedElement}

isDerived : Boolean = false
1

0.1

+defaultvalue ValueSpecification

<<enumeration>>
AggregationKind

none
shared
composite

+/endType 1x
{ordered}

Type

UML Superstructure Specification, v2.1

Classifier

DataType

+ownedAttribute

+enumeration

PrimitiveType

+d atatype Property

0.1 Wubsetsnamespace, {ordered, *
subsets featuringClassifier, subsets attii bute,
subsets classifier} subsets ownedMember}
+datatype +owne dOperation
P Operation

o1 {subsets namespace, {ordered, «

»+ subsets redeﬂr?ltlonCorjt_ext, subsets feature,

subsets featuringClassifier} subsets ownedMember}

+ownedLiteral

InstanceSpecification

4

Enumeration &

0..1 {subsetsnamespace}

Figure 7.13 - DataTypes diagram of the Kernel package

UML Superstructure Specification, v2.1

{ordered, *
subsets ownedMember}

EnumerationLiteral

31

Issue

9087 - requalify Package::ownedMember as Package::packagedElement

Mamespace | | PackageableElement |

Package

{subsets namespacet
+ owvningPackage

fsubsets ownedMernberd
+ packagedElemenLJ

0.1

e PackageabieElement

1
_ +mergedPackage [suhsets target)

{subsets namespace} Jsubsets packagedElement} [mpe
+ package + fowenedType
g
0.1 *
| DivectedRelationshin
{subsets source,
subsets owner} {subsets ownedElement}
+ receivingPackage + packageierge
g PackageMerge

*

BE

{subsets packagedElerment}
+ InestedPackage

*

{subsets namespacet
+ nestingPackage | 0.1

Figure 7.14 - The Packages diagram of the Kernel package

32

UML Superstructure Specification, v2.1

| Package Dependencies

Issue 6630 - It does not make sense for the supplier of a dependency to know about its dependencies. Make
the association end NamedElement::supplierDependency non-navigable.
8019 - Add subsetting constraints to Dependency::client and Dependency::supplier.
9192 - remove subsets of ‘source’ and target’

LML Classes: Kemal: UL Classes:: Dependencies::
DirectedRelationship PackageableElement
supplier + supplierDependency T T
NamedElament T+ {subsets targett P Dependency
+ client clientDependency UNML: . Classes: Kemel:: Elerment
1.7 {eubsets sourcet ”

{subsets ‘

UML::Classes: awgggglﬁngent} Ahstraction Usage MamedElerment {readOniy}
Kernel:: ETEEE— + fownedMermber
OpagueExpression 0.1 0.1 .
N
‘T readCnl
Realization Mameospace f;namesvp}ace
i
0.1
Substitution {subsets supplier}
+ contract Classifier
{subsets client}
* + substitutingClassifier
+ substitution 1

{subzets ownedElement,
subsets clientDependencyt

Figure 7.15 - Contents of Dependencies package

UML Superstructure Specification, v2.1 33

Package Interfaces

Issue

9192 - remove subsets of ‘source’ and target’

| UML: Classes: Kernel:: StructuralFeature |

UML::Clasaes::

fsubsets attribute,

Property + ownedAttrbute

subsets ownedMember, ordered}t

Kernel:: Classifier

fsubsets ownedMernber, ordered}
+ nestedClassifier

*

|

0.1

*

LML Classes: Kermel::

- Interface

{subsets classifier,

subsets namespace,
subsets featuringClassifier:

0.1 {subsets namespace,
suUbsets redefinitionContext}:

BehavioralFeature {subsets feature, {subsets redefinedElement}
subsets ownedMember, {subsets + redefinedinterface
l‘! ardered redefinitionContext} il*
- + ownedOperation + interface
Operation —

UM Classes::
Kernel: Classifier

|

- — 1
BehawioredUlassifier .

0.1

*

+ contract |1
{subsets supplier}t

fsubsets ownedElement,
subsets clientDependencyt

*

+ interfaceRealization | InterfaceRealization

{subsets client}:

+ implementingClassifier *

UML::Classes:
Dependencies::Realization

Figure 7.16 - Contents of Interfaces package

34

UML Superstructure Specification, v2.1

Package AssociationClasses

UL Classes:: Kernal: StructuralFeatine

Property

{subsats owner} {subsets ownedElerment, ordered?
F'rnpeny + azzociationEnd + qualifier
0.1 *
UML:: Classes: UML::Classes:

Kernel:: Class

Kernel::Association

AssociationClass

Figure 7.17 - Contents of AssociationClasses package

Package PowerTypes

Classifier

+ posvettype (001

LML Classes: Kerneal:
PachkageableElement

+ powertypeExtent

GeneralizationSet

Figure 7.18 - Contents of PowerTypes package

UML Superstructure Specification, v2.1

*|isDisjoint : Boalean

isCovering . Boolean

Generalization

+ generalization |*

+ generalization=et

*

35

7.3 Class Descriptions

7.3.1 Abstraction (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 61

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. In the metamodel, an Abstraction is a Dependency in which there is a
mapping between the supplier and the client.

Attributes

No additional attributes

Associations

e mapping: Expression[0..1] A composition of an Expression that states the abstraction relationship between the
supplier and the client. In some cases, such as Derivation, it is usually formal and
unidirectional. In other cases, such as Trace, it is usually informal and bidirectional. The
mapping expression is optional and may be omitted if the precise relationship between the
elements is not specified.

Constraints

No additional constraints

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional
or bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») that are defined in the
Standard Profiles chapter. If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific
predefined stereotype name.

7.3.2 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Generalizations

None

36 UML Superstructure Specification, v2.1

Description

AggregationKind is an enumeration of the following literal values:

e none Indicates that the property has no aggregation.

e shared Indicates that the property has a shared aggregation.

e composite Indicates that the property is aggregated compositely, i.e., the composite object has responsibility for the
existence and storage of the composed objects (parts).

Semantic Variation Points
Precise semantics of shared aggregation varies by application area and modeler.

The order and way in which part instances are created is not defined.
7.3.3 Association (from Kernel)

An association describes a set of tuples whose values refer to typed instances. An instance of an association is called a
link.

Generalizations
» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 51

» “Relationship (from Kernel)” on page 134

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association may
have the same type.

An end property of an association that is owned by an end class or that is a navigable owned end of the association

indicates that the association is navigable from the opposite ends, otherwise the association is not navigable from the

opposite ends.

Attributes

e isDerived : Boolean Specifies whether the association is derived from other model elements such as other
associations or constraints. The default value is false.

Associations

e memberEnd : Property [2..*] Each end represents participation of instances of the classifier connected to the end in
links of the association. This is an ordered association. Subsets Namespace::member.

« ownedEnd : Property [*] The ends that are owned by the association itself. This is an ordered association.
Subsets Association::memberEnd, Classifier::feature, and
Namespace::ownedMember.

* navigableOwnedEnd : Property [*] The navigable ends that are owned by the association itself. Subsets
Association::ownedEnd.

e /endType: Type [1..*] References the classifiers that are used as types of the ends of the association.

UML Superstructure Specification, v2.1 37

Constraints

[1] An association specializing another association has the same number of ends as the other association.
self.parents()->forAll(p | p.memberEnd.size() = self.memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endType is derived from the types of the member ends.

self.endType = self. memberEnd->collect(e | e.type)
[4] Only binary associations can be aggregations.

self. memberEnd->exists(aggregation <> Aggregation::none) implies self. memberEnd->size() = 2
[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2 then ownedEnd->includesAll(memberEnd)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise it allows duplicate elements.

Issue 8088 - Clarify subsetting.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association ends,
not to the association itself. It means that the subsetting association end is a collection that is either equal to the collection
that it is subsetting or a proper subset of that collection. (Proper subsetting implies that the superset is not empty and that
the subset has fewer members.) Subsetting is a relationship in the domain of extensional semantics.

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naive but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In
the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition is a relationship between features of classifiers within a specialization hierarchy. Redefinition may be used to
change the definition of a feature, and thereby introduce a specialized classifier in place of the original featuring
classifier, but this usage is incidental. The difference in domain (that redefinition applies to features) differentiates
redefinition from specialization.

38 UML Superstructure Specification, v2.1

Issue 8088 - Clarify subsetting.

Note — For n-ary associations, the lower multiplicity of an end is typically 0. A lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

Issue 8015 - Clarify transitivity in composition.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of all elements of the subgraph below that element.
Composition is represented by the isComposite attribute on the part end of the association being set to true.

Issue 8963 - clarify meaning of navigability

Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently
from instances participating in links at the other ends of the association. The precise mechanism by which such access is
achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible,
and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating
associations from non-navigable ends

Semantic Variation Points
« The order and way in which part instances in a composite are created is not defined.
- The logical relationship between the derivation of an association and the derivation of its ends is not defined.

» The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary association is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to a tool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

» The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

» Aslash appearing in front of the name of an association, or in place of the name if no name is shown, marks the
association as being derived.

« A property string may be placed near the association symbol, but far enough from any end to not be confused with a

UML Superstructure Specification, v2.1 39

property string on an end.

Issue 8066 - Clarify meaning of arrow symbol on binary association.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 7.21). This notation is for documentation purposes only
and has no general semantic interpretation. It is used to capture some application-specific detail of the relationship
between the associated classifiers.

 Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:
- A multiplicity

« A property string enclosed in curly braces. The following property strings can be applied to an association end:
* {subsets <property-name>} to show that the end is a subset of the property called <property-name>.

Issue 8204 - change ‘redefined’ to ‘redefines’

« {redefines <end-name>} to show that the end redefines the one named <end-name>.

« {union} to show that the end is derived by being the union of its subsets.

« {ordered} to show that the end represents an ordered set.

« {bag} to show that the end represents a collection that permits the same element to appear more than once.
« {sequence} or {seq} to show that the end represents a sequence (an ordered bag).

« If the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

An open arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’s
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a navigable end name as specified in the Notation subsection of “Property
(from Kernel, AssociationClasses)” on page 125.

An association with aggregationKind = shared differs in notation from binary associations in adding a hollow diamond as
a terminal adornment at the aggregate end of the association line. The diamond shall be noticeably smaller than the
diamond notation for associations. An association with aggregationKind = composite likewise has a diamond at the
aggregate end, but differs in having the diamond filled in.

40 UML Superstructure Specification, v2.1

Issue 8956 - add explanation for the notation for association end ownership

Ownership of association ends by an associated Classifier may be indicated graphically by a small filled circle, which for
brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets the
classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of the dot
shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This avoids
visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line.

This standard does not mandate the use of explicit end-ownership notation, but defines a notation which shall apply in
models where such use is elected. The dot notation must be applied at the level of complete associations or higher, so that
the absence of the dot signifies ownership by the association. Stated otherwise, when applying this notation to a binary
association in a user model, the dot will be omitted only for ends which are not owned by a classifier. In this way, in
contexts where the notation is used, the absence of the dot on certain ends does not leave the ownership of those ends
ambiguous.

This notation may only be used on association ends which may, consistent with the metamodel, be owned by classifiers.
Users may conceptualize the dot as showing that the model includes a property of the type represented by the classifier
touched by the dot. This property is owned by the classifier at the other end.

The dot may be used in combination with the other graphic line-path notations for properties of associations and
association ends. These include aggregation type and navigability.

The dot is illustrated in Figure 7.19, at the maximum allowed size. The diagram shows endA to be owned by classifier
B, and because of the rule requiring the notation be applied at the level of complete associations (or above), this diagram
also shows unambiguously that end B is owned by BinaryAssociationAB.

BinaryAssociationAB

endA endB

Figure 7.19 - Graphic notation indicating exactly one association end owned by the association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the association whereas navigable ends were assumed to be owned by the classifier at the
opposite end. This convention is now deprecated.

UML Superstructure Specification, v2.1 41

Aggregation type, navigability, and end ownership are orthogonal concepts, each with their own explicit notation. The
notational standard now provides for combining these notations as shown in Figure 7.20, where the associated nodes use
the default rectangular notation for Classifiers. The dot is outside the perimeter of the rectangle. If non-rectangular
notations represent the associated Classifiers, the rule is to put the dot just outside the boundary of the node.

Figure 7.20 - Combining line path graphics

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

- Show all arrows and x’s. Navigation and its absence are made completely explicit.

« Suppress all arrows and x’s. No inference can be drawn about navigation. This is similar to any situation in which
information is suppressed from a view.

« Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no
navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.

42 UML Superstructure Specification, v2.1

Examples

Figure 7.21 shows a binary association from Player to Year named PlayedInYear.

* « PlayedinYear

Year

year

season| *

* *

Team Player
team goalie

Figure 7.21 - Binary and ternary associations

The solid triangle indicates the order of reading: Player PlayedinYear Year. The figure further shows a ternary association
between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0.1 {ordered}
d
C D
1 0..1

{subsets b}

Figure 7.22 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 7.22.
« Names a, b, and d on three of the ends.
» Multiplicities 0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.
« Specification of ordering on b.

 Subsetting on d. For an instance of class C, the collection d is a subset of the collection b. This is equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

UML Superstructure Specification, v2.1 43

The following examples show notation for navigable ends.

a b
A B
1.4 2.5
c d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5
[j
I J
1.4 2.5

Figure 7.23 - Examples of navigable ends

In Figure 7.23:

« The top pair AB shows a binary association with two navigable ends.

e The second pair CD shows a binary association with two non-navigable ends.

e The third pair EF shows a binary association with unspecified navigability.

« The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

e The fifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 7.24 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end.

b: B[*]

Figure 7.24 - Example of attribute notation for navigable end owned by an end class

44 UML Superstructure Specification, v2.1

Figure 7.25 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, Al::bl. So for an instance of the class Al, b1 is a subset of
b, and b is derived from b1l.

/b {union}
a
A B
0.1 0..*
a bl
Al Bl
0.1 0..*

{subsets b}

Figure 7.25 - Derived supersets (union)

Figure 7.26 shows the black diamond notation for composite aggregation.

1 1
1
+scrollbar
2 +title 1 +body 1
Slider
Header Panel

Figure 7.26 - Composite aggregation is depicted as a black diamond

Changes from previous UML

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association. The metaatribute targetScope
that characterized AssociationEnd in prior UML is no longer supported. Fundamental changes in the abstract syntax make
it impossible to continue targetScope or replace it by a new metaattribute, or even a standard tag, there being no
appropriate model element to tag. In UML 2, the type of the property determines the nature of the values represented by
the members of an Association.

7.3.4 AssociationClass (from AssociationClasses)
A model element that has both association and class properties. An AssociationClass can be seen as an association that
also has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also

defines a set of features that belong to the relationship itself and not to any of the classifiers.

Generalizations
« “Association (from Kernel)” on page 37

« “Class (from Kernel)” on page 48

UML Superstructure Specification, v2.1 45

Description

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is both an Association and a Class.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An AssociationClass cannot be defined between itself and something else.
self.endType->excludes(self) and self.endType>collect(et|et.allparents()->excludes(self))

Additional Operations

[1] The operation allConnections results in the set of all AssociationEnds of the Association.

AssociationClass::allConnections () : Set (Property);
allConnections = memberEnd->union (self.parents ()->collect (p | p.allConnections ())

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an
association, connecting a set of classifiers and a class, and as such have features and be included in other associations.
The semantics of an association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence
have a set of common properties, like being able to have features, having a name, etc. As these properties are inherited
from the same construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and
has the set of features that are defined for classes and associations. The constraints defined for class and association also
are applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.

Note — It should be noted that in an instance of an association class, there is only one instance of the associated classifiers at
each end, i.e., from the instance point of view, the multiplicity of the associations ends are ‘1.’

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path
and the association class symbol represent the same underlying model element, which has a single name. The name may
be placed on the path, in the class symbol, or on both, but they must be the same name.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct.
The association class symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the class symbol.

46 UML Superstructure Specification, v2.1

* Job 1.*
Person T Company
person | company
|
|
Job
salary

Figure 7.27 - An AssociationClass is depicted by an association symbol (aline) and a class symbol (a box) connected
with a dashed line. The diagram shows the association class Job, which is defined between the two classes Person
and Company.

7.3.5 BehavioralFeature (from Kernel)
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Generalizations
« “Feature (from Kernel)” on page 70

» “Namespace (from Kernel)” on page 101

Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled
by subclasses of BehavioralFeature.

Attributes

No additional attributes

Associations

e ownedParameter: Parameter[*] Specifies the ordered set of formal parameters owned by this BehavioralFeature.
The parameter direction can be ‘in,” ‘inout,” “out,” or ‘return’ to specify input,
output, or return parameters. Subsets Namespace::ownedMember

e raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation
of this operation.

Constraints

No additional constraints

Additional Operations

[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It
specifies that they have to have different signatures.

UML Superstructure Specification, v2.1 47

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif
else true
endif

Semantics

The list of owned parameters describes the order, type, and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the BehavioralFeature terminates.

The owned parameters with direction in or inout define the type, and number of arguments that must be provided when
invoking the BehavioralFeature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A BehavioralFeature may raise an exception during its invocation.

Notation

No additional notation
7.3.6 BehavioredClassifier (from Interfaces)

Generalizations

» “BehavioredClassifier (from BasicBehaviors, Communications)” on page 451 (merge increment)

Description

A BehavioredClassifier may have an interface realization.

Associations

« interfaceRealization: InterfaceRealization [*] (Subsets Element::ownedElement and Realization::clientDependency.)
7.3.7 Class (from Kernel)
A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 51

Description

Class is a kind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

48 UML Superstructure Specification, v2.1

Attributes

No additional attributes

Associations

e nestedClassifier: Classifier [*] References all the Classifiers that are defined (nested) within the Class. Subsets
Element::ownedMember

« ownedAttribute : Property [*] The attributes (i.e., the properties) owned by the class. The association is ordered.
Subsets Classifier::attribute and Namespace::ownedMember

e ownedOperation : Operation [*] The operations owned by the class. The association is ordered. Subsets
Classifier::feature and Namespace::ownedMember

e [superClass : Class [*] This gives the superclasses of a class. It redefines Classifier::general. This is derived.

Constraints

No additional constraints

Additional Operations

[1] The inherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Obijects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

Issue Editorial change: replace period with a comma and “If” by “if’ to make proper sentence

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as a result, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

Issue 4448 - Visibility constrains the actionsof methods of the class. Creation and destribution of links should
be allowed by methods that have access to at least one end of the association.

A class cannot access private features of another class, or protected features on another class that is not its supertype.
When creating and deleting associations, at least one end must allow access to the class.

UML Superstructure Specification, v2.1 49

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class” need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

Center class name in boldface.

Capitalize the first letter of class names (if the character set supports uppercase).
Left justify attributes and operations in plain face.

Begin attribute and operation names with a lowercase letter.

Put the class name in italics if the class is abstract.

Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples

Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- XWin: XWindow

Window display()

size: Area hide()

visibility: Boolean

- attachX(xWin: XWindow)

display()
hide()

Figure 7.28 - Class notation: details suppressed, analysis-level details, implementation-level details

50

UML Superstructure Specification, v2.1

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a classification of instances, it describes a set of instances that have features in common.

Generalizations

» “Namespace (from Kernel)” on page 101
» “RedefinableElement (from Kernel)” on page 133
» “Type (from Kernel)” on page 138

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

e isAbstract: Boolean If true, the Classifier does not provide a complete declaration and can typically not be
instantiated. An abstract classifier is intended to be used by other classifiers (e.g., as the target
of general metarelationships or generalization relationships). Default value is false.

Associations

e [attribute: Property [*] Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the
classifier. Subsets Classifier::feature and is a derived union.

e [feature : Feature [*] Specifies each feature defined in the classifier. Subsets Namespace::member. This is a
derived union.

« [general : Classifier[*] Specifies the general Classifiers for this Classifier. This is derived.

UML Superstructure Specification, v2.1 51

< generalization: Generalization[*] Specifies the Generalization relationships for this Classifier. These Generalizations
navigate to more general classifiers in the generalization hierarchy. Subsets
Element::ownedElement

e /inheritedMember: NamedElement[*] Specifies all elements inherited by this classifier from the general classifiers.
Subsets Namespace::member. This is derived.

Issue 8089 - Remove erroneous package association.

« redefinedClassifier: Classifier [*] References the Classifiers that are redefined by this Classifier. Subsets
RedefinableElement::redefinedElement

Package Dependencies

e substitution ; Substitution References the substitutions that are owned by this Classifier. Subsets
Element::ownedElement and NamedElement::clientDependency.)

Package PowerTypes

e powertypeExtent : GeneralizationSet Designates the GeneralizationSet of which the associated Classifier is a power
type.

Constraints

[1] The general classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.
self.parents()->forAll(c | self. maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances also be its subclasses.

Additional Operations
[1] The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, this will be a larger set than feature.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general
[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);

52 UML Superstructure Specification, v2.1

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is
only called when the argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then
hasVisibilityOf = (n.visibility <> #private)
else

hasVisibilityOf = true
[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[71 The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of

the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.ocllsKindOf(c.oclType)

Semantics
A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a
classifier have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms
to itself and to all of its ancestors in the generalization hierarchy.

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets
for that class.

UML Superstructure Specification, v2.1 53

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation subsection of “Property
(from Kernel, AssociationClasses)” on page 125.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used
to remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

« Attribute names typically begin with a lowercase letter. Multi-word names are often formed by concatenating the words
and using lowercase for all letters except for upcasing the first letter of each word but the first.

« Center the name of the classifier in boldface.
« Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

- For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

« Left justify attributes and operations in plain face.
 Begin attribute and operation names with a lowercase letter.
« Show full attributes and operations when needed and suppress them in other contexts or references.

54 UML Superstructure Specification, v2.1

Examples

ClassA

name: String
shape: Rectangle

+ size: Integer [0..1]

/ area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 7.30 - Examples of attributes

The attributes in Figure 7.30 are explained below.

« ClassA::name is an attribute with type String.

- ClassA::shape is an attribute with type Rectangle.

« ClassA::size is a public attribute of type Integer with multiplicity 0..1.

- ClassA::area is a derived attribute with type Integer. It is marked as read-only.

« ClassA::height is an attribute of type Integer with a default initial value of 5.

» ClassA::width is an attribute of type Integer.

 ClassB::id is an attribute that redefines ClassA::name.

» ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

« ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the

ClassA default of 5.

» ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.
An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in
Figure 7.31.

size
Window 7 Area

Figure 7.31 - Association-like notation for attribute

UML Superstructure Specification, v2.1

55

Package PowerTypes

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account
has two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings
Account, then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings
Account are both: instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and
examples, see Examples in the GeneralizationSet section, below.)

7.3.9 Comment (from Kernel)
A comment is a textual annotation that can be attached to a set of elements.

Generalizations

« “Element (from Kernel)” on page 63.

Description

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment can be owned by any element.

Attributes

Issue 9191 - add multiplicity

e body: String [0..1] Specifies a string that is the comment.

Associations
e annotatedElement: Element[*] References the Element(s) being commented.

Constraints

No additional constraints.

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the
model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

56 UML Superstructure Specification, v2.1

Examples

This class was added

by Alan Wright after

meeting with the ———
mission planning team. —=| Account

Figure 7.32 - Comment notation
7.3.10 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.

Generalizations

» “PackageableElement (from Kernel)” on page 111

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be
appropriate for expressing a constraint. In other situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to that element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes

No additional attributes

Associations

e constrainedElement: Element[*] The ordered set of Elements referenced by this Constraint.

Issue 9086 - change to subsets constraint

e [context: Namespace [0..1] Specifies the Namespace that is the context for evaluating this constraint. Subsets
NamedElement::namespace.

Issue 8090 - Correct multiplicity.

e specification: ValueSpecification[1] A condition that must be true when evaluated in order for the constraint to be
satisfied. Subsets Element::ownedElement.

UML Superstructure Specification, v2.1 57

Constraints

Issue 8509 - capitalize ‘boolean’

[1] The value specification for a constraint must evaluate to a Boolean value.
Cannot be expressed in OCL.

[2] Evaluating the value specification for a constraint must not have side effects.
Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.
not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL “self” is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
<constraint> ::= “{* [<name> *:’] <Boolean-expression> ‘ }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 7.33 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 7.34 shows an {xor} constraint
between two associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 7.35 shows an example of a constraint in a note symbol.

58 UML Superstructure Specification, v2.1

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the

first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

Examples

Stack

size: Integer {size >= 0}

push()
pop()

Figure 7.33 - Constraint attached to an attribute

/ Person
;
|
\

Account ‘

Corporation

Figure 7.34 - {xor} constraint

UML Superstructure Specification, v2.1 59

0..1), boss

employee employer
Person Company
* 0.1
{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 7.35 - Constraint in a note symbol
7.3.11 DataType (from Kernel)

Generalizations

« “Classifier (from Kernel, Dependencies, PowerTypes)” on page 51.

Description

A data type is a type whose instances are identified only by their value. A DataType may contain attributes to support the
modeling of structured data types.

A typical use of data types would be to represent programming language primitive types or CORBA basic types. For
example, integer and string types are often treated as data types.

Attributes

No additional attributes

Associations

Issue 7939 - The associations ownedAttribute and ownedOperation are ordered collections.

« ownedAttribute: Property[*] The Attributes owned by the DataType. This is an ordered collection. Subsets
Classifier::attribute and Element::ownedMember

« ownedOperation: Operation[*] The Operations owned by the DataType. This is an ordered collection. Subsets
Classifier::feature and Element::ownedMember

Constraints

No additional constraints

Semantics

A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are
identified only by their value.

60 UML Superstructure Specification, v2.1

All copies of an instance of a data type and any instances of that data type with the same value are considered to be the
same instance. Instances of a data type that have attributes (i.e., is a structured data type) are considered to be the same if
the structure is the same and the values of the corresponding attributes are the same. If a data type has attributes, then
instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by (e.g., an
attribute) denoted by a string containing the name of the data type.

Examples

«dataType» size: Integer
Integer

Figure 7.36 - Notation of data type: to the left is an icon denoting a data type and to the right is a reference to a data
type that is used in an attribute.

7.3.12 Dependency (from Dependencies)

Generalizations
- “DirectedRelationship (from Kernel)” on page 62

» “PackageableElement (from Kernel)” on page 111

Description

A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for
their specification or implementation. This means that the complete semantics of the depending elements is either
semantically or structurally dependent on the definition of the supplier element(s).

Attributes

No additional attributes

Associations

Issue 8019 - Add subsetting constraints to Dependency::client and Dependency::supplier.

e client: NamedElement [1..*] The element(s) dependent on the supplier element(s). In some cases (such as a Trace
Abstraction) the assignment of direction (that is, the designation of the client element) is
at the discretion of the modeler, and is a stipulation. Subsets
DirectedRelationship::source.

e supplier: NamedElement [1..*] The element(s) independent of the client element(s), in the same respect and the same
dependency relationship. In some directed dependency relationships (such as Refinement

UML Superstructure Specification, v2.1 61

Abstractions), a common convention in the domain of class-based OO software is to put
the more abstract element in this role. Despite this convention, users of UML may
stipulate a sense of dependency suitable for their domain, which makes a more abstract
element dependent on that which is more specific. Subsets DirectedRelationship::target.

Constraints

No additional constraints

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier.
The presence of dependency relationships in a model does not have any runtime semantics implications, it is all given in
terms of the model-elements that participate in the relationship, not in terms of their instances.

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the
client) depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional
stereotype and an optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more
arrows with their tails on the clients are connected to the tails of one or more arrows with their heads on the suppliers. A
small dot can be placed on the junction if desired. A note on the dependency should be attached at the junction point.

«dependencyName»

NamedElement-1 — — — — — — —= NamedElement-2

Figure 7.37 - Notation for a dependency between two elements

Examples

Issue 8091 - Correct example text.

In the example below, the Car class has a dependency on the CarFactory class. In this case, the dependency is an
instantiate dependency, where the Car class is an instance of the CarFactory class.

«instantiate»
CarFactory | ———— — — e Car

Figure 7.38 - An example of an instantiate dependency
7.3.13 DirectedRelationship (from Kernel)

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.

62 UML Superstructure Specification, v2.1

Generalizations

» “Relationship (from Kernel)” on page 134

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship is
an abstract metaclass.

Attributes
No additional attributes

Associations

e /source: Element [1..*] Specifies the sources of the DirectedRelationship. Subsets
Relationship::relatedElement. This is a derived union.

e [target: Element [1..*] Specifies the targets of the DirectedRelationship. Subsets Relationship::relatedElement.
This is a derived union.

Constraints
No additional constraints

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

7.3.14 Element (from Kernel)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Generalizations

None

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library. Element has a derived composition association to itself to support the general capability for
elements to own other elements.

Attributes
No additional attributes

UML Superstructure Specification, v2.1 63

Associations
e ownedComment: Comment[*] The Comments owned by this element. Subsets Element::ownedElement.

e/ ownedElement: Element[*] The Elements owned by this element. This is a derived union.

e /owner: Element [0..1] The Element that owns this element. This is a derived union.

Constraints

[1] An element may not directly or indirectly own itself.
not self.allOwnedElements()->includes(self)

[2] Elements that must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

Additional Operations

[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.
Element::allOwnedElements(): Set(Element);
allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do not
require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true
Semantics
Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.
Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.
7.3.15 Elementimport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Generalizations

» “DirectedRelationship (from Kernel)” on page 62

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

64 UML Superstructure Specification, v2.1

Attributes

Issue 9191 - add default value

e visibility: VisibilityKind Specifies the visibility of the imported PackageableElement within the importing Package.
The default visibility is the same as that of the imported element. If the imported element
does not have a visibility, it is possible to add visibility to the element import. Default
value is public.

e alias: String [0..1] Specifies the name that should be added to the namespace of the importing Package in lieu
of the name of the imported PackagableElement. The aliased hame must not clash with
any other member name in the importing Package. By default, no alias is used.

Associations
e importedElement: PackageableElement [1] Specifies the PackageableElement whose name is to be added to a
Namespace. Subsets DirectedRelationship::target.

e importingNamespace: Namespace [1] Specifies the Namespace that imports a PackageableElement from another
Package. Subsets DirectedRelationship::source and Element::owner.

Constraints

[1] The visibility of an Elementimport is either public or private.
self.visibility = #public or self.visibility = #private

[2] AnimportedElement has either public visibility or no visibility at all.
self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations
[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.
Elementimport::getName(): String;
getName =
if self.alias->notEmpty() then
self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

In case of a name clash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an element import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qualified name.

UML Superstructure Specification, v2.1 65

Issue 8079 - Clarify meaning of import when there are name clashes.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the elements are not added to the importing namespace and the names of those elements must be
qualified in order to be used in that namespace. If the name of an imported element is the same as the name of an element
owned by the importing namespace, that element is not added to the importing namespace and the name of that element
must be qualified in order to be used.

An imported element can be further imported by other namespaces using either element or package imports.

The visibility of the Elementimport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public, otherwise the keyword «access»
is shown to indicate private visibility.

If an element import has an alias, this is used in lieu of the name of the imported element. The aliased name may be
shown after or below the keyword «import».

Presentation options

If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

‘{element import” <qualified-name> ‘}’ | “{element access * <qualified-name> ‘}’
Optionally, the aliased name may be shown as well:

‘{element import * <qualified-name> * as ’ <alias> ‘}’ | ‘{element access * <qualified-name> ‘as’ <alias> ‘}’

66 UML Superstructure Specification, v2.1

Examples

The element import that is shown in Figure 7.39 allows elements in the package Program to refer to the type Time in
Types without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not
imported. The Type string can be used in the Program package but cannot be further imported from that package.

Types

«datatype»
7 String
«access»
«datatype»
Integer
Program «de%ar;yé)e»
«import»

Figure 7.39 - Example of element import

In Figure 7.40, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

Types
Shapes
«import»
«de;aty;lne» <o Double
eal [NTTTTee-——illl Circle
radius: Double

Figure 7.40 - Example of element import with aliasing
7.3.16 Enumeration (from Kernel)
An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Generalizations

- “DataType (from Kernel)” on page 60

Description
Enumeration is a kind of data type, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

UML Superstructure Specification, v2.1 67

Attributes

No additional attributes

Associations

e ownedLiteral: EnumerationLiteral[*] The ordered set of literals for this Enumeration. Subsets
Element::ownedMember

Constraints

No additional constraints

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to a line, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

«enumeration»
VisibilityKind
public
private
protected
package

Figure 7.41 - Example of an enumeration
7.3.17 EnumerationLiteral (from Kernel)
An enumeration literal is a user-defined data value for an enumeration.

Generalizations

» “InstanceSpecification (from Kernel)” on page 83

Description

An enumeration literal is a user-defined data value for an enumeration.

68 UML Superstructure Specification, v2.1

Attributes

No additional attributes

Associations

e enumeration: Enumeration[0..1] = The Enumeration that this EnumerationLiteral is a member of. Subsets
NamedElement::namespace

Constraints

No additional constraints

Semantics
An EnumerationL.iteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.

Notation

An EnumerationL.iteral is typically shown as a name, one to a line, in the compartment of the enumeration notation.
7.3.18 Expression (from Kernel)

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Generalizations

» “ValueSpecification (from Kernel)” on page 140

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

Attributes

Issue 9191 - change lower multiplicity to O

e symbol: String [0..1] The symbol associated with the node in the expression tree.

Associations

e operand: ValueSpecification[*] Specifies a sequence of operands. Subsets Element::ownedElement.

Constraints

No additional constraints

UML Superstructure Specification, v2.1 69

Semantics

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples

xor
else
plus(x,1)
x+1

7.3.19 Feature (from Kernel)
A feature declares a behavioral or structural characteristic of instances of classifiers.

Generalizations

» “RedefinableElement (from Kernel)” on page 133

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

e isStatic: Boolean Specifies whether this feature characterizes individual instances classified by the classifier
(false) or the classifier itself (true). Default value is false.

Associations

» [/ featuringClassifier: Classifier [0..*] The Classifiers that have this Feature as a feature. This is a derived union.

Constraints

No additional constraints

Semantics

A feature represents some characteristic for its featuring classifiers; this characteristic may be of the classifier’s instances
considered individually (not static), or of the classifier itself (static). A Feature can be a feature of multiple classifiers.
The same feature cannot be static in one context but not another.

Semantic Variation Points

With regard to static features, two alternative semantics are recognized. A static feature may have different values for
different featuring classifiers, or the same value for all featuring classifiers.

70 UML Superstructure Specification, v2.1

In accord with this semantic variation point, inheritance of values for static features is permitted but not required by UML
2. Such inheritance is encouraged when modeling systems will be coded in languages, such as C++, Java, and C#, which
stipulate inheritance of values for static features.

Notation
No general notation. Subclasses define their specific notation.

Static features are underlined.

Presentation Options
Only the names of static features are underlined.

An ellipsis (...) as the final element of a list of features indicates that additional features exist but are not shown in that
list.

Changes from previous UML

The property isStatic in UML 2 serves in place of the metaattribute ownerScope of Feature in UML 1. The enumerated
data type ScopeKind with two values, instance and classifier, provided in UML 1 as the type for ownerScope is no longer
needed because isStatic is Boolean.

7.3.20 Generalization (from Kernel, PowerTypes)

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits
the features of the more general classifier.

Generalizations

» “DirectedRelationship (from Kernel)” on page 62

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Package PowerTypes

A generalization can be designated as being a member of a particular generalization set.

Attributes

e isSubstitutable: Boolean [0..1] Indicates whether the specific classifier can be used wherever the general classifier
can be used. If true, the execution traces of the specific classifier will be a superset of
the execution traces of the general classifier.

Associations

e general: Classifier [1] References the general classifier in the Generalization relationship. Subsets
DirectedRelationship::target

e specific: Classifier [1] References the specializing classifier in the Generalization relationship. Subsets
DirectedRelationship::source and Element::owner

UML Superstructure Specification, v2.1 71

Package PowerTypes

e generalizationSet Designates a set in which instances of Generalization are considered members.

Constraints

No additional constraints

Package PowerTypes

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, all
Generalizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Package PowerTypes

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass).
Each GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which
a specific Classifier (or class) may be divided into subclasses. The generalizationSet associates those instances of a
Generalization with a particular GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific
Classifier. Another Generalization could also relate Person as a general Classifier, but have Male Person as the specific
Classifier. These two Generalizations could be associated with the same GeneralizationSet, because they specify one way
of partitioning the Person class.

Notation

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style.” See the example section below.

Package PowerTypes

A generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named,
that name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name
(which it inherits since it is a subclass of PackageableElement). Therefore, all Generalization relationships with the same
GeneralizationSet name are part of the same GeneralizationSet. This notation form is depicted in a), Figure 7.42.

When two or more lines are drawn to the same arrowhead, as illustrated in b), Figure 7.42, the specific Classifiers are part
of the same GeneralizationSet. When diagrammed in this way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

72 UML Superstructure Specification, v2.1

Lastly in c), Figure 7.42, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set, as illustrated at the bottom of Figure 7.42. Here, as with b), the
GeneralizationSet may be labeled with a single name, instead of each line labeled separately. However, such labels are
optional because the GeneralizationSet is clearly designated.

another
Generalization Set

one Generalization Set

generalization

generalization
set name-2

generalization
set name-1

set name-1

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

one another - -
G lizati o generalization generalization
eneralization o A Generalization Set set name-1 set name-2
Set generalization
set name-1 generalization
set name-2
| —
——
another
Generalization Set

one Generalization Set
b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

one another
Generalization P
L - Generalization Set
Set generalization generalization
set name-I~ - - set name-2

¢) GeneralizationSet sharing same general Classifier using the dashed-line notation.

Figure 7.42 - GeneralizationSet designation notations

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared
target style.” See the example section below.

UML Superstructure Specification, v2.1 73

Examples

Separate target style

Shared target style

Shape

Polygon Ellipse Spline
Shape

Polygon Ellipse Spline

Figure 7.43 - Examples of generalizations between classes

Package PowerTypes

Issue

8093 - Correct text to match figure.

In Figure 7.44, the Person class can be specialized as either a Female Person or a Male Person. Furthermore, Person’s can
be specialized as an Employee. Here, Female Person or a Male Person of Person constitute one GeneralizationSet and
Employee another. This illustration employs the notation forms depicted in the diagram above.

74

UML Superstructure Specification, v2.1

Person

Person
d Qemployment
gender
ender, ender employment i
g g status -
emale
Employee
Male Person
I;e;rrzz:z Person Employee
Male
Person
Person Person
employment
genderyﬁ ?— status - —_—— -
Female Male Femal Male
Employee emale Employee
Person Person ploy Person Person ploy

Figure 7.44 - Multiple subtype partitions (GeneralizationSets) example
7.3.21 GeneralizationSet (from PowerTypes)

A GeneralizationSet is a PackageableElement (from Kernel) whose instances define collections of subsets of
Generalization relationships.

Generalizations

» “PackageableElement (from Kernel)” on page 111

Description

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., from a class
to its superclasses). Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. For example, a GeneralizationSet
could define a partitioning of the class Person into two subclasses: Male Person and Female Person. Here, the
GeneralizationSet would associate two instances of Generalization. Both instances would have Person as the general
classifier; however, one Generalization would involve Male Person as the specific Classifier and the other would involve
Female Person as the specific classifier. In other words, the class Person can here be said to be partitioned into two
subclasses: Male Person and Female Person. Person could also be divided into North American Person, Asian Person,
European Person, or something else. This collection of subsets would define a different GeneralizationSet that would
associate with three other Generalization relationships. All three would have Person as the general Classifier; only the
specific classifiers would differ (i.e., North American Person, Asian Person, and European Person).

UML Superstructure Specification, v2.1 75

Attributes

| Issue 9191 - add default value

e isCovering : Boolean

Indicates (via the associated Generalizations) whether or not the set of specific Classifiers are
covering for a particular general classifier. When isCovering is true, every instance of a
particular general Classifier is also an instance of at least one of its specific Classifiers for the
GeneralizationSet. When isCovering is false, there are one or more instances of the particular
general Classifier that are not instances of at least one of its specific Classifiers defined for the
GeneralizationSet. For example, Person could have two Generalization relationships each with
a different specific Classifier: Male Person and Female Person. This GeneralizationSet would
be covering because every instance of Person would be an instance of Male Person or Female
Person. In contrast, Person could have a three Generalization relationship involving three
specific Classifiers: North American Person, Asian Person, and European Person. This
GeneralizationSet would not be covering because there are instances of Person for which these
three specific Classifiers do not apply. The first example, then, could be read: any Person
would be specialized as either being a Male Person or a Female Person— and nothing else; the
second could be read: any Person would be specialized as being North American Person,
Asian Person, European Person, or something else. Default value is false.

Issue 9191 - add default value

» isDisjoint : Boolean

Associations

Indicates whether or not the set of specific Classifiers in a Generalization relationship have
instance in common. If isDisjoint is true, the specific Classifiers for a particular
GeneralizationSet have no members in common; that is, their intersection is empty. If
isDisjoint is false, the specific Classifiers in a particular GeneralizationSet have one or more
members in common; that is, their intersection is not empty. For example, Person could have
two Generalization relationships, each with the different specific Classifier: Manager or Staff.
This would be disjoint because every instance of Person must either be a Manager or Staff. In
contrast, Person could have two Generalization relationships involving two specific (and non-
covering) Classifiers: Sales Person and Manager. This GeneralizationSet would not be disjoint
because there are instances of Person that can be a Sales Person and a Manager. Default value
is false.

e generalization : Generalization [*] Designates the instances of Generalization that are members of a given

GeneralizationSet (see constraint [1] below).

e powertype : Classifier [0..1] Designates the Classifier that is defined as the power type for the associated

Constraints

GeneralizationSet (see constraint [2] below).

[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.

generalization->collect(g | g.general)->asSet()->size() <= 1

[2] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances be its subclasses.

| 76

UML Superstructure Specification, v2.1

Semantics

The generalizationSet association designates the collection of subsets to which the Generalization link belongs. All of the
Generalization links that share a given general Classifier are divided into subsets (e.g., partitions or overlapping subset
groups) using the generalizationSet association. Each collection of subsets represents an orthogonal dimension of
specialization of the general Classifier.

As mentioned above, in essence, a power type is a class whose instances are subclasses of another class. Power types,
then, are metaclasses with an extra twist: the instances can also be subclasses. The powertype association relates a
classifier to the instances of that classifier, which are the specific classifiers identified for a GeneralizationSet. For
example, the Bank Account Type classifier could associate with a GeneralizationSet that has Generalizations with specific
classifiers of Checking Account and Savings Account. Here, then, Checking Account and Savings Account are instances
of Bank Account Type. Furthermore, if the Generalization relationship has a general classifier of Bank Account, then
Checking Account and Savings Account are also subclasses of Bank Account. Therefore, Checking Account and Savings
Account are both instances of Bank Account Type and subclasses of Bank Account. (For more explanation and examples
see “Examples” on page 79.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets was presented in the Notation section of
Generalization, above. To indicate whether or not a generalization set is covering and disjoint, each set should be labeled
with one of the constraints indicated below.

{complete, disjoint} - Indicates the generalization set is covering and its specific Classifiers have no
common instances.

{incomplete, disjoint} - Indicates the generalization set is not covering and its specific Classifiers have no
common instances*.

{complete, overlapping} - Indicates the generalization set is covering and its specific Classifiers do share
common instances.

{incomplete, overlapping} - Indicates the generalization set is not covering and its specific Classifiers do share
common instances.

* default is {incomplete, disjoint}

Figure 7.45 - Generalization set constraint notation

UML Superstructure Specification, v2.1 77

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, as illustrated below..

{Generalization {Generalization
Set constraint-1} Set constraint-2}

(a) GeneralizationSet constraint when sharing common generalization arrowhead.

{Generalization

Set constrain_t—3} —_ — - {Generalization

Set constraint-4}

(b) GeneralizationSet constraint using dashed-line notation.

Figure 7.46 - GeneralizationSet constraint notation

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to the
GeneralizationSet graphically containing the specific classifiers that are the instances of the power type. The illustration
below indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation for
GeneralizationSets.

78 UML Superstructure Specification, v2.1

PowerType General PowerType

Classifier-1 Classifier Classifier-2
: powertype classifier-1 : powertype classifier-2
Specific Specific Specific
Classifier-1 Classifier-2 Classifier-3

(a) Power type specification when sharing common generalization arrowhead

PowerType General PowerType
Classifier-1 Classifier Classifier-2

: powertype classifier-1 - powertype classifier-2

Specific Specific Specific
Classifier-1 Classifier-2 Classifier-3

(b) Power type specification using dashed-line notation

Figure 7.47 - Power type notation

Examples

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
GeneralizationSet is partitioned (i.e., is constrained to be complete and disjoint), each instance of Person must either be a
Female Person or a Male Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class
because a Person object may not exist without being either a Female Person or a Male Person.) Furthermore, a Person
object can be specialized as an Employee. The generalization set here is expressed as {incomplete, disjoint}, which means
that instances of Persons can be subset as Employees or some other unnamed collection that consists of all non-Employee
instances. In other words, Persons can either be an Employee or in the complement of Employee, and not both. Taken
together, the diagram indicates that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or
not. When expressed in this manner, it is possible to partition the instances of a classifier using a disjunctive normal form
(DNF).

UML Superstructure Specification, v2.1 79

Person

{complete, {incomplete,
disjoint} disjoint}

An incomplete partition
Female indicating that a Person
A complete partition Employee can also be an Employee
indicating that a Person Person or not.

may be subtyped as
either a Female Person

or a Male Person.

Male
Person

Figure 7.48 - Multiple ways of dividing subtypes (generalization sets) and constraint examples

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one
of the ways botanists organize trees is by species. In this way, each tree we see can be classified as an American elm,
sugar maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of the
instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local nursery.
Instances of Tree Species, such as sugar maple and apricot. Furthermore, this figure indicates the relationships that exist
between these two sets of objects. For instance, the tree in your front yard might be classified as a sugar maple, your
neighbor’s tree as an apricot, and so on. This class diagram expresses that each Tree Species classifies zero or more
instances of Tree, and each Tree is classified as exactly one Tree Species. It also indicates that each Tree Species is
identified with a Leaf Pattern and has a general location in any number of Geographic Locations. For example, the
saguaro cactus has leaves reduced to large spines and is generally found in southern Arizona and northern Sonora.
Additionally, this figure indicates each Tree has an actual location at a particular Geographic Location. In this way, a
particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

Lastly, this diagram illustrates that Tree is subtyped as American EIm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly
maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila
Woodpecker, and so on. At first glance, it would seem that a modeler should only use either the Tree Species class or the
subclasses of Tree—since the instances of Tree Species are the same as the subclasses of tree. In other words, it seems
redundant to represent both on the same diagram. Furthermore, having both would seem to cause potential diagram
maintenance issues. For instance, if botanists got together and decided that the American elm should no longer be a
species of tree, the American EIm object would then be removed as an instance of Tree Species. To maintain the integrity
of our model in such a situation, the American EIm subtype of Tree must also be removed. Additionally, if a new species
were added as a subtype of Tree, that new species would have to be added as an instance of Tree Species. The same kind
of situation exists if the name of a tree species were changed—both the subtype of Tree and the instance of Tree Species
would have to be modified accordingly.

As it turns out, this apparent redundancy is not a redundancy semantically (although it may be implemented that way).
Different modeling approaches depicted above are not really all that different. In reality, the subtypes of Tree and the
instances of Tree Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species.
Furthermore, the instances of Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called
sugar maple and a subtype of Tree is called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple
subtype are the same object. The instances of Tree Species are—as the name implies—types of trees. The subtypes of
Tree are—by definition—types of trees. While Tree may be divided into various collections of subsets (based on size or

80 UML Superstructure Specification, v2.1

age, for example), in this example it is divided on the basis of species. Therefore, the integrity issue mentioned above is
not really an issue here. Deleting the American EIm subtype from the collection of Tree subtypes does not require also
deleting the corresponding Tree Species instance, because the American Elm subtype and the corresponding Tree Species
instance are the same object.

tree tree species
— peces 1 Tree
Tree Species
* * l
actual general leaf
{disjoint, location locations pattern
incomplete} 1 * 1
: Tree Species Geographic Leaf
Location Pattern
— Sugar
Maple
— Apricot
American
Elm
] Saguaro

Figure 7.49 - Power type example and notation

As established above, the instances of Classifiers can also be Classifiers. (This is the stuff that metamodels are made of.)
These same instances, however, can also be specific classifiers (i.e., subclasses) of another classifier. When this occurs,
we have what is called a power type. Formally, a power type is a classifier whose instances are also subclasses of another
classifier.

In the examples above, Tree Species is a power type on the Tree type. Therefore, the instances of Tree Species are
subtypes of Tree. This concept applies to many situations within many lines of business. Figure 7.50 depicts other
examples of power types. The name on the generalization set beginning with a colon indicates the power type. In other
words, this name is the name of the type of which the subtypes are instances.

Diagram (a) in the figure below, then, can be interpreted as: each instance of Account is classified with exactly one
instance of Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This
means that each instance of Checking Account can have its own attributes (based on those defined for Checking Account
and those inherited from Account), such as account number and balance. Additionally, it means that Checking Account as
an object in its own right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes
are sometimes referred to as class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling
example. Here, each Vehicle can be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car
are instances of Vehicle Type. In (c), Disease Occurrence classifies each occurrence of disease (e.g., my chicken pox and
your measles). Disease Classification is the power type whose instances are classes such as Chicken Pox and Measles.

UML Superstructure Specification, v2.1 81

account classifier vehicle category
Account 1 Vehicle
Account [% Type Vehicle [+ Type
account classified vehicle
{disjoint, incomplete} (disjoint, incomplete}
) :Account Type :Vehicle Type
Checking Truck
Account ruc
Savings
g Car
Account
(a) Bank account/account type example (b) Vehicle/vehicle type example
disease classifier service category
. i1 Installed 1| Telephone
Disease Disease Servi
o) * Classification Telephone [ervice
ceurrence classified disease Service installed service Category
{disjoint, incomplete} {disjoint, incomplete}
: Disease Classification : Telephone Service Category
Chicken Call
Pox Waiting
Measles Call
Transferring
(c) Disease Occurrence/Disease Classification example (d) Telephone service example

Figure 7.50 - Other power type examples

Labeling collections of subtypes with the power type becomes increasingly important when a type has more than one
power type. The figure below is one such example. Without knowing which subtype collection contains Policy Coverage
Types and which Insurance Lines, clarity is compromised. This figure depicts an even more complex situation. Here, a
power type is expressed with multiple collections of subtypes. For instance, a Policy can be subtyped as either a Life,
Health, Property/Casualty, or some other Insurance Line. Furthermore, a Property/Casualty policy can be further subtyped
as Automobile, Equipment, Inland Marine, or some other Property/Casualty line of insurance. In other words, the
subtypes in the collection labeled Insurance Line are all instances of the Insurance Line power type.

82 UML Superstructure Specification, v2.1

Policy issued p0|iC2’ insurance Iini
Coverage 1 Policy . Insurance
Type coverage type issued policy Line
{disjoint, complete}él jﬁ {disjoint, complete}

:Policy Coverage Type :Insurance Line
Group Life
Policy | Policy

Individual Health
Policy —| Policy
Property/
Casualty
Policy

Figure 7.51 - Other power type examples

Power types are a conceptual, or analysis, notion. They express a real-world situation; however, implementing them may
not be easy and efficient. To implement power types with a relational database would mean that the instances of a relation
could also be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation cannot directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) a data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, if a new subclass of Policy were added, a new instance
must also be added to the appropriate power type.

7.3.22 InstanceSpecification (from Kernel)
An instance specification is a model element that represents an instance in a modeled system.

Generalizations

« “PackageableElement (from Kernel)” on page 111

Description

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description may include:

« Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified is
abstract, then the instance specification only partially describes the entity.

« The kind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier is a
class describes an object of that class, while an instance specification whose classifier is an association describes a link
of that association.

UML Superstructure Specification, v2.1 83

« Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

- Specification of how to compute, derive, or construct the instance (optional).

InstanceSpecification is a concrete class.

Attributes

No additional attributes

Associations

» classifier : Classifier [0..*] The classifier or classifiers of the represented instance. If multiple classifiers are
specified, the instance is classified by all of them.

e slot: Slot [*] A slot giving the value or values of a structural feature of the instance. An instance
specification can have one slot per structural feature of its classifiers, including
inherited features. It is not necessary to model a slot for each structural feature, in
which case the instance specification is a partial description. Subsets
Element::ownedElement

» specification : ValueSpecification [0..1] A specification of how to compute, derive, or construct the instance.
Subsets Element::ownedElement

Constraints

[1] The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance specification.
slot->forAll(s | classifier->exists (c | c.allFeatures()->includes (s.definingFeature)))

[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most one
slot in an instance specification.

classifier->forAll(c | (c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)))

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled
using multiple instance specifications, one for each snapshot.

Issue 8719 - add clarifying paragraph

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the dynamic
element that it is modeling. Therefore, one should not expect the dynamic semantics of InstanceSpecification model
elements in a model repository to conform to the semantics of the dynamic elements that they represent.

Note — When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does

84 UML Superstructure Specification, v2.1

not depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely — required
structural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity
would have a concrete classification.

Notation

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears
an underlined concatenation of the instance name (if any), a colon (“:”) and the classifier name or names. The convention
for showing multiple classifiers is to separate their names by commas.

Names are optional for UML classifiers and instance specifications. The absence of a name in a diagram may reflect its
absence in the underlying model.

The standard notation for an anonymous instance specification of an unnamed classifier is an underlined colon (‘:”).

If an instance specification has a value specification as its specification, the value specification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the instance specification is shown using
an enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing
shape.

streetName: String
"S. Crown Ct."

Figure 7.52 - Specification of an instance of String

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign
(“=") and a value specification. Other properties of the feature, such as its type, can optionally be shown.

myAddress: Address

streetName ="S. Crown Ct."
streetNumber : Integer = 381

Figure 7.53 - Slots with values

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

UML Superstructure Specification, v2.1 85

Don : Person | father son | Josh: Person

Figure 7.54 - Instance specifications representing two objects connected by a link

Presentation Options

A slot value for an attribute can be shown using a notation similar to that for a link. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

7.3.23 InstanceValue (from Kernel)

An instance value is a value specification that identifies an instance.

Generalizations

« “ValueSpecification (from Kernel)” on page 140

Description

An instance value specifies the value modeled by an instance specification.

Attributes

No additional attributes

Associations

e instance: InstanceSpecification [1] The instance that is the specified value.

Constraints

No additional constraints

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
slot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification.”

86 UML Superstructure Specification, v2.1

7.3.24 Interface (from Interfaces)

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 51

Description

An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An
interface specifies a contract; any instance of a classifier that realizes the interface must fulfill that contract. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented by an
instance of an instantiable classifier, which means that the instantiable classifier presents a public facade that conforms to
the interface specification. Note that a given classifier may implement more than one interface and that an interface may
be implemented by a number of different classifiers (see “InterfaceRealization (from Interfaces)” on page 90).

Attributes

No additional attributes

Associations

< ownedAttribute: Property References all the properties owned by the Interface. (Subsets
Namespace::ownedMember and Classifier::feature)

e ownedOperation: Operation References all the operations owned by the Interface. (Subsets
Namespace::ownedMember and Classifier::feature)

e nestedClassifier: Classifier (References all the Classifiers owned by the Interface. (Subsets
Namespace::ownedMember)

« redefinedinterface: Interface (References all the Interfaces redefined by this Interface. (Subsets
Element::redefinedElement)

Constraints

[1] The visibility of all features owned by an interface must be public.
self.feature->forAll(f | f.visibility = #public)

Semantics

An interface declares a set of public features and obligations that constitute a coherent service offered by a classifier.
Interfaces provide a way to partition and characterize groups of properties that realizing classifier instances must possess.
An interface does not specify how it is to be implemented, but merely what needs to be supported by realizing instances.
That is, such instances must provide a public facade (attributes, operations, externally observable behavior) that conforms
to the interface. Thus, if an interface declares an attribute, this does not necessarily mean that the realizing instance will
necessarily have such an attribute in its implementation, only that it will appear so to external observers.

Because an interface is merely a declaration it is not an instantiable model element; that is, there are no instances of
interfaces at run time.

UML Superstructure Specification, v2.1 87

The set of interfaces realized by a classifier are its provided interfaces, which represent the obligations that instances of
that classifier have to their clients. They describe the services that the instances of that classifier offer to their clients.
Interfaces may also be used to specify required interfaces, which are specified by a usage dependency between the
classifier and the corresponding interfaces. Required interfaces specify services that a classifier needs in order to perform
its function and fulfill its own obligations to its clients.

Properties owned by interfaces are abstract and imply that the conforming instance should maintain information
corresponding to the type and multiplicity of the property and facilitate retrieval and modification of that information. A
property declared on an Interface does not necessarily imply that there will be such a property on a classifier realizing that
Interface (e.g., it may be realized by equivalent get and set operations). Interfaces may also own constraints that impose
constraints on the features of the implementing classifier.

An association between an interface and any other classifier implies that a conforming association must exist between any
implementation of that interface and that other classifier. In particular, an association between interfaces implies that a
conforming association must exist between implementations of the interfaces.

An interface cannot be directly instantiated. Instantiable classifiers, such as classes, must implement an interface (see
“InterfaceRealization (from Interfaces)”).

Notation
As a classifier, an interface may be shown using a rectangle symbol with the keyword «interface» preceding the name.

The interface realization dependency from a classifier to an interface is shown by representing the interface by a circle or
ball, labeled with the name of the interface, attached by a solid line to the classifier that realizes this interface (see Figure
7.55).

O— ProximitySensor

ISensor

Figure 7.55 - Isensor is the provided interface of ProximitySensor

The usage dependency from a classifier to an interface is shown by representing the interface by a half-circle or socket,
labeled with the name of the interface, attached by a solid line to the classifier that requires this interface (see Figure
7.56).

TheftAlarm

—C

ISensor

Figure 7.56 - Isensor is the required interface of TheftAlarm

Presentation Options

Alternatively, in cases where interfaces are represented using the rectangle notation, interface realization and usage
dependencies are denoted with appropriate dependency arrows (see Figure 7.57). The classifier at the tail of the arrow
implements the interface at the head of the arrow or uses that interface, respectively.

88 UML Superstructure Specification, v2.1

«interface»
ISensor
TheftAlarm ——— > <]— — — —] ProximitySensor

activate()
read()

Figure 7.57 - Alternative notation for the situation depicted in Figure 7.55 and Figure 7.56

Issue 8746 - replace paragraph with better explanation

It is often the case in practice that two or more interfaces are mutually coupled through application-specific dependencies.
In such situations, each interface represents a specific role in a multi-party “protocol”. These types of protocol role
couplings can be captured by associations between interfaces as shown in the example in Figure 7.58.

. «interface»
«interface» theAlarm the Sensor ISensor
IAlarm
1 1 .
: activate
notify() eadl 0

Figure 7.58 - Alarm is the required interface for any classifier implementing Isensor; conversely, Isensor is the required
interface for any classifier implementing IAlarm.

Examples

The following example shows a set of associated interfaces that specify an alarm system. (These interfaces may be
defined independently or as part of a collaboration.) Figure 7.59 shows the specification of three interfaces, IAlarm,
ISensor, and 1Buzzer. IAlarm and Isensor are shown as engaged in a bidirectional protocol; I1Buzzer describes the required
interface for instances of classifiers implementing 1Alarm, as depicted by their respective associations.

«interface»
IBuzzer ; «interface»
theBuzzer «”:;jrafranﬁe» theAlarm the Sensor ISensor
Volume
1 : 1 ! activate()
Start() notify() read()
Reset()

Figure 7.59 - A set of collaborating interfaces.

UML Superstructure Specification, v2.1 89

Three classes: DoorSensor, DoorAlarm, and DoorBell implement the above interfaces (see Figure 7.60). These classifiers
are completely decoupled. Nevertheless, instances of these classifiers are able to interact by virtue of the conforming
associations declared by the associations between the interfaces that they realize.

ﬁ) ISensor ﬁ) IAlarm ﬁ) IBuzzer

DoorSensor DoorAlarm DoorBell

Figure 7.60 - Classifiers implementing the above interfaces
7.3.25 InterfaceRealization (from Interfaces)

Generalizations

» “Realization (from Dependencies)” on page 132

Description

An InterfaceRealization is a specialized Realization relationship between a Classifier and an Interface. This relationship
signifies that the realizing classifier conforms to the contract specified by the Interface.

Attributes

No additional attributes

Associations

Issue 9192 - remove subsets of ‘target’

e contract: Interface [1]
References the Interface specifying the conformance contract. (Subsets Dependency::supplier).

Issue 9192 - remove subsets of ‘source’

e implementingClassifier: BehavioredClassifier [1]
References the BehavioredClassifier that owns this Interfacerealization (i.e., the classifier that realizes the Interface to
which it points). (Subsets Dependency::client, Element::owner.)

Constraints

No additional constraints

Semantics

A classifier that implements an interface specifies instances that are conforming to the interface and to any of its
ancestors. A classifier may implement a number of interfaces. The set of interfaces implemented by the classifier are its
provided interfaces and signify the set of services the classifier offers to its clients. A classifier implementing an interface
supports the set of features owned by the interface. In addition to supporting the features, a classifier must comply with
the constraints owned by the interface.

90 UML Superstructure Specification, v2.1

An interface realization relationship between a classifier and an interface implies that the classifier supports the set of
features owned by the interface, and any of its parent interfaces. For behavioral features, the implementing classifier will
have an operation or reception for every operation or reception, respectively, defined by the interface. For properties, the
realizing classifier will provide functionality that maintains the state represented by the property. While such may be done
by direct mapping to a property of the realizing classifier, it may also be supported by the state machine of the classifier
or by a pair of operations that support the retrieval of the state information and an operation that changes the state
information.

Notation

See “Interface (from Interfaces).”

7.3.26 LiteralBoolean (from Kernel)

Issue 8509 - capitalize ‘boolean’

A literal Boolean is a specification of a Boolean value.

Generalizations

 “LiteralSpecification (from Kernel)” on page 93

Description

Issue 8509 - capitalize ‘boolean’

A literal Boolean contains a Boolean-valued attribute. Default value is false.

Attributes

Issue 9191 - add default value

e value: Boolean The specified Boolean value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() gives the value.
LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

UML Superstructure Specification, v2.1 91

Semantics

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word “false,” corresponding to its value.
7.3.27 Literallnteger (from Kernel)

A literal integer is a specification of an integer value.

Generalizations

 “LiteralSpecification (from Kernel)” on page 93

Description

A literal integer contains an Integer-valued attribute.

Attributes

Issue 9191 - add default value

e value: Integer The specified Integer value. Default value is 0.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
Literallnteger::isComputable(): Boolean;
isComputable = true

[2] The query integerValue() gives the value.
Literallnteger::integerValue() : [Integer];
integerValue = value

Semantics

A Literallnteger specifies a constant Integer value.

Notation

A Literallnteger is shown as a sequence of digits.

92 UML Superstructure Specification, v2.1

7.3.28 LiteralNull (from Kernel)
A literal null specifies the lack of a value.

Generalizations

 “LiteralSpecification (from Kernel)” on page 93

Description

A literal null is used to represent null (i.e., the absence of a value).

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

[1] The query isComputable() is redefined to be true.
LiteralNull::isComputable(): Boolean;
isComputable = true

[2] The query isNull() returns true.
LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null.” Other notations are
described for specific uses.

7.3.29 LiteralSpecification (from Kernel)
A literal specification identifies a literal constant being modeled.

Generalizations

» “ValueSpecification (from Kernel)” on page 140

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

UML Superstructure Specification, v2.1 93

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics. Subclasses of LiteralSpecification are defined to specify literal values of different types.

Notation

No specific notation
7.3.30 LiteralString (from Kernel)
A literal string is a specification of a string value.

Generalizations

« “LiteralSpecification (from Kernel)” on page 93.

Description

A literal string contains a String-valued attribute.

Attributes

Issue 9191 - add multiplicity with lower bound at O

e value: String [0..1] The specified String value

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralString::isComputable(): Boolean;
isComputable = true

[2] The query stringValue() gives the value.
LiteralString::stringValue() : [String];

94

UML Superstructure Specification, v2.1

stringValue = value

Semantics

A LiteralString specifies a constant String value.

Notation
A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.
7.3.31 LiteralUnlimitedNatural (from Kernel)
A literal unlimited natural is a specification of an unlimited natural number.

Generalizations

 “LiteralSpecification (from Kernel)” on page 93

Description

A literal unlimited natural contains an UnlimitedNatural-valued attribute.

Attributes

Issue 9191 - add default value

e value: UnlimitedNatural The specified UnlimitedNatural value. Default value is 0.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() gives the value.
LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

UML Superstructure Specification, v2.1

95

Notation

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk denotes
unlimited (and not infinity).

7.3.32 MultiplicityElement (from Kernel)

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Generalizations

« “Element (from Kernel)” on page 63

Description

A MultiplicityElement is an abstract metaclass that includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Attributes

e isOrdered : Boolean For a multivalued multiplicity, this attribute specifies whether the values in an
instantiation of this element are sequentially ordered. Default is false.

e isUnique : Boolean For a multivalued multiplicity, this attributes specifies whether the values in an
instantiation of this element are unique. Default is true.

e [lower : Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

e /upper : UnlimitedNatural [0..1] Specifies the upper bound of the multiplicity interval, if it is expressed as an
unlimited natural.

Associations

« lowerValue: ValueSpecification [0..1] The specification of the lower bound for this multiplicity. Subsets
Element::ownedElement

e upperValue: ValueSpecification [0..1] The specification of the upper bound for this multiplicity. Subsets
Element::ownedElement

Constraints

These constraints must handle situations where the upper bound may be specified by an expression not computable in the
model.
[1] A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0
[2] The lower bound must be a non-negative integer literal.
lowerBound()->notEmpty() implies lowerBound() >=0
[3] The upper bound must be greater than or equal to the lower bound.
(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

96 UML Superstructure Specification, v2.1

[4]

(3]

[6]

[7]

If a non-literal ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have
side effects.

Cannot be expressed in OCL.

If a non-literal ValueSpecification is used for the lower or upper bound, then that specification must be a constant
expression.

Cannot be expressed in OCL.

The derived lower attribute must equal the lowerBound.
lower = lowerBound()

The derived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations

(1]

(2]

(3]

(4]

(5]

The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.
MultiplicityElement::isMultivalued() : Boolean;

pre: upperBound()->notEmpty()

isMultivalued = (upperBound() > 1)

The query includesCardinality() checks whether the specified cardinality is valid for this multiplicity.
MultiplicityElement::includesCardinality(C : Integer) : Boolean;

pre: upperBound()->notEmpty() and lowerBound()->notEmpty()

includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.

MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()
and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()

includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

The query lowerBound() returns the lower bound of the multiplicity as an integer.

MultiplicityElement::lowerBound() : [Integer];

lowerBound = if lowerValue->isEmpty() then 1 else lowerValue.integerValue() endif

The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.
MultiplicityElement::upperBound() : [UnlimitedNatural];

upperBound = if upperValue->isEmpty() then 1 else upperValue.unlimitedValue() endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity M
if M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite)
upper bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a collection of
values. The multiplicity is a constraint on the number of values that may validly occur in that set.

UML Superstructure Specification, v2.1

97

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic
effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions.

Notation

Issue 8097 - Fix typo.

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include
a multiplicity specification, which is shown as a text string containing the bounds of the interval, and a notation for
showing the optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
<lower-bound> *..” <upper-bound>

where <lower-bound> is an integer and <upper-bound> is an unlimited natural number. The star character (*) is used as
part of a multiplicity specification to represent the unlimited (or infinite) upper bound.

If the Multiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 7.61 shows two multiplicity strings as
part of attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity
string is displayed without square brackets and may be placed near the symbol for the element. Figure 7.62 shows two
multiplicity strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation is to use a property string containing ordered or unordered to define the ordering,
and unique or non-unique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1.”

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing
a single star “*” instead of “0..*.”

The following BNF defines the syntax for a multiplicity string, including support for the presentation options:

Issue 8226 - fix BNF

<multiplicity> ::= <multiplicity-range>
[[“{* <order-designator> [‘,” <uniqueness-designator>1] ‘}"]|

98 UML Superstructure Specification, v2.1

Examples

[“{* <uniqueness-designator> [*,” <order-designator>1]‘} 11
<multiplicity-range> ::= [<lower> *..”] <upper>

<lower> ::= <integer> | <value-specification>

<upper> ::= “*’ | <value-specification>

<order-designator> ::= ‘ordered’ | ‘unordered’

<uniqueness-designator> ::= ‘unique’ | ‘nonunique’

Customer

purchase :

Purchase [*] {ordered, unique}

account: Account [0..5] {unique}

Figure 7.61 - Multiplicity within a textual specification

Purchase

purchase account
Customer Account
R {orc_|ered, {unique}
unique} 0.5

Figure 7.62 - Multiplicity as an adornment to a symbol

7.3.33 NamedElement (from Kernel, Dependencies)

A named element is an element in a model that may have a name.

Generalizations

» “Element (from Kernel)” on page 63

Description

A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes

e name: String [0..1]
e [qualifiedName: String [0..1]

UML Superstructure Specification, v2.1

The name of the NamedElement.

A name that allows the NamedElement to be identified within a hierarchy of nested
Namespaces. It is constructed from the names of the containing namespaces starting
at the root of the hierarchy and ending with the name of the NamedElement itself.
This is a derived attribute.

99

Issue 4448 - Visibility constrains the actionsof methods of the class. Creation and destruction of links should
be allowed by methods that have access to at least one end of the association.

e visibility: VisibilityKind [0..1] Determines where the NamedElement appears within different Namespaces within
the overall model, and its accessibility..

Package Dependencies

Issue 6630 - It does not make sense for the supplier of a dependency to know about its dependencies.
Removing supplierDependency (and its navigability in Figure).

e clientDependency: Dependency[*] Indicates the dependencies that reference the client.

Associations

e/ namespace: Namespace [0..1] Specifies the namespace that owns the NamedElement. Subsets Element::owner.
This is a derived union.

Constraints
[1] If there is no name, or one of the containing namespaces has no name, there is no qualified name.
(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()
[2] When there is a name, and all of the containing namespaces have a name, the qualified name is constructed from the
names of the containing namespaces.
(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->union(result))
[3] If a NamedElement is not owned by a Namespace, it does not have a visibility.
namespace->isEmpty() implies visibility->isEmpty()

Additional Operations
[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.
NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =
if self.namespace->isEmpty()
then Sequence{}
else self.namespace.allNamespaces()->prepend(self.namespace)
endif
[2] The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.

By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but
different names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =
if self.oclisKindOf(n.oclType) or n.ocllsKindOf(self.ocIType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
else true

100 UML Superstructure Specification, v2.1

endif
[3] The query separator() gives the string that is used to separate names when constructing a qualified name.
NamedElement::separator(): String;
separator =’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the attribute has a multiplicity of [0..1] that provides for the possibility of the absence of a name (which is different
from the empty name).

Issue 4448 - Visibility constrains the actionsof methods of the class. Creation and destruction of links should
be allowed by methods that have access to at least one end of the association.

The visibility attribute provides the means to constrain the usage of a named element, either in namespaces or in access
to the element.lt is intended for use in conjunction with import, generalization, and access mechanisms.

Notation
No additional notation

7.3.34 Namespace (from Kernel)
A namespace is an element in a model that contains a set of named elements that can be identified by name.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 99.

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

Issue 8083 - Reword to eliminate confusion about constraint associated with namespace.

A namespace can own constraints. A constraint associated with a namespace may either apply to the namespace itself, or
it may apply to elements in the namespace.

A namespace has the ability to import either individual members or all members of a package, thereby making it possible
to refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary
to use qualified names or aliases to disambiguate the referenced elements.

Attributes
No additional attributes

UML Superstructure Specification, v2.1 101

Associations
* elementimport: Elementimport [*]

e |/ importedMember: PackageableElement [*]

e/ member: NamedElement [*]

e/ ownedMember: NamedElement [*]

e ownedRule: Constraint[*]

e packagelmport: Packagelmport [*]

Constraints

References the Elementimports owned by the Namespace. Subsets
Element::ownedElement

References the PackageableElements that are members of this
Namespace as a result of either Packagelmports or Elementimports.
Subsets Namespace::member

A collection of NamedElements identifiable within the Namespace,
either by being owned or by being introduced by importing or
inheritance. This is a derived union.

A collection of NamedElements owned by the Namespace. Subsets
Element::ownedElement and Namespace::member. This is a derived
union.

Specifies a set of Constraints owned by this Namespace. Subsets
Namespace::ownedMember

References the Packagelmports owned by the Namespace. Subsets
Element::ownedElement

[1] All the members of a Namespace are distinguishable within it.

membersAreDistinguishable()

[2] The importedMember property is derived from the Elementimports and the Packagelmports.
elf.elementimport.importedElement.asSet()->union(self.packagelmport.importedPackage->collect(p |

p.visibleMembers()))))

Additional Operations

[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a
member can have multiple names in a Namespace if it is imported more than once with different aliases. The query takes
account of importing. It gives back the set of names that an element would have in an importing namespace, either
because it is owned; or if not owned, then imported individually; or if not individually, then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);

getNamesOfMember =

if self.ownedMember ->includes(element)

then Set{}->include(element.name)

else let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = element) in

if elementimports->notEmpty()

then elementimports->collect(el | el.getName())

else

self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))

endif
endif

[2] The Boolean query membersAreDistinguishable() determines whether all of the namespace’s members are

distinguishable within it.

102

UML Superstructure Specification, v2.1

Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |
self. member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))
[3] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.

This excludes hidden ones, i.e., those that have names that conflict with names of owned members, and also excludes
elements that would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);

importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[4] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(impl | imps.exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
namel::name2::name3. The member association identifies all named elements in a namespace called N that can be
referred to by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelated types, or
related types but different names. This rule may be overridden for particular cases, such as operations that are
distinguished by their signature.

The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These
constraints are evaluated when determining if the model elements are well formed.

Notation

No additional notation. Concrete subclasses will define their own specific notation.
7.3.35 OpaqueExpression (from Kernel)

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

Generalizations

« “ValueSpecification (from Kernel)” on page 140

Description

An expression contains language-specific text strings used to describe a value or values, and an optional specification of
the languages.

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be
used.

UML Superstructure Specification, v2.1 103

Attributes

Issue 9191 - change lower bound to 0

e body: String [0..*] The text of the expression, possibly in multiple languages.

« language: String [0..*] Specifies the languages in which the expression is stated. The interpretation of the expression
body depends on the languages. If the languages are unspecified, they might be implicit from
the expression body or the context. Languages are matched to body strings by order.

Associations

No additional associations

Constraints

Issue 8100 - Clarify semantics of multiple languages co-existing in the same expression.
9191 - remove second constraint introduced by 8100

[1] If the language attribute is not empty, then the size of the body and language arrays must be the same.
language->notEmpty() implies
(body->size() = language->size())

Additional Operations

These operations are not defined within the specification of UML. They should be defined within an implementation that

implements constraints so that constraints that use these operations can be evaluated.

[1] The query value() gives an integer value for an expression intended to produce one.
Expression::value(): Integer;
pre: self.isintegral()

[2] The query isIntegral() tells whether an expression is intended to produce an integer.
Expression::isintegral(): Boolean;

[3] The query isPositive() tells whether an integer expression has a positive value.
Expression::isPositive(): Boolean;
pre: self.isintegral()

[4] The query isNonNegative() tells whether an integer expression has a non-negative value.
Expression::isNonNegative(): Boolean;
pre: self.isintegral()

Semantics

Issue 8100 - Clarify semantics of multiple languages co-existing in the same expression.

The expression body may consist of a sequence of text strings - each in a different language - representing alternative
representations of the same content. When multiple language strings are provided, the language of each separate string is
determined by its corresponding entry in the "language" attribute (by sequence order). The interpretation of the text
strings is language specific. Languages are matched to body strings by order. If the languages are unspecified, they might
be implicit from the expression bodies or the context.

104 UML Superstructure Specification, v2.1

It is assumed that a linguistic analyzer for the specified languages will evaluate the bodies. The times at which the bodies
will be evaluated are not specified.

Notation

An opaque expression is displayed as text strings in particular languages. The syntax of the strings are the responsibility
of a tool and linguistic analyzers for the languages.

An opaque expression is displayed as a part of the notation for its containing element.

Issue 8100 - Clarify semantics of multiple languages co-existing in the same expression.

The languages of an opaque expression, if specified, are often not shown on a diagram. Some modeling tools may impose
a particular language or assume a particular default language. The language is often implicit under the assumption that the
form of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({})
before the expression string to which it corresponds.

Style Guidelines

A language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use OCL, not ocl.

Examples

a>0
{OCL}i>jand self.size > i
average hours worked per week

7.3.36 Operation (from Kernel, Interfaces)

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Generalizations

» “BehavioralFeature (from Kernel)” on page 47

Description

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Attributes

e [isOrdered : Boolean Specifies whether the return parameter is ordered or not, if present. This is derived.

e isQuery : Boolean Specifies whether an execution of the BehavioralFeature leaves the state of the system
unchanged (isQuery=true) or whether side effects may occur (isQuery=false). The default
value is false.

e [isUnique : Boolean Specifies whether the return parameter is unique or not, if present. This is derived.

e /lower : Integer[0..1] Specifies the lower multiplicity of the return parameter, if present. This is derived.

e Jupper : UnlimitedNatural[0..1] Specifies the upper multiplicity of the return parameter, if present. This is derived.

UML Superstructure Specification, v2.1 105

Associations

e class: Class [0..1] The class that owns this operation. Subsets
RedefinableElement::redefinitionContext, NamedElement::namespace and
Feature::featuringClassifier

« bodyCondition: Constraint[0..1] An optional Constraint on the result values of an invocation of this Operation.
Subsets Namespace::ownedRule

Issue Editorial change: make ‘ownedParameter’ ordered

« ownedParameter: Parameter[*] {ordered} Specifies the parameters owned by this Operation. Redefines
BehavioralFeature::ownedParameter.

e postcondition: Constraint[*] An optional set of Constraints specifying the state of the system when the
Operation is completed. Subsets Namespace::ownedRule.

e precondition: Constraint[*] An optional set of Constraints on the state of the system when the Operation is
invoked. Subsets Namespace::ownedRule

« raisedException: Type[*] References the Types representing exceptions that may be raised during an
invocation of this operation. Redefines Basic::Operation.raisedException and
BehavioralFeature::raisedException.

« redefinedOperation: Operation[*] References the Operations that are redefined by this Operation. Subsets
RedefinableElement::redefinedElement

e [type: Type[0..1] Specifies the return result of the operation, if present. This is a derived value.

Package Interfaces

e interface: Interface [0..1] The Interface that owns this Operation. (Subsets
RedefinableElement::redefinitionContext, NamedElement::namespace and
Feature::featuringClassifier)

Constraints

[1] An operation can have at most one return parameter (i.e., an owned parameter with the direction set to ‘return’).
ownedParameter->select(par | par.direction = #return)->size() <= 1

[2] If this operation has a return parameter, isOrdered equals the value of isOrdered for that parameter. Otherwise isOrdered is
false.

isOrdered = if returnResult()->notEmpty() then returnResult()->any().isOrdered else false endif

[3] If this operation has a return parameter, isUnique equals the value of isUnique for that parameter. Otherwise isUnique is
true.

isUnique = if returnResult()->notEmpty() then returnResult()->any().isUnique else true endif

[4] If this operation has a return parameter, lower equals the value of lower for that parameter. Otherwise lower is not defined.
lower = if returnResult()->notEmpty() then returnResult()->any().lower else Set{} endif

[5] If this operation has a return parameter, upper equals the value of upper for that parameter. Otherwise upper is not defined.
upper = if returnResult()->notEmpty() then returnResult()->any().upper else Set{} endif

[6] If this operation has a return parameter, type equals the value of type for that parameter. Otherwise type is not defined.
type = if returnResult()->notEmpty() then returnResult()->any().type else Set{} endif

[7]1 A bodyCondition can only be specified for a query operation.

106 UML Superstructure Specification, v2.1

bodyCondition->notEmpty() implies isQuery

Additional Operations

[1] The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with a redefined operation if it has the
same number of owned parameters, and the type of each owned parameter conforms to the type of the corresponding
redefined parameter.

A redefining operation is consistent with a redefined operation if it has the same number of formal parameters, the same
number of return results, and the type of each formal parameter and return result conforms to the type of the
corresponding redefined parameter or return result.
Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.ocllsKindOf(Operation) and
let op: Operation = redefinee.oclAsType(Operation) in
self.ownedParameter.size() = op.ownedParameter.size() and
forAll(i | op.ownedParameter[i].type.conformsTo(self.ownedParameterf[i].type))
)
[2] The query returnResult() returns the set containing the return parameter of the Operation if one exists, otherwise, it returns
an empty set.
Operation::returnResult() : Set(Parameter);
returnResult = ownedParameter->select (par | par.direction = #return)

Semantics
An operation is invoked on an instance of the classifier for which the operation is a feature.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of
the owned parameters, add new preconditions or postconditions, add new raised exceptions, or otherwise refine the
specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model
(isQuery).

An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

UML Superstructure Specification, v2.1 107

Semantic Variation Points

The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point. When
operations are redefined in a specialization, rules regarding invariance, covariance, or contravariance of types and
preconditions determine whether the specialized classifier is substitutable for its more general parent. Such rules
constitute semantic variation points with respect to redefinition of operations.

Notation

Issue 8298 - add qualifying phrase in front
8228 - add brackets to BNF

If shown in a diagram, an operation is shown as a text string of the form:
[<visibility>] <name> ‘(* [<parameter-list>] *)’ [*:” [<return-type>] [‘{* <oper-property> [*,” <oper-property>]* ‘}'1]
where:
« <visibility> is the visibility of the operation (See “VisibilityKind (from Kernel)” on page 141).
<visibility> 1= *+" | - | "#* | *~’
« <name> is the name of the operation.
» <return-type> is the type of the return result parameter if the operation has one defined.

« <oper-property> indicates the properties of the operation.
<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | “‘unique’ | <oper-constraint>

where:
« redefines <oper-name> means that the operation redefines an inherited operation identified by <oper-name>.
« query means that the operation does not change the state of the system.
« ordered means that the values of the return parameter are ordered.
* unique means that the values returned by the parameter have no duplicates.
« <oper-constraint> is a constraint that applies to the operation.
« <parameter-list> is a list of parameters of the operation in the following format:
<parameter-list> ::= <parameter> [*,’<parameter>]*
<parameter> ::= [<direction>] <parameter-name> *:” <type-expression>
[‘[‘<multiplicity>"]"] ['=" <default>] [‘{* <parm-property> [‘,” <parm-property>]* ‘}’]
where:
e <direction> ::= ‘in’ | “out’ | “inout’ (defaults to “in’ if omitted).
» <parameter-name> is the name of the parameter.
* <type-expression> is an expression that specifies the type of the parameter.
« <multiplicity> is the multiplicity of the parameter. (See “MultiplicityElement (from Kernel)” on page 96).
« <default> is an expression that defines the value specification for the default value of the parameter.

108 UML Superstructure Specification, v2.1

« <parm-property> indicates additional property values that apply to the parameter.

Presentation Options

The parameter list can be suppressed. The return result of the operation can be expressed as a return parameter, or as the
type of the operation. For example:

toString(return : String)

means the same thing as
toString() : String

Style Guidelines

An operation name typically begins with a lowercase letter.

Examples
display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String
7.3.37 Package (from Kernel)
A package is used to group elements, and provides a namespace for the grouped elements.

Generalizations
» “Namespace (from Kernel)” on page 101

- “PackageableElement (from Kernel)” on page 111

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other
packages, or all the members of other packages.

In addition a package can be merged with other packages.

Attributes

No additional attributes

Associations

Issue 9087 - replace ‘ownedMember’ by ‘packagedElement’ and ‘ownedMember’ by ‘packagedElement’;
change redefines to subsets constraint; remove ‘package’ entry

* /nestedPackage: Package [*] References the owned members that are Packages. Subsets
Package::packagedElement

UML Superstructure Specification, v2.1 109

« /packagedElement: PackageableElement [*] Specifies the packageable elments that are owned by this Package. Subsets
Namespace: :ownedMember.

« JownedType: Type [*] References the packaged elements that are Types. Subsets
Package::packagedElement

« packageMerge: Package [*] References the PackageMerges that are owned by this Package. Subsets
Element::ownedElement

« nestingPackage: Package [0..1] References the Package that owns this Package. Subsets
NamedElement::namespace

Constraints

[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.
Package::mustBeOwned() : Boolean
mustBeOwned = false
[2] The query visibleMembers() defines which members of a Package can be accessed outside it.
Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self. makesVisible(m))
[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.
Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)

makesVisible =
-- case: the element is in the package itself

(ownedMember->includes(el)) or

-- case: it is imported individually with public visibility

(elementimport->select(ei|ei.importedElement = #public)->collect(ei|ei.importedElement)->includes(el)) or

-- case: it is imported in a package with public visibility

(packagelmport->select(pi|pi.visibility = #public)->collect(pi|pi.importedPackage.member->includes(el))->notEmpty())

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,
and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package are always accessible outside the package through the use of qualified names.

110 UML Superstructure Specification, v2.1

Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by
branching lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end
attached to the namespace (package).

- If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

« If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by a visibility symbol (‘+’ for
public and “-* for private). Package elements with defined visibility may not have protected or package visibility.

Presentation Options

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showing a package
with contents must not necessarily show all its contents; it may show a subset of the contained elements according to
some criterion.

Elements that become available for use in an importing package through a package import or an element import may have
a distinct color or be dimmed to indicate that they cannot be modified.

Examples

There are three representations of the same package Types in Figure 7.63. The one on the left just shows the package
without revealing any of its members. The middle one shows some of the members within the borders of the package, and
the one to the right shows some of the members using the alternative membership notation.

Types
Types Types
Integer Q
Jr
Time
Shape Point

Figure 7.63 - Examples of a package with members
7.3.38 PackageableElement (from Kernel)
A packageable element indicates a named element that may be owned directly by a package.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 99

UML Superstructure Specification, v2.1 111

Description

A packageable element indicates a named element that may be owned directly by a package.

Attributes

Issue 9191 - add default value

« visibility: VisibilityKind [1] Indicates that packageable elements must always have a visibility (i.e., visibility is
not optional). Redefines NamedElement::visibility. Default value is false.

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics

Notation

No additional notation
7.3.39 Packagelmport (from Kernel)

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Generalizations

« “DirectedRelationship (from Kernel)” on page 62

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

« visibility: VisibilityKind Specifies the visibility of the imported PackageableElements within the importing
Namespace, i.e., whether imported elements will in turn be visible to other packages that
use that importingPackage as an importedPackage. If the Packagelmport is public, the
imported elements will be visible outside the package, while if it is private they will not.
By default, the value of visibility is public.

Associations

e importedPackage: Package [1] Specifies the Package whose members are imported into a Namespace. Subsets
DirectedRelationship::target

112 UML Superstructure Specification, v2.1

e importingNamespace: Namespace [1] Specifies the Namespace that imports the members from a Package. Subsets
DirectedRelationship::source and Element::owner

Constraints

[1] The visibility of a Packagelmport is either public or private.
self.visibility = #public or self.visibility = #private

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

Notation

A package import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import is intended. The predefined
keywords are «import» for a public package import, and «access» for a private package import.

Presentation options

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

“{import * <qualified-name> ‘}’ | ‘{access ’ <qualified-name> ‘}’

Examples

In Figure 7.64, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then
further imported to WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be
referenced using unqualified names from WebShop.

1
Auxiliary
§'\\ «access»
N s—
— o ShoppingCart S —
Types é/«’ir;port» «import> | \WebShop

Figure 7.64 - Examples of public and private package imports
7.3.40 PackageMerge (from Kernel)

A package merge defines how the contents of one package are extended by the contents of another package.

UML Superstructure Specification, v2.1 113

Generalizations

- “DirectedRelationship (from Kernel)” on page 62

Description

A package merge is a directed relationship between two packages that indicates that the contents of the two packages are
to be combined. It is very similar to Generalization in the sense that the source element conceptually adds the
characteristics of the target element to its own characteristics resulting in an element that combines the characteristics of
both.

This mechanism should be used when elements defined in different packages have the same name and are intended to
represent the same concept. Most often it is used to provide different definitions of a given concept for different purposes,
starting from a common base definition. A given base concept is extended in increments, with each increment defined in
a separate merged package. By selecting which increments to merge, it is possible to obtain a custom definition of a
concept for a specific end. Package merge is particularly useful in meta-modeling and is extensively used in the definition
of the UML metamodel.

Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and produces a new
package that combines the contents of the packages involved in the merge. In terms of model semantics, there is no
difference between a model with explicit package merges, and a model in which all the merges have been performed.

Attributes

No additional attributes

Associations

« mergedPackage: Package [1] References the Package that is to be merged with the receiving package of the
PackageMerge. Subsets DirectedRelationship::target

« receivingPackage: Package [1] References the Package that is being extended with the contents of the merged
package of the PackageMerge. Subsets Element::owner and
DirectedRelationship::source

Constraints

No additional constraints

Semantics

A package merge between two packages implies a set of transformations, whereby the contents of the package to be
merged are combined with the contents of the receiving package. In cases in which certain elements in the two packages
represent the same entity, their contents are (conceptually) merged into a single resulting element according to the formal
rules of package merge specified below.

As with Generalization, a package merge between two packages in a model merely implies these transformations, but the
results are not themselves included in the model. Nevertheless, the receiving package and its contents are deemed to
represent the result of the merge, in the same way that a subclass of a class represents the aggregation of features of all of
its superclasses (and not merely the increment added by the class). Thus, within a model, any reference to a model
element contained in the receiving package implies a reference to the results of the merge rather than to the increment that
is physically contained in that package. This is illustrated by the example in Figure 7.65 in which package P1 and package
P2 both define different increments of the same class A (identified as P1::A and P2::A respectively). Package P2 merges

114 UML Superstructure Specification, v2.1

the contents of package P1, which implies the merging of increment P1::A into increment P2::A. Package P3 imports the
contents of P2 so that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A) represents
the result of the merge of P1::A into P2::A and not just the increment P2::A. Note that if another package were to import
P1, then a reference to A in the importing package would represent the increment P1::A rather than the A resulting from
merge.

P1 P2 P3

«merge» «import»
A A <o A —— SubA

Figure 7.65 - lllustration of the meaning of package merge

To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities: the merged
increment (e.g., P1::A in Figure 7.65), the receiving increment (e.g., P2::A), and the result of the merge transformations.
The main difficulty comes from the fact that the receiving package and its contents represents both the operand and the
results of the package merge, depending on the context in which they are considered. For example, in Figure 7.65, with
respect to the package merge operation, P2 represents the increment that is an operand for the merge. However, with
respect to the import operation, P2 represents the result of the merge. This dual interpretation of the same model element
can be confusing, so it is useful to introduce the following terminology that aids understanding:

« merged package - the first operand of the merge, that is, the package that is to be merged into the receiving package (this
is the package that is the target of the merge arrow in the diagrams).

e receiving package - the second operand of the merge, that is, the package that, conceptually, contains the results of the
merge (and which is the source of the merge arrow in the diagrams). However, this term is used to refer to the package and
its contents before the merge transformations have been performed.

< resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, of course, the
same package as the receiving package, but this particular term is used to refer to the package and its contents after the
merge has been performed.

« merged element - refers to a model element that exists in the merged package.

e receiving element - is a model element in the receiving package. If the element has a matching merged element, the two
are combined to produce the resulting element (see below). This term is used to refer to the element before the merge has
been performed (i.e., the increment itself rather than the result).

< resulting element - is a model element in the resulting package after the merge was performed. For receiving elements that
have a matching merged element, this is the same element as the receiving element, but in the state after the merge was
performed. For merged elements that have no matching receiving element, this is the merged element. For receiving
elements that have no matching merged element, this is the same as the receiving element.

« element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or StructuralFeature.

< element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

UML Superstructure Specification, v2.1 115

This terminology is based on a conceptual view of package merge that is represented by the schematic diagram in Figure
7.66 (NB: this is not a UML diagram). The owned elements of packages A and B are all incorporated into the namespace
of package B. However, it is important to emphasize that this view is merely a convenience for describing the semantics
of package merge and is not reflected in the repository model, that is, the physical model itself is not transformed in any
way by the presence of package merges.

merged receiving
package package

A A B

R < 77

I . .

| b N /'/ /

|

I /

I package /

«merge» I merge

: «becomes»

| .

:)
— | e L/

|

! package | * l;
|

B B

Figure 7.66 - Conceptual view of the package merge semantics

The semantics of package merge are defined by a set of constraints and transformations. The constraints specify the
preconditions for a valid package merge, while the transformations describe its semantic effects (i.e., postconditions). If
any constraints are violated, the package merge is ill formed and the resulting model that contains it is invalid. Different
metatypes have different semantics, but the general principle is always the same: a resulting element will not be any less
capable than it was prior to the merge. This means, for instance, that the resulting navigability, multiplicity, visibility, etc.
of a receiving model element will not be reduced as a result of a package merge. One of the key consequences of this is
that model elements in the resulting package are compatible extensions of the corresponding elements in the (unmerged)
receiving package in the same namespace. This capability is particularly useful in defining metamodel compliance levels
such that each successive level is compatible with the previous level, including their corresponding XMI representations.

In this specification, explicit merge transformations are only defined for certain general metatypes found mostly in
metamodels (Packages, Classes, Associations, Properties, etc.), since the semantics of merging other kinds of metatypes
(e.g., state machines, interactions) are complex and domain specific. Elements of all other kinds of metatypes are
transformed according to the default rule: they are simply deep copied into the resulting package. (This rule can be
superseded for specific metatypes through profiles or other kinds of language extensions.)

General package merge rules
A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1. There can be no cycles in the «<merge» dependency graph.

2. A package cannot merge a package in which it is contained.

116 UML Superstructure Specification, v2.1

7.

A package cannot merge a package that it contains.

A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association, Operation,
Constraint, Enumeration, or EnumerationL.iteral, cannot have a receiving element with the same name and metatype
unless that receiving element is an exact copy of the merged element (i.e., they are the same).

A package merge is valid if and only if all the constraints required to perform the merge are satisfied.

Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are classes or data
types, a conforming type is either the same type or a common supertype. For all other cases, conformance means that
the types must be the same.

A receiving element cannot have explicit references to any merged element.

TRANSFORMATIONS:

1.

10.

(The default rule) Merged or receiving elements for which there is no matching element are deep copied into the
resulting package.

The result of merging two elements with matching names and metatypes that are exact copies of each other is the
receiving element.

Matching elements are combined according to the transformation rules specific to their metatype and the results
included in the resulting package.

All type references to typed elements that end up in the resulting package are transformed into references to the
corresponding resulting typed elements (i.e., not to their respective increments).

For all matching elements: if both matching elements have private visibility, the resulting element will have private
visibility, otherwise, the resulting element will have public visibility.

For all matching classifier elements: if both matching elements are abstract, the resulting element is abstract,
otherwise, the resulting element is non-abstract.

For all matching elements: if both matching elements are not derived, the resulting element is also not derived,
otherwise, the resulting element is derived.

For all matching multiplicity elements: the lower bound of the resulting multiplicity is the lesser of the lower bounds
of the multiplicities of the matching elements.

For all matching multiplicity elements: the upper bound of the resulting multiplicity is the greater of the upper bounds
of the multiplicities of the matching elements.

Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting element.

Package rules

Elements that are a kind of Package match by name and metatype (e.g., profiles match with profiles and regular packages
with regular packages).

TRANSFORMATIONS:

1.

A nested package from the merged package is transformed into a nested package with the same name in the resulting
package, unless the receiving package already contains a matching nested package. In the latter case, the merged

UML Superstructure Specification, v2.1 117

nested package is recursively merged with the matching receiving nested package.

2. Anelement import owned by the receiving package is transformed into a corresponding element import in the
resulting package. Imported elements are not merged (unless there is also a package merge to the package owning the
imported element or its alias).

Class and DataType rules

Elements that are kinds of Class or DataType match by name and metatype.
TRANSFORMATIONS:

1. All properties from the merged classifier are merged with the receiving classifier to produce the resulting classifier
according to the property transformation rules specified below.

2. Nested classifiers are merged recursively according to the same rules.

Property rules
Elements that are kinds of Property match by name and metatype.
CONSTRAINTS:
1. The static (or non-static) characteristic of matching properties must be the same.
2. The uniqueness characteristic of matching properties must be the same.
3. Any constraints associated with matching properties must not be conflicting.
4. Any redefinitions associated with matching properties must not be conflicting.
TRANSFORMATIONS:

1. For merged properties that do not have a matching receiving property, the resulting property is a newly created
property in the resulting classifier that is the same as the merged property.

2. For merged properties that have a matching receiving property, the resulting property is a property with the same
name and characteristics except where these characteristics are different. Where these characteristics are different, the
resulting property characteristics are determined by application of the appropriate transformation rules.

3. For matching properties: if both properties are designated read-only, the resulting property is also designated read-
only. Otherwise, the resulting property is designated as not read-only.

4. For matching properties: if both properties are unordered, then the resulting property is also unordered. Otherwise,
the resulting property is ordered.

5. For matching properties: if neither property is designated as a subset of some derived union, then the resulting
property will not be designated as a subset. Otherwise, the resulting property will be designated as a subset of that
derived union.

6. For matching properties: different redefinitions of matching properties are combined conjunctively.
7. For matching properties: different constraints of matching properties are combined conjunctively.

8. For matching properties: if either the merged and/or receiving elements are non-unique, the resulting element is non-
unique. Otherwise, the resulting element is designated as unique.

118 UML Superstructure Specification, v2.1

9. The resulting property type is transformed to refer to the corresponding type in the resulting package.

Association rules

Elements that are a kind of Association match by name (including if they have no name) and by their association ends where
those match by name and type (i.e., the same rule as properties). These rules are in addition to regular property rules described
above.

CONSTRAINTS:
1. These rules only apply to binary associations. (The default rule is used for merging n-ary associations.)
2. The receiving association end must be a composite if the matching merged association end is a composite.

3. The receiving association end must be owned by the association if the matching merged association end is owned by
the association.

TRANSFORMATIONS:

1. A merge of matching associations is accomplished by merging the Association classifiers (using the merge rules for
classifiers) and merging their corresponding owned end properties according to the rules for properties and
association ends.

2. For matching association ends: if neither association end is navigable, then the resulting association end is also not
navigable. In all other cases, the resulting association end is navigable.

Operation rules
Elements that are a kind of Operation match by name, parameter order, and parameter types, not including any return type.

CONSTRAINTS:

1. Operation parameters and types must conform to the same rules for type and multiplicity as were defined for
properties.

2. The receiving operation must be a query if the matching merged operation is a query.
TRANSFORMATIONS:

1. For merged operations that do not have a matching receiving operation, the resulting operation is an operation with
the same name and signature in the resulting classifier.

2. For merged operations that have a matching receiving operation, the resulting operation is the outcome of a merge of
the matching merged and receiving operations, with parameter transformations performed according to the property
transformations defined above.

Enumeration rules
Elements that are a kind of EnumerationLiteral match by owning enumeration and literal name.
CONSTRAINTS:
1. Matching enumeration literals must be in the same order.
TRANSFORMATIONS:

1. Non-matching enumeration literals from the merged enumeration are concatenated to the receiving enumeration.

UML Superstructure Specification, v2.1 119

Constraint Rules
CONSTRAINTS:

1. Constraints must be mutually non-contradictory.
TRANSFORMATIONS:

1. The constraints of the merged model elements are conjunctively added to the constraints of the matching receiving
model elements.

Notation

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receiving package (the source)
to the merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Target S

“-~-____«merge»

Source

Figure 7.67 - Notation for package merge

120 UML Superstructure Specification, v2.1

Examples

In Figure 7.68, packages P and Q are being merged by package R, while package S merges only package Q.

P Q
A A C
7 7
/ i
/ «merge» /
B /! /
/ !
7 !
/ !
/ /I
R / '
\ / S [«merge»
«merge» 1\ / ;
\
\\ //
/
\ /
R \ / D
\ L
A
A B

Figure 7.68 - Simple example of package merges

The transformed packages R and S are shown in Figure 7.69. The expressions in square brackets indicating which
individual increments were merged into produce the final result, with the “@” character denoting the merge operator (note
that these expressions are not part of the standard notation, but are included here for explanatory purposes).

R S
D
[S::D]
A | ﬂl
[P:A@(Q:A@R::A)] [Q:C]
L C
Zﬁ [Q:C]
A
B [Q:A@S::A] 5
[P::B]] [SuB]

Figure 7.69 - Simple example of transformed packages following the merges in Figure 7.68

UML Superstructure Specification, v2.1 121

In Figure 7.70, additional package merges are introduced by having package T, which is empty prior to execution of the
merge operation, merge packages R and S defined previously.

1
R
§1\\ «merge»
\\\\\
T
///‘

S " «merge»

Figure 7.70 - Introducing additional package merges

In Figure 7.71, the transformed version of package T is depicted. In this package, the partial definitions of A, B, C, and
D have all been brought together. Note that the types of the ends of the associations that were originally in the packages
Q and S have all been updated to refer to the appropriate elements in package T.

[(P:A@(Q::A@R::A))
@S::A]
B

[P::B@S::B]

[Q:C]

Figure 7.71 - The result of the additional package merges in Figure 7.70
7.3.41 Parameter (from Kernel, AssociationClasses)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

122 UML Superstructure Specification, v2.1

Generalizations
« “MultiplicityElement (from Kernel)” on page 96.
» “TypedElement (from Kernel)” on page 139.

Description

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature. It has a type, and may have a multiplicity and an optional default value.

Attributes

e/ default: String [0..1] Specifies a String that represents a value to be used when no argument is supplied
for the Parameter. This is a derived value.

« direction: ParameterDirectionKind [1] Indicates whether a parameter is being sent into or out of a behavioral element.
The default value is in.

Associations

e /operation: Operation[0..1] References the Operation owning this parameter. Subsets
NamedElement::namespace

« defaultValue: ValueSpecification [0..1] Specifies a ValueSpecification that represents a value to be used when no
argument is supplied for the Parameter. Subsets Element::ownedElement

Constraints

No additional constraints

Semantics

A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The
type and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If a default is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter
if and only if no argument is supplied at invocation of the behavioral feature.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

The parameter direction specifies whether its value is passed into, out of, or both into and out of the owning behavioral
feature. A single parameter may be distinguished as a return parameter. If the behavioral feature is an operation, then the
type and multiplicity of this parameter is the same as the type and multiplicity of the operation itself.

Notation

No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines

A parameter name typically starts with a lowercase letter.

UML Superstructure Specification, v2.1 123

7.3.42 ParameterDirectionKind (from Kernel)
Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Generalizations

None

Description
ParameterDirectionKind is an enumeration of the following literal values:

e in Indicates that parameter values are passed into the behavioral element by the caller.

e inout Indicates that parameter values are passed into a behavioral element by the caller and then back out to the caller
from the behavioral element.

e out Indicates that parameter values are passed from a behavioral element out to the caller.

e return Indicates that parameter values are passed as return values from a behavioral element back to the caller.

7.3.43 PrimitiveType (from Kernel)

Issue 8720 - clarify that a primitive type has no parts in the context of UML

A primitive type defines a predefined data type, without any relevant substructure (i.e., it has no parts in the context of
UML). A primitive datatype may have an algebra and operations defined outside of UML, for example, mathematically.

Generalizations

« “DataType (from Kernel)” on page 60.

Description

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

124 UML Superstructure Specification, v2.1

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

Notation
A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types may be denoted with the same notation as provided for references to such
instances (see the subtypes of “ValueSpecification (from Kernel)”).

7.3.44 Property (from Kernel, AssociationClasses)

A property is a structural feature.

A property related to a classifier by ownedAttribute represents an attribute, and it may also represent an association end.
It relates an instance of the class to a value or collection of values of the type of the attribute.

A property related to an Association by memberEnd or its specializations represents an end of the association. The type
of property is the type of the end of the association.

Generalizations

» “StructuralFeature (from Kernel)” on page 136

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can
be controlled by setting the property’s type.

Package AssociationClasses

A property may have other properties (attributes) that serve as qualifiers.

Attributes

e aggregation: AggregationKind [1] Specifies the kind of aggregation that applies to the Property. The default value is
none.

e/ default: String [0..1] A String that is evaluated to give a default value for the Property when an object of

the owning Classifier is instantiated. This is a derived value.

e /isComposite: Boolean [1] This is a derived value, indicating whether the aggregation of the Property is
composite or not.

e isDerived: Boolean [1] Specifies whether the Property is derived, i.e., whether its value or values can be
computed from other information. The default value is false.

e isDerivedUnion : Boolean Specifies whether the property is derived as the union of all of the properties that are
constrained to subset it. The default value is false.

¢ isReadOnly : Boolean If true, the attribute may only be read, and not written. The default value is false.

UML Superstructure Specification, v2.1 125

Associations
e association: Association [0..1] References the association of which this property is a member, if any.

« owningAssociation: Association [0..1] References the owning association of this property. Subsets
Property::association, NamedElement::namespace, Feature::featuringClassifier,
and RedefinableElement::redefinitionContext.

e (datatype : DataType [0..1] The DataType that owns this Property. Subsets NamedElement::namespace,
Feature::featuringClassifier, and Property::classifier.

« defaultValue: ValueSpecification [0..1] A ValueSpecification that is evaluated to give a default value for the Property
when an object of the owning Classifier is instantiated. Subsets
Element::ownedElement.

« redefinedProperty : Property [*] References the properties that are redefined by this property. Subsets
RedefinableElement::redefinedElement.

e subsettedProperty : Property [*] References the properties of which this property is constrained to be a subset.

e [opposite : Property [0..1] In the case where the property is one navigable end of a binary association with both
ends navigable, this gives the other end.

Issue 8976 - add ‘class’ entry

e class: Class [0..1] References the Class that owns the Property. Subsets NamedElement::namespace,
Feature::featuringClassifier
Package AssociationClasses

e associationEnd : Property [0..1] Designates the optional association end that owns a qualifier attribute. Subsets
Element::owner

e qualifier : Property [*] An optional list of ordered qualifier attributes for the end. If the list is empty, then
the Association is not qualified. Subsets Element::ownedElement
Constraints

[1] If this property is owned by a class associated with a binary association, and the other end of the association is also owned
by a class, then opposite gives the other end.

Issue 8451 - fix constraint

opposite =
if owningAssociation->isEmpty() and association.memberEnd->size() = 2 then
let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->isEmpty() then otherEnd else Set{} endif
else Set {}
endif
[2] A multiplicity on an aggregate end of a composite aggregation must not have an upper bound greater than 1.
isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)
[3] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.
subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |

126 UML Superstructure Specification, v2.1

subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))

Issue 8462 - replace constraint

(4]

(5]

(6]

(7]

(8]

(9]

A redefined property must be inherited from a more general classifier containing the redefining property.
if (redefinedProperty->notEmpty()) then
(redefinitionContext->notEmpty() and
redefinedProperty->forAll(rp|
((redefinitionContext->collect(fc|
fc.allParents()))->asSet())->
collect(c| c.allFeatures())->asSet()->
includes(rp))

A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.
subsettedProperty->forAll(sp |

type.conformsTo(sp.type) and

((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))

Only a navigable property can be marked as readOnly.
isReadOnly implies isNavigable()
A derived union is derived.
isDerivedUnion implies isDerived
A derived union is read only.
isDerivedUnion implies isReadOnly
The value of isComposite is true only if aggregation is composite.
isComposite = (self.aggregation = #composite)

Issue 9188 - add constraint

[10] A Property cannot be subset by a Property with the same name

if (self.subsettedProperty->notEmpty()) then
self.subsettedProperty->forAll(sp | sp.name <> self.name)

Additional Operations

(1]

The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible, whether

redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conforms to the type of the redefined property, the multiplicity of the redefining property (if specified)
is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined attribute is

property.

Issue 9085 - replace OCL

9117 - replace OCL defined for 9085

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean

pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = redefinee.oclisKindOf(Property) and
let prop : Property = redefinee.oclAsType(Property) in

UML Superstructure Specification, v2.1

(prop.type.conformsTo(self.type) and
((prop.lowerBound()->notEmpty() and self.lowerBound()->notEmpty()) implies
prop.lowerBound() >= self.lowerBound()) and
((prop.upperBound()->notEmpty() and self.upperBound()->notEmpty()) implies
prop.lowerBound() <= self.lowerBound()) and
(self.isDerived implies prop.isDerived) and (self.isComposite implies prop.isComposite))

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.
Property::subsettingContext() : Set(Type)
subsettingContext =

if association->notEmpty()

then association.endType-type

else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif

[3] The query isNavigable() indicates whether it is possible to navigate across the property.
Property::isNavigable() : Boolean
isNavigable = not classifier->isEmpty() or association.owningAssociation.navigableOwnedEnd->includes(self)

Issue 8592 - add new operation

[4] The query isAttribute() is true if the Property is defined as an attribute of some classifier

context Property::isAttribute(p : Property) : Boolean
post: result = Classifier.allinstances->exists(c| c.attribute->includes(p))

Semantics

When a property is owned by a classifier other than an association via ownedAttribute, then it represents an attribute of
the class or data type. When related to an association via memberEnd or one of its specializations, it represents an end of
the association. In either case, when instantiated a property represents a value or collection of values associated with an
instance of one (or in the case of a ternary or higher-order association, more than one) type. This set of classifiers is called
the context for the property; in the case of an attribute the context is the owning classifier, and in the case of an
association end the context is the set of types at the other end or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain
the size of the collection. Typically and by default the maximum bound is 1.

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of
values may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

Table 7.1 - Collection types for properties

isOrdered isUnique Collection type
false true Set
true true OrderedSet
false false Bag
128 UML Superstructure Specification, v2.1

Table 7.1 - Collection types for properties

isOrdered isUnique Collection type

true false Sequence

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

Issue 8769 - explain about derived properties

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e. clients
cannot directly change values). But where a derived property is changeable, an implementation is expected to make
appropriate changes to the model in order for all the constraints to be met, in particular the derivation constraint for the
derived property. The derivation for a derived property may be specified by a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by
the derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the
redefining property’s default is used in place of the more general default from the redefined property.

If a navigable property is marked as readOnly, then it cannot be updated once it has been assigned an initial value.

A property may be marked as the subset of another, as long as every element in the context of subsetting property
conforms to the corresponding element in the context of the subsetted property. In this case, the collection associated with
an instance of the subsetting property must be included in (or the same as) the collection associated with the
corresponding instance of the subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in
some context is derived by being the strict union of all of the values denoted, in the same context, by properties defined
to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of all the subsets must be
null or the same.

A property may be owned by and in the namespace of a datatype.

Package AssociationClasses

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the
qualified instance is at the end to which the qualifier is attached). A qualifier instance comprises one value for each
qualifier attribute. Given a qualified object and a qualifier instance, the number of objects at the other end of the
association is constrained by the declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and designates at most one associated object. In the general case of
multiplicity 0..*, the set of associated instances is partitioned into subsets, each selected by a given qualifier instance. In
the case of multiplicity 1 or 0..1, the qualifier has both semantic and implementation consequences. In the case of
multiplicity 0..*, it has no real semantic consequences but suggests an implementation that facilitates easy access of sets
of associated instances linked by a given qualifier value.

UML Superstructure Specification, v2.1 129

Note — The multiplicity of a qualifier is given assuming that the qualifier value is supplied. The “raw” multiplicity without the
qualifier is assumed to be 0..*. This is not fully general but it is almost always adequate, as a situation in which the raw
multiplicity is 1 would best be modeled without a qualifier.

Note — A qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

Notation

The following general notation for properties is defined. Note that some specializations of Property may also have
additional notational forms. These are covered in the appropriate Notation sections of those classes.

Issue 8227 - replace ‘prop-property’ with ‘prop-modifier’

<property> ::= [<visibility>] [*/’] <name> [*:" <prop-type>] [‘[* <multiplicity> ‘]’] [‘=" <default>]
[{{* <prop-modifier > [‘,” <prop-modifier >]* *}’]
where:
« <visibility> is the visibility of the property. (See “VisibilityKind (from Kernel)” on page 141.)
<visibility> ;= “+" | - | ‘#" | *~’
 ‘I” signifies that the property is derived.
» <name> is the name of the property.
« <prop-type> is the name of the Classifier that is the type of the property.

« <multiplicity> is the multiplicity of the property. If this term is omitted, it implies a multiplicity of 1 (exactly one). (See
“MultiplicityElement (from Kernel)” on page 96.)

- <default> is an expression that evaluates to the default value or values of the property.
» <prop-modifier > indicates a modifier that applies to the property.

<prop-modifier> ::= ‘readOnly’ | “‘union’ | ‘subsets‘ <property-name> |

Issue Editorial change: added ‘unique’ option to be consistent with resolution to issue 8226

‘redefines’ <property-name> | ‘ordered’ | “‘unique’ | “nonunique’ | <prop-constraint>
where:
« readOnly means that the property is read only.
« union means that the property is a derived union of its subsets.

« subsets <property-name> means that the property is a proper subset of the property identified by <property-
name>.

« redefines <property-name> means that the property redefines an inherited property identified by <property-
name>,

« ordered means that the property is ordered.

130 UML Superstructure Specification, v2.1

« unique means that there are no duplicates in a multi-valued property.
 <prop-constraint> is an expression that specifies a constraint that applies to the property.

Issue 8461 - change rule for redefinitions and add explanations

All redefinitions should be made explicit with the use of a {redefines <x>} property string. Matching features in
subclasses without an explicit redefinition result in a redefinition that need not be shown in the notation. Redefinition
prevents inheritance of a redefined element into the redefinition context thereby making the name of the redefined
element available for reuse, either for the redefining element, or for some other.

Package AssociationClasses

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier.
The qualifier is attached to the source end of the association.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a source instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to a line.
Qualifier attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single association.

A qualifier may not be suppressed.
Style Guidelines

Package AssociationClasses

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always practical.

UML Superstructure Specification, v2.1 131

Examples

Package AssociationClasses

Bank Chessboard
accountNo rank : Rank
file : File
*
1
0..1 1
Person Square

Figure 7.72 - Qualified associations
7.3.45 Realization (from Dependencies)

Generalizations

« “Abstraction (from Dependencies)” on page 36

Description

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification
(the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A Realization signifies that the client set of elements are an implementation of the supplier set, which serves as the
specification. The meaning of ‘implementation’ is not strictly defined, but rather implies a more refined or elaborate form
in respect to a certain modeling context. It is possible to specify a mapping between the specification and implementation
elements, although it is not necessarily computable.

132 UML Superstructure Specification, v2.1

Notation

A Realization dependency is shown as a dashed line with a triangular arrowhead at the end that corresponds to the
realized element. Figure 7.73 illustrates an example in which the Business class is realized by a combination of Owner
and Employee classes.

Business

Owner Employee

Figure 7.73 - An example of a realization dependency
7.3.46 RedefinableElement (from Kernel)

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 99

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Attributes

e isLeaf: Boolean Indicates whether it is possible to further specialize a RedefinableElement. If the value is true,
then it is not possible to further specialize the RedefinableElement. Default value is false.

Associations

¢ [redefinedElement: RedefinableElement[*] The redefinable element that is being redefined by this element. This is
a derived union.

e [redefinitionContext: Classifier[*] References the contexts that this element may be redefined from. This is
a derived union.
Constraints

[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))

UML Superstructure Specification, v2.1 133

[2] A redefining element must be consistent with each redefined element.
self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, this is false; this operation must be overridden for
subclasses of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false
[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are
properly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the

other. By default at least one of the redefinition contexts of this element must be a specialization of at least one of the
redefinition contexts of the specified element.

RedefinableElement::isRedefinitionContextValid(redefined: RedefinableElement): Boolean;
isRedefinitionContextValid = redefinitionContext->exists(c | c.allParents()->includes(redefined.redefinitionContext))

Semantics

A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine
the element from the general classifier in order to augment, constrain, or override the specification as it applies more
specifically to instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details
that are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the
general context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple
inherited redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.
7.3.47 Relationship (from Kernel)

Relationship is an abstract concept that specifies some kind of relationship between elements.

134 UML Superstructure Specification, v2.1

Generalizations

» “Element (from Kernel)” on page 63

Description
A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes

No additional attributes

Associations
e [relatedElement: Element [1..*] Specifies the elements related by the Relationship. This is a derived union.

Constraints

No additional constraints

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most cases the notation is a variation on a line drawn between the related elements.

7.3.48 Slot (from Kernel)
A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Generalizations

» “Element (from Kernel)” on page 63

Description

A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the slot.

Attributes

No additional attributes

Associations
e definingFeature : StructuralFeature [1] The structural feature that specifies the values that may be held by the slot.
e owninglnstance : InstanceSpecification [1] The instance specification that owns this slot. Subsets Element::owner

e value : ValueSpecification [*] The value or values corresponding to the defining feature for the owning
instance specification. This is an ordered association. Subsets
Element::ownedElement

UML Superstructure Specification, v2.1 135

Constraints

No additional constraints

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The values in a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Notation

See “InstanceSpecification (from Kernel).”
7.3.49 StructuralFeature (from Kernel)
A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

Generalizations
» “Feature (from Kernel)” on page 70
« “MultiplicityElement (from Kernel)” on page 96
» “TypedElement (from Kernel)” on page 139

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

By specializing multiplicity element, it supports a multiplicity that specifies valid cardinalities for the collection of values
associated with an instantiation of the structural feature.

Attributes

* isReadOnly: Boolean States whether the feature’s value may be modified by a client. Default is false.

Associations

No additional associations

Constraints

No additional constraints

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified
type.

136 UML Superstructure Specification, v2.1

Notation

Issue 8935 - remove reference to {unrestricted}

A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. This annotation
may be suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Options

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.

Changes from previous UML

The meta-attribute targetScope, which characterized StructuralFeature and AssociationEnd in prior UML is no longer
supported.

7.3.50 Substitution (from Dependencies)

Generalizations

» “Realization (from Dependencies)” on page 132

Description

A substitution is a relationship between two classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract classifier are expected.

Associations
e contract: Classifier [1] (Subsets Dependency::target.).

e substitutingClassifier: Classifier [1] (Subsets Dependency::client).

Attributes

None

Constraints

No additional constraints

Semantics

The substitution relationship denotes runtime substitutability that is not based on specialization. Substitution, unlike
specialization, does not imply inheritance of structure, but only compliance of publicly available contracts. A substitution
like relationship is instrumental to specify runtime substitutability for domains that do not support specialization such as
certain component technologies. It requires that (1) interfaces implemented by the contract classifier are also implemented
by the substituting classifier, or else the substituting classifier implements a more specialized interface type. And, (2) the
any port owned by the contract classifier has a matching port (see ports) owned by the substituting classifier.

UML Superstructure Specification, v2.1 137

Notation

A Substitution dependency is shown as a dependency with the keyword «substitute» attached to it.

Examples

In the example below, a generic Window class is substituted in a particular environment by the Resizable Window class.

«substitute»

] Resizable
Window <= —— = — — — -

Window

Figure 7.74 - An example of a substitute dependency
7.3.51 Type (from Kernel)
A type constrains the values represented by a typed element.

Generalizations

- “PackageableElement (from Kernel)” on page 111

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query conformsTo() gives true for a type that conforms to another. By default, two types do not conform to each other.
This query is intended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

138 UML Superstructure Specification, v2.1

Notation

No general notation
7.3.52 TypedElement (from Kernel)

A typed element has a type.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 99

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes

No additional attributes

Associations

e type: Type [0..1] The type of the TypedElement.

Constraints

No additional constraints

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type
may represent values of any type.

Notation

No general notation
7.3.53 Usage (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 61

Description

A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or
operation. In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier.

Attributes

No additional attributes

UML Superstructure Specification, v2.1 139

Associations

No additional associations

Constraints

No additional constraints

Semantics

The usage dependency does not specify how the client uses the supplier other than the fact that the supplier is used by the
definition or implementation of the client.

Notation

A usage dependency is shown as a dependency with a «use» keyword attached to it.

Examples

In the example below, an Order class requires the Line Item class for its full implementation.

«use»

Line
Order f—————— =

Item

Figure 7.75 - An example of a use dependency
7.3.54 ValueSpecification (from Kernel)

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Generalizations
» “PackageableElement (from Kernel)” on page 111

» “TypedElement (from Kernel)” on page 139

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Attributes

Issue Editorial correction - remove erroneous entry for ‘expression’

No additional attributes.

Associations

No additional associations

140 UML Superstructure Specification, v2.1

Constraints

No additional constraints

Additional Operations

These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may
be able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] The query isComputable() determines whether a value specification can be computed in a model. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value
specifications that it can compute, and to compute all of those for which the operation is true. A conforming
implementation is expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false

[2] The query integerValue() gives a single Integer value when one can be computed.
ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query booleanValue() gives a single Boolean value when one can be computed.
ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[4] The query stringValue() gives a single String value when one can be computed.
ValueSpecification::stringValue() : [String];
stringValue = Set{}

[5]1 The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.
ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}

[6] The query isNull() returns true when it can be computed that the value is null.
ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the
context where the value specification is used.

Notation

No general notation
7.3.55 VisibilityKind (from Kernel)

VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model.

Generalizations

None

UML Superstructure Specification, v2.1 141

Description

VisibilityKind is an enumeration of the following literal values:

e public

e private

e protected
e package

Additional Operations
[1] The query bestVisibility() examines a set of VisibilityKinds that includes only public and private, and returns public as the
preferred visibility.
VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
pre: not vis->includes(#protected) and not vis->includes(#package)
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics

Issue 4448 - Visibility constrains the actionsof methods of the class. Creation and destruction of links should
be allowed by methods that have access to at least one end of the association.

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations, Packages, and Classes packages. Detailed semantics are specified with those mechanisms. If the
Visibility package is used without those packages, these literals will have different meanings, or no meanings.

« A public element is visible to all elements that can access the contents of the namespace that owns it.
A private element is only visible inside the namespace that owns it.
« A protected element is visible to elements that have a generalization relationship to the namespace that owns it.

« A package element is owned by a namespace that is not a package, and is visible to elements that are in the same
package as its owning namespace. Only named elements that are not owned by packages can be marked as having
package visibility. Any element marked as having package visibility is visible to all elements within the nearest
enclosing package (given that other owning elements have proper visibility). Outside the nearest enclosing package, an
element marked as having package visibility is not visible.

In circumstances where a named element ends up with multiple visibilities (for example, by being imported multiple
times) public visibility overrides private visibility. If an element is imported twice into the same namespace, once using a
public import and once using a private import, it will be public.

Notation
The following visual presentation options are available for representing VisibilityKind enumeration literal values:

e ‘+” public

e ‘7 private
o ‘#” protected
- ‘~’ package

142 UML Superstructure Specification, v2.1

7.4 Diagrams

Structure diagram

This section outlines the graphic elements that may be shown in structure diagrams, and provides cross references where
detailed information about the semantics and concrete notation for each element can be found. It also furnishes examples
that illustrate how the graphic elements can be assembled into diagrams.

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 7.2.

Table 7.2 - Graphic nodes included in structure diagrams

InterfaceName
—0

<<interface>>
InterfaceName

NoDE TYPE NOTATION REFERENCE
Class See “Class (from Kernel)” on page 48.
ClassName
Interface See “Interface (from Interfaces)” on page 87.

InstanceSpecification

Instancename :

ClassName

See “InstanceSpecification (from Kernel)” on
page 83. (Note that instances of any classifier can
be shown by prefixing the classifier name by the
instance name followed by a colon and underlining
the complete name string.)

Package

PackageName

See “Package (from Kernel)” on page 109.

UML Superstructure Specification, v2.1

143

Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 7.3.

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE
Aggregation See “AggregationKind (from Kernel)” on page 36.
Association See “Association (from Kernel)” on page 37.
Composition See “AggregationKind (from Kernel)” on page 36.

Dependency See “Dependency (from Dependencies)” on
page 61.
————————— >
Generalization See “Generalization (from Kernel, PowerTypes)”

~ | onpage71.

InterfaceRealization See “InterfaceRealization (from Interfaces)” on
page 90.
———————— -
Realization See “Realization (from Dependencies)” on
page 132.
———————— -
Usage See “Usage (from Dependencies)” on page 139.
«use»
————————— >
Package Merge See “PackageMerge (from Kernel)” on page 113.
«merge»
————————— >

144 UML Superstructure Specification, v2.1

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE
Packagelmport See “Packagelmport (from Kernel)” on page 112.
(public)
«import»
————————— >
Packagelmport See “Packagelmport (from Kernel)” on page 112.
(private)
«access»
————————— >
Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Class diagram
The following nodes and edges are typically drawn in a class diagram:

» Association

« Aggregation

« Class

« Composition

« Dependency

» Generalization

« Interface

« InterfaceRealization
« Realization

Package diagram
The following nodes and edges are typically drawn in a package diagram:

» Dependency

« Package

» PackageExtension
» Packagelmport

Object diagram
The following nodes and edges are typically drawn in an object diagram:

« InstanceSpecification

UML Superstructure Specification, v2.1 145

« Link (i.e., Association)

146 UML Superstructure Specification, v2.1

8 Components

8.1 Overview

The Components package specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity. In particular, the package specifies a component as a modular unit with well-defined interfaces that is
replaceable within its environment. The component concept addresses the area of component-based development and
component-based system structuring, where a component is modeled throughout the development life cycle and
successively refined into deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed components. A component
can always be considered an autonomous unit within a system or subsystem. It has one or more provided and/or required
interfaces (potentially exposed via ports), and its internals are hidden and inaccessible other than as provided by its
interfaces. Although it may be dependent on other elements in terms of interfaces that are required, a component is
encapsulated and its dependencies are designed such that it can be treated as independently as possible. As a result,
components and subsystems can be flexibly reused and replaced by connecting (“wiring”) them together via their
provided and required interfaces. The aspects of autonomy and reuse also extend to components at deployment time. The
artifacts that implement component are intended to be capable of being deployed and re-deployed independently, for
instance to update an existing system.

The Components package supports the specification of both logical components (e.g., business components, process
components) and physical components (e.g., EJB components, CORBA components, COM+ and .NET components,
WSDL components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and
executed. It is anticipated that profiles based around components will be developed for specific component technologies
and associated hardware and software environments.

Basic Components

The BasicComponents package focuses on defining a component as an executable element in a system. It defines the
concept of a component as a specialized class that has an external specification in the form of one or more provided and
required interfaces, and an internal implementation consisting of one or more classifiers that realize its behavior. In
addition, the BasicComponents package defines specialized connectors for ‘wiring” components together based on
interface compatibility.

Packaging Components

The PackagingComponents package focuses on defining a component as a coherent group of elements as part of the
development process. It extends the concept of a basic component to formalize the aspects of a component as a ‘building
block’ that may own and import a (potentially large) set of model elements.

UML Superstructure Specification, v2.1 147

8.2 Abstract

Figure 8.1 shows the dependencies of the Component packages.

syntax

-

StructuredClasses

Dependencies

/

<<merge>>

|
L

BasicComponents

N

<<merge>>

e
/ <<merge>>
/

PackagingComponents

Figure 8.1 - Dependencies between packages described in this chapter (transitive dependencies to Kernel and
Interfaces packages are not shown).

148

UML Superstructure Specification, v2.1

Package BasicComponents

Issue 8457 - make Component a kind of NamedElement to allow ‘clientDependency’
9109 - make ‘realization’ non-derived
9119 - replace ‘Realization’ with ‘ComponentRealization’
9192 - remove subsets of ‘source’ and target’

UL Claases: Dependencies: NamedElemant |

LML i Classes: : Dependencies:: Realization

{subsets
ownedElement}t

+ realization ComponentRealization

%

{subsets suppliert
+ realizingClazsifier
v

i
UhL:: CompositeStructures: StructuredClasses: Class
{subsets awner,
subsets client}
Componert + abstraction
izindirectlyinstartisted . Boolean "D]
{readonlyH . {readonlv}
+ drenuire * rovided
Vo
UL Claszes:
Irterfaces:
Irterface

UL Classes. Kernel Classifier |

Figure 8.2 - The metaclasses that define the basic Component construct

Cannectar

kind : Connectarking

+ contract
S
=

* ®

UL CommonBehaviars::
BasicBehaviars. Behavior

FENUmeratian:
Connectorkind

gEsembly
delegation

Figure 8.3 - The metaclasses that define the component wiring constructs

| UML Superstructure Specification, v2.1

149

Package PackagingComponents

Issue 9088 - replace ‘ownedMember’ with ‘packagedElement’ and change constraint

{subsets ownedMember}

* packagEdElemem} UL Classes Kernel:
0.1 * Packageakble Elerment

Figure 8.4 - The packaging capabilities of Components

8.3 Class Descriptions

8.3.1 Component (from BasicComponents, PackagingComponents)

A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, a component serves as a type
whose conformance is defined by these provided and required interfaces (encompassing both their static as well as
dynamic semantics). One component may therefore be substituted by another only if the two are type conformant. Larger
pieces of a system’s functionality may be assembled by reusing components as parts in an encompassing component or
assembly of components, and wiring together their required and provided interfaces.

A component is modeled throughout the development life cycle and successively refined into deployment and run-time. A
component may be manifest by one or more artifacts, and in turn, that artifact may be deployed to its execution
environment. A deployment specification may define values that parameterize the component’s execution. (See
Deployment chapter).

Generalizations

« “Class (from StructuredClasses)” on page 160

Issue 8457 - add new NamedElement superclass

« “NamedElement (from Kernel, Dependencies)” on page 99
Description

BasicComponents

A component is a subtype of Class that provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations. A Component may form the abstraction for a set of realizingClassifiers
that realize its behavior. In addition, because a Class itself is a subtype of an EncapsulatedClassifier, a Component may
optionally have an internal structure and own a set of Ports that formalize its interaction points.

150 UML Superstructure Specification, v2.1

A component has a number of provided and required Interfaces, that form the basis for wiring components together, either
using Dependencies, or by using Connectors. A provided Interface is one that is either implemented directly by the
component or one of its realizingClassifiers, or it is the type of a provided Port of the Component. A required interface is
designated by a Usage Dependency from the Component or one of its realizingClassifiers, or it is the type of a required
Port.

PackagingComponents

A component is extended to define the grouping aspects of packaging components. This defines the Namespace aspects of
a Component through its inherited ownedMember and elementimport associations. In the namespace of a component, all
model elements that are involved in or related to its definition are either owned or imported explicitly. This may include,
for example, UseCases and Dependencies (e.g., mappings), Packages, Components, and Artifacts.

Attributes

Package BasicComponents

¢ isIndirectlylInstantiated : Boolean {default = true}
The kind of instantiation that applies to a Component. If false, the component is instantiated as an addressable object. If
true, the Component is defined at design-time, but at run-time (or execution-time) an object specified by the Component
does not exist, that is, the component is instantiated indirectly, through the instantiation of its realizing classifiers or parts.
Several standard stereotypes use this meta attribute (e.g., «specification», «focus», «subsystems).

Associations

Package BasicComponents

e /provided: Interface [*]
The interfaces that the component exposes to its environment. These interfaces may be Realized by the Component or any
of its realizingClassifiers, or they may be the Interfaces that are provided by its public Ports. The provided interfaces
association is a derived association:

Issue 8103 - Fix typo.

context Component::provided derive:
let implementedinterfaces = self.implementation->collect(impljimpl.contract) and
let realizedInterfaces = RealizedInterfaces(self) and
let realizingClassifierInterfaces = RealizedInterfaces(self.realizingClassifier) and
let typesOfRequiredPorts = self.ownedPort.provided in
(((implementedInterfaces->union(realizedInterfaces)->union(realizingClassifierinterfaces))->
union(typesOfRequiredPorts))->asSet()

e [required: Interface [*]

The interfaces that the component requires from other components in its environment in order to be able to offer its full set
of provided functionality. These interfaces may be Used by the Component or any of its realizingClassifiers, or they may
be the Interfaces that are required by its public Ports. The required interfaces association is a derived association:
context Component::required derive:

let usedinterfaces = UsedInterfaces(self) and

let realizingClassifierUsedInterfaces = UsedInterfaces(self.realizingClassifier) and

let typesOfUsedPorts = self.ownedPort.required in

((usedInterfaces->union(realizingClassifierUsedInterfaces))->
union(typesOfUsedPorts))->asSet()

UML Superstructure Specification, v2.1 151

Issue 9109 - make realization non-derived
9119 - replace ‘Realization’ with ‘ComponentRealization’

« realization: ComponentRealization [*]

The set of Realizations owned by the Component. These realizations reference the Classifiers of which the Component is
an

abstraction (i.e., those that realize its behavior).

PackagingComponents

Issue 9088 - replace ‘ownedMember’ with ‘packagedElement’ and change explanation

« packagedElement: PackageableElement [*]
The set of PackageableElements that a Component owns. In the namespace of a component, all model elements that are
involved in or related to its definition may be owned or imported explicitly. These may include e.g. Classes, Interfaces,
Components, Packages, Use cases, Dependencies (e.g. mappings), and Artifacts. Subsets Namespace::ownedMember.

Constraints

No further constraints

Additional Operations

[1] Utility returning the set of realized interfaces of a component:

def: RealizedInterfaces : (classifier : Classifier) : Interface = (classifier.clientDependency->
select(dependency|dependency.oclisKindOf(Realization) and dependency.supplier.oclisKindOf(Interface)))->
collect(dependency|dependency.client)

[2] Utility returning the set of required interfaces of a component:

def: UsedInterfaces : (classifier : Classifier) : Interface = (classifier.supplierDependency->
select(dependency|dependency.oclisKindOf(Usage) and dependency.supplier.oclisKindOf(interface)))->
collect(dependency|dependency.supplier)

Semantics

A component is a self contained unit that encapsulates the state and behavior of a number of classifiers. A component
specifies a formal contract of the services that it provides to its clients and those that it requires from other components
or services in the system in terms of its provided and required interfaces.

A component is a substitutable unit that can be replaced at design time or run-time by a component that offers equivalent
functionality based on compatibility of its interfaces. As long as the environment obeys the constraints expressed by the
provided and required interfaces of a component, it will be able to interact with this environment. Similarly, a system can
be extended by adding new component types that add new functionality.

The required and provided interfaces of a component allow for the specification of structural features such as attributes
and association ends, as well as behavioral features such as operations and events. A component may implement a
provided interface directly, or, its realizing classifiers may do so. The required and provided interfaces may optionally be
organized through ports, these enable the definition of named sets of provided and required interfaces that are typically
(but not always) addressed at run-time.

152 UML Superstructure Specification, v2.1

A component has an external view (or “black-box” view) by means of its publicly visible properties and operations.
Optionally, a behavior such as a protocol state machine may be attached to an interface, port, and to the component itself,
to define the external view more precisely by making dynamic constraints in the sequence of operation calls explicit.
Other behaviors may also be associated with interfaces or connectors to define the ‘contract’ between participants in a
collaboration (e.g., in terms of use case, activity, or interaction specifications).

The wiring between components in a system or other context can be structurally defined by using dependencies between
component interfaces (typically on structure diagrams). Optionally, a more detailed specification of the structural
collaboration can be made using parts and connectors in composite structures, to specify the role or instance level
collaboration between components (See Chapter Composite Structures).

A component also has an internal view (or “white-box” view) by means of its private properties and realizing classifiers.
This view shows how the external behavior is realized internally. The mapping between external and internal view is by
means of dependencies (on structure diagrams), or delegation connectors to internal parts (on composite structure
diagrams). Again, more detailed behavior specifications such as interactions and activities may be used to detail the
mapping from external to internal behavior.

A number of UML standard stereotypes exist that apply to component. For example, «subsystem» to model large-scale
components, and «specification» and «realization» to model components with distinct specification and realization
definitions, where one specification may have multiple realizations (see the UML Standard Elements Appendix).

Notation

A component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
component icon can be displayed. This is a classifier rectangle with two smaller rectangles protruding from its left hand
side.

Quotelnf
O— 1 «component» & |

QuoteService

Figure 8.5 - A Component with one provided interface

ItemAllocation

: «component» @ Person :

Tracking Order

: Invoice i

J\Orderableltem

Figure 8.6 - A Component with two provided and three required interfaces

UML Superstructure Specification, v2.1 153

An external view of a Component is by means of Interface symbols sticking out of the Component box (external, or
black-box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments
of a component box (for scalability, tools may offer way of listing and abbreviating component properties and behavior).

«component» @
Order

«provided interfaces»
OrderEntry
Billing
«required interfaces»
Invoice
create (...)
registerPayment (...)

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

«Interface» @ «Use» «Interfaces
«component»

OrderEntry e Order R— Person
Create() FindbyName()
ValidateDetails() Create() .
AddOrderline() GetDetails()

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
as operation to be displayed (when desired).

An internal, or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

«component» @

Order

«provided interfaces»
OrderEntry
AccountPayable

«required interfaces»
Person

«realizations»
OrderHeader
Lineltem

«artifacts»
Order.jar

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed by means of general dependencies.
Alternatively, they may be nested within the component shape.

154 UML Superstructure Specification, v2.1

1

«component»
Customer

Customerimpl CustomerColl CustomerDef

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the
component shape.

«component» @
Order

OrderHeader
OrderEntry
order 1 C
item * Person
Lineltem

Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of
parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names
to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is,
the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally,
specific instances (InstanceSpecifications) can also be referred to as in this notation.

UML Superstructure Specification, v2.1 155

Interfaces that are exposed by a Component and notated on a diagram, either directly or though a port definition, may be
inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the
interface by a forward slash. An example of this can be found in Figure 8.14, where “/ordereditem” is an interface that is
implemented by a supertype of the Product component.

«component» @
Store
OrderEntry

© L «delegate»
«component» @ Person «component» @
O— [¢;

OrderEntry :Order Person :Customer
Orderableltem Account i
«delegate»
Orderableltem T -
Account
«component» @
:Product

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components as
parts of its internal assembly.

Acrtifacts that implement components can be connected to them by physical containment or by an «implement»
relationship, which is an instance of the meta association between Component and Artifact.

Examples
«component» @ «component»
Order = f---------------3 Account

i
1
1
1
1
i
1
\V

«component»

Product 8

Figure 8.13 - Example of an overview diagram showing components and their general dependencies

156 UML Superstructure Specification, v2.1

«component» @

Account

account

AccountPayable

«component»

Order

«focus»

—--3> OrderHeader

concerns

fordereditem
1

(/33

«component» @
Product

¢

Lineltem

A\
Orderableltem

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces, and wir-
ing through dependencies on a structure diagram.

Issue

8105 - Add component icon to :ShoppingCart.

«component» @

:ShoppingCart

«component» @

:Service

«component» @ Person
:BackOrder
OrderEntry «component» @ Person «component» @
© e
OrderEntry :Order Person :Customer
Orderableltem
Orderableltem ? «component» @
‘ Orderableltem Client ‘Organization

«component» @

:Product

Figure 8.15 -Example of a composite structure of components, with connector wiring between provided and required

interfaces of parts (Note: “Client” interface is a subtype of “Person”).

The wiring of components can be represented on structure diagrams by means of classifiers and dependencies between

them (Note: the ball-and-socket notation from Figure 8.15 may be used as a notation option for dependency based

wiring). On composite structure diagrams, detailed wiring can be performed at the role or instance level by defining parts

and connectors.

UML Superstructure Specification, v2.1

157

Changes from previous UML
The following changes from UML 1.x have been made.

The component model has made a number of implicit concepts from the UML 1.x model explicit, and made the concept
more applicable throughout the modeling life cycle (rather than the implementation focus of UML 1.x). In particular, the
“resides” relationship from 1.x relied on namespace aspects to define both namespace aspects as well as ‘residence’
aspects. These two aspects have been separately modeled in the UML metamodel in 2.0. The basic residence relationship
in 1.x maps to the realizingClassifiers relationship in 2.0. The namespace aspects are defined through the basic namespace
aspects of Classifiers in UML 2.0, and extended in the PackagingComponents metamodel for optional namespace
relationships to elements other than classifiers.

In addition, the Component construct gains the capabilities from the general improvements in CompositeStructures
(around Parts, Ports, and Connectors).

In UML 2.0, a Component is notated by a classifier symbol that no longer has two protruding rectangles. These were
cumbersome to draw and did not scale well in all circumstances. Also, they interfered with any interface symbols on the
edge of the Component. Instead, a «component» keyword notation is used in UML 2.0. Optionally, a component icon that
is similar to the UML 1.4 icon can still be used in the upper right-hand corner of the component symbol. For backward
compatibility reasons, the UML 1.4 notation with protruding rectangles can still be used.

8.3.2 Connector (from BasicComponents)

The connector concept is extended in the Components package to include interface based constraints and notation.

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the
internal realization of that behavior by the component’s parts. It represents the forwarding of signals (operation requests
and events): a signal that arrives at a port that has a delegation connector to a part or to another port will be passed on to
that target for handling.

An assembly connector is a connector between two components that defines that one component provides the services that
another component requires. An assembly connector is a connector that is defined from a required interface or port to a
provided interface or port.

Generalizations

« “Connector (from InternalStructures)” on page 181 (merge increment)

Description

In the metamodel, a connector kind attribute is added to the Connector metaclass. Its value is an enumeration type with
valid values “assembly” or “delegation.”

Attributes

Package BasicComponents

¢ kind : ConnectorKind Indicates the kind of connector.

158 UML Superstructure Specification, v2.1

Associations

Issue 8976 - add ‘contract’ entry

e contract : Behavior [0..*] The set of Behaviors that specify the valid interaction patterns across the connector

Constraints

[1] A delegation connector must only be defined between used Interfaces or Ports of the same kind (e.g., between two
provided Ports or between two required Ports).

[2] If a delegation connector is defined between a used Interface or Port and an internal Part Classifier, then that Classifier
must have an “implements” relationship to the Interface type of that Port.

[3] If adelegation connector is defined between a source Interface or Port and a target Interface or Port, then the target
Interface must support a signature compatible subset of Operations of the source Interface or Port.

[4] Inacomplete model, if a source Port has delegation connectors to a set of delegated target Ports, then the union of the
Interfaces of these target Ports must be signature compatible with the Interface that types the source Port.

[5]1 An assembly connector must only be defined from a required Interface or Ports to a provided Interface or Port.

Semantics

A delegation connector is a declaration that behavior that is available on a component instance is not actually realized by
that component itself, but by another instance that has “compatible” capabilities. This may be another Component or a
(simple) Class. The latter situation is modeled through a delegation connector from a Component Interface or Port to a
contained Class that functions as a Part. In that case, the Class must have an implements relationship to the Interface of
the Port.

Delegation connectors are used to model the hierarchical decomposition of behavior, where services provided by a
component may ultimately be realized by one that is nested multiple levels deep within it. The word delegation suggests
that concrete message and signal flow will occur between the connected ports, possibly over multiple levels. It should be
noted that such signal flow is not always realized in all system environments or implementations (i.e., it may be design
time only).

A port may delegate to a set of ports on subordinate components. In that case, these subordinate ports must collectively
offer the delegated functionality of the delegating port. At execution time, signals will be delivered to the appropriate
port. In the cases where multiple target ports support the handling of the same signal, the signal will be delivered to all
these subordinate ports.

The execution time semantics for an assembly connector are that signals travel along an instance of a connector,
originating in a required port and delivered to a provided port. Multiple connectors directed from a single required
interface or port to provided interfaces on different components indicates that the instance that will handle the signal will
be determined at execution time. Similarly, multiple required ports that are connected to a single provided port indicates
that the request may originate from instances of different component types.

The interface compatibility between provided and required ports that are connected enables an existing component in a
system to be replaced by one that (minimally) offers the same set of services. Also, in contexts where components are
used to extend a system by offering existing services, but also adding new functionality, assembly connectors can be used
to link in the new component definition. That is, by adding the new component type that offers the same set of services
as existing types, and defining new assembly connectors to link up its provided and required ports to existing ports in an
assembly.

UML Superstructure Specification, v2.1 159

Notation

A delegation connector is notated as a Connector from the delegating source Port to the handling target Part, and vice
versa for required Interfaces or Ports.

«component» @
OrderEntry Order
o——1
:OrderHeader
+—-7C
Person
:Lineltem
order item
OrderHeader ®————— Lineltem
1

Figure 8.16 - Delegation connectors connect the externally provided interfaces of a component to the parts that realize
or require them.

An assembly connector is notated by a “ball-and-socket” connection between a provided interface and a required
interface. This notation allows for succinct graphical wiring of components, a requirement for scaling in complex
systems.

When this notation is used to connect “complex” ports that are typed by multiple provided and/or required interfaces, the
various interfaces are listed as an ordered set, designated with {provided} or {required} if needed.

OrderEntry OrderEntry «component» @

«component»
g Order 2] O— :Order

Orderableltem

Orderableltem

«component»

O— Product @

Orderableltem Orderableltem

«component» @
:Product

Figure 8.17 - An assembly connector maps a required interface of a component to a provided interface of another
component in a certain context (definition of components, e.g., in a library on the left, an assembly of those compo-
nents on the right).

160 UML Superstructure Specification, v2.1

Issue 8901 - replace paragraph

Where multiple components provide or require the same interface, a single symbol representing the interface can be

shown, and lines from the components can be drawn to that symbol, indicating that this interface is either a required or
provided interface for the components. This presentation option is applicable whether the interface is shown using "ball-

and-socket™ notation, as in Figure 8.18, or just using a required or provided interface symbol.

«component»
@ Person
Qi :BackOrder
OrderEntry
«component» @ «component»
Person
O— :Order :Customer
OrderEntry Person
«component»

:Organization

Note: Client interface is a subtype of Person interface

Figure 8.18 - As a notation abstraction, multiple wiring relationships can be visually grouped together in a component

assembly.

Changes from previous UML

The following changes from UML 1.x have been made — Connector is not defined in UML 1.4.

8.3.3 ConnectorKind (from BasicComponents)

Generalizations

None

Description

ConnectorKind is an enumeration of the following literal values:

e assembly

e delegation

| UML Superstructure Specification, v2.1

Indicates that the connector is an assembly connector.

Indicates that the connector is a delegation connector.

161

Issue 9119 - rename’Realization’ to ‘ComponentRealization’

8.3.4 ComponentRealization (from BasicComponents)

The ComponentRealization concept is specialized in the Components package to (optionally) define the Classifiers that
realize the contract offered by a component in terms of its provided and required interfaces. The component forms an
abstraction from these various Classifiers.

Generalizations

- “Realization (from Dependencies)” on page 132 (merge increment)

Description

In the metamodel, a ComponentRealization is a subtype of Dependencies::Realization.

Attributes

No additional attributes

Associations

Issue 8976 - add ‘abstraction’ and ‘realizingClassifier’ entries

e abstraction : Component [0..1] The Component that own this Realization and which is implemented by its realizing
classifiers.{Subsets Element::owner, DirectedRelationship::source,
Dependency::client}

« realizingClassifier : Classifier [1] A classifier that is involved in the implementation of the Component that owns this
Realization. {Subsets Dependency::supplier, DirectedRelationship::target}

Constraints

No additional constraints

Semantics

Issue 9119 - replace first sentence

A component’s behavior may typically be realized (or implemented) by a number of Classifiers. In effect, it forms an
abstraction for a collection of model elements. In that case, a component owns a set of Component Realization
Dependencies to these Classifiers. In effect, it forms an abstraction for a collection of model elements. In that case, a
component owns a set of Realization Dependencies to these Classifiers.

It should be noted that for the purpose of applications that require multiple different sets of realizations for a single
component specification, a set of standard stereotypes are defined in the UML Standard Profile. In particular,
«specification» and «realization» are defined there for this purpose.

Notation

A component realization is notated in the same way as the realization dependency (i.e., as a general dashed line with an
open arrow-head).

162 UML Superstructure Specification, v2.1

Changes from previous UML

The following changes from UML 1.x have been made: Realization is defined in UML 1.4 as a ‘free standing’ general
dependency - it is not extended to cover component realization specifically. These semantics have been made explicit in

UML 2.0.

8.4 Diagrams

Structure diagram

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 8.1.

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE
Component See “Component”
<<component>>
ComponentName

=1

ComponentName
Component implements Interface See “Interface”
«component» @
O— Name
Component has provided Port See “Port”

(typed by Interface)

«component» @

Name

UML Superstructure Specification, v2.1

163

Table 8.1 - Graphic nodes included in structure diagrams

NoDE TYPE NOTATION REFERENCE
Component uses Interface See “Interface”
«component»
D Name 2]
Component has required Port (typed See “Port”
by Interface) «component» @
Name
Component has complex Port (typed See “Port”
by provided and required Interfaces) pro—
Name

Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 8.2.

Table 8.2 - Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “assembly connector.” Also used as notation option for
wiring between interfaces using Dependencies.

©

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Component diagram
The following nodes and edges are typically drawn in a component diagram:

« Component
« Interface

164 UML Superstructure Specification, v2.1

Issue 9119 - replace ‘Realization’ with ‘ComponentRealization’

ComponentRealization, Interface Realization, Usage Dependencies
Class

Artifact

« Port

UML Superstructure Specification, v2.1

165

166 UML Superstructure Specification, v2.1

9 Composite Structures

9.1 Overview

The term “structure” in this chapter refers to a composition of interconnected elements, representing run-time instances
collaborating over communications links to achieve some common objectives.

Internal Structures

The InternalStructure subpackage provides mechanisms for specifying structures of interconnected elements that are
created within an instance of a containing classifier. A structure of this type represents a decomposition of that classifier
and is referred to as its “internal structure.”

Ports

The Ports subpackage provides mechanisms for isolating a classifier from its environment. This is achieved by providing
a point for conducting interactions between the internals of the classifier and its environment. This interaction point is
referred to as a “port.” Multiple ports can be defined for a classifier, enabling different interactions to be distinguished
based on the port through which they occur. By decoupling the internals of the classifier from its environment, ports allow
a classifier to be defined independently of its environment, making that classifier reusable in any environment that
conforms to the interaction constraints imposed by its ports.

Collaborations

Obijects in a system typically cooperate with each other to produce the behavior of a system. The behavior is the
functionality that the system is required to implement.

A behavior of a collaboration will eventually be exhibited by a set of cooperating instances (specified by classifiers) that
communicate with each other by sending signals or invoking operations. However, to understand the mechanisms used in
a design, it may be important to describe only those aspects of these classifiers and their interactions that are involved in
accomplishing a task or a related set of tasks, projected from these classifiers. Collaborations allow us to describe only
the relevant aspects of the cooperation of a set of instances by identifying the specific roles that the instances will play.
Interfaces allow the externally observable properties of an instance to be specified without determining the classifier that
will eventually be used to specify this instance. Consequentially, the roles in a collaboration will often be typed by
interfaces and will then prescribe properties that the participating instances must exhibit, but will not determine what class
will specify the participating instances.

StructuredClasses

The StructuredClasses subpackage supports the representation of classes that may have ports as well as internal structure.

Actions

The Actions subpackage adds actions that are specific to the features introduced by composite structures (e.g., the sending
of messages via ports).

9.2 Abstract syntax

Figure 9.1 shows the dependencies of the CompositeStructures packages.

UML Superstructure Specification, v2.1 167

1
Interfaces
Communications
I

:
:
:
i
sMmErgEs
!
:
i
:
:
i
:

InternalStructures

H
H
:
amerdes
.
H
H
H
H H
H H

1
Ports amerges
__ =
Ak AT
ameres

Collzhaorations

" —| E
Structuredaclivities «merg'e»

!
| \
. .
\
|r .
! . BazicActions
“merges «merges
" ‘I
| \
J s
| i
! s
| .
; i A1 .
! \ f .
i K SISO «mefges:
| \ f N
/ \ ‘ .
s . .
‘
H
Structured Activities

1 :
InvocationActions

StructuredClasses

Figure 9.1 - Dependencies between packages described in this chapter

UML Superstructure Specification, v2.1

168

Package InternalStructures

Issue

8107 - Replace diagram with TypeElement as the superclass of ConnectableElement (the

updated diagram corresponding to FTF issue 7240 was not included for some reason.
8457 - make Property a subclass of StructuralFeature

LML Classes::

0.1

Figure 9.2 - Structured classifier

UML Superstructure Specification, v2.1

*

UML: - Classes:
Kemel: Kermel:
Classifier TvpedElament
UML: - Classes::
StucturedCiassifiar {readOnly, union, subsets member} Kernel:
+ frole ConnectablaElement StructuralFeature
* * T
{subsets role, ‘T ‘ Classifior
subsets ownedMember, Froperty
subsets sttribuke, ordered
{redefines _structuredClassifier + ownedatirbute ' + classifier | 0.1
0.1 * freadOnly}
fattribut
freadonly) * e
+ /part *
0.1 *
Jsubsets Featurs {subsets redefinedElement}
N subsets ownedviember + redefinedConnector
{subsets redefinitionContext} + ownedConnector Connector

*

169

UML: Classes: Kemel:: LML Classes: Kernel:

MuitiplicityElarment Featurs
{subsets ownedElement,
dered
ConnectabieElement {Dl’del’f%}l’jd ConnectorEnd Drj;id} Connectar
+ role -
1 * 2.7 1
{readOnly}
+ /definingEnd|0. .1 +type|0..1
Property UML:: Clagses: Kernel:
Association
Figure 9.3 - Connectors
Package Ports
Issue 9187 - make ‘ownedPort’ derived and change subsets constraint
LML CompositeStrictures::
IntemalStructures::
Sﬂrigire;é?a:r;ger UML:: CompositeStructures::
InternalStructures:: Property
EncapsulatedClassifier {subsets
{sgb?_ets Context) ownedattribukel Paort freadonly}
rederinition_onCe:x - n
+ fownedPan, !SBehgwur: Boalean + frequired UML::Classes:
01 =" | isSemice : Boolean - . Interfaces
Interface
{subsets redefinedElement} {readCnly -
ConnectorEnd + redefinedPort + /provided.
+ partwithPort (0.1 *

LML CompasiteStructures::
InternalStructures::Property

Figure 9.4 - The Port metaclass

170 UML Superstructure Specification, v2.1

Package StructuredClasses

LML
CompositeStructures::
Fors:
EncapsulatedClassifiar

Class

Figure 9.5 - Classes with internal structure

UML Superstructure Specification, v2.1

171

Package Collaborations

L L
CompasiteStructures:: CommanBehaviors::
InternalStructures:: BasicBehaviors:

StructuredClassifier BehavioredUlassifier

LI T T
{subsets role}

CompositeStructures:: -
IntermnalStructures: + collaborationRole Collaboration
ConnectableElament = -

T

Pararmeter

Figure 9.6 - Collaboration

Issue 8456 - change ‘occurrence’ to ‘collaborationUse’

UL Cigases:

Kerhel:
MNamespace
i
UL Classes: UL
Kernel: Classes:
LML Classes: Kernel:: RedetinableElement Kernel: Type
NarmedE lement
T {subsets ownedElement
. _+ collaborationUse -
CollaborationlUse S K Claasifior
{subsets collaborationJse}
.+ representation
-
+ 0.1 0.1
0.1
1 {subsets ownedElement}
+type * + roleBinding
Collaboration UML::Classes:

Dependencies::Dependency

Figure 9.7 - Collaboration.use and role binding

172 UML Superstructure Specification, v2.1

Package InvocationActions

fnvocationd chion + onPort LML + port Thigger
CompositeStructures:
' b1 Ports::Port ' '

Figure 9.8 - Actions specific to composite structures

Package StructuredActivities

LML
CompositeStruchures::
Internalstuctures::
ConnectableElement

i

“Wariable

Figure 9.9 - Extension to Variable

9.3 Class Descriptions

9.3.1 Class (from StructuredClasses)

Generalizations

« “EncapsulatedClassifier (from Ports)” on page 185.

Description

Extends the metaclass Class with the capability to have an internal structure and ports.

Semantics

Issue 8108 - Update page references.

See “Property (from InternalStructures)” on page 190, “Connector (from InternalStructures)” on page 181, and “Port
(from Ports)” on page 186 for the semantics of the features of Class. Initialization of the internal str