Date: February 2009

UNIFIED “'.I;:::I"
MODELING
LANGUAGE .

OMG Unified Modeling Language™ (OMG UML),
Superstructure

Version 2.2
with change bars

OMG Document Number: formal/2009-02-03

Standard document URL: http://www.omg.org/spec/UML/2.2/Superstructure

Associated Files:
http://www.omg.org/spec/UML/20080501/Superstructure.xmi
http://www.omg.org/spec/UML/20080501/uml-LO-model.xmi
http://www.omg.org/spec/UML/20080501/uml-LM-model.xmi
http://www.omg.org/spec/UML/20080501/uml-L1-model.xmi
http://www.omg.org/spec/UML/20080501/uml-L2-model.xmi
http://www.omg.org/spec/UML/20080501/uml-L3-model.xmi

Normative machine-readable files: ptc/08-05-07, ptc/08-05-08, ptc/08-05-09, ptc/08-05-10,
ptc/08-05-11, ptc/08-05-12.

Version 2.2 is a minor revision to the UML 2.1.2 specification. It supersedes formal/2007-11-01.

Copyright © 2001-2003 Adaptive Ltd.

Copyright © 2001-2003 Alcatel

Copyright © 2001-2003 Borland Software Corporation
Copyright © 2001-2003 Computer Associates International, Inc.
Copyright © 2001-2003 Telefonaktiebolaget LM Ericsson
Copyright © 2001-2003 Fujitsu

Copyright © 2001-2003 Hewlett-Packard Company

Copyright © 2001-2003 I-L ogix Inc.

Copyright © 2001-2003 I nternational Business Machines Corporation
Copyright © 2001-2003 IONA Technologies

Copyright © 2001-2003 Kabira Technologies, Inc.

Copyright © 2001-2003 MEGA International

Copyright © 2001-2003 Motorola, Inc.

Copyright © 1997-2009 Object Management Group.

Copyright © 2001-2003 Oracle Corporation

Copyright © 2001-2003 SOFTEAM

Copyright © 2001-2003 Telelogic AB

Copyright © 2001-2003 Unisys

Copyright © 2001-2003 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS
MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered

trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XM

Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed

on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technol ogy/
agreement.htm).

UML Superstructure Specification, v2.2

UML Superstructure Specification, v2.2

Table of Contents

=] = 1o TP Xi
L. S0P o 1
2. CoNformManCe 1
2.1 Language Units e 2

2.2 Compliance Levels e 2

2.3 Meaning and Types of Compliance 6

2.4 Compliance Level Contents i e e 8

3. Normative References e 10
4. Terms and Definitions e 10
5. Symbols ... 10
6. Additional Information 10
6.1 Architectural Alignment and MDA Support 10

6.2 Onthe Run-Time Semanticsof UML 10

6.2.1 ThE BASIC PIEMISES ... e e e e e e e e e e e e e e e et e e et e e e e e e aereaearareenaaann s 11

6.2.2 The SEMANtICS ArChItECLUIEcciiiiieeeeeeeee e e e e e e e e e e e e e et re b 11

6.2.3 The Basic Causality MOAEIoooiiii e 12

6.2.4 Semantics Descriptions in the Specification ... 12

6.3 The UML Metamodel e 13

6.3.1 Models and What They MOGEI ..o e e 13

6.3.2 Semantic Levels and NamiNgooooiiiiiiiiiaa e a e eeea e as 13

6.4 How to Read this Specification i 14

L ST o 1= Tox o= L (o] I {0 1 13- L P 15

07 DI To | - a0 (o] £ 4= | SO 18

6.5 Acknowledgements 19

Part | - Structure 21
7. ClaSSES .. i 23
7.l OVEIVIEW . 23

UML Superstructure Specification, v2.2 i

7.2 ADSIraCt SYNtaXo 24

7.3 Class DesCriptions 38
7.3.1 Abstraction (from DEePeNAENCIES)coiiiuuuiiiiiiiiiee ettt e e e e e e e nbeee e 38
7.3.2 AggregationKind (from KEINEI)cooi i 38
7.3.3 Association (from Kernel) ... e e e 39
7.3.4 AssociationClass (from ASSOCIAtIONCIASSES)eeieiiieiiiiiiiiiiie e e e 46
7.3.5 BehavioralFeature (from KErNel) ... 48
7.3.6 BehavioredClassifier (from INterfaces)c.uuveiiiiiioiiii e 49
7.3.7 Class (from KEINEI) ..ottt et e e e e e et e e e e e ae e e e e s aanenes 49
7.3.8 Classifier (from Kernel, Dependencies, POWEITYPES) ...ccccuuviiiiiiieiiaeeiaiiieiieeeeeeee e 52
7.3.9 Comment (fromM KEIMEI) ...t e e e e e e e s aeaes 57
7.3.10 Constraint (from Kernel)o e e e e 58
7.3.11 DataType (from KEINEI)eeiiiiiiiii et e e e e 60
7.3.12 Dependency (from DEPENUENCIES)ccoiiiiiriiiiiieiiea ettt e e e e e e e e e e anaeaes 62
7.3.13 DirectedRelationship (from Kernel) ... 63
7.3.14 Element (from KEIMNEL)eeeiiieeeii ettt e e e e e e e e e 64
7.3.15 ElementImport (from KEernel) ... e 65
7.3.16 Enumeration (from Kernel) ... e 67
7.3.17 EnumerationLiteral (from Kernel) ... 68
7.3.18 EXPression (from KEINEI) ... ittt e e e e e e e 69
7.3.19 Feature (from KEINEI) ...ttt e e et e e e e e e e e e e e aaeaes 70
7.3.20 Generalization (from Kernel, POWEITYPES)uuuiiiiiiiiiiaiiaiiiiieieee et eee e e e e 71
7.3.21 GeneralizationSet (from POWEITYPES)uuiiiiiiiiiieeae et a e e 75
7.3.22 InstanceSpecification (from Kernel) ... 82
7.3.23 InstanceValue (from KerNel) ... 85
7.3.24 Interface (from INTEIFACES)eeiiiiiiiii e 86
7.3.25 InterfaceRealization (from INtErfaCes)cuvuuiiiiiiiiaei e 89
7.3.26 LiteralBoolean (from KEINEI)oooiiiiiiiiiie e 89
7.3.27 Literallnteger (from KEINEI)eeiiiiiii e e e 90
7.3.28 LiteralNUll (from KEINEI) ettt a e 91
7.3.29 LiteralSpecification (from Kernel)cooo e 92
7.3.30 LiteralString (from KEIMNEI)ueiiiiiieieee ittt e e e e e 92
7.3.31 LiteralUnlimitedNatural (from Kernel)cc.oeeiiiiiiiiie e 93
7.3.32 MultiplicityElement (from Kernel) ... 94
7.3.33 NamedElement (from Kernel, DEPENUENCIES)cciiieiiiiiiiiiiiiiiieie et 98
7.3.34 Namespace (from KEINEI)eeeiiiiieiiii it e e e e e e e 99
7.3.35 OpaqueExpression (from Kernel) ... 101
7.3.36 Operation (from Kernel, INterfaces)cccuuueiiiiiiiiiiii e 103
7.3.37 Package (from KErNel) ... ettt e e e e e e e e snaees 107
7.3.38 PackageableElement (from Kernel) ... 109
7.3.39 Packagelmport (from KEINEI)oooi oot 110
7.3.40 PackageMerge (from KEINEI)oooo oot 112
7.3.41 Parameter (from KEINEI)uuiiiiiiiieeei et e e e e e 120
7.3.42 ParameterDirectionKind (from Kernel)ueiiiiiiiiiiie e 121
7.3.43 PrimitiveType (from Kernel) ..o 122
7.3.44 Property (from Kernel, ASSOCIatiONCIASSES)eeiiiiiiiiiiiiiiiiiieiiee e 122
7.3.45 Realization (from DEPENUENCIES)cooiiiiiiiiiiiiie et eee e e e e e e eaeeees 129
7.3.46 RedefinableElement (from Kernel) ..o 130
7.3.47 Relationship (from KEINEI)eeeiiii e 131
7.3.48 SIOt (fFromM KEINEI) ..ot e e e e e e e e e e e annees 132

UML Superstructure Specification, v2.2

7.3.49 StructuralFeature (from Kernel)uveiiiiiiiii e 133

7.3.50 Substitution (from DEPENUENCIES)uvviviiiiiiiie e e e e e e s raee s 134

7.3.51 TYPE (frOM KEINEI) ...t e e e e e e e e e e e e e e e e s s nenrreaeeees 135

7.3.52 TypedElement (from KEINEI)ccoo i e e 136

7.3.53 Usage (from DEPENUENCIES) ...eeeeeiiii ittt e e e e e e sttt e e e e e e e e s e rare e e e e e e e s e s nnrnereaeeees 136

7.3.54 ValueSpecification (from Kernel) ... e 137

7.3.55 VisibilityKind (from Kernel)ooviiiiiie e 138

T4 DIAgIAMS . ottt e 140
8. COMPONENTS . .. 143
8.1 OVEIVIEW . o 143
8.2 ADSIraCt SYNtaXt 144
8.3 Class DesCriplioNs e 146
8.3.1 Component (from BasicComponents, PackagingComponents)ccccueveeeeeeeeninniinnnns 146

8.3.2 ComponentRealization (from BasicCCOMPONENTS)ccouuiiiiiiiiiiieeei it 154

8.3.3 Connector (from BasiCCOMPONENTS)uuuuiiiiiiiiiaaaie ittt e e e e e e e e e e e e e s e aeeees 155

8.3.4 ConnectorKind (from BasSiCCOMPONENTS)uuuiiiiiiiiiiiiiiiiiiiiee e ee e e e e e 158

8.4 DIagramS . .. 159
9. ComposSite StrUCTUIeS e et e 161
0.1 OVEIVIEW . e 161
9.2 ADSIraCt SYNtaXt 161
9.3 Class DeSCrptiONSo 166
9.3.1 Class (from StruCtUredCIASSES)cicuueiiiiieiieeae ettt e e e e e e e e nb e e eee s 166

9.3.2 Classifier (from CollaborationNS)ccccueuiiiiiiiiiiaai e 167

9.3.3 Collaboration (from CollaborationS)cciieiiiiiiiiiiiiiiiie e 168

9.3.4 CollaborationUse (from Collaborations)cooiiiiiiiiiiiiiieeee e 171

9.3.5 ConnectableElement (from INternalStruCtures)cc.eeeiieiiiiiiiiiiie e 174

9.3.6 Connector (from INterNAISIIUCIUIES)ueiiiiiiiiiiei it 174

9.3.7 ConnectorEnd (from InternalStructures, POrtS)cc.uuveiiiiiiiiiiiiiieeeee e 176

9.3.8 EncapsulatedClassifier (from POIS)ueiiiiiiiiiiiiiiiiieee e 178

9.3.9 InvocationAction (from INVOCAtIONACLIONS)ceeiiiiiiiiiiiiiieiiee e 178

9.3.10 Parameter (from CollaborationS)cueeiiiiiiiiiiiiiiii e 179

9.3.11 POIt (frOM POMS) ...ttt et e e e e e e s et e et e e e e e e e e e e annbeaesseeeaas 179

9.3.12 Property (from INterNalStrUCIUIES)ueuiiiiiiiiiii ittt 183

9.3.13 StructuredClassifier (from INternalStructures)cc.uevieiiiiiiiiiiie e 186

9.3.14 Trigger (from INVOCAtIONACLIONS) ...ttt e e e e e eee e 190

9.3.15 Variable (from StruCtUr@dACHVITIES)uuueiiiiiieeiiii it 191

0.4 DIagramMS . .ttt 191
10. Deployments 193
10.1 OVEIVIEW . oottt ettt e e e e e 193
10.2 ADSEract SYNtaX 193

UML Superstructure Specification, v2.2 iii

10.3 Class DesCriptioNS e e 197

10.3.1 Artifact (from Artifacts, NOAES)ccocoiiiiiiieiie e 197

10.3.2 CommunicationPath (from NOUES)uuvuiiiiiiiiiiiiiiii e 199

10.3.3 DeployedArtifact (from NOGES)cccoceiiiiiiiiiiee e e e reee e 200

10.3.4 Deployment (from ComponentDeployments, NOES)coveeeevviiiiiiiiiiiierieeee e, 201

10.3.5 DeploymentSpecification (from ComponentDeployments)cccccvvvvveeeeeeevniccivvvvennenn. 203

10.3.6 DeploymentTarget (from NOGES)uuuiiiiiiieeeeiii i e e e e e e e e e s reeee e 205

10.3.7 DEVICE (frOM NOGES) ...uvvrriiiiiiieeeeee i sttt e e e e e e s s s st e et e e e e e e s e anan e aeeeaeaeessansansnrrneeeees 206

10.3.8 ExecutionEnvironment (from NOGES)uuviieiieeiiiiiiiiiiieeee e s e e e e e e 207

10.3.9 InstanceSpecification (froM NOUES)uuuriiiiiiiiiiiiiiir e e 208

10.3.10 Manifestation (from ArtifactS)ccccvviiiiiiiie e e 209

10.3.11 NOdE (frOM NOGES) ...uvvriiiiiiiieee e i e e e e e s e s e e e e e e e s e e e eraaeaeessanannenrrneeeees 210

10.3.12 Property (froM NOGES)eveeiieeieeiiiciiiiieee e e s st e e e e e e e s s st r e e e e e e e e s e e nnnnnreaees 212

10.4 DIagramsS . ..ttt 212
Part Il - Behavior 215
1. ACHIONS .. 217
11,0 OVEIVIEW . e e e e e e e e e 217
11.2 ADSEract SYNtaXot 219
11.3 Class DesCriptioNSt e 233
11.3.1 AcceptCallAction (from ComMPIEtEACLIONS)ccoeeiiiiiiiiiiiiiiee e 233

11.3.2 AcceptEventAction (from CompleteACLIONS)oooiiiiiiiiiiiiei e 234

11.3.3 Action (from BASICACLIONS) ...ceeeiieiiiiiiee ettt e e e e e e e b b eeeeeaaens 236

11.3.4 ActionInputPin (from StruCtUr@dACLIONS)coeiiiiiiiiiiiiiii e 237

11.3.5 AddStructuralFeatureValueAction (from Intermediate ACtions)ceeveeeiiiiiiiiiiiiiinnen. 238

11.3.6 AddVariableValueAction (from StructuredACtioNS)eeeieiiiiiiiiiiiiiiieee e, 240

11.3.7 BroadcastSignalAction (from Intermediate ACtIONS)eeviiiiiiiiiiiiiiiiiieie e 241

11.3.8 CallAction (from BaSICACLIONS)ccoiiiiiiiiieiii ettt e e e e e e e eeeeas 242

11.3.9 CallBehaviorAction (from BASICACLONS)ccouiiiiiiiiiiiiiiiiieea e 243

11.3.10 CallOperationAction (from BaSICACHONS)coeeiiiiiiiiiiiiiieie e 245

11.3.11 ClearAssociationAction (from IntermediateACtioNS)ccoovviiiiiiiiiiiiiiiieee e 246

11.3.12 ClearStructuralFeatureAction (from Intermediate ACtions)coccuvevieeeiiiieeiniiniiieeen, 247

11.3.13 ClearVariableAction (from StructuredACtiONS)uveiiiiiiiriiiiie e 248

11.3.14 CreateLinkAction (from Intermediate ACtioNS)uviiiiiiiiiiiiiieeee e 249

11.3.15 CreateLinkObjectAction (from CompleteACtIONS)cceviiiiiiiiiiiiiiiiiiieeee e 251

11.3.16 CreateObjectAction (from IntermediateACtioNS)eeeiieiiiiiiiiiiiiieeee e 252

11.3.17 DestroyLinkAction (from Intermediate ACtioNS)euviiiiiiieiiiiiiieieeee e 253

11.3.18 DestroyObjectAction (from Intermediate ACtioNS)cceeeiieeiiiiiiiiiiiiiiiee e 254

11.3.19 InputPin (from BASICACLIONS)coiiiiiiiiiiiiii ettt e e e e e e 255
11.3.20 InvocationAction (from BASICACHONS)ceiiiiiiiiiiiiiiiiiiie it 256

11.3.21 LinkAction (from Intermediat@ ACtIONS)cooiiiriiiiiiiiiiiieie e 256

11.3.22 LinkEndCreationData (from Intermediate ACtIONS)eeeiieiiiiiiiiiiiiiiiieiee e, 258

11.3.23 LinkEndData (from IntermediateActions, Complete ACtions)ccceeeeeeeeeriniiiiiiiieneenn. 259

11.3.24 LinkEndDestructionData (from Intermediate ACtioNS)cooeiiiiiiiiiiiiiieeiee e, 260
11.3.25 MultiplicityElement (from BASICACHONS)ccciiiiiiiiiiiiiiiiiieia et 261

UML Superstructure Specification, v2.2

11.3.26 OpaqueAction (from BaSICACHONS)eviieeeiiiiiciiiiee e e e e e e s e s eee e e e e e e e e s e e eeeee s 262

11.3.27 OutputPin (from BaSICACHONS)uvueiiiiiiiiieeeeeees s ettt ee e e e e e s e e s strae e e e e e e e e e s e nnnennreeeeees 263
11.3.28 Pin (from BASICACHONS) ..evvvieeeiieiiiiiiie et e e e e e s ss s st e e e e e e s s s st ee e e e e e e e e e s snnnnnnenneneeees 263
11.3.29 QualifierValue (from Complet@ACHIONS) ...ccooiveeiiiiiieiieee e 264
11.3.30 RaiseExceptionAction (from StructuredACLIONS)cvvieeeeiiiiiiiieeee e 265
11.3.31 ReadExtentAction (from CoOmPpIetEACLIONS)uvviiiiiiiiieee i e e 266
11.3.32 ReadlsClassifiedObjectAction (from CompleteActions)cccccciviveeieee e, 267
11.3.33 ReadLinkAction (from IntermediateACtIONS)ueveiiieeeiiiiiciiie e e 268
11.3.34 ReadLinkObjectEndAction (from CompleteACtIONS)cccevviiiiiiiiiiiiiiee e 269
11.3.35 ReadLinkObjectEndQualifierAction (from CompleteActions)ccccvveeevvvvivviiieeeieeeenn. 271
11.3.36 ReadSelfAction (from IntermediateACHIONS)uvviriiieeeeei e 272
11.3.37 ReadStructuralFeatureAction (from Intermediate Actions)cccveeeeiiieieiiniiiiiiiieeeen. 273
11.3.38 ReadVariableAction (from StructuredACtiONS)uvvieiiiiiiriiiii e 274
11.3.39 ReclassifyObjectAction (from CompleteACtIONS)eeveviiiiiiiiiiiiiiii e 275
11.3.40 ReduceAction (from ComMpleteACIONS)cooiiiiiiiiiiiieiie e 276
11.3.41 RemoveStructuralFeatureValueAction (from Intermediate Actions)ccooeccvvvvveeeeen. 278
11.3.42 RemoveVariableValueAction (from StructuredACtioNS)oooiiiiiiiieiieeieeeiieieeeean 279
11.3.43 ReplyAction (from COmMPIEtEACHONS) ...ceeeiiiiiiiiiiiiiiie e 280
11.3.44 SendObjectAction (from Intermediate ACtiONS)uueiiiiiiiiiiiiiiee e 281
11.3.45 SendSignalAction (from BASICACHONS)ccieiiiiiiiiiiiiiiiieiee et 282
11.3.46 StartClassifierBehaviorAction (from CompleteActions)oocoociiiiiiiiiiiiiiniiiiieeee. 284
11.3.47 StartObjectBehaviorAction (from CompleteACtioNS)oooviiiiiiiiiiiiiiie e, 285
11.3.48 StructuralFeatureAction (from Intermediate ACtionS)ooooiiiviiiiiiiiiiee e 286
11.3.49 TestldentityAction (from Intermediate ACLIONS)ueeiiiiiiiiiiiiie e 287
11.3.50 UnmarshallAction (from CompleteACtIONS)cocuveiiiiiiiiiaee e 288
11.3.51 ValuePin (from BaSICACLIONS)ooiiiiiiiiiiee ettt e e e e e e ebe e eee s 289
11.3.52 ValueSpecificationAction (from Intermediate ACtioNS)oovviiiiiiiiiiiiiiiee e, 290
11.3.53 VariableAction (from StruCturedACONS)cooiiiiiiiiiiiie e 291
11.3.54 WriteLinkAction (from Intermediate ACtioNS)cc.uvuiiiiiiiiiiiiiiiie e 292
11.3.55 WriteStructuralFeatureAction (from Intermediate ACtionS)ccccvveiiieiiieiiiniiiiiieee, 293
11.3.56 WriteVariableAction (from StructuredACLIONS)euveiiiiiiiaiiiiiie e 294
11,4 DIagramS . .ottt 294
12. ACHIVILIES . . oo 295
12.1 OVEIVIEW . .ottt ettt e e e e 295
12.2 ADSEract SYNtaxXo 297
12.3 Class DeSCHIPtiONSottt e e 309
12.3.1 AcceptEventAction (as SPECIAlIZEA)c.cuiiiiiiiii i 309
12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities) 311
12.3.3 ActionInputPin (as SPeCIAliZEd)uuuiiiiiiiiieie e 315
12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,

SEUCIUFEAACTIVITIES) ...vetiieieiiiee et e e e e e e e e e ee e eeeeas 315

12.3.5 ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities,
INtErMEediateACHIVILIES) ..ottt r e e e e e e e 325
12.3.6 ActivityFinalNode (from BasicActivities, Intermediate ACtiVities)ccccceeeriiiiiiiiiinenen. 330
12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities) ..o, 332

UML Superstructure Specification, v2.2 \Y

12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,

IntermediateActivities, CompleteStructuredACtiVItIES)cccovvvivviiiiriieeeee e 333

12.3.9 ActivityParameterNode (from BasiCACHVItIES)cccvvvviiiiieieee e 336
12.3.10 ActivityPartition (from Intermediate ACtiVItIES)ccuvviiiiiiiiee e 340
12.3.11 AddVariableValueAction (as specialized)ooccuriiiiiiieee e 345
12.3.12 Behavior (from COMPIELEACHVITIES)vvviriiiieeeie it s s e e e e e e e reee e 346
12.3.13 BehavioralFeature (from CompleteACtiVItIES)cccuvviiiiiiiie e 347
12.3.14 CallBehaviorAction (as specialized)coevieeiiiiiiiiiiiiiee e 348
12.3.15 CallOperationAction (as SPECIAlIZEA)uvvriiiieeeieiiicie e 350
12.3.16 CentralBufferNode (from Intermediate ACtIVItIES)vvvviiiieeeeiiiiiiieee e 351
12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)cccccccevvvvicvvvennnnn. 352
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities) 353
12.3.19 ControlFIow (from BaSICACHVITIES)eeuiiiiiiiiiiiiiiiiiitiee e 355
12.3.20 ControlNode (from BaSiCACLVILIES)uueiiiiiiiiiiiiiiiiiie e 356
12.3.21 DataStoreNode (from CompleteACHIVILIES)ooviieiiiiiiiiiiie e 358
12.3.22 DecisionNode (from Intermediate ACtiVItIES)ocoueiiiiiiiiiiie e 360
12.3.23 ExceptionHandler (from ExtraStructuredACHVItIES)cevieiiiiiiiiiiiiiiieeee e, 363
12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities)cccvveee.n. 366
12.3.25 ExpansionKind (from ExtraStructuredACtiVItIES)c..evveieiieiiiiiiiiiee e, 367
12.3.26 ExpansionNode (from ExtraStructuredACHVItIES)eeueeiieriiiiiiiiiiieiiieee e 367
12.3.27 ExpansionRegion (from ExtraStructuredACtiVItIES)eeviiieiiiiiiiiiiiiiie e, 368
12.3.28 FinalNode (from IntermediateACLIVILIES)cciiiiiiiiiiiiiiieiee e 373
12.3.29 FlowFinalNode (from Intermediate ACtIiVItIES)c.euuviiiiiiiieieieee e 375
12.3.30 ForkNode (from Intermediate ACHVILIES)ooeiiiiiiiiiiiiiiiei e 376
12.3.31 InitiaINode (from BaSICACHVILIES)uvvriiiiiiiiiiiiiiiieee e 378
12.3.32 InputPin (aS SPECIANZEA)eeeiiiieiiie e 379
12.3.33 InterruptibleActivityRegion (from CompleteACtiVItIES)ccoieeiiiiiiiiiiiiiiiieeeeiiiiee, 379
12.3.34 JoinNode (from CompleteActivities, Intermediate ACtivities)cccvvveeeeeiieiiiiiiiiinnee. 381
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)cccoeeevuvnnee. 384
12.3.36 MergeNode (from Intermediate ACHIVItIES)cooviiiiiiiiiiiiiei e 387
12.3.37 ObjectFlow (from BasicActivities, Complete ACtIVItIES)coooeiiiiiiiiiiiiiiieeeee e, 388
12.3.38 ObjectNode (from BasicActivities, Complete ACIVItIES)ccoeeriiiiiiiiiiiiiiiieeeeiiiiee, 393
12.3.39 ObjectNodeOrderingKind (from CompleteACtiVItIES)ceveiiiiiiiiiiiiiiiiiieee e, 396
12.3.40 OULPULPIN ..ttt et e e e e ettt e e e e e e e e e st bbeseeeeaeaaeeesaaannnnreeeeas 396
12.3.41 Parameter (from COmMPIEtEACHVILIES)eeiiiiiiiiiiiiiiiiie e 396
12.3.42 ParameterEffectKind (from CompleteACtiVItIES)c.uuvveiiiieiiiiiiiiiieeee e, 398
12.3.43 ParameterSet (from CompleteACHIVILIES)oooiiiiiiiiiiiiiiiee e 399
12.3.44 Pin (from BasicActivities, COMPIEtEACHVITIES)cc.uuriiiiiiiieeiiee e 400
12.3.45 SendObjectAction (as SPeCialiZed) ... 406
12.3.46 SendSignalAction (as specialized) ... 407
12.3.47 SequenceNode (from StructuredACHVItIES)ooiiiiiiiiiiiiiie e 408
12.3.48 StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities) 409
12.3.49 UnmarshallAction (as SPeCialized)ceieiiiiiiiiiiiiiiiee e 411
12.3.50 ValuePin (8S SPECIAIIZEA)cuiiiiiiii it 412
12.3.51 ValueSpecificationAction (as specialized) ... 413
12.3.52 Variable (from StruCturedACHVItIES)ueeeiiiiiiiiiiiiii e 414
12,4 DIagramMS . .ttt 415
13. Common Behaviors 421

Vi UML Superstructure Specification, v2.2

131 OVEIVIEW . o oo e e e e e e e e e 421

13.2 AbStract Syntax 425
13.3 Class DeSCrIPtiONSt 429
13.3.1 AnyReceiveEvent (from COmMmMUNICAtIONS)ooiiiiiiiiiiiiiie e 429

13.3.2 Behavior (from BaSICBENAVIOIS)ciiiiiiiiiiiiiiiiie ettt ee e e 430

13.3.3 BehavioralFeature (from BasicBehaviors, Communications)cccccceeeeerinniiienieneenn. 432

13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)cccccceeeeveiinivnvveneenn. 434

13.3.5 CallConcurrencyKind (from COmMmMUNICAtIONS)uuuiiiiiiiiaaiiiiiiiiiiie e 435

13.3.6 CallEvent (from COMMUNICALIONS)eeeiiiiiaiaiiiiiiiieie et e e e e e e e e aeeeeens 436

13.3.7 ChangeEvent (from COMMUNICALIONS)cvveeeeiiiiiiiiiiieiee e e e e r e e e e e e e e s aeee e 437

13.3.8 Class (from COMMUNICALIONS)ccuuvveiiiiiiiieeeee e i st e e e e e e e e s s e st erreeeeeeeessnnanrnnrneeeees 437

13.3.9 Duration (from SIMPIETIME)eueiiiiiiiieie oo e e e e e e e e s e erereaeeas 438
13.3.10 DurationConstraint (from SimpleTime)ccooiiiiiiiiiiiie e 439

13.3.11 Durationinterval (from SIMPIETIME) ...ccvvvieeiiii i 440
13.3.12 DurationObservation (from SimpleTime)ccovcciiiiiiiiiree e 441

13.3.13 Event (from COMMUNICALIONS)uuuviiiiiiiieeeeeiis s e e e e e e s s e s e e e e e e e e e s s nnnnennreeeees 442
13.3.14 FunctionBehavior (from BasicBehaviors)cccccveiiiiii e 442

13.3.15 Interface (from COMMUNICALIONS)evviiieieeiiiiiiiiiiiieir e e e e s e s s e e e e e e e e s e nnrenreeeeees 443

13.3.16 Interval (from SIMPIETIME)vueiiiiiiiieee e e e s rr e e e e e e e eeas 444

13.3.17 IntervalConstraint (from SIiMPIETIME)oceeviiiiiiiiiie e 444

13.3.18 MessageEvent (from CoOmMMUNICAtIONS)ccvuviiiiiiiiee e e s e e e e e e e 445

13.3.19 Observation (from SIMPIETIME)uvuiiiiiiieeii i s e e e e e s e s e e e eee s 446

13.3.20 OpaqueBehavior (from BasiCBENAVIOIS)ccccviiiiiiiiiieeie e 446

13.3.21 OpaqueExpression (from BasiCBENAVIOIS)ccvvviiiiiiiree i 447

13.3.22 Operation (from COMMUNICALIONS)uvvvriiieeieeiisiiciiiieer e e e e e e s ssererreer e e e e e e s e snrnereeeeees 448

13.3.23 Reception (from COMMUNICALIONS) ...ovveeeeiiiiiciiiiiiiee e e e e s rrrr e e e e 448
13.3.24 Signal (from COMMUNICALIONS)vvviiiiiieeeeie it e e e e e s e s e e e e e e s e s rarrrreeeeeee s 449

13.3.25 SignalEvent (from COMMUNICALIONS)vvvivvieeeieiiicieiiiiiriee e e e e e e se s e e e e e e s e e s enenerrnee e 450
13.3.26 TimeConstraint (from SIMPIETIME) ...ceviviieii i 451

13.3.27 TimeEvent (from Communications, SIMpPIETIME)ccevvreereiiiiiiiiieiire e 453
13.3.28 TimeExpression (from SIMPIETIME) ...ccvvveeieiiiic e 454

13.3.29 Timelnterval (from SIMPIETIME)uviiiiiiiieeee e e e e e e rreee s 454

13.3.30 TimeOhbservation (from SIMPIETIME) ...cecveeeeiiiii e 455

13.3.31 Trigger (from COMMUNICALIONS)vuvriiiiiiiieeeeeiie s e e e e e e s e e s s e e e e e e e e e s e s enrnrrreeeees 456

14, INteraCtionNs o 459
141 OVEIVIEW . oottt e e e e e e e e e e 459
14.2 ADSEract SYyntaxXt 460
14.3 Class DeSCIIPiONSottt e 468
14.3.1 ActionExecutionSpecification (from BasicINteractions)oooooccvieiieiiie e 468

14.3.2 BehaviorExecutionSpecification (from BasicInteractions)ccccccceeeriiiiiiiiiiiieneeaenn. 468

14.3.3 CombinedFragment (from FragmentS)oooiiiiiiiiiiiiiiieiee e 469

14.3.4 ConsiderlgnoreFragment (from Fragments)cc.ueeuiiiiiiiaiiiniiiieeee e 474

14.3.5 Continuation (from FragmeEntS)ueeeiiiiiiiiiii e 475

14.3.6 CreationEvent (from BasiCINtEraCtionS)oooiiiiiiiiiiiiiiieaee e 478

14.3.7 DestructionEvent (from BasiCINteractions)ccuuueiiiiiiieaiiiiiiiiie e 478

14.3.8 ExecutionEvent (from BasiCINtEraCtioNS)c.uuiiiiiiiiiiaaiiiiiiieeie e 479

UML Superstructure Specification, v2.2 vii

14.3.9 ExecutionOccurrenceSpecification (from BasicInteractions)ccccccccveveevniiiicvvvvennnnn. 480

14.3.10 ExecutionSpecification (from BasiCINtEractions)c.ccveeeeieiiiiiiieeieeeee e sesiieeveeeeens 480

14.3.11 Gate (from FragmMENtS)uceeieeeiiiii it e e e e e e s s s st r e e e e e e e s s s e e e e e e e e e s s s nenereeeeees 482

14.3.12 GeneralOrdering (from BasiCINtEractions)ccccuviiriiireeeeiiiiciiine e e ee e e e s s senreeveeee s 482

14.3.13 Interaction (from Basiclnteraction, Fragments)cccceeuvieeeeeiiiiciiiiieieeeee e s sseneieeeees 483
14.3.14 InteractionConstraint (from Fragments)ccooiiiiiiiiiiiriiie e e e e e 486

14.3.15 InteractionFragment (from Basiclnteractions, Fragments)cccccccccveeeeeiiiccivnnnennenn. 487
14.3.16 InteractionOperand (from FragmentS)ccccoiiiiiiiiiiiiiiiiee e e e e e reee e 487

14.3.17 InteractionOperatorKind (from Fragments)cccuvviiiiiireee e 488

14.3.18 InteractionUse (from FragmMentsS)uuuuiiiiierereiiiiiiiiieeeer e e e e e e e ssssniereer e s e e e e e e s e ennnnnaees 489

14.3.19 Lifeline (from Basiclnteractions, Fragments)cccccuerireeeeeeiiiiiiiniieeieeeeee e s s sesennneeeees 492

14.3.20 Message (from BasiCINtEraCtioNS)cceieiiiiiiiiiiiiiiiiiieee e 493

14.3.21 MessageEnd (from BasSiCINtEraCtioNS)couiiiiuiiiiiiiiiiiee et 496

14.3.22 MessageKind (from BasSiCINtEraCtionNS)coooeiiiiiiiiiiiiiieeee et 497

14.3.23 MessageOccurrenceSpecification (from Basiclnteractions)cccccceceveeeeniiiiiiiieeeenn. 497

14.3.24 MessageSort (from BasiCINtEracCtionS)oooiiiiiiiiiiiiiiiiee e 498

14.3.25 OccurrenceSpecification (from BasicINteractions)cccceeeeiniiiiiiiieieiieeeee e, 498

14.3.26 PartDecomposition (from Fragments) ... 499

14.3.27 ReceiveOperationEvent (from BasiCINteractions)cccceevviiiiiiiieiiiiieeee e 502

14.3.28 ReceiveSignalEvent (from BasiCINteractions)ceeeiiieiiiiiiiiiiiiiiieeee e 503

14.3.29 SendOperationEvent (from BasicINteractions)cceeeriiiiiiiiiiiiiiiie e 504

14.3.30 SendSignalEvent (from BasiCINtEractions)coooiiuiiiiiiiiiiieeeiiieee e 504

14.3.31 Statelnvariant (from BasiCINtEracCtions)oooiiiiiiiiiiiiiiiie e 505

14,4 DIagramS . .ttt 506
15. State Machines 525
15,0 OVEIVIEW . . 525
15.2 ADSEract SYyNtaxttt 526
15.3 Class DesCriptioNS e 529
15.3.1 ConnectionPointReference (from BehaviorStateMachines)ccccccciiiiiniiiiiiiieneen. 529

15.3.2 FinalState (from BehaviorStateMachines)cooouiiiiiiiiiiiiii e 532

15.3.3 Interface (from ProtocolStateMachingS)ccooiiiiiiiiiiiiiiie e 533

15.3.4 Port (from ProtocolStateMacChiNgS)ooiiiiiiiiiiiiiiiiie e 534

15.3.5 ProtocolConformance (from ProtocolStateMachings) ..., 534

15.3.6 ProtocolStateMachine (from ProtocolStateMachings)ccccooiiiiiiiiiiiee, 535

15.3.7 ProtocolTransition (from ProtocolStateMachines) ..., 537

15.3.8 Pseudostate (from BehaviorStateMachines)cccuuuiiiiiiiiiiiiiiiee e 540

15.3.9 PseudostateKind (from BehaviorStateMachines)c.ceiiiiiiiiiiiiiiiiieeeeee e, 547

15.3.10 Region (from BehaviorStateMachinesS)coooiiiiiiiiiiiiiiae e 548

15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines)ccccccceeviiiiiiiiiennenn. 550

15.3.12 StateMachine (from BehaviorStateMachines)cccoueeiiiiiiiiiiiiiiee, 564

15.3.13 TimeEvent (from BehaviorStateMachines)ocooouiiiiiiiiiiiee e 571

15.3.14 Transition (from BehaviorStateMachineS)occuuviiiiiiiiiiiie e 572

15.3.15 TransitionKind (from BehaviorStateMachines) ..., 580

15.3.16 Vertex (from BehaviorStateMachineS)cccooiiiiiiiiiiiiiiiee e 581

15,4 DIagramMS . .t 582

| viii UML Superstructure Specification, v2.2

16. USE CaSeS . o ittt e e e e e e e e e 587

16.1 OVEIVIEW . ottt e e e e e e e e e 587
16.2 ADSEract SyntaxXt 587
16.3 Class DeSCIIPtiONSottt e 588
16.3.1 ACOF (FrOM USECASES) .eeeiiiiieeiiiiiitiitie ittt e e e e e e e ettt e e e e e e e e e e st bbb et e e e e e e e e e e s e aanbnebeeeeeas 588

16.3.2 Classifier (fromM USECASES)ccoiiiiitiiiieii e e ettt ettt e e e e e e e e s e anbeebeeeeeas 590

16.3.3 EXtENd (frOmM USECASES) ..eieiiiiiiiiiitiitie ittt ettt e e ettt e et e e e e e e e s e nbanbeaeeeas 591

16.3.4 ExtensionPoint (from USECASES)uuuiiiiiiiiaiaaiiiiiitie ettt e e e e e e e e e eee e eeeeas 593

16.3.5 Include (from USECASES) ...cceeiiiiiiitiiiiee et e ettt e et e e e e e e e e e e nnnbbareeeeeaeaens 594

16.3.6 USECASE (frOM USECASES) ...cceiiiiiitieiiiiteeie e e ettt et e e ettt et e e e e e e e e s e e nbnebeeeeeas 596

16.4 Diagrams . ..t 601
Part lll - Supplement 607
17. Auxiliary CONSEIIUCES e e 609
17.0 OVEBIVIEW . oottt ettt e e e e e e e 609
17.2 InformationFIoOwWs o 609
17.2.1 InformationFlow (from INformationFIOWS) ... 610

17.2.2 Informationltem (from INformationFIOWS)cc.uuuiiiiiiiiiiie e 612

17.3 MOdeIS .. 614
17.3.1 Model (from MOEIS)ceeeeiiiiieeiie et e e e e e e e 615

17.4 PrimitiVETYPES . o oottt 616
17.4.1 Boolean (from PrimitiVETYPES) ...oueuiiiiiiiiiiee ettt e e eeee e e 617

17.4.2 Integer (from PrimitiVE TYPES) ..ottt a e e ee e 618

17.4.3 String (from PrimitiVETYPES)uieeiiiiieee ettt e e e e e s e e e e e e e as 619

17.4.4 UnlimitedNatural (from PrimitiVETYPES) ...coviiiiiiiiiiiiiieiiee et 620

175 Templates 621
17.5.1 ParameterableElement (from TemMPIAtes)c.covvccviiiiiiiiiee e 623

17.5.2 TemplateableElement (from TeMPIAtES)cccvviiiiiiiiiee e 625

17.5.3 TemplateBinding (from TEMPIAES)eevvviveiiiii i 627

17.5.4 TemplateParameter (from TemMPIAteS)cveeeeiiiiiiieeee e 628

17.5.5 TemplateParameterSubstitution (from Templates)cccccccvvviiciiiriiiirieee e 630

17.5.6 TemplateSignature (from TEMPIALES)coveeiiiiiiiiiiir e 630

17.5.7 Classifier (from TemMPIAteS)cccccuviiiiiiriiie e e e e e e s raee e 632

17.5.8 ClassifierTemplateParameter (from Templates)cccvveeeiniiiciiiiiirie e 637

17.5.9 RedefinableTemplateSignature (from Templates)cccccccevviiiiiiiiiriiiie e, 638

17.5.10 Package (from TEMPIALES)uuvvriiiiiiieiie e e e e e e e s s s e e e e e e e s e e s s enreaeeeeeeeas 639

17.5.11 PackageableElement (from TEMPIALES)c.ccvvviiiviiiiiiiiiee e 641

17.5.12 NamedElement (from TEMPIALES)vveeiiiriee e e e 642

17.5.13 StringEXpression (from TEMPIALES) ...cccvveeeiiiiciie e e e 644

17.5.14 Operation (from TEMPIALES)ccevvuiiiiiiiie e e e s e aeeeeeas 645

17.5.15 Operation (from TEMPIALES)ccevuviiiiiiiie e e e e eeeeas 646

UML Superstructure Specification, v2.2 iX

17.5.16 OperationTemplateParameter (from Templates)cccccveeeeiviiiiiiiieiiieee e 647

17.5.17 ConnectableElement (from TemMPIAteS)ccoviiiiiiiiiiiiiiiie e 648

17.5.18 ConnectableElementTemplateParameter (from Templates)ccccccceeeveeveiiiccivviennnnn. 649

17.5.19 Property (from TEMPIALES) ..oeeeieeiiii e e e e e e e e e 650

17.5.20 ValueSpecification (from TEMPIALES)uveviirieiiiiiiiiiiiee e e 651

18. Profiles 653
18.1 OVeIVIEW . e 653

18.1.1 Positioning profiles versus metamodels, MOF and UMLcccccoiveiieeeceeenccciieieeen 653

18.1.2 Profiles History and design reqQUIrEMENEScccoivciiiriiriiiee e e e e e e e senrreeee e 653

18.2 AbStract Syntax e 655

18.3 Class DesCriptioNS 656

18.3.1 Class (from Profil@S)ueeieiiiiiiiiie e 656

18.3.2 Extension (from ProfileS) ... 657

18.3.3 ExtensionEnd (from ProfileS)coooiiiiiii e 660

18.3.4 Image (from Profil@S)eeeeiiiii it 661

18.3.5 Package (from ProfileS) ... 662

18.3.6 Profile (from Profil@S)oueiiii i 663

18.3.7 ProfileApplication (from Profil@S)c...euiiiiiiiiiie e 670

18.3.8 Stereotype (from ProfileS) ... 672

18.4 DIagramsS . ..t 678

Part IV - ANNEXeS 681
ANNEX A: DIAQIAMS .oiiiiiiiiiiiiie ettt e e e e e et e e e e e et e e e e e aeaa e e e ees 683
ANNEX B: KEYWOITUS ovuiiiiiiiiiiie ettt e e e et e e e e e et e e e e e aaaaa s 689
Annex C: Standard StEreOtYPES ..ovvuiiieiiieiiii e e 695
Annex D: Component Profile ExXamples ... 703
Annex E: Tabular NOtAtiONSuuueiiiiiiiiiiieceeeei s 707
Annex F: Classifiers TaXONOMYcoiiiiiiiiiiiiieeecieiee e e et e e s 711
Annex G: XMI Serialization and Schemacccceeviiiiiiiiiie e, 713
Annex H: UML Compliance Level XMl Documentscccevvvvviieeeeeennnnnnn. 715
10 T0 = PSSR 717

X UML Superstructure Specification, v2.2

1 Scope

This specification defines the Unified Modeling Language (UML), revision 2. The objective of UML isto provide system
architects, software engineers, and software developers with tools for analysis, design, and implementation of software-
based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly more
precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly improved
capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and notation is required. UML meets the following requirements:

» A formal definition of acommon MOF-based metamodel that specifies the abstract syntax of the UML. The abstract
syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the rules for
combining these concepts to construct partial or complete UML models.

» A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a technology-
independent manner, how the UML concepts are to be realized by computers.

A specification of the human-readable notation elements for representing the individual UML modeling concepts as
well asrulesfor combining them into avariety of different diagram types corresponding to different aspects of modeled
systems.

A detailed definition of waysin which UML tools can be made compliant with this specification. Thisis supported (in
a separate specification) with an XML-based specification of corresponding model interchange formats (XMI) that
must be realized by compliant tools.

2 Conformance

UML is alanguage with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to alarge community of users. For that reason, this specification defines a small number of compliance
levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible language
subsets. However, in recognition of the need for flexibility in learning and using the language, UML also provides the
concept of language units.

UML Superstructure Specification, v2.2 1

2.1 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-
coupled modeling concepts that provide users with the power to represent aspects of the system under study according to
a particular paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete
event-driven behavior using a variant of the well-known statecharts formalism, while the Activities language unit
provides for modeling behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of
UML means that they need only be concerned with those parts of the language that they consider necessary for their
models. If those needs change over time, further language units can be added to the user’s repertoire as required. Hence,
a UML user does not have to know the full language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the
individual segments within this structure do not represent separate compliance points. The latter strategy would lead to an
excess of compliance points and result to the interoperability problems described above. Nevertheless, the groupings
provided by language units and their increments do serve to simplify the definition of UML compliance as explained
bel ow.

2.2 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of
modeling concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels.
Compliance levels cut across the various language units, although some language units are only present in the upper
levels. As their name suggests, each compliance level is a distinct compliance point.

For ease of model interchange, there are just four compliance levels defined for the whole of UML:

» Level 0(LO). Thiscompliance level isformally defined in the UML Infrastructure. It contains a single language unit
that provides for modeling the kinds of class-based structures encountered in most popular object-oriented
programming languages. As such, it provides an entry-level modeling capability. More importantly, it represents a low-
cost common denominator that can serve as a basis for interoperability between different categories of modeling tools.

« Level 1(L1). Thislevel adds new language units and extends the capabilities provided by Level 0. Specifically, it adds
language units for use cases, interactions, structures, actions, and activities.

« Level 2 (L2). Thislevel extendsthe language units already provided in Level 1and adds language units for deployment,
state machine modeling, and profiles.

» Level 3 (L3). Thislevel representsthe complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, templates, and model packaging.

The contents of language units are defined by corresponding top-tier packages of the UML metamodel, while the contents
of their various increments are defined by second-tier packages within language unit packages. Therefore, the contents of
a compliance level are defined by the set of metamodel packages that belong to that level.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this specification
for achieving this is package merge (see “PackageMerge (from Kernel)” on page 112). Package merge allows modeling
concepts defined at one level to be extended with new features. Most importantly, this is achieved in the context of the
same namespace, which enables interchange of models at different levels of compliance as described in “Meaning and

Types of Compliance” on page 6.

2 UML Superstructure Specification, v2.2

For this reason, all compliance levels are ultimately merged into a single core “UML” model package that defines the
common namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown in Figure
2.1. In this model, “L0" is originally an empty package that simply merges in the contents of the Basic package from the
UML Infrastructure. This package is then merged into the UML model. Package L0 contains elementary concepts such as
Class, Package, DataType, Operation, etc. merged in from Basic and Primitive Types (see the Unified Modeling
Language: Infrastructure specification for the complete list of contents of these two packages).

1]
PrimtiveTypes e Basic
«import
R N
e | amerges
wriierges ;
Lo

Figure 2.1 - Level 0 package diagram

At the next level (Level 1) the packages merged into Level 0 and their contents are extended with additional packages as
shown in Figure 2.2 on page 4. Note that each of the four packages shown in the figure merges in additional packages that
are not shown in the diagram. They are defined in the corresponding package diagrams in this specification.
Consequently, the set of language units that results from this model is more than is indicated by the top-level model in the
diagram. The specific packages included at this level are listed in Table 2.3 on page 8.

UML Superstructure Specification, v2.2 3

1

Figure 2.2 - Level 1 top-level package merges

Basiclnteractions

Dependencies BasicActions]
Kernel
IS A
=
Interfaces ; e —
< <<r‘ne\r\ge» <<Iri'nerge>> _afnerges InternalStructures
Teel . ! L #MEFYEs -7
«metges: S [e
g Tl 1 - =T
L1
BasicBehaviors feeoooee--m-mmmmmmmmoo e
< «mierges SIRBFIEE- % Fundamentalsctivities
,»"’ rrJ . “ngmerge»
«mﬂfgé» ;’ ‘._‘ - .
Lot o «“merges Y
] £ «mErges .
Communications ! s BaszicActivities
1 1
UseCases

Level 2 adds further language units and extensions to those provided by the Level 1. The actual language units and
packages included at this level of compliance are listed in Table 2.4 on page 9.

UML Superstructure Specification, v2.2

1 1 1
SimpleTime L1 Ports
—— N A gl —
IrvocationActions Y . . Intermediate Activities
emerges : EMBrEs
S ‘,‘ <<Ih'|erge>> ff' T
. : R StructuredActivities
mierge:s 3 : K #MErges.
Structuredactions Tl - : K LT >
wmerges -0
HMErgEs Tt -l | e T 1
L2 #IMerges -
________________________ BasicComponents
o R L LR LL LI LRLELE -
L Emergey |
BehaviorStateMachines [~ LT . el emerges
Tmerges
£ Emerges “energes InterrmediateActions
Fragments emgrges emerges
L Profiles
Modes E 8
v E—
Arifacts StructuredClasses

Figure 2.3 - Level 2 top-level package merges

Finally, Level3, incorporating the full UML definition, is shown in Figure 2.4 on page 6. Its contents are described in

Table 2.5 on page 9.

UML Superstructure Specification, v2.2

Figure 2.4 - Level 3 top-level package merges

2.3

1 1
L2 AzsocistionClaszes
PowerTypes hocels
™
™) A Ki
. “. I; K —
ProtocolStatebachines " . \‘. If K ! InfarmationFlowes
Wl ametges ‘. «MErges amerges 7
\ werges i .
) E I\‘, ;I’ . ‘ «merge»."" -
ComponentDeplayments HMErYE: . \ h . e CompleteActions
- \\ I‘\ r" ’,, P
A .. LN ‘ amerges _Le-m”
Hiierges_ AT S
o I\u Il F
— L3 smerges
- .amerge» ------------ S N Completedctivities
PackagingCompanents g----
s : . el amerges
 aierges ; ': .
— T : amerges B
- L ! #MErGEs - Templates
Collaborations y \ .
, Smerges ' .
s | Y
. | 1
!"r' i CompleteStructuredActivities
StructuredActivities ExtraStructuredctiviies

Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language unitsin al the levels below that level. “Full realization” for alanguage unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level

1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels
without loss of information.

There are two distinct types of compliance. They are:

1. Abstract syntax compliance. For agiven compliance level, this entails:

« compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged
UML metamodel for that compliance level and,

UML Superstructure Specification, v2.2

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance

level.

2. Concrete syntax compliance. For a given compliance level, this entails:

« Compliance to the notation defined in the “Notation” sub clauses in this specification for those metamodel
elements that are defined as part of the merged metamodel for that compliance level and, by implication, the
diagram types in which those elements may appear. And, optionally:

« the ability to output diagrams and to read in diagrams based on the XM schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax

compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the

notation.

Compliance for a given level can be expressed as:

- abstract syntax compliance

« concrete syntax compliance

- abstract syntax with concrete syntax compliance

- abstract syntax with concrete syntax and diagram interchange compliance

Table 2.1 Example compliance statement

Compliance Summary

Compliance level

Abstract Syntax

Concrete Syntax

Diagram Interchange Option

Level O YES YES YES
Level 1 YES YES NO
Level 2 YES NO NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to

understand the level of support for the run-time semantics described in the various “ Semantics” sub clauses of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which

ones to support. Finaly, it is recognized that some implementors and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this

potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementors and profile designers may
also provide informal feature support statements. These statements identify support for additional features in terms of
language units and/or individual metamodel packages, as well as for less precisely defined dimensions such as

presentation options and semantic variation points.

UML Superstructure Specification, v2.2

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given
in Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
Deployments Deployments::Artifacts (L2) YES YES Note (4) Note (5)
Deployments::Nodes (L2)
State Machines StateMachines::BehaviorStateMachines (L2) | Note (1) YES Note (2) Note (3)

StateMachines::ProtocolStateMachines (L3)

Note (1):

States and state machines are limited to a single region

Shallow history pseudostates not supported

Note (2):
Note (3):

2.4

FIFO queueing in event pool

Inherited elements indicated using grey-toned lines, etc.

Compliance Level Contents

The following tables identify the packages by individual compliance levels in addition to those that are defined in lower
levels (asarule, Level (N) includes all the packages supported by Level (N-1)). The set of actual modeling features added

by each of the packages are described in the appropriate clauses of the related language unit.

Table 2.3 Metamodel packages added in Level 1

Language Unit

Metamodel Packages

Actions Actions::BasicActions

Activities Activities::Fundamental Activities
Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior

CommonBehaviors::BasicBehaviors

CommonBehaviors::Communications

Structures CompositeStructure::Internal Structures
Interactions Interactions::Basiclnteractions
UseCases UseCases

8

UML Superstructure Specification, v2.2

Table 2.4 Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Actions Actions::StructuredActions
Actions::IntermediateActions
Activities Activities::IntermediateActivities
Activities::StructuredActivities
Components Components::BasicComponents
Deployments Deployments::Artifacts

Deployments::Nodes

General Behavior

CommonBehaviors::SimpleTime

Interactions Interactions.:Fragments

Profiles AuxilliaryConstructs::Profiles

Structures CompositeStructures::InvocationActions
CompositeStructures::Ports
CompositeStructures:: StructuredClasses

State Machines StateM achines::BehaviorStateM achines

Table 2.5 Metamodel packages added in Level 3

Language Unit

Metamodel Packages

Action Actions::CompleteActions

Activities Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes::AssociationClasses
Classes::PowerTypes

Components Components::PackagingComponents

Deployments Deployments::ComponentDeployments

Information Flows

AuxilliaryConstructs::InformationFlows

Models AuxilliaryConstructs::Models

State Machines StateM achines:: Protocol StateM achines

Structures CompositeStructures::Collaborations
CompositeStructures:: StructuredActivities

Templates AuxilliaryConstructs:: Templates

UML Superstructure Specification, v2.2

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« UML 2.0 Superstructure RFP
» UML 2. Infrastructure Specification
» MOF 2.0 Specification

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Architectural Alignment and MDA Support

Clause 1, “Language Architecture” of the Unified Modeling Language: Infrastructure explains how the Unified Modeling
Language: Infrastructure is architecturally aligned with the Unified Modeling Language: Superstructure that
complements it. It also explains how the Infrastructurelibrary defined in the Unified Modeling Language: Infrastructure
can be strictly reused by MOF 2.0 specifications.

It is the intent that the unified MOF 2.0 Core specification must be architecturally aligned with the Unified Modeling
Language: Infrastructure part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification
must be architecturally aligned with the Unified Modeling Language: Superstructure part of this specification.

The OMG’'s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This specification’s support for MDA is discussed in the Unified Modeling Language:
Infrastructure Annex B, “Support for Model Driven Architecture.”

6.2 On the Run-Time Semantics of UML

The purpose of this sub clause of the document is to provide a very high-level view of the run-time semantics of UML

and to point out where the various elements of that view are covered in the specification. The term “run-time” is used to
refer to the execution environment. Run-time semantics, therefore, are specified as a mapping of modeling concepts into
corresponding program execution phenomena. There are, of course, other semantics relevant to UML specifications, such

10 UML Superstructure Specification, v2.2

as the repository semantics, that is, how a UML model behaves in a model repository. However, those semantics are
really part of the definition of the MOF. Still, it is worth remarking that not every concept in UML models a run-time
phenomenon (e.g., the “package” concept).

6.2.1 The Basic Premises

There are two fundamental premises regarding the nature of UML semantics. The first is the assumption that all behavior
in amodeled system is ultimately caused by actions executed by so-called “active” objects (see “Class (from
Communications)” on page 437). This includes behaviors, which are objects in UML 2, which can be active and
coordinate other behaviors. The second is that UML behavioral semantics only deal with event-driven, or discrete,
behaviors. However, UML does not dictate the amount of time between events, which can be as small as needed by the
application, for example, when simulating continuous behaviors.

6.2.2 The Semantics Architecture

Figure 6.1 identifies the key semantic areas covered by the current standard and how they relate to each other. The items
in the upper layers depend on the items in the lower layers but not the other way around. (Note that the structure of
metamodel package dependencies is somewhat similar to the dependency structure indicated here. However, they are not
the same and should be distinguished. This is because package dependencies specify repository dependencies not
necessarily run-time dependencies.)

Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

At the highest level of abstraction, it is possible to distinguish three distinct composite layers of semantic definitions. The
foundational layer is structural. This reflects the premise that there is no disembodied behavior in UML — al behavior is
the consequence of the actions of structural entities. The next layer is behavioral and provides the foundation for the
semantic description of all the higher-level behavioral formalisms (the term “behavioral formalism” refersto a formalized
framework for describing behavior, such as state machines, Petri nets, data flow graphs, etc.). This layer, represented by
the shaded box in Figure 6.1, is the behavioral semantic base and consists of three separate sub areas arranged into two
sub layers. The bottom sub layer consists of the inter-object behavior base, which deals with how structural entities
communicate with each other, and the intra-object behavior base, which addresses the behavior occurring within
structural entities. The actions sub layer is placed on top of these two. It defines the semantics of individual actions.
Actions are the fundamental units of behavior in UML and are used to define fine-grained behaviors. Their resolution and
expressive power are comparable to the executable instructions in traditional programming languages. Actions in this sub

UML Superstructure Specification, v2.2 11

layer are available to any of the higher-level formalisms to be used for describing detailed behaviors. The topmost layer
in the semantics hierarchy defines the semantics of the higher-level behavioral formalisms of UML: activities, state
machines, and interactions. Other behavioral formalisms may be added to this layer in the future.

6.2.3 The Basic Causality Model

The “causality model” is a specification of how things happen at run time and is described in detail in the Common
Behaviors clause on page 421. It is briefly summarized here for convenience, using the example depicted in the
communication diagram in Figure 6.2. The example shows two independent and possibly concurrent threads of causally
chained interactions. The first, identified by the thread prefix ‘A’ consists of a sequence of events that commence with
activeObject-1 sending signal sl to activeObject-2. In turn, activeObject-2 responds by invoking operation opl() on
passiveObject-1 after which it sends signal s2 to activeObject-3. The second thread, distinguished by the thread prefix
‘B, starts with activeObject-4 invoking operation op2() on passiveObject-1. The latter responds by executing the method
that realizes this operation in which it sends signal s3 to activeObject-2.

The causality model is quite straightforward: Objects respond to messages that are generated by objects executing
communication actions. When these messages arrive, the receiving objects eventually respond by executing the behavior
that is matched to that message. The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML specification (i.e., it is a semantic
variation point).

Al: sl A3: s2
activeObject-1 activeObject-2 activeObject-3

A2: op]()l IBl.l: s3

B1: op2()
—_
activeObject-4 passiveObject-1

Figure 6.2 - Example illustrating the basic causality model of UML

The causality model also subsumes behaviors invoking each other and passing information to each other through
arguments to parameters of the invoked behavior, as enabled by CallBehaviorAction (see “CallBehaviorAction (from
BasicActions)” on page 243). This purely “procedural” or “process’ model can be used by itself or in conjunction with
the object-oriented model of the previous example.

6.2.4 Semantics Descriptions in the Specification

The general causality model is described in the introductory part of Clause 13 (CommonBehaviors) and also, in part, in
the introduction to Clause 14 (Interactions) and the sub clause on Interaction (14.3.13) and Message (14.3.20).

The structural foundations are mostly covered in two clauses. The elementary level is mostly covered in Clause 7, where
the root concepts of UML are specified. In particular, the sub clauses on InstanceSpecifications (7.3.22), Classes (7.3.7),
Associations (7.3.3), and Features (7.3.19). The composites level is described primarily in Clause 9 (Composite
Structures), with most of the information related to semantics contained in sub clauses 9.3.12 (Property concept) and
9.3.13 (StructuredClassifier). In addition, the introduction to this clause contains a high-level view of some aspects of
composite structures.

12 UML Superstructure Specification, v2.2

The relationship between structure and behavior and the general properties of the Behavior concept, which are at the core
of the behavioral base are described in CommonBehaviors (in the introduction to Clause 13 and in sub clause 13.3.2 in
particular).

Inter-object behavior is covered in three separate clauses. The basic semantics of communications actions are described in
the introduction to Clause 11 (Actions) and, in more detail, in the clauses describing the specific actions. These can
potentially be used by an object on itself, so can be inter- or intra-object. The read/write actions can aso be used by one
object to access other objects, so are potentially inter- or intra-object. These actions can be used by any of the behavior
formalisms in UML, so al are potentially inter-object behaviors. However, the interactions diagram is designed
specifically to highlight inter-object behavior, under its concept of message. These are defined in the Interactions clause
(sub clauses 14.3.20 and 14.3.21), while the concepts of events and triggers are defined in the Communications package
of CommonBehaviors (Clause 13). Occurrence specifications are defined in sub clause 14.3.25 of the Interactions clause.
The other two behavior formalisms can be translated to interactions when they use inter-object actions.

All the behavior formalisms are potentially intra-object, if they are specified to be executed by and access only one
object. However, state machines are designed specifically to model the state of a single object and respond to events
arriving at that object. Activities can be used in a similar way, but also highlight input and output dependency between
behaviors, which may reside in multiple objects. Interactions are potentially intra-object, but generally not designed for
that purpose.

The various shared actions and their semantics are described in Clause 13.

Finally, the higher-level behavioral formalisms are each described in their own clauses: Activitiesin Clause 12,
Interactions in Clause 14, and State Machines in Clause 15.

6.3 The UML Metamodel

6.3.1 Models and What They Model

A model contains three major categories of elements: Classifiers, events, and behaviors. Each major category models
individuals in an incarnation of the system being modeled. A classifier describes a set of objects; an object is an
individual thing with a state and relationships to other objects. An event describes a set of possible occurrences; an
occurrence is something that happens that has some consegquence within the system. A behavior describes a set of possible
executions; an execution is the performance of an algorithm according to a set of rules. Models do not contain objects,
occurrences, and executions, because those things are the subject of models, not their content. Classes, events, and
behaviors model sets of objects, occurrences, and executions with similar properties. Value specifications, occurrence
specifications, and execution specifications model individual objects, occurrences, and executions within a particular
context. The distinction between objects and models of objects, for example, may appear subtle, but it is important.
Objects (and occurrences and executions) are the domain of a model and, as such, are always complete, precise, and
concrete. Models of objects (such as value specifications) can be incomplete, imprecise, and abstract according to their
purpose in the model.

6.3.2 Semantic Levels and Naming

A large number of UML metaclasses can be arranged into 4 levels with metasemantic relationships among the
metaclasses in the different levels that transcend different semantic categories (e.g., classifiers, events, behaviors). We
have tried (with incomplete success) to provide a consistent naming pattern across the various categories to place
elements into levels and emphasize metarelationships among related elements in different levels. The following 4 levels
are important:

UML Superstructure Specification, v2.2 13

Type level — Represents generic types of entities in models, such as classes, states, activities, events, etc. These are the
most common constituents of models because models are primarily about making generic specifications.

Instance level — These are the things that models represent at runtime. They don’t appear in models directly (except very
occasionally as detailed examples), but they are necessary to explain the semantics of what models mean. These classes
do not appear at al in the UML2 metamodel or in UML models, but they underlie the meaning of models. We provide a
brief runtime metamodel in the Common Behavior clause, but we do not formally define the semantics of UML using the
runtime metamodel. Such a formal definition would be a major amount of work.

Value specifications — A realization of UML2, compared to UML, is that values can be specified at various levels of
precision. The specification of a value is not necessarily an instance; it might be a large set of possible instances
consistent with certain conditions. What appears in models is usually not instances (individual values) but specifications
of values that may or may not be limited to a single value. In any case, models contain specifications of values, not values
themselves, which are runtime entities.

Individual appearances of a type within a context — These are roles within a generic, reusable context. When their context
isinstantiated, they are also bound to contained instances, but as model elements they are reusable structural parts of their
context; they are not instances themselves. A realization of UML2 was that the things called instances in UML1 were
mostly roles: they map to instances in an instance of their container, but they are model elements, not instances, because
they are generic and can be used many times to generate many different instances.

We have established the following naming patterns:
Types : Instances : Values : Uses

Classifier, Class : Instance, Object : InstanceSpecification : Part, Role, Attribute,
XXXUse (e.g., CollaborationUse)

Event : Occurrence : OccurrenceSpecification : various (e.g., Trigger)

Behavior : Execution : ExecutionSpecification : various (e.g., ActivityNode, State),
XXXUse (e.g., InteractionUse)

The appearances category has too wide a variety of elements to reduce to a single pattern, although the form XXXUse is
suggested for simple cases where an appearance of an element is contained in a definition of the same kind of element.

In particular, the word “event” has been used inconsistently in the past to mean both type and instance. The word “event”
now means the type and the word “occurrence’ means the instance. When necessary, the phrases “event type” (for event)
and “event occurrence” (for occurrence) may be used. Note that this is consistent with the frequent English usage “an
event occurs’ = the occurrence of an event of a given type; so to describe a runtime situation, one could say “event X
occurs’ or “an occurrence of event X” depending on which form is more convenient in a sentence. It is redundant and
incorrect to say “an event occurrence occurs.”

6.4 How to Read this Specification

Therest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the UML: Infrastructure specification that complements this specification. Part I,
“Introduction” of UML: Infrastructure explains the language architecture structure and the formal approach used for its
specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Part I,
“Infrastructure Library,” or the Classes::Kernel package that reuses it, described in Clause 1, “Classes.” The former
specifies the flexible metamodel library that is reused by the latter; the latter defines the basic constructs used to define
the UML metamodel.

14 UML Superstructure Specification, v2.2

With that background the reader should be well prepared to explore the user level constructs defined in this UML:

Super structure specification. These concepts are organized into three parts: Part | - “Structure,” Part 11 - “Behavior,” and
Part 111 - “Supplement.” “Part | - Structure” defines the static, structural constructs (e.g., classes, components, nodes
artifacts) used in various structural diagrams, such as class diagrams, component diagrams, and deployment diagrams.
“Part 1l - Behavior” specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in
various behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams. “Part |11 -
Supplement” defines auxiliary constructs (e.g., information flows, models, templates, primitive types) and the profiles
used to customize UML for various domains, platforms, and methods.

Although the clauses are organized in alogical manner and can be read sequentially, this is a reference specification and
isintended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.4.1 Specification format

The concepts of UML are grouped into three major parts:
 Part I: Concepts related to the modeling of structure
» Part Il: Concepts related to the modeling of behavior
» Part I11: Supplementary concepts

Within each part, the concepts are grouped into clauses according to modeling capability. A capability typically covers a
specific modeling formalism. For instance, all concepts related to the state machine modeling capability are gathered in
the State Machines clause and all concepts related to the activities modeling capability are in the Activities clause. The
Capability clauses in each part are presented in alphabetical order.

Within each clause, there is first a brief informal description of the capability described in that clause. Thisis followed by
a sub clause describing the abstract syntax for that capability. The abstract syntax is defined by a CMOF model (i.e., the
UML metamodel) with each modeling concept represented by an instance of a MOF class or association. The model is
decomposed into packages according to capabilities. In the specification, this model is described by a set of UML class
and package diagrams showing the concepts and their relationships. The diagrams were designed to provide
comprehensive information about a related set of concepts, but it should be noted that, in many cases, the representation
of aconcept in agiven diagram displays only a subset of its features (the subset that is relevant in that context). The same
concept may appear in multiple diagrams with different feature subsets. For a complete specification of the features of a
concept, readers should refer to its formal concept description (explained below). When the concepts in the capability are
grouped into sub packages, the diagrams are also grouped accordingly with a heading identifying the sub package
preceding each group of diagrams. In addition, the name of the owning package is included in each figure caption.

The “Concept Definitions” clause follows the abstract syntax clause. This clause includes formal specifications of all
concepts belonging to that capability, listed in alphabetical order. Each concept is described separately according to the
format explained below.

The final sub clause in most clauses gives an overview of the diagrams, diagram elements, and notational rules and
conventions that are specific to that capability.

The formal concept descriptions of individual concepts are broken down into sub clauses corresponding to different
aspects. In cases where a given aspect does not apply, its sub clause may be omitted entirely from the class description.
The following sub clauses and conventions are used to specify a concept:

» The heading gives the formal name of the concept and indicates, in parentheses, the sub package in which the concept
is defined. In some cases, there may be more than one sub package name listed. This occurs when a concept is defined
in multiple package merge increments — one per package. In afew instances, there is no package name, but the phrase

UML Superstructure Specification, v2.2 15

16

“as speciaized” appearsin parentheses. Thisindicates a“semantic” increment, which does not involve a new
increment in the metamodel and which, therefore, does not change the abstract syntax, but which adds new semantics
to previous increments (e.g., additional constraints).

In some cases, following the heading is a brief, one- or two-sentence informal description of the meaning of a concept.
Thisisintended as a quick reference for those who want only the basi ¢ information about a concept.

All the direct generalizations of a concept are listed, alphabeticaly, in the“ Generalizations’ sub clause. A “direct”
generalization of aconcept is aconcept (e.g., aclass) that isimmediately above it in the hierarchy of itsancestors (i.e.,
its “parent”). Note that these items are hyperlinked in el ectronic versions of the document to facilitate navigation
through the metamodel class hierarchy. Readers of hardcopy versions can use the page numbers listed with the names
to rapidly locate the description of the superclass. This sub clause is omitted for enumerations.

A more detailed description of the purpose, nature, and potential usage of the concept may be provided in the
“Description” sub clause. Thistoo isinformal. If aconcept is defined in multiple increments, then the first part of the
description coversthe top-level package and is followed, in turn, by successive description increments for each sub
package. The individual increments are identified by a sub package heading such as

Package PowerTypes

This indicates that the text that follows the heading describes the increment that was added in the PowerTypes sub
package. The description continues either until the end of the sub clause or until the next sub package increment head-
ing is encountered.

This convention for describing sub package incrementsis applied to al other sub clauses related to the concept.

The “Attributes” sub clause of a concept description lists each of the attributes that are defined for that metaclass. Each
attribute is specified by its formal name, its type, and multiplicity. If no multiplicity islisted, it defaultsto 0..*. Thisis
followed by atextual description of the purpose and meaning of the attribute. If an attributeis derived, the name will be
preceded by a slash. For example:

*body: String[1] Specifies a string that is the comment

specifies an attribute called “body” whose typeis“ String” and whose multiplicity is 1.
If an attribute is derived, where possible, the definition will also include a specification (usually expressed as an OCL
constraint) specifying how that attribute is derived. For instance:
«/isComposite: Boolean A state with isComposite = trueis said to be a composite state. A composite state is a state that
contains at least one region>

isComposite = (region > 1)

The “Associations” sub clause lists al the association ends owned by the concept. The format for these is the same as
the one for attributes described above. Association ends that are specializations or redefinitions of other association
ends in superclasses are flagged appropriately. For example:

slowerValue: VaueSpecification[0..1] {subsets Element::ownedElement} The specification of the lower bound for this
multiplicity.

specifies an association end called “lowerValue” that is connected to the “ ValueSpecification” class and whose multi-
plicity is0..1. Furthermore, it is a specialization of the “ownedElement” association end of the class “Element.”

Aswith derived attributes, if an association end is derived, where possible, the definition will also include a
specification (usually expressed as an OCL constraint) specifying how that association end is derived.

UML Superstructure Specification, v2.2

The* Constraints’ sub clause containsanumerica list of all the constraints that define additiona well-formednessrules
that apply to this concept. Each constraint consists of atextual description and may be followed by aformal constraint
expressed in OCL. Note that in afew cases, it may not be possible to express the constraint in OCL, in which case the
formal expression is omitted.

“Additional Operations’ containsanumerical list of operations that are applicable to the concept. These may be queries
or utility operations that are used to define constraints or other operations. Where possible, operations are specified
using OCL.

The “Semantics” sub clause describes the meaning of the concept in terms of its concrete manifestation. Thisisa
specification of the set of things that the concept models (represents) including, where appropriate, a description of the
behavior of those things (i.e., the dynamic semantics of the concept).

“Semantic Variation Points” explicitly identifies the areas where the semantics are intentionally under specified to
provide leeway for domain-specific refinements of the general UML semantics (e.g., by using stereotypes and profiles).

The “Notation” sub clause gives the basic notational forms used to represent a concept and its features in diagrams.
Only concepts that can appear in diagrams will have a notation specified. Thistypically includes a simple example
illustrating the basic notation. For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify
the legal formats. The conventions of this BNF are:

« All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

« All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

* Non-terminal production rule definitions are signified with the *::=" operator.

« Repetition of an item is signified by an asterisk placed after that item: **’.

« Alternative choices in a production are separated by the ‘| symbol (e.g., <alternative-A> | <alternative-B>).
« Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *

signifies a sequence of one or more items, each of which is<item-1> or <item-2>.

The “Presentation Options” sub clause supplements the “Notation” clause by providing alternative representations for
the concept or its parts. Users have the choice to use either the forms described in this sub clause or the forms described
in the “Notation” sub clause.

“Style Guidelines” identifies notational conventions recommended by the specification. These are not normative but, if
applied consistently, will facilitate communication and understanding. For example, there is a style guideline that
suggests that the names of classes should be capitalized and another one that recommends that the names of abstract
classes be written out in italic font. (Note that these specific recommendations only make sensein certain writing
systems, which iswhy they cannot be normative.)

The “Examples’ sub clause, if present, includes additional illustrations of the application of the concept and its
notation.

“Changes from previous UML” identifies the main differences in the specification of the concept relative to UML
versions 1.5 and earlier.

UML Superstructure Specification, v2.2 17

6.4.2 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this specification:

» An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and

« the opposite (unmarked) association end is owned by the association.

Note — This convention wasinherited from UML 1.x and was used in theinitial versions of the specification because there was
no explicit notation for indicating association end ownership. Such a notation was introduced in revision 2.1.1 (see the
notation sub clause of the Association metaclass on page 39) but was not applied to the diagramsin the specification due to
lack of tool support. In accord with the new notation, the ownership of an association end by the association would continue to
be shown by leaving the end unmarked, but the ownership of an end by the classifier would be shown by marking that
classifier-owned end with a dot.

» An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,

« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

» Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

 The constraint { subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

* A congtraint { redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

« If no multiplicity is shown on an association end, it implies amultiplicity of exactly 1.

- If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is alowercase |etter. (Note that, by convention, non-navigable association ends are
often left unlabeled since, in general, there is no need to refer to them explicitly either in thetext or in formal
constraints - although they may be needed for other purposes, such as M OF language bindings that use the metamodel.)

» Associationsthat are not explicitly named, are given names that are constructed according to the following production
rule:

"A " <association-end-namel> <association-end-name2>

where <association-end-namel> is the name of the first association end and < association-end-name2> is the name of
the second association end.

» An unlabeled dependency between two packagesis interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing
this specification, such as the unavailability of conforming modeling tools at the time the specification itself was being
defined. Therefore, they should not necessarily be deemed as recommendations for general use.

18 UML Superstructure Specification, v2.2

6.5 Acknowledgements

The following companies submitted and/or supported parts of this specification:

» T7irene

- 88solutions

» Adaptive

» Advanced Concepts Center LLC
 Alcatel

 Artisan

» Borland

» CeiraTechnologies

» Commissariat a L'Energie Atomique
» Computer Associates

« Compuware

» DaimlerChryder

» Domain Architects

» Embarcadero Technologies

- EneaBusiness Software
 Ericsson

» France Telecom

 Fraunhofer FOKUS

» Fujitsu

» Gentleware

« Intellicorp

» Hewlett-Packard

+ I-Logix

- International Business Machines
« IONA

« Jaczone

» Kabira Technologies
» Kennedy Carter
 Klasse Objecten

« KLOCwork

» Lockheed Martin

« MEGA International
« Mercury Computer

» Motorola

+ MSC.Software

UML Superstructure Specification, v2.2

Northeastern University
oose | nnovative Informatik GmbH
Oracle

Popkin Software

Proforma

Project Technology

Sims Associates

SOFTEAM

Sun Microsystems
Syntropy Ltd.

Telelogic

Thales Group

TNI-Valiosys

Unisys

University of Kaiserslautern
University of Kent
VERIMAG

WebGain

X-Change Technologies

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Bjorkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, @ystein
Haugen, Sridhar lyengar, Cris Kobryn, Birger Mgiller-Pedersen, James Odell, Gunnar Overgaard, Karin Palmkvist, Guus

Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert, and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Karl Frank, William Frank, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson,
Allan Kennedy, Mitch Kokar, Thomas Kuehne, Michael Latta, Antoine Lonjon, Nikolai Mansurov, Sumeet Malhotra,

Dave Méllor, Stephen Mellor, Joaquin Miller, Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji, Ileana Ober, Barbara
Price, Tom Rutt, Kendall Scott, Oliver Sims, Cameron Skinner, Jeff Smith, Doug Tolbert, Tim Weilkiens, and Ian Wilkie.

The authors are grateful to Pavel Hruby for his drawing tool stencil for UML, which was used to create many of the UML
diagrams in this document.

20

UML Superstructure Specification, v2.2

Part | - Structure

This part defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural
diagrams, such as class diagrams, component diagrams, and deployment diagrams. The UML packages that support
structural modeling are shown in the figure below.

]

Classes

™

lmporte

I

CompositeStructures

I

alrnports

.

Components

)

<<!rr||:u:|rt>>

.

Deployments

Part I, Figure 1 - UML packages that support structural modeling

The function and contents of these packages are described in following clauses, which are organized by major subject areas.

UML Superstructure Specification, v2.2 21

22

UML Superstructure Specification, v2.2

7 Classes

7.1 Overview

The Classes package contains sub packages that deal with the basic modeling concepts of UML, and in particular classes
and their relationships.

Reusing packages from UML 2 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages.
This part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used
in, for example, MOF. The Kernel package is the central part of the UML, and reuses the Constructs and PrimitiveTypes
packages of the InfrastructureLibrary.

In many cases, the reused classes are extended in the Kernel with additional features, associations, or superclasses. In
subsequent diagrams showing abstract syntax, the subclassing of elements from the infrastructure library is always elided
since this information only adds to the complexity without increasing understandability. Each metaclass is completely
described as part of this clause; the text from the infrastructure library is repeated here.

It should also be noted that Kernel is a flat structure that like Constructs only contains metaclasses and no sub-packages.
The reason for this distinction is that parts of the infrastructure library have been designed for flexibility and reuse, while
the Kernel in reusing the infrastructure library has to bring together the different aspects of the reused metaclasses.

The packages that are explicitly merged from the InfrastructureLibrary are the following:
« PrimitiveTypes
+ Congtructs

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged.

«imports
Constructs [p __________ > FrimitiveTypes
7™
E«merge») ,«F‘ﬁerge»

Kernel

Figure 7.1 - InfrastructureLibrary packages that are merged by
Kernel (all dependencies in the picture represent package merges)

UML Superstructure Specification, v2.2 23

7.2 Abstract Syntax

Figure 7.2 shows the package dependencies of the Kernel packages.

1

Kernel

7 A T

amerges

S
S

arnerges
- ¥Mmerges: -

B ' .
- ' .

—l L —|E ~

AzsociationClaszes Dependencies

PovwerTypes

A

«merége»

1 1

Irterfaces «mer_qg:g_-_} BazicBehaviars

Figure 7.2 - Subpackages of the Classes package and their dependencies

24

UML Superstructure Specification, v2.2

Package Kernel

fsubsets ownetd {subsets ownedElerment

Ao e}

*

%

+ fowvrner

freadCnly, uniond

+ ovvningElement + ovvnedComment
Flamant [t T g - Comment

TreadCnly, union}

+ annotatedElement

Efemrant
Rm + lrelatedElement

* 1.*

{readCnly, unior,
subsets relatedElerment
DirvectedRefationsiip + farget

* 1.%

+ fsource

* 1.%
TreadCnly, union,
subsets relatedElementt

Figure 7.3 - Root diagram of the Kernel package

UML Superstructure Specification, v2.2

*

*

Comment

body - String

25

NamedElomont

name ;. String
visibitiy sl ing
foalifiedName | Siring

[0.1]
[0.1]
[0.1]

T

Fenumer ation:
VisibilityKind
public
private
protected
package

PackageableEfomont

{readOnly, subsets member} *

Namespace

VISIRSIy o | Tsibite R T

+ fimportedidember

* +

{readCnly, union,
subsets owner}
+ inamespace

{readnly, union}

* NamedElomont

+ | + fowwnedtember

{readCnly, union, subsets
member, subsets ownedElement}

Jmemkber

0.

{subsets source, subsets owner}t

+ imporingMamespace

| DirectedRelfationship |

I

Elementimport

%

wigibility © Wisibilitykind

1 + elemertimpoart alias: String [0.1] 1
{subsets
ownedElement}
beet | DirectodRefationship |
-{sutl snte S SOUFCE, 1 | {subsets target}
subsets ownert % + importedElement
+ importingMamespace *

1 + packageimport

{subsets ownedElement}

Packagelmport
visibility © WisibiltyKind

%

| PackageabloFlomont |

+ importedPackage

{subsets target}

Figure 7.4 - Namespaces diagram of the Kernel package

26

UML Superstructure Specification, v2.2

Element

i

MultiplicityElement {subsets ownert Isubsets ownedElement]:
isOrdered © Boolean ¢+ owningllpper +uppervalue_ | ValueSpecification
isUnique : Boolean 0.1 0.1
Aupper - Unlimitediiatural [0..1] {subsets ownert {subsets ownedElement}
fower : Integer [0.1] + owninglower + Iuwer‘\faéui

0.1 -

NamedElement PackageableElement
TypedElement +type Type
0.1

Figure 7.5 - Multiplicities diagram of the Kernel package

UML Superstructure Specification, v2.2

‘ TypedEfa... ‘ | PackaqeabieElomont

{subsets ownedElerment, Drdered}‘T‘ ‘T
+ operand T
| VizineSpecification |

Tsubsets ownert)
+ expression - - — + instance —
T Expression ! iteraiSpecification | | InstanceValue I—‘3’1 | InstanceSpecification
*
; symbal © String
LiteralBoolean Literallnteger LiteralString LiteralUnlimitedatural Literallull
value | Boolean value : Integer walle : String value : Unlimitecdhatural

Opaquebxpression
body © String
language : String

Figure 7.6 - Expressions diagram of the Kernel package

PackageableFlomant

‘T‘ fordered?

Constraint + constrainedElement Efement
Mamiespace N *
fsubsets {fsubsets ownerk {subsets ownedElement
{subsets namespace}l gwnedMamber} + ovwningConstraint + specification ValueSpecification
+ context + ovvnedRule E 1
0.1 *

Figure 7.7 - Constraints diagram of the Kernel package

28 UML Superstructure Specification, v2.2

PackageabioFlamont |

{subsets owner:
+ ovwvninginstance

InstanceSpecification 1

feubsets ownert

+ owvninginstanceSpec

0.1

A
subsets
éwnedEIement} ;{SDL\"E;??SE[W”EI’} {;;Jé:;gcé}uwnedﬂement,
+ it oot s + value ! ValueSpecification |
* 0.1 *
* + definingFeature
> StructuraliFeature
{subsets pwnedElerment’ 1
+ specificatiol r
k! VaineSpecification |

+ classifier, —
Classifier
®

Figure 7.8 - Instances diagram of the Kernel package

NamedElonront

{readCnly, union}:

+ lredefintionCantext

f

‘ RedefinabloFlamant ‘ MNauraspace

Ciassifier

Type

{subzets target}
+ general

DirectedRalationship

RedefinableElement
Isleaf : Boolean

E]
freadOnly, union}:
+ fredefinedElement

3

freadOnly, union, {subsets

*

subsets feature} redefinitionContext
Property + fattribute + Classitier
p 0.1

Isd bstract : Baolean

1

{subsets source,

subsats ownert
+ specific

Generalization
izzukstitutable : Boalean

{subsets

owhedElernent
+ generalization

1

*

{readOnly, subsets mernbert

*
{aubsets redefinedElementt
+ redefinedClazsifier

%

+ fgeneral

Figure 7.9 - Classifiers diagram of the Kernel package

UML Superstructure Specification, v2.2

+ finheritecdhembet, NamedElement

&

29

{readOnly, union}t

RedefinabloEfemont

freadonly, union}

+ featuringClassifier + ffesture
Classifier N N

Fegture

IsSigtic © Boolgan

| MuitiplicityElentent ‘ TypedElement

StructuralFeature

IsReadOnly | Booleah

BehaviorafFeature

«enumerations

ParameterDirectionKind

in
inout
out
return
TypedEiemant | N RipHicityElement ‘
Parameter
[subsets direc’(ionl : PgrarneterDirec‘tionKind
owhedMernbe, fdefault : String
ordered}
0.4 + owniedParameter

+ owenetFormalParam
{subsets namespace

*

feubsets owner}
0.1 |+ owningParameter

Figure 7.10 - Features diagram of the Kernel package

30

+ raizedException @
R *

{subsets ownedElement}
0.1 |+ defaultvalue

VafueSpacification

UML Superstructure Specification, v2.2

BekavioralFeature

i

Operation

izGuery ;. Boolean
fz0rdered | Boolean
fiznigue : Boolean
Noweer : Integer

Jupper © Unlimitediatural

[0.11
(0.1

{subsets namespace) fredefines ownedPararneter:

> operation + owvnedParameter Parameter
0.1 *
subsets context {subsets ownedRule:
{+ presorrtexp ¥ + precondtion -
0.1 * Constraint
{subsets context} fsubsets ownedhule}
+ postContext + postocondition -
0.1 *
{subsets context} {subsets ownedRule:
+ hodyCortext + bodyCondition
0.1 0.1
+ type | Type
* 0.1
redefines raisedExceptio
* 1 ¥ raIiEsecEEcce
-

{zubsets redefinedElement

+ redefinedCperation
-

=N

Figure 7.11 - Operations diagram of the Kernel package

UML Superstructure Specification, v2.2

31

Class

Jredefines general}
+ IzuperClazs

+
*

{subsats classifier,

subsets namespace,

subsets featuringClassifier}
+class

StructuraiFeature

Property

isDerived | Boolean
isReadCnly : Bodlean

+ subsettedPropsmty | isDerivedlinion : Baolean
idefautt : String
aggregation : Aggregationkind

* fizComposite : Boolesn

{subsets attribute,
subsets ownedMember,

orderedt
+ ovnedatribute

0.1

{subsets namespace,

subsets redefinitionContexth
+class

*

{subsets redefinedElement}t
+ redefinedProperty

*

{subsets member, ordered:
+ memberEnd

Refationship | | Classifior

+ azsociation Association

2

{subsets memberEnd,
subsets feature, subsets
ownedember, ordered}t

0.1 |isDerived : Boolean

{subsets association,
subsets namespace,
subsets featuringClassifier)

{subsets ownedMember, ordered}
+ nestedClasaifier

0.

Classifier

{subsets redefinitionContext,

subsets namespace,
subsets FeaturingClassifier}
+class
-

{subsets feature, subsets
awnedMember, ardered}

-
0.1

+ ovvnedCperation @I
*

Figure 7.12 - Classes diagram of the Kernel package

32

+ lopposite
0.1

0.1

+ owvniedEnd + owningdasocistion
* 01
{subsets awnedEnd}
+ navigableOwnedEnd
+
0.1

{subsets owner}k
+ oveningProperty

{subsets ownedElement}

*

+ defaultyalue

0.1

ValueSpecification
|

0.1

{subsets relatedElement, readonly, ordered}

«EnLmeration:
AggregationKind

+ lendType | 1.7

nane
shared
composite

UML Superstructure Specification, v2.2

Classifior

{subsets namespace,

subsets featuringClassifier, {subsets attribute,
subsets classifier} subsets ownedMember, ordered)
+ datatype + ovvned Attribute EI
DataType ht 0.1 % roperty
{subsets namespace,
subsets redefinitionConkesxt, {subsets Feature,
subsets featuringClassifier} subsets awnedMember, ordered}

+ datatype diopersti
o vh + owveniedOperation @I
0.1 *

InstanceSpecification

{subsets ownedMember, ‘T‘

{subsets namespace} ordered}
b Enumerstion + ovvnedLiteral
Primitive Type Enumeration b " EnumerationLiteral
| 0.1

Figure 7.13 - DataTypes diagram of the Kernel package

UML Superstructure Specification, v2.2

Namespace | | PackageablaFElemant |

Package

t

feubsets namespace:
+ owningPackage

fsubsets ownedhMernber:
+ packagedEIement'__l

0.1

feubsets namespace:

= PackageabdieFlemant

{subsets packagedElement

+ package T iowened Type | T¥Pe
0.1 *
| DirectedRelationship
feubsets source,
subsets owner} {subsets ownedElement -
+ receivingPackage + packageherge
1 . | PackageMerge

+mergedPackage [subsets target)

=

1

{subsets packagedElement’}
+ InestedPackage

x

{subsets namespace}
+ nestingPackage |0..1

Figure 7.14 - The Packages diagram of the Kernel package

34

UML Superstructure Specification, v2.2

Package Dependencies

UML::Classes::Kernel:

PackageableElement

i

DirectedRelationship

{subsets target}t

Dependency

UML::Classes::Kernel::Element

UML::C!ass.es:: + supplier
Dependencies:: EX "
NamedE lement b + supplierDependency
+ cliert
1% B
a + clientDependency
{subsets source}
{subsets
ownedElement -
UML::Classes:Ker + mapping ' Abstraction
nel:OpaqueExpre
paq I 0.1 0.1

ssion

Realization

Substitution

Usage

NamedElement

{subsets supplier}
+ cortract

|

Namespace

Classifier

Figure 7.15 - Contents of Dependencies package

UML Superstructure Specification, v2.2

+ substitution

{subsets client}:

* + substitutingClazsifier -
1

{subsets ownedElement,
subsets clientDependency

{readOnly}
+ iovwenechiember

&

{readnly}
+ namespace

(]

Package Interfaces

{eubsets ownedMernber, ordered}

nestedClassifier

0..1 {subsets namespace,
subisets redefinitionContesxt

{subsets redefinedElerment}
+ redefinedinterface

| UML ::Classes:Kernel:StructuralFeature | UML ::Classes:: +
Kernel::Classifier S
{subsets attribute,
- subsets gwnedhernber, ordered}
Property + owned ttr|Eute 0.1 Interface
* {subsets classifier,
subsets namespace,
subsets featuringClassifier
UML::Classes::Kernel:: g ¥
BehavioralFeature
{subsets feature,
subsets ownedMember, {subsets
Drderec&) redefinitionContext} "
- + ownedOperation + interface
Operation .
0.1 *
b
+ contract |1
UML ::Classes:: {subsets supplier}
Kernel::Classifier
T {subsets ownedElement, *
! subsets dientDependency’} InterfaceRealizati
BehavioredClassifier | g + interfaceRealization nterfacereanization

+ implementingClassifier

{subsets client:

Figure 7.16 - Contents of Interfaces package

36

L

UML::Classes::
Dependencies:
Realization

UML Superstructure Specification, v2.2

Package AssociationClasses

Jsubsets ownert
+ azsociationEnd

StructuralFeature

UML::ClassesnKernel::

{subsets ownedElement, ordered}

+ qualitier

Property

0.

UNL::Classes::
Kernel::Class

Property

*

K

UML::Classes::
ernel::Association

AssociationClass

Figure 7.17 - Contents of AssociationClasses package

Package PowerTypes

Classifier

+ poweertype (0.1

LML :Classes::Kernel:
PackageableElement

GeneralizationSet

+ powertypeExtent

*| isDisjoint - Boolean

isCovering : Boolean

+ generalizationset

Generalization

+ generalization |*

Figure 7.18 - Contents of PowerTypes package

UML Superstructure Specification, v2.2

37

7.3 Class Descriptions

7.3.1 Abstraction (from Dependencies)

Generalizations

 “Dependency (from Dependencies)” on page 62

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. In the metamodel, an Abstraction is a Dependency in which there is a
mapping between the supplier and the client.

Attributes

No additional attributes

Associations

e mapping: Expression[0..1]
A composition of an Expression that states the abstraction relationship between the supplier and the client. In
some cases, such as Derivation, it isusually formal and unidirectional. In other cases, such as Trace, it isusually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the elements is not specified.

Constraints

No additional constraints

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional
or bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») that are defined in the

Standard Profiles clause. If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific
predefined stereotype name.

7.3.2 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Generalizations

None

38 UML Superstructure Specification, v2.2

Description

AggregationKind is an enumeration of the following literal values:

* none
Indicates that the property has no aggregation.

e shared
Indicates that the property has a shared aggregation.

e composite
Indicates that the property is aggregated compositely, i.e., the composite object has responsibility for the existence
and storage of the composed objects (parts).

Semantic Variation Points

Precise semantics of shared aggregation varies by application area and modeler.
The order and way in which part instances are created is not defined.

7.3.3 Association (from Kernel)

An association describes a set of tuples whose values refer to typed instances. An instance of an association is called a
link.

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52
» “Relationship (from Kernel)” on page 131

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association may
have the same type.

An end property of an association that is owned by an end class or that is a havigable owned end of the association
indicates that the association is navigable from the opposite ends; otherwise, the association is not navigable from the
opposite ends.

Attributes

e isDerived : Boolean
Specifies whether the association is derived from other model elements such as other associations or constraints. The
default value isfalse.

Associations

e memberEnd : Property [2..*]
Each end represents participation of instances of the classifier connected to the end in links of the association. Thisis
an ordered association. Subsets Namespace: : member.

e ownedEnd : Property [*]
The ends that are owned by the association itself. Thisis an ordered association. Subsets Association:: member End,
Classifier::feature, and Namespace: : ownedMember.

UML Superstructure Specification, v2.2 39

e navigableOwnedEnd : Property [*]
The navigable ends that are owned by the association itself. Subsets Association: : ownedEnd.

e [endType: Type[l..*]
References the classifiers that are used as types of the ends of the association. Subsets Relationship: : relatedElement.

Constraints

[1] Anassociation specidizing another association has the same number of ends as the other association.
self.parents()->forAll(p | p.memberEnd.size() = self.memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endTypeisderived from the types of the member ends.

self.endType = self. memberEnd->collect(e | e.type)
[4] Only binary associations can be aggregations.

self. memberEnd->exists(aggregation <> Aggregation::none) implies self.memberEnd->size() = 2
[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2 then ownedEnd->includesAll(memberEnd)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise, it allows duplicate elements.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association ends,
not to the association itself. It means that the subsetting association end is a collection that is either equal to the collection
that it is subsetting or a proper subset of that collection. (Proper subsetting implies that the superset is not empty and that
the subset has fewer members.) Subsetting is a relationship in the domain of extensional semantics.

Soecialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naive but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In
the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition is a relationship between features of classifiers within a specialization hierarchy. Redefinition may be used to
change the definition of a feature, and thereby introduce a specialized classifier in place of the original featuring
classifier, but this usage is incidental. The difference in domain (that redefinition applies to features) differentiates
redefinition from specialization.

40 UML Superstructure Specification, v2.2

Note — For n-ary associations, the lower multiplicity of an end istypically 0. A lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at atime. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of all elements of the subgraph below that element.
Composition is represented by the isComposite attribute on the part end of the association being set to true.

Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently
from instances participating in links at the other ends of the association. The precise mechanism by which such accessis
achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible,
and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating
associations from non-navigable ends.

Semantic Variation Points

» Theorder and way in which part instances in a composite are created is not defined.
» Thelogical relationship between the derivation of an association and the derivation of its endsis not defined.
» Theinteraction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary association is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to atool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

» Theassociation’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

» A slash appearing in front of the name of an association, or in place of the name if no name is shown, marks the
association as being derived.

A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 7.21). This notation is for documentation purposes only
and has no general semantic interpretation. It is used to capture some application-specific detail of the relationship
between the associated classifiers.

» Generalizations between associations can be shown using a generalization arrow between the association symbols.

UML Superstructure Specification, v2.2 41

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

« A multiplicity

» A property string enclosed in curly braces. The following property strings can be applied to an association end:
« { subsets <property-name>} to show that the end is a subset of the property called <property-name>.
« { redefines <end-name>} to show that the end redefines the one named <end-name>.
« {union} to show that the end is derived by being the union of its subsets.
« {ordered} to show that the end represents an ordered set.
« {nonunique} to show that the end represents a collection that permits the same element to appear more than once.
« {sequence} or {seq} to show that the end represents a sequence (an ordered bag).
« If the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

An open arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end's
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a havigable end name as specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses)” on page 122.

An association with aggregationKind = shared differs in notation from binary associations in adding a hollow diamond as
aterminal adornment at the aggregate end of the association line. The diamond shall be noticeably smaller than the
diamond notation for associations. An association with aggregationKind = composite likewise has a diamond at the
aggregate end, but differs in having the diamond filled in.

Ownership of association ends by an associated Classifier may be indicated graphically by a small filled circle, which for
brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets the
classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of the dot
shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This avoids
visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line.

This standard does not mandate the use of explicit end-ownership notation, but defines a notation which shall apply in
models where such use is elected. The dot notation must be applied at the level of complete associations or higher, so that
the absence of the dot signifies ownership by the association. Stated otherwise, when applying this notation to a binary
association in a user model, the dot will be omitted only for ends which are not owned by a classifier. In this way, in
contexts where the notation is used, the absence of the dot on certain ends does not leave the ownership of those ends
ambiguous.

This notation may only be used on association ends which may, consistent with the metamodel, be owned by classifiers.
Users may conceptualize the dot as showing that the model includes a property of the type represented by the classifier
touched by the dot. This property is owned by the classifier at the other end.

42 UML Superstructure Specification, v2.2

The dot may be used in combination with the other graphic line-path notations for properties of associations and
association ends. These include aggregation type and navigability.

The dot isillustrated in Figure 7.19, at the maximum allowed size. The diagram shows endA to be owned by classifier B,
and because of the rule requiring the notation be applied at the level of complete associations (or above), this diagram
also shows unambiguously that end B is owned by BinaryAssociationAB.

endA endB

* *

BinaryAssociationAB

Figure 7.19 - Graphic notation indicating exactly one association end owned by the association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the association whereas navigable ends were assumed to be owned by the classifier at the
opposite end. This convention is now deprecated.

Aggregation type, navigability, and end ownership are orthogonal concepts, each with their own explicit notation. The
notational standard now provides for combining these notations as shown in Figure 7.20, where the associated nodes use
the default rectangular notation for Classifiers. The dot is outside the perimeter of the rectangle. If non-rectangular
notations represent the associated Classifiers, the rule is to put the dot just outside the boundary of the node.

Figure 7.20 - Combining line path graphics

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

« Show all arrows and x’s. Navigation and its absence are made completely explicit.

» Suppressall arrows and x’s. No inference can be drawn about navigation. Thisis similar to any situation in which
information is suppressed from a view.

UML Superstructure Specification, v2.2 43

» Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no
navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.

Examples

Figure 7.21 shows a binary association from Player to Year hamed PlayedinYear.

* 4 PlayedinYear
Year
year
season | *
* *
Team Player
team goalie

Figure 7.21 - Binary and ternary associations

The solid triangle indicates the order of reading: Player PlayedinYear Year. The figure further shows aternary association
between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0.1 {ordered}
d
C D
1 0..1

{subsets b}

Figure 7.22 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 7.22.
« Names a, b, and d on three of the ends.

44 UML Superstructure Specification, v2.2

« Multiplicities0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.
« Specification of ordering on b.

» Subsetting on d. For an instance of class C, the collection d is a subset of the collection b. Thisis equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

The following examples show notation for navigable ends.

a b

A B
1.4 2.5
c d

C D
1..4 2.5
e f

E F
1..4 2.5
g h

G H
1.4 2.5
i j

| J
1..4 2.5

Figure 7.23 - Examples of navigable ends

In Figure 7.23;

Thetop pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

Thefifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 7.24 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end.

b: B[*]

Figure 7.24 - Example of attribute notation for navigable end owned by an end class

| UML Superstructure Specification, v2.2 45

Figure 7.25 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, Al::bl. So for an instance of the class A1, bl is a subset of
b, and b is derived from b1.

/b {union}
a
A B
0..1 0.*
a bl
Al Bl
0..1 0.*

{subsets b}

Figure 7.25 - Derived supersets (union)

Figure 7.26 shows the black diamond notation for composite aggregation.

+scrollbar

Slider
Header Panel

Figure 7.26 - Composite aggregation is depicted as a black diamond

Changes from previous UML

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association. The metaatribute targetScope
that characterized AssociationEnd in prior UML is no longer supported. Fundamental changes in the abstract syntax make
it impossible to continue targetScope or replace it by a new metaattribute, or even a standard tag, there being no
appropriate model element to tag. In UML 2, the type of the property determines the nature of the values represented by
the members of an Association.

7.3.4 AssociationClass (from AssociationClasses)
A model element that has both association and class properties. An AssociationClass can be seen as an association that
also has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also

defines a set of features that belong to the relationship itself and not to any of the classifiers.

Generalizations

» “Association (from Kernel)” on page 39
» “Class (from Kernel)” on page 49

46 UML Superstructure Specification, v2.2

Description

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is both an Association and a Class.

Attributes
No additional attributes

Associations

No additional associations

Constraints

[1] An AssociationClass cannot be defined between itself and something else.
self.endType->excludes(self) and self.endType>collect(et|et.allparents()->excludes(self))

Additional Operations

[1] The operation allConnections resultsin the set of all AssociationEnds of the Association.

AssociationClass::allConnections () : Set (Property);
allConnections = memberEnd->union (self.parents ()->collect (p | p.allConnections ())

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an
association, connecting a set of classifiers and a class, and as such have features and be included in other associations.
The semantics of an association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence
have a set of common properties, like being able to have features, having a name, etc. As these properties are inherited
from the same construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and
has the set of features that are defined for classes and associations. The constraints defined for class and association also
are applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.

Note — It should be noted that in an instance of an association class, there is only one instance of the associated classifiers at
each end, i.e., from the instance point of view, the multiplicity of the associationsendsare ‘1.’

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path
and the association class symbol represent the same underlying model element, which has a single name. The name may
be placed on the path, in the class symbol, or on both, but they must be the same name.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct.
The association class symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the class symbol.

UML Superstructure Specification, v2.2 47

* Job 1.*
Person berson i company Company
|
|
Job
salary

Figure 7.27 - An AssociationClass is depicted by an association symbol (aline) and a class symbol (a box) connected
with a dashed line. The diagram shows the association class Job, which is defined between the two classes Person
and Company.

7.3.5 BehavioralFeature (from Kernel)
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Generalizations

» “Feature (from Kernel)” on page 70
» “Namespace (from Kernel)” on page 99
Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled
by subclasses of Behavioral Feature.

Attributes

No additional attributes

Associations

e ownedParameter: Parameter[*]
Specifies the ordered set of formal parameters owned by this Behavioral Feature. The parameter direction can be
‘in,” ‘inout,” ‘out,” or ‘return’ to specify input, output, or return parameters. Subsets Namespace: : ownedMember

e raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation.

Constraints

No additional constraints

Additional Operations

[1] The query isDistinguishableFrom() determines whether two Behavioral Features may coexist in the same Namespace. It
specifies that they have to have different signatures.

48 UML Superstructure Specification, v2.2

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif
else true
endif
Semantics

The list of owned parameters describes the order, type, and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the Behavioral Feature terminates.

The owned parameters with direction in or inout define the type, and number of arguments that must be provided when
invoking the Behavioral Feature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A Behavioral Feature may raise an exception during its invocation.

Notation

No additional notation
7.3.6 BehavioredClassifier (from Interfaces)

Generalizations

» “BehavioredClassifier (from BasicBehaviors, Communications)” on page 434 (merge increment)

Description

A BehavioredClassifier may have an interface realization.

Associations

« interfaceRealization: InterfaceRealization [*]
(Subsets Element: : ownedElement and Realization: : clientDependency.)

7.3.7 Class (from Kernel)
A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 52

Description

Classisakind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

UML Superstructure Specification, v2.2 49

Attributes
No additional attributes

Associations

* nestedClassifier: Classifier [*]
References all the Classifiers that are defined (nested) within the Class. Subsets Element:: ownedMember

« ownedAttribute : Property [*]
The attributes (i.e., the properties) owned by the class. The association is ordered. Subsets Classifier::attribute and
Namespace: : ownedMember

e ownedOperation : Operation [*]
The operations owned by the class. The association is ordered. Subsets Classifier::feature and
Namespace: : ownedMember

e /superClass: Class[*]
This gives the superclasses of aclass. It redefines Classifier::general. Thisis derived.

Constraints

No additional constraints

Additional Operations

[1] Theinherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(ocllsKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as aresult, where a result type for the operation has been defined. Operation invocations may aso cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

A class cannot access private features of another class, or protected features on another class that is not its supertype.
When creating and deleting associations, at |east one end must allow access to the class.

50 UML Superstructure Specification, v2.2

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class’ need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

Center class name in boldface.

Capitalize the first letter of class names (if the character set supports uppercase).

Left justify attributes and operationsin plain face.

Begin attribute and operation names with alowercase letter.

Put the class name in italicsif the classis abstract.

Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples
Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- XWin: XWindow
Window display()
size: Area hide() ' _
visibility: Boolean - attachX(xWin: XWindow)
display()
hide()

Figure 7.28 - Class notation: details suppressed, analysis-level
details, implementation-level details

UML Superstructure Specification, v2.2 51

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and
operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a classification of instances, it describes a set of instances that have features in common.

Generalizations

» “Namespace (from Kernel)” on page 99
» “RedefinableElement (from Kernel)” on page 130
« “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

e isAbstract: Boolean
If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract
classifier isintended to be used by other classifiers (e.g., asthe target of general metarelationships or generalization
relationships). Default valueis false.

Associations

e [attribute: Property [*]
Refersto all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets
Classifier::feature and is a derived union.

e [feature: Feature[*]
Specifies each feature defined in the classifier. Subsets Namespace::member. Thisis a derived union.

e /[genera : Classifier[*]
Specifies the general Classifiersfor this Classifier. Thisis derived.

52 UML Superstructure Specification, v2.2

e generalization: Generalization[*]
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general
classifiersin the generalization hierarchy. Subsets Element:: ownedElement

e /inheritedMember: NamedElement[*]
Specifies al elementsinherited by this classifier from the general classifiers. Subsets Namespace: : member. Thisis

derived.
« redefinedClassifier: Classifier [*]
References the Classifiers that are redefined by this Classifier. Subsets Redefinabl eEl ement: : redefinedElement

Package Dependencies

e substitution : Substitution
References the substitutions that are owned by this Classifier. Subsets Element:: ownedElement and
NamedElement: : clientDependency.)

Package PowerTypes

e powertypeExtent : GeneralizationSet
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1] Thegeneral classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both atransitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only speciaize classifiers of avalid type.
self.parents()->forAll(c | self.maySpecializeType(c))

[4] TheinheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may itsinstances also be its subclasses.

Additional Operations
[1] Thequery allFeatures() givesall of the featuresin the namespace of the classifier. In general, through mechanisms such as
inheritance, thiswill be alarger set than feature.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() givesall of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general

UML Superstructure Specification, v2.2 53

[3] Thequery alParents() givesall of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
[5] The query hasVisibilityOf() determines whether a named element isvisiblein the classifier. By default all arevisible. Itis
only called when the argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then
hasVisibilityOf = (n.visibility <> #private)
else

hasVisibilityOf = true
[6] The query conformsTo() givestrue for a classifier that defines atype that conformsto another. Thisis used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[7] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It isintended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of

the specified type. By default a classifier may specidlize classifiers of the same or amore general type. It isintended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.ocllsKindOf(c.oclType)

Semantics
A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a
classifier have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms
to itself and to all of its ancestors in the generalization hierarchy.

54 UML Superstructure Specification, v2.2

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets
for that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses)” on page 122.

Presentation Options

Any