1
— - = — e
s |
<= E 5T F==F
F == T = - 5= =
E = = £ = i = ¢&
E—— = 3 — e
= - I—*= |
OBJECT MANAGEMENT GROUP

Date: August 2011

UNIFIED O

MODELING
LANGUAGE

OMG Unified Modeling Language™ (OMG UML),

Superstructure

Version 2.4.1 with change bars

OMG Document Number:

formal/2011-08-13

Standard document URL: http://www.omg.org/spec/UML/2.4/Superstructure

Associated Normative Machine-Readable Files*:
http://www.omg.org/spec/UML/20110701/Infrastucture.xmi
http://www.omg.org/spec/UML/20110701/Superstructure.xmi
http://www.omg.org/spec/UML/20110701/L0.xmi
http://www.omg.org/spec/UML/20110701/L1.xmi
http://www.omg.org/spec/UML/20110701/L2.xmi
http://www.omg.org/spec/UML/20110701/L3.xmi
http://www.omg.org/spec/UML/20110701/LM.xmi

http://www.omg.org/spec/UML/20110701/Primitive Types.xmi
http://www.omg.org/spec/UML/20110701/UML.xmi
http://www.omg.org/spec/UML/20110701/StandardProfileL2.xmi
http://www.omg.org/spec/UML/20110701/StandardProfileL3.xmi

Version 2.4.1 is a minor revision to the UML 2.3 specification. It supersedes formal/2010-05-06.

Copyright © 1997-2011 Object Management Group

Copyright © 2009-2010 88Solutions

Copyright © 2009-2010 Artisan Software Tools

Copyright © 2001-2010 Adaptive

Copyright © 2009-2010 Armstrong Process Group, Inc.
Copyright © 2001-2010 Alcatel

Copyright © 2001-2010 Borland Software Corporation
Copyright © 2009-2010 Commissariat al'Energie Atomique
Copyright © 2001-2010 Computer Associates International, Inc.
Copyright © 2009-2010 Computer Sciences Corporation
Copyright © 2009-2010 European Aeronautic Defence and Space Company
Copyright © 2001-2010 Fujitsu

Copyright © 2001-2010 Hewlett-Packard Company

Copyright © 2001-2010 I-Logix Inc.

Copyright © 2001-2010 International Business Machines Corporation
Copyright © 2001-2010 IONA Technologies

Copyright © 2001-2010 Kabira Technologies, Inc.

Copyright © 2009-2010 L ockheed Martin

Copyright © 2001-2010 MEGA International

Copyright © 2009-2010 Mentor Graphics Corporation
Copyright © 2009-2010 Microsoft Corporation

Copyright © 2009-2010 Model Driven Solutions

Copyright © 2001-2010 Motorola, Inc.

Copyright © 2009-2010 National Aeronautics and Space Administration
Copyright © 2009-2010 No Magic, Inc.

Copyright © 2009-2010 oose Innovative Informatik GmbH
Copyright © 2001-2010 Oracle Corporation

Copyright © 2009-2010 Oslo Software, Inc.

Copyright © 2009-2010 Perdue University

Copyright © 2009-2010 SINTEF

Copyright © 2001-2010 SOFTEAM

Copyright © 2009-2010 Sparx Systems Pty Ltd

Copyright © 2001-2010 Telefonaktiebolaget LM Ericsson
Copyright © 2009-2010 THALES

Copyright © 2001-2010 Unisys

Copyright © 2001-2010 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES
The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,

paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed

the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™ CWM Logo™, IIOP™ MOF™ | IMM™ | OMG Interface Definition Language (IDL)™, and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed

on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technol ogy/
agreement.htm).

UML Superstructure Specification, v2.4.1

UML Superstructure Specification, v2.4.1

Table of Contents

L. S0P o 1
2. ConformanCe e 1
2.1 Language Units e 2

2.2 Compliance Levels 2

2.3 Meaning and Types of Compliance i, 5

2.4 Compliance Level Contents i e e 7

3. Normative References i e 8
4. Terms and Definitions 9
5. Notational Conventions i 9
5.1 Keywords for Requirement Statements i 9

5.2 Annotations on Example Diagrams 9

6. Additional Information 9
6.1 Architectural Alignment and MDA Support i 9

6.2 Onthe Run-Time Semanticsof UML 10

6.2.1 ThE BASIC PIEMISES ... e e e e e e e e e e e e e e e et e e et e e e e e e aereaearareenaaann s 10

6.2.2 The SEMANtICS ArChItECLUIEcciiiiieeeeeeeee e e e e e e e e e e e e e et re b 10

6.2.3 The Basic Causality MOAEIoooiiii e 11

6.2.4 Semantics Descriptions in the Specification ... 12

6.3 The UML Metamodel e 13

6.3.1 Models and What They MOGEI ..o e e 13

6.3.2 Semantic Levels and NamiNgooooiiiiiiiiiaa e a e eeea e as 13

6.4 How to Read this Specification i 14

L ST o 1= Tox o= L (o] I {0 1 13- L P 14

L2 DI To | - a0 (o] 1 4= | SRS 17

7. ClasSSes ... e 21
7.l OVeIVIBW ot 21

7.2 ADSHACt SYNtaXt 22

7.3 Class DesCriptioNsot 35

7.3.1 Abstraction (from DEPENAENCIES)uvuiiriiiiieieeeis i ettt e e e e e s s s e e e e e e e e s e eereaeaes 35

UML Superstructure Specification, v2.4.1 i

7.3.2 AggregationKind (from KEINEI)eiieii i e e e e e e s e e enenes 35

7.3.3 Association (from KEIMEI)euiiieiiiiieie e e e e e e e e s e e e nnenes 36
7.3.4 AssociationClass (from ASSOCIAtIONCIASSES) ...vvvvvivieeeiiiiiiiiiieieee e e e e e e ses e re e e e s e e 44
7.3.5 BehavioralFeature (from KEIMEI)cooooiiiiiiiiie e r e e e e e 47
7.3.6 BehavioredClassifier (from INtErfaces)ccccvviiiiiiieei it e e 48
A B O T 1 (0T T =T 1 1= P EPERRR 48
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)ccccccvvvvvveeveeeniiiinnnns 51
7.3.9 Comment (fFroM KEIMEI)eeeiiiiiieeee e e e e e e s r e ee e e e s e e s annenes 56
7.3.10 Constraint (from KEIMEI)uuiiieiiiieeie e e e e e e e e e e e e e e e s e e annenes 57
7.3.11 DataType (from KEIMEI)uiiiieeieeee e e e e e e e e e e s e s nreeeees 59
7.3.12 Dependency (from DEPENUENCIES)cccovviiuiiiiiiiiiie e e e e s s r e e e e e e s e rr e e e ee e e s e e annnenes 61
7.3.13 DirectedRelationship (from Kernel) ... 62
7.3.14 Element (from KEINEL)eeeiiieeieeee ettt e e e e e e enieaes 63
7.3.15 ElementImport (from Kernel) ... 64
7.3.16 Enumeration (from KErnel)ooiiiiiiiii et 66
7.3.17 EnumerationLiteral (from Kernel) ... 67
7.3.18 EXPression (from KEINEI) ...ttt e e e e e e e 68
7.3.19 Feature (from KEINEI) ...ttt e e e e e e e e e e e e e e e aaeaes 69
7.3.20 Generalization (from Kernel, POWEITYPES)uuuiiiiiiiiiaaiiaiiiiiiieee et eee e e e 70
7.3.21 GeneralizationSet (from POWEITYPES)uuiiiiiiiiiiiaae ettt e e e 74
7.3.22 InstanceSpecification (from Kernel) ... 82
7.3.23 InstanceValue (from KerNel) ... 85
7.3.24 Interface (from INTEIFACES)eiiiiiiiiii e 86
7.3.25 InterfaceRealization (from INtErfaces)cuvuiiiiiiiiieii e 89
7.3.26 LiteralBoolean (from KEINEI)oooiiiiiiiiiii e 89
7.3.27 Literallnteger (from KEINEI)eeiiiiii e e e 90
7.3.28 LiteralNUull (from KEINEI)e it e e e e e 91
7.3.29 LILEIAIREAL......ceeiiitieiee ettt e et e bbb 92
7.3.30 LiteralSpecification (from Kernel)cooo i 93
7.3.31 LiteralString (from KEINEI)ueeieiiieiiee it e e e 94
7.3.32 LiteralUnlimitedNatural (from Kernel) ..o 94
7.3.33 MultiplicityElement (from Kernel)oooo i 95
7.3.34 NamedElement (from Kernel, DEPENUENCIES)cuviieiiiiiiiiiiiiiiieie et 99
7.3.35 Namespace (from KEINEI)ueiiiiiiiii et e e e e e e eneees 100
7.3.36 OpaqueExpression (from Kernel) ... 103
7.3.37 Operation (from Kernel, INterfaces)ccuuuiiiiiiiiiiiiiie e 104
7.3.38 Package (from KErNeI) it e e e e e e e e eanaees 108
7.3.39 PackageableElement (from Kernel) ... 111
7.3.40 Packagelmport (from KEINEI)oooi oo 112
7.3.41 PackageMerge (from KEINEI) ...t 113
7.3.42 Parameter (from KEINEI) ...ttt e e e e 122
7.3.43 ParameterDirectionKind (from Kernel)euiiiiiiiiiii e 123
7.3.44 PrimitiveType (from Kernel) ... 124
7.3.45 Property (from Kernel, AssociationClasses, INterfaces)ccccccccviiiiiiiiiiiiiieeeninniies 124
7.3.46 Realization (from DEPENTENCIES)ccoiiuiiiiiiiiiie ettt a e 131
7.3.47 RedefinableElement (from Kernel) ... 132
7.3.48 Relationship (from KEINEI)ooei i 134
7.3.49 SIOt (froM KEINEI) ..ot e e e e e e e e e e e e e annees 134
7.3.50 StructuralFeature (from Kernel) ... 135
7.3.51 Substitution (from DEPENTENCIES)ccoiiiiiiiiiiiei e a e e eeeees 136
7.3.52 Type (fromM KEINEI) ...ttt e e et e e e e e e e e e e e ananennees 137

UML Superstructure Specification, v2.4.1

7.3.53 TypedElement (from KEINEI)ccoo it e e 138

7.3.54 Usage (from DEPENUENCIES) ..oeeeeeiiii ittt e e e e e e e e ee e e e e e e e e e ereaee e e e e e e s e s nnrnrreeeeees 139

7.3.55 ValueSpecification (from Kernel)cc.uvviiiiiiiiei e 139

7.3.56 VisibilityKind (from Kernel)ooviiiiiiiecie e 141

T4 DIAgIAMS . ottt e 142
8. COMPONENTS . .. 145
8.1 OVEIVIEW . 145
8.2 ADSIraCt SYNtaXt 145
8.3 Class DeSCrptiONSo 149
8.3.1 Component (from BasicComponents, PackagingComponents)cccccueveeeeeeeennnninnns 149

8.3.2 ComponentRealization (from BasicCCOMPONENTS)coouuiiiiiiiieiie et 158

8.3.3 ConnectableElement (from BasiCCOMPONENTS)ccooiiiiiiiiiiiieiieaeeee i eee e e e e e 159

8.3.4 Connector (from BasiCCOMPONENTS)uuiuiiiiiiiiiieeeiee ittt ee e ee e e e e e e e e e nneees 159

8.3.5 ConnectorEnd (from BaSiCCOMPONENTS)ueviiiiiiiieiaiiiiiiiiiiee et e e e e e e st eee e e e e e e e e e sanaees 163

8.3.6 ConnectorKind (from BasSiCCOMPONENTS)uviiiiiiiiiiiiiiiiiiiie et ee e e 163

8.4 DIagramsS . .. 164
9. ComposSite StrUCTUIeS e et e 167
0.1 OVEIVIEW . e 167
9.2 ADSIraCt SYNtaXt 167
9.3 Class DeSCrptiONSo 172
9.3.1 Class (from StructuredClasses, INternalStruCtures)ccccceeiiiiiiiiiieiiieie e, 172

9.3.2 Classifier (from InternalStructures, Collaborations) ..o, 173

9.3.3 Collaboration (from CollaborationS)cciieiiiiiiiiiiiiiiiie e 174

9.3.4 CollaborationUse (from Collaborations)cooiiiiiiiiiiiiiieieee e 177

9.3.5 ConnectableElement (from INternalStruCtures)cc.ueeeieiiiiiiiiiiie e 180

9.3.6 Connector (from INterNAISIIUCIUIES)ueiiiiiiieiiie it 180

9.3.7 ConnectorEnd (from InternalStructures, POrtS)cc.uueiiiiiiiiiiiiiieeeee e 182

9.3.8 EncapsulatedClassifier (from POIS)ueiiiiiiiiiiiiiiiie e 184

9.3.9 Feature (from INterNalSIrUCIUIES)c.eeiiiiiiiiiii et 184

9.3.10 InvocationAction (from INVOCAtIONACLIONS)coiiiiiiiiiiiiiiiieie e 185

9.3.11 Parameter (from CollaborationS)cueeiiiiiiiiiiiiiiiii e 185

9.3.12 POt (frOM POMS) ...ttt ettt e et e e e e e e sttt e et e e e e e e e e e e annbeeesreeeaas 186

9.3.13 Property (from INterNalStrUCIUIES)ueuiiiiiiiieiiii et 190

9.3.14 StructuredClassifier (from INternalStructures)cc.ueveieiiiiiii e 192

9.3.15 Trigger (from INVOCAtIONACLIONS) ...ttt e e e e e 196

9.3.16 Variable (from StruCtUr@dACHVITIES)uuveieiiiieiiiiiiiiii e 197

9.4 DIAGIaMS . . oottt et e e e 197
10. Deployments 199
10.1 OVEIVIEW . oottt ettt e e e e e 199
10.2 ADSEract SYNtaX 199

UML Superstructure Specification, v2.4.1 iii

10.3 Class DesCriptioNS e e 203

10.3.1 Artifact (from Artifacts, NOGES)ccooceiiiiiiiii e e e 203

10.3.2 CommunicationPath (from NOUES)uuviiiiiiiiiiiiiiiiier e e e eee e 205

10.3.3 DeployedArtifact (from NOAES)ccoceiiiiiiiieicc e e e e 206

10.3.4 Deployment (from ComponentDeployments, NOES)coveeeevviiiiiiiiiiiierieeee e, 207

10.3.5 DeploymentSpecification (from ComponentDeployments)cccccvevvveeeeeeeeniicivnnvennen. 209

10.3.6 DeploymentTarget (from NOGES)uvviiiiiiiieeeiei i e e e e e e e e e s reeee e 211

10.3.7 DEVICE (frOM NOGES) ...uvvrriiiiiiieeeeee i sttt e e e e e e s s s st e et e e e e e e s e anan e aeeeaeaeessansansnrrneeeees 212

10.3.8 ExecutionEnvironment (from NOGES)uvviiiiieeii i s e e 213

10.3.9 InstanceSpecification (fromM NOUES)cuuriiiiiiiiiiiiiiiee e e e e 214
10.3.10 Manifestation (from ArtifactS)ccccvviiiiiiiie e e 215

10.3.11 NOdE (frOM NOGES) ...uvvriiiiiiiieee e i e e e e e s e s e e e e e e e s e e e eraaeaeessanannenrrneeeees 216

10.3.12 Property (froM NOGES)eveeiieeieeiiiciiiiieee e e s st e e e e e e e s s st r e e e e e e e e s e e nnnnnreaees 218

10.4 DIagramsS . ..ttt 219
1L, ACHIONS .o 225
L1 L OVEIVIEW oottt e e 225
11.2 ADSEract SYNtaXo 227
11.3 Class DesCriptioNS e e 240
11.3.1 AcceptCallAction (from ComPIEtEACLIONS) ...ccvveeeiii i 240

11.3.2 AcceptEventAction (from CompleteACLIONS)ccceviiiiiiiiie e 241

11.3.3 Action (from BaSICACHIONS) ...cvveeeeiiiicieiee e e e e e st e e e e e s s e r e e e e e e s e e s s sannrnneeeeeees 243

11.3.4 ActionInputPin (from StruCtUr€dACLONS)ccviiieei it e e 244

11.3.5 AddStructuralFeatureValueAction (from Intermediate ACtions)cccccvevvveeeeeiriicnvvnnnnn. 246

11.3.6 AddVariableValueAction (from StructuredACtionS)ceeevveeeeeiiiiiiiiieee e 247

11.3.7 BroadcastSignalAction (from Intermediate ACtIoONS)ueevveeeiiiiiiiiiieiieee e 249

11.3.8 CallAction (from BaSICACLIONS)cccciiiiiiiiiiiiieee e e s st e e e e e s e e s e e e e e e e e s s s nanerneeeees 250

11.3.9 CallBehaviorAction (from BaSICACHONS)cievveiiiiiiiiiiiiieiieee e e s e e e e e e e e eeee e 251

11.3.10 CallOperationAction (from BaSiCACHONS)cvvieeeiiiiiiiiiiiieeee e e e sesierree e e e e e e e s 252

11.3.11 ClearAssociationAction (from IntermediateACtioNS)evvveeeeviiiiiiiiiiieee e, 254

11.3.12 ClearStructuralFeatureAction (from Intermediate ACtions)cccccvvvveeeeeeeeieiiiicinvieeeen, 255

11.3.13 ClearVariableAction (from StructuredACtionS)ccccvvviiiiiieiee e 256

11.3.14 CreateLinkAction (from Intermediate ACtioNS)cccccvviiriiieie e 256

11.3.15 CreateLinkObjectAction (from CompleteACtioNS)ceevvveeeiiiiiiiciiieieeee e 258

11.3.16 CreateObjectAction (from IntermediateACtiONS)vvvveeiieeeeeiiiiicee e 259

11.3.17 DestroyLinkAction (from Intermediate ACtionS)ccccvvviviiiieeeeii e 260

11.3.18 DestroyObjectAction (from Intermediate ACtionS)ceeveveeeiiiiiiiiiiieeie e 261

11.3.19 InputPin (from BaSICACIONS) ...cccciiiiciiiiiiiie e e e e e e e e e s e e e e e e e e e e s nnnnrrene e 263
11.3.20 InvocationAction (from BASICACHONS)uveviiiieeiiiiiiiiiiee e e e e s e eee e e e e e e e veeee s 263

11.3.21 LinkAction (from INtermediat@ACtIONS)cievveeiiiiiiiiieeieee e 264

11.3.22 LinkEndCreationData (from Intermediate ACtioNS)eevveereeiiiiiiiiiiiieeeee e 265

11.3.23 LinkEndData (from IntermediateActions, Complete ACtions)ccccveeeveeeeeeiievcnnvnnnnn. 267

11.3.24 LinkEndDestructionData (from Intermediate ACtions)cceevvviciiiiieeireee e 268

11.3.25 MultiplicityElement (from BaSICACHONS)cvvvveeiiiiiiiiiiiiieeee e e e e e reee e 269

11.3.26 OpaqueAction (from BaSICACHONS)uuuiriiiiieeeee it eeee e e e e e s e st reer e s e e e e s e s e nnenrnaees 269

11.3.27 OutputPin (from BaSICACHONS)ccueeiiiiieiieeee e et e e e e s e e e e e e e e e e eeeeees 270

11.3.28 Pin (fromM BASICACHONS) ..evviiiieeeeeiiiiiiiieiie et e e e e s e s s e sttt ee e e e e e e e s s e sentraneeeaaeeeesssnnnnnsnnaneeees 271

UML Superstructure Specification, v2.4.1

11.3.29 QualifierValue (from CompleteACHIONS)coooveeiiiieeiiee e 272

11.3.30 RaiseExceptionAction (from StruCturedACLIONS)evvieeeeiiiiiiiiiiieee e 273
11.3.31 ReadExtentAction (from CompleteACLIONS)uviiiiiiiiieeeeie e 274
11.3.32 ReadIsClassifiedObjectAction (from CompleteActions)ccccccvviviiieee e 275
11.3.33 ReadLinkAction (from IntermediateACtIONS)ueviiieeeeeiiiiiiiiiie e 276
11.3.34 ReadLinkObjectEndAction (from CompleteACtIONS)cccevviiiiiiiiiiiriiiee e 277
11.3.35 ReadLinkObjectEndQualifierAction (from CompleteActions)ccccceveeeevvvvciiiiieeeeeeeenn. 279
11.3.36 ReadSelfAction (from IntermediateACLIONS)uuvriiiiiieeeei i 280
11.3.37 ReadStructuralFeatureAction (from IntermediateActions)ccccvvveveeeeeecivicccineieeeen, 281
11.3.38 ReadVariableAction (from StructuredACtioNS)c.uvvviiiiieeee e 282
11.3.39 ReclassifyObjectAction (from CompleteACIONS)vvevviveeeieiiiiiiee e 283
11.3.40 ReduceAction (from CompleteACIONS)cooiiiiiiiiiiiieiie e 284
11.3.41 RemoveStructuralFeatureValueAction (from Intermediate Actions)cocccuvvvveeeeen. 286
11.3.42 RemoveVariableValueAction (from StructuredACtioNS)coooiiiiiiiieiiie e 287
11.3.43 ReplyAction (from COmMPIEtEACHONS)coeiiiiiiiiiiiiiie e 288
11.3.44 SendObijectAction (from IntermediateACtioONS)uuveiieiiiaiiiiiee e 289
11.3.45 SendSignalAction (from BaSICACHONS)cccoiiiiiiiiiiiiiiiie et 290
11.3.46 StartClassifierBehaviorAction (from CompleteActionsS)cooooiiiieiieieiieeneen e, 292
11.3.47 StartObjectBehaviorAction (from CompleteACtiONS)cooeeiiiiiiiiiiiiiiiiiieee e 293
11.3.48 StructuralFeatureAction (from Intermediate ACtionS)ooociuuiiiiiiiieieee e, 294
11.3.49 TestldentityAction (from Intermediate ACtIONS)ueeiiiiiiiiiiiiiie e 295
11.3.50 UnmarshallAction (from CompleteACtIONS)cocuieiiiiiiiiieeee e 296
11.3.51 ValuePin (from BaSICACLIONS)uueiiiiiiiiiaeee ettt ee e 297
11.3.52 ValueSpecificationAction (from IntermediateACtioNS)oooiiiiiiiieiiiieeeiiieeeenn 298
11.3.53 VariableAction (from StructuredACLIONS)cooiiiiiiiiiiiie e 299
11.3.54 WriteLinkAction (from Intermediate ACtioNS)cc.uuuiiiiiiiiiaii e 300
11.3.55 WriteStructuralFeatureAction (from Intermediate ACtions)ccccvveiieieiiiiiiniiiiiiiiee, 301
11.3.56 WriteVariableAction (from StructuredACHIONS)euveeiiiiiieiiiiiee e 302
11,4 DIagramS . .ottt 302
12. ACHIVITIES . . oo 303
12.1 OVEIVIEW . oottt et e e e e e e e e e 303
12.2 ADSEract SYNtaxXo 305
12.3 Class DeSCrptiONSo vttt e e 317
12.3.1 AcceptEventAction (as SPECIAlIZEd)c.cuiiiiiiiiiiiiii e 317
12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities,
CompleteStruCtUredACHVILIES) ... 319
12.3.3 ActionInputPin (as SPeCialiZEed)uuiiiiiiiiieieie e 323
12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
SEUCIUFEAACTIVITIES)vtteeieiiie ettt e e e e e e e e e ne e eeaeas 324
12.3.5 ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities,
INtErMEdiatEACHIVILIES) ..ot e e e e e e e 334
12.3.6 ActivityFinalNode (from BasicActivities, Intermediate ACtiVities)cccccceeeriiiiiiiiininnnn. 339
12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities, IntermediateActivities,
StructuredActivities, CompleteActivities, CompleteStructuredActivities) 342
12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,
IntermediateActivities, CompleteStructuredAcCtivities)cccoveeeieeiriiiiiiiiiieieeee e, 343
12.3.9 ActivityParameterNode (from BasSiCACHVILIES)cccuuuviiiiiiiiiiei e 346

UML Superstructure Specification, v2.4.1 \Y

12.3.10 ActivityPartition (from Intermediate ACtiVItIES)ccuvviiiiiiiie e 350

12.3.11 AddVariableValueAction (as specialized)ooccuuriiiiiieeee e 355
12.3.12 Behavior (from COMPIELEACHVITIES) ...vvvviriiiiieeie e e e e e e e reee e 356
12.3.13 BehavioralFeature (from CompleteACtiVItIES)ccuvviiriiiiie e 357
12.3.14 CallBehaviorAction (as specialized)coevvveiiiiiiiiiiiiiie e 358
12.3.15 CallOperationAction (as SPECIAlIZEA)uveriiiieeeieiiiie e 360
12.3.16 CentralBufferNode (from Intermediate ACtiVItiES)c.vvvvvevrieieeiiiiieer e, 361
12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)cccccccvvvvicvvvnnnnnn. 362
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities) 363
12.3.19 ControlFIow (from BaSICACHVITIES)uviriirieeeeie it e e e e e e e e e e e s rneee e 366
12.3.20 ControlNode (from BaSiCACHVILIES)uuvrriiiiieeei it e s e e e 367
12.3.21 DataStoreNode (from CompleteACHIVItIES)ooviiiiiiiiiiiiei e 369
12.3.22 DecisionNode (from Intermediate ACtiVItIES)ococueiiiiiiiiiiiee e 370
12.3.23 ExceptionHandler (from ExtraStructuredACHVItIES)ceviiiiiiiiiiiiiiiiiieie e, 373
12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities)cccvveeee.. 376
12.3.25 ExpansionKind (from ExtraStructuredACtiVItIES)c..uvveeiiiiiiiiiiiiieee e 377
12.3.26 ExpansionNode (from ExtraStructuredACtIVItIES)eueeiieiiiiiiiiiiiiiiiieee e 377
12.3.27 ExpansionRegion (from ExtraStructuredACtVItIES)eeviiiiiiiiiiiiiiieeee e, 378
12.3.28 FinalNode (from IntermediateACLIVILIES)cciiiiiiiiiiiiiiieee e 384
12.3.29 FlowFinalNode (from Intermediate ACtiVItIES)ceuvviiiiiiiieiiiiie e 386
12.3.30 ForkNode (from Intermediate ACHIVILIES)oeoiiiiiiiiiiiiieiii e 387
12.3.31 InitialNode (from BaSIiCACHVILIES)c.euviiiiiiiiieiii i 389
12.3.32 InputPin (from CompleteStructuredACIVItIES)ccuuviiiiiiiieeie e 390
12.3.33 InterruptibleActivityRegion (from Complete ACtiVItIES)ccooveriiiiiiiiiiiiiieiee e, 391
12.3.34 JoinNode (from CompleteActivities, Intermediate ACtiVities)ccveeveeeiieiiiiiiiiiiiiieen. 393
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)cccvvvveeeeen. 396
12.3.36 MergeNode (from Intermediate ACHIVItIES)cooiiiiiiiiiiiiiiie e 398
12.3.37 ObjectFlow (from BasicActivities, Complete ACtIVItIES)ccoeeieiiiiiiiiiiiiiiie e, 400
12.3.38 ObjectNode (from BasicActivities, COmplete ACtiVItIES)ccoeerriiiiiiiiiiiiiieeee e, 405
12.3.39 ObjectNodeOrderingKind (from CompleteACtiVItIES)ccceeeiiiiiiiiiiiiiiieieee e, 408
12.3.40 OutputPin (from CompleteStructuredActivities, StructuredActivities)cocccvvvveeeenn. 409
12.3.41 Parameter (from COmMPIEtEACHVILIES)eeiiiiiiiiiiiiiiiiie e 409
12.3.42 ParameterEffectKind (from CompleteACtiVItIES)c..ueeeeeiiiiiiiiiiiieieeee e 411
12.3.43 ParameterSet (from CompleteACtIVILIES)coooiiiiiiiiiiiiiiieee e 412
12.3.44 Pin (from BasicActivities, COMPIEteACHVITIES)cc.uuviiiiiiiieei e 413
12.3.45 SendObjectAction (as SPECialiZed)ccoooiiiiiiiiiiiiiiie s 420
12.3.46 SendSignalAction (as specialized) ... 421
12.3.47 SequenceNode (from StruCturedACHVItIES)oooiiiiiiiiiiieiiie e 422
12.3.48 StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities) 423
12.3.49 UnmarshallAction (as Specialized)ceieiiiiiiiiiiiiiiiie e 426
12.3.50 ValuePin (8S SPECIAIIZEA)cooiiiiiiiiiiee e 427
12.3.51 ValueSpecificationAction (as specialized) ... 427
12.3.52 Variable (from StruCtur@dACHVItIES)eeiiiiiiiiiiiiiiie e 428
12,4 DIagramMS . .ttt 430
13. Common Behaviors 435
13,1 OVeIVIEW . e 435
13.2 ADSEract SYNtaxXt 439

Vi UML Superstructure Specification, v2.4.1

13.3 Class DeSCriptioNSottt e 444

13.3.1 AnyReceiveEvent (from CommuNICAtiONS)coccvrriiiiieireeeie st r e e e e e e e s reee e 444
13.3.2 Behavior (from BaSICBENAVIOIS)uuiiiiiieeieiiiiiiiieeiieet e e e e e s st e e e e e e e e s s snnnrnreee e eee s 445
13.3.3 BehavioralFeature (from BasicBehaviors, Communications)ccccccevveeeerinicicvvnnnennnnn. 448
13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)cccccceeeeeveiiricvnvvnnnnn. 449
13.3.5 CallConcurrencyKind (from CommuRNiCatioONS)c.cuuvviriireeeineiiiiiiiee e e e e e e e seseeereeee e 450
13.3.6 CallEvent (from COMMUNICALIONS)vveiiiiieeeeiiiiiiiiieeieee e e e e e e s ss s er e e e e e e s e e s sannreanaeeeeeas 451
13.3.7 ChangeEvent (from COMMUNICALIONS)cvveeeeiiiiiiiiiiieieeee e e e e e e e e e e e e s eeeeeees 452
13.3.8 Class (from COMMUNICALIONS)cuuvveiiiiiiiieeeee e i st ee e e ee e e s s s st errereeeeeesssnnnrnerneeeees 453
13.3.9 Duration (from SIMPIETIME)eeeiiiiiiiiee e e e e e e e e e e e e e e s e rrereaeeas 454
13.3.10 DurationConstraint (from SimpleTime)ccoviiiiiiiiiiiie e 454
13.3.11 Durationinterval (from SIMPIETIME) ...ccivvveeiiii i 456
13.3.12 DurationObservation (from SimpleTime)covviciiiiiiiiireee e 457
13.3.13 Event (from COMMUNICALIONS)vuvriiiiiiiieeeeeiis st e e e e e e s e s sstrreer e ee e e e e e e s e s nrnnreeeeees 457
13.3.14 FunctionBehavior (from BasicCBehaviors)ccccciviiiiiieii e 458
13.3.15 Interface (from COMMUNICALIONS)uvviiieiieeiii i e e s s e e e e e e e 459
13.3.16 Interval (from SIMPIETIME)euiiiiiiiiiie e e e e e eee s 459
13.3.17 IntervalConstraint (from SIMPIETIME)coeeviiiiiiiiiie e 460
13.3.18 MessageEvent (from CoOmMMUNICAtIONS)ccceuviiiiiiieee e e e e e e e e e 461
13.3.19 Observation (from SIMPIETIME)vvuiiiiiieeeei i e e e e e e e e s rreeeees 461
13.3.20 OpaqueBehavior (from BasiCBENAVIOIS)cccccviiiiiiiiiie e 462
13.3.21 OpaqueExpression (from BasiCBENAVIOIS)cccvvviiiiiiiee i ee e 463
13.3.22 Operation (from COMMUNICALIONS)vvvveieieeeeeiisiiiiieiieir e e e e e e s seerrererr e e e e e e s e snenrreeeeees 463
13.3.23 Reception (from COMMUNICALIONS) ...evvieeeieiiicieiiiiiee e e e s rrrr e e e e e e 464
13.3.24 Signal (from COMMUNICALIONS)vvvviiiieieeeeiiiiiiiiiee e e e e e e s e s eerr e e e e e e e e s snnnnerrrrereeeeeees 465
13.3.25 SignalEvent (from COMMUNICALIONS) ...evvvieeeeeiiiiiiiiiiieireeee e e se s s e e e e e e e e s ssnnnnreereeeeeas 466
13.3.26 TimeConstraint (from SIMPIETIME) ...ccviviie i 467
13.3.27 TimeEvent (from SIMPIETIME)vvviiiiiiiie e e e e e e 468
13.3.28 TimeExpression (from SIMPIETIME) ...ccvvveeiiiiii e 469
13.3.29 Timelnterval (from SIMPIETIME)uviiiiiiiieeie i e s 470
13.3.30 TimeOhbservation (from SIMPIETIME) ...ceeveeeeiiii i 471
13.3.31 Trigger (from COMMUNICALIONS)vuvvviiieiiieeeeeiis s et e e e e e e e e e s s r e ee e e e e e e s e s nnrnnrreeeees 471
14, Interactions e 473
L4, L OVIVIEBW . oottt e e e e e 473
14.2 ADSEract SYyntaxX 474
14.3 Class DeSCHPtiONS ittt e e e e 480
14.3.1 ActionExecutionSpecification (from BasicINteractions)ccoeeecvvvveeveee e iescccieeieeeennn 480
14.3.2 BehaviorExecutionSpecification (from BasicInteractions)ccccccecevveeeiiiviivinnneneeeenn, 481
14.3.3 CombinedFragment (from FragmentS)cooioiiiiiiiiiiiieiee e e e e e e 482
14.3.4 ConsiderlgnoreFragment (from Fragments)cccuueiieiiiiieeninsiiiiiieer e e e e e e e e s ssneneneeeees 487
14.3.5 Continuation (from FragmeEntS)uueiiiiiieeoiiiie e e e e e e e e s reee e 488
14.3.6 DestructionOccurrenceSpecification(from Basiclnteractions)ccccccceveeeeveicccvivvennnnn. 491
14.3.7 ExecutionOccurrenceSpecification (from BasicInteractions)ccccccccveeeeeeiescccvnnvennnnn. 491
14.3.8 ExecutionSpecification (from BasiCINteractions)ceeveeeieiiiiiiiiiereeeee e sssieeveeeeens 492
14.3.9 Gate (fromM FragmMENTS) ...cccceeeiiii i it e e e e e e e e s s s e e e e e e e e s e e st e e e e e aeeeese s nnsnnrnneeees 493
14.3.10 GeneralOrdering (from BasiCINteraCtions)cccvuveiirireeeinsiiciiiiir e e e e e e s s snveeveeee s 494
14.3.11 Interaction (from BasicInteraction, Fragments)cceeveeeiriiiiiiiinireeeeeeeessssnveeneeeees 495

UML Superstructure Specification, v2.4.1 vii

14.3.12 InteractionConstraint (from Fragments)ooooiiiiiiiiiiee e aeee e 498

14.3.13 InteractionFragment (from Basiclnteractions, Fragments)cccccccceeeeeeeiicecivvnnnnn, 499
14.3.14 InteractionOperand (from FragmeNtS)ccoeeeeiiiiiciiiiieiieee e s e er e e e e e e e senrrreee e 499

14.3.15 InteractionOperatorKind (from Fragments)coccoiiiieiiiiiee e e e 500

14.3.16 InteractionUse (from FragmMentS)euueiiieeeeeiiiiiiieiieeieeee e e e s e esinine e e ee e e e s e s snsensrneeeees 501

14.3.17 Lifeline (from Basiclnteractions, Fragments)ccccvuruiiiieeeerniissiiinnrerereeee s e s sssnennenees 504
14.3.18 Message (from BasiCINtEraCtioNS)ueeieiieeeeiiiiiiiriieiieeeee e e e e ss s sniereer e e e e e e e e s enennnaees 505

14.3.19 MessageEnd (from BasiCINEraCtioNS)ccceeeviiiieriieiiirie e esce s e e e e e 508

14.3.20 MessageKind (from BasiCINteraCtionS)cceeeviiiceriirieieiee e e ssesseireier e e e e e e s e s ssensrneeees 508

14.3.21 MessageOccurrenceSpecification (from Basiclnteractions)ccccceccvvveevviieicevvvnnnnnn. 509

14.3.22 MessageSort (from BasiCINtEractions)cceeiiiiiciiiiiiiieiee e 510

14.3.23 OccurrenceSpecification (from BasicINteractions)ccccveeeiiiiiiiiiieeiiieeeee e, 510

14.3.24 PartDecomposition (from Fragments) ... 511

14.3.25 Statelnvariant (from BasSiCINtEractions)oooiiiiiiiiiiiiiiiie e 514

14,4 DIagramS . .ttt 515
15. State Machines 535
15,0 OVEIVIEW . e e 535
15.2 ADSEract SYyNtaxttt 535
15.3 Class DesCriptioNS e 538
15.3.1 ConnectionPointReference (from BehaviorStateMachines)ccccccceiiiiiniiiiiiiieneen. 538

15.3.2 FinalState (from BehaviorStateMachines)ooocuiiiiiiiiiiiiie e 541

15.3.3 Interface (from ProtocolStateMachingS)coooiiiiiiiiiiiiiiie e 542

15.3.4 Port (from ProtocolStateMacChiNgS)coiiiiiiiiiiiiiiiiieee e 543

15.3.5 ProtocolConformance (from ProtocolStateMachings) ..o, 543

15.3.6 ProtocolStateMachine (from ProtocolStateMachings)cccoooiiiiiiiiiii, 544

15.3.7 ProtocolTransition (from ProtocolStateMachines) ..., 546

15.3.8 Pseudostate (from BehaviorStateMachings)ccccuiiiiiiiiiiiiiiiiiiiieee e 549

15.3.9 PseudostateKind (from BehaviorStateMachines)c.ceiiiiiiiiiiiiiiiiieeeee e 556

15.3.10 Region (from BehaviorStateMachinesS)cooouiiiiiiiiiiiiiiae e 557

15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines)cccccccevviiiiiiiinennenn. 559

15.3.12 StateMachine (from BehaviorStateMachines)c.coueeiiiiiiiiiiiiiieee, 573

15.3.13 TimeEvent (from BehaviorStateMachines)occoouiiiiiiiiiii e 580

15.3.14 Transition (from BehaviorStateMachinesS)occcuuuiiiiiiiiiiiiie e 581

15.3.15 TransitionKind (from BehaviorStateMachines) ..., 589

15.3.16 Vertex (from BehaviorStateMachinesS)coooiiiiiiiiiiiiiiiiee e 592

15,4 DIagramMS . .t 592
16. USe CaSeS ...t 597
16.1 OVEIVIEW . . e e e e 597
16.2 ADSEract SYNtaxt e 597
16.3 Class DesCriptioNS e e 598
16.3.1 ACEOr (FrOM USECASES) ..eveeeeiiieeiaiiii ittt e e e e ettt et e e e e e e s e bbb e e e e e e e e e e s s s nbnbbeeeeeas 598

16.3.2 Classifier (from USECASES)coeeiiiiiiiieiiee e e ettt e e et e e e e e e e e e e nbeebeeeeeas 600

16.3.3 EXtENd (frOM USECASES) ..eeeiiiieiiiiiiiiitieiei et e e e ettt e e e e e e s e bbb e e e e e e e e e e e s nnnbbseeeeas 601

viii

UML Superstructure Specification, v2.4.1

16.3.4 ExtensionPoint (from USECASES) ...uuuurririiiieeeeeiiiiiiiieeieeee e eee e e sssstnnaeer e e e e e s e e s snnnnnnennseeeees 603

16.3.5 InClude (fromM USECASES) ...ccccoeieiiieiiiiiiee i e e e e s s eesit e e e e e e e e e s e st are e e e e e e s e s e e nnnntrareeeeeaeeeas 604

16.3.6 USECASE (frOM USECASES) ...eviieiiiiiiiieiitiiiiie e ittt sttee e e st ee e s st e e s s st e e s ennbee e e e enreas 606

16.4 Diagrams . ..t 611
Subpart Il - Supplement 617
17. Auxiliary CONSEIIUCES e e 619
17, OVEIVIEW . .ttt 619
17.2 InformationFIoOwWs 619
17.2.1 InformationFlow (from INformationFIOWS)ccoiiiiiiiiiiiiie e 620

17.2.2 Informationltem (from INformationFIOWS)c.euuiiiiiiiiiiiie e 622

17.3 MOdeIS . ..o 625
17.3.1 Model (from MOGEIS)eeiiiiiiiiie it ennreas 625
17.4Templateso 627
17.4.1 ParameterableElement (from Templates)c.cooviciiiiiiiriie e 629

17.4.2 TemplateableElement (from TeMPIAtES)cccvviiiiiiiiiee e 631

17.4.3 TemplateBinding (from TEMPIAES)eevviieeiiiiiicee e e e 633

17.4.4 TemplateParameter (from TemMPIAteS)ccveeeeiiiiiiieee e 634

17.4.5 TemplateParameterSubstitution (from TempIlates)cccccceviivciiiiiiirieee e 636

17.4.6 TemplateSignature (from TEMPIAtES)cceveeeeiiiii i 636

17.4.7 Classifier (from TemMPIAteS)cccccuvuiiiiiiiiie e e e e e e e s 639

17.4.8 ClassifierTemplateParameter (from Templates)ccvvveeiiiiiiciiiiireeeee e 643

17.4.9 RedefinableTemplateSignature (from Templates)cccccceveiiiiiiiiirieeee e 644

17.4.10 Package (from TEMPIALES)uuveriiiiiiieiieeii e e e e e e e s e e e e e e e s e e s enreaeeeeeeeas 645

17.4.11 PackageableElement (from TeMPIAtES)ccooovvciiiiiiiiiiee e 647

17.4.12 NamedElement (from TEMPIALES)vveeiiiiieeeeiiic e 648

17.4.13 StringEXpression (from TEMPIALES) ...ccceeeeiiiiiiiiiier e e e e e 650

17.4.14 Operation (from TEMPIALES)cccuvveiiiiiiiii e e e s e aeeeeees 651

17.4.15 Operation (from TEMPIALES)ccuvvviiiiiiiie e e s e e aeeeeeas 653

17.4.16 OperationTemplateParameter (from Templates)cccccceeeviiiiiiiiieiinee e 653

17.4.17 ConnectableElement (from TempIates)cccviiiiiiiieee i 655

17.4.18 ConnectableElementTemplateParameter (from Templates)ccccccccevvviivcviiiieenenennn. 655

17.4.19 Property (from TEMPIALES) ...eueieiiiiiiiieee e e e e e e e e s e e s ae e eeeeas 656

17.4.20 ValueSpecification (from TEMPIALES)evveeieeiii i 657

18. Profiles 659
18,1 OVEIVIEW . .ttt 659
18.1.1 Positioning profiles versus metamodels, MOF and UMLccccciiivieeeee e, 659

18.1.2 Profiles History and design reqUIrEMENTSc.covvicuiiiieiiiieee i crcireer e e e e e e s ssareneaeee e 659

18.2 ADSEract SYNtaxX 661
18.3 Class DeSCrptiONSottt e e 662
18.3.1 Class (fromM PrOfil€S)euuiiiiiieiiii et e e e e e e e s e e snenr e aee e 662

UML Superstructure Specification, v2.4.1 iX

18.3.2 EXtension (from Profil€S)ueiieio it 663

18.3.3 ExtensionENd (from Profil€S)cooooeeiiiiieiii e 666

18.3.4 IMage (fromM Profil€S)uuuiiiiiiee et e e e e e e e e s e nanre e reeeeees 667

18.3.5 Package (from Profil€S)uuuiiieioiiii ettt e e e e e e e e e nnnnnreaees 668

18.3.6 PackageableElement (from ProfileS) ... 669

18.3.7 Profile (from Profile€S)ueeuiiiieeiii i e e e e e 670

18.3.8 ProfileApplication (from Profil€S)cc.uuviiiiiiiii e 677

18.3.9 Stereotype (froM Profil€S)cuiiee i e e e 679

18.4 DIagramS . ..t 686
Subpart IV - ANNexXes 689
ANNEX A: Diagramso 691
AnNnex B: KeYWOrdsS. 697
Annex C: Standard Stereotypes. 703
Annex D: Component Profile Examples 711
Annex E: Tabular Notations i e 715
Annex F: Classifiers Taxonomy 719
Annex G: XMl Serialization and Schema. 721
Annex H: UML Compliance Level XMI Documents 723
INDEX . . 725
X UML Superstructure Specification, v2.4.1

1 Scope

This specification defines the Unified Modeling Language (UML), revision 2. The objective of UML isto provide system
architects, software engineers, and software developers with tools for analysis, design, and implementation of software-
based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming, and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly more
precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly improved
capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and notation is required. UML meets the following requirements:

» A formal definition of acommon MOF-based metamodel that specifies the abstract syntax of the UML. The abstract
syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the rules for
combining these concepts to construct partial or complete UML models.

A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a technology-
independent manner, how the UML concepts are to be realized by computers.

» A specification of the human-readable notation elements for representing the individual UML modeling concepts as
well asrulesfor combining them into avariety of different diagram types corresponding to different aspects of modeled
systems.

A detailed definition of waysin which UML tools can be made compliant with this specification. Thisis supported (in
a separate specification) with an XM L-based specification of corresponding model interchange formats (XMI) that
must be realized by compliant tools.

2 Conformance

UML is alanguage with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to alarge community of users. For that reason, this specification defines a small number of compliance
levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible language
subsets. However, in recognition of the need for flexibility in learning and using the language, UML also provides the
concept of language units.

UML Superstructure Specification, v2.4.1 1

2.1 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-
coupled modeling concepts that provide users with the power to represent aspects of the system under study according to
a particular paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete
event-driven behavior using a variant of the well-known statecharts formalism, while the Activities language unit
provides for modeling behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of
UML means that they need only be concerned with those parts of the language that they consider necessary for their
models. If those needs change over time, further language units can be added to the user’s repertoire as required. Hence,
a UML user does not have to know the full language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the
individual segments within this structure do not represent separate compliance points. The latter strategy would lead to an
excess of compliance points and result to the interoperability problems described above. Nevertheless, the groupings
provided by language units and their increments do serve to simplify the definition of UML compliance as explained
bel ow.

2.2 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of
modeling concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels.
Compliance levels cut across the various language units, although some language units are only present in the upper
levels. As their name suggests, each compliance level is a distinct compliance point.

For ease of model interchange, there are just four compliance levels defined for the whole of UML.:

« Level 0(LO). Thiscompliance level isformally defined in the UML Infrastructure. It contains a single language unit
that provides for modeling the kinds of class-based structures encountered in most popular object-oriented
programming languages. As such, it provides an entry-level modeling capability. More importantly, it represents alow-
cost common denominator that can serve as a basis for interoperability between different categories of modeling tools.

» Level 1(L1). Thislevel adds new language units and extends the capahilities provided by Level 0. Specifically, it adds
language units for use cases, interactions, structures, actions, and activities.

» Level 2 (L2). Thislevel extendsthe language units already provided in Level 1and adds language units for deployment,
state machine modeling, and profiles.

» Level 3(L3). Thislevel representsthe complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, templates, and model packaging.

The contents of language units are defined by corresponding top-tier packages of the UML metamodel, while the contents
of their various increments are defined by second-tier packages within language unit packages. Therefore, the contents of
a compliance level are defined by the set of metamodel packages that belong to that level.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this specification
for achieving this is package merge (see “PackageMerge (from Kernel)” on page 119). Package merge allows modeling
concepts defined at one level to be extended with new features. Most importantly, this is achieved in the context of the
same namespace, which enables interchange of models at different levels of compliance as described in “Meaning and

Types of Compliance” on page 5.

2 UML Superstructure Specification, v2.4.1

For this reason, all compliance levels are ultimately merged into a single core “UML” model package that defines the
common namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown in Figure
2.1. In this model, “L0" is originally an empty package that simply merges in the contents of the Basic package from the
UML Infrastructure. This package is then merged into the UML model. Package L0 contains elementary concepts such as
Class, Package, DataType, Operation, etc. merged in from Basic (see the Unified Modeling Language: Infrastructure
specification for the complete list of contents of this package).

«merge»

Lo

Figure 2.1 - Level 0 package diagram

At the next level (Level 1) the packages merged into Level 0 and their contents are extended with additional packages as
shown in Figure 2.2. Note that each of the four packages shown in the figure merges in additional packages that are not
shown in the diagram. They are defined in the corresponding package diagrams in this specification. Consequently, the set
of language units that results from this model is more than is indicated by the top-level model in the diagram. The specific
packages included at this level are listed in Table 2.3.

Dependencies BasicActions]
Kemel
N A
1 ; 7
Interfaces]
< «rhe\r\ge» «:i-nerge» efnerges InternalStructures

“‘nﬂ N ! «merge»_,_,»'-?

“rnetges, \ '
R
L1 —
BasicBehaviors Lenooooo--oommmmetoo EREEEE «rRerge?: —
«merges: T FundarnentalActivities
}) ““ngrperge»
«mﬁfgé» 3 o
Lt o amerges Ty
] 2 amerges .
Cammunications BasicActivities
_| Jrr —|\‘lj
B

UseCases Basicinteractions

Figure 2.2 - Level 1 top-level package merges

UML Superstructure Specification, v2.4.1 3

Level 2 adds further language units and extensions to those provided by the Level 1. The actual language units and

packages included at this level of compliance are listed in Table 2.4.

1 1 1
SimpleTime L1 Ports
— ™ A G —
InvacationActions . R IntermediateActivities
Ko " | o -
- <merges H £MEerges e
T «merger 7 e
— «r:n“erg\e» . .’I R «merg?’»,/ StructuredActivities
StructuredActions Tl H oo >
e T . . , - /’,» «m_efg_e?_’__ e
[S m— S —
N L2 “merges BasicComponents
e - -
—— srmergey | .
EchaviorStateMachines [< : Tl amerges
«!‘UE{’Q’B’») o ; . \\‘ Tl
— P ametges . | ~g<1'|jerge» IntermediateActions
Fragments «mé}ge» cmerges
L ' ; Profiles
Modes ; 3
v —
Artifacts

Figure 2.3 - Level 2 top-level package merges

StructuredClasses

Finally, Level3, incorporating the full UML definition, is shown in Figure 2.4. Its contents are described in Table 2.5.

UML Superstructure Specification, v2.4.1

— 1 1 —
Lz AssocistionClasses
Power Types Models
™
™ \. A 7
ProtocolStatetMachines T B J . InformationFlowes
.. smerges B aMer e aMmerges
Tl IS afnerges i LT
\m"nh \‘\ I1~| ;'J ,f/ «merge».-""
CompanentDeploymernts MErDEs “ | . et CampleteActions
ﬁ'—-x__‘__t_ e .. ' ; K T amerger __.--=7
Herges_ R S LT --enT
i L3 _ «Merges
. Ceamerges T T Tttt SRR LT ----o-zp| Completesdtiviies
PackagingComponents gZ------ . Tl
Tl amerge:
. «n‘férge» i ' .. .-
7 e) o : " zmerges 3
- = . SmErges . Templates
Collakborations S | .
< wMerges
‘: e
2 W CompleteStructured & ctivities
Structuredactivities EstraStructuredsctivities

Figure 2.4 - Level 3 top-level package merges

2.3 Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language unitsin all the levels below that level. “Full realization” for alanguage unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level
1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels

without loss of information.
There are two distinct types of compliance. They are:

1. Abstract syntax compliance. For a given compliance level, this entails:

« compliance with the metacl asses, their structural relationships, and any constraints defined as part of the merged
UML metamodel for that compliance level and,

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

UML Superstructure Specification, v2.4.1 5

2. Concrete syntax compliance. For agiven compliance level, this entails:

» Compliance to the notation defined in the “Notation” sub clauses in this specification for those metamodel
elements that are defined as part of the merged metamodel for that compliance level and, by implication, the
diagram types in which those elements may appear. And, optionally:

« the ability to output diagrams and to read in diagrams based on the XM schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax

compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the

notation.

Compliance for a given level can be expressed as:

« abstract syntax compliance

« concrete syntax compliance

- abstract syntax with concrete syntax compliance

« abstract syntax with concrete syntax and diagram interchange compliance

Table 2.1 - Example compliance statement

Compliance Summary

Compliance level

Abstract Syntax

Concrete Syntax

Diagram Interchange Option

Level O YES YES YES
Level 1 YES YES NO
Level 2 YES NO NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various “Semantics’ sub clauses of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which
ones to support. Finaly, it is recognized that some implementors and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this
potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementors and profile designers may
also provide informal feature support statements. These statements identify support for additional features in terms of
language units and/or individual metamodel packages, as well as for less precisely defined dimensions such as
presentation options and semantic variation points.

UML Superstructure Specification, v2.4.1

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given
in Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 - Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
Deployments Deployments::Artifacts (L2) YES YES Note (4) Note (5)

Deployments::Nodes (L2)

State Machines StateMachines::BehaviorStateMachines (L2) Note (1) YES Note (2) Note (3)
StateMachines::ProtocolStateMachines (L3)

Note (1): States and state machines are limited to a single region
Shallow history pseudostates not supported

Note (2): FIFO queueing in event pool

Note (3): Inherited elements indicated using grey-toned lines, etc.

2.4 Compliance Level Contents

Table 2.3 - Metamodel packages added in Level 1

Language Unit Metamodel Packages
Actions Actions::BasicActions
Activities Activities::Fundamental Activities

Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors

CommonBehaviors:: Communications

Structures CompositeStructure::Internal Structures
Interactions Interactions::Basiclnteractions
UseCases UseCases

Table 2.4 - Metamodel packages added in Level 2

Language Unit Metamodel Packages

Actions Actions::StructuredActions

Actions::IntermediateActions

Activities Activities::IntermediateActivities
Activities::StructuredActivities
Components Components.:BasicComponents

UML Superstructure Specification, v2.4.1 7

Table 2.4 - Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Deployments

Deployments::Artifacts

Deployments::Nodes

General Behavior

CommonBehaviors::SimpleTime

Interactions Interactions::Fragments

Profiles AuxilliaryConstructs::Profiles

Structures CompositeStructures::InvocationActions
CompositeStructures::Ports
CompositeStructures:: StructuredClasses

State Machines StateM achines::BehaviorStateM achines

Table 2.5 - Metamodel packages added in Level 3

Language Unit

Metamodel Packages

Action Actions::CompleteActions

Activities Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes:: AssociationClasses
Classes::PowerTypes

Components Components::PackagingComponents

Deployments Deployments::ComponentDepl oyments

Information Flows

AuxilliaryConstructs::InformationFlows

Models AuxilliaryConstructs::Models

State Machines StateM achines:: Protocol StateM achines

Structures CompositeStructures::Collaborations
CompositeStructures:: StructuredActivities

Templates AuxilliaryConstructs:: Templates

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« RFC2119, http://ietf.org/rfc/rfc2119, Key words for use in RFCsto Indicate Requirement Levels, S. Bradner, March

1997.

UML Superstructure Specification, v2.4.1

» ISO/IEC 19505-1, Information technology — OMG Unified Modeling Language (OMG UML) Version 2.4 — Part 1:
Infrastructure (pas/2011-08-11)

» OMG Specification formal/11-08-05, UML Infrastructure, v2.4.1

» OMG Specification formal/2010-02-01, Object Constraint Language, v2.2

» OMG Specification formal/2011-08-07, Meta Object Facility (MOF) Core, v2.4.1
+ OMG Specification formal/2011-08-09, XML Metadata Interchange (XM1), v2.4.1
» OMG Specification formal/06-04-04 , UML 2.0 Diagram Interchange

Note— UML 2 is based on a different generation of MOF and XMI than that specified in ISO/IEC 19502:2005 Information
technology - Meta Object Facility (MOF) and ISO/IEC 19503:2005 Information technology - XML Metadata | nterchange
(XM1) which are compatible with ISO/IEC 19501 UML version 1.4.1.

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Notational Conventions

5.1 Keywords for Requirement Statements

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this specification are to be
interpreted as described in RFC 2119.

5.2 Annotations on Example Diagrams

Some of the diagram examples in this specification include explanatory annotations, which should not be confused as
being part of the formal UML graphical notation.

In these cases, the explanatory text originates outside the UML diagram boundary, and has an arrow pointing at the
feature of the diagram which is being explained by the annotation. The color rendition of this spec shows these
annotations in red.

6 Additional Information

6.1 Architectural Alignment and MDA Support

Clause 1, “Language Architecture” of the Unified Modeling Language: Infrastructure explains how the Unified Modeling
Language: Infrastructure is architecturally aligned with the Unified Modeling Language: Superstructure that
complements it. It also explains how the InfrastructureLibrary defined in the Unified Modeling Language: Infrastructure
can be strictly reused by MOF 2 specifications.

UML Superstructure Specification, v2.4.1 9

It is the intent that the unified MOF 2 Core specification must be architecturally aligned with the Unified Modeling
Language: Infrastructure part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification
must be architecturally aligned with the Unified Modeling Language: Superstructure part of this specification.

The OMG’'s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This specification’s support for MDA is discussed in the Unified Modeling Language:
Infrastructure Annex B, “Support for Model Driven Architecture.”

6.2 Onthe Run-Time Semantics of UML

The purpose of this sub clause is to provide a very high-level view of the run-time semantics of UML and to point out
where the various elements of that view are covered in the specification. The term “run-time” is used to refer to the
execution environment. Run-time semantics, therefore, are specified as a mapping of modeling concepts into
corresponding program execution phenomena. There are, of course, other semantics relevant to UML specifications, such
as the repository semantics, that is, how a UML model behaves in a model repository. However, those semantics are
really part of the definition of the MOF. Still, it is worth remarking that not every concept in UML models a run-time
phenomenon (e.g., the “package” concept).

6.2.1 The Basic Premises

There are two fundamental premises regarding the nature of UML semantics. The first is the assumption that all behavior
in amodeled system is ultimately caused by actions executed by so-called “active” objects (see “Class (from
Communications)” on page 453). This includes behaviors, which are objectsin UML 2, which can be active and
coordinate other behaviors. The second is that UML behavioral semantics only deal with event-driven, or discrete,
behaviors. However, UML does not dictate the amount of time between events, which can be as small as needed by the
application, for example, when simulating continuous behaviors.

6.2.2 The Semantics Architecture

Figure 6.1 identifies the key semantic areas covered by the current standard and how they relate to each other. The items
in the upper layers depend on the items in the lower layers but not the other way around. (Note that the structure of
metamodel package dependencies is somewhat similar to the dependency structure indicated here. However, they are not
the same and should be distinguished. This is because package dependencies specify repository dependencies not
necessarily run-time dependencies.)

10 UML Superstructure Specification, v2.4.1

Activities State Machines Interactions

Actions

Inter-Object Behavior Base Intra-Object Behavior Base

Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

At the highest level of abstraction, it is possible to distinguish three distinct composite layers of semantic definitions. The
foundational layer is structural. This reflects the premise that there is no disembodied behavior in UML — al behavior is
the consequence of the actions of structural entities. The next layer is behavioral and provides the foundation for the
semantic description of all the higher-level behavioral formalisms (the term “behavioral formalism” refers to a formalized
framework for describing behavior, such as state machines, Petri nets, data flow graphs, etc.). This layer, represented by
the shaded box in Figure 6.1, is the behavioral semantic base and consists of three separate sub areas arranged into two
sub layers. The bottom sub layer consists of the inter-object behavior base, which deals with how structural entities
communicate with each other, and the intra-object behavior base, which addresses the behavior occurring within
structural entities. The actions sub layer is placed on top of these two. It defines the semantics of individual actions.
Actions are the fundamental units of behavior in UML and are used to define fine-grained behaviors. Their resolution and
expressive power are comparable to the executable instructions in traditional programming languages. Actionsin this sub
layer are available to any of the higher-level formalisms to be used for describing detailed behaviors. The topmost layer
in the semantics hierarchy defines the semantics of the higher-level behavioral formalisms of UML: activities, state
machines, and interactions. Other behavioral formalisms may be added to this layer in the future.

6.2.3 The Basic Causality Model

The “causality model” is a specification of how things happen at run time and is described in detail in the Common
Behaviors clause on page 435. It is briefly summarized here for convenience, using the example depicted in the
communication diagram in Figure 6.2. The example shows two independent and possibly concurrent threads of causally
chained interactions. The first, identified by the thread prefix ‘A’ consists of a sequence of events that commence with
activeObject-1 sending signal sl to activeObject-2. In turn, activeObject-2 responds by invoking operation opl() on
passiveObject-1 after which it sends signal s2 to activeObject-3. The second thread, distinguished by the thread prefix
‘B,’ starts with activeObject-4 invoking operation op2() on passiveObject-1. The latter responds by executing the method
that realizes this operation in which it sends signal s3 to activeObject-2.

The causality model is quite straightforward: Objects respond to messages that are generated by objects executing
communication actions. When these messages arrive, the receiving objects eventually respond by executing the behavior
that is matched to that message. The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML specification (i.e., it is a semantic
variation point).

UML Superstructure Specification, v2.4.1 11

Al:sl A3: s2
activeObject-1 activeObject-2 activeObject-3

A2: opl()l TBl.l: s3

B1: op2()
_—
activeObject-4 passiveObject-1

Figure 6.2 - Example illustrating the basic causality model of UML

The causality model also subsumes behaviors invoking each other and passing information to each other through
arguments to parameters of the invoked behavior, as enabled by CallBehaviorAction (see “CallBehaviorAction (from
BasicActions)” on page 251). This purely “procedural” or “process’ model can be used by itself or in conjunction with
the object-oriented model of the previous example.

6.2.4 Semantics Descriptions in the Specification

The general causality model is described in the introductory part of Clause 13 (CommonBehaviors) and also, in part, in
the introduction to Clause 14 (Interactions) and the sub clause on Interaction (14.3.11) and Message (14.3.18).

The structural foundations are mostly covered in two clauses. The elementary level is mostly covered in Clause 7, where
the root concepts of UML are specified. In particular, the sub clauses on InstanceSpecifications (7.3.22), Classes (7.3.7),
Associations (7.3.3), and Features (7.3.19). The composites level is described primarily in Clause 9 (Composite
Structures), with most of the information related to semantics contained in sub clauses 9.3.13 (Property concept) and
9.3.14 (StructuredClassifier). In addition, the introduction to this clause contains a high-level view of some aspects of
composite structures.

The relationship between structure and behavior and the general properties of the Behavior concept, which are at the core
of the behavioral base are described in CommonBehaviors (in the introduction to Clause 13 and in sub clause 13.3.2 in
particular).

Inter-object behavior is covered in three separate clauses. The basic semantics of communications actions are described in
the introduction to Clause 11 (Actions) and, in more detail, in the clauses describing the specific actions. These can
potentially be used by an object on itself, so can be inter- or intra-object. The read/write actions can also be used by one
object to access other objects, so are potentially inter- or intra-object. These actions can be used by any of the behavior
formalisms in UML, so all are potentially inter-object behaviors. However, the interactions diagram is designed
specifically to highlight inter-object behavior, under its concept of message. These are defined in the Interactions clause
(sub clauses 14.3.18 and 14.3.19), while the concepts of events and triggers are defined in the Communications package
of CommonBehaviors (Clause 13). Occurrence specifications are defined in sub clause 14.3.23 of the Interactions clause.
The other two behavior formalisms can be translated to interactions when they use inter-object actions.

All the behavior formalisms are potentially intra-object, if they are specified to be executed by and access only one
object. However, state machines are designed specifically to model the state of a single object and respond to events
arriving at that object. Activities can be used in a similar way, but also highlight input and output dependency between
behaviors, which may reside in multiple objects. Interactions are potentially intra-object, but generally not designed for
that purpose.

The various shared actions and their semantics are described in Clause 13. Finally, the higher-level behavioral formalisms
are each described in their own clauses: Activities in Clause 12, Interactions in Clause 14, and State Machines in Clause
15.

12 UML Superstructure Specification, v2.4.1

6.3 The UML Metamodel

6.3.1 Models and What They Model

A model contains three major categories of elements: Classifiers, events, and behaviors. Each major category models
individuals in an incarnation of the system being modeled. A classifier describes a set of objects; an object is an
individual thing with a state and relationships to other objects. An event describes a set of possible occurrences; an
occurrence is something that happens that has some consequence within the system. A behavior describes a set of possible
executions; an execution is the performance of an algorithm according to a set of rules. Models do not contain objects,
occurrences, and executions, because those things are the subject of models, not their content. Classes, events, and
behaviors model sets of objects, occurrences, and executions with similar properties. Value specifications, occurrence
specifications, and execution specifications model individual objects, occurrences, and executions within a particular
context. The distinction between objects and models of objects, for example, may appear subtle, but it is important.
Objects (and occurrences and executions) are the domain of a model and, as such, are always complete, precise, and
concrete. Models of objects (such as value specifications) can be incomplete, imprecise, and abstract according to their
purpose in the model.

6.3.2 Semantic Levels and Naming

A large number of UML metaclasses can be arranged into 4 levels with metasemantic relationships among the
metaclasses in the different levels that transcend different semantic categories (e.g., classifiers, events, behaviors). We
have tried (with incomplete success) to provide a consistent naming pattern across the various categories to place
elements into levels and emphasize metarelationships among related elements in different levels. The following 4 levels
are important:

Type level — Represents generic types of entities in models, such as classes, states, activities, events, etc. These are the
most common constituents of models because models are primarily about making generic specifications.

Instance level — These are the things that models represent at runtime. They don’t appear in models directly (except very
occasionally as detailed examples), but they are necessary to explain the semantics of what models mean. These classes
do not appear at all in the UML2 metamodel or in UML models, but they underlie the meaning of models. We provide a
brief runtime metamodel in the Common Behavior clause, but we do not formally define the semantics of UML using the
runtime metamodel. Such a formal definition would be a major amount of work.

Value specifications — A realization of UML2, compared to UML, is that values can be specified at various levels of
precision. The specification of a value is not necessarily an instance; it might be a large set of possible instances
consistent with certain conditions. What appears in models is usually not instances (individual values) but specifications
of values that may or may not be limited to a single value. In any case, models contain specifications of values, not values
themselves, which are runtime entities.

Individual appearances of a type within a context — These are roles within a generic, reusable context. When their context
isinstantiated, they are also bound to contained instances, but as model elements they are reusable structural parts of their
context; they are not instances themselves. A realization of UML2 was that the things called instances in UML1 were
mostly roles: they map to instances in an instance of their container, but they are model elements, not instances, because
they are generic and can be used many times to generate many different instances.

We have established the following naming patterns:

UML Superstructure Specification, v2.4.1 13

Types : Instances : Values : Uses

Classifier, Class : Instance, Object : InstanceSpecification : Part, Role, Attribute,
XXXUse (e.g., CollaborationUse)

Event : Occurrence : OccurrenceSpecification : various (e.g., Trigger)

Behavior : Execution : ExecutionSpecification : various (e.g., ActivityNode, State),
XXXUse (e.g., InteractionUse)

The appearances category has too wide a variety of elements to reduce to a single pattern, although the form XXXUse is
suggested for simple cases where an appearance of an element is contained in a definition of the same kind of element.

In particular, the word “event” has been used inconsistently in the past to mean both type and instance. The word “event”
now means the type and the word “occurrence’” means the instance. When necessary, the phrases “event type” (for event)
and “event occurrence” (for occurrence) may be used. Note that this is consistent with the frequent English usage “an
event occurs” = the occurrence of an event of a given type; so to describe a runtime situation, one could say “event X
occurs’ or “an occurrence of event X" depending on which form is more convenient in a sentence. It is redundant and
incorrect to say “an event occurrence occurs.”

6.4 How to Read this Specification

Therest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the UML.: Infrastructure specification that complements this specification. Subpart I,
“Introduction” of UML.: Infrastructure explains the language architecture structure and the formal approach used for its
specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Subpart I1,
“Infrastructure Library,” or the Classes::Kernel package that reuses it, described in Clause 7, “Classes.” The former
specifies the flexible metamodel library that is reused by the latter; the latter defines the basic constructs used to define
the UML metamodel.

With that background the reader should be well prepared to explore the user level constructs defined in this UML:
Superstructure specification. These concepts are organized into three subparts: Subpart | - “ Structure,” Subpart Il -
“Behavior,” and Subpart 111 - “Supplement.” “Subpart | - Structure” defines the static, structural constructs (e.g., classes,
components, nodes artifacts) used in various structural diagrams, such as class diagrams, component diagrams, and
deployment diagrams. “ Subpart Il - Behavior” specifies the dynamic, behavioral constructs (e.g., activities, interactions,
state machines) used in various behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine
diagrams. “Subpart 111 - Supplement” defines auxiliary constructs (e.g., information flows, models, templates) and the
profiles used to customize UML for various domains, platforms, and methods.

Although the clauses are organized in a logical manner and can be read sequentially, thisis a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.4.1 Specification format

The concepts of UML are grouped into three major subparts:

» Subpart I: Concepts related to the modeling of structure
 Subpart I1: Concepts related to the modeling of behavior
» Subpart I11: Supplementary concepts

14 UML Superstructure Specification, v2.4.1

Within each subpart, the concepts are grouped into clauses according to modeling capability. A capability typically covers
a specific modeling formalism. For instance, all concepts related to the state machine modeling capability are gathered in
the State Machines clause and all concepts related to the activities modeling capability are in the Activities clause. The
Capability clauses in each subpart are presented in alphabetical order.

Within each clause, there is first a brief informal description of the capability described in that clause. Thisis followed by
a sub clause describing the abstract syntax for that capability. The abstract syntax is defined by a CMOF model (i.e., the
UML metamodel) with each modeling concept represented by an instance of a MOF class or association. The model is
decomposed into packages according to capabilities. In the specification, this model is described by a set of UML class
and package diagrams showing the concepts and their relationships. The diagrams were designed to provide
comprehensive information about a related set of concepts, but it should be noted that, in many cases, the representation
of aconcept in a given diagram displays only a subset of its features (the subset that is relevant in that context). The same
concept may appear in multiple diagrams with different feature subsets. For a complete specification of the features of a
concept, readers should refer to its formal concept description (explained below). When the concepts in the capability are
grouped into sub packages, the diagrams are also grouped accordingly with a heading identifying the sub package
preceding each group of diagrams. In addition, the name of the owning package is included in each figure caption.

The “Concept Definitions” clause follows the abstract syntax clause. This clause includes formal specifications of all
concepts belonging to that capability, listed in alphabetical order. Each concept is described separately according to the
format explained below.

The final sub clause in most clauses gives an overview of the diagrams, diagram elements, and notational rules and
conventions that are specific to that capability.

The formal concept descriptions of individual concepts are broken down into sub clauses corresponding to different
aspects. In cases where a given aspect does not apply, its sub clause may be omitted entirely from the class description.
The following sub clauses and conventions are used to specify a concept:

» The heading gives the formal name of the concept and indicates, in parentheses, the sub package in which the concept
is defined. In some cases, there may be more than one sub package name listed. This occurs when a concept is defined
in multiple package merge increments — one per package. In afew instances, there is no package name, but the phrase
“as speciaized” appearsin parentheses. Thisindicates a“semantic” increment, which does not involve a new
increment in the metamodel and which, therefore, does not change the abstract syntax, but which adds new semantics
to previous increments (e.g., additional constraints).

 Insome cases, following the heading is a brief, one- or two-sentence informal description of the meaning of a concept.
Thisisintended as a quick reference for those who want only the basic information about a concept.

« All the direct generalizations of a concept are listed, alphabetically, in the “Generalizations” sub clause. A “direct”
generalization of aconcept is aconcept (e.g., aclass) that isimmediately above it in the hierarchy of its ancestors (i.e.,
its “parent”). Note that these items are hyperlinked in electronic versions of the document to facilitate navigation
through the metamodel class hierarchy. Readers of hardcopy versions can use the page numbers listed with the names
to rapidly locate the description of the superclass. This sub clause is omitted for enumerations.

» A more detailed description of the purpose, nature, and potential usage of the concept may be provided in the
“Description” sub clause. Thistoo isinformal. If aconcept is defined in multiple increments, then the first part of the
description covers the top-level package and isfollowed, in turn, by successive description increments for each sub
package. The individual increments are identified by a sub package heading such as

Package PowerTypes

Thisindicates that the text that follows the heading describes the increment that was added in the PowerTypes sub
package. The description continues either until the end of the sub clause or until the next sub package increment head-
ing is encountered.

UML Superstructure Specification, v2.4.1 15

16

This convention for describing sub package incrementsis applied to al other sub clauses related to the concept.

The “Attributes” sub clause of a concept description lists each of the attributes that are defined for that metaclass. Each
attribute is specified by its formal name, its type, and multiplicity. If no multiplicity islisted, it defaultsto 1..1 (the
default in UML). Thisisfollowed by atextual description of the purpose and meaning of the attribute. If an attribute is
derived, the name will be preceded by a slash. For example:

*body: String[1] Specifies a string that is the comment

specifies an attribute called “body” whose typeis“ String” and whose multiplicity is 1.

If an attribute is derived, where possible, the definition will also include a specification (usually expressed as an OCL
constraint) specifying how that attribute is derived. For instance:

«/[isComposite: Boolean A state with isComposite = trueis said to be a composite state. A composite state is a state that
contains at least one region>

isComposite = (region > 1)

The “Associations’ sub clause lists all the association ends owned by the concept. Note that this sub clause does not list
the association-owned association ends. The format for concept-owned association ends is the same as the one for
attributes described above. Association ends that are subsets or redefinitions of other association ends owned by super
type concepts are appropriately noted in the text. Note that this association end notation specifically excludes the
notation for the subsetting or redefinition of association-owned association ends. For example;

slowerValue: VaueSpecification[0..1] {subsets Element::ownedElement} The specification of the lower bound for this
multiplicity.

specifies an association end called “lowerValue” that is connected to the “ValueSpecification” class and whose multi-
plicity is0..1. Furthermore, it is a specialization of the “ownedElement” association end of the class “Element.”

Aswith derived attributes, if an association end is derived, where possible, the definition will also include a
specification (usually expressed as an OCL constraint) specifying how that association end is derived.

The* Constraints” sub clause containsanumerical list of all the constraints that define additional well-formednessrules
that apply to this concept. Each constraint consists of atextual description and may be followed by aformal constraint
expressed in OCL . Note that in afew cases, it may not be possible to express the constraint in OCL, in which case the
formal expression is omitted.

“Additional Operations’ containsanumerical list of operationsthat are applicable to the concept. These may be queries
or utility operations that are used to define constraints or other operations. Where possible, operations are specified
using OCL.

The “Semantics’ sub clause describes the meaning of the concept in terms of its concrete manifestation. Thisisa
specification of the set of things that the concept model s (represents) including, where appropriate, a description of the
behavior of those things (i.e., the dynamic semantics of the concept).

“Semantic Variation Points’ explicitly identifies the areas where the semantics are intentionally under specified to
provide leeway for domain-specific refinements of the general UML semantics (e.g., by using stereotypes and profiles).

The “Notation” sub clause gives the basic notational forms used to represent a concept and its features in diagrams.
Only concepts that can appear in diagrams will have a notation specified. This typically includes a simple example
illustrating the basic notation. For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify
the legal formats. The conventions of this BNF are;

« All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).
« All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

UML Superstructure Specification, v2.4.1

« Non-terminal production rule definitions are signified with the *::=" operator.

« Repetition of an item is signified by an asterisk placed after that item: **’.

« Alternative choices in a production are separated by the ‘| symbol (e.g., <alternative-A> | <alternative-B>).
« Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *

signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

» The“Presentation Options’ sub clause supplements the “Notation” clause by providing alternative representations for
the concept or its parts. Users have the choice to use either the forms described in this sub clause or the forms described
in the “Notation” sub clause.

- “Style Guidelines” identifies notationa conventions recommended by the specification. These are not normative but, if
applied consistently, will facilitate communication and understanding. For example, there is a style guideline that
suggests that the names of classes should be capitalized and another one that recommends that the names of abstract
classes be written out in italic font. (Note that these specific recommendations only make sense in certain writing
systems, which iswhy they cannot be normative.)

» The“Examples’ sub clause, if present, includes additional illustrations of the application of the concept and its
notation.

» “Changes from previous UML" identifies the main differences in the specification of the concept relativeto UML
versions 1.5 and earlier.

6.4.2 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this specification:

» An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and
« the opposite (unmarked) association end is owned by the association.

Note— This convention wasinherited from UML 1.x and was used in theinitial versions of the specification because there was
no explicit notation for indicating association end ownership. Such a notation was introduced in revision 2.1.1 (see the
notation sub clause of the Association metaclass on page 40) but was not applied to the diagramsin the specification due to
lack of tool support. In accord with the new notation, the ownership of an association end by the association would continue to
be shown by leaving the end unmarked, but the ownership of an end by the classifier would be shown by marking that
classifier-owned end with a dot.

» An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,
« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

» Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus;

UML Superstructure Specification, v2.4.1 17

* The constraint { subsets endA} means that the association end to which this constraint is applied is a speciaization
of association end endA that is part of the association being specialized.

« A constraint { redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

If no multiplicity is shown on an association end, it implies amultiplicity of exactly 1.

If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is alowercase | etter. (Note that, by convention, non-navigable association ends are
often left unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal
constraints - although they may be needed for other purposes, such as MOF language bindings that use the metamodel.)

Associations that are not explicitly named, are given names that are constructed according to the following production
rule:
"A " <association-end-namel> " " <association-end-name2>

where <association-end-namel> is the name of the first association end and < association-end-name2> is the name of
the second association end.

An unlabeled dependency between two packagesisinterpreted as a package import relationship.

Note that some of these conventions were adopted to content with practical issues related to the mechanics of producing
this specification, such as the unavailability of conforming modeling tools at the time the specification itself was being
defined. Therefore, they should not necessarily be deemed as recommendations for general use.

18

UML Superstructure Specification, v2.4.1

Subpart | - Structure

This subpart defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural

diagrams, such as class diagrams, component diagrams, and deployment diagrams. The UML packages that support
structural modeling are shown in the figure below.

1

Classes

~

H
H

wjmporte
H

1

CompositeStructures

[
<<import>>

—

Components

}?\
«!mpDrt»

:

Deployments

UML packages that support structural modeling

The function and contents of these packages are described in following clauses, which are organized by major subject areas.

UML Superstructure Specification, v2.4.1

19

20

UML Superstructure Specification, v2.4.1

7 Classes

7.1 Overview

The Classes package contains sub packages that deal with the basic modeling concepts of UML, and in particular classes
and their relationships.

Reusing packages from UML 2 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages.
This part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used
in, for example, MOF. The Kernel package is the central part of the UML, and merges the Constructs package of the
InfrastructureLibrary.

In many cases, the reused classes are extended in the Kernel with additional features, associations, or superclasses. In
subsequent diagrams showing abstract syntax, the subclassing of elements from the infrastructure library is always elided
since this information only adds to the complexity without increasing understandability. Each metaclass is completely
described as part of this clause; the text from the infrastructure library is repeated here.

It should also be noted that Kernel is a flat structure that like Constructs only contains metaclasses and no sub-packages.
The reason for this distinction is that parts of the infrastructure library have been designed for flexibility and reuse, while
the Kernel in reusing the infrastructure library has to bring together the different aspects of the reused metaclasses.

The packages that are explicitly merged from the InfrastructureLibrary are the following:
+ Constructs

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged.

[1
Constructs «import»

(from Core) R PrimitiveTypes

«merge»

R

1

Kernel
(from Classes)

Figure 7.1 - InfrastructureLibrary packages that are merged by
Kernel (all dependencies in the picture represent package merges)

UML Superstructure Specification, v2.4.1 21

7.2 Abstract Syntax

Figure 7.2 shows the package dependencies of the Kernel packages.

amerges’ :
e <<iﬂerge»

- '

1 - 1.

AzsocistionClasses Dependencies

«IMEkg e

.
-
-

— 1

Pam

er Types

I
«merée»

i

Irterfaces

1

BasicBehaviors

Figure 7.2 - Subpackages of the Classes package and their dependencies

Package Kernel

{subsets owner} {subsets ownedElernent}

{readOr&}gmLérlj&Dn}

+lowned

*

t.

+ fowenet
{readOnly, union}

+ onvningElement + ownedComment
Flomant ‘D 1 g - Comment

{readOnly, union’

+ IrelatedElement

* 1.7

|

Raelationship

freadOnly, union,
subsets relatedElernent

Efenrent

+ annotatedElement

%

DirectedRelationship + farget
* 1.*

+ f3OUrGE

* 1.*

{readOnly, union,

subsets relatedElernent}

Figure 7.3 - Root diagram of the Kernel package

22

*

Comment

body © String

UML Superstructure Specification, v2.4.1

’{l}‘ wenumeration:
VisibilityKind
NamedEfenent public
hame | String [0.1] private
wisibility - \Wisibilihiind [0.1] protected
fgualifiedName - String [0.1] package
PackageabieFlement

{readrly, subsets member} = visibitity | VisibiiiteR ine

+ fimportedidember

Namespace

*

+ imember
. *
{readonly, union,
subsets ownerk
+ Inamespace

{readOnly, unionk

* NanredElonrent

+ fovwnediember

{readnly, union, subsets
menber, subsets awnedElement}

0.1

| DirectodRelationship |

I

{subsets source, subsats owner}t
+ importingMamespace * Elementimport
vigihility ; isibilityHind
! + elementimpart alias : String [0.1] 1
{subsets
awnedElement}
b | DirectedRelationsiip |
{sub sn:ts SOUrCe, 1 | {subsets target}
.su se_s ownerk ﬁ}‘ + importedElement
+ importinglatnespace * Pack "
rt
i + packagelmport | — ac agof" |_11_|.}o _ | PackaqeadiaFlement |
{subsets ownedElement} wizibility © VisibilityHind

*

+ importedPackane

IE {subsets target}

Figure 7.4 - Namespaces diagram of the Kernel package

UML Superstructure Specification, v2.4.1

23

Element

1

MultiplicityE lement {subsets owner} {subsets ownedElement]
isOrclered - Boolean ."" owningUpper +uppetvalue [vapyeSpecification
isUnique : Boolean . 0.1
fupper - Unlimitediatural [0..1] {subsetsLowner} {subsets DiVPEdEEmlBﬂt}

Flower - Integer [0.1] g CtmingLower aar aDue1
0.1 .

‘ NamedElement | ‘ PackageableElement |
TypedElement +type Type

0.1

Figure 7.5 - Multiplicities diagram of the Kernel package

TypedElement | | PackageableElement

{ordered, subsets ownedElement}

+ operand

ValueSpecification

*

0.1
OpaqueExpression LiteralSpecification | InstanceValue

& Expression
X

symbol : String body : String {ordered, nonunique}
language : String {ordered} + instanceValue

+ expression

{subsets owner})
| | 1| +instance

| LiteraINuII| | LiteralInteger | LiteralString | InstanceSpecification

LiteralBoolean | LiteralReal | | LiteralUnlimitedNatural |

Figure 7.6 - Expressions diagram of the Kernel package

24 UML Superstructure Specification, v2.4.1

PackageableFloment

i

Jordered}
+ constrainedElament

Flement

{subsets owner:
+ oWy ningConste zint

*

{subsets ownedElementt

+ specification VafueSpecification

Constraint
Natiespace .
{subsets
{subsets namespace} awnedvermber -
+ contesxt + ovenedRule oA
0.1 *

Figure 7.7 - Constraints diagram of the Kernel package

PackaqeableFlemont |

InstanceSpecification

{subszets ownert
+ ovvninginstance

£y

{subsets

ownedElermnent}
+ =

{subsets owner’
+ owvning=lot

1

{subsets ownedElerment,
ordered}

1

{fsubsets ownerk:

+ ovwninginstanceSpec

.1

+values [yaipeSpecification

{subsets ownedElerment;
+ specificatio

|

o 10‘ VaiueSpecification

+ clazsifier, —
Classifior
.

Figure 7.8 - Instances diagram of the Kernel package

UML Superstructure Specification, v2.4.1

+ definingFesture
StructuraiFeature
1

{readOnly, union}

RedefinableElement + /redefinedElement
*
*
+ redefinableElement
| Type | | Namespace |

{readOnly, subsets member}

+ /inheritedMember

RedefinableElement

blassifier

{subsets redefinedElement}

* + classifier
{subsets memberNamespace}

+ redefinableElement

+ isLeaf : Boolean = false

Feature

* + /redefinitionContext
{readOnly, union}

{readOnly, union,
subsets member}

+ isStatic : Boolean = false

StructuralFeature

Property

+ /feature
I
* + /featuringClassifier
{readOnly, union, subsets
memberNamespace}

{readOnly, union, subsets
redefinableElement,
subsets feature}

+ /attribute 0..1

+ isAbstract : Boolean = false
+ isFinalSpecialization : Boolean = false

* + classifier

{subsets redefinitionContext,
subsets featuringClassifier}

+ redefinedClassifier

+ classifier
{subsets redefinableElement}

+ /general

*

*

DirectedRelationship

{subsets target}
+ general

1 + specific
{subsets source,
subsets owner}

* + isSubstitutable : Boolean [0..1] = true

+ generalization

{subsets directedRelationship}

Generalization

+ generalization

{subsets directedRelationship,

subsets ownedElement}

Figure 7.9 - Classifiers diagram of the Kernel package

26

UML Superstructure Specification, v2.4.1

{readOnly, union}

NamedElement

+ /member + memberNamespace

RedefinableElement
A

+ /feature + /featuringClassifier

Namespace

{readOnly, unior{readOnly, union, subsets
subsets memberhemberNamespace}

Feature
+ isStatic : Boolean = false

Namespace

A\

MultiplicityElement
[\

JA
[]

Classifier

0.1 + JownedMember

NamedElement
*

StructuralFeature BehavioralFeature

+ isReadOnly : Boolean = false

Figure 7.10 - Features diagram of the

+ [namespace
MultiplicityElement
A
TypedElement
JA
{ordered, subsets ownedMember}
0.1 + ownedParameter Parameter
> + direction : ParameterDirectionKind = in
+ ownerFormalParam * + [default : String [0..1] {readOnly}
{subsets namespace}
* + raisedException
Type
+ behavioralFeature *

Kernel package

UML Superstructure Specification, v2.4.1

27

+ /namespace + /ownedMember

@‘ NamedElement
0.1 *

TypedElement
{subsets namespace} {ordered, subsets ownedMember} A
Type | + raisedException * + ownerFormalParam + ownedParameter
Roahavi
alFeature Parameter
* + behavioralFeature 0.1 * + direction : ParameterDirectionKind = in
+ /default : String [0..1] {readOnly}
{ordered, redefines ownedParameter}
{redefines raisedException} 0.1 + ownedParameter
+ raisedException * - Operation - «
+ isQuery : Boolean = false + operation
. + /isOrdered : Boolean = false {readOnly} bsets FormalP:
* + operation | 4 /isUnique : Boolean = true {readOnly} {subsets ownerFormalParam} 0
. + /lower : Integer [0..1] = 1 {readOnly} .
{subsets behavioralFeature} Y _ + owningParameter
+ /upper : UnlimitedNatural [0..1] = 1 {readOnly} {subsets context} {subsets ownedRule} [Constraint 0.1
" {subsets owner}
{readOnly} ¢+ preContext + precondition
+ [type * 0.1 %
) {subsets ownedElement}
0.1 + operation {subsets context} {subsets ownedRule}
0.1
) + bodyContext + bodyCondition + defaultvalue
{subsets redefinedElement} > ValueSpecficath
‘alueSpecification
+ redefinedOperatior 0.1 0.1 Ld
{subsets ownedElement}
* {subsets context} {subsets ownedRule} . ficati
specification
+ postContext + postcondition
x
0.1 *
+ operation
{subsets redefinableElement} {subsets namespace} {subsets ownedMember} + owningConstraint
+ context + ownedRule {subsets owner}
- 0.1 *

Figure 7.11 - Operations diagram of the Kernel package

28 UML Superstructure Specification, v2.4.1

{subsets namespace, subsets {ordered, subsets ownedMember,
subsets redefinableElement}

A redefinitionContext}
+ class

+ nestedClassifier,

Class (@
0..1

{subsets featuringClassifier,
subsets redefinitionContext,
subsets namespace}

+ class

*

{ordered, subsets feature,
subsets redefinableElement,
subsets ownedMember}

+ ownedOperation

0.1

{redefines general}

* + [superClass

* + class

{subsets classifier}
+ class

{subsets classifier, subsets namespace}

StructuralFeature
/\

Type ||<

*

Operation

{ordered, readOnly, | Relationship || classifier |
subsets relatedElement} {subsets relationship}
+ /endType + association
Association
1.% * + isDerived : Boolean = false

0.1

+ association

{subsets memberNamespace}

{ordered, subsets member}
+ memberEnd

{ordered, subsets attribute,
subsets ownedMember}

Property

+ ownedAttribute

+ redefinedProperty

{subsets redefinedElement}

{subsets redefinableElement}

+ property

+ isDerived : Boolean = false

+ isReadOnly : Boolean = false {redefines isReadOnly}
+ isDerivedUnion : Boolean = false

+ /default : String [0..1]

+ aggregation : AggregationKind = none

+ lisComposite : Boolean

+isID : Boolean = false

0..1 + association
{subsets owningAssociation}

{subsets ownedEnd}
+ navigableOwnedEnd

+ ownedEnd

{ordered, subsets memberEnd, subsets feature,

0.1

+ owningAssociation

{subsets association,
subsets featuringClassifier,
subsets namespace, subsets
redefinitionContext}

subsets ownedMember, subsets redefinableElement}

+ subsettedProperty

+ owningProperty 0.1 0.1
{subsets owner}

{subsets ownedElement}
+ defaultValue

0.1

Figure 7.12 - Classes diagram of the Kernel package

UML Superstructure Specification, v2.4.1

> ValueSpecification

+ /opposite

«enumeration»
AggregationKind
none
shared
composite

29

Classifier + classifier + instanceSpecification

1_InstanceSpecification |

{readOnly, union, subsets memberNamespace} {readOnly, union, subsets member}

+ /featuringClassifier + /[feature

Feature
* *

StructuralFeature
{subsets redefinitionContext, {readOnly, union, subsets A
subsets featuringClassifier} redefinableElement, subsets feature}
+ classifier + /attribute
Property

0..1 *
{subsets classifier, {ordered, subsets attribute,
subsets namespace} subsets ownedMember}

Dat:—iType + datatype + ownedAttribute

0..1 *
{subsets featuringClassifier,
subsets redefinitionContext, {ordered, subsets feature, BehavioralFeature

subsets namespace} subsets redefinableElement,
subsets ownedMember}

+ datatype + ownedOperation
. Operation
0.1 *
{subsets namespace} {ordered, subsets ownedMember}

+ enumeration

+ ownedLiteral

ation (@ -ationLiteral
*
1
1 *
+ /classifier + enumerationLiteral

{redefines classifier} {redefines instanceSpecification}

Figure 7.13 - DataTypes diagram of the Kernel package

30 UML Superstructure Specification, v2.4.1

Namespace

| PackageableElement |

{subsets namespace}

+ owningPackage

Package <

{subsets ownedMember}

+ packagedElement
packag "

URI : String [0..1] 0..1

{subsets owningPackage}

+ package

>

*

{subsets packagedElement}

+ /ownedType

> Packag

0..1

{subsets source,
subsets owner}

+ receivingPackage

nt

*

{subsets directedRelationship,
subsets ownedElement}

+ packageMerge

Type I

| DirectedRelationship

PackageMerge

1
{subsets target}

+ mergedPackage

*

{subsets directedRelationship}

+ packageMerge

{subsets packagedElement}

+ /nestedPackage

*

f..

+ nestingPackage

{subsets owningPackage}

Figure 7.14 - The Packages diagram of the Kernel package

UML Superstructure Specification, v2.4.1

31

Package Dependencies

Element

1.%

(from Kernel)

+ /source

1.%

+ directedRelationship

NamedElement

+ /[target

{subsets source}

+ directedRelationship

{subsets directedRelationship}

DirectedRelationship
(from Kernel)

PackageableElement
(from Dependencies)

(from Dependencies)

Namespace
(from Dependencies)

Classifier
(from Dependencies)

+ client + clientDependency
1.% *
1.% *
+ supplier + supplierDependency
{subsets target} {subsets directedRelationship}

{subsets client,
subsets owner}

{subsets clientDependency,
subsets ownedElement}

Dependency

Abstraction

JAN

+ abstraction

{subsets owner}

+ substitutingClassifier + substitution
1 *
1 *

+ contract + substitution

{subsets supplier}

Substitution

{subsets ownedElement}

+ mapping

{subsets supplierDependency}

Figure 7.15 - Contents of Dependencies package

32

0.1

OpaqueExpression
(from Kernel)

UML Superstructure Specification, v2.4.1

Package Interfaces

StructuralFeature

(from Kernel)

Property

{readOnly, union}
+ /attribute

+ redefinedClassifier Classifier
(from Kernel)

{ordered, subsets redefinableElement,
subsets ownedMember}

+ nestedClassifier

+ classifier|

+ classifier

Classifier

(from Interfaces)

*

{ordered, subsets attribute,
subsets ownedMember}

+ ownedAttribute

0.1 (from Interfaces)

{subsets classifier,
subsets namespace}

{subsets redefinitionContext,
subsets namespace}

BehavioralFeature {ordered, subsets feature,
(from Kernel) subsets redefinableElement,
2\

subsets ownedMember}

Operation + ownedOperation

R + interface
+ interface
Interface >
0.1 0.1
{subsets redefinedClassifier}

+ redefinedInterface

{subsets featuringClassifier,
subsets redefinitionContext, *
subsets namespace}

+ interface

(from Interfaces)

Classifier
(from Kernel)
JAN

{subsets clientDependency,
subsets ownedElement} *

0.1

+ interface

{su

1 + contract
{subsets supplier}

+ interfaceRealization

Interf:

{subsets client,
subsets owner}

+ implementingClassifier

Realization
(from Dependencies)

\V
Abstraction
(from Dependencies)

+ client + clientDependency
dElement Dependency
(from Dependencies) 1% % (from Dependencies)
1.* *
+ supplier + supplierDependency
{subsets target} {subsets directedRelationship}

Figure 7.16 - Contents of Interfaces package

UML Superstructure Specification, v2.4.1

bsets classifier}

{subsets supplierDependency}
+ interfaceRealization

33

Package AssociationClasses

{sUbsets owrner}

Property

+ associationEnd

UML::Classes::Kernel:
StructuralFeature

{subzets ownedElement, ordered}

+ gjualifier

0.1

UML::Classes::
Kernel::Class

*

UML::Classes::
Kernel::Association

AssociationClass

Figure 7.17 - Contents of AssociationClasses package

Package PowerTypes

Classifier

+ powvertype |0.1

UML::Classes::Kernel::
PackageableElement

+ powertypeExtent

GeneralizationSet

isCovering : Boolean

*|isDisjnint : Boolean

Property

Generalization

+ generalization |*

+ generalizationSet

Figure 7.18 - Contents of PowerTypes package

34

UML Superstructure Specification, v2.4.1

7.3 Class Descriptions

7.3.1 Abstraction (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 61

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. In the metamodel, an Abstraction is a Dependency in which thereis a
mapping between the supplier and the client.

Attributes

No additional attributes

Associations

e mapping: Expression[0..1]
A composition of an Expression that states the abstraction relationship between the supplier and the client. In
some cases, such as Derivation, it isusually formal and unidirectional. In other cases, such as Trace, it isusually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the elements is not specified.

Constraints

No additional constraints

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional
or bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») that are defined in the

Standard Profiles clause. If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific
predefined stereotype name.

7.3.2 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Generalizations

None

UML Superstructure Specification, v2.4.1 35

Description

AggregationKind is an enumeration of the following literal values:

* none
Indicates that the property has no aggregation.

e shared
Indicates that the property has a shared aggregation.

e composite
Indicates that the property is aggregated compositely, i.e., the composite object has responsibility for the existence
and storage of the composed objects (parts).

Semantic Variation Points

Precise semantics of shared aggregation varies by application area and modeler.
The order and way in which part instances are created is not defined.

7.3.3 Association (from Kernel)

An association describes a set of tuples whose values refer to typed instances. An instance of an association is called a
link.A link is atuple with one value for each end of the association, where each value is an instance of the type of the
end.

Generalizations

- “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 51
» “Relationship (from Kernel)” on page 134

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association may
have the same type.

An end property of an association that is owned by an end class or that is a navigable owned end of the association
indicates that the association is navigable from the opposite ends; otherwise, the association is not navigable from the
opposite ends.

Attributes

e isDerived: Boolean
Specifies whether the association is derived from other model elements such as other associations or constraints. The
default value isfalse.

Associations

* memberEnd : Property [2..*]
Each end represents participation of instances of the classifier connected to the end in links of the association. Thisis
an ordered association. Subsets Namespace: : member.

36 UML Superstructure Specification, v2.4.1

e ownedEnd : Property [*]
The ends that are owned by the association itself. Thisis an ordered association. Subsets Association:: member End,
Classifier::feature, and Namespace: : ownedMember.

e navigableOwnedEnd : Property [*]
The navigable ends that are owned by the association itself. Subsets Association: :ownedEnd

e [endType: Type[l..*]
References the classifiers that are used as types of the ends of the association. Subsets Relationship: : relatedElement

Constraints

[1] Anassociation specializing another association has the same number of ends as the other association.

parents()->select(oclisKindOf(Association)).oclAsType(Association)->
forAll(p | p.memberEnd->size() = self. memberEnd->size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

Sequence{l..self. nemberEnd->size()}->
forAll(i | self.general->select(oclisKindOf(Association)).oclAsType(Association)->
forAll(ga |self.memberEnd->at(i).type.conformsTo(ga.memberEnd->at(i).type)))

[3] endTypeisderived from the types of the member ends.

self.endType = self. memberEnd->collect(e | e.type)
[4] Only binary associations can be aggregations.

self. memberEnd->exists(aggregation <> Aggregation::none) implies self.memberEnd->size() = 2
[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2 then ownedEnd->includesAll(memberEnd)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise, it allows duplicate elements.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association ends,
not to the association itself. It means that the subsetting association end is a collection that is either equal to the collection
that it is subsetting or a proper subset of that collection. (Proper subsetting implies that the superset is not empty and that
the subset has fewer members.) Subsetting is a relationship in the domain of extensional semantics.

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naive but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In

UML Superstructure Specification, v2.4.1 37

the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition is a relationship between features of classifiers within a specialization hierarchy. Redefinition may be used to
change the definition of a feature, and thereby introduce a specialized classifier in place of the original featuring
classifier, but this usage is incidental. The difference in domain (that redefinition applies to features) differentiates
redefinition from specialization.

The combination of constraints [1,2] above with the semantics of property subsetting and redefinition specified in section
7.3.45 in constraints [3,4,5] imply that any association end that subsets or redefines another association end forces the
association of the subsetting or redefining association end to be a specialization of the association of the subsetted or
redefined association end respectively.

Note — For n-ary associations, the lower multiplicity of an end istypically 0. A lower multiplicity for an end of an n-ary
association of 1 (or more) impliesthat one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at atime. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of al elements of the subgraph below that element.
Composition is represented by the isComposite attribute on the part end of the association being set to true.

Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently
from instances participating in links at the other ends of the association. The precise mechanism by which such access is
achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible,
and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating
associations from non-navigable ends.

Semantic Variation Points

» Theorder and way in which part instances in acomposite are created is not defined.
» Thelogical relationship between the derivation of an association and the derivation of its endsis not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on aline) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary association is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to atool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

» The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

38 UML Superstructure Specification, v2.4.1

» A slash appearing in front of the name of an association, or in place of the name if no name is shown, marks the
association as being derived.

« A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 7.21). This notation is for documentation purposes only
and has no general semantic interpretation. It is used to capture some application-specific detail of the relationship
between the associated classifiers.

» Generalizations between associations can be shown using a generalization arrow between the association symbols.
An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.
Various other notations can be placed near the end of the line as follows:
« A multiplicity
» A property string enclosed in curly braces. The following property strings can be applied to an association end:
« { subsets <property-name>} to show that the end is a subset of the property called <property-name>.
« {redefines <end-name>} to show that the end redefines the one named <end-name>.
 {union} to show that the end is derived by being the union of its subsets.
« {ordered} to show that the end represents an ordered set.
« {nonunique} to show that the end represents a collection that permits the same element to appear more than once.
« {sequence} or {seq} to show that the end represents a sequence (an ordered bag).
« If the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

An open arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’'s
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a navigable end name as specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses, Interfaces)” on page 124.

An association with aggregationKind = shared differs in notation from binary associations in adding a hollow diamond as
aterminal adornment at the aggregate end of the association line. The diamond shall be noticeably smaller than the
diamond notation for associations. An association with aggregationKind = composite likewise has a diamond at the
aggregate end, but differs in having the diamond filled in.

UML Superstructure Specification, v2.4.1 39

Ownership of association ends by an associated Classifier may be indicated graphically by a small filled circle, which for
brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets the
classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of the dot
shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This avoids
visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line.

This standard does not mandate the use of explicit end-ownership notation, but defines a notation which shall apply in
models where such use is elected. The dot notation must be applied at the level of complete associations or higher, so that
the absence of the dot signifies ownership by the association. Stated otherwise, when applying this notation to a binary
association in a user model, the dot will be omitted only for ends which are not owned by a classifier. In this way, in
contexts where the notation is used, the absence of the dot on certain ends does not leave the ownership of those ends
ambiguous.

This notation may only be used on association ends which may, consistent with the metamodel, be owned by classifiers.
Users may conceptualize the dot as showing that the model includes a property of the type represented by the classifier
touched by the dot. This property is owned by the classifier at the other end.

The dot may be used in combination with the other graphic line-path notations for properties of associations and
association ends. These include aggregation type and navigability.

The dot isillustrated in Figure 7.19, at the maximum allowed size. The diagram shows endA to be owned by classifier B,
and because of the rule requiring that the notation be applied at the level of complete associations (or above), this diagram
also shows unambiguously that endB is owned by BinaryAssociationAB.

endA endB

* *

BinaryAssociationAB

Figure 7.19 - Graphic notation indicating exactly one association end owned by the association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the association whereas navigable ends were assumed to be owned by the classifier at the
opposite end. This convention is now deprecated.

Aggregation type, navigability, and end ownership are orthogonal concepts, each with their own explicit notation. The
notational standard now provides for combining these notations as shown in Figure 7.20, where the associated nodes use
the default rectangular notation for Classifiers. The dot is outside the perimeter of the rectangle. If non-rectangular
notations represent the associated Classifiers, the rule is to put the dot just outside the boundary of the node.

40 UML Superstructure Specification, v2.4.1

Figure 7.20 - Combining line path graphics

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on adiagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

» Show all arrows and x’s. Navigation and its absence are made completely explicit.

» Suppressall arrows and x’s. No inference can be drawn about navigation. Thisis similar to any situation in which
information is suppressed from a view.

» Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no
navigation at all; however, the latter case occursrarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.

UML Superstructure Specification, v2.4.1 41

Examples

Figure 7.21 shows a binary association from Player to Year hamed PlayedinYear.

* 4 PlayedinYear

Year

year

*

season

* *
Team Player

team goalie

Figure 7.21 - Binary and ternary associations

The solid triangle indicates the order of reading: Player PlayedinYear Year. The figure further shows a ternary association
between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0..1 *
{ordered}
d
C D
1 0..1
{subsets b}

Figure 7.22 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 7.22.

42

Names a, b, and d on three of the ends.
Multiplicities0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.
Specification of ordering on b.

Subsetting on d. For an instance of class C, the collection d is asubset of the collection b. Thisis equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

UML Superstructure Specification, v2.4.1

The following examples show notation for navigable ends.

a b

A B
1.4 2.5
c d

C D
1..4 2.5
e f

E F
1..4 2.5
g h

G H
1.4 2.5
i j

| J
1..4 2.5

Figure 7.23 - Examples of navigable ends

In Figure 7.23;

Thetop pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

Thefifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 7.24 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end.

b: B[*]

Figure 7.24 - Example of attribute notation for navigable end owned by an end class

| UML Superstructure Specification, v2.4.1 43

Figure 7.25 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, Al::bl. So for an instance of the class A1, bl is a subset of
b, and b is derived from b1.

/b {union}
a
A B
0..1 0.*
a bl
Al Bl
0..1 0.*

{subsets b}

Figure 7.25 - Derived supersets (union)

Figure 7.26 shows the black diamond notation for composite aggregation.

+scrollbar

Slider
Header Panel

Figure 7.26 - Composite aggregation is depicted as a black diamond

Changes from previous UML

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association. The metaatribute targetScope
that characterized AssociationEnd in prior UML is no longer supported. Fundamental changes in the abstract syntax make
it impossible to continue targetScope or replace it by a new metaattribute, or even a standard tag, there being no
appropriate model element to tag. In UML 2, the type of the property determines the nature of the values represented by
the members of an Association.

7.3.4 AssociationClass (from AssociationClasses)

A model element that has both association and class properties. An AssociationClass can be seen as an association that
also has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also
defines a set of features that belong to the relationship itself and not to any of the classifiers.

Generalizations

» “Association (from Kernel)” on page 36
» “Class (from Kernel)” on page 48

44 UML Superstructure Specification, v2.4.1

Description

An AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of features of its own.
AssaciationClass is both an Association and a Class. An AssociationClass describes a set of objects that each share the
same specifications of features, constraints, and semantics entailed by the AssociationClass as a kind of Class, and
correspond to a unique link instantiating the AssociationClass as a kind of Association. An AssociationClass specifies a
Class whose instances are in 1-1 correspondence with a semantic relationship that can occur between typed instances. An
AssaciationClass preserves the static and dynamic semantics of both an Association and of a Class.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An AssociationClass cannot be defined between itself and something else.
self.endType->excludes(self) and self.endType>collect(et|et.allparents()->excludes(self))

[2] The owned attributes and owned ends of an AssociationClass are digjoint.
ownedAttribute->intersection(ownedEnd)->isEmpty()

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an
association, connecting a set of classifiers and a class, and as such have features and be included in other associations.
The semantics of an association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence
have a set of common properties, like being able to have features, having a name, etc. As these properties are inherited
from the same construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and
has the set of features that are defined for classes and associations. The constraints defined for class and association also
are applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.
Redefinition is applicable to an association class nested in the context of a classifier just asit is applicable to a nested
class.

An AssociationClass inherits the composite properties Class::ownedAttribute and Association::ownedEnd, which cannot
share values. Values of ownedAttribute are properties that are attributes of the class, not ends of the association class
owned through Association::ownedEnd. Values of Association::ownedEnd are the ends of the association owned by the
association class, not attributes of the association class. This means the ends of the association class that it owns cannot
be used to navigate from instances of the association class to the objects on their ends. As association ends, they can be
used for navigation between end objects, asin all associations, depending on whether they are navigable (see Navigability
in the semantics of Association in 7.3.3).

UML Superstructure Specification, v2.4.1 45

An object instance of an association classisin 1-1 correspondence with a unique link representing an instantiation of the
association class as a kind of association. When one or more ends of the association class have isUnique=falseg, it is
possible to have several links associating the same set of instances of the end classes. In such a case, the links of an

association class instance carry their corresponding association class instance as their unique identifier apart from their
end values.

An association class cannot be the general classifier of an association or a class.

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path
and the association class symbol represent the same underlying model element, which has a single name. The name may
be placed on the path, in the class symbol, or on both, but they must be the same name. Association end hames appear in
the same position as regular associations, not in the attribute compartment of the association class.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct.

The association class symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the class symbol.

* Job 1.*
Person berson i company Company
|
|
Job
salary

Figure 7.27 - An AssociationClass is depicted by an association symbol (aline) and a class symbol (a box) connected
with a dashed line. The diagram shows the association class Job, which is defined between the two classes Person
and Company.

Changes from previous UML

AssociationClass was underspecified in prior UML. The guiding principle used for improving the specification of
association class is that of preserving the static and dynamic semantics of both associations and classes in clarifying the
static and dynamic semantics of association class. This guiding principle has important implications on the changes made
in this clause as explained below. The changes are:

[1] Constraint [1] in 7.3.3 Association changed to accommodate the fact that an AssociationClass can legitimately specializea
regular Class.

[2] Constraint [2] in 7.3.3 Association has an OCL specification that applies for both Association and AssociationClass.

[3] Two constraints are added to AssociationClass, the first for the allowed specializations of AssociationClasses, and the
second for digointness of ownedEnd and ownedAttribute.

[4] The previous semantic variation point about the interaction between association specialization and association end
redefinition and subsetting is removed because the semantics of subsetting and redefinition for association end properties
have been sufficiently clarified.

46 UML Superstructure Specification, v2.4.1

[5] The operation AssociationClass::allConnections() is removed, because it is redundant with constraints [1,2] specified in
7.3.3 for Association and constraints [3,4,5] specified in 7.3.44 for Property as explained in the semantics of 7.3.3 for
Association. It also inadvertently removed ordering of association ends.

7.3.5 BehavioralFeature (from Kernel)

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Generalizations

» “Feature (from Kernel)” on page 69
» “Namespace (from Kernel)” on page 100

Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled
by subclasses of Behavioral Feature.

Attributes
No additional attributes

Associations

e ownedParameter: Parameter[*]
Specifies the ordered set of formal parameters owned by this Behavioral Feature. The parameter direction can be
‘in,” ‘inout,” ‘out,” or ‘return’ to specify input, output, or return parameters. Subsets Namespace: : ownedMember

e raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation.

Constraints

No additional constraints

Additional Operations

[1] The query isDistinguishableFrom() determines whether two Behavioral Features may coexist in the same Namespace. It
specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif
else true
endif

UML Superstructure Specification, v2.4.1 47

Semantics

The list of owned parameters describes the order, type, and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the Behavioral Feature terminates.

The owned parameters with direction in or inout define the type, and number of arguments that must be provided when
invoking the Behavioral Feature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A Behavioral Feature may raise an exception during its invocation.

Notation

No additional notation

7.3.6 BehavioredClassifier (from Interfaces)

Generalizations

» “BehavioredClassifier (from BasicBehaviors, Communications)” on page 449 (merge increment)

Description

A BehavioredClassifier may have an interface realization.

Associations

* interfaceRealization: InterfaceRealization [*]
(Subsets Element: :ownedElement and Realization:: clientDependency.)

7.3.7 Class (from Kernel)

A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Generalizations

+ “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 51

Description
Classisakind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

Attributes

No additional attributes

Associations
* nestedClassifier: Classifier [*]

References al the Classifiers that are defined (nested) within the Class. Subsets Namespace: : ownedMember
« ownedAttribute : Property [*]

The attributes (i.e., the properties) owned by the class. The association is ordered. Subsets Classifier:: attribute and
Namespace: : ownedMember

48 UML Superstructure Specification, v2.4.1

e ownedOperation : Operation [*]
The operations owned by the class. The association is ordered. Subsets Classifier::feature and
Namespace: : ownedMember

e /superClass: Class[*]
This gives the superclasses of aclass. It redefines Classifier::general. Thisis derived.

Constraints

No additional constraints

Additional Operations

[1] Theinherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as aresult, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

A class cannot access private features of another class, or protected features on another class that is not its supertype.
When creating and deleting associations, at least one end must allow access to the class.

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class’ need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

UML Superstructure Specification, v2.4.1 49

Style Guidelines

Center class name in boldface.

Capitalize thefirst letter of class names (if the character set supports uppercase).
Left justify attributes and operationsin plain face.

Begin attribute and operation names with alowercase | etter.

Put the class namein italicsif the classis abstract.

Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples

Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- XWin: XWindow

Window display()

size: Area hide()

Figure 7.28 - Class notation: details suppressed, analysis-level

visibility: Boolean

- attachX(xWin: XWindow)

display()
hide()

details, implementation-level details

Window

public

size: Area = (100, 100)

defaultSize: Rectangle
protected

visibility: Boolean = true
private

XWin: XWindow

public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and
operations grouped according to visibility

50

UML Superstructure Specification, v2.4.1

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)

A classifier is a classification of instances, it describes a set of instances that have features in common.

Generalizations

» “Namespace (from Kernel)” on page 100
» “RedefinableElement (from Kernel)” on page 132
» “Type (from Kernel)” on page 137

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.
Attributes

Package Kernel

e isAbstract: Boolean
If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract
classifier isintended to be used by other classifiers (e.g., asthe target of general metarelationships or generalization
relationships). Default value is false.

e iskinalSpecialization: Boolean
if true, the Classifier cannot be specialized by generalization. Note that this property is preserved through package
merge operations; that is, the capability to specialize a Classifier (i.e., isFinal Specialization =false) must be preserved
inthe resulting Classifier of apackage merge operation where a Classifier with isFinal Specialization =false is merged
with a matching Classifier with isFinal Specialization =true: the resulting Classifier will have isFinal Specialization
=false. Default is false.

Associations

Package Kernel

e [attribute: Property [*]
Refersto all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets
Classifier::feature and is a derived union.

e [feature: Feature [*]
Specifies each feature defined in the classifier. Subsets Namespace::member. Thisis a derived union.

e /general : Classifier[*]
Specifies the general Classifiersfor this Classifier. Thisis derived.

e generalization: Generalization[*]
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general
classifiersin the generalization hierarchy. Subsets Element:: ownedElement

UML Superstructure Specification, v2.4.1 51

¢ [inheritedMember: NamedElement[*]
Specifies all elementsinherited by this classifier from the general classifiers. Subsets Namespace: : member. Thisis
derived.

« redefinedClassifier: Classifier [*]
References the Classifiers that are redefined by this Classifier. Subsets Redefinabl eElement: : redefinedElement

Package Dependencies

e substitution : Substitution
References the substitutions that are owned by this Classifier. Subsets Element:: ownedElement and
NamedElement:: clientDependency.)

Package PowerTypes

e powertypeExtent : GeneralizationSet
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

Package Kernel

[1] The general classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)
[3] A classifier may only specialize classifiers of avalid type.
self.parents()->forAll(c | self.maySpecializeType(c))
[4] TheinheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember = self.inherit(self.parents()->collect(p | p.inheritableMembers(self))->asSet())
[5] The parents of aclassifier must be non-final.
self.parents()->forAll(not isFinalSpecialization)

Package PowerTypes

[6] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may itsinstances also be its subclasses.

Additional Operations

Package Kernel
[1] Thequery alFeatures() givesall of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, thiswill be alarger set than feature.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() gives al of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general

52 UML Superstructure Specification, v2.4.1

[3] Thequery alParents() givesall of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents()))
[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
[5] The query hasVisibilityOf() determines whether a named element isvisiblein the classifier. It is only called when the
argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)
hasVisibilityOf = (n.visibility <> #private)
[6] The query conformsTo() givestrue for a classifier that defines atype that conformsto another. Thisis used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[7] Thequery inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It isintended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of

the specified type. By default a classifier may specialize classifiers of the same or a more general type. It isintended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.oclisKindOf(c.oclType)

Semantics
A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a
classifier have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms
to itself and to all of its ancestors in the generalization hierarchy.

UML Superstructure Specification, v2.4.1 53

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets
for that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangle containing the classifier’'s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as atext string. The format of this string is specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses, Interfaces)” on page 124.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elementsin it. Compartment names can be used
to remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword { abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines
- Attribute namestypically begin with alowercase letter. Multi-word names are often formed by concatenating the words
and using lowercase for all letters except for upcasing the first letter of each word but the first.
« Center the name of the classifier in boldface.
» Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

« For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

« Left justify attributes and operationsin plain face.
» Begin attribute and operation names with alowercase | etter.
 Show full attributes and operations when needed and suppress them in other contexts or references.

54 UML Superstructure Specification, v2.4.1

Examples

ClassA

name: String
shape: Rectangle

+ size: Integer [0..1]

| area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 7.30 - Examples of attributes

The attributesin Figure 7.30 are explained below.

ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassB::
ClassB:
ClassB::

‘name is an attribute with type String.

:shape is an attribute with type Rectangle.

:sizeisapublic attribute of type Integer with multiplicity 0..1.

.areais aderived attribute with type Integer. It is marked as read-only.
‘height is an attribute of type Integer with a default initial value of 5.
:width is an attribute of type Integer.

id is an attribute that redefines ClassA::name.

:shapeis an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the

ClassA default of 5.
ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure

7.31.

Window

size
Area

Figure 7.31 - Association-like notation for attribute

UML Superstructure Specification, v2.4.1 55

Package PowerTypes

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account
has two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings
Account, then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings
Account are both: instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and
examples, see Examples in the GeneralizationSet sub clause, below.)

7.3.9 Comment (from Kernel)

A comment is atextual annotation that can be attached to a set of elements.

Generalizations

« “Element (from Kernel)” on page 63.

Description
A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment can be owned by any element.

Attributes
e body: String [0..1]
Specifies a string that is the comment.

Associations

e annotatedElement: Element[*]
References the Element(s) being commented.

Constraints
No additional constraints

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the
model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

56 UML Superstructure Specification, v2.4.1

Examples

This class was added

by Alan Wright after

meeting with the T e———
mission planning team. ~—| Account

Figure 7.32 - Comment notation

7.3.10 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.
Generalizations

» “PackageableElement (from Kernel)” on page 111

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints are predefined in UML, others may be user-defined. A user-defined Constraint is described using a specified
language, whose syntax and interpretation is a tool responsibility. One predefined language for writing constraints is
OCL. In some situations, a programming language such as Java may be appropriate for expressing a constraint. In other
situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to that element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes

No additional attributes

Associations

e constrainedElement: Element[*]
The ordered set of Elements referenced by this Constraint.

e context: Namespace [0..1]
Specifies the Namespace that is the context for evaluating this constraint. Subsets NamedElement: : namespace.

« gpecification: ValueSpecification[1]
A condition that must be true when evaluated in order for the constraint to be satisfied. Subsets
Element: ; ownedElement.

Constraints

[1] The value specification for a constraint must evaluate to a Boolean value.
Cannot be expressed in OCL.

UML Superstructure Specification, v2.4.1 57

[2] Evauating the value specification for a constraint must not have side effects.
Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.
not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL ‘self’ is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
<congtraint> ::= ‘{* [<name> ‘:’ | <Boolean-expression> ‘ }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 7.33 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 7.34 shows an {xor} constraint
between two associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 7.35 shows an example of a constraint in a note symbol.

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the
first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

58 UML Superstructure Specification, v2.4.1

Examples

Stack

size: Integer {size >= 0}

push()
pop()

Figure 7.33 - Constraint attached to an attribute

] rereen
‘
\
|

Account i

Corporation

Figure 7.34 - {xor} constraint

0.1/, boss
employee employer
Person Company
* 0.1
{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 7.35 - Constraint in a note symbol

7.3.11 DataType (from Kernel)

Generalizations

» “Classifier (from Kernel, Dependencies, Power Types, Interfaces)” on page 51.

UML Superstructure Specification, v2.4.1

Description

A datatype is atype whose instances are identified only by their value. A DataType may contain attributes to support the
modeling of structured data types.

A typical use of data types would be to represent programming language primitive types or CORBA basic types. For
example, integer and string types are often treated as data types.

Attributes

No additional attributes

Associations

« ownedAttribute: Property[*]
The Attributes owned by the DataType. Thisis an ordered collection. Subsets Classifier::attribute and
Namespace: : ownedMember

e ownedOperation: Operation[*]
The Operations owned by the DataType. Thisis an ordered collection. Subsets Classifier::feature and
Namespace: : ownedMember

Constraints

No additional constraints

Additional Operations
[1] Theinherit operation is overriden to exclude redefined properties

DataType::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit=inhs->excluding(inh | ownedMember->
select(ocllsKind Of(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are
identified only by their value.

All copies of an instance of a data type and any instances of that data type with the same value are considered to be equal
instances. Instances of a data type that have attributes (i.e., is a structured data type) are considered to be equal if the
structure is the same and the values of the corresponding attributes are equal. If a data type has attributes, then instances
of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by (e.g., an
attribute) denoted by a string containing the name of the data type.

60 UML Superstructure Specification, v2.4.1

Examples

«dataType» size: Integer
Integer

Figure 7.36 - Notation of data type

Note — to the left is an icon denoting a data type and to the right is a reference to a data type that is used in an attribute.
7.3.12 Dependency (from Dependencies)

Generalizations

» “DirectedRelationship (from Kernel)” on page 62
» “PackageableElement (from Kernel)” on page 111

Description

A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for
their specification or implementation. This means that the complete semantics of the depending elements is either
semantically or structurally dependent on the definition of the supplier element(s).

Attributes

No additional attributes

Associations

e client: NamedElement [1..*]
The element(s) dependent on the supplier element(s). In some cases (such as a Trace Abstraction) the assignment of
direction (that is, the designation of the client element) is at the discretion of the modeler, and is a stipulation. Subsets
DirectedRel ationship:: source.

e supplier: NamedElement [1..*]
The element(s) independent of the client element(s), in the same respect and the same dependency relationship. In
some directed dependency relationships (such as Refinement Abstractions), a common convention in the domain of
class-based OO software is to put the more abstract element in this role. Despite this convention, users of UML may
stipulate a sense of dependency suitable for their domain, which makes a more abstract element dependent on that
which is more specific. Subsets DirectedRelationship::target.

Constraints

No additional constraints

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier.
The presence of dependency relationships in a model does not have any runtime semantics implications, it is all given in
terms of the model-elements that participate in the relationship, not in terms of their instances.

UML Superstructure Specification, v2.4.1 61

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the
client) depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional
stereotype and an optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more
arrows with their tails on the clients are connected to the tails of one or more arrows with their heads on the suppliers. A
small dot can be placed on the junction if desired. A note on the dependency should be attached at the junction point.

«dependencyName»

NamedElement-1f — — — — — — = NamedElement-2

Figure 7.37 - Notation for a dependency between two elements

Examples

In the example below, the Car class has a dependency on the CarFactory class. In this case, the dependency is an
instantiate dependency, where the Car class is an instance of the CarFactory class.

«instantiate»
CarFactory f — — — — — = Car

Figure 7.38 - An example of an instantiate dependency
7.3.13 DirectedRelationship (from Kernel)

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.
Generalizations

» “Relationship (from Kernel)” on page 134

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship is
an abstract metaclass.

Attributes
No additional attributes

Associations

e/ source: Element [1..%]
Specifies the sources of the DirectedRel ationship. Subsets Relationship::relatedElement. Thisis a derived union.

e /target: Element [1..*]
Specifies the targets of the DirectedRelationship. Subsets Relationship: :relatedElement. Thisis a derived union.

62 UML Superstructure Specification, v2.4.1

Constraints
No additional constraints

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

7.3.14 Element (from Kernel)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Generalizations

None

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library. Element has a derived composition association to itself to support the general capability for
elements to own other elements.

Attributes
No additional attributes

Associations
¢ ownedComment: Comment[*]
The Comments owned by this element. Subsets Element:: ownedElement.

e/ ownedElement: Element[*]
The Elements owned by this element. Thisis a derived union.

e /owner: Element [0..1]
The Element that owns this element. Thisis aderived union.

Constraints

[1] Anelement may not directly or indirectly own itself.
not self.allOwnedElements()->includes(self)

[2] Elementsthat must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

Additional Operations
[1] The query alOwnedElements() givesal of the direct and indirect owned elements of an element.
Element::allOwnedElements(): Set(Element);

UML Superstructure Specification, v2.4.1 63

allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] Thequery mustBeOwned() indicates whether elements of thistype must have an owner. Subclasses of Element that do not
reguire an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.
7.3.15 Elementimport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Generalizations

» “DirectedRelationship (from Kernel)” on page 62

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Attributes

o vishility: VisibilityKind
Specifies the visibility of the imported Packageabl eElement within the importing Package. The default visibility is
the same as that of the imported element. If the imported element does not have avisibility, it is possible to add
visibility to the element import. Default value is public.

e dias String [0..1]
Specifies the name that should be added to the namespace of the importing Package in lieu of the name of the
imported PackagableElement. The aliased name must not clash with any other member name in the importing
Package. By default, no aliasis used.

Associations
e importedElement: PackageableElement [1]
Specifies the PackageableElement whose nameis to be added to a Namespace. Subsets DirectedRel ationship: : target.

« importingNamespace: Namespace [1]
Specifies the Namespace that imports a Packageabl eElement from another Package. Subsets
DirectedRelationship: : source and Element:: owner.

64 UML Superstructure Specification, v2.4.1

Constraints

[1] Thevisibility of an Elementlmport is either public or private.
self.visibility = #public or self.visibility = #private

[2] AnimportedElement has either public visibility or no visibility at all.
self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations
[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.
Elementimport::getName(): String;
getName =
if self.alias->notEmpty() then
self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

In case of a name clash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an element import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consegquence of element imports or
package imports, the elements are not added to the importing namespace and the names of those elements must be
qualified in order to be used in that namespace. If the name of an imported element is the same as the name of an element
owned by the importing namespace, that element is not added to the importing namespace and the name of that element
must be qualified in order to be used.

An imported element can be further imported by other namespaces using either element or package imports.

The visibility of the Elementimport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public; otherwise, the keyword
«access» is shown to indicate private visibility.

If an element import has an alias, thisis used in lieu of the name of the imported element. The aliased hame may be
shown after or below the keyword «import».

Presentation options
If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

UML Superstructure Specification, v2.4.1 65

As an dternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

‘{element import’ <qualified-name> '}’ | ‘{element access’ <qualified-name> '}’
Optionally, the aliased name may be shown as well:
‘{element import ’ <qualified-name> * as’ <alias> ‘}’ | ‘{element access’ <qualified-name> ‘as <alias> '}’

Examples

The element import that is shown in Figure 7.39 allows elements in the package Program to refer to the type Time in
Types without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not
imported. The Type string can be used in the Program package but cannot be further imported from that package.

Types

«datatype»
A7 String
«access» //
-7 «datatype»
Integer
Program «de_\rtiant]yg)e»
«import»

Figure 7.39 - Example of element import

In Figure 7.40, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

Types Shapes |

«import» -
«datatype» Double Circle

Real radius : Double

Figure 7.40 - Example of element import with aliasing
7.3.16 Enumeration (from Kernel)

An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Generalizations

- “DataType (from Kernel)” on page 59

66 UML Superstructure Specification, v2.4.1

Description
Enumeration is a kind of data type, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Attributes
No additional attributes

Associations

e ownedLiteral: EnumerationLiteral[*]
The ordered set of literals for this Enumeration. Subsets Namespace: : ownedMember

Constraints

No additional constraints

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to aline, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

«enumeration»
VisibilityKind
public
private
protected
package

Figure 7.41 - Example of an enumeration
7.3.17 EnumerationLiteral (from Kernel)

An enumeration literal is a user-defined data value for an enumeration.

Generalizations

» “InstanceSpecification (from Kernel)” on page 82

UML Superstructure Specification, v2.4.1 67

Description

An enumeration literal is a user-defined data value for an enumeration.

Attributes
No additional attributes

Associations

e enumeration: Enumeration[1]
The Enumeration that this EnumerationLiteral is a member of. Subsets NamedElement: : namespace

e /classifier: Enumeration[1]
The classifier of this EnumerationLiteral is derived to be equal to its enumeration. Redefines
InstanceSpecification: : classifier.

Constraints

[1] The classifier of the EnumerationLiteral should be equal to its owning enumeration.
classifier = enumeration

Semantics
An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.
Notation
An EnumerationLiteral is typically shown as a name, one to a line, in the compartment of the enumeration notation.

7.3.18 Expression (from Kernel)

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Generalizations
» “ValueSpecification (from Kernel)” on page 139

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

Attributes

e symbol: String [0..1]
The symbal associated with the node in the expression tree.

68 UML Superstructure Specification, v2.4.1

Associations

e operand: ValueSpecification[*]
Specifies a sequence of operands. Subsets Element: : ownedElement.

Constraints

No additional constraints

Semantics

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples

xor
else

plus(x,1)
x+1

7.3.19 Feature (from Kernel)

A feature declares a behavioral or structural characteristic of instances of classifiers.

Generalizations
 “RedefinableElement (from Kernel)” on page 132

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

e isStatic: Boolean
Specifies whether this feature characterizes individual instances classified by the classifier (false) or the classifier
itself (true). Default valueis false.

Associations

e /featuringClassifier: Classifier [0..*]
The Classifiers that have this Feature as afeature. Thisis a derived union.

Constraints

No additional constraints

UML Superstructure Specification, v2.4.1 69

Semantics

A feature represents some characteristic for its featuring classifiers; this characteristic may be of the classifier’s instances
considered individually (not static), or of the classifier itself (static). A Feature can be a feature of multiple classifiers.
The same feature cannot be static in one context but not another.

Semantic Variation Points

With regard to static features, two alternative semantics are recognized. A static feature may have different values for
different featuring classifiers, or the same value for all featuring classifiers.

In accord with this semantic variation point, inheritance of values for static features is permitted but not required by UML
2. Such inheritance is encouraged when modeling systems will be coded in languages, such as C++, Java, and C#, which
stipulate inheritance of values for static features.

Notation

No general notation. Subclasses define their specific notation.
Static features are underlined.

Presentation Options

Only the names of static features are underlined.
An ellipsis (...) as the final element of alist of features indicates that additional features exist but are not shown in that

list.
Changes from previous UML

The property isSatic in UML 2 serves in place of the metaattribute owner Scope of Feature in UML 1. The enumerated
data type ScopeKind with two values, instance and classifier, provided in UML 1 as the type for ownerScope is no longer
needed because isatic is Boolean.

7.3.20 Generalization (from Kernel, PowerTypes)

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits
the features of the more general classifier.

Generalizations
 “DirectedRelationship (from Kernel)” on page 62

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Package PowerTypes
A generalization can be designated as being a member of a particular generalization set.

70 UML Superstructure Specification, v2.4.1

Attributes

e isSubstitutable: Boolean [0..1]
Indicates whether the specific classifier can be used wherever the general classifier can be used. If true, the execution
traces of the specific classifier will be a superset of the execution traces of the general classifier. The default valueis
true.

Associations

e general: Classifier [1]
References the general classifier in the Generalization relationship. Subsets DirectedRelationship: :target

e gpecific: Classifier [1]
References the specializing classifier in the Generalization relationship. Subsets DirectedRel ationship:: source and
Element::owner

Package PowerTypes
e generalizationSet

Designates a set in which instances of Generalization are considered members.

Constraints

No additional constraints

Package PowerTypes

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, al
Generalizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Package PowerTypes

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass).
Each GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which
a specific Classifier (or class) may be divided into subclasses. The generalizationSet associates those instances of a
Generalization with a particular GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific
Classifier. Another Generalization could also relate Person as a general Classifier, but have Male Person as the specific
Classifier. These two Generalizations could be associated with the same GeneralizationSet, because they specify one way
of partitioning the Person class.

Notation

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style.” See the example sub clause below.

UML Superstructure Specification, v2.4.1 71

Package PowerTypes

A generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named,
that name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name
(which it inherits since it is a subclass of PackageableElement). Therefore, all Generalization relationships with the same
GeneralizationSet name are part of the same GeneralizationSet. This notation form is depicted in @), Figure 7.42.

When two or more lines are drawn to the same arrowhead, as illustrated in b), Figure 7.42, the specific Classifiers are part
of the same GeneralizationSet. When diagrammed in this way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

Lastly in c), Figure 7.42, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set, as illustrated at the bottom of Figure 7.42. Here, as with b), the
GeneralizationSet may be labeled with a single name, instead of each line labeled separately. However, such labels are

optional because the GeneralizationSet is clearly designated.

another
Generalization Set

one Generalization Set

generalization
set name-2

generalization

generalization
set name-1

set name-1

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

one another o o
G lization - generalization generalization
ener A Generalization Set set name-1 et hame-2
Set generalization
set name-1 generalization
set name-2

another
Generalization Set

one Generalization Set
b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

one another
Generallzatlon it
- Generalization Set
generalization generalization
set name-1- - — set name-2

¢) GeneralizationSet sharing same general Classifier using the dashed-line notation.

Figure 7.42 - GeneralizationSet designation notations

72

UML Superstructure Specification, v2.4.1

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “ shared
target style.” See the example sub clause below.

Separate target style

Shared target style

Examples
Shape
Polygon Ellipse Spline
Shape
Polygon Ellipse Spline

Figure 7.43 - Examples of generalizations between classes

Package PowerTypes

In Figure 7.44, the Person class can be specialized as either a Female Person or a Male Person. Furthermore, Person’s can

be specialized as an Employee. Here, Female Person or a Male Person of Person constitute one GeneralizationSet and
Employee another. This illustration employs the notation forms depicted in the diagram above.

UML Superstructure Specification, v2.4.1

73

Person

Person
employment
employment gender status
gender gender Fs)ta%lus
Female

Employee

Female Mae Employee Person
Person Person

Male

Person

Person Person
employment
gender 712 fF - Satus - — — -
Female Male Femal Male
Employee €

Person Person ploy! Person Person Employee

Figure 7.44 - Multiple subtype partitions (GeneralizationSets) example
7.3.21 GeneralizationSet (from PowerTypes)

A GeneralizationSet is a PackageableElement (from Kernel) whose instances define collections of subsets of
Generalization relationships.

Generalizations
 “PackageableElement (from Kernel)” on page 111

Description

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., from aclass
to its superclasses). Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. For example, a GeneralizationSet
could define a partitioning of the class Person into two subclasses: Male Person and Female Person. Here, the
GeneralizationSet would associate two instances of Generalization. Both instances would have Person as the general
classifier; however, one Generalization would involve Male Person as the specific Classifier and the other would involve
Female Person as the specific classifier. In other words, the class Person can here be said to be partitioned into two
subclasses: Male Person and Female Person. Person could also be divided into North American Person, Asian Person,
European Person, or something else. This collection of subsets would define a different GeneralizationSet that would
associate with three other Generalization relationships. All three would have Person as the general Classifier; only the
specific classifiers would differ (i.e., North American Person, Asian Person, and European Person).

74 UML Superstructure Specification, v2.4.1

Attributes

e isCovering : Boolean
Indicates (via the associated Generalizations) whether or not the set of specific Classifiers are covering for a
particular general classifier. When isCovering istrue, every instance of a particular general Classifier isalso an
instance of at least one of its specific Classifiers for the GeneralizationSet. When isCovering is false, there are one
or more instances of the particular general Classifier that are not instances of at |east one of its specific Classifiers
defined for the GeneralizationSet. For example, Person could have two Generalization relationships each with a
different specific Classifier: Male Person and Female Person. This GeneralizationSet would be covering because
every instance of Person would be an instance of Male Person or Female Person. In contrast, Person could have a
three Generalization relationship involving three specific Classifiers: North American Person, Asian Person, and
European Person. This GeneralizationSet would not be covering because there are instances of Person for which
these three specific Classifiers do not apply. The first example, then, could be read: any Person would be specialized
as either being a Male Person or a Female Person— and nothing else; the second could be read: any Person would be
specialized as being North American Person, Asian Person, European Person, or something else. Default value is
false.

« isDigoint : Boolean
Indicates whether or not the set of specific Classifiersin a Generalization relationship have instance in common. If
isDigoint istrue, the specific Classifiersfor a particular GeneralizationSet have no membersin common,; that is, their
intersection is empty. If isDigjoint isfalse, the specific Classifiersin a particular GeneralizationSet have one or more
membersin common; that is, their intersection is not empty. For example, Person could have two Generalization
relationships, each with the different specific Classifier: Manager or Staff. Thiswould be disjoint because every
instance of Person must either be a Manager or Staff. In contrast, Person could have two Generalization relationships
involving two specific (and non- covering) Classifiers: Sales Person and Manager. This GeneralizationSet would not
be disjoint because there are instances of Person that can be a Sales Person and a Manager. Default value is false.

Associations

e generalization : Generalization [*]
Designates the instances of Generalization that are members of a given GeneralizationSet (see constraint [1] bel ow).

e powertype: Classifier [0..1]
Designates the Classifier that is defined as the power type for the associated GeneralizationSet (see constraint [2]
below).

Constraints

[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.
generalization->collect(g | g.general)->asSet()->size() <= 1

[2] TheClassifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may itsinstances be its subclasses.

Semantics

The generalizationSet association designates the collection of subsets to which the Generalization link belongs. All of the
Generalization links that share a given general Classifier are divided into subsets (e.g., partitions or overlapping subset
groups) using the generalizationSet association. Each collection of subsets represents an orthogonal dimension of
specialization of the general Classifier.

UML Superstructure Specification, v2.4.1 75

As mentioned above, in essence, a power type is a class whose instances are subclasses of another class. Power types,
then, are metaclasses with an extra twist: the instances can also be subclasses. The powertype association relates a
classifier to the instances of that classifier, which are the specific classifiers identified for a GeneralizationSet. For
example, the Bank Account Type classifier could associate with a GeneralizationSet that has Generalizations with specific
classifiers of Checking Account and Savings Account. Here, then, Checking Account and Savings Account are instances
of Bank Account Type. Furthermore, if the Generalization relationship has a general classifier of Bank Account, then
Checking Account and Savings Account are also subclasses of Bank Account. Therefore, Checking Account and Savings
Account are both instances of Bank Account Type and subclasses of Bank Account. (For more explanation and examples
see “Examples’ on page 78.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets was presented in the Notation sub clause
of Generalization, above. To indicate whether or not a generalization set is covering and digjoint, each set should be
|abeled with one of the constraints indicated below.

{complete, digoint} - Indicatesthe generalization set is covering and its specific Classifiers have no common
instances.
{incomplete, digoint} - Indicates the generalization set is not covering and its specific Classifiers have no common
instances*.
{complete, overlapping} - Indicates the generalization set is covering and its specific Classifiers do share common
instances.
{incomplete, overlapping} - Indicatesthe generalization set is not covering and its specific Classifiers do share common
instances.

* default is {incomplete, digoint}

Figure 7.45 - Generalization set constraint notation

76 UML Superstructure Specification, v2.4.1

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, as illustrated below..

{Generalization {Generalization
Set constraint-1} Set constraint-2}

(a) GeneralizationSet constraint when sharing common generalization arrowhead.

{Generalization
Set constraint-3} .
- S — - {Generalization
Set constraint-4}

(b) GeneralizationSet constraint using dashed-line notation.

Figure 7.46 - GeneralizationSet constraint notation

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to the
GeneralizationSet graphically containing the specific classifiers that are the instances of the power type. The illustration
below indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation for
GeneralizationSets.

UML Superstructure Specification, v2.4.1 77

(a) Power type specification when sharing common gener alization arrowhead

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-1

A

: powertype classifier-2

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-1

A

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

(b) Power type specification using dashed-line notation

Figure 7.47 - Power type notation

Examples

. powertype classifier-2

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
GeneralizationSet is partitioned (i.e., is constrained to be complete and disjoint), each instance of Person must either be a
Female Person or a Male Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class
because a Person object may not exist without being either a Female Person or a Male Person.) Furthermore, a Person
object can be specialized as an Employee. The generalization set hereis expressed as {incomplete, disjoint}, which means
that instances of Persons can be subset as Employees or some other unnamed collection that consists of all non-Employee
instances. In other words, Persons can either be an Employee or in the complement of Employee, and not both. Taken
together, the diagram indicates that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or
not. When expressed in this manner, it is possible to partition the instances of a classifier using a disjunctive normal form

(DNF).

78

UML Superstructure Specification, v2.4.1

Person

{complete, {incomplete,
disjoint} disjoint}

An incomplete partition
Female indicating that a Person
A complete partition Employee can also be an Employee
indicating that a Person Person or not.

may be subtyped as
either a Female Person

or a Male Person.

Male
Person

Figure 7.48 - Multiple ways of dividing subtypes (generalization sets) and constraint examples

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one
of the ways botanists organize trees is by species. In this way, each tree we see can be classified as an American elm,
sugar maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of the
instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local nursery.
Instances of Tree Species, such as sugar maple and apricot. Furthermore, this figure indicates the relationships that exist
between these two sets of objects. For instance, the tree in your front yard might be classified as a sugar maple, your
neighbor’s tree as an apricot, and so on. This class diagram expresses that each Tree Species classifies zero or more
instances of Tree, and each Tree is classified as exactly one Tree Species. It also indicates that each Tree Speciesis
identified with a Leaf Pattern and has a general location in any number of Geographic Locations. For example, the
saguaro cactus has leaves reduced to large spines and is generally found in southern Arizona and northern Sonora.
Additionally, this figure indicates each Tree has an actual location at a particular Geographic Location. In this way, a
particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

Lastly, this diagram illustrates that Tree is subtyped as American EIm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly
maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila
Woodpecker, and so on. At first glance, it would seem that a modeler should only use either the Tree Species class or the
subclasses of Tree—since the instances of Tree Species are the same as the subclasses of tree. In other words, it seems
redundant to represent both on the same diagram. Furthermore, having both would seem to cause potential diagram
maintenance issues. For instance, if botanists got together and decided that the American elm should no longer be a
species of tree, the American EIm object would then be removed as an instance of Tree Species. To maintain the integrity
of our model in such a situation, the American EIm subtype of Tree must also be removed. Additionally, if a new species
were added as a subtype of Tree, that new species would have to be added as an instance of Tree Species. The same kind
of situation exists if the name of a tree species were changed—both the subtype of Tree and the instance of Tree Species
would have to be modified accordingly.

Asi it turns out, this apparent redundancy is not a redundancy semantically (although it may be implemented that way).
Different modeling approaches depicted above are not really all that different. In reality, the subtypes of Tree and the
instances of Tree Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species.
Furthermore, the instances of Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called
sugar maple and a subtype of Tree is called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple
subtype are the same object. The instances of Tree Species are—as the name implies—types of trees. The subtypes of
Tree are—by definition—types of trees. While Tree may be divided into various collections of subsets (based on size or

UML Superstructure Specification, v2.4.1 79

age, for example), in this example it is divided on the basis of species. Therefore, the integrity issue mentioned above is
not really an issue here. Deleting the American EIm subtype from the collection of Tree subtypes does not require also
deleting the corresponding Tree Species instance, because the American EIm subtype and the corresponding Tree Species
instance are the same object.

tree tree species
— P 1 Tree
Tree Species
* * 1
actual general leaf
{disjoint, location locations pattern
incomplete} 1 * 1
: Tree Species Geographic Leaf
Location Pattern
_— Sugar
Maple
— Apricot
American
Elm
] Saguaro

Figure 7.49 - Power type example and notation

As established above, the instances of Classifiers can also be Classifiers. (This is the stuff that metamodels are made of.)
These same instances, however, can also be specific classifiers (i.e., subclasses) of another classifier. When this occurs,
we have what is called a power type. Formally, a power type is a classifier whose instances are also subclasses of another
classifier.

In the examples above, Tree Species is a power type on the Tree type. Therefore, the instances of Tree Species are
subtypes of Tree. This concept applies to many situations within many lines of business. Figure 7.50 depicts other
examples of power types. The nhame on the generalization set beginning with a colon indicates the power type. In other
words, this name is the name of the type of which the subtypes are instances.

Diagram (@) in the figure below, then, can be interpreted as: each instance of Account is classified with exactly one
instance of Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This
means that each instance of Checking Account can have its own attributes (based on those defined for Checking Account
and those inherited from Account), such as account number and balance. Additionally, it means that Checking Account as
an object in its own right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes
are sometimes referred to as class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling
example. Here, each Vehicle can be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car
are instances of Vehicle Type. In (c), Disease Occurrence classifies each occurrence of disease (e.g., my chicken pox and
your measles). Disease Classification is the power type whose instances are classes such as Chicken Pox and Measles.

80 UML Superstructure Specification, v2.4.1

account classifier A vehicle category
ccount . 1 Vehicle

Account [Type Vehicle [+ Type

account classified vehicle
{disjoint, incomplete} {disjoint, incomplete}
:Account Type ‘Vehicle Type
Checking Truck

Account ruc

Savings

Account Car

(a) Bank account/account type example (b) Vehicle/vehicle type example
) disease classifierl . Installed service catego?/ Telephone
Disease Disease S ;
Occurrence |* Classification Telephone I ervice
classified disease Service installed service Category
{disjoint, incomplete} {disjoint, incomplete}

: Disease Classification : Telephone Service Category

Chicken Call

Pox Waiting
Measles Call
Transferring
(c) Disease Occurrence/Disease Classification example (d) Telephone service example

Figure 7.50 - Other power type examples

Labeling collections of subtypes with the power type becomes increasingly important when a type has more than one
power type. The figure below is one such example. Without knowing which subtype collection contains Policy Coverage
Types and which Insurance Lines, clarity is compromised. This figure depicts an even more complex situation. Here, a
power type is expressed with multiple collections of subtypes. For instance, a Policy can be subtyped as either a Life,
Health, Property/Casualty, or some other Insurance Line. Furthermore, a Property/Casualty policy can be further subtyped
as Automobile, Equipment, Inland Marine, or some other Property/Casualty line of insurance. In other words, the
subtypes in the collection labeled Insurance Line are al instances of the Insurance Line power type.

| UML Superstructure Specification, v2.4.1 81

Policy issued POHCX insurance Iin(i
Coverage I Policy Insurance
” .
Type coverage type issued policy Line
{disjoint, complete}4 {disjoint, complete}
:Policy Coverage Type :Insurance Line
Group Life
Policy | Policy
Individual Health
Policy —| Policy
Property/
Casualty
Policy

Figure 7.51 - Other power type examples

Power types are a conceptual, or analysis, notion. They express a real-world situation; however, implementing them may
not be easy and efficient. To implement power types with arelational database would mean that the instances of arelation
could aso be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation cannot directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’ re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) a data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, if a new subclass of Policy were added, a hew instance
must also be added to the appropriate power type.

7.3.22 InstanceSpecification (from Kernel)

An instance specification is a model element that represents an instance in a modeled system.

Generalizations
 “PackageableElement (from Kernel)” on page 111

Description

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description may include:
- Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specifiedis
abstract, then the instance specification only partially describes the entity.

» Thekind of