An OMG® Unified Modeling Language® Publication

s ®
e - B - =
. — % % &
L =4 Se=ae— MODELING
- ' LANGUAGE

™

OBJECT MANAGEMENT GROUP

OMG?® Unified Modeling Language® (OMG UML®)

Version 2.5.1

OMG Document Number: formal/2017-12-05
Date: December 2017

Normative URL: https/www.omg.org/spec/UML/

Machine Readable:

Normative: https://lwww.omg.org/spec/UML/20161101/PrimitiveTypes.xmi
https://www.omg.org/spec/UML/20161101/UML.xmi
https://www.omg.org/spec/UML/20161101/StandardProfile.xmi
https://www.omg.org/spec/UML/20161101/UMLDI.xmi

http://www.omg.org/spec/UML/20161101/UMLDI.xmi
http://www.omg.org/spec/UML/20161101/StandardProfile.xmi
http://www.omg.org/spec/UML/20161101/UML.xmi
http://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi

Copyright © 2009-2013 88Solutions

Copyright © 2009-2010 Artisan Software Tools

Copyright © 2001-2013 Adaptive

Copyright © 2009-2010 Armstrong Process Group, Inc.

Copyright © 2001-2010 Alcatel

Copyright © 2001-2010 Borland Software Corporation

Copyright © 2009-2010 Commissariat a I'Energie Atomique
Copyright © 2001-2010 Computer Associates International, Inc.
Copyright © 2009-2010 Computer Sciences Corporation

Copyright © 2009-2013 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2009-2013 Deere & Company

Copyright © 2009-2013 European Aeronautic Defence and Space Company
Copyright © 2001-2013 Fujitsu

Copyright © 2001-2010 Hewlett-Packard Company

Copyright © 2001-2010 I-Logix Inc.

Copyright © 2001-2013 International Business Machines Corporation
Copyright © 2001-2010 IONA Technologies

Copyright © 2013 Ivar Jacobson International SA

Copyright © 2001-2010 Kabira Technologies, Inc.

Copyright © 2009-2010 Lockheed Martin

Copyright © 2001-2010 MEGA International

Copyright © 2009-2010 Mentor Graphics Corporation

Copyright © 2009-2013 Microsoft Corporation

Copyright © 2001-2010 Motorola, Inc.

Copyright © 2009-2010 National Aeronautics and Space Administration
Copyright © 2009-2013 No Magic, Inc.

Copyright © 1997-2017 Object Management Group, Inc

Copyright © 2009-2010 oose Innovative Informatik GmbH
Copyright © 2001-2010 Oracle Corporation

Copyright © 2009-2010 Oslo Software, Inc.

Copyright © 2009-2010 Purdue University

Copyright © 2012-2013 Simula Research Laboratory

Copyright © 2009-2010 SINTEF

Copyright © 2001-2010 SOFTEAM

Copyright © 2009-2013 Sparx Systems Pty Ltd

Copyright © 2001-2010 Telefonaktiebolaget LM Ericsson

Copyright © 2009-2010 THALES

Copyright © 2001-2013 Unisys

Copyright © 2001-2010 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

ii Unified Modeling Language 2.5.1

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

This specification is published under the “RF on Limited Terms” IPR mode listed in the OMG Intellectual Property
Rights Policy Statement, OMG Document ipr/12-09-02, available at: http://doc.omg.org/ipr/12-09-02

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48

Unified Modeling Language 2.5.1 iii

C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

iv Unified Modeling Language 2.5.1

http://www.omg.org/legal/tm_list.htm

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm).

Unified Modeling Language 2.5.1

Table of Contents

o S Tole] o 1< Y T T T T T T T 1
2 CONTOIMIAN . ittt ittt ettt ettt ettt ettt te e ee e eee ettt teeeeenteettenttenteeaeenatietienreens 3
3 NOrmMativVe REfEIENCES. ... ieeiiee ettt ettt e et e tee e eeeeeeteenteeenserenaterenaserenaaees 5
4 Terms and DefinitioNS. ...t 7
5 Notational CoONVENtIONS. ...ttt ettt ettt ettt tee ettt teeateeteeateeateeateeneeeaeieaerenseens 9
5.1 Key words for Requirement Statements.ttt ta et aaeaaeans 9
5.2 Annotations on Example DiaQramS . ..o, 9

6 Additional INformMatioN.ttt ettt ettt e e et teeterteiariearieaaeraarenss 11
6.1 Specification SimpPlification..........ooieiiiiiie e, 11
6.2 Architectural AlIGNMENt. .. .ttt ettt et ettt ettt st ettt sttte st seeaseseeaaenrens 12
6.3 Onthe Semantics Of UML ..o, 12
6.3.1 Models and What TheY MOAEL.ieeiiiiii ittt e ettt ettt ieeeeieneteeenarereaaerensas 12

6.3.2 SEMANLIC ATBAS. ciieeeiiieiiieeiieeeeeeeeeeeeeee ettt eeeeenn, 13

6.3.3 Stable and Transient Behavioral SemantiCS.........u.eiiiiiieeiiiiiiiieiiiiiiiieeeeeeiee e 15

6.4 How to Read this SpecifiCation........oooueiiuiieiiiiiiiiiiiieiiiiieiiie e 16
6.4.1 SPECIfiCatiON FOMMAL. . ettt ettt ettt ettt s et eeteeeeeeeterenntereneereneeeenasaeens 16

6.4.2 Diagram FOrmMat.......iiieeeiiieeiiiieiiiieiiieeiiee et 18

6.5 AcCKNOWIEAQEMENES ..t 19
6.5.1 P riMArY AU O S, .. ittt et ettt ettt eee e ee e tete e eeteeeeeeneterentereteerenarennaaenns 19

6.5.2 TeCNNICAl SUPPOIt. ccieeiieeiiieeiieee ettt eeeiis 19

6.5.3 RN (SN =) £ T T T 19

6.5.4 SUDMIEIS . ittt eee i eeaeees 20

7 COMMON StrUCHUIE . ettt ettt ettt ettt et tee et teenteeteeeaeeeaseeaeenaaeeaaeens 21
T SUMMIAIY ettt ettt ettt ettt ettt et ieieeeeenn 21
T2 RO et iieaeeeen, 21
7.2.1 SUI I A Y . ettt ettt ettt ettt ettt esee e eeee e tet e eete e ees e eee e ees e eeesentetenasatensesenstarennaarenns 21

7.2.2 A DS A S N A, ittt ittt ittt ettt et ettt ettt ettt et tee ettt teetetetetteteaetrenierentereaaiarenas 21

7.2.3 S OMANTICS ettt ettt i e, 22

7.2.4 [N [0) 7= 1 (T o T T T T 22

7.2.5 EXAMIPDIES ot 22

.3 T OMPIAES ittt iee e, 22
7.31 SUMIMIAIY .ottt ettt ettt ettt et e e e eeiieenan 22

7.3.2 ADSIraCt SYNTAX. . uuuuiiiiieeiiiiiiieee et eeeeeeeen 23

7.3.3 SEMANEICS. ittt ieeeieann, 24

7.34 [N [0) 7= 1T o T T T O T T T T T T T T 26

4 NI O S DA S . . ittt ittt ettt ettt ettt ettt sttt te it teteteeattasetesteiisitateetesciieieareaceseeseares 27
7.41 SUMMIAIY . ittt ettt ettt et ettt e et ee e i eeieraenae 27

7.4.2 ADSrACt SYNTAX. ceuuiiiiiiiiiiie it eeeeis 27

7.4.3 SEMANTICS. ittt eeeieenn, 27

7.4.4 N[0 7= 1 ([0 o 29

vi Unified Modeling Language 2.5.1

7.4.5 EXAMIDIES it 30

7.5 Types and MURIPICIY.iiiuuiiiiiiiiiieiiiie et 32
7.5.1 SUMIMIAIY ..ottt ettt ettt ettt e ettt et e et e et eeeeetereeeeraearaaananns 32
7.5.2 AbStract SYNtaX......eeiieeeeiiiiiiiie e 33
7.5.3 ST 00 =101 (o T T 33
754 NOTAEION. Lottt e e aeeaen 34
7.5.5 EXAMPIES. .ttt e e 35

7.6 CONSraiNtS..cuuuuiiiiieei i 35
7.6.1 SUMIMAIY ..ottt ettt ettt ettt e e e 35
7.6.2 ADStract SYNtAX....uuuueieiiiiiiiiiiiiieeee e 36
7.6.3 ST 0 0= 110 T T 36
7.6.4 [N (01 7= 1[0 o T T T S s ST TSP TP TTTTT 36
7.6.5 EXAMPIES. ittt e e aaeaan 37

VAR B =Y o1=Ta o IS aTo] 1= S T U T T T T 37
7.71 S0 L0010 0= | T 37
7.7.2 Abstract SyntaX........ooooviiiiiiiiiiiiiiii i 38
7.7.3 SEMANTICS. oot e e et 38
7.7.4 [N [0 =1 110 o T T 39
7.7.5 | e=10010) [T T 39

7.8 Classifier DeSCrHPtONS.iiiiiieeiiiiiiiiei e 40
7.8.1 ADbStraction [ClaSS]......oouiiiiieeeeiiiieie ittt ettt eeeeeeeeeeees 40
7.8.2 [070] 10T 00 =101 8 [OF F= 1] O T 40
7.8.3 (070] 8151 17=11 01 0 (04 F= 11 I U T 41
7.8.4 DependencCy [ClaSS].....ccuiiiiieeeeetiieeie ettt e e et et e e et e e e e e eeeeeeeaeeeees 42
7.8.5 DirectedRelationship [Abstract ClassS]..........ceuvuuuruuiiiiiiiiiiiiiiiiieeeiiieieeeeee e 42
7.8.6 Element [Abstract ClassS]......oouveuueeiiiiiiiieiiiiiiee e 43
7.8.7 Elementimport [Class]. . .ouuu.iiiiieiieiiiiieee et 44
7.8.8 MultiplicityElement [AbStract ClasS]......uuuuueiiiieeeeiiiiieeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaenn, 45
7.8.9 NamedElement [AbStract Class)].......oouueiiiiiiiiiiiiiieeieieeee e eeeeeeeeeeeeeeeees 47
7.8.10 Namespace [Abstract ClasS]........ooooviiiiieieeeiieiiieieiie e eeeeeeeeeeeeennn, 50
7.8.11 Packagelmport [ClaSS].....oouuiieeeeeeeeeiieei ettt ieeeeeeeeeeees 52
7.8.12 PackageableElement [Abstract ClassS]...........uuiiiiieeeiiiiiiiiiieiiiiiiiieieeieeieee e 52
7.8.13 ParameterableElement [Abstract ClassS].......ooeeveeeeiiiiiiiiieiiiiiiiiieeeeiiiieeeeeeeeeeeeeeeeeeee 53
7.8.14 Realization [ClasS]......eeiii ittt 54
7.8.15 Relationship [Abstract ClasS].......eeeeiiiiiiiiiiiiiiiiieiiieeeeee e 54
7.8.16 TemplateBinding [ClasS]....oooviiieeeeeeeieiieieiiee e, 55
7.8.17 TemplateParameter [ClassS]......oovvuuuniiiiieiieieiiiiiiee et 55
7.8.18 TemplateParameterSubstitution [Class]..........ueeeeeiiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeen 56
7.8.19 TemplateSignature [ClasSS] . uu.. .ot eeeeeeeeeeereeennn, 57
7.8.20 TemplateableElement [Abstract ClassS].......ooeiveueuiiiiiiiiiiiiiiiieeeiieiee e 58
7.8.21 Type [ADStract ClasSS]....uuuueeueueeuieieieieie e ettt eeeeeeeeeeeeeeeeeens 59
7.8.22 TypedElement [ADStract ClasS].....ouuiiiieeeeeieeeiiieiiieeeeeeeieeeeeeeeee e, 59
7.8.23 USAQE [ClaSS]iiiieeeeeeeeennieiiieeeeeee et e ettt e e e et e e e e 60
7.8.24 VisibilityKind [Enumeration]..........cooueeuuuieiiiiiiiieiiiiiiee e 60

7.9 Association DeSCriPtIONS . .uuieeiieiieiiiiiiiie e eeeieeeen, 61
7.91 A_actual_templateParameterSubstitution [Association].........cooeeeeiiieiieiiiiiiiiiiiiinens 61
7.9.2 A_annotatedElement_comment [Association]..........eeeeeeeeeiiiiiiiiiiiiiiiiii 61
7.9.3 A_clientDependency_client [ASSOCIAtioN]...........ueiiiieuiiiiiiiiiieiiiiiiieie e, 61
794 A_constrainedElement_constraint [ASsoCIiation]..........oeveiieeviiiiiiiiiieiiiiiiiiieeiiiiieeieeiin 61

Unified Modeling Language 2.5.1 vii

7.9.5 A_default_templateParameter [Association]..........ccvveeiiiiiciiiiiiiiiiiiiiiiiiiiii 61
7.9.6 A_elementimport_importingNamespace [Association]...........ceueeeiiiieuueeiiiiiiiieieiiiiiiieeeeenee. 62
7.9.7 A_formal_templateParameterSubstitution [Association].............ooevveeeeeveveiiiiiiiiiieeeeeeeeeeene. 62
7.9.8 A_importedElement import [Association]..........ceeeeeeiiiiicii 62
7.9.9 A_importedMember _namespace [Association]............ccccccniininenneenniiiiii 62
7.9.10 A_importedPackage packagelmport [Association].........c.ceuueeieiiiiiiiiiiiiiiiiieiiiiiiiieieeiieian, 63
7.9.11 A_lowerValue _owninglLower [ASSOCIAtioN].......uiieeuiiieiiiiiiiieeeiieeeeeeeeeeeeeeeeeeeeiieeeenn 63
7.9.12 A_mapping_abstraction [Association]..........ccuueeiiiiiiiiiiiiiiiieiii e 63
7.9.13 A _member_memberNamespace [Association].......coueeeeeeiiiieeriiiiiiiiiieieiiiiiieeeeieeieeeeeeee, 63
7.9.14 A_nameExpression_namedElement [ASSOCIatioN].......uueeeieiiiiiiiiiiiiiieiiiiiiiiiieieieieeeeeeeeee 63
7.9.15 A_ownedActual_owningTemplateParameterSubstitution [Association]..............c.cccevvune...... 64
7.9.16 A_ownedComment_owningElement [Association].............ooeeveveveiiieiiiiiiieiiiiiiiieiinnnn 64
7.9.17 A_ownedDefault_templateParameter [AsSOCIation]..........uueeeeeieiieiiiiiiiiiiiieiiiiiieieeeeeeeeen 64
7.9.18 A_ownedElement_owner [ASSOCIatioN]........eeeeiiceeeieiiiiiiiiiiiiiiiiii 64
7.9.19 A_ownedMember_namespace [AsSSOCIation]......cocouuuveveeeeeiiiiiiiiiiiiiiiiiiiiieieeeeeeee 65
7.9.20 A_ownedParameter_signature [Association]............oeveeveeueiiiiiiiiiiiiiiiiiiiiieeeiiiiieieeiiieee 65
7.9.21 A_ownedParameteredElement_owningTemplateParameter [Association].......................... 65
7.9.22 A_ownedRule context [Association]..........eeeeeeeiiiei 65
7.9.23 A_ownedTemplateSignature_template [Association]............ccooeeveeieeeeeeiiiieeiiiiiiiiiiiieeeeeennn. . 65
7.9.24 A_packagelmport_importingNamespace [Association]...........eeeeeeeeeeeiiiiieieeiiiiiiiieieeeieenan, 66
7.9.25 A_parameterSubstitution_templateBinding [Association]..........ooeeeeiiiiiiieeeeeiiiiiiiiieieeeeeen 66
7.9.26 A_parameter_templateSignature [ASSOCIation]..........eeeeeeieiiiieiiiiiiiiiiiiiiiiieiieeeieieeeeeeeeeeee 66
7.9.27 A_parameteredElement_templateParameter [Association]..........ceeeeeeeeeeeeiiiiiiiieiiiiiiinnnnn, 66
7.9.28 A_relatedElement_relationship [Association]...........ooeeeeeeeiiiiiiieiiiiiiiiiiiiiiii 67
7.9.29 A_signature_templateBinding [Association]...........oeeeviiieeeiiiiiiiniiiiii 67
7.9.30 A_source_directedRelationship [ASSOCIAtioN].......eeeeieieeiiiiiiiiiiiiiiiiiiiiieiieeeeeeeieeiiieiiiiee 67
7.9.31 A_specification_owningConstraint [Association]..............eeeiieiiiiiieiiiiiiieiiiiiiiiieieieieeeeeeeen. 67
7.9.32 A_supplier_supplierDependency [Association]...........eeeeeeeeeeeeeiiiiiiiiiiiiiieeeeeeeeee 67
7.9.33 A_target directedRelationship [Association]...........oooeeeeeieiiinneieiiiiiiiiieieiiieiiii 68
7.9.34 A_templateBinding_boundElement [ASSOCIAtioN].....uuuveeueieieiiieiiiiiiiieiiiiiiiieieiieieeeeeeeeee 68
7.9.35 A_type typedElement [ASSOCIAtION]. . .uuuuiiiiieeeiiiiieeeieiieeeeeeee e 68
7.9.36 A_upperValue_owningUpper [ASSOCIatioN].....ceuuuiiiiieeiiiiiiiiieieiiiiieeeeeeeeee e 68

8 ValUBS...ouiieeiiii ittt e eaeanne, 69
8.1 SUMMAIY . cuuiiiiii ettt ettt eiees 69
A N1 (=) r- | T 69
8.2.1 ST L0010 0= o T 69
8.2.2 ADSEract SYNtAX....uuuuieiiiiiii i 69
8.2.3 SEMANTICS. oo i ittt e e ettt 69
8.2.4 (o) =110 o P T T 70
oI B = 4 0 (= X-1o] (0] 8 1 T 70
8.3.1 SUMIMIAIY .ottt e ettt ettt ettt ettt e et e et eeeeeteteeeeeaaararnanes 70
8.3.2 ADSIract SYNEAX..uuu. i eeaeeees 71
8.3.3 SEMANTICS. i eeeuee ittt 71
8.3.4 NOTAEION. Lottt aeeeas 72
8.3.5 | e=10010) [T T 72

o I 10 01 73
8.4.1 SUMIMIANY ..ottt ettt et ettt e e et ettt et et e et eeeeeeeeeeeeeaattaraannns 73
8.4.2 ADStract SYNtAX.....uuueiiiiiiiii it 74
8.4.3 ST 0 0= 0110 T O 74
viii Unified Modeling Language 2.5.1

8.4.4 [0 =110 o T T 75
8.4.5 EXAMDIES. ittt e eaeaan 76
8.5 INOIVAIS. ittt eeeeenn, 76
8.5.1 ST L0010 0= o 76
8.5.2 AbStract SYNtaX......oiiieeeueiiiiiiiie e 77
8.5.3 SEMANTICS. oo ittt e e e et e e 77
854 NOLAEION. .ottt 78
855 | e=10010) [T T T 78
8.6 Classifier DeSCriptiONS. ..u.iieee i 79
8.6.1 DUration [ClasS].....couuiiieeeeeeitiieie e ee ettt et e ettt ettt e e e et e eeeeeeeeaeeaeaaees 79
8.6.2 DurationConstraint [ClasSS] iuieeee i eeeeeeeeeeeeieeeeeeeeeeennn, 79
8.6.3 DurationInterval [ClaSS]........iiiiieeieiiiiiiiee et 80
8.6.4 DurationObservation [ClaSS].........eieiiiiiiiiiiiiiieeieieieeeee e eeeeeeee et eiieieeeeeeeeeeeeeeeeeeeeeeeees 80
8.6.5 EXPreSSION [ClaSS]..uuuu ittt ettt 81
8.6.6 INterval [ClaSS]. . uuue ittt eeeeeeas 82
8.6.7 IntervalConstraint [ClasS].......ouuuveeeeeeieiiiiieii e 82
8.6.8 LiteralBoolean [ClaSS].......ooiiiiiiiiiiieeeeeieee ettt 83
8.6.9 Literallnteger [ClaSS].. ... e it e et 83
8.6.10 LiteralNUll [ClasSS].uu.. i iiieeeiiiiiieie ettt ettt e e et e e e et eeeeeeeeeees 84
8.6.11 LiteralReal [ClasS].....uueeeeeuueeuuiieeiiii e eeiei ettt ettt eee ettt eeeeeeeeeieeeeeeeeeeeneenns 84
8.6.12 LiteralSpecification [Abstract ClassS]..........uuuuuuueiiieiiiiiiiiiiiiiiieiiiieiieeeie e, 85
8.6.13 LiteralString [ClasSS]...uuuueeeeeeeeieeiie et eeeeeeeeeeeeeeeaeenns 85
8.6.14 LiteralUnlimitedNatural [ClasSsS].......ooveuuuiiiiieiiiiiiiiiiiei e e 86
8.6.15 Observation [AbStract ClasS].....uuu.iiiieeeeiiiiiiiieeieeeee e eeeeeeiaeeens 86
8.6.16 OpaqUEEXPresSSiON [ClaSS]...ooiiiiiiiiiiieeeeeeeee ettt eeeeee et 86
8.6.17 StriNngEXPresSion [ClaSS]..... .. iiiiiiiiieeieeeeeee et 88
8.6.18 TimeConstraint [ClasS]........couiiiieeeeeiiieieeieiee et 89
8.6.19 TiMEEXPresSion [ClasSS]..uuuuuuueeeeeeeeeieiiiiiiii e ee e e eeeeeeeeeeeeeees 90
8.6.20 Timelnterval [ClasS]. ... i iiiee ittt eeeaanne 90
8.6.21 TimeObservation [ClasS].........oeveeuuueuieiiiieeee ettt eeieeeeeeeeenns, 91
8.6.22 ValueSpecification [Abstract ClassS].........uuuueuueeiiiiiiiiiiiiiiiiieeciiiiieeeieeeeeeeeeeeeeeeeeeinn, 91
8.7 Association DeSCriPtIONS. ..uu.ieeiieiiiiiiiiiei i eeeen 92
8.7.1 A_behavior_opaqueExpression [ASSOCIatioN].........eeeieveeeeiiiiiiieiiiiiiiieiiiiiee 92
8.7.2 A_event_durationObservation [ASSOCIation].........ocoevveieeeeuiiiiiiieiiiieeeeeeeieieeeeeieeieen 93
8.7.3 A_event_timeObservation [ASSOCIation]..........euvveuuueeiieieiiiiiiiiiiiiiieeciiieeeeee e 93
8.7.4 A_expr_duration [AssocCiation].........cccceeeeeiieeeiiiiiiiiii 93
8.7.5 A_expr_timeExpression [ASSOCIAtION].......uuuiiiiieieiiiiiiiiiie i 93
8.7.6 A_max_durationInterval [ASSOCIAtioN].....iieeiiieeiiiieiiiieeeeieeiieeeieeeeeeeeeeeeieeein 93
8.7.7 A_max_interval [ASSOCIAtION].....cuiiiieeeeeieieieiiiee et 94
8.7.8 A _max_timelnterval [ASSOCIAtION].....cuuuuiiiiiieieiiiiiiiiie e 94
8.7.9 A_min_durationInterval [ASSOCIAtioN]..........ooiiiieuuiiiiiiiiiiiiiiiieee e 94
8.7.10 A_min_interval [Association]..........oooeiivieiiiiiiiiiiiiiiiii 94
8.7.11 A_min_timelnterval [ASSOCIAtioN]......ccuvvveiiiiiiiiiiiiiiiiiii 95
8.7.12 A_observation_duration [ASSOCIAtioN].....ceuuuiiiiieiiieiiiiiiiieiiiiiiieee e 95
8.7.13 A_observation_timeExpression [ASSOCIation].......eueeeeeeeeeeieiiiiiiiiiieieeiiiiiiiiiiciiiiiieieee 95
8.7.14 A_operand_expression [Association].........cccceeeeiiiiiiiiii 95
8.7.15 A_result_opaqueExpression [Association]........cccceeeeeniiiinneeeeiiiiiiiiii 96
8.7.16 A_specification_durationConstraint [Association]..............uveeeeeeieieieiiiiiiiiiiiiiiiiiieeeeeee 96
8.7.17 A_specification_intervalConstraint [Association].............oeeveeeueuiiiiieieiiiieiiiiiiieeeieinnn 96
8.7.18 A_specification_timeConstraint [Association].............ueeeeeieiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeee 96

Unified Modeling Language 2.5.1 ix

8.7.19 A_subExpression_owningExpression [Association]..........cceeeeeeeeeeeeiiiiiiiiiee 97

9 ClasSifiCatiON. . .cuuuu ittt eeaeees 99
9.1 SUMMAIY ettt ettt eraees 99
9.2 ClaSSIfiOrS. uuuiiieeiiiiiiiieeeiiie ettt 99
9.2.1 SUMIMAIY ..ottt ettt ettt e et e e eeeaeaanaan 99
9.2.2 ADStract SYNtAX.....uuueiiiiiiiiiiiiiiiiee e 99
9.2.3 ST 0 0= 110 T 99
9.2.4 N[0 = 10 o T T 101
9.2.5 EXAMPIES. .ottt 103
9.3 Classifier TemplatesS.........ooiieuuiiieeiiiieiiiiiiei e, 103
9.3.1 T80 0 0= 103
9.3.2 AbStract SYNtaX......eiiiiieeee it 104
9.3.3 SEMANTICS. oo i ittt e e e 104
9.34 NOTAEION. .ottt e 105
9.3.5 | e=10010) [T T 106
9.4 FRAMUIES . ..ot e ieeeias 107
9.4.1 100010071 T 107
9.4.2 ADSEract SYNtAX.....uuueeeiiiiiiiiiiiiii e 107
9.4.3 ST 00 F= 101 (o T T 107
9.4.4 [N (o) 7= 1 (0] o T T T U U PO TN 110
9.5 PropertieS....cocuu i eeeies 111
9.51 S0 L0000 o T 111
9.5.2 AbStract SYNtaX......oeeiieeeiiiiiiiiei e 111
9.5.3 SEeMANTICS. .o i ittt e e 111
9.54 N[0 = (0] o T T 113
9.5.5 | e=10010) [T T 115
9.6 OPEratiONS.....uiiiiiie ittt 116
9.6.1 SUMIMIAIY ..ottt ettt et ettt e e e ettt ettt et e et e eeeeeeeeeeeeeeeaaaeaens 116
9.6.2 AbStract SYNtaX......oiiiieeeeeiiiiiiie e 116
9.6.3 ST 00 F= 10 (o T T 116
9.6.4 NOTAEION. Lottt e e 117
9.6.5 =100 o (=T 119
9.7 Generalization SetS......cuuiiieuiiieiiieiiiiiiieiieei e 119
9.71 T80 010 0= o T 119
9.7.2 ADStract SYNtAX......ueeiiiiiiiiiiiiiiiieeieee e 119
9.7.3 SEMANTICS. .o i ittt e e e 119
9.7.4 [N (01 7= (0] o T T T 120
9.7.5 | e=10010) [T T T U U TR T 122
0.8 INSANCES . ittt ieaeen, 126
9.8.1 STV 0 0= 126
9.8.2 Abstract SYNtaX......eeeiieeueeiiiiiiiei e 126
9.8.3 SEMANTICS. oo i ittt e ettt 127
9.8.4 N[0 = (0] o T T 128
9.8.5 | e=10010) [T T 128
9.9 Classifier DeSCHPtONS.iiiiieeei i 129
9.9.1 AggregationKind [Enumeration].........eeeeieeeeieiiiiiieieiiiiieie e, 129
9.9.2 BehavioralFeature [Abstract ClasS]........cuuueiiiieeeeiiiiiiiiiiieiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeen, 130

X Unified Modeling Language 2.5.1

9.9.3 CallConcurrencyKind [ENUMEration]..c....ueee i 131

9.94 Classifier [Abstract ClasS].........oeevueuuuuuieieiiiieiiiiiiiiieeeeeeieeee e, 132
9.9.5 ClassifierTemplateParameter [ClassS]............oveveeveuuuuiiiiieiiiiiiiiieiiieeeeeiiiiiieeeieieeeeeeeeeeeeeees 136
9.9.6 Feature [Abstract ClassS].........uiiiiiieueiiiiiiiie i 138
9.9.7 Generalization [ClasS].....ooeeuuei it 138
9.9.8 GeneralizationSet [ClasS]........ i 139
9.9.9 InstanceSpecification [ClasS].........uuuiiiiiieeeiiiiiieeeiiieieeeee e 140
9.9.10 InstanceValue [ClasS]......couiveuuuiiiiiiiiei et 141
9.9.11 Operation [ClaSS]....uuuieieeeeeeeeeie ittt ettt et e e ee et et e e e e eeeeeeereeeeeeaees 141
9.9.12 OperationTemplateParameter [ClassS]......oouuiiiiieeeeeeeeieiieiiieeeeeeeieeeeeeiceieeeeeee e eeeeeeeeeeeeees 144
9.9.13 Parameter [ClasS]. ... oot 145
9.9.14 ParameterDirectionKind [Enumeration]............coveevuiiiiiieieiiiiiiiiieeeiiiiieeieeieeieeeeeieiee 147
9.9.15 ParameterEffectKind [Enumeration]............ceeeeieeiiiiiiiiiiiieieiiiiiiiiieeieeeieeeeeeeeeeeeeeen, 147
9.9.16 ParameterSet [ClasS]........oovviieieeeeeeiiieiei i 148
9.9.17 Property [ClasS]......oouiiiiieeeeeieie ettt ettt e e e e eeeeeeeeeaeees 149
9.9.18 RedefinableElement [Abstract ClasS].......eeeeieeieiiiiiiiiieieiiiiiiiiiiie e 153
9.9.19 RedefinableTemplateSignature [ClasS].........ooeieiiiiiiiiieeeeiiiiiiiieeiieeeeeeeeeeeeeeeeeieeeeeeeee 154
9.9.20] (o) il [0 F= 1] T T 155
9.9.21 StructuralFeature [Abstract ClasS].........iiiieeueeiiiiiiiiiiiiiiiiiiei e 156
9.9.22 T8l oS3 (100 (o) o W (O F= 11 156
9.10 Association DeSCriptiONS.....o.uuiiieeeiiiiiiieiiiie i 157
9.10.1 A_attribute classifier [Association]...........oooeveveueiiiiiiiiiiiiiiiiiiieiiiiieiieee e, 157
9.10.2 A_bodyCondition_bodyContext [ASSOCIatioN].....uueeeiiieeeieiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeieeieeiinen, 157
9.10.3 A classmer instanceSpecification [ASSOCIation].......oivvieeeiiiiiiiiieiieeeeeeeieieeeeieeee 157
9.10.5 A collaboratlonUse classifier [Assomahon] .. 157
9.10.6 A_condition_parameterSet [ASSOCIAtION]......ocoeeiiiiiiiiiiiiiiiiiiiieieiiee e 158
9.10.7 A_constrainingClassifier_classifierTemplateParameter [Association]...................e............ 158
9.10.8 A_contract substitution [Association]..............cccceieinnnnn 158
9.10.9 A_defaultValue_owningParameter [Association]............eveeeeeeiiiiiiieiiiiiiiiiiiiiiiiiiiieieeeen 158
9.10.10 A_defaultValue_owningProperty [ASSOCIatioN]........eeveeeeiuiiiiiiiiiiiiiiieieiiiiieeiiiiiiiieeen 159
9.10.11 A_definingFeature_slot [AsSOCIiation].........uuveuuueiieeieiieeiiiiiiiiiieieieeeeeeeeeeeeeieeeiie 159
9.10.12 A _extendedSignature_redefinableTemplateSignature [Association].............coceeeveveenen...... 159
9.10.13 A feature featuringClassifier [ASSOCIatioN].........ccoeveiveeeeueiiiiiiiiieieieieieieiieeeeiieeeee 159
9.10.14 A_general_classifier [ASSOCIAtION].uuuuuuiiiiieeeiiiiiiiiiieeeiiieeeeeeeeee e 159
9.10.15 A _general_generalization [ASSOCIAtION]...cceueieeeiiiiiiiieiiiiiieeee e 160
9.10.16 A _generalizationSet_generalization [AssSoCiation]........eeeieeieeeiiiiiiiieiiiiiiiiiiieieeeeeeeeeeeeeee 160
9.10.17 A _generalization_specific [ASSOCIatioN]...ueuueeeeeeeeeeeeiiiiiiiiiiiiieeee e 160
9.10.18 A _inheritedMember_inheritingClassifier [Association]..........ceeeeeeeieiiiiiiccieeeeeeeen, 160
9.10.19 A _inheritedParameter_redefinableTemplateSignature [Association].................ccvvvvvvnee.... 160
9.10.20 A_instance_instanceValue [Association]..............eveiiiiuuiiiiiiiiiiieiiiiiiieeiiiiiiee e 161
9.10.21 A_method_specification [ASSOCIAtION]....uuueueeeieeieiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeeee 161
9.10.22 A operation_templateParameter_parameteredElement [Association]..............c.cvuueee....... 161
9.10.23 A opposite_property [ASSOCIAtION].....oceeeiiiiiiiiieeiiiiiie i 161
9.10.24 A ownedParameterSet_behavioralFeature [Association]..........c.coeveiveeiiiieeeieieiiieiennn..., 162
9.10.25 A_ownedParameter_operation [AsSsOCIiation].........ueeiiieeueiiiiiiiiiiiiiiiiieeeeiieieeeeeiiieee 162
9.10.26 A _ownedParameter_ownerFormalParam [Association].........coeeveeeeeiiiieeieeiiiiiiiieeeeieenann.. 162
9.10.27 A_ownedTemplateSignature classifier [Association]...........ceeeevveeeeieiiiieeeiiiiiiiiiieeeiieeennn, 162
9.10.28 A ownedUseCase_classifier [Association]..............ccoccneeniiinnenneeiiiiiiiiiciicieeee, 162
9.10.29 A parameterSet_parameter [ASSOCIation]..........uvueueieiiiiiiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeeeeeees 163
9.10.30 A postcondition_postContext [Association]............ceeveuuuuiieeieiiiiieiiiiiiiiieiiiiieieeeeeeeee 163

Unified Modeling Language 2.5.1 xi

9.10.31 A _powertypeExtent powertype [Association].............cccceeneneninnnneeeiiiiiiie 163
9.10.32 A precondition_preContext [ASSOCIAtioN]..........uuvuuueieieieiiiiiiiiiiiieeiiiieieeeeee e 163
9.10.33 A _qualifier_associationEnd [ASSOCIAtION].....ceeeeiiiiiiiiiiiiiiiieiieieieeeieeeieeeeeeeieeeeeeee 163
9.10.34 A raisedException_behavioralFeature [Association]..........coeeveveeeeereueeiiiiiieieieeeeeeeiieeeeennes 164
9.10.35 A _raisedException_operation [Association]..........ccccceeninninnneeeniiiiiii 164
9.10.36 A _redefinedClassifier_classifier [Association]............euueeceeeeieiieiiiiiiiiiieiiiiiiiiiieieeeeeeeeen 164
9.10.37 A _redefinedElement_redefinableElement [Association]..........coeeevivieieeeeeeeiiiiiiieieeeeeeeee 164
9.10.38 A_redefinedOperation_operation [AsSOCIation]............oeieiieerueiiiiiiiieiiiiiiiiieeeiiieieieeeeeeen. 164
9.10.39 A redefinedProperty property [Association]...........ceuuveueeieiiiiiiiiiiiiiiiiiiiieiiiiiieieeeeeeeeen 165
9.10.40 A redefinitionContext_redefinableElement [Association].............eeeeeieeieieeiiiiiiieeeeiiivennne.. 165
9.10.41 A representation_classifier [ASSOCIAtiON]........ccoeviiiiiiiieiiiiiiiieeieieiieeeeeeeeeeeeieeeeeee 165
9.10.42 A _slot owninglnstance [Association].............oeeeiieuueiiiiiiiiiiiiiiiiiiiiee i 165
9.10.43 A_specification_owninginstanceSpec [AssSOCIation]..........eeeeeeeiieeieiieiiiiiiiiiiiiiiiiiiieeieenne. 166
9.10.44 A _subsettedProperty property [Association]............coccceeniiniinnneiiiii 166
9.10.45 A substitution_substitutingClassifier [Association]...............ccccceeneneneeeeeeiiiiiii 166
9.10.46 A_type_operation [AsSOCIatioN].......eeiieuueiiiiiiiei i, 166
9.10.47 A value_owningSlot [ASSOCIatioN]........ceevvuueuuiiiiiiieiiiiiiiiieeeeeceeeeeeee e 166
10 SimPle ClasSIfierS. . oottt eeeeiie e eeieeeeiies 167
10.1 SUMMAIY. ittt ettt ettt ettt et e e 167
(O DT = 1 Y o 1= T U N T TR T 167
10.2.1 STV 0 010 0= T 167
10.2.2 AbStract SYNtaX......eeiiiieeee it 167
10.2.3 SEMANTICS. oo it e e e e e et 167
10.2.4 NOTAEION. .ottt e e 168
10.2.5 | e=10010) [T T 168
0.3 SIONAIS . ettt e et it e e et eieeiens 169
10.3.1 100010071 T 169
10.3.2 ADSLract SYNtAX.....uuueeeiiiiiiiiiiiiii e 169
10.3.3 ST 00 F= 101 (o T T T 169
10.34 [N (o) 7= 1 (0] o T T T T U U T TN 170
10.3.5 [e=10010) [T T 170
O [0 (=Y = o Y- T T T, 170
10.4.1 SUMIMIANY .ttt e e ettt e et et eeeeeeeeeeeeeeeeeeeeeeeaeeieeeeeeeeeeeeeeeeeeeeeeaiaas 170
10.4.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiii e 171
10.4.3 ST 0 0= 110 T 171
10.4.4 N[0 7= 110 o T T T 172
10.4.5 EXAMPIES. .ottt 172
10.5 Classifier DeSCIDtIONS. . iuuuiieiieiii i eeeeeeeenn, 174
10.5.1 BehavioredClassifier [Abstract Class)]..........oeeiiiieeeiiiiiiiiiiiiiiiiieiiiiiieeieieeeeeeeeeeeeeee 174
10.5.2 DataType [ClaSS] uuuueueeeeei ettt eeeeeeeeeeeeeeeeeeeeeeeenenns 174
10.5.3 Enumeration [ClasS]......... i 175
10.5.4 EnumerationLiteral [ClasS]........ceuuuuuuuuiiiiiiiiiiiiiiiiiieeeeee e ee et 175
10.5.5 Interface [ClasSS] . uuiuiueeeeeiiie it 176
10.5.6 InterfaceRealization [ClasS].........eiiiieeueiiiiiiiie i 177
10.5.7 PrimitiveType [ClasSS]......oieeeeeeeriiuieieiii ittt eeeeeeeeeeeeeeeees 177
10.5.8 [R{Yetey oY (o) o W K04 P11 O T 178
10.5.9 ST (o [a T 1N (01 P2 1T T T 178
10.6 Association DeScriptionS.oocuuiiieuniiiiiiiiiieii e 179

Xii

Unified Modeling Language 2.5.1

10.6.1 A_classifierBehavior_behavioredClassifier [Association]...............ccoeeeeeeeeeiiennneeennes 179
10.6.2 A_classifier_enumerationLiteral [Association]............cooeveveeueeueiiiiiieiiieieeiiiiiieeeeinnn 179
10.6.3 A_contract_interfaceRealization [ASSOCIAtioN].......vueeeeiiiiieeieiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeiieiinn, 179
10.6.4 A_interfaceRealization_implementingClassifier [Association]...........cccccceeeveeeeeieiiiinnneeeee.s 179
10.6.5 A_nestedClassifier_interface [Association]...........coooeeeuuveeeeeeeiiiiiiiiiiiiiiiiiiiieeeeeeeee 180
10.6.6 A_ownedAttribute_datatype [Association]..........cceevvueeiiiieiiieiiiiiiiiieiiiieeeeeeeeeee 180
10.6.7 A_ownedAttribute_interface [ASSOCIAtION]...euueuiiiieeeeiiiieiieeeiieeee e 180
10.6.8 A_ownedAttribute_owningSignal [Association].............ceeeiiieiueiiiiiiiiiiieiiiiiieeeeiiieeeeen 180
10.6.9 A_ownedBehavior_behavioredClassifier [Association].............ooveveeeveeeeeiiiiiiieieeeeeeeeeeeene... 180
10.6.10 A _ownedLiteral_enumeration [ASSOCIation]...........cceuvuuuuuiiiiiiiiiieiiiiiiiiiiiiieieeeeeeeeeee 181
10.6.11 A_ownedOperation_datatype [ASSOCIation].........covvvveeeeeeeeieiieiieieeeeeeieeeeeeeeeeeeee, 181
10.6.12 A _ownedOperation_interface [ASSOCIAtION]....uuuueiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeieeeeeeene 181
10.6.13 A _ownedReception_interface [AsSSOCIiation]..........ooovvvveeeeueuuiieiieiiiiiieieiiiieeeicieieeeeee 181
10.6.14 A_protocol_interface [AssoCiation]...........eeeevicineeiiiiiiinniiiiiiiiiiiiiiiii 182
10.6.15 A redefinedinterface_interface [Association]..........ccoeeeeeeeeeiiiiiiiiiiiiiieeeeeeeeeee 182
10.6.16 A_signal_reception [ASSOCIAtiON].....ccuuuiiiiiuiiiiiiiiiiiiei it 182
11 Structured ClasSifierS.. ..o, 183
o B S TV 1 0 = T T T 183
11.2 Structured ClasSifierS........ovveueiiiiiiiiiiiiiiiiiiieiieiieiee e 183
11.2.1 SUMIMIAIY ..ottt e et ettt e e et ettt e et e e eeeeeeeeeeeeeeeaaeaans 183
11.2.2 AbStract SYNtaX......eiiiiieeee it 183
11.2.3 ST 00 F= 101 (o T T 184
11.24 NOTAEION. Lottt e e 185
11.2.5 =100 o (=T 186
11.3 Encapsulated ClasSifierS.u.uiieiieeiiieiiiiiiiiiieiiieiiieiie i 189
11.3.1 SUMIMAIY . ettt ettt ettt ettt e et e e e e e e ereaaannn 189
11.3.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiieieeeee e 190
11.3.3 SEMANTICS. .o i ittt e e e 190
11.34 [N (01 7= (0] o T T T 191
11.3.5 EXAMPIES. ..ottt ee e 192
o O - 11 T T T T T 194
11.4.1 STV 0 0= 194
11.4.2 Abstract SYNtaX......eeeiiieeeiiiiiiiei e 194
11.4.3 SEMANTICS. oo i ittt e ettt 194
11.4.4 N[0 = (0] o T T 195
11.4.5 | e=10010) [T T 195
11.5 ASSOCIAtIONS...iieeuiiiiiiiii e, 199
11.5.1 SUMIMIAIY ..ottt ettt et ettt e e et e ettt e e et e e eeeeeeeeeeeeeeaaaeaens 199
11.5.2 AbStract SYNtaX......eiiiiieeei it 199
11.5.3 ST 00 =101 (o T 199
11.54 NOTAEION. Lottt e e 201
11.5.5 =100 o (=T 203
11.6 COMPONENES. .euuiiieiiiee ettt ettt ettt 208
11.6.1 ST L0010 0= o T T 208
11.6.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiieieiee et 209
11.6.3 SEMANTICS. oo i ittt e e e e 209
11.6.4 [N (01 7= (0] o T T T 210
11.6.5 | e=10010) [T T T U U TR T 211

Unified Modeling Language 2.5.1 Xiii

Xiv

11.7.1 T80 010 0= o T T 215
11.7.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiiiiei et 215
11.7.3 SEMANTICS. .o iiiiiiieeee e e e e e e, 216
11.7.4 [N (01 7= (0] o T T T 217
11.7.5 EXAMPIES. ..ottt ee e 217
11.8 Classifier DeSCriptiONS. .. iveeeiiieeiiiieiieeee et eeeeee e eeieeeeeeeees 219
11.8.1 J NI Yo Yol = L1 To) A W (O F= 11 T 219
11.8.2 AssociationClass [ClaSS]..uuu.uiiiieeui ittt 220
11.8.3 ClaSS [ClaSS].uuuuuue ittt ettt ettt ettt e e e et e ieeeeens 221
11.8.4 Collaboration [ClaSS]. ittt 222
11.8.5 CollaborationUSe [ClasS]......cooiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee et 223
11.8.6 ComMPONENt [ClaSS].uuuueu ittt 224
11.8.7 ComponentRealization [ClasS]..........uueeeeiiiiiiiiiiiiiieeieceiieeeeee e 225
11.8.8 ConnectableElement [Abstract ClasS].......oviieeeeeiiiiieieiiiiiiiieiiiiiiee e 226
11.8.9 ConnectableElementTemplateParameter [Class]..........uveeeeeeieieieeiiiiiiiiiiiiiiiiieeeieeeeeeen, 226
11.8.10 CoNNECIOr [ClaSS . uuuuuueieiiiiieiiiiiieeeee et e ettt et et e eeeeeeeeeeeeeeennen 227
11.8.11 ConNectorENd [ClaSsS]....cooiiiiiiiiieieiieeeeee ettt 228
11.8.12 ConnectorKind [ENUMEration].........eeiieeeeiiiiiiiiiee e 229
11.8.13 EncapsulatedClassifier [Abstract Class)]...........ueieiiieuuiiiiiiiiiiiiiiiiieeieiieieeeeeieieeeeeeeeaan 230
11.8.14 POIt [ClaSS]iiiiuiueutetieie oottt ettt 230
11.8.15 StructuredClassifier [Abstract ClasSS]........eiiiieeeeiiiiiieiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn, 232
11.9 Association DescriptionS..........ceuiiieuiiiiiiiiiiiiiiiiiei e 233
11.9.1 A_collaborationRole_collaboration [Association]..............eeeeeeieiiiiiiiiiiiiiiiiieiiciiiieieeeeene . 233
11.9.2 A_connectableElement_templateParameter _parameteredElement [Association]............. 233
11.9.3 A_contract_connector [ASSOCIation].....eeeeeeveeiiiiiiiiiiiiiiiiiii 234
11.9.4 A_definingEnd_connectorEnd [Association]...........cceeeveueueieieiiiiiiiiiiiiiiieeeeeeeee 234
11.9.5 A_endType_association [ASSOCIAtioN]........ceuuuieiiiieiiieiiiiiiiieiiiiiiee e 234
11.9.6 A_end_connector [AssSoCiation]........ooeeeeeeeiiiiiiiiiiiiiiiiiii 234
11.9.7 A_end role [Association].........ccceeeeenniiiiiiiiiiee e 234
11.9.8 A_extension_metaclass [ASSOCIAtioN].....cuuuieiiiiuuiiiiiiiiiiii i 235
11.9.9 A_memberEnd_association [Association]..........ccuvueiiiiiiiiiiiiiiiiiieiiiiiiieee e 235
11.9.10 A_navigableOwnedEnd_association [ASsSOCiation].........cccvveeeiiiiiiiiiiiiiiiiiiiiiiieiee, 235
11.9.11 A_nestedClassifier_nestingClass [Ass0CIiation].........eeeiieeeeeieiiiiieeiiiiiiiieieeiiiiieeeeeeen 235
11.9.12 A_ownedAttribute_class [ASSOCIAtioN]..........uuuuiiiiiieeeiiiiiiiiieiiieiieeeeeeeeeeee e, 236
11.9.13 A _ownedAttribute_structuredClassifier [Association]..........ooeeeeeiiiiieeeeeeeiiiiiiiieieieeeeeeeeeen. 236
11.9.14 A _ownedConnector_structuredClassifier [Association].............cceeeeeeeieiiiiiiiiiiiiieeiieeeeeennne.. 236
11.9.15 A _ownedEnd_owningAssociation [ASSOCIatioN]...........ueeiiiieereiiiiiiiiiieiiiiiiieeeeeiieieeeeenee, 236
11.9.16 A _ownedOperation_class [Association]........cccoeeeeeiiiiieiiiiiiiiiiiiiiiiiiiiiii 237
11.9.17 A_ownedPort_encapsulatedClassifier [Association].............oocooeeiiiiiiiiiiiiiiiiiiiin 237
11.9.18 A_ownedReception_class [Association]........ooveevuuiiiiiiiiieiiiiiiiieiiiiiieeeieeiiei e, 237
11.9.19 A _packagedElement _component [Association]........oeeeveevueieiiiiiiiiiiiiiiiiieieiiiiiiieeeeiiii 237
11.9.20 A partWithPort connectorEnd [Association]........cccceeeeeeeiennnneeeeiiiiiiiiiieeeeeee, 237
11.9.21 A part structuredClassifier [Association].........eeeeeeeeeeiissiiiiieeieeeeeeeeeee 238
11.9.22 A _protocol_port [ASSOCIAtION].....uuuueiiiieiiiiiiiiiiiiiecieeeie e 238
11.9.23 A_provided_component [ASSOCIAtION]....uuuuuuiiiiieeeiiiiiieeeeiieiiee e 238
11.9.24 A provided port [ASSOCIAtION]. . eeeuuuueiiiiiiieiiiiiee e 238
11.9.25 A _realization_abstraction_component [Association]...........ccoeeeeiiiieeeeeeiiiiiiieieeiieiieeeeenenee. 238
11.9.26 A_realizingClassifier_componentRealization [Association]...........ccoeeeeveeeeeiieeeieiiiveeenn... 239
11.9.27 A_redefinedConnector_connector [Association].........coooeeeviiiiiiiiiiiiiiiiiiiiiiiiiin 239

Unified Modeling Language 2.5.1

11.9.28 A_redefinedPort_port [ASSOCIiation].......ccoeeeuveeeiiiiiiiiiiiiiiiiiiiiiiiiii 239
11.9.29 A _required_component [ASSOCIAtioN]....cuuuuiiiiiiiiiiiiiiiiieiiiiiiiiee e, 239
11.9.30 A _required_port [ASSOCIAtION] . euuuuriiiiiii it e 239
11.9.31 A roleBinding_collaborationUse [ASsOCIiation].....eeeeeeeeeeeeeeeeeiiiiiiiiiiiieieeeeeeeeee 240
11.9.32 A role_structuredClassifier [Association]........cooceeeeeeeeneeeiiiiiiiiiiiiiiiiiieeeee e 240
11.9.33 A _superClass_class [ASSOCIAtiON]......uuuuuuuuuiiiiiiiiiiiiiiiiiieeicieeieeeeee e 240
11.9.34 A _type_collaborationUse [ASSOCIAtION]....euuueeeeieiiiiiiiiiiiiiiiiiiiiiiieeeeeeeiiiiiiiieiieeeeee, 240
11.9.35 A _type connector [ASSOCIatioN]. ucuuuuuiiieee i, 240
12 PacCKaQeS.......uiiieuiiiiiiiii ettt ee e 241
o R S TV 11010 0= T A T 241
12.2 PaCKaAQES. . .ouuuiiiieiiiiiiiiee e 241
12.2.1 ST L0010 0= o T T 241
12.2.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiieieee e 241
12.2.3 SEMANTICS. oot e e e 241
12.2.4 [N [0) 7= (0] o T T T 248
12.2.5 | e=10010) [T T T U T TR 249
12.3 ProfileS......ccoeeeieeiineeiiieiiineeiieeeiieiiiieeiiieiieeiieee i 252
12.3.1 SUMMIAIY ettt ettt e e e e e et e et e et eee e i e e eeeeeee i 252
12.3.2 Abstract SYNtaX.....eeeiieeeeiiiiiiiiei e 253
12.3.3 SEMANTICS. oottt e e e e et e 253
12.34 N[0 = (0] o P T 262
12.3.5 | e=10010) [T T 264
12.4 Classifier DeSCrPtiONS.cvveuueiiiiiiiieeiiiiiiiei e e, 273
12.4.1 EXtENSION [ClaSS]..uuuueiiiiiiiiiiiiiieeeeee ettt 273
12.4.2 ExtensionENd [ClasS]..uuu..iiieee i 274
12.4.3 IMAQE [ClASS]..iiiiiiiieieeee ettt et e e e e e e e e e e ee e e e, 275
12.4.4 MOAEI [ClaSS]. .ottt ettt eeeeeeeeeeeeaeees 275
12.4.5 Package [ClasSS]....uuueeeueueiuieiie ittt ettt e ettt e e e et e e e e e 276
12.4.6 PackageMerge [ClasS]......oouiiieeeeeeeeiiieieiiieieeeee et ee e, 278
12.4.7 |) (1[N [0 P2 11 T T 278
12.4.8 Profile Application [ClasS].........ouuveeeuuriiiieieeie it 279
12.4.9 StEreotyPe [ClaSS]. ittt ee e eeaeeaes 280
12.5 Association DescriptionS.cocuuiiieuiiiiiiiiiiiiei i 281
12.5.1 A_appliedProfile _profileApplication [Association].............euveeeeeeiiiiiiiiiiiiiiiiiiiiiiieieeeen... 281
12.5.2 A_icon_stereotype [ASSOCIAtioN]......couuuuuiiiiieeeiiiiieee e, 281
12.5.3 A_mergedPackage packageMerge [Association].........c.oeeeeeeeveeeeeeeiiiiieieeeeeiiieiieeee 281
12.5.4 A_metaclassReference_profile [ASSOCIAtON]....ueuuiiieiieeeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeieeeiein, 282
12.5.5 A_metamodelReference profile [Association]...........cceeveueeueeiiiiiiiiiiiiiiiieiiiiiiiiiieeeeeeee 282
12.5.6 A_nestedPackage_nestingPackage [Association].......oooveeiieiiiiiiiiiiiiiiiiiiiiiiiin 282
12.5.7 A_ownedEnd_extension [ASSOCIAtiON]..eeeeiiicueneiiiiiiiiiiiiiiiiiiii 282
12.5.8 A_ownedStereotype_owningPackage [Association]............oooovveieeeeeeiiiiiiiieiiieieeeeeeeeieeenns 282
12.5.9 A_ownedType package [AsSOCIatioN]...c..u.ieeieuuiiiiiiiiiieiiiiiieei e, 283
12.5.10 A_packageMerge_receivingPackage [Association]........ccveeeeiiiieiiiiiiiiiiiiiiieinn 283
12.5.11 A_packagedElement_owningPackage [Association]...........eeeeeeecnniiiiiiiiiniiiiiiiiieiennn 283
12.5.12 A _profileApplication_applyingPackage [Association]...........oeeeeeeeuevieiieiiiiiiiiieeeiiiiiiieienns 283
12.5.13 A_profile_stereotype [ASSOCIatiON]......eiiieeeniiiiiiieieieiiieeeeeeeee e 284
12.5.14 A _type extensionEnd [ASSOCIAtION]......oovevueiiiiieiiiiiiiiiieeieeiiiee e, 284
(IS Oe]0 110010) Al 21=) 0 7= 1Vi o] ST T 285

Unified Modeling Language 2.5.1 XV

13 SUMIMIAIY ittt ettt eeieaen, 285

(I 1<) F= Vi (o T T T 285
13.2.1 SUMIMIAIY ..ottt ettt ettt ettt e et et e e e e e e e e e eeeeeeeeeeeeaeaaaeaans 285
13.2.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiii e 286
13.2.3 ST 00 F= 101 (o T T T 286
13.24 [N (o) 7= (0] o T T 290
13.2.5 =100 o (< T 290

13.3 EVENES. .ottt 290
13.3.1 ST L0010 0= o T T 290
13.3.2 Abstract SYNtaX.....oeeeeiieuuiiiiiiiiei e 291
13.3.3 ST 0= 1 (o T 291
13.34 N[0 = (0] o T T 293
13.3.5 EXAMPIES. ittt i e 294

13.4 Classifier DeSCIIDtIONS . . iuuiieiiiiiiiie e eieeeeenn, 294
13.4.1 ANYRECEIVEEVENT [ClaSS]..uuuuuueeneiiiiiiiiieiieieeieeieee et eeeeeieeeeaeees 294
13.4.2 Behavior [AbStract ClasS]......ovvuueuiiiiieiiiiiiiiei e 294
13.4.3 CallEVENt [ClaSS]...ooiiiiiiiiiiiieeieeee ettt e et e et e ettt ieeeeeeeeeeeeeeees 297
13.4.4 ChangeEVvent [ClassS]. . uuuuueueueieiiie ittt ee e eeeeeeeeeeaeees 297
13.4.5 Event [Abstract ClasS].........iiiiieeeiiiiiiiiie it 297
13.4.6 FunctionBehavior [ClasSS]........iiiieeeiiiiiieeii e, 298
13.4.7 MessageEvent [Abstract ClasS]........oovvveveeeuuuiiieiieiiiee e eeeeeeeeeeeeeeeeeeiinann, 298
13.4.8 OpaqueBehaVvior [ClaSS]......ouuiiiieeeeiieeeeeee et eeee e eeeeeeeeeeeeeeeeene 299
13.4.9 SignalEVeNt [ClaSS]..uuuuueeeeiiieiiiiiiiiiiieeeeeeeee et eeeeeeiieeaens 299
13.4.10 TimeEvent [ClasS]...ocuuuiiiiieiiei ittt 299
13.4.11 A Te e[ol O F= o) T 300

13.5 Association DescriptionS........cocuuiiieuuiiiiiiiiiiiiiiiieei e 301
13.5.1 A_changeExpression_changeEvent [ASSOCIation].......uueeeeeeiiieiiiiiiiiiiiiiiiiiieieieeeeeeeee 301
13.5.2 A_context behavior [ASSOCIAtION].........uueiiiiieiiieiiiiiiieiiiiiee e 301
13.5.3 A_event_trigger [ASSOCIAtioON].. . cuuuuuuiiiieeeiiiiiieee e, 301
13.54 A_operation_callEvent [Association].........ccccueeeeeiiiiiiiiiiiiiiiiiiiii e 301
13.5.5 A_ownedParameterSet_behavior [ASSOCIatioN].........vueueeeiiiiiiiiiiiiiiiiiiiiiiieeieieieeeeeeeeeee. 301
13.5.6 A_ownedParameter_behavior [Association]............coeeveeuuiiiiiiiiiiiiiiiiiieeiiiiiiieeieeiiieees 302
13.5.7 A_port_trigger [Association]..........cccoeeeniiiiiiiiiiiii i 302
13.5.8 A_postcondition_behavior [ASSOCIation]..........eueveueueiieieiiieiiiiiiiiiiiiieeeeeeeeeeeeeeeieeeen 302
13.5.9 A_precondition_behavior [Association].............eeiiiiieuiiiiiiiiiiiiiiiiiiiee e 302
13.5.10 A _redefinedBehavior_behavior [Association]............cceeveuuuiieiiiiiiiiiiiiiiiiieiiiiiieieeeeeen 302
13.5.11 A_signal_signalEvent [ASSOCIAtON]....uuueeeeiieieieiiiiiiiiiiiiiieieeeeeeeeeeeee 303
13.5.12 A _when_timeEvent [AsSSOCIatioN]..eeuuu.iiiiieeiiiiiiiiieeiieiieee e 303

14 StateMaChiNeS......oovvvueiiiiiiiiiiiii i 305

o S TV 0010 = A T T 305

14.2 Behavior StateMachineS.........ooovvvevuiiiiiiiiiiiiiiiiiiee e 305
14.2.1 SUMIMIAIY ..ottt ettt ettt ettt e et et ettt e e e et e eeeeeaeeeeeeeaaaaaeaens 305
14.2.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiiiiei et 306
14.2.3 ST 00 F= 101 (o T 306
14.2.4 [N (01 7= (0] o T T T 319
14.2.5 =100 o) (< T 335

14.3 StateMachine Redefinition............ccvueeiiiiiieeeeiiiiiiiiiiiiiiiiiiie i 336
14.3.1 ST L0010 0= o T 336

XVi Unified Modeling Language 2.5.1

14.3.2 ADSrACt SYNTAX. it eeeeeen, 337

14.3.3 SEMANTICS. oo i ittt e e 337
14.3.4 NOLAEION. .ottt ettt e 338
14.3.5 | e=10010) [T T 339
14.4 ProtocolStateMachineS.ooovveuiiieiiiieiiiiieiiiieeieiieeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeieeen 340
14.4.1 1010010071 T 340
14.4.2 ADSEract SYNtAX.....uuueeeiiiiiiiiiiiiii e 341
14.4.3 ST 00 F= 101 (o T TP 341
14.4.4 [N (o) 7= 1 (0] o T U U O T TN 344
14.5 Classifier DeSCriPtiONS.ouiveeeeiiiiiiieeeieiiiieeeeii e e e eeeeiieeeeeeieees 345
14.5.1 ConnectionPointReference [ClasSS]..iuuuu..iiiieeeiiiiiieeeeiieeeeeeeeeeeee e 345
14.5.2 FiNalState [ClasS]. oottt ee e e e e e e ieeeeeeeeeeeees 346
14.5.3 ProtocolConformance [ClasSS]........uveeeueueeeiiiiiiieiiieiiiieeeeeeeeeie e, 347
14.5.4 ProtocolStateMaching [ClasS]......uuuuuueueeeiieiiiiiiiiieiiiieeeieeeeee ettt 347
14.5.5 ProtocolTransition [ClasSS]......ouiiiiieeeeeieeiieiiiiiiieiiiieeeeeeeeeeeeeee e, 348
14.5.6 Pseudostate [ClasS]. . ..uuuuueeeeiiieiiiiiiiiiieeeeeeeeee e 349
14.5.7 PseudostateKind [Enumeration]..........eeeieeeueeiiiiiiiieiiiiiiieeieiieiee e 351
14.5.8 ReQION [ClaSS]iiuieeeeeeuenieiiii ittt i e e e e e e e e e e, 352
14.5.9 State [ClasS]....ooiiiiiiiiiiiiieieee ettt e e e e e eeeeeeeeeaeees 354
14.5.10 StateMaching [ClaSS]........ccoouiiiiieeereiiieiiieie ettt eeeeeeeee e eeeeeeee 357
14.5.11 Transition [ClasS]. . ..cuuuieeeeeeetieee e ettt eeee et eeeaeeeeeaeeeaes 359
14.5.12 TransitionKind [Enumeration]...........couuiiiiiieueiiiiiiiiiieiiiiiie e 362
14.5.13 Vertex [AbStract ClassS]......ccuuuiiiiieiiieiiiiiiiiee ettt 362
14.6 Association DeSscriptionS.ocuuiiieeniiiieiiiiiiiiiieei e 364
14.6.1 A_conformance_specificMachine [Association]........coeeeeeeeeiiiiiiieeeeiiiiiiiiiieeieieeeeeeeeeeeeeeennns 364
14.6.2 A_connectionPoint_state [Association].............oeeeiieeuiiiiiiiiiiiiiiiiiiieeiieee e 364
14.6.3 A_connectionPoint_stateMachine [Association]...........cooovvvviiieeeeeiiiiiiieieiieeiieiiiieeeeeeeeveanne. 365
14.6.4 A_connection_state [ASSOCIAtION]. . uuuuuiiiieeeeiiiiieeeeeieeeee e 365
14.6.5 A_deferrableTrigger_state [AssocCiation].........eeeeeeeeeiieiiiiiiiiiiiiiiiiie i, 365
14.6.6 A_doActivity state [ASSOCIAtioN]....ceuuuiiiieeieiiiiiiiiieiiiiiiee e 365
14.6.7 A_effect_transition [ASSOCIAtION]......cceeiiiiiieeiiiiiiiieiie i 366
14.6.8 A_entry_connectionPointReference [Association].........oeeveeiiniiiiiiiiiiiiiiiiiii 366
14.6.9 A_entry state [Association]..............ccccii 366
14.6.10 A _exit_connectionPointReference [ASSOCIAtION]...uuuuueeiiiiiiiiiiiiiiiiiiiiiiiieeieieieeeeeeeeeeeeeeenns 366
14.6.11 A_exit_state [Association]...........oeveiieuuuiiiiiiiiiiiiiiiiiiee e 366
14.6.12 A extendedRegion_region [Association]............ccccceeeiniennnenneeeeiiiiiiieeeeeeee 367
14.6.13 A _extendedStateMachine_stateMachine [Association]...........ccocvveeeiiiieeeeeieiiiiiiieiieieevann., 367
14.6.14 A_generalMachine_protocolConformance [Association]............eeeeeeieieiieeeeiiiiiiiieeiiiiiennnnn.. 367
14.6.15 A_guard_transition [ASSOCIAtiON]........cuuuiiiiieeeiiiiiiiieeiiiieeee e 367
14.6.16 A_incoming_target vertex [Association]............ceeeiiieuuuiiiiiieiiiiiiiiiiiiieieiiiiiieeeeieiieeeeeeeean 367
14.6.17 A _outgoing_source vertex [ASSOCIatioN]........c.uuiiiiieuuiiiiiiiiiieiiiiiiiieieeieiieeeeeieeeeeeeeeeeae, 368
14.6.18 A_postCondition_owningTransition [ASSOCIAtON]....cccueiiiuiiiiiiiiiiiiiiiiiii 368
14.6.19 A_preCondition_protocolTransition [Association]..........cccoeeeeviiiiiiiiiiiiiiiiiiiiien 368
14.6.20 A_redefinedTransition_transition [Association]............ceevvveueiieieiiiiiieiiiiiiiieiiiiiiiieieeeen 368
14.6.21 A _redefinedVertex_vertex [ASSOCIAtON]...uuuureeiiereeeiiiiiiiiiiiiiiieieiiiieeeeee e 369
14.6.22 A redefinitionContext region [Association].............oeeeeeeciieeeeeie 369
14.6.23 A_redefinitionContext_transition [Association]...........ceeovvieveiiiiiiiiiiiiiiiiiiiiiiieen 369
14.6.24 A_redefinitionContext _vertex [ASSOCIatioN].........eeeieiiiieiiiiiiiiiiiiiiiiieieieeieeeeeeeieeeeeeeeiiaen 369
14.6.25 A_referred_protocolTransition [ASSOCIAtioN].......eeuuuuuuueieieiiiiiiiiiiiiiiiieiiiiieee e 370
14.6.26 A _region_state [ASSOCIAtION] . eeuuuuiiiiiei i 370

Unified Modeling Language 2.5.1 Xvii

14.6.27 A_reqgion_stateMachine [AssoCiation]...........ooeueeeneeiiiiiiiniiiiiiiiiiiiiii 370

14.6.28 A_statelnvariant_owningState [Association]..............vuvueieieieiiiiiiiiiiiiiiiiiiiieieieeeeeeeee 370
14.6.29 A _submachineState_submachine [Association]...........ccooevveveveeeveiiiiiiiiiiieeiiiiiiiieeeeeiieenn. 370
14.6.30 A subvertex container [Association].........ccccueeeneiininneeiniiiiiiiii 371
14.6.31 A transition_container [Association].............cccceeeeninnnnnnneiiiiii 371
14.6.32 A_trigger_transition [ASSOCIAtiON]......ceeeeuuuuueiieiiiiiiie e, 371
15 ACHVITIES. ittt eeeaees 373
15.1 SUMMAIY. . ciiiiii it ettt ettt ettt et e e e 373
15.2 ACHVItI®S.ciiieeiiieeiiiieeeiiieeiee ettt eaennn, 373
15.2.1 SUMIMIAIY ..ottt ettt ettt ettt eee e ettt et e e et e e e eeeeaeeereeeaeaaaeanns 373
15.2.2 ADSLract SYNtAX....uuuueiiiiiiiiiiiiiiiiee et 374
15.2.3 ST 00 F= 101 (o T T 374
15.2.4 NOTAEION. .ottt e e 379
15.2.5 =100 o) (< T 382
15.3 CONtrol NOAES..oeuuen ittt 387
15.3.1 ST L0010 0= T 387
15.3.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiii e 387
15.3.3 ST 0 0= 1 (o T 387
15.34 [N (o) 7= 1 (0] o T U U O T TN 391
15.3.5 EXAMPIES. ittt i e 392
15.4 ObJECE NOAES. . iieuiiiiiiiiiiiiiiiee e, 396
15.4.1 SUMMIANY ettt ettt et e e ettt et e e e e eieeeeeieeeeeeeeeeean 396
15.4.2 ADStract SYNtAX.....uuueieiiiiiiiiii i 396
15.4.3 SEMANTICS. oo iiiiiiiieeei ettt e e, 397
15.4.4 N[0 7= 110 o T T 399
15.4.5 | e=10010) [T T 401
15.5 Executable NOAES......uuuiiiiieiiiiiiiiiie et 403
15.5.1 SUMIMIAIY ..ottt ettt ettt ettt e e et e e e et e eeeeaeeeeeeeeeaeaeaeas 403
15.5.2 AbStract SYNtaX......eeeiiieeee it 403
15.5.3 ST 00 F= 101 (o T T 403
15.54 NOTAEION. .ottt e e 404
15.5.5 =100 0 (< T 405
15.6 ACHiVity GrOUPS...ooiieeee ittt 405
15.6.1 ST L0010 0= o T 405
15.6.2 ADSEract SYNtAX.....uuueeeiiiiiiiiiiiiiiiee e 406
15.6.3 SEMANTICS. s ieueeiiiiieeee ettt ee e i 406
15.6.4 [N (o) 7= 1 (0] o T U U O T TN 408
15.6.5 EXAMPIES. ittt e i 409
15.7 Classifier DeSCriptiONS. . ..ovuuiiiei i 411
15.7.1 ACHVItY [ClASS].ciiiiiiiieieeetiie ettt e et e e et e ee e e e e e e e e, 411
15.7.2 ActivityEdge [Abstract ClasS].......uuuuuueeiiiiiiiiiiiiiiiiieieeeeeeeee e 413
15.7.3 ActivityFinalNOde [ClasS]......cieiiiiiiiiiiiiiieeeeee oo eee e, 414
15.7.4 ActivityGroup [Abstract ClasS]......oovvuuueniiiiiiiiiiiiiiiieie e 414
15.7.5 ActivityNode [Abstract ClasS].......uuiiieeeeiiiiiiiiie i 415
15.7.6 ActivityParameterNode [ClasS].........oouiiiiieeeeuiiieieiieiee e, 417
15.7.7 ActivityPartition [ClasS].........ouvveeeuuuuriieieiieiie et 418
15.7.8 CentralBufferNOde [ClasSS]....cuuuueureeeeiiiiiieiiiiieieee e, 419
15.7.9 [070] a1 (o) | =l (o) A @] F= 1] T T T 420

XViii Unified Modeling Language 2.5.1

15.7.10 ControlNode [ADStract ClaSS] ... iiuu i 420

15.7.11 DataStoreNode [ClasS]......coooiiiiiiieeeeiiieieeei et eeee e, 420
15.7.12 DecCiSiONNOdE [ClASS].....oieveeeeereiiieieiieie et ee et e eeeee e e ieeeeeeeeeeeeeeees 421
15.7.13 ExceptionHandler [ClasSS]......cuuuuuueueiiiiiiiiiiiiiiieiieeieeee e eeeeeeeeeeeeeeees 422
15.7.14 ExecutableNode [Abstract Class]..........eeiiiieueeiiiiiiiiiiiiiiiiiieieeiiieeeeeeeeeeeeeeeeeeeeen 424
15.7.15 FinalNode [Abstract Class]..........ccoouiiieieeuuiiiiiieieiii e, 424
15.7.16 FIOWFINAINOAE [ClaSS]...coioiiiiiiiiiieeiiieee ettt eeeeeaeeeieeeeeeeeens 424
15.7.17 FOrKNOAE [ClasSS]...iiiiiiiiiieeieiieieieiiiieeeeeeeeeeiee ettt et ee e e e e e eeeeeeeeeeeeeeeeeeeeeieeieiiaees 425
ST R T (V14 7= |\ fo Yo [N [F= 13 K 425
15.7.19 InterruptibleActivityRegion [ClaSS]........couuuiiiiiiiiiiiiiiiiieeeeeeeeee et 426
15.7.20 JOINNOAE [ClaSS]ciiieuuueueunneieiee ettt eeeeeeeeeeeeeeeeeeeeeeeeeennn 426
15.7.21 MergeNOde [ClaSS].....couiiiiieeeeeiiie ittt ettt et ieeeeeeeeeeeees 427
15.7.22 ObJECtFIOW [ClaSS]...uuuiiiiiiiiiiiiieeeeeeeeee ettt et et e e e e 428
15.7.23 ObjectNode [Abstract ClasS].........eiiiieuuiiiiiiiiieiiiiiieeeeieeeei e 429
15.7.24 ObjectNodeOrderingKind [Enumeration]...........cooeeveeeeniiiiiieeiiiiiiiiiieeeeiiiieeeeeieeeeeeeeeen 430
15.7.25 Variable [ClaSS)].....uuuueeeeeiieeiiiiiiiiiieeeeeeeiee e ettt et e e e e e e e i et i eeeeeeeeeeeen 431
15.8 Association DeSCriptiONS . uuieeuiiee it 432
15.8.1 A_containedEdge_inGroup [Association]........eeeeeeeesisiiieieeee 432
15.8.2 A_containedNode_inGroup [Association]............ccceeeeinnniiieeee 432
15.8.3 A_decisionlnputFlow_decisionNode [ASSOCIation]..........uueeeieieieiieiiiiiiiiiiiiiiiiieieeeeeeeee 432
15.8.4 A_decisionlnput_decisionNode [AsSSociation].........uiiveeniiieeiiieeiiiieeiiiieeeeeeeieeeeeeeeen 432
15.8.5 A_edge_activity [ASSOCIAtION]...oeuuuuiiiiieiie i 432
15.8.6 A _edge_inPartition [ASSOCIAtION].......cuuuiiiiiiiieiiiiiiiiieieiiiiiee e 433
15.8.7 A_exceptionlnput_exceptionHandler [Association]..........coeeeeiiiiiiieeeeeiiiiiiiiiiiieieeeeeeeeeeeenne, 433
15.8.8 A_exceptionType_exceptionHandler [Association]..........ooeveeeneeiiiiiiineiiiiiiiiiiieeeee, 433
15.8.9 A_group_inActivity [Association]............ieiiiiuuuiiiiiiiiiiiiiiieee e 433
15.8.10 A _guard_activityEdge [Association]............uueeiiieuuiiiiiiiiiiiiiiiiiieiiiiiieieeeeeie e 434
15.8.11 A_handlerBody_exceptionHandler [Association]............cccvveeeiiiiiiiiiiiiiiiiiiiiiieenne 434
15.8.12 A handler_protectedNode [Association]...........eeeeeeiisciiieeee e 434
15.8.13 A _ininterruptibleRegion_node [ASSOCIatioN]......eieiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeieeeeeinn, 434
15.8.14 A_inPartition_node [ASSOCIatioN]......ccooeeiiiiiiiiiieiiiiiiiiieieieeee e 434
15.8.15 A _inState_objectNode [ASSOCIation]......ccevevieieeuiiiiiieeieieieeeeeieiiieeeeeeeeee e 435
15.8.16 ___A_incoming_target node [ASSOCIAtION]....uuuuueeiiiiieieiiiiiiiiiiiieeeee e, 435
15.8.17 A _interruptingEdge_interrupts [Association]............eevuveueeiiiieiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 435
15.8.18 A_joinSpec_joinNode [ASSOCIAtION]......cuuuuiiiiieeeeiiiiieiieeeeieeeee e, 435
15.8.19 A _node_activity [ASSOCIAtION]....ccuuuuiiiiiiiieiiiiiiee et 435
15.8.20 A _outgoing_source _node [AsSSOCIatioN]......uuieiieeuuiiiiiiiiieieiiiiieeeeieieeee e 436
15.8.21 A_parameter_activityParameterNode [Association].......eeeeeeeeeeeeeeeeesiiiiiiiiieieee, 436
15.8.22 A partition_activity [Association].............ooeeeeieiciie 436
15.8.23 A _redefinedEdge_activityEdge [ASSOCIatioN].....uuuueeeieiiiiiiiiiiiiiiiiiiiiiiieieeieieeeeeeeeeeeeeeeeenn 436
15.8.24 A _redefinedNode_activityNode [ASSOCIatioN].....u.ieiieeiiiiiiiieeeiiiiiiiiiieeeeieeeeeeeeeeeeeeeiiiaan, 437
15.8.25 A _represents_activityPartition [ASSOCIAtioN].....uuueeeiiieiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeiiiiiia, 437
15.8.26 A _selection_objectFlow [ASsSOCiation]......ccuvuiieeeeueiiiiieieieieeeeeeeeiiiieeeeeeeeeeeeeeeeeeee 437
15.8.27 A _selection_objectNode [Association].........coeveeeueuuuiiiieieiiiiieiiiiiiieeeeiieieeeee e 437
15.8.28 A_structuredNode_activity [ASSOCIAtioON]......ueeiiiiiiiiiiiiiiieiiiiiieieieeee e 437
15.8.29 A _subgroup_superGroup [ASSOCIAtION]...u.ieeeeeeiiiiiiiiiiieiiieeeeeeeeeeeeeieeeieeeieeeeeeeee 438
15.8.30 A _subpartition_superPartition [ASSOCIAtioN].......uuuueeeeiiiiiiiiiiiiiiiiieiiiieieeieieeeeeeeeeeeeeeeeens 438
15.8.31 A_transformation_objectFlow [Association]...........uuiiiiieeeeiiiiiiiiiieeiieieeeeeeeeeeeieieees 438
15.8.32 A upperBound_objectNode [Association].........eeeeeeeeeeeeeeeiiiiiiiiiiiiiiiiieeee e 438
15.8.33 A variable_activityScope [ASSOCIation]......cccuuvuuvveeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeieien 438
15.8.34 A _weight_activityEdge [AsSOCIation].....u..eiieeueieiiiiiiieeiiiiiiiee e 439

Unified Modeling Language 2.5.1 Xix

D A CH O S ettt ittt ettt ettt ittt ttteeeteteeteeteetesteeieesteiteeseesieeteeieesieiieeseesienss 441

XX

T S TV 1010 = | A T 441
16.2 ACHONS. oot eaaann 442
16.2.1 SUMIMIAIY ..ottt ettt ettt ettt e et et e e e e e e e e e eeeeeeeeeeeeaeaaaeaans 442
16.2.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiii e 442
16.2.3 ST 00 F= 101 (o T T T 443
16.2.4 [N (o) 7= (0] o T T 446
16.2.5 EXQMPIES. .ottt e 447
16.3 INnvocatioNn ACHIONS. ..euuuiiieen it 450
16.3.1 ST L0010 0= o T T 450
16.3.2 Abstract SYNtaX.....oeeeeiieuuiiiiiiiiei e 450
16.3.3 ST 0= 1 (o T 450
16.3.4 N[0 = (0] o T T 453
16.3.5 EXAMPIES. ittt e i 456
16.4 ObJECE ACHONS. ittt 458
16.4.1 SUMIMIAIY .ottt e et ettt e e e ee et ettt et e e et e e eeeieiereeeeeeeeeeens 458
16.4.2 AbStract SYNtaX......eeiiiieeei i 458
16.4.3 SEMANTICS. oo iiiiiiieeee et e e, 458
16.4.4 NOTAEION. Lottt e e 460
16.4.5 | e=10010) [T T 460
16.5 LinK ENAd Data.....ccuuuuiiiiiiiiieiiiiiiiiii e, 461
16.5.1 SUMIMIAIY ..ottt ettt ettt ettt e et et ettt e e e et e eeeeeaeeeeeeeaaaaaeaens 461
16.5.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiieieeeee e 461
16.5.3 ST 00 F= 101 (o T T T 461
16.5.4 [N (01 7= (0] o T T T 462
16.5.5 EXQMPIES. .ot ee e 462
16.6 LinK ACHONS ...ttt 462
16.6.1 ST L0010 0= o T 462
16.6.2 Abstract SYNtaX.....eeeiiieeeiiiiiiieei e 463
16.6.3 ST 0 0= 1 (o T 463
16.6.4 N[0 = (0] o T T 465
16.6.5 EXAMPIES. ittt e i 465
16.7 LinK ObJECt ACHONS . ciiuuiiieiiiiiiiiie e, 465
16.7.1 STV 00 0P 465
16.7.2 AbStract SYNtaX......eiiiiieeei it 466
16.7.3 SEMANTICS. oo iiiiiiiieeei ettt e e, 466
16.7.4 NOTAEION. Lottt e e 467
16.7.5 | e=10010) [T T 467
16.8 Structural Feature ACtONS.........ooevueiiiiiiiieiiiiiiieee e, 467
16.8.1 SUMIMIAIY ..ottt ettt ettt ettt e et et ettt e e e et e eeeeeaeeeeeeeaaaaaeaens 467
16.8.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiiiiei et 467
16.8.3 ST 00 F= 101 (o T 467
16.8.4 [N (01 7= (0] o T T T 469
16.8.5 EXQMPIES. .ot ee e 469
16.9 Variable ACHONS. . ..oiieueiiiiei i 469
16.9.1 ST L0010 0= o T 469
16.9.2 Abstract SYNtaX......oeeiiieuueiiiiiiei e 470
16.9.3 SEMANTICS. ettt ee e e e, 470

Unified Modeling Language 2.5.1

16.9.4 INOEATION . et eeieeeeeen, 471

16.9.5 EXAMDIES. ittt i e 472
16.10 Accept EVent ACHIONS. ...oovuuuiiiieiiiiei i 472
16.10.1 STV 0 010 0= T 472
16.10.2 Abstract SyNtaX......oooovveeeeniiiiiiiiiii e 472
16.10.3 SeMANTICS. .oeiiiiiiiiiieieeee ettt e e e e e e e e 472
16.10.4 NOLAON.....uuiiiiii ittt ettt e e et e e eeeeeaereaaanes 474
LR T = = 1101 0) (=Y T TN 474
16.11 StruCtUred ACHONS. .. ittt ettt ettt ieeenn, 475
16.11.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 475
ST N IV X o 1] (1= (o 01 ¢) T T 476
16.11.3 SEMANTICS. ettt 476
16.11.4 NOTATION. Lottt e s 480
16. 115 EXAMIDIES ettt eeeeaee e 480
16.12 EXpansion REQIONSovuuuiiieiiiiie ettt ettt 480
T 2 I S YU 111101 = 1 A 480
16.12.2 AbStract SYNtaX......oeuuuuuuueieiiiiiiiiiii e 480
O A T S 1= 0 1 = o T T 481
o T 2 S \\ o] = (o o W TR 482
16.12.5 EXAMPIES..ieuuuuiiiiiie ettt ettt a e 484
16.13 Other ACONS. uuiiee ittt eeeeens 486
16.13.1 STV 0 010 0= T 486
16.13.2 Abstract SyNtaX......ooooeveeuuniiiiiiiiiii i 486
16.13.3 SeMANTICS..ooiiiiiiiiiiieieeeee ettt e e e e e e e e 486
16.13.4 NOtAtON. ...ttt ettt e et eeereeeeaeaaaaaees 487
(R = = 1111 0) =Y T T 487
16.14 ClasSifier DeSCIIDtIONS. .. ouuiieiie ittt ettt et e ee e eeee e i eeeneeeenn, 488
16.14.1 AcceptCallAction [ClaSS]......ooeeeiiiiiiieeieeieeeeie e et eeeeeeeeeeeeeannenn, 488
16.14.2 AcceptEventAction [ClasS]......uuue. it 489
16.14.3 Action [Abstract ClasS]......uueiieeuueiiiiiiiiie it 490
16.14.4 ActionINputPin [ClaSS]....uuuueiiiiiiiiiiiiiiiiieeeieee e, 492
16.14.5 AddStructuralFeatureValueAction [ClasS]..........ouuiiiieieeeueiiiiiiieiiiiiieeeeeieeeeeeeeeieeeeeeen 492
16.14.6 AddVariableValueAction [ClasS]........cuuueiiiieeuuiiiiiiiiiiii e 493
16.14.7 BroadcastSignalAction [ClaSS].........ooeeiiiiiiiiieeeeeiiieeie e eeeeeieeeeeeeeeeeeeeeeeeeeeeeeees 494
16.14.8 CallAction [Abstract ClasSS].......ceuuuuuuuuiiieiiiiiiiiiiiieeeeeeeee e ieeeeeeeeenns, 495
16.14.9 CallBehaViorAction [ClasS].......couiiiiiieiieiiiiieiieeee oo, 496
16.14.10_ CallOperationAction [ClaSS].......eeuueeuueeeieiiiiiieiieiiiieeeeceeeeee e eeeeeieeeeeeeeeeeens 497
T e I O =TV YN (O P2 1= 498
16.14.12 ClearAssociationAction [ClasSS]......ueuuuuuuuuiieiiiiiiiiiiiiiiieeeeieeeieee e 499
16.14.13__ ClearStructuralFeature Action [ClasS].........eeieiiiieiiiiiiiiiieieieieeeeieeeeeeeeeeeeeeeeieeeen 499
16.14.14_ ClearVariable Action [ClassS].......cuuuiiiiiieiiiiiiiiie et 500
16.14.15 ConditionalNOde [ClaSS].....coueuueniiiiieeeeiiiieeeeeeeeeeee ettt eeieeeeeeiaeeaees 500
16.14.16 CreateLinKACtION [ClaSS]....uuuiii it eeeeeeeeeeeeeeeeeeeeens 502
16.14.17_ CreateLinkObjectAction [ClasS].......eeiiiiiiiiiiiiiieieiiiieie e eeeeeeeeeeeeenes 502
16.14.18 CreateObjectACtion [ClaSS]........eiiiiiiiiiiiiiiiieeiieeee et eeeeeeeeeeeeeeeeeeees 503
16.14.19 DestroyLinkAction [ClasS].........uiiiiiieuuiiiiiiiiei i, 504
16.14.20 DestroyObjectAction [ClasS]..........eeiiiiiiiiiiiiiiiieiieeieeeeieeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeees 504
16.14.21 ExpansionKind [ENUMEration]...........oeeeieeuuuiiiiiiiieieiiiiiieeeiieieee e 505
16.14.22 ExpansionNOde [ClaSS]......cueeueeueuriuiieiiieiiiei et eeee e eeeeeeeens 505

Unified Modeling Language 2.5.1 XXi

16.14.23 ExpansionRegiON [ClaSS].......iiiiiiii i eeeeeeeeeeeeeeeeeeeeeeenennn, 506
T S [0 o1V T (O F= 1= T 506
16.14.25 InvocationAction [Abstract ClassS]........ceeuuuuuuuueiiiiiiiiiiiiiieieeiiiieiie e, 507
16.14.26_ LinkAction [Abstract ClasS]........cuuuuniiiiiiiiiiiiiiieie e 507
16.14.27 LinkEndCreationData [ClasS]...........oooviiiiiiieeeieiieieeieieiieieeeeeeeeeecieeeieeeeeeeeeeeeeeeeeeeeeeeeenns 508
16.14.28 LinkEndData [ClasS]......ccoiiiiiiiiiiieiiiieiiieieeeeeeee ettt 509
16.14.29 LinkEndDestructionData [ClasSS].......uiiieeueiiiiiieeeiiiieeeeeeiiee e, 510
T T O T o Yo o] oo [N (04 F= 1= T 511
16.14.31 OpaquUeACiON [ClaSS].....uuuuuueueuiiiiiei it e et ee i eeeeeeeeeeeeeeeeens 514
16.14.32 OULPULPIN [ClaSS]. ettt e ee ettt eee e 515
16.14.33 Pin [ADSIract ClasS]...cooouiiiiiiiieiieeieeeeiee oot eeeaaeaees 515
16.14.34_ QualifierValue [ClasS].........oooviiiiieeeiiiieiiiiei e, 516
16.14.35_ RaiseExceptionACtion [ClasSS].....uueeuuuuruueieiieieeiiiiiiiieeeeeeeeee e 516
16.14.36_ ReadExtentAction [ClasS].........e.eeiiiiiiiiiiiiiiiieieeeeee e eeeeeeeeeeeeeens 517
16.14.37 ReadlsClassifiedObjectAction [Class]...........eiiiiieuueiiiiiiiiiiiiiiiieieeeeeieeeeeeeeieeeeeeeeennees 517
16.14.38 ReadLinKACHION [ClaSS].....uu.iiiiiiiiiiiiiieeieeeee e eeeee e, 518
16.14.39 ReadLinkObjectENdACHON [ClaSS].....uuuuuueiieieiiiiiiiiiiieieeieeee e, 520
16.14.40 _ReadLinkObjectEndQualifierAction [ClasS].......coeueieiiiieeeeuiiiieeeieeeeeeeeeieeeeeeiiiieeeeeen 521
16.14.41 ReadSelfACtioN [ClasSS].....uuuuueeiiiiiiiiiiiiiiiiiieeeie e eeeieeeeeeeieeeeeeeeeeieeiieeees 522
16.14.42 ReadStructuralFeature Action [Class]..........uiiiiiieeeneiiiiiiieiieieeeee e 523
16.14.43 ReadVariableACtiON [ClaSS]...uuuuuuuieiiieiiiiiieeieeeeeeeeeeeee e eeeeeeeeeeeeeeeens 523
16.14.44 ReclassifyObjectAction [ClasS]........eiiiiiiiiiiiiiiiiieieiiiieie i eeeeeeeeeeeeens 524
16.14.45 ReduceACtion [ClaSS]......uuveeeeereuiiieeiei ettt eee et eeeeeeeeeeeees 525
16.14.46__RemoveStructuralFeatureValueAction [Class].......ooevveeeuvueeeeieieeieeeiiiiieeieiiiieeeeeeeee 526
16.14.47 RemoveVariableValueAction [ClasSS].......iiieeueeiiiiiiieiiiiiiieeieeeeeiee e 527
16.14.48 RepPIYACHON [ClasS] . cciiiiiiiiieeieeieeeeiiiieeeeeeeeee ettt eeeeieeeeeeeeeeeeeeeeians 527
16.14.49 SendObjectAction [ClasS]......uuuuueeeiiieiiiiiiiiiiieeeeeeeie e eeeeeeeeeeeeeeeeeens 528
16.14.50 SendSignalAction [ClaSS]......uuuiuui i i e e e e e ieeieeeeeees 529
16.14.51 SequenceNOde [ClasSS].....uuuuuueueeiiiiiiiiiiiiiiiieeeeeeee oo eeeeeeeeeeeeeeeens 530
16.14.52 StartClassifierBehaviorAction [ClassS]........euuuuuuuueeieieiiiiiiiiiiiieieiiiiieeeeeeeeeeeeeeeeeeeeeeiiaaann 530
16.14.53 StartObjectBehaviorAction [ClasS]........uuuiiiiieeeiiiiiieeeeeeeeeeeeeeee et 531
16.14.54 StructuralFeatureAction [Abstract Class]..........eeviiieeeeeiiiiiiiiiiiiiiiieeeeeieiieeeeeieeeeeeeeeeaan 532
16.14.55 StructuredActivityNode [ClasS]..........coeeeeeueuuueieiiiiiiiieieeeeeeeeeieieeeeeee e, 533
16.14.56 Testldentity ACtioN [ClaSS]........ueiiiiiiiiiiiiiieiieeeeee e e eeeeeeeeeeees 535
16.14.57 _UnmarshallAction [ClasSS]......ooveuuuniiiiiiiiiiiiiiiei e eeeeeeeenss 536
T Y ST V7= [0 md W (O P2 1T T 537
16.14.59 ValueSpecificationAction [ClassS].......ceeeueuuuuuuiiieiiiiieiiiiiiiieeeeecceeeeeee e, 538
16.14.60_ VariableAction [Abstract ClasS]..........eiiiiiiiiiiiiiiiiiiiieiieieieieeeieeeeeeeeeeeeeeeeieeeieeeeeeeeeen 538
16.14.61_ Writel inkAction [Abstract ClasS]........eeeieiiiiiiiiiiiiiiiiiieieieieeeee e 539
16.14.62 WriteStructuralFeatureAction [Abstract Class]..........oooeeviiiiieieeeeeiiiiiieiiiieieeeeeieieeeeeeeveiienn. 539
16.14.63_ WriteVariableAction [Abstract Class)]..........ooooviiiiieeeeeiiiiiiiieiiiieeeeeeeiieeeeeeiieieeeeeeeeeee 540
16.15 Association DesCriptionS.oceuiiieuniiiiiiiiiiieiiiiee e 541
16.15.1 A argument invocationAction [Association].......eeeeeeeeeeeniseiiiieeeee 541
16.15.2 A _association_clearAssociationAction [ASSOCIAtioN].....eeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiieieeeeeeen 541
16.15.3 A _behavior_callBehaviorAction [AssocCiation]............uuueeeeiiiieiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeen 541
16.15.4 A _bodyOutput_clause [ASSOCIAtioN].....cuuuueiiiieiieiiiiiiieeiiiiee e 542
16.15.5 A bodyOutput loopNode [ASSOCIAtIoN]....uuuureeeiiiiiiiieiiiiiiiiiiiiiiieiiiiiieeeeeeeeeeeeeeieene 542
16.15.6 A_bodyPart_loopNode [ASSOCIatiON]..euuuuuiiiiieeeiiiiieiieieiieeie e 542
16.15.7 A _body clause [AssoCiation].......ccooeeeeneiiiiiiiiiiiiiiiiiiiiiiiiiiiii 542
16.15.8 A classifier_createObjectAction [Association]...........ceveveeeeieiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeee 542
16.15.9 A classifier_readExtentAction [Association]..........ceevvuueueeieiiiiiiiiiiiiiiiiieeiiiiieeeeeeeeeeeee 543

xxii

Unified Modeling Language 2.5.1

16.15.10 A_classifier_readlsClassifiedObjectAction [Association]...........oeceeeeeiiiiciiieiiiiiiineennnnn.., 543

16.15.11 A_clause_conditionalNode [ASSOCIation].......uueiiieeuueieiiiiiiieiiiiiiiee i 543
16.15.12__A_collection_reduceAction [ASSOCIAtION]...ceeeeeeeiiiiieiieeieieeiiiiiieiieeeeiiieiiieeiiiiiieeeeeeee, 543
16.15.13 A context action [AssocCiation]...........eeeeeeeeeeeeeiiiiiiiiiiiiiiieee e 543
16.15.14 A decider_clause [ASSOCIatioN].....eeeeeeeeeeneeeeiiiiiiiiieeeeeeee e 544
16.15.15_A_decider loopNode [ASSOCIAtioN].....uuuuueueiieieiiiiiiiiiiiieiieeeeie e 544
16.15.16_A_destroyAt_linkEndDestructionData [Association].........ooeeeeeiiiiieeeeeeiiiiiiiiieieieeeeeeeeeeeeenes 544
16.15.17_ A_edge_inStructuredNode [Association].............uiiiiiieueieiiiiiiiiiiiiiiieeeeeiiieeieeeeeeeeeen 544
16.15.18_ A_endData_createlinkAction [ASSOCIAtION]...uuueuiiiiiiiiiiiiiiiiiiiieiieie e, 544
16.15.19 A _endData_destroyLinkAction [Association]............ceeevvuuuueiiiiiiiiiiiiiiiiiiieeeiiiieieeeeeen 545
16.15.20 A _endData_linkAction [ASSOCIAtION]....uuueiiieiiiiiiiiiiiiieieeeeee e 545
16.15.21 A_end_linkEndData [AsSOCIation]...........ueeiiiieuueiiiiiiiiieiiiiiiiieee e 545
16.15.22 A _end_readLinkObjectEndAction [Association]............ceevvueeeueeeiiiiiiiiiiiiiiiieiiiciieeeeene 545
16.15.23 A_exception_raiseExceptionAction [Association]........coeeeeiiieiiiiiiiiiiiiiiiiiiii 546
16.15.24 A_executableNode sequenceNode [AssocCiation]..........ccveeeeiiiiiieiiiiiiiiiiiiiiiiiieieee, 546
16.15.25 A first_testldentityAction [ASSOCIAtION]....ceeeeeeieiieiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 546
16.15.26_ A _fromAction_actionlnputPin [Association]............ooeveveveuuuiiiiiiiiiiiiiiiieiiieeeeieeeeeeee 546
16.15.27 A inputElement regionAslinput [Association].........cccceeeeeeeeeenneeeniiiiiiiiieeeeee 546
16.15.28 A_inputValue_linkAction [AssoCiation].......ooveuueeiiiiieiiiiiiiiiieieiiiiieeeeeeeeeeeeeeieeeeeeeeean 547
16.15.29 A _inputValue opaqueAction [ASSOCIation]..........euvuuuueeeeieiiiiiiiiiiiiieiieiiiiiieeeeieeeeeeeeeeeees 547
16.15.30_ A_input_action [ASSOCIAtION]....cuuuuuiiiiiieeiiiiiieiee et 547
16.15.31__A_insertAt _addStructuralFeatureValueAction [Association]..........coeeeveeeeieieenieiieeiiiieennn... 547
16.15.32_ A_insertAt_addVariableValueAction [AssocCiation]..........eeiiveeeeeiiiiiieeiiiiiiiieeeeeieeieeeeeene, 547
16.15.33 A_insertAt_linkEndCreationData [Association]........c..ccoovveeiiiiiiiiiiiiiiiiiiiiiiiiiin 548
16.15.34 A_localPostcondition_action [AssocCiation]............oceveeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee 548
16.15.35_A_localPrecondition_action [Association].............eeeeieiuueeiiiiiiiiiiiiiiiiieeeiiiiiieieeiiiieeeeeenee, 548
16.15.36_ A_loopVariablelnput_loopNode [Association]..........c.uueeiiiieueiiiiiiiiieeiiiiiiiieeeeeiiiieieeeeeeaan, 548
16.15.37 A _loopVariable_loopNode [Association]..........ccceeeeeieiiiiniieeiiiiiiiieiieeeeeeeeee 548
16.15.38 A newClassifier_reclassifyObjectAction [Association]............ccccceeennnenneeeeiiiiiiiee 549
16.15.39 A _node_inStructuredNode [ASSOCIAtION]....uueeeiiiiiieeiiiiiiiiiiiiieeiiiiiiieee e, 549
16.15.40 A_object clearAssociationAction [AsSOCIation]........eeeeeeeiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeens 549
16.15.41 A_object _readlsClassifiedObjectAction [Association].........ceeeveeeeeeieiieeiieiiiiiiiieieeieiien... 549
16.15.42 A _object _readLinkObjectEndAction [Association]..........c.oovvveeeeeeeeeiiiiiiiiiieiiiiiiieeeeieiieennnn. 549
16.15.43 A_object_readLinkObjectEndQualifierAction [Association]...........eeeieieeeeieeiiieeiieiiiiiinnnss 550
16.15.44 A_object_reclassifyObjectAction [Association].........coveeeeeiiieneiiiiiiiiiiiiiiiiiiieee, 550
16.15.45 A _object_startClassifierBehaviorAction [Association]............eeeveeeeieieiiiiiiiiiiiiiieeeiiiiinnn.. 550
16.15.46__A_object_startObjectBehaviorAction [Association]..........coooeveveveeeeeeeiiiieieeieieeeeeieeieeeeeeenene. 550
16.15.47 A_object_structuralFeatureAction [Association]...........ccoeeeeiiiiiiiiiiiiiiiiiiiiiiiin 550
16.15.48 A object unmarshallAction [Association].............ccccnneeennnniiiseeeeee 551
16.15.49 A _oldClassifier_reclassifyObjectAction [ASSOCIAtON]...uvveveeeeiieieeeeeeiiiiiiiiiiiiiiieiiiieeeeen, 551
16.15.50 A_onPort_invocationAction [ASSOCIatioN].........uuuueeieiiiiiiiiiiiiiiiiiiiiiieeeeeeieeeeeeeeeeeeeeeeiiaaann 551
16.15.51 A operation_callOperationAction [Association].........cccceeeeeeeeeneneeeiiiiiiiiiieeeeeee 551
16.15.52 A_outputElement_regionAsOutput [Association].........eeeeveeeeeiiiiiiiiiieiiiiiieeieiiiiieeeeeeeean . 551
16.15.53 A _outputValue opaqueAction [ASSOCIation]........coeeeeeeiiiiiieieiiiiiiiiieieieiieeeeeeeeeeeeeeiae, 552
16.15.54 A_output_action [ASSOCIAtION].....ceuuuuniiiiieeeiiiiiiiieeieeeeeieeeee e 552
16.15.55_A_predecessorClause_successorClause [ASSOCiation]........eeieeieeeiiieiieeeeeiiiiiieieeeeeeeeenn 552
16.15.56__A_qualifier_linkEndData [ASSOCIAtION].....coeeeeiiiiiiiiiieieiieieiiiiiee e 552
16.15.57 A_qualifier_qualifierValue [Association].........cocovveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 552
16.15.58 A_qualifier_readLinkObjectEndQualifierAction [Association]...........coeeeeveeeiiiicnneeiiinennnnn. 553
16.15.59 A _reducer_reduceAction [ASSOCIAtioN].....ueueueueeieiiiieiiiiiiiiiiiiiiiiieii i, 553
16.15.60 A _removeAt removesStructuralFeatureValueAction [Association]...........o.oevevveveiveeneenn.... 553

Unified Modeling Language 2.5.1 XXiii

16.15.61 A_removeAt removeVariableValueAction [Association]............ccceveeeiiiiiiiiniiiiiiiieeenneee., 553

16.15.62_ A_replyToCall_replyAction [ASSOCIAtioN].....uueiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeen, 553
16.15.63__A_replyValue_replyAction [ASSOCIAtioN].....ueeeeueiiiiieiiiiiiiiiiiiiiieiiieieeieeeeeeeieeeieieie, 554
16.15.64 A request_sendObjectAction [Association]...........cccceeeeeneenninnnneeeiiiiiiiieeeeee 554
16.15.65 A result_acceptEventAction [Association].............cccceneeinnneneeiii, 554
16.15.66_A_result_callAction [ASSOCIAtION].....euuuuuuueieeiiiiiiiiiiiiiiiieceeeee e 554
16.15.67_A_result_clearStructuralFeatureAction [AssOCIiation].........uueeeeeeeeeieieiiiiiiiiiiiiiiiiiieeeeen 554
16.15.68__A_result_conditionalNode [ASSOCIAtION]....uuueeeiiiiiiiieiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeee, 555
16.15.69 A result createlLinkObjectAction [AsSoCIation]........eeeeeeiiiiiieiiiiiiiieiiiiiieiieieieeeeeeeeeeeeeeenns 555
16.15.70 A_result_createObjectAction [ASSOCIAtION]....uuuueieiieiiiiiiiiiieiiiiiieieieiee e, 555
16.15.71_ A_result_loopNode [ASSOCIAtION].....euueuiiiiieeeiiiiiiee e 555
16.15.72 A_result_readExtentAction [AssocCiation].........eeeiieeueieiiiiiiieiiiiiiieeiiiiiee e 556
16.15.73__A_result_readlsClassifiedObjectAction [Association].........oeeeeeeeiiiiiieeeeeiiiiiiieeieeeeeeeeeeee.. 556
16.15.74 A _result readLinkAction [ASSOCIAtION]...eeeeeiieeieeeiiiiiieeiiiiiei e 556
16.15.75 A_result_readLinkObjectEndAction [Association]...........eeeviineeeiiiiiinneiiiiiiiieiiieeeees 556
16.15.76 A _result_readlLinkObjectEndQualifierAction [Association]............eeeeieiiieeeeeeiiiiiiieiennne.., 556
16.15.77__A_result_readSelfAction [ASSOCIAtION].....uuuueueeeieiiiiiiiiiiiiiiiiiiieeeee e, 557
16.15.78 A _result_readStructuralFeatureAction [Association]........oeeeeeeieiiieeeereiiiiiiiieieieieeeeeeeeeeeennn. 557
16.15.79 A result_readVariableAction [ASSOCIAtiON]....uueieiiiiiiiiiiiiiiieiiieiieieeeieeeeeeeeeeeeeeaann 557
16.15.80 A_result_reduceAction [ASSOCIAtION] ccuueuiiiiieeeiiiiieieeieiieeee e, 557
16.15.81_ A_result_testldentityAction [AsSOCIAtioN]....uuueueeeieieiiiiiiiiiiiiieiiieieieie e, 557
16.15.82 A_result_unmarshallAction [Association]............eeeiiieuuieiiiiiiiiiiiiiiiiieieiiiieeeeeieeieeeeeeeeeaen. 558
16.15.83_A_result_valueSpecificationAction [Association]........oeeeeeeeeeiiiiiieeeeeiiiiiiiiieieeeeeeeeeeieeeeeennns 558
16.15.84 A_result writeStructuralFeatureAction [Association]...........oeeeeeeciiiiiiiiiiiieiiiiiiiennn 558
16.15.85 A_returninformation_acceptCallAction [Association]...........eeeeeeeenieiiiiiiiiiiiiiiiiienne 558
16.15.86__A_returninformation_replyAction [Association]..........cooovvvieieeeeeuiiiiiiiieiiiieeieiiiiieeeeaennn, 558
16.15.87 A _second_testldentityAction [Association]............oevvveeeueuuuiiiiiiiiiiieeiiieiiieeeeiiieeee 559
16.15.88_ A _setupPart_loopNode [Association].........oeoeeeueveeeeeiiiiiiieiiiiiiiiiiiieeeeeeeeeeeeeeeeeea 559
16.15.89 A signal_broadcastSignalAction [Association]........ccceeeeeeeeeenneneeeiiiiiiiiiieeeeeee, 559
16.15.90 A_signal_sendSignalAction [ASSOCIAtION]....uuuueeieieiiiiiiiiiiiiiiiiiiieeeiee e, 559
16.15.91 A_structuralFeature_structuralFeatureAction [Association]..........cooovvvveeeeeveveiieieiieeeeeen.., 559
16.15.92 A_structuredNodelnput_structuredActivityNode [Association]..........oocevueeeieiieeeeieeieiinnnnne... 560
16.15.93 A_structuredNodeOutput_structuredActivityNode [Association].............ceevvveveeeeeeeeeeen..... 560
16.15.94 A_target callOperationAction [AssOCiation]...........ceevvuuuuuiiiieiiiiiiiiiiiiiiieeiiiiieeeeeeeeeee 560
16.15.95 A_target destroyObjectAction [Association]..........eeeeeeneeeiiiiiineiiiiiiiiiiiiieiieeeee 560
16.15.96 A _target sendObjectAction [Association]...........cevvveuueeieieiiiiiiiiiiiiiiiiiiciiieeeeeeeeeeeeeeeees 560
16.15.97 A _target sendSignalAction [ASSOCIation]........coovvvveeeeeeiiiiiiieiiiiiiieeeiiieeeeeeeeeeeeeeee 561
16.15.98 A_test clause [AsSOCIation].........ceeeviiuveieiiiiiiiiiiiiiiiiiiiiiiiiiiii 561
16.15.99 A test loopNode [ASSOCiation]........eeeeeeeeeneeneeeiiiiiiiiiiieieeeee e 561
16.15.100_A_trigger _acceptEventAction [Association]..........coevvveeeeeueueiiiieiiiiiiiiiieiiieeeiiieeeeeee 561
16.15.101_A_unmarshallType_unmarshallAction [ASSOCIAtioN].........veeeeiieieeeiiiiiiiiiiiiiiiiieiiiiieeeeenn, 561
16.15.102_A value_linkEndData [Association].........cccueeeeeenieenneneeiiiiiiiiiiieeeee e 562
16.15.103_A_value_qualifierValue [AssOCiation]........eeieeeeeiiiiiiiiiiiiiiiieeieeieeeeeeieeeee e 562
16.15.104 A_value_valuePin [ASSOCIAtiON]....u.iiiiieeeiiiiieeeeiieieee et 562
16.15.105_A_value_valueSpecificationAction [Association].............ceeeevvuuuueieeieiiiiieeiiiiiieeeiiiinn, 562
16.15.106_A_value_writeStructuralFeatureAction [Association].............eeveeeeeeeieieiieieiiiiiiieeeiiiiinnnn.. 562
16.15.107_A_value_writeVariableAction [AsSOCIation]..........uueeeieiiiiiiiiiiiiiiiiiiiiieieeeeieieeeeeeeeeeeeeeeenne, 563
16.15.108 A_variable scope [ASSOCIAtioN].....cuueeeeeeeeiiiiiieie i, 563
16.15.109 A_variable variableAction [ASSOCIatioN].........veeveiiieeiiiiiiiiiiiiiiiiiiiiii 563
o A 11 (=T = (i (o) 1 T T 565

XXiv Unified Modeling Language 2.5.1

17.1.1 OVEIVIBW. ..ottt et e et ettt et et et ee e et eeeeeeeeereeteeeeeeeenns 565
17.1.2 Basic trace MOdel.iiiieueiiiiiiiiei e 565
17.1.3 Partial ordering constraints on valid and invalid traces..............ccccoeeeiiiiiiiieiiiiiiiieeeeeeen 566
17.1.4 Interaction Diagram Variants.............oooeeuueiiiiiieiiiiiiiiiie e 566
17.2 I ErACHONS. ettt ettt ettt e et e et i e er e iiens 566
17.2.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 566
17.2.2 ADSIract SYNTAX..uuuuiiiiieeeiiiieee e 567
17.2.3 SEMANTICS. oottt 567
17.2.4 NOTATION. Lottt e s 568
17.2.5 [e=100]) [T T 570
17.3 Lif@lINES . ettt 571
17.3.1 SUMIMIAIY ..ottt ettt e et ettt ee ettt ettt e e et e eeeeeeeeeeeeeateaeaens 571
17.3.2 ADStract SYNtAX......uueieiiiiiiiiiiiiiiieicee e 572
17.3.3 ST 0= 1o T 572
17.3.4 N[0 7= 1[0 o T T 572
17.3.5 EXAMDIES. .ottt 573
174 MO S SAQCS . ettt eeei e 573
17.4.1 SUMIMIAIY ..ottt ettt ettt ettt et eeeee ettt et e et et e eeeeeeeeeeeeeeaeeeteens 573
17.4.2 AbStract SYNtaX......eiiiiieeeeiiiiiiiei e 574
17.4.3 SEMANTICS. oo i ittt 574
17.4.4 NOTAtION. .o 576
17.4.5 | e=10010) [T T 578
7.5 O CCUIMEINCES ettt ettt ettt ettt et ettt ettt eeeeieeeeeeeeeeeeeaeeens,s 579
17.5.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 579
17.5.2 ADSIract SYNTAX..uuuu it 580
17.5.3 SEMANTICS. ettt 580
17.5.4 NOTATION. Lottt e e 581
17.5.5 [e=10010) [T T 581
A S T = (o [0 1) 01 £ TS 581
17.6.1 SUMIMIAIY .ottt e et ettt e ettt ettt e et e e eeeeeerereeeeereaeaens 581
17.6.2 ADStract SYNtAX.....uuueiiiiiiiiiiiiiiiiieec e 582
17.6.3 SEMANTICS. oottt et e e 582
17.6.4 N[0 7= 1[0 o T T 585
17.6.5 EXAMPIES. ittt i, 586
17.7 INteraction USES.....iiuuiieeiieiiiiiieiiiiii ettt 590
17.7.1 STV 0 010 0= T 590
17.7.2 AbStract SYNtaX......eeeiiieeeiiiiiiiei e 591
17.7.3 SEMANTICS. oo i ittt 591
17.7.4 NOTAtION. .ottt 591
17.7.5 | e=10010) [T T 592
17.8 SequUENCE DiagramIS. ... ettt eeieeenn, 595
17.8.1 Sequence Diagram Notation..........ooooviiiiiiieeeeiiiiiiieiiiie i 595
17.8.2 Example Sequence Diagram. et 599
17.9 Communication DiaQramS.u..iiieen it 599
17.9.1 Communication Diagram Notation..............ceueeeeiiiiiiiiiiiiiiieieiiiiee e 599
17.9.2 Example Communication Diagram. ..., uoueeeeeeeiiiieeeieeiiie e 601
17.10 Interaction Overview DiagramsS. ooveeeiiieeniiiieiiiieeiiiieeiiieeeeeeeeeeieeeeeeeeeeeieeeeeieeeen 601

Unified Modeling Language 2.5.1 XXV

17.10.1 Interaction Overview Diagram Notation............coeeeveeeeeiiiiiiieiiiiiiiieeieiieiieieeieeeeeeeeeeean 601
17.10.2 Examples of Interaction Overview Diagrams...........c..veeveeiiiiiiieeieiiiiiiiiiiiiiiiiiiiiiieiieeeeeennn, 603
1711 Timing DiagramS. ..oeuu ittt 603
17.11.1 Timing Diagram Notation...........oooveueeeiiiiiiiiiiii e 604
17.11.2 Examples of Timing DiagramsS.ooeeuuuniiiiieiiiiiiiiiee e eeeeeeens 605
17.12 Classifier DeSCriptiONS. .. ivveeiiieeiiiieiieeeeiiee e eeieeeeeieees 606
17.12.1 ActionExecutionSpecification [ClassS]...........ooevveeueuuuuuiiiieiiiiiiiiiiiiiieeeiiiiieeeie e 606
17.12.2 _ BehaviorExecutionSpecification [ClasS].......ceeeeeeieeiieiiiiiiiiiiiiiiiieieeeeeeeeeeieieieieeeiiinnn, 607
17.12.3 CombinedFragment [ClasS].......u.ueeiiiiiiiiiiiiiiiieeieeeieeee e eeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeenes 607
17.12.4 ConsiderlgnoreFragment [ClassS]........uuuuueeiieiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeee 608
17.12.5 Continuation [ClaSS]......uuuuuiiiieeeiiiiieeeee ettt e e eeee e eeee e 609
17.12.6 DestructionOccurrenceSpecification [ClasS]........eiiiieeeeiiiiiiiieiiiiiiieieiiieieieeeeeieieeeeee, 610
17.12.7 ExecutionOccurrenceSpecification [ClasS]..........oovvveieeeeeueuiiieiiiiiiiiiieiieeeeeecciieeeieeen 611
17.12.8 ExecutionSpecification [Abstract ClassS]..........coeeeiiiiiieieeiiiiiiiiieeiiiiiiieeeiieieeeeiiiieieeeeeee, 611
(AR I C T 1 (=X (01 = T1=) T 612
17.12.10_GeneralOrdering [ClaSS]. . ..uuuuuueeiiiiiiieeiiiiiiee e eeeeeeee e ieieeeeeeeeeeeeeeeeens 615
17.12.11 Interaction [ClaSS]......uuueeueuriuieieeiei et e e ee et eeeeeeeeeeeeeeeeeeeeeeens 615
17.12.12_ InteractionConstraint [ClasS].........oeiiiieuueiiiiiiiiiei e 616
17.12.13__ InteractionFragment [Abstract Class]............oovvveeeiiiiiiiiiiiiiiiiiii e, 617
17.12.14_ InteractionOperand [ClaSS]........uuueeiiiiiiiiiiiiiiiieeeecieee e e et eeeeeeeeeeeeeees 618
17.12.15__InteractionOperatorKind [Enumeration].........ccouveeveeiiiiiiieiiiiiiiiiiisiiieiiiieeeeeeieiieieen 618
17.12.16__InteractioNUse [ClasSS]....ccocuuueeeeieiiiiiiiiiiiiiiiieeeeeeeee et eee e e e e eeeieieeees 620
171217 Lifeline [ClasS]. . iiiiiii et ee e e ee et e e e e eeeeeeeeeeeeeeeeeeieeiieneees 622
17.12.18 MESSAQE [ClaSS].uuuuuuuunniiiiiiei ettt e e e e e e e e e e e e e 623
17.12.19 MessageEnd [Abstract ClaSS]...uuuu.iiiiieeeiiiiiiieeiieieeee et 626
17.12.20 MessageKind [ENUMEration]..........eiiiieuunieiiiiiiieiiiiiiiee e, 627
17.12.21 MessageOccurrenceSpecification [ClasS].........eiiiiieeeiiiiiiieiiiiiieeeeiiieeeeee e, 628
17.12.22 MessageSort [ENUMEration].........eeiieeeeniiiiiiiiiiiiieee e 628
17.12.23 OccurrenceSpecification [Class]...........eeiiiieuueeiiiiiiiiiiiiiiiiiieiei e 629
17.12.24 PartDecomposition [ClasSS]......ceuuuuuuuuiiieiiiii e eeeeeeeeeeeeeeeeieieeeeeeeeenns, 629
17.12.25 Statelnvariant [ClaSS]........uu.eiiiiiiiiiiiiiieieeeeee ettt eeeeeeee e, 630
17.13 Association DeSCriPtIONS . uuieuuiieniieeiiiiieii e, 631
17.13.1 A action_actionExecutionSpecification [Association]...........cccceeeeeereeeeniiniiiiiiie 631
17.13.2 A_action_interaction [AssOCIatioNn]........iiiiiuueeiiiiiiiieiiiiiie e 631
17.13.3 A_actualGate_interactionUse [AsSSOCIation]...........ceevvuvuueiiiiiiiiiiiiiiiiiiiieieiiiieeeieeeeeeeee 631
17.13.4 A argument interactionUse [Association].............cccccveeeeneennnnnnneeiniiiiieeeeeee 631
17.13.5 A_argument _message [ASSOCIatioN]. cuuuuiiiieuueeiiiiiiieieiieiiee e 631
17.13.6 A_before_toAfter [ASSOCIAtioN].....oiiiieeeiiiiieeieeiieee e 632
17.13.7 A_behavior_behaviorExecutionSpecification [Association]..........cc.cceueieeeiieeiiieiiieiieenn.. 632
17.13.8 A _cfragmentGate_combinedFragment [Association].........oooeveeeeiiiieieeeeeiiiiiiieieeeeeeeeeeeeee. 632
17.13.9 A _connector_message [ASSOCIatioN]. . euuuuuieiieeriiiiiiiiieieiiiiiee e 632
17.13.10 _A_covered_coveredBy [ASSOCIAtION]....uueiiieveniiiiiiiiiiiiiiiiiiiiiiii 632
17.13.11 A _covered_events [ASSOCIAtION].....uueeeeiiiiiiiiiiiiiiiiiiei i 633
17.13.12__A_covered_statelnvariant [Association]..........eeveeeereeiiiiiiiiiiiiiiiiiiiiiiicceeiiiie e eeeeeeieeeeee 633
17.13.13__A_decomposedAs_lifeline [ASSOCIAtON]...uuuureeiiereeeitiiiiiiiiiiiiiiiiiiiiieeeeee e 633
17.13.14 A execution_executionOccurrenceSpecification [Association]...............oeeeeeeceeeeneneennn... 633
17.13.15 A finish_executionSpecification [Association].........cccceveeeeeenneeeeeiiniiiiiiieeeeeee, 633
17.13.16__A_formalGate_interaction [ASSOCIAtioN]........uuvveeeiiiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeiiieiiiin, 634
17.13.17__A_fragment_enclosingInteraction [Association]...........coooveiieieieeeieiiiiiiieieiiieeeeeiieieeeeieiiennn. 634
17.13.18 A_fragment_enclosingOperand [Association]........oovveueeieiiieiiiiiiiiiiieieeiiiiieeeeeeeieeeeeeeee 634

XXvi

Unified Modeling Language 2.5.1

17.13.19 A_generalOrdering_interactionFragment [Association].............oecveeeeiiiiiiiniiiiiiiienennnnne., 634
17.13.20 A_qguard_interactionOperand [ASSOCIAtioN]......uuueeeieiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeiiaen 635
17.13.21__A_invariant_statelnvariant [ASSOCIAtioN]........ueeieiiieiiiiiiiiiiiiiiiieiiiiieeie e, 635
17.13.22 A _lifeline_interaction [Association]............ooeeeeuveneeeiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeea 635
17.13.23 A _maxint_interactionConstraint [Association].........ccccocceeeeeereeeeeiiiiiiiiiiieeeeeeene 635
17.13.24 A _message_considerlgnoreFragment [Association].........oeeveeeeeeiiivieiiiiiiiiiiiieeeiiiiiiiiiens 635
17.13.25 A_message_interaction [ASSOCIAtioN]........ouuuuiiiiieeeiiiiiiiieieeieeeeeeeeee e 636
17.13.26_ A_message_messageEnd [Association].. ... veeveeueeiiiieiiiiiiiiiiieeiiieieeeeeeeeeeeeiee 636
17.13.27__A_minint_interactionConstraint [ASSociation]............coevvevveveueiiiiieiiiiieiiiiiiieeeeeciieieeen 636
17.13.28 A_operand_combinedFragment [ASSOCIAtioN].....coeeeeeeiiiiiiiieiiiiiiiiiiiieieeieeeeeeeieeeeeeiia, 636
17.13.29 A _receiveEvent_endMessage [ASSOCIAtiON]....ueeeriereeeiiiiiiiiiiiieeeeeeeeeeeeeeeeeeieee 636
17.13.30_ A _refersTo_interactionUse [ASSOCIAtION]......cooeviiiiieieeiiiiiiiieiieiiiieeeeeeieeeeeeeeeeeeeeeee 637
17.13.31__A_represents_lifeline [ASSOCIAtION]......uuuuuuuueeiiiiiiiiiiiiiiiiiiiieieeie e 637
17.13.32__A_returnValueRecipient_interactionUse [Association]..............c..ooooooveiiieiiiinnnnn 637
17.13.33 A _returnValue_interactionUse [Association]...............cceceneneinnenenenneeiiiieiee 637
17.13.34__A_selector_lifeline [ASSOCIAtiON]......ovvvveeeeeiiiiiieieiiiiie e, 637
17.13.35__A_sendEvent_endMessage [ASSOCIAtiON].....oeeeeeiiiiiiiiieeiiiiiiiieieeieee e 637
17.13.36__A_signature_message [AsSoCiation]........cooeeuueeveeeiiiiiiiiieiiiiiiieiieieeeeeeeeeeeeeee 638
17.13.37__A_start_executionSpecification [Association]...........ceuueiiiiieueeiiiiiiiiiiiiiiiieeeeeeiieeeeeeeennn, 638
17.13.38 A_toBefore_after [ASSOCIAtioN]......oovvueeuiiiiiieiieiiieeeeeeeeee e 638
18 USECaASES. ittt ee i ieieeeeen, 639
181 USE C A8 ittt et e it e e e eeians 639
18.1.1 1010010071 T 639
18.1.2 ADSEract SYNtAX.....uuueeeiiiiiiiiiiiiiiiee e 639
18.1.3 ST 00 F= 101 (o T T 639
18.1.4 [N (o) 7= 1 (0] o T U U O T TN 641
18.1.5 =101) [T T 643
18.2 Classifier DeSCIPtIONS.covveueeiiiiiieee i e eeeeeeeeeeeens 647
18.2.1 J N ea (o] ol (O] F= 1] T T T T T TP 647
18.2.2 EXtENd [ClaSS]...uuuiiiiiiiiiiiiiiieeieeee ettt eeeeeeeees 647
18.2.3 ExtenSiONPOINt [ClaSS]...cceeeiiieieiiiiiieeeeeeeeeeeeeeeee ettt e e e e e eeeeeeeeens 648
18.2.4 INCIUAE [ClASS]. it eeieeeeeeeeeeians 648
18.2.5 USECASE [ClaSS]..uuuuun ittt ettt e e e e ettt eeeeeaenss 649
18.3 Association DeSCriptiONS . uuieeiie it 650
18.3.1 A_addition_include [AssoCiation].........oeeeeiiicnieiiiiiiiiiiiiiiii 650
18.3.2 A_condition_extend [ASSOCIAtION]....ueeeiiieeeeiiiiiiiiiiiiiiiiiiii 650
18.3.3 A_extend_extension [AsSOCIatioN].......eiieeuuu it 651
18.3.4 A_extendedCase_extend [AsSSOCIation]..........ueuuuueeeeiiiiiiiiiiiiiiiieiiiiiiiieeee e, 651
18.3.5 A_extensionLocation_extension [Association].......cc.eeeeeeeeeneneeeeniiiiiiiiiie 651
18.3.6 A_extensionPoint_useCase [Association].......eeeeeeeeeiisssiiiiiiieeeeeee e 651
18.3.7 A_include_includingCase [AsSSOCIation]..........ceuuuuuuuuiiiiieiiiiiiiiiiiiieeeeieieeeeeieeeeeeeeeeeeeene 651
18.3.8 A_subject_useCase [ASSOCIAtION]..uuuuiiiieeeiiiiiieeieiiieeeeeeeeeeeeeeeee e 652
S B =Y o] 01V 0 11=) 01 (T T 653
191 SUMMIAINY ettt ettt ettt ettt ettt e e ieeenn, 653
19.2 DePlOYMENTS. .oouuniiiee i 653
19.2.1 STV 0 010 0= T 653
19.2.2 AbStract SYNtaX......eiiiiieeeeiiiiiiie e 653
19.2.3 SEMANTICS. oo i ittt 653

Unified Modeling Language 2.5.1 XXVii

19.2.4 N[0 7= 1[0 o T T 654
19.2.5 EXAMDIES. ittt i e 654
19.3 ArtifactS. i e, 656
19.3.1 STV 0 010 0= T 656
19.3.2 AbStract SYNtaX......eiiiiieeeeiiiiiiiei e 656
19.3.3 SEMANTICS. .o iiiiiiiiieeee et e et e e et 656
19.34 NOTAtION. .ottt 657
19.3.5 | e=10010) [T T 657
9.4 INOUES. ettt i et e et eieeeeenn 657
19.4.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 657
19.4.2 ADSIract SYNTAX..uuuui it 658
19.4.3 SEMANTICS. ettt 658
19.4.4 NOTATION. Lottt e s 658
19.4.5 [e=10010) [T 659
19.5 Classifier DeSCrPtiONS.ccveuuueiiiiiiiieeieiiieee et e, 660
19.5.1 PN {17210 (0= 1) P 660
19.5.2 CommunicationPath [ClassS]........uuuuueeiiiiiiiiiiiiiiiiiiieicieeieieeeeee e, 661
19.5.3 DeployedArtifact [Abstract ClasSS]....c.u..iiiiieeeiiiiiieieiiiiiiiie e 661
19.5.4 Deployment [ClasS].....oooiiiiiiieeeeeeiieeieeee et eeeeeeeeeens 661
19.5.5 DeploymentSpecification [ClasS].........eeeiiieieiiiiiiiiieeiiiieieieeieeeeeeeeeeeeeeeeeiieeeeeeeeeeene 662
19.5.6 DeploymentTarget [Abstract ClassS].........oeveeueuuuueiiiieiiiiiiiiiiiiiieeeiieiieee e 663
19.5.7 BN (o1 (O P2 1) T T 663
19.5.8 ExecutionEnvironment [ClassS]........uuiiiiiieueiiiiiiiiiiiieieeieeee e 664
19.5.9 Manifestation [ClasS].........oouiiiiiiieeeiiiiieieiie et 664
19.5.10 NOAE [ClaSS]..uuuuuiiiiieiiiiieeeeeeeeeeee ettt e e et e e eeeieeeeeeaenn 664
19.6 Association DescriptionS..........cuuiiieuiiiiiiiiiiiieiiiieei e 665
19.6.1 A_configuration_deployment [Association].............eieiiiiiuiiiiiiiiiiiiiiiiiieeeiiieee i 665
19.6.2 A_deployedArtifact_deploymentForArtifact [Association].........ooeeeeeeiiiiiieeeeeieiiiiiieieeeee 665
19.6.3 A_deployedElement_deploymentTarget [Association]...........cooevveveeveeeeviiiiiiiieieeeeeeeeeeenee. 665
19.6.4 A_deployment_location [ASSOCIAtioN]. . ecuuuueiiiiieiiiiiiiiiieiiiiiiiee e, 665
19.6.5 A_manifestation_artifact [Association]...........oooovvvieveieeeeiiiiiiiiiiiiiieeeeeeeeee 666
19.6.6 A_nestedArtifact artifact [ASSOCIAtION]...ueeeeeiieeeiieeeiiiiiiiiiiiiiiiee i 666
19.6.7 A_nestedNode_node [ASSOCIation]........eeeeiiiceeieiiiiiiiiiiiiiiiiiiiiii 666
19.6.8 A_ownedAttribute _artifact [ASSOCIAtION].....ueeieiieiiiiiiiiiiiiiiiieiieie e 666
19.6.9 A_ownedQOperation_artifact [Association]...........ooovvvveeveueuuiiiiiiiiiiieeeiiiiieeeeiiieieeeeeeee 666
19.6.10 A utilizedElement manifestation [Association].......eeeeeeeeeeeieisieieiiiieeeeeeeeeeie 667
20 InformatioNFIOWS.oceveuiiiiieeiiiiieiiiiiiie e, 669
20.1 Information FIOWS...ocuuuiieuiiieiiiiiiii e 669
20.1.1 STV 0 010 0= T 669
20.1.2 AbStract SYNtaX......eeeiiieeee it 669
20.1.3 SEMANTICS. oo ittt e e e 669
20.1.4 NOTAEION. .ottt e e 670
20.1.5 | e=10010) [T T 671
20.2 Classifier DeSCriptiONS. ..u.iieee i, 672
20.2.1 InformatioNFIOW [ClasSS]....ueuuuuueeeeieiiiieiiiiiiiieeeeeeeeee e eeeeee et eeeeeeeeeeeeeeees 672
20.2.2 Informationitem [ClasS].....uuuuueeeieiiii i 673
20.3 Association DeSCriptiONS.....vuuuiieeeiiieiiieei e 674
20.3.1 A_conveyed_conveyingFlow [Association]..........ceeeeeeeeeineeeeeiiiiiiiiieieeeee 674

XXViii

Unified Modeling Language 2.5.1

20.3.2 A_informationSource_informationFlow [Association]...........ccoeeveiiiiiiinneiiiiiiieiiiiiieeeenes 674

20.3.3 A_informationTarget_informationFlow [Association]...........ceviiiieeeeiiiiiieiiiiiiiiieeeieiiinns 675
20.3.4 A_realization_abstraction_flow [AsSOCIatioN].........eeeiiieiiiiiiiiiiiiiiiiiiiieiieeieieieeeeeeiieeeeeeeeenns 675
20.3.5 A_realizingActivityEdge_informationFlow [Association]............eeeeiiinneeiiiiiiineiiiiiineeenns 675
20.3.6 A_realizingConnector_informationFlow [Association]........eeeeeeeeeeeeesieiieeeeeeeeee 675
20.3.7 A_realizingMessage_informationFlow [ASSOCIatioN]......ueiiiiieeeniiiiiiieeiiiiiieeeeeiieeeeeee 675
20.3.8 A _represented_representation [ASSOCIatioN]........ovveeeiieeniiieiiiieiiieeeeeeeeiie 676
2] P ItV Ty DS ettt ittt ettt ettt ettt e eee e et teeeesereateeenteeenteeenaserenateeeseennaaaes 677
20 SUIMI AN . ettt ettt et ettt ettt ettt ettt ttaeeaetaetttatteteatteitatiaiiateesieaienaieaieenies 677
21.2 SOMANICS. ittt eeeeeeeaen, 677
213 INOTAION. ettt eeeeiannes 677
214 EXAMPIES. ittt ieee e, 677
22 StanNdard Profile. . .. ittt ettt ettt et et ieeteraiiiiieatieaieeiiiraatieaiieniees 679
22 SUIMI I Y . ettt et ettt et ettt et ettt ettt et ettt eeattaeea st see st see st tee st teanseateeaseatenazenreeaaes 679
22.2 MOAC. ittt eeeeeeaenas 679
22.3 Standard StereOtY DS, . .. ieeis 679
ANNEX AL DIBOIAMS . e, 683
Annex B: UML Diagram InterchanQe........ooeuieeiieiieiieiiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeee, 687
S S YU 1010 = | AT T T T T T 687
B2 G ONBIIC. ittt ettt e e ieiaeeans 688
B.2.1 SUMMIBIY ettt ettt ettt ettt ettt ettt et ee i e 688
B.2.2 UML Diagrams and Diagram ElementsS.o.uiieeiiieiiiiiiiiiiieieeeieiieeeeieeeieeieieeeeeeeennees 688
B.2.3 UML Shapes and EdQesS. .. oiueiiieiiii ittt ettt et ettt e eeteteeeeetteeaeeeesieeenterenaeerenaass 689
B.2.4 LADBIS. e, 689
B.2.5 Compartmentable ShapeS.......ooouueeiiiiiiiiiiiiiieeeeeeeeeeee e, 691
B.2.6 Stereotype APPIICAtIONS. couuuiiiiiie i, 691
B.2.7 UML SHVIES .o 693
B3 StUCKUIE . ettt ieeeenan 693
B.3.1 SUMIMIAIY .ottt ettt ettt et ettt e e i e e et e eaeiaeeann 693
B.3.2 SHrUCHUrE DIaQIaMIS. e ittt eeeiaas 693
B.3.3 ClasSifier SNAPES. ..iiuuiiiiiiiiiieee et eeeeies 695
B.3.4 Multiplicity and Association End LabelS..........oviveeiiieeiiiieiiiieeiiieiiiieiiieeeeieeeeeeeieee, 696
B.3.5 Association, Connector, and Link ShapeS........coouvveeuiiiiieiieiiiiiiieeeeiieieeeeeeieeeeeeeeees 697
B4 BENAVIO . ittt eeeeiennen 697
B.4.1 SUMMIBIY .ottt ettt ettt eei e 697
B.4.2 Behavior DiagramS. ...o... ittt 697
B.4.3 ACtiVity Diagram LabeIS.ttt ittt ettt eeetee et tee et teeteeteeereeiaeenas 701
B.4.4 State ShAPES. ittt 702
B.4.5 Interaction TableS.......uiieeiiiiiiieiiiieeieieeeeeeee e, 703
B.5 InfOrmation FIOWS..oouieiiiiiiiiieieee e, 703
B.6 UML Notations and UML DI RepresentationS.......co.eveiieiieiieiiiiiiiieiieiiieeeieieeeeeeeeeenns 704
B.7 Classifier DeSCriDtIONS . . ouuiie ittt eieeieenn, 724
B.7.1 UMLACtivVityDiagram [ClaSS]... i eeieeeeeeeeeieeeeieeeeeen, 724
B.7.2 UMLASSOCIatioONENALADE] [ClaSS].. . iieuuiiieniiieetiie ittt st e et teeeetereeeeienteerenaieeeaieeeans 724

Unified Modeling Language 2.5.1 XXix

B.7.3 UMLAssociationOrConnectorOrLinkShape [Class].........oeeveeueeveiiiieeeieeeieeeeeiiiieeieiiiiiiaa. 725
B.7.4 UMLAssociationOrConnectorOrLinkShapeKind [Enumeration]............ceeeeeeeeieeeeeeeeeeeene..... 726
B.7.5 UMLBehaviorDiagram [Abstract ClassS].......coeeeeeeiiiiiiiiiiiieeiiiiiiiiieieieeeieeeeeeeeeeeeeenn, 726
B.7.6 UMLClassDiagram [ClasS].......cceuuueueeeeeiiiiiiiiiiiiieiieeeeeceieeee e eeeeeiieeeeeeeeeeeenns, 726
B.7.7 UMLClassifierShape [ClasS]........oeiiieeueiiiiiiiie i 727
B.7.8 UMLCompartment [ClasS]......oeueiiiiiiiiiieeeeeeeeee et eeeeeeeeeeeeeeeeennn, 727
B.7.9 UML CompartmentableShape [ClasS]......ouuuuuuiiiiieeiiiiiiiieeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeens 728
B.7.10 UMLComponentDiagram [ClasS].......ceuuueiiiieiieiiiiiiiie i, 728
B.7.11 UML CompositeStructureDiagram [ClasS]...........oeeveeeveveueeniiieiiiiiiiiieeiiieeeeeeiiiieeeeeeeeeeeen 728
B.7.12 UMLDeploymentDiagram [ClasS]........cuiueeeeeuueueniieiiiiieeiieeiiieiiiieeeeee e eeeeeeeeeeiiiieieennn 729
B.7.13 UMLDiagram [Abstract ClassS]........oouuiiiieeeeeeeieiiieiieeeeeeeeeeeeeeeee e, 729
B.7.14 UMLDiagramElement [Abstract Class]..........ooooeviiiiieieeeiiiiiiiieiieiiiieeeeeeeeeeeeeeieieeeeen 730
B.7.15 UML DiagramWithAssociations [Abstract Class]...........oeeeeiiiiiiiiiiieeiiiiiiiieieeieeeeeeeeeeeeeeeeeenns 731
B.7.16 UMLEAQE [ClaSS]. iieiueueeeieneniiiiieiiieeieieeeeeeeeeee oottt eeeeeeeeeeeeeeeeeeeeeeeennnn, 731
B.7.17 UMLInteractionDiagram [ClaSS].......ooeeiieiiiiiiiiiieieieeeieee e eeeeeiieeeeeeeeeeeeeeeeeeeeenes 731
B.7.18 UMLInteractionDiagramKind [Enumeration]..............eeiiiieiueiiieiiiiiiiiiiiiiiieeeeieiieeeeeeeeinn, 732
B.7.19 UMLInteractionTableLabel [ClassS]........uuuuuuuueiiiiiiiiiiiiiiiiieeeeiiieieeeeeee e, 732
B.7.20 UMLInteractionTableLabelKind [Enumeration]............coeeeiiivieeeiiiiiiiiieiiiiieeeeeeeeeeee 733
B.7.21 UMLKeywordLabel [ClassS]......ooeuuueiiiiieiieiiiiiiieieeiieeeeee e 733
B.7.22 UM LA [C a8 S] e ittt ittt ettt ettt ettt ettt ettt ettt eee e ee e eeerenteeeeaeiesaaeeenterenaerenns 734
B.7.23 UMLMultiplicityLabel [ClaSS].. ... ieiiiiiiiiiiiiiiiiieieieeeee et eeeeeeeeeeeeees 734
B.7.24 UMLNameLabel [ClasS].....uuuuieiiiiiiiiiiiiiieeeeieeeee oo eeeeeeeeeeeeeeeeeeeeeeeees 734
B.7.25 UMLNavigabilityNotationKind [Enumeration].............ceveveeeiieiiiiiiiiieiiiiiiiiiiiiiieeeeeee, 735
B.7.26 UMLODbjectDiagram [ClasS]....uuuueueeeeeiiiiiiiiiieiieeeeeeeeeeie e eeeeeeeeeeeeeieeeeeeeeeeeeens, 735
B.7.27 UMLPackageDiagram [ClasS]uuuuuueeeeeiiiiiiiiiiiiiiieeeeeeieeie e, 735
B.7.28 UMLProfileDiagram [ClassS]........coouuiiiiieieeiiiieie e eeeeee e, 736
B.7.29 UMLRedefinesLabel [ClasS].......uuuuuueeiieiiiiiiiiiiiieiieiiciieeieeie e eeeeeeeeeeee 736
B.7.30 UMLSHhAPE [ClasSS]..iieeeeeeeeueeeieieiiiiiieiie e ee e et et eeeeeeeeeeeeeeeeeeeeeeeeeeens 736
B.7.31 UMLStateMachineDiagram [ClasS]........eeiieeueiiiiiiiiiie e 737
B.7.32 UMLStateShape [ClasS].....coieieiiiiiiiiiiiieiieeee et eeeeeeee e, 737
B.7.33 UML StereotypePropertyValuelLabel [ClasS]........u.uuiiiiieeeiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeee 738
B.7.34 UMLStructureDiagram [Abstract Class].........oeeiiieeeiiiiiiiiieiiiiiiiieeieieeieeeeeeeeeeeeiee 739
B.7.35 UMLSHYIE [ClasSS]eeeiiiiiiiiiieieeeeeeiiiieiie et eee ettt e e e e eeeeeeeeeeeeeeeeeeeieeeeeeeieeeiiiaees 739
B.7.36 UMLTypedElementlLabel [ClassS].....uuuuuuuuueeeeiiiiiiiieiieeeiieeeieeeeee e, 739
B.7.37 UMLUseCaseDiagram [ClasS].........eiiiiiiiiiiiiiiiieiieieeiee e ieeeeeeeeeeeeeeeeecieieieeieeeeeeeeeeeeeees 740

XXX

B.8.7 A_UMLDlaqramEIement_locaIStvIe_stvIedEIement [Assomatlon] 741
B.8.8 A_UMLDiagramElement_modelElement_umlDiagramElement [Association].................... 741
B.8.9 A_UMLDiagramElement_ownedElement_owningElement [Association]............cccvueveeen.... 741
B.8.10 A_UMLDiagramElement_sharedStyle styledElement [Association]............c.ccceveennenn..... 742
B.8.11 A_UMLDiagram_heading_headedDiagram [Association].............cceevevvevucieeeieiieeeeeeeeeeneee.. 742
B.8.12 A_UMLEdge_source_sourceEdge [ASSOCIation].......eeeeeieiiiiiiiiiiiiiiiiiiieeiiiieeeeeeeeeeieeineen. 742
B.8.13 A_UMLEdge_target targetEdge [Association].........ceeeeeeiiineeiiiiiiiieneiiiiiiiiieee 742
B.8.14 A_UMLInteractionDiagram_modelElement_umiDiagramElement [Association]................ 742
B.8.15 A_UMLMultiplicityElement_modelElement_umiDiagramElement [Association]................. 742

Unified Modeling Language 2.5.1

A_UMLStateShape _modelElement umiDiagramElement [Association

B.8.20 A_UMLStereotypePropertyValueLabel modelElement umiDiagramElement [Association

.. 743

B.8.21 A_UML StereotypePropertyValuelLabel_stereotypedElement_labelShowingStereotypeValue

[A S SO At 0N ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt eteteteeeeiiiieiieteiiereiiireiaiirenis 743

ANNEX C: KEYWOIAS. ..oeeeieiieeiiiieieeeeeeeee ettt eeeeeeeeeeeeeieeee, 745
Annex D: Tabular Notation for Sequence Diagrams........o.oeeeieiie i eeiesieieainnen, 749
Dol EXOMPDIES ittt eeeeieenaes 750
Annex E: XMI Serialization and SChema.ottt eeiaeeeeeeeaass 753
Bl UMMM Y ettt ettt ettt ettt ettt ettt et eee st tee et ettt ettt sttt ttaateteeateareaaenss 753
E.2 XMI Serialization of the UML 2 metamodel.........oooveeiieniiieiiiiiieiiieiieieeiieeiieeeeeeeeens 753
E.3 XMI Serialization of the Primitive Types model library.........oceeeiieeeiiiieeeiiiieiiiieeeiiiieennnn. 754
E.4 XMI Serialization of the StandardProfile.........oo.eie ittt ieeiaaea, 754
E.5 XMI Serialization of the UMLDI... ..ottt ettt ettt et eeaaeistaseaennaes 754

Unified Modeling Language 2.5.1 XXXi

Figure 6.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21

XXXii

Table of Figures

Semantic Areas Of UML. et e e e e e e e e e e e e e 14
ROO. ..ot h et b ettt 21
(070] 0010 41=T 01 Qg T0] =1 (o o TR SO 22
TOMIPIALES.ot e e e e e e e e e e ————————— 23
Template DINAINGS. e e e e e e e e e e e e e e e ee s 23
N E= T TS o= (o PSP 27
Template package with string parameters............oocuuiiiiiii e 31
Example of element iMport...... ... 31
Example of element import with aliasing...........cccccviiiiiiiiiiiii e 32
Examples of public and private package imports............cueeiiiiiiiiiie e 32
Abstract syntax of types and multiplicity elements.............coooi 33
Multiplicity within a textual Specification................cooiiiiiiiiiee e 35
Multiplicity as an adornment to @ Symbol.............ooueieiiiiiiii s 35
Abstract Syntax of CONSIraINTS.eiiiiiii e 36
Constraint in @ NOte SYMDOL..........e e 37
Constraint attached to an attribute............coo i 37
{XOI} CONSITAINT. ...t e et e e e et e e e e e b e e e e e e nnees 37
Abstract syntax of dEPENAENCIES.coiiuiiiii i e 38
Notation for a Dependency between two elements..........ccccoociiiiiiiiiiiiie e 39
An example of an «Instantiate» Dependency...........cccooiiiiiiiiiiiiii e 39
An example of @ «USE» DEPENUENCY.........eeiiiiiiiiiiee et e et e e e e eree e e e e erre e e e e e snreeas 39
An example of a realization DEPENAENCY...........cccoiiiiiiiiieeeeeee e 40
LITEIAIS. ... e e e e e s s 69
D q 0 == [o 1 TSR 71
B g TSIR= 1 Lo I 0T = 1 o PSSR 73
1] (= V= = PO PP OPP PR PPPPPRPP 76
Example of DurationConstraints and TimeConstraints..........c.ccoccviieiiiiiii e 77
L@ =171 =T OSSR 97
Generalization notation showing different target styles............ccccoviiiiiiicii e, 101
Example of Substitution NOtation..............ceeiii i 101
Classifier TEMPIAtES.cooi ettt e e e eeeeeaaes 102
Template Class and BouNd CIass............uuueeiiiiiiiiiiiie ittt 104
ANONYMOUS BOUNA CIASS.......uuuiiiiiiiiiiiiei et e e e e e e e e e e e e e e eaans 104
Template Class with constrained Class parameter............occueeieiiiiiiiie i 104
Lo T T I O F= T PSSP 105
FRAIUIES......cei e 105
L 0] 0 =15 (=T T USRI 109
Examples of attributes. e 113
Association-like notation for attributes............coo 114
L@ oT=T =1 i o] o <SP EPR 114
GENEraliZAtION SEES......uuiiiiiiiiiiiiei e a e e e e e e 117
GeneralizationSets designated by NAME..........c..evii i 118
GeneralizationSets designated by shared target............ccccveiiiiiiiiiii e, 118
GeneralizationSet designated by dashed line spanning Generalization arrows..................... 119
GeneralizationSet constraint notation with shared target style..............ccccooiiii 119
GeneralizationSet constraint notation with dashed line style.................cccccciiiiiel. 120
Power type notation with shared target style..............cooorric 120
Power type notation with dashed line Style.............oooiiiiiii e 120

Unified Modeling Language 2.5.1

Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26
Figure 9.27
Figure 9.28
Figure 9.29
Figure 9.30
Figure 9.31
Figure 9.32
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9

Figure 10.10
Figure 10.11
Figure 10.12
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Figure 11.9

Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 11.19
Figure 11.20
Figure 11.21
Figure 11.22
Figure 11.23
Figure 11.24
Figure 11.25

Unified Modeling Language 2.5.1

GeneralizationSet notation OPIONS..........cooiiiiiii e 121
GeneralizationSets and CONSTraINTS...........oooiiiiiiiii e 121
POWET tyPE EXAMPIE......ceeeiiieece e e e e e e e e e e e e e e e ————— 122
MoOre POWET tYPE ©XAMPIES. ..cooiiiiiee ettt e e e et e e e e e e e e e e e e e e e e e e nnnnennes 123
More than 0NE POWEITYPE.coo it e e e e e e e e e eeeeas 124
1] o= o= T PR 124
Specification of an Instance of StriNG..........cooiiii i 127
SIOtS WIth VaAIUES. ...ttt e e e e e e e e e e e e e nenneeeee 127
InstanceSpecifications representing two objects connected by a link.............ccccceeeiiiiinennn. 127
InstanceValue represented textually............ccooiiiiiiiiiiii 127
InstanceValue represented graphiCally............c..ooiiiiiiiiiii e 127
= L= 1 Y/ 01 P UEURPURUR 165
PrimitiveType NOtatioN........cccoi i 166
DataType NOTALION.ooii et e e e e e st ee e e e e 166
Enumeration NOTatiON.........ooiii e 167
T To 4 = PP PPUPPPRPR 167
ReCeption NOTAtiION. ... e e e e e e e e e e e e 168
11 (=T =T USSR 169
ISensor is a provided Interface of ProxXimitySensor..............euiiiiiiiiiiiieeeee e 170
ISensor, a provided Interface of ProximitySensor, is shown as inherited by

CaAPACHIVESENSON. ... ettt e e sttt e e e e e e e e nneee s 171
ISensor is a required Interface of TheftAlarm...............coooiiiiiiieeee 171
Alternative notation for required and provided Interface..........ccccccccccooiiiiiiiiiiiiiiiiieeeeeeeeeee, 171
A set of collaborating INterfaces. ... 171
SErUCIUrEd ClasSifiers.ot e e e e e e e e e e e e e e e e e annnes 181
Parts @nd FOIES........oooii e e e e e e e e e e e 184
Parts and roles With POIS...........uuiiii e 184
Alternative notations for connecting parts and roles with Ports.............ccooooiiiiiin. 185
Associations compared With CONNECLOrS....... ..o 185
"Star" ConNECIOr PAtlErN.. ... e e e e e 186
"Array" ConNECLOr PAEIN. ... e e 186

An assembly Connector maps a simple Port of a Component to a matching simple Port

Of @NOther COMPONENL...........uuiiiiiiiiiiie et e e e e e e e e e e e e e e e e eannns 187
An n-ary Connector that assembles four simple Ports using channeled ball-and-socket
L0} =1 (o o PR 187
Encapsulated CIasSifiers..........cccuuuuiiiiiiiiiiieeee e 188
POt NOTALION. ...ttt e e e e e e e e 190
Behavior Port NOtatioN........ ... e 190
Port notation showing multiple provided Interfaces............ccccoui e 191
o Ty =) €= o 0] o] L= T 191
L0 T RSP 192
Class NOtation VariantS.oiiiiii oot e e e e e eeeeas 194
Class notation: attributes and Operations grouped according to visibility.............................. 194
11T O = T SO 194
(070] a1 a1=Tor (o] £-3K= 1 To I = o £ SO 195
Connectors and Parts in a structure diagram using multiplicities..........cc.ccccccvcveiiiicieee e 195
AN INStance Of the Car Class.........c.oiiuiiiiie i a e e e enneeas 195
InstanceSpecification indicating @ CONSIIUCION...........c.uviiiiiiii e 196
A constructor for the Car Class..........oooii i e e 196
Showing that the extended Class is @ Metaclass.............ceeeviiiieiiiiiiiiiiiiieeee e, 196
ASSOCIATIONS. ...ttt e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e naarane 197
XXXiii

Figure 11.26
Figure 11.27
Figure 11.28
Figure 11.29
Figure 11.30
Figure 11.31
Figure 11.32
Figure 11.33
Figure 11.34
Figure 11.35

Figure 11.36
Figure 11.37
Figure 11.38
Figure 11.39
Figure 11.40
Figure 11.41
Figure 11.42
Figure 11.43
Figure 11.44
Figure 11.45
Figure 11.46

Figure 11.47
Figure 11.48

Figure 11.49
Figure 11.50
Figure 11.51
Figure 11.52
Figure 11.53
Figure 11.54
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13
Figure 12.14
Figure 12.15
Figure 12.16
Figure 12.17
Figure 12.18
Figure 12.19

XXXiV

Graphic notation indicating exactly one Association end owned by the Association.............. 200
Binary and ternary ASSOCIAtIONS.ooeviiiiiiiiiiiie e ——————— 202
Association ends with various adornmENtSs.............ccueiiiiiiiiiiiei e 202
Examples of navigable association-owned ends.............ooccuiiiiiiiiii 203
Examples of Class-0Wwned €ndS.........coooieiei e 204
Example of attribute notation for navigable end owned by an end Class.................cccccuuune 204
Derived SUPEISELS (UNION)......ccoii ittt et e e et e e e et e e e e e e snnee e e e e e anneee 204
Composite aggregation is depicted as a black diamond...............cccoo s 205
Composite aggregation sharing @ Source SEgMENt............cceoviiiiiiieiiiiiiiee e e e 205
Example AssociationClass Job, which is defined between the two Classes Person and
LO70] 201 07T 0|28 PRSI 205
Example AssociationClass using diamond Symbol............ccccoocuiiiiiiiiiiiie e 206
Qualified @SSOCIAtIONS........ccicuiiiiiiii et te e st e et e e e erae e e anaeeeenes 206
(O70] 0] oTe] aT=T o) - TP PPPPP TIPSR 207
Example of an overview diagram showing Components and their general Dependencies....209
A Component with two provided and three required Interfaces..........cccccooeeeeviiiiiiiieieeeennnnen, 209
Black box notation showing a listing of provided and required interfaces...............ccccevveeee.... 210
Optional “white-box” representation of a Component.............cccoviiiiiiiiiiiiiiiiiiieeeee e 210
Explicit representation of provided and required Interfaces using Dependency notation....... 210
A representation of the realization of a complex Component............cccoociiiieiiii e, 211
An alternative nested representation of a complex Component..........ccccoooceieiiiie e, 211
Example model of a Component, its provided and required Interfaces, and wiring

through DEPENAENCIES.oeiiiiiiiee et e e e e e e e e e e e e eee e 212
Internal structure of @ COMPONENT............oiiiiiii e 212
Delegation Connectors connect externally provided Interfaces to the parts that realize

Lo g (=0 U 1T =0 £ U= o o USRS 213
L0701 F= Lo To] =1 110] 1 - TP PP PPPPP 213
The internal structure of the Observer Collaboration................ooooiiiiiiiii e 215
Alternative notation for the parts of the Observer Collaboration...............cccccceeiiiiiiii. 216
The Sale Collaboration.ccoiiiiiiii e 216
The BrokeredSale Collaboration............ccoeiiiiiicciiiiiieeeieeee e e e e e e e e e eanees 216
A subset of the BrokeredSale Collaboration using «occurrence» and Dependency arrows. .217
= Ted €= To [PPSR 239
lllustration of the Meaning of Package Merge............coocuuiiiiiiiiiiiie e 240
Conceptual View of the Package Merge SemantiCs...........ccccooiuiiiiiiiiiiiiiie e 241
Notation for Package MEIGE.coooi ittt e e e 247
Examples of a Package With MEmMDErS............cooiiiiiiiiiiiii e 247
Simple Example of Package Merge.........c.uuiiiiiiiiiiiiiiee e 248
Simple Example of Transformed Packages Following the Merges...........cccccciiiiieiiiinineen. 248
Introducing Additional Package MErges...........ooeuuiiuiiiiiiiie e e e e e e e eeeeaaeens 249
Result of the Additional Package MErgES...........cooocuiiiiiiiiiiieieee e 249
Three Models Representing Parts of @ System..........cciiii 249
Two Views of One System Collected in a Container Model............ccccccooiiiiiiiiiiiii 250
e o) 1 L= PO 251
Using the HomeExample Profile to Extend a Model.............occooiiiiiiiiiiee e 255
Specification of an Available Metaclass..............cuuveeeiiiiiiiii e 257
MOF Model Equivalent to Extending "Interface" by the "Home" Stereotype............ccccceeenne. 259
Example of Multiple Metaclass EXtENSION. ... 259
MOF Model Equivalent to Multiple Metaclass EXteNSIioN............ccccoviieiiiiniini i 260
The Notation for an EXTENSION........coooiiiiiii e 260
Example of USING @n EXIENSION..........cccoiiiiiiiiceeeeeee e e e e e e e e e e e enenes 262

Unified Modeling Language 2.5.1

Figure 12.20
Figure 12.21
Figure 12.22
Figure 12.23
Figure 12.24
Figure 12.25
Figure 12.26
Figure 12.27
Figure 12.28
Figure 12.29
Figure 12.30
Figure 12.31
Figure 12.32

Figure 12.33

Figure 13.1
Figure 13.2
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure 14.10
Figure 14.11
Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15
Figure 14.16
Figure 14.17
Figure 14.18
Figure 14.19
Figure 14.20
Figure 14.21
Figure 14.22
Figure 14.23
Figure 14.24
Figure 14.25
Figure 14.26
Figure 14.27
Figure 14.28
Figure 14.29
Figure 14.30
Figure 14.31
Figure 14.32

Unified Modeling Language 2.5.1

Example of a Required EXTENSION..........coooiiiiiiiiii e 262
Defining @ Simple EJB Profile...........ooooiiiiiiiieeeee et 263
Importing a Package from a Profile.............ooooiiiiie e 263
Profiles Applied t0 @ PacCKage.........ccccueiiiieeeeie e 264
DefiNiNg @ STErEOLYPE.coii e 264
Presentation Options for an Extended Class............cooooiiiiiiiiiiiiiiiiieeeeeeee e 264
An Instance Diagram when Defining a Stereotype............oooi i 264
Defining Multiple Stereotypes on Multiple Stereotypes..........cooo oo, 265
0] Lo = TS (=Y (=T 0) 4] o1V SRS 265
Showing Values of Stereotypes and a Simple Instance Specification..........ccccccceeevveiiiiiinnnns 265
Using Stereotypes and Showing ValUEs...........cuuiiiiiiiiiiiiiiiie e 265
Other Notational Forms for Depicting Stereotype Values...........cccooeveiiiiiiiiie 266
Example of a Profile defining Classes and binary composite and non-composite

=TT o7 =1 oo - S 266

Diagram example of applying a profile defining Classes and Associations and of
creating instances of such Classes. Tools can provide a notation similar to that of

object diagrams for instances of Profile-defined Classes, DataTypes and Associations........ 269
LY g E NV o) SR 284
=T o) PO 289
Behavior StateMacChines.uuiiiiiiiiiieie e e 304
Compound transition @XamPIe...........cooiiiiiiiiiiiiie e 316
Notation for a composite State with Regions.............cooviiiiiiiiiiiiiiie e 317
Y= -3 0] =1 1] o TSRS 317
State With @ NAME 1aD........eee e ——————— 318
State With ComMPartMENtS........o..eeiii e 318
Composite State with two States..........ccccciiiiiii e 320
Composite State with a hidden decomposition indicator icon................ccocccciiiiiiieeieieeeeee, 320
Composite State With REGIONS...........eiiiiiii e 320
Composite State with two Regions and entry, exit, and do Behaviors..................cccc 321
Submaching State EXamMPIE..........uuiiiiiiiiee e e e e 322
StateMachine with an exit point as part of the StateMachine graph.......................... 323
StateMachine with an exit point on the border...............ooiiiiiiii e, 323
Submachine Sate that uses an exit Point.............cooooiiiiiiiiiiiiee e 324
State list NOtation OPLION.........ooi i 324
Diagram equivalent to Figure 14.15 without using statelists.............cccccoiiie, 325
FiNalState NOtAtioN. e e e e e e e a e e 325
INitial PSEUAOSIALE. ... 325
ShalloWHIStory PSEUAOSAtE.cooiiiiiii e 325
deepHistory PSeUdOSTAte.ouuiiiii 325
entryPoint PSEUAOSTIALE.coo i ————— 326
eXitPOINt PSEUAOSTALE.coiiiiiiiiie e 326
entryPoint and exitPoints on a composite State............ccociiiiii 326
junction Pseudostate with incoming and outgoing Transitions..............cccccieiiiniiicie 327
ChOICE PSEUAOSIALES. ... e e e e e as 327
terminate PSEUAOSIALE..........uiiiiiiiiiiiie e e 327
fork and jOIN PSEUAOSIALES.oiiiiiiiiiiie e e e e as 328
Entry point ConnectionPointReference notation..............cccco i 328
Exit point ConnectionPointReference notation...............cccooiii 328
Alternative entry point ConnectionPointReference notation.............ccccooiiiicen, 329
Alternative exit point ConnectionPointReference notation.................ccccovveeeiiiiiii, 329
Symbols for Signal reception, Sending, and Actions on a Transition..............cccccceveieeeenennn. 331

XXXV

Figure 14.33
Figure 14.34
Figure 14.35
Figure 14.36
Figure 14.37
Figure 14.38
Figure 14.39
Figure 14.40
Figure 14.41
Figure 14.42
Figure 14.43
Figure 14.44
Figure 14.45
Figure 14.46
Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 15.10
Figure 15.11
Figure 15.12
Figure 15.13
Figure 15.14
Figure 15.15
Figure 15.16
Figure 15.17
Figure 15.18
Figure 15.19
Figure 15.20
Figure 15.21
Figure 15.22
Figure 15.23
Figure 15.24
Figure 15.25
Figure 15.26
Figure 15.27
Figure 15.28
Figure 15.29
Figure 15.30
Figure 15.31
Figure 15.32
Figure 15.33
Figure 15.34
Figure 15.35
Figure 15.36
Figure 15.37

XXXVi

Deferred Trigger NOLAtION.eiii i 332
[Tor=| I I =T 0111 o] o 1T PP PP 333
EXternal TranSitioNS.........cooi i e s 333
StateMachine diagram representing a telephone............cccooii 334
StateMachine redefinition............. .. e 335
A general StateMacChine.............oooi i —————————— 337
An extended StateMacChine............ccouiiiiii e ——————————— 337
X [o [T a T I I =10 71 1T} o - USSP 338
ProtoColStatEMAaCHINES.ccoiiiiiiiie et e e 339
An example of a ProtocolTransition associated with the operation "m1".............................. 341
Example of several ProtocolTransitions associated with the same operation (m1)............... 341
ProtocolStateMaching eXample.............uueeiiiiiiiiiiiiii e 342
Notation for a State with an invariant..............ccooiiiii e 343
ProtocolTransition NOtAtION. i e e e e e e e e e e 343
217 =SSR 372
ACHVILY NOTALION.ot e e e e et s e e e e e e e e e eeeeeeaearana 377
ACHIVILY Class NOTALION. e e e e e e e 378
ACIVItYNOAE NOLATION. ... 378
ACHIVItYEAGE NOTAtION. ...t e e e e e e e 378
ActivityEdge conNeCtor NOTAtION.oooiiiiiiii e 378
ACIVItYEAGE NOTALION. ...t et e e 379
(070)0) 0] | =l To 1V s To) =1 i o] o PR 379
(@ o] =T ox (o (011 A T] ¢= 11T o 1= S PRRR 379
Specifying selection behavior on an ObJeCtFIOW..............ooiiiiiiiiiiiii e 379
Eliding objects flowing on the €dge...........oooiiiiiiii e 380
Activity node example (where the arrowed lines are the only non-activity node symbols).....380
ACHVItYEAQGE EXAMPIES. ... r e e e e e e e e e e e e e e et aaaaaaaaaaaan 380
ODJECFIOW ©XAMPIE..... .t e e e e e e e aneeas 381
Eliding objects flowing on the €dge...........cooiiiiiiiiii e 381
Specifying selection and transformation Behaviors on an ObjectFlow.............cccccccceeeeiiinne. 381
Linking a class diagram to an object NOde.............oooiiiiiiiiiiiiii e 382
Specifying multicast and multireceive on the edge..........oooiiiiiiiiiiiii e 382
ActivityEdge connector @XampPle............eeiiiiiiiiiiiii e 382
EQUIVAIENT MOEL......c e a e nneeeae s 382
ActivityEdge Weight @Xamples.... ... 383
Example of an activity with input parameter..............cccoi i 383
Part selection WOrkflow €Xample...........coooiiiiiiiiiiiiiiieeeeee e 384
Trouble ticket WOrkflow eXample.........oooiiiiiii i 384
Activity with attributes and Operations..............ooouiiiiiiiii 385
L070] 011 o]l N oo 1= ST PP TP PP PPPPPTPI 385
INItTAINOAE NOTALION. ... e 388
[TaF=11N (oo (=30 o) -1 4o o TSR 389
ForkNode and JoiNNOde NOtatioN..............eiiiiiiiiii e 389
J{oT1 01T o T=Tol gTo] ¢= 11 o] o XN U PRRT 389
Combined JoinNode/ FOrkNode Notation..............eeeiviiiiiiee i 389
MergeNOde NOLALION. e e e e e e e e e e e e enenes 390
DeciSIONNOAE NOTALION.eeiiiiiiiieee et e e e e e e e e e e e e e e nnneeees 390
Combined MergeNode/DecisionNode Notation.............cooieiiiiiiiiiiiiie e 390
INItIAINOAE EXAMPIE. ..ottt e e et e e e s abaeeee e e 390
o (N (oo [N =) =T o 1] o] [391
B [o]\ ToTe [N =Y e a] o 1= TS 391

Unified Modeling Language 2.5.1

Figure 15.38
Figure 15.39
Figure 15.40
Figure 15.41
Figure 15.42
Figure 15.43
Figure 15.44
Figure 15.45
Figure 15.46
Figure 15.47
Figure 15.48
Figure 15.49
Figure 15.50
Figure 15.51
Figure 15.52
Figure 15.53
Figure 15.54
Figure 15.55
Figure 15.56
Figure 15.57
Figure 15.58
Figure 15.59
Figure 15.60
Figure 15.61
Figure 15.62
Figure 15.63
Figure 15.64
Figure 15.65
Figure 15.66
Figure 15.67
Figure 15.68
Figure 15.69
Figure 15.70
Figure 15.71
Figure 15.72
Figure 15.73
Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10
Figure 16.11
Figure 16.12
Figure 16.13
Figure 16.14
Figure 16.15

Unified Modeling Language 2.5.1

JOINSPEC EXAMIPIE. ...ttt e e ettt e e e e ab bt e e e e s abbe e e e e e aanbeneeeeeann 391
MeErgeNOdE EXAMPIE.ccoi it e e s e e e e e e e e e e e e e e e e e et aeaas 391
DeCiSIONNOGE EXAMPIE..... it e e e e e e e e e et e e e e eaes e e e eeas 392
DecisionNode example with decCiSiONINPUL...........oooiiii i 392
ActivityFinaINOdE @XamIPIE.........oiiiiieie e 392
ActiVityFiNalNOAEe €XamMPIE......ccoo i e e e ——————— 392
ACLiVityFINaINOAE €XaMPIE........euiiiiiiiiiiiie e e e 393
FIOWFINAINOAE €XAMPIE......eeeieieii et e e e e e e e e e e e e e e e e eeaeaeaaaaas 393
FlowFinalNode and ActivityFinalNode example..........c.c..uuiiiiii e 393
ControlNode examples (with accompanying actions and control flows).............cccevvviiiiiinnns 394
(@] o] =Ted g [o = T RSP R 394
(@01 =To1 1\ [oTo [l aTo] ¢= 1110] o 1T USRS 397
ObjectNOdE anNOtAtiONS.........c..uuuiiiiiiiieieieceee e e e e e e e e e 398
Specifying selection behavior on an ObjectNOde..............cooiiiiiiiiiiii e 398
Notation for stream and exception parameters.............cccuiiiiiiiie e 398
Presentation option for flows between pins and parameter nodes..........ccccceveveeeeeeeieiiiiicccnns 399
Optional CentralBufferNode notation..............cccuiiiiiiiiiiiiiic e 399
DataStoreNOde NOtAtION. e e e e e e e e e e e e e e enneenes 399
Example of ActivityParameterNodes for regular and exception Parameters.......................... 399
Example of ActivityParameterNodes for streaming Parameters............cccccccvvvvviiiiiinnnnnnnn.... 400
CentralBufferNode eXample...........ooo i 400
DataStoreNOde EXAMPIE.........cceieiiieeeeeeee et aaa e 400
EXECULADIE NOTES.ttt e e e e e e e e e e e e e e e e e e annes 401
(= CCTe18] c= 1] =1\ (oTo L= g o] =1 i o T o SRR 402
ExceptionHandler NOtation..............ueii e 403
Alternative ExceptionHandler Notation.............cccoooo i 403
ExceptionHandler @Xample...........oooo oo ————— 403
F e 11147 €] (o100 1 PP PPRP 404
ActivityPartition NOAtIONS. ... 406
ActivityPartition NOtatioNS...........ooeiiieie e 407
Interruptable ACtiVItYREGION.ooi e 407
InterruptableActivityRegion alternative notation................oooiiii e 407
ActivityPartitions using swimlane notation..................iie e 408
ActivityPartitions using annotation.............cooiiiiiiiii e 408
ActivityPartitions using multidimensional swimlane notation...............cccoccoeiiiii e 409
InterruptableActivityRegion eXample.............cooiiiiiiiii e 409
A CTIONS ettt e e e e e oo e e e e et e e e e e e e e e e e e e a e e e eeees 440
1o) o SR 444
Local pre- and post-CONAItIONS..........coiiieeeee e e e 444
PiN NOTALIONS.eeee it e e e e e e e e e e e e e 444
Pin notations, With @rMOWS............ooi i 445
Standalone Pin NOtatioNS. ... e 445
EXamPIEs Of ACHIONS.... .o 445
Example of action using a tool-specific concrete syntax..........ccceeeeiiiiiiiiii i 445
Example of an action with local pre- and post-conditions.............ccoccveiiiiiiiiic i 446
PN EXAMIPIES. .. et e e e e e e e e ——————————— 446
Specifying selection behavior on an ObJECtFIOW............c..eeiiiiiiiiiiiie e 447
Example abstract syntax model showing the use of ActionInputPins.............cccccciiiiinis 447
TNV o= i 0 Yo T o - 448
CalliNg @ BENAVIOT.........cc ittt e e e e e e e e e e e e e e e e e e aaaeeeeaeaaaannns 452
CalliNg AN ACHVILY....ceee et e e e e e e e e e e s e e e a e e e e e e e eaaaaeeeeaeaaanans 452

XXXVii

Figure 16.16
Figure 16.17
Figure 16.18
Figure 16.19
Figure 16.20
Figure 16.21
Figure 16.22
Figure 16.23
Figure 16.24
Figure 16.25
Figure 16.26
Figure 16.27
Figure 16.28
Figure 16.29
Figure 16.30
Figure 16.31
Figure 16.32
Figure 16.33
Figure 16.34
Figure 16.35
Figure 16.36
Figure 16.37
Figure 16.38
Figure 16.39
Figure 16.40
Figure 16.41
Figure 16.42
Figure 16.43
Figure 16.44
Figure 16.45
Figure 16.46
Figure 16.47
Figure 16.48
Figure 16.49
Figure 16.50
Figure 16.51
Figure 16.52
Figure 16.53
Figure 16.54
Figure 16.55
Figure 16.56
Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

XXXViii

O 1o To I=Ta I @ o= = 11[o] o TR PP PRRPRRRN 452
Calling an Operation, showing the OWNer NAME...............ccvevieiiiiiiieee e 452
SeNAING @ SIGNAL.....ci i aaaaaa e e e e e e e 453
Exception Pin @annotations............oooriiiiii i 453
Effect Pin @annotations. e 453
Stream Pin annotations..........oooi e 453
Stream Pin annotations, with filled arrows and rectangles...........cccccccieeeeiiiiiiieccceee, 454
Alternative input/outputs using ParameterSet notation................cccco e 454
INVOKING 8N ACHIVITY ...t e e e e e e e e e e e e eeeeas 454
SeNAING SIGNAIS.......eeiiiiiiie e nres 455
Streaming Pin @XamMPIES........ooo i 455
EXCeption Pin @XamMPIES.... oo oot ———— 455
Pin example With €ffECES..........ooo i 455
Alternative input/outputs using ParameterSets............cooo i 455
ODJECE ACHIONS. ...t e e e et e e e e e e e anees 456
ValueSpecificationAction NOTAtION.............ooooiiiiiiie e 458
ValueSpecCifiCatioNACHIONS. ...t e e e e e e e e 459
[T S =t o 1 7= - TSRS 459
o o] = 3PS 461
LiNK ODJECE ACHIONS.ttt e et e e e s e e e s e nneeeeens 464
Structural FEature ACLIONS..........coo i e e e e e e e s e e aae s 465
Variable ACHONS. ...ttt et e e e e e e e e e e e e e e e e eeaaeas 468
Presentation option for AddVariableValueAction................ccccouiiiiiiiiiiiieeceeee 469
ACCEPT EVENT ACHONS. ...t e e e 470
AcceptEVentACtion NOTAtIONS.........ooi i 472
Implicitly enabled ACCEPIEVENTACHON.........cceiiiii e 473
Explicitly enabled ACCEPtEVENTACHON.coiiii i 473
Repetitive tiIMe @VENT.... ...t e e e e e e e e 473
UNMarshallACHION. ...t e aaannnns 473
Y 0o (U= Yo e 1] 13 PSP 474
Notation for StructuredActivityNOdE.coooiiiiiiiii e 478
EXPansion REGIONS. ... ittt e e e e e e e e e e e e an 478
EXPanSion REGION.t e e e e e e e e e e e e e e e 481
Shorthand notation for expansion region containing single node................cccoooii 481
Full form of previous shorthand Notation................cceeii i 481
Notation for expansion region with one behavior invocation..............ccccccoei i 481
Expansion region with two inputs and one output.............coooiiiiiiccccce e 482
EXPaNSION REGION.ottt e e e sttt e e e e an b e e e e e e abbeeeeaeaans 483
Examples of expansion region shorthand.............coooiiiiiiii e 483
Shorthand notation for eXpansion regioN............cccuuiiiiiiiiiiieee e e 484
(@ 1T o 1] L3P ERR 484
11 0= =T o) o 13RS 565
Overlapping ExecutionSpecifiCations............ooo i 567
An example of an Interaction in the form of a Sequence Diagram............cccccoviiieieiiiiiieenenn. 568
OCCUITeNCESPECITICALION.ciiiiiiiiiii e 568
Sequence Diagram with time and timing CONCEPLS.........ccvviiiiiiiiiiiiie e 569
Y] o PSR 570
1= S= To = T PP PR 572
DestructionOccurrenceSpecification Symbol...........coocueiiiiiii e 576
(@ o o104 (=0T TP TURSR 578
Example showing GeneralOrdering in a sequence diagram...........ccccuveeeeeeeeeeeeeeeeeiceccciniinnns 579

Unified Modeling Language 2.5.1

Figure 17.11
Figure 17.12
Figure 17.13
Figure 17.14
Figure 17.15
Figure 17.16
Figure 17.17
Figure 17.18
Figure 17.19
Figure 17.20
Figure 17.21
Figure 17.22
Figure 17.23

Figure 17.24
Figure 17.25
Figure 17.26
Figure 17.27
Figure 17.28
Figure 17.29
Figure 17.30
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8
Figure 18.9
Figure 18.10
Figure 18.11
Figure 18.12
Figure 19.1
Figure 19.2

Figure 19.3

Figure 19.4
Figure 19.5

Figure 19.6
Figure 19.7
Figure 19.8
Figure 19.9
Figure 19.10
Figure 19.11
Figure 19.12

Figure 19.13
Figure 19.14

Unified Modeling Language 2.5.1

= Lo 1T o €T PRI 580
(07 g1 1Ter=1 I =T [[o] o PP OPPOPPP 585
- Loop CombinedFragment............coooiiieeeeeee e 586
CombiINEdFragmENnt.........ooo i e e 586
L@ a1 (110 F=1 1o o RS 587
Continuation INtErPretatioN..............eii i e e e e e e e e e e e e e 587
Ignore, consider, assert with Statelnvariants............ccccccevee i 588
T (=T = T3 o] 1O =T3P ERRRRR 589
INEErACHIONUSE.ottt e e e e e e e e e e e e e e e e e 590
InteractionUse With Value retUIN..........cceiiiiiieeee e e 591
PartDecomposition - the decomposed part...........c..eeiiiiiiiiiii e 591
PartDecomposition - the decomMpPOSItioN............ccooiiiiiiiiiiiee e 591
Sequence Diagrams where two Lifelines refer to the same set of Parts (and
INEINAl STIUCIUIE)....ceiie e e 592
Describing Collaborations and their binding.............ooooii 593
Overview of Metamodel elements of a Sequence Diagram...............cccoeeviiiiiiiiiiiiiieeeeeeee e, 597
CommuNiCatioN IAgIam..........oooi i e e e e e e e e e e aaaaaaaaas 599
Interaction Overview Diagram representing a High Level Interaction diagram...................... 601
A Lifeline for a discrete ODJECT..... ..o 603
Compact Lifeline with States..........cooo e 604
Timing Diagram with more than one Lifeline and with Messages.............cccccool 604
LT 0= 1T USRS 637
Class diagram of a Package owning a set of UseCases, Actors, and a Subsystem.............. 641
EXaMPIE EXIENG. ... e e e e e e 641
EXaMPIE INCIUAE. ..ottt e e s e e s as 642
UseCase using Classifier rectangle notation................ceeevviiiiiiie e 642
Actor notation USING SHCK-MaAN...........uiiiiiiii e e e 642
Actor notation using Class rectangle........ ..o 642
ACtOr NOLALION USING ICOM. ...ttt 642
Notation for UseCase owned by ClasSifier..........ccouiiiieiiiiiiiiiieeee e 643
Example ATM system with UseCases and ACLOrS...........ccooiiiiiieiiiiiiiee e 643
Example UseCases owned by Packages...........oooiiiiiiiiiiiiiiiiee e 644
Example UseCase with associated StateMachine.................cccoooiiii s 644
(D =T o] (o)1 1T o (3 PP 651
A visual representation of the deployment location of artifacts, including a dependency
between them, inside a DeployedTarget graphicC..........c.oooeiioiiiiiiiiiiiiie e 652
Alternative deployment representation of using a dependency called «deploy» used
when DeployedAtrtifacts are visually outside their DeployedTarget graphics......................... 652
Textual list based representation of DeployedArtifacts.........ccccceeeiiiiiiiiii e, 653
DeploymentSpecification for an artifact. On the left, a type-level specification, and on
the right, an instance-level specification.............ccuuvviiiiiiiii e 653
DeploymentSpecifications related to the DeployedArtifacts that they parameterize.............. 653
A DeploymentSpecification for a DeployedArtifact ... 654
N 1 = Lo £ TP PSURRRRRR 654
AN AIfACE INSTANCE....ceiiieie e e aaaa s 655
A Manifestation relationship between an Artifact and a Component.................ccccceeiiinnnnn. 655
N[00 [= 3 TR 656
Notation for a Device containing an ExecutionEnvironment and connected to another
Device by a CommunicationPath lINK............coooiiiiii e 657
Notation for @ EXeCUtiONENVIFONMENT..........ooiiiiiiiiii et 657
AN NSTANCE OF @ NOE......oiiiiiiiiiii e e e s e e e s neeeeeas 657
XXXiX

Figure 19.15 CommunicationPath between AppServer with deployed Artifacts and a DBServer................ 657
Figure 19.16 Deployed component Artifacts on @ NOde..............uuiiiiiiiiiiiic e, 657
Figure 20.1 INfOrMation FIOWS.........coooiiiiiiii et e e e e e e e e e e e et e e e e e eeaeaeeeeaaaan 667
Figure 20.2 Example of InformationFlows conveying Informationltems...............cccooiiniccee, 669
Figure 20.3 Information Item represented as a Classifier..........ccooouiiiiiiii 669
Figure 20.4 Examples of «representation» NOtation..............ccceeeeiiiiiiiiiiiiiee e 669
Figure 20.5 Informationltems attached to CoNNECIOrS............coiiiiiiiiiii e 669
Figure 20.6 Informationltems attached to ASSOCIAtiONS..........cooi i 670
FIGUre 2711 PrimItIVe Ty DES. .ottt ettt e e e e e e e e e e e e e bt e et e e e e eaaaaeeeeasaaaannnrnnes 675
Figure 21.2 An Integer used as a type for an attribute, with a default value...............ccccccoiiin, 675
Figure 21.3 A Boolean used as a type for an attribute, with a default value.................ccccocooiiiiiiiii 676
Figure 21.4 A String used as a type for an attribute, with a default value..............ccccoociiiiiii e, 676
Figure 21.5 An UnlimitedNatural used as an upper bound for a multiplicity................ccccoviiieien. 676
Figure 21.6 Two attributes with type Real...........ooooiiiiii e 676
Figure 22.1 Model of StandardProfile...............eoii i 677
Figure A.1 LU 1Y/ I =T = 1 o U 681
Figure A.2 Class diagram of PACKAGE P...........uuiiiiiiiiiiiiii et aa e 681
Figure A.3 Two diagrams Of PACKAGES.coiiiiiiiiii e 682
Figure A.4 A class diagram and a composite structure diagram..............ccoooiiiiiiiee 682
Figure A.5 The taxonomy of structure and behavior diagrams..............cccooiiiiiiiiie e 683
Figure B.1 UML Diagram Interchange ArchiteCture............coooiiiiiiiiiii e 685
Figure B.2 UML Diagrams and Diagram Elements...........oooi e 686
Figure B.3 UML Shapes and EAQES.........cooieiiiiiiiieeiiiiiiee e sttt e e e e sttt e e e e ettt e e e s eentaeeeeessntaeeaeesanraeeeeeeanns 687
Figure B.4 0= o= £ U PRRP 687
Figure B.5 UML Compartmentable Shapes...........coo i 689
Figure B.6 Stereotype Application Labels............cc..uuiiiiiiiiiiii e 689
Figure B.7 1Y S 4 [P PEPURPRTT 691
Figure B.8 STTUCKUIE DIAGIAMS. ..ccei ittt e e e e bt e e e e bt e e e e e e abbe e e e e e e nneeas 691
Figure B.9 ClasSIfier SNAPES.ciiii e 693
Figure B.10 Multiplicity and Association End Labels..............coooiiiiiiiiiiiiiieeeeee e 694
Figure B.11 Association, Connector, and Link Shapes..........ccccviieiiiiiiiiiiiieeeeeee e 695
Figure B.12 Behavior DIagramS.ottt e e e e e e e e e e e e e et e e e e e e aaaaaeaeeaeaaaannnns 695
o U = T B Y =Y (Y] = o =Y SRR 700
Figure B.14 Interaction Shapes..........ooiiiiiiiiiiii et e e e s ee e e e anes 701
Figure D.1 Sequence diagram enhanced with identification of the Event occurrences........................... 748
Figure D.2 Sequence diagram with guards, parallel composition and alternatives............ccccccceevvivveennn. 749

xI

Unified Modeling Language 2.5.1

Table 7.1

Table 9.1

Table 17.1
Table 17.2
Table 17.3
Table 17.4
Table 17.5

Table 17.6
Table 21.1
Table 22.1
Table B.1
Table B.2
Table C.1
Table D.1
Table D.2

Table of Tables

Collection types for MUltipliCityElements..........cc.ueeiiiiii e 34
GeneralizationSet CONSIraINtS..........cuiiiiiiiii e 119
Graphic Nodes Included in Sequence Diagrams............occueiiieiiiiiiiiee e 594
Graphic Paths Included in Sequence Diagrams..........ccccuuiiiiiiiiieiieeae e 596
Graphic Nodes Included in Communication Diagrams............ccceeeeiviiireeeiiiiieee e esiiee e 598
Graphic Paths Included in Communications Diagrams...........cccoocueeeieniiiiiiieeniiiieeee e 598
Graphic nodes included in Interaction Overview Diagrams in addition to those borrowed

from ACHIVIEY DIAgramS.coii ittt e e s e e e e e e e e e e e et e e e e e e nnaeeaeeeanrees 600
Graphic nodes and paths included in timing diagrams...........cccccccccoooiiiiiiiiiiiiiieeeeeee e, 602
PrimitiveTYPE dOM@INS. ... et e e et e e e s e rabeeeeeeeanes 675
Description of the Stereotypes in the UML StandardProfile..............ooooiiiiiiii, 678
1Y] T T o1 OO 702
1Y I o [[OSSP 716
KBYWOITS. ...ttt e e e e ettt e e e e o bbbt e e e e e aab b et e e e e aaabbe e e e e e anbeeeeeeeaan 744
Interaction Table describing Figure D. e 748
Interaction Table for FIQUIE D.2.........coo i e e 749

Unified Modeling Language 2.5.1 xli

1 Scope

This specification defines the Unified Modeling Language (UML), revision 2. The objective of UML is to provide
system architects, software engineers, and software developers with tools for analysis, design, and implementation of
software-based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming, and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly
more precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly
improved capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and syntax is required. UML meets the following requirements:

¢ A formal definition of a common MOF-based metamodel that specifies the abstract syntax of the UML. The
abstract syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the
rules for combining these concepts to construct partial or complete UML models.

* A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a
technology-independent manner, how the UML concepts are to be realized by computers.

* A specification of the human-readable notation elements for representing the individual UML modeling
concepts as well as rules for combining them into a variety of different diagram types corresponding to
different aspects of modeled systems.

Unified Modeling Language 2.5.1 1

2

Conformance

There are five distinct types of conformance. These are listed below. Unless otherwise stated these types of
conformance are independent.

1

Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface
and/or API that enables instances of concrete UML metaclasses to be created, read, updated, and deleted. The
tool must also provide a way to validate the well-formedness of models that corresponds to the constraints
defined in the UML metamodel.

Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of UML notation to be created, read, updated, and deleted. Note that a
conforming tool may provide the ability to create, read, update and delete additional diagrams and notational
elements that are not defined in UML.

Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid UML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. A conforming UML 2.5 tool shall be able to
load and save XMI in UML 2.4.1 format as well as UML 2.5 format (see Annex E).

Diagram interchange conformance. A tool demonstrating diagram interchange conformance can import and
export conformant DI (see Annex B) for all valid UML models with diagrams, including models with profiles
defined and/or applied. Diagram interchange conformance implies both concrete syntax conformance and
model interchange conformance.

Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret
UML semantics, e.g., code generation, model execution, or semantic model analysis. The normative
specification for UML semantics includes clause 6.3 in addition to the Semantics subdivisions of clauses 7-22.
Semantic conformance implies Abstract Syntax conformance.

Where the UML specification provides options for a conforming tool, these are explicitly stated in the specification. In a
number of other cases, certain aspects of the semantics are listed as "undefined" or “intentionally not specified” or “not
specified”, allowing for domain- or application-specific customizations. Only customizations that do not contradict the
provisions of this specification will be deemed to conform to it. However, models whose meaning is based on such
customizations can only be interchanged without loss with tools that support the same or compatible customizations.

This specification comprises this document together with XMI serialization contained in machine-consumable files as
listed on the cover page. If there are any conflicts between this document and the machine-consumable files, the
machine-consumable files take precedence.

Unified Modeling Language 2.5.1 3

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, Sixth Edition 2011
* OMG Object Constraint Language (OCL) 2.3.1 Specification: http://www.omg.org/spec/OCL/2.3.1

* OMG Meta Object Facility (MOF) Core 2.5 Specification: http://www.omg.org/spec/MOF/2.5

* OMG XML Metadata Interchange (XMI) 2.5 Specification: http://www.omg.org/spec/XMI/2.5

* OMG Diagram Definition (DD) 1.1 Specification: http://www.omg.org/spec/DD/1.1

Unified Modeling Language 2.5.1

http://www.omg.org/spec/DD/1.0.1
http://www.omg.org/spec/XMI/2.5
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/spec/OCL/2.3.1

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

Unified Modeling Language 2.5.1

5 Notational Conventions

5.1 Key words for Requirement Statements

The words SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, NEED NOT, CAN and CANNOT in this
specification shall be interpreted according to Annex H of ISO/IEC Directives, Part 2, Rules for the structure and
drafting of International Standards, Sixth Edition 2011.

5.2 Annotations on Example Diagrams

Some of the diagram examples in this specification include explanatory annotations, which should not be confused as
being part of the formal UML graphical notation.

In these cases, the explanatory text originates outside the UML diagram boundary, and has an arrow pointing at the
feature of the diagram which is being explained by the annotation. The color rendition of this spec shows these
annotations in red.

Unified Modeling Language 2.5.1

6 Additional Information

6.1 Specification Simplification

This specification has been extensively re-written from its previous version to make it easier to read by removing
redundancy and increasing clarity. In particular, the following major changes have been made since UML 2.4.1:

¢ The UML Infrastructure no longer forms part of the UML specification. The entire UML specification is
constituted in this document.

* Package Merge is not used within the specification. Every metaclass is specified completely in one clause.

* The specification is organized to reduce forward references as much as possible. This means that topics such as
Templates which are pervasive in their effects appear early in the specification.

* Every clause has a section of documentation generated from the metamodel that contains all of the metaclasses
with their properties, and all of the metaassociations with their properties. All cross-references in this generated
documentation include hyperlinks to their targets.

* The compliance levels L0, L1, L2, and L3 have been eliminated, because they were not found to be useful in
practice. A tool either complies with the whole of UML or it does not. A tool may partially comply with UML
by implementing a subset of its metamodel, notation, and semantics, in which case the vendor should declare
which subset it implements.

However, the metamodel itself remains unchanged from UML 2.4.1 superstructure, with a few exceptions:

* The metamodel has been partitioned into packages, corresponding to the clause structure of this specification.
All of these packages are owned by a top-level package named UML; they are also imported into UML so that
metaclasses may be referred to by their unqualified name in UML.

* Many OCL constraints have been corrected or added where they were absent. In order to do this, some names
of association-owned properties and the corresponding associations have been changed in order to avoid
ambiguity in OCL expressions.

* A small number of lower multiplicities have been relaxed from 1 to 0, in order to represent default values that
cannot be formally represented using MOF. In these cases the absence of a value signifies the presence of a
default value. These cases could not be represented at all in earlier versions of UML. They all occur in Clause
15: Activities and are made explicit in the text there.

* The property LoopNode::loopVariable has been made composite, in order to enable interchange of loop variables,
which was not possible in a standard way in UML 2.4.1.

* NamedElement::clientDependency has been made derived.

* {ordered} has been added to or removed from some properties in order to make the semantics consistent.

Unified Modeling Language 2.5.1 11

6.2 Architectural Alignment

The OMG’s Model Driven Architecture (MDA) initiative is a conceptual architecture for a set of industry-wide
technology specifications that support a model-driven approach to software development. Although MDA is not itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. UML, MOF, and related specifications play important roles in MDA by providing the
languages for creating and transforming models.

The abstract syntax of UML is specified using a UML model called the UML mefamodel. This metamodel uses
constructs from a constrained subset of UML that is identified in the MOF 2 specification and used for constructing
metamodels. Classes in a metamodel are called metaclasses. So, for example, the UML metaclass Element is an abstract
class in the UML metamodel: which also means that it can be viewed from the MOF perspective as an instance of the
metaclass Class, whose isAbstract property has the value true. Another such instance is the UML metaclass Comment,
which has an attribute named body, which can in turn be viewed from the MOF perspective as an instance of the
metaclass Property whose name property has the value “body”.

The fact that UML is defined using itself is no more surprising than the fact that many programming languages have
compilers written in the language itself, or that recursive functions (such as the factorial function) can be defined using
themselves. Certain conditions are required to ensure that the resulting definition is well-formed and unique; there is no
formal proof that UML satisfies these conditions, but the existence of numerous interoperable implementations of UML
offer substantial confidence that it does.

Defining UML using this constrained subset of itself ensures that UML models can be held in a MOF 2 repository
where they can be manipulated using MOF features, and interchanged using XMI in accordance with the MOF 2 XMI
Mapping Specification.

Since version 2.4.1 a MOF 2.x metamodel, including the UML 2.x metamodel, is a valid UML 2.x model. This was a
substantial simplification and alignment compared to earlier versions. It is expected that future versions of MOF and
UML will continue to be aligned in this manner.

Further discussion of metamodels and the relationship between UML and MOF may be found in the MOF 2 Core
specification.

6.3 On the Semantics of UML

6.3.1 Models and What They Model

A model is always a model of something. The thing being modeled can generically be considered a system within some
domain of discourse. The model then makes some statements of interest about that system, abstracting from all the
details of the system that could possibly be described, from a certain point of view and for a certain purpose. For an
existing system, the model may represent an analysis of the properties and behavior of the system. For a planned
system, the model may represent a specification of how the system is to be constructed and behave.

A UML model consists of three major categories of model elements, each of which may be used to make statements
about different kinds of individual things within the system being modeled (termed simply “individuals” in the
following). These categories are:

* Classifiers. A classifier describes a set of objects. An object is an individual with a state and relationships to
other objects. The state of an object identifies the values for that object of properties of the classifier of the
object. (In some cases, a classifier itself may also be considered an individual; for example, see the discussion
of static structural features in sub clause 9.4.3.)

* FEvents. An event describes a set of possible occurrences. An occurrence is something that happens that has
some consequence with regard to the system.

* Behaviors. A behavior describes a set of possible executions. An execution is a performance of a set of actions
(potentially over some period of time) that may generate and respond to occurrences of events, including

12 Unified Modeling Language 2.5.1

accessing and changing the state of objects. (As described in sub clause 13.2, behaviors are themselves
modeled in UML as kinds of classifiers, so that executions are essentially modeled as objects. However, for
the purposes of the present discussion, it is clearer to consider behaviors and executions to be in a separate
semantic category than classifiers and objects.)

UML models do not contain objects, occurrences, or executions, because such individuals are part of the domain being
modeled, not the content of the models themselves. UML does have modeling constructs for directly modeling
individuals: instance specifications, occurrence specifications, and execution specifications for modeling objects,
occurrences, and executions, respectively, within a particular context. However, these are again just model elements,
making statements about the individuals being modeled. As for any model, such statements can be incomplete,
imprecise, and abstract, according to the purpose of the model, and may turn out to be wrong (or even be asserted as
counterfactual). The individuals being modeled, on the other hand, are always complete, precise, and concrete within
their domain.

The execution of behaviors within a modeled system may result in the creation and destruction of objects within that
system. The system may also reference other objects in the domain of discourse that are external to the system.
Generally, the distinction of whether an object is internal or external is not important to the formal semantics of
behaviors that access those objects. However, in certain cases — in particular, static properties (see sub clause 9.5) and
classifier extents (see sub clause 16.4 on read extent actions) — the system may be considered to provide an execution
scope that explicitly delineates those objects existing within the system (“within the execution scope”) from those
outside. The concept of an execution scope is not further defined within UML semantics, because exactly to what it
corresponds varies depending on the domain of discourse. For example, for a model of factory processes, the execution
scope may encompass the execution of those processes within a single factory, while, for a model of a software
program, the execution scope will correspond to a single execution of that program.

6.3.2 Semantic Areas

Clause 2 makes the distinction of the conformance of a tool to the (concrete and abstract) syntax of UML from
conformance to its semantics.

The syntax of UML has to do with how UML models may be constructed, represented and interchanged. The UML
specification defines the syntax of UML, both abstractly and concretely. However, the syntax of UML is specified
within the framework of MOF, and the meaning of syntactic models for the purposes of tool conformance are given in
the MOF Core specification and related XMI and Diagram Interchange specifications.

In contrast, the semantics of UML itself have to do with the standard meaning of the statements made by a UML model
about the system being modeled. This is sometimes referred to as the “run-time” semantics of UML, especially in the
context of UML models of executable software or other enactable processes. However, not all UML models are
executable in this sense and not all UML semantics relate to “running” software or other processes.

Instead, consider the general division of UML modeling constructs into two semantic categories:

* Structural Semantics defines the meaning of UML structural model elements about individuals in the domain
being modeled, which may be true at some specific point in time. (Note that this category is sometimes called
“static semantics”. However, in programming language definition, the term “static semantics” is generally used
to mean context-sensitive name resolution and type constraints beyond the base context-free syntax of the
language, which corresponds to well-formedness constraints in the UML abstract syntax specification. In order
to avoid confusion, the term “structural semantics” is used here instead.)

* Behavioral Semantics defines the meaning of UML behavioral model elements that make statements about
how individuals in the domain being modeled change over time. (This is sometimes also called “dynamic

semantics.”)

Figure 6.1 shows a more detailed delineation of the semantic areas of UML within these categories and the notional
layering of these areas.

Unified Modeling Language 2.5.1 13

Use Cases Deployments Information Flows

Supplemental
Modeling

State Machines Activities Interactions

Actions

Behavioral
Modeling

Common Behavior

Values Classifiers Packages

Structural
Modeling

Common Structure

Figure 6.1 Semantic Areas of UML

The structural semantics of UML provides the foundation for the behavioral semantics of UML. This reflects the
conception of behavioral semantics in terms of changes in the system state specified through structural modeling.
Structural modeling constructs in UML are built on a common base of fundamental concepts such as type, namespace,
relationship and dependency (see Clause 7). Specific modeling constructs then include a number of different kinds of
classifiers: data types, classes, signals, interfaces, and components (see Clauses 9 through 11), corresponding constructs
for modeling values and instances (see Clause 8), and constructs for packaging and profiling (see Clause 12).

The base behavioral semantics of UML builds on this structural foundation to provide a basic framework for the
execution of behaviors (see Clause 13). This common behavioral semantics also addresses the communication that may
result between structural objects with associated behavior. Note that this framework only deals with event-driven, or
discrete, behaviors. However, UML semantics do not dictate the amount of time between events (unless this is
specifically modeled using timing constraints, see sub clause 8.5). Thus, the intervals between certain events can be
considered to be as small as needed by the application; for example, when simulating continuous behaviors.

Actions are the fundamental units of behavior in UML, used to define fine-grained behaviors (see Clause 16). Their
resolution and expressive power are comparable to the executable instructions in traditional programming languages.
Actions are available for use with any of the higher-level formalisms to be used for describing detailed behaviors. Such
higher-level behavioral constructs in UML are state machines, activities and interactions (see Clauses 14, 15 and 17,
respectively).

In addition, there are some supplemental modeling constructs that have both structural and behavioral aspects. These
include use cases, deployments and information flows (see Clauses 18, 19 and 20, respectively).

14 Unified Modeling Language 2.5.1

file:///Users/seidewitz/C:%5CUsers%5Cstcook%5CDocuments%5COMG%5CUML-Spec-Simplification%5Ctrunk%5CModels%5CMetamodel%5CSpecification%5CUML_20

6.3.3 Stable and Transient Behavioral Semantics

Though structural semantics, as defined in sub clause 6.3.2, has to do with modeling things at a specific point in time,
the structural modeling constructs in UML still include the ability to model certain behavioral aspects of otherwise
primarily structural elements. For example, a classifier may have behavioral features that can be invoked to request
some behavior from the classifier. Or a class may be modeled as being active, meaning that an instance of the class has
some autonomous behavior.

The behavioral characteristics of primarily structural modeling constructs make high-level statements about the
behavior of a system that may generally be verified when the system is in a stable state at some specific point in time.
However, they do not define how the system actually got into that state from a previous state, just that some behavior
must have happened to cause this change. The detailed definition of transient behavior over time requires the use of
behavioral modeling constructs.

In many cases, a structural element in a UML model will have related behavioral elements that define the detailed
behavior to realize the high-level behavior identified for the structural element. For example, an operation owned by a
class may have a related method that defines its detailed behavior. Or an active class may have a classifier behavior that
details its autonomous behavior. In these cases, it is the responsibility of the modeler to ensure that the detailed transient
behavior specified using the behavioral modeling elements actually results in the high-level stable behavior specified
for the corresponding structural elements. (A tool may assist the modeler in this responsibility, but a conforming UML
tool is not required to do so.)

The following are some areas in which this semantic distinction is particularly important in UML.

* Operation behaviors. An operation is a behavioral feature of a class that may be directly invoked on instances
of that class (see sub clause 9.6). The definition of an operation includes the types of input and output
parameters of the operation and may also include pre- and postconditions on the state of the system being
modeled before and after invocation of the operation. The semantics of such a model are that, if the operation
is invoked with inputs of the given types and in a state in which the precondition holds, then, when the invoked
behavior of the operation completes, it will have produced outputs of the given types and the postcondition will
hold in the resulting system state. An operation may also have a method, which is a detailed definition of its
required behavior (see sub clause 13.2). It is a modeler responsibility to ensure that the detailed behavior
modeled by the method of the operation meets the behavioral requirements given by the pre- and
postconditions of the operation. Note, however, that the postcondition is not required to hold during the
transient execution of the method behavior, but only at the stable point of the completion of execution of that
behavior. A class may also have invariant conditions that must be true before and after the execution of the
operation but may be violated during the course of the execution of the operation method.

* Property default values. The semantics of properties specify that, when a property with a default value is
instantiated, in the absence of some specific setting for the property, the default value is evaluated to provide
the initial values of the property (see sub clause 9.5). Thus, when instantiating a classifier, all its attributes (i.e.,
properties of the classifier) with default values should be properly initialized once any behavior required to
instantiate the classifier completes. However, a create object action is specified to create an object with its
attributes initially having no initial values, whether or not those attributes have default values in the classifier
of the object (see sub clause 16.4.3). Therefore, when modeling the detailed behavior of the instantiation of a
classifier, it is a modeler responsibility to ensure that the modeled behavior carries out the proper initialization
of any attributes with default values once the object is created. (This is often done by encapsulating the
instantiation behavior for a class in a constructor operation — see sub clause 11.4 — in which case the
initialization of the attributes becomes an implicit postcondition for the constructor.)

* Active class behaviors. The semantics of active classes specify that, when such a class is instantiated, the new
object commences execution of its behavior as a direct consequence of its creation (see sub clause 11.4).
However, a create object action is specified to create an object without commencing the execution of any
associated behaviors (see sub clause 16.4.3). Instead, it is necessary to use a start object behavior action to
execute those behaviors (see sub clause 16.3.3). Therefore, when modeling the detailed behavior of the
instantiation of a classifier, it is a modeler responsibility to ensure that the modeled behavior properly starts the

Unified Modeling Language 2.5.1 15

classifier behavior of an instance of an active class, after that instance is created. (This behavior may also be
encapsulated in a constructor operation for the class.)

6.4 How to Read this Specification

6.4.1 Specification Format

The rest of this document contains the technical content of this specification.

The concepts of UML are grouped into clauses. A clause typically covers a specific modeling formalism. For instance,
all concepts related to state machine modeling are gathered in the State Machines clause and all concepts related to
activities modeling are in the Activities clause.

The clauses in the specification as a whole are presented in an order that minimizes forward references. Clauses 7 — 12
are primarily concerned with the modeling of structure. Clauses 13 — 17 are primarily concerned with the modeling of
behavior. Clauses 18 — 20 cover supplementary concepts including UseCases, Deployments, and InformationFlows.
Clauses 21 and 22 specify primitive types and the standard profile.

Annex A discusses UML Diagrams. Annex B specifies a model for the interchange of UML diagrams: this is a new part
of the specification that was absent from earlier versions of UML. Annex C specifies keywords; Annex D specifies
some alternative tabular notations; Annex E specifies the format for XMI serialization.

Although the clauses are organized in a logical manner and can be read sequentially, this is a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

Within each clause, there is first a brief informal description of the concepts described in that clause. The clause is then
split into sub clauses, each describing a coherent set of concepts that constitute a portion of the formalism specified by
the clause. Each sub clause is then split into Abstract Syntax, Semantics, Notation, and Examples.

The Abstract Syntax subdivision contains one or more diagrams that define that capability in terms of a MOF model
(i.e., the UML metamodel) with each modeling concept represented by an instance of a metaclass or association. These
diagrams are designed to provide information about a related set of concepts. Within such a diagram, all of the
metaclasses described in that clause are depicted with their attribute compartments, while metaclasses whose definition
appears in another clause are depicted with just their headers and no compartments.

The following stylistic conventions are applied in the Semantics, Notation, and Examples subdivisions:

* Headings without numbers are used to break up the sections into meaningful chunks. These headings are
organized by coherent chunks of tightly-coupled semantics. Often these headings will turn out to be pluralized
metaclass names (e.g., Comments); they might equally represent particular semantic themes (e.g., Run-to-
Completion).

¢ TItalics are used for emphasis.

* Names of metaclasses in the text are capitalized but otherwise used as if they are nouns in English, e.g., “Every
Element has the inherent capability of owning other Elements,” pluralizing where necessary.

* Names of properties in the text are styled as 8-point Arial, and used as if they are English nouns pluralizing
where necessary, e.g., “the ownedAttributes of the Classifier.”

The Semantics subdivision specifies the semantics of all of the concepts described in the sub clause.

The Notation subdivision specifies the notation corresponding to all of the concepts defined in the sub clause. Only
concepts that can appear in diagrams will have a notation specified. For textual notations a variant of the Backus-Naur
Form (BNF) is often used to specify the legal formats. The conventions of this BNF are:

16 Unified Modeling Language 2.5.1

* All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

* All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

* Non-terminal production rule definitions are signified with the ‘::=" operator.

* Repetition of an item is signified by an asterisk placed after that item: “*’.

* Alternative choices in a production are separated by the ‘|’ symbol (e.g., <alternative-A> | <alternative-B>).
* Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *
signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

NOTE. As for all UML surface syntax, UML textual notations are generally for presentation. There is no requirement
that such notations be unambiguously parsable — for example, a modeler may use arbitrary characters like “/”” and “:”
in a property name, even though these are used as special punctuation in the BNF for property textual notation. This
may be confusing to some readers, since BNF is commonly used to specify parsable programming language text.

The Examples subdivision gives examples intended to illustrate the concepts in the sub clause.

NOTE. All examples in this specification are provided for the purposes of illustrating syntax and semantics of UML
modeling constructs and do not assert or claim facts about the world.

Diagrams appearing in the Notation and Examples subdivisions have been produced by a variety of tools, and may
differ in stylistic details such as fonts, line thicknesses, size of arrowheads, etc. Such differences are not material to the
specification.

Statements in the Notation subdivision assume that diagrams are to be rendered in black on a white background.
Conforming tools may adopt other color schemes, in which case the word “black” shall be interpreted as “solid”,
“white” shall be interpreted as “un-filled”, and “gray” shall be interpreted as “a distinguishable color between solid and
un-filled”.

Finally in each clause are machine-generated sub clauses called Classifier Descriptions and Association Descriptions,
containing a complete description for all of the classifiers and associations in the metamodel. In Classifier Descriptions,
each classifier (Class, Abstract Class, or Enumeration) is documented under the following headings:

* Name [Type]

* Description: a summary of the role played by the classifier in the metamodel.
* Diagrams: a list of links to diagrams in which the classifier appears.

* Generalizations: a list of links to generalizing classifiers, if any.

* Specializations: a list of links to specializing classifiers, if any.

* Attributes: each specified by its name, type, and multiplicity, and any additional properties such as {readOnly}.
If no multiplicity is listed, it defaults to 1..1. This is followed by a textual description of the purpose and
meaning of the attribute. If an attribute is derived, the name will be preceded by a forward slash. Where an
attribute is derived, the logic of the derivation is in most cases shown using OCL.

Unified Modeling Language 2.5.1 17

Association Ends: each specified by its name, type, and multiplicity, any additional properties such as {union},
and a link to its opposite end. If the association end subsets or redefines others, this is shown in the additional
properties as {subsets <end>} or {redefines <end>}, where <end> is a link to the applicable end. This is
followed by a textual description of the purpose and meaning of the association end. If an association end is
derived, the name will be preceded by a forward slash. If the association end is a composition, this is indicated
by a small black diamond adjacent to the name of the end.

Derivation: where an Attribute or Association End is marked as derived and is not a derived union, the
derivation is specified by an Operation with the same name and type as the derived Attribute or Association
End.

Operations: each specified by its signature, a textual description of the logic of the operation, and a
specification of the logic of the operation in OCL. Note that in some cases the OCL is absent. Note also that
the body: of each operation is shown as an expression <expr> having the result type of the Operation. In the
XML, this is serialized as a bodyCondition of the form result = (<expr>).

Constraints: each specified by its name, a textual description of the logic of the constraint, and a specification
of the logic of the constraint in OCL. Note that in some cases the OCL is absent.

In Association Descriptions , each association is documented under the following headings:

6.4.2

Name [Type].

Diagrams: a list of links to diagrams in which the association appears.
Generalizations: a list of links to generalizing associations, if any.
Specializations: a list of links to specializing associations, if any.

Member Ends: links to each end of the association; this appears if neither of the ends is owned by the
association itself.

Owned Ends: documentation for each association end owned by the association itself, each specified by its
name, type and multiplicity, any additional properties such as {union}, and a link to its opposite end. If the
association end subsets or redefines others, this is shown in the additional properties as {subsets <end>} or
{redefines <end>}, where <end> is a link to the applicable end. If an association end is derived, the name will
be preceded by a forward slash.

Diagram Format

The following conventions are adopted for all metamodel diagrams throughout this specification.

18

A metaclass may appear on many diagrams, but takes a primary role on only one diagram, which is the diagram
adjacent to where the semantics of the metaclass are described. A metaclass in a primary role is shown with its
attribute compartment expanded; a metaclass in a secondary role is shown as just its header rectangle.

Dot notation is used to denote association end ownership, where the dot shows that the Class at the other end of the
line owns the Property whose type is the Class touched by the dot. See 11.5.4 for details of Association notation
and 11.5.5 for examples.

Arrow notation is used to denote association end navigability. By definition, all class-owned association ends are
navigable. By convention, all association-owned ends in the metamodel are not navigable.

Unified Modeling Language 2.5.1

* An association with neither end marked by navigability arrows means that the association is navigable in both
directions.

* Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

* The constraint {subsets endA} means that the association end to which this constraint is applied subsets
the association end endA.

* The constraint {redefines endA} means that the association end to which this constraint is applied
redefines the association end endA.

* If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

e Ifan association end is unlabeled, the default name for that end is the name of the class to which the end is
attached, modified such that the first letter is a lowercase letter. Note that, by convention, non-navigable association
ends are often left unlabeled although all association ends have a name which is documented in the Association
Description section of each clause.

* Associations that are not explicitly named, are given names that are constructed according to the following
production rule:
"4 " <association-end-namel> " " <association-end-name2>

where <association-end-namel> is the name of the first association end and <association-end-name2> is the name
of the second association end.

6.5 Acknowledgements

6.5.1 Primary Authors
The following people wrote this specification, incorporating the work of authors of earlier versions of UML:

Conrad Bock, Steve Cook (lead), Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic, Doug Tolbert

6.5.2 Technical Support

The following people provided technical support for this specification, including writing tools to generate portions of
the document and to validate the OCL:

Peter Denno, Maged Elaasar, Nicolas Rouquette, Ed Willink

6.5.3 Reviewers

In addition to the authors and technical supporters, the following people provided invaluable contributions by reviewing
some or all of the specification in detail:

Omar Bahy Badreddin, Neil Capey, Michael Jesse Chonoles (lead), Adriano Comai, Lenny Delligatti, Sanford
Friedenthal, Dave Hawkins, Darren Kumasawa, Jim Logan, Sam Mancarella, Milagros Nguyen, Axel Scheithauer, John
Watson, Marc-Florian Wendland, Ed Willink.

Unified Modeling Language 2.5.1 19

6.5.4 Submitters

The following companies were submitters of this specification: 88solutions, Adaptive, Deere&Company, Fujitsu,
International Business Machines, Microsoft Corporation, Model Driven Solutions, No Magic Inc, Sparx Systems and
Unisys.

20 Unified Modeling Language 2.5.1

7 Common Structure

71 Summary

This clause specifies the basic modeling concepts underlying all structural modeling in UML. Many of the metaclasses

defined here are abstract, providing the base for specialized, concrete classes defined in subsequent clauses. However,
in order to provide examples of how these basic concepts are applied in UML, it is necessary to use these concrete
modeling constructs, even though they are specified in later clauses. Appropriate forward references are provided as

necessary.

7.2 Root

7.21 Summary

The root concepts of Element and Relationship provide the basis for all other modeling concepts in UML.

7.2.2 Abstract Syntax

{readOnly, union, subsets
relatedElement}

{readOnly, union, subsets
relatedElement}

+ /source + annotatedElement
—
1% Element *

+ /target

1.%

{readOnly, union}
+/ relatedElement

1"*

{subsets owner}
+ owningElement

0..1

{readOnly, union}
+ /owner

0..1

{readOnly, union}

T *
+ /ownedElement
{readOnly, union}

{subsets ownedElement}
*| + ownedComment

+ /relationship

Relationship Comment + comment

*

+ body : String [0..1]] *

+ /directedRelationshif

{readOnly, union, subsets relationship}

{readOnly, union, subsets relationship}

*

DirectedRelationship

+ /directedRelationshif

Figure 7.1 Root

*

Unified Modeling Language 2.5.1

21

7.2.3 Semantics

7.2.31 Elements

An Element is a constituent of a model. Descendants of Element provide semantics appropriate to the concept they
represent.

Every Element has the inherent capability of owning other Elements. When an Element is removed from a model, all its
ownedElements are also necessarily removed from the model. The abstract syntax for each kind of Element specifies
what other kind of Elements it may own. Every Element in a model must be owned by exactly one other Element of that
model, with the exception of the top-level Packages of the model (see also Clause 12 on Packages).

7.2.3.2 Comments

Every kind of Element may own Comments. The ownedComments for an Element add no semantics but may represent
information useful to the reader of the model.

7.23.3 Relationships

A Relationship is an Element that specifies some kind of relationship between other Elements. Descendants of
Relationship provide semantics appropriate to the concept they represent.

A DirectedRelationship represents a Relationship between a collection of source model elements and a collection of
target model elements. A DirectedRelationship is said to be directed from the source elements fo the target elements.

7.2.4 Notation

There is no general notation for Element, Relationships, and DirectedRelationships. The descendants of these classes
define their own notation. For Relationships, in most cases the notation is a variation on a line drawn between the
relatedElements. For DirectedRelationships, the line is usually directed in some way from the source(s) to the target(s).

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotatedElement is shown by a separate dashed
line. The dashed line connecting the note symbol to the annotatedElement(s) may be suppressed if it is clear from the
context, or not important in this diagram.

7.2.5 Examples

This class was added
by Alan Wright after
meeting with the
mission planning team.

== Account

Figure 7.2 Comment notation

7.3 Templates

7.31 Summary

Templates are model Elements that are parameterized by other model Elements. This sub clause specifies the general
concepts applicable to all kinds of templates. Further details of specific kinds of templates allowed in UML are
discussed in later sub clauses, including Classifier templates (see sub clause 9.3), Operation templates (see sub clause
9.6) and Package templates (see sub clause 12.2).

22 Unified Modeling Language 2.5.1

7.3.2 Abstract Syntax

A\

{subsets ownedElement}

{subsets owner}
+ template 7 Element
|

1

TemplateSignature + ownedTemplateSignature
I W

+ templateSignature

{subsets templateSignature,

subsets owner} .
+ signature

{ordered, subsets ownedElemen

subsets parameter} {ordered}

+ parameter

+ ownedParameter
TemplateParameter

{subsets templateParameter,
subsets owner}

{subsets ownedElement,
subsets parameteredElement) | _FarameterableElement

+ ownedParameteredElement

+ owningTemplateParameter
@ gfemp

0.1
+ templateParameter

+ parameteredElement

0.1

0.1
+ templateParameter

1

+ default

*

{subsets owner, redefines
templateParameter}
+ templateParameter

{subsets ownedElement,
subsets default}

0.1

+ ownedDefault

0.1

Figure 7.3 Templates

0.1

\V/

/\

+ templateParameterSubstitution

TemplateParameterSubstitution

1 + formal
TemplatePar ter < ¥
1
+ actual + templateParameterSubstitution
ParameterableElement 1 *
{subsets ownedElement,
subsets actual}
+ ownedActual *
0..1 + owningTemplateParameterSubstitution
{subsets owner, redefines
templateParameterSubstitution} *
{subsets source, {subsets ownedElement, subsets
subsets owner} directedRelationship}
| remp — — + boundElement + templateBinding TemplateBinding
1 *

{subsets ownedElement}
+ parameterSubstitution

{subsets owner}
+ templateBinding

{subsets target}
+ signature

{subsets directedRelationship}
+ templateBinding

| TemplateSignature |

1

Figure 7.4 Template bindings

Unified Modeling Language 2.5.1

*

DirectedRelationship

7.3.3 Semantics

7.3.31 Templates

A TemplateableElement is an Element that can optionally be defined as a template and bound to other templates. A
template is a TemplateableElement that is parameterized using a TemplateSignature. Such a template can be used to
generate other model Elements using TemplateBinding relationships.

A template cannot be used in the same manner as a non-template Element of the same kind (e.g., a template Class
cannot be used as the type of a TypedElement). The template Element can only be used to generate bound Elements or
as part of the specification of another template (e.g., a template Class may specialize another template Class).

The TemplateSignature of a template defines a set of TemplateParameters that may be bound to actual model Elements
in a bound element for the template. A bound element is a TemplateableElement that has one or more such
TemplateBindings.

A completely bound element is a bound element all of whose TemplateBindings bind all the TemplateParameter of the
template being bound. A completely bound element is an ordinary element and can be used in the same manner as a
non-bound (and non-template) element of the same kind. For example, a completely bound element of a Class template
may be used as the type of a Typed Element.

A partially bound element is a bound element at least one of whose TemplateBindings does not bind a
TemplateParameter of the template being bound. A partially bound element is still considered to be a template,
parameterized by the remaining TemplateParameters left unbound by its TemplateBindings.

7.3.3.2 Template Signatures

The TemplateParameters for a TemplateSignature specify the formal parameters that will be substituted by actual
parameters (or the default) in a binding. A TemplateParameter is defined in terms of a ParameterableElement contained
within the template that owns the TemplateSignature of which the TemplateParameter is a part. Such an element is said
to be exposed by the TemplateParameter.

An exposed ParameterableElement may be owned, directly or indirectly, by the template or it may be owned by the
TemplateParameter itself, in situations in which the element does not otherwise have an ownership association within
the template model. In either case, the ParameterableElement is meaningful only within the context of the template—it
will be effectively replaced by an actual Element in the context of a binding. Thus, a ParameterableElement exposed by
a TemplateParameter cannot be referenced outside its owning template or other templates that have access to the
internals of the original template (e.g., if the template is specialized). Subclasses of TemplateSignature can also add
additional rules that constrain what sort of ParameterableElement can be used for a TemplateParameter in the context of
a particular kind of template.

A TemplateParameter may also reference a ParameterableElement as the default for this formal parameter in any
TemplateBinding that does not provide an explicit TemplateParameterSubstitution for the parameter. Similarly to an
exposed ParameterableElement, a default ParameterableElement may be owned either directly by the template or by the
TemplateParameter itself. The TemplateParameter may own this default ParameterableElement even in situations where
the exposed ParameterableElement is not owned by the TemplateParameter.

7.3.3.3 Template Bindings

A TemplateBinding is a relationship between a TemplateableElement and a template that specifies the substitutions of
actual ParameterableElements for the formal TemplateParameters of the template. A TemplateParameterSubstitution
specifies the actual parameter to be substituted for a formal TemplateParameter within the context of a TemplateBinding.
If no actual parameter is specified in this binding for a formal parameter, then the default ParameterableElement for that
formal TemplateParameter (if specified) is used.

A bound element may have multiple bindings, possibly to the same template. In addition, the bound element may
contain elements other than the bindings. The details of how the expansions of multiple bindings, and any other
Elements owned by the bound element, are combined together to fully specify the bound element are specific to the
subclasses of TemplateableElement. The general principle is that one evaluates the bindings in isolation to produce

24 Unified Modeling Language 2.5.1

intermediate results (one for each binding), which are then merged to produce the final result. It is the way the merging
is done that is specific to each kind of TemplateableElement.

A TemplateableElement may contain both a TemplateSignature and TemplateBindings. Thus a TemplateableElement
may be both a template and a bound element.

A conforming tool may require that all formal TemplateParameters must be bound as part of a TemplateBinding
(complete binding) or may allow just a subset of the formal TemplateParameters to be bound (partial binding). In the
case of complete binding, the bound element may have its own TemplateSignature, and the TemplateParameters from
this can be provided as actual parameters of the TemplateBinding. In the case of partial binding, the unbound formal
TemplateParameters act as formal TemplateParameters of the bound element, which is thus still a template.

NOTE. A TemplateParameter with a default can never be unbound, as it has an implicit binding to the default, even if an
explicit TemplateParameterSubstitution is not given for it.

7.3.34 Bound Element Semantics

ATemplateBinding implies that the bound element has the same well-formedness constraints and semantics as if the
contents of the template owning the target TemplateSignature were copied into the bound element, substituting any
ParameterableElements exposed as formal TemplateParameters by the corresponding ParameterableElements specified
as actual template parameters in the TemplateBinding. However, a bound element does not explicitly contain the model
Elements implied by expanding the templates to which it binds. Nevertheless, it is possible to define an expanded
bound element that results from actually applying the TemplateParameterSubstitution for a bound element to the target
templates.

Formally, an expanded bound element for a bound element with a single TemplateBinding and no Elements other than
from that binding is constructed as follows:

1 Copy the template associated with the TemplateSignature that is the target of the TemplateBinding. For the
present purposes, a copy of a model Element is an instance of the same metaclass as the original model
Element, with:

a Values for all composite properties (owned attributes and owned association ends) that are copies (in
the same sense) of the corresponding values from the original Element.

b Values for all non-composite properties that are the same as the corresponding values from the
original Element, except that references to Elements owned (directly or indirectly) by the original
Element are replaced with references to the copies of those Elements created as specified above and
references to the original Element itself are replaced by references to the copy.

2 If'the copy specializes any Elements that are templates, then redirect the Generalization relationships to
equivalent bound elements for the general elements, using the same TemplateBinding. If the copy is an
Operation that has an associated method that is also a template, then replace that method with an equivalent
bound element using the same template binding.

NOTE. It is necessary for the method of a template Operation to also be a template, presumably with
TemplateParameters corresponding to those of the Operation. In particular, Operation TemplateParameters are
typically used to parameterize the types of Operation Parameters, but the method of an Operation does not
directly reference the Parameters of the Operation that specifies it. Rather, the method has its own
ownedParameter list, which should match that of the Operation (see sub clause 13.2). The types of the method
Parameters thus need to be separately templated to match the template parameterization of the Operation.

3 For each Element owned directly or indirectly by the copy, replace any reference to the parameteredElement of
a TemplateParameter of the copy with a reference to the actual Element associated with the parameter in the
TemplateBinding. If an actual Element has a TemplateBinding itself, then reference the equivalent bound
element.

4 Remove all TemplateParameters that are referenced in the TemplateBinding from the TemplateSignature of the
copy. If this would remove all TemplateParameters from the TemplateSignature, then remove the
TemplateSignature entirely.

Unified Modeling Language 2.5.1 25

If a bound element has more than one TemplateBinding, then a specific expanded bound element can be defined based
on each TemplateBinding. The overall expanded bound element is then constructed by merging all the
TemplateBinding-specific expanded bound elements with any other Elements contained by the original bound element.
As noted previously, how this merging is performed depends on the kind of TemplateableElement being bound.

Including a bound element in a model does not automatically require that the corresponding expanded bound element be
included in the model. However, if the expanded bound element constructed as given above violates any well-
formedness constraints, then the original bound element is also considered to not be well formed.

On the other hand, if the bound element is for a Namespace template, then it may be necessary to be able to refer to
members of the bound element considered as a Namespace itself. For example, for a bound element of a Class template,
it may be necessary to reference Operations of that Class, e.g., from a CallOperationAction.

NOTE. Referencing the Operation from the template is not sufficient, as each bound element of the template Class is to
be considered to have its own effective copy of the Operations of the template.

In order to accommodate a situation like this, it is allowable to include in a model the expanded bound element for a
bound element in addition to the bound element itself. In this case, the expanded bound element must have a realization
dependency (see sub clause 7.7) to the bound element that it is expanding. The expanded bound element must be
constructed (either manually by the modeler or automatically by a tool) according to the rules given above. References
then made as usual from other model elements to visible members of the expanded bound element are considered to be
semantically equivalent to effective references made to the corresponding implicit members of the original bound
element. Any relationships made directly to the expanded bound element are semantically equivalent to relationships
made to the bound element itself.

7.3.4 Notation

If a TemplateableElement has TemplateParameters, a small dashed rectangle is superimposed on the symbol for the
TemplateableElement, typically on the upper right-hand corner of the notation (if possible). The dashed rectangle
contains a list of the formal TemplateParameters. The parameter list must not be empty, although it may be suppressed
in the presentation. Any other compartments in the notation of the TemplateableElement appear as normal.

The formal TemplateParameter list may be shown as a comma-separated list, or it may be one formal
TemplateParameter per line. The general notation for a TemplateParameter is a string displayed within the
TemplateParameter list for the template:

<template-parameter> ::= <template-param-name> [‘:’ <parameter-kind> | [‘=" <default>
p y4 p v4 y4

where <parameter-kind> is the name of the metaclass for the exposed element. The syntax of <template-param-name>
and <default> depend on the kind of ParameteredElement for this TemplateParameter.

A bound element has the same graphical notation as other Elements of that kind. A TemplateBinding is shown as a
dashed arrow with the tail on the bound element and the arrowhead on the template and the keyword «bind». The
binding information may be displayed as a comma-separated list of template parameter substitutions:

<template-param-substitution> ::= <template-param-name> ‘->’<actual-template-parameter>

where the syntax of <template-param-name> is the name or qualifiedName of the parameteredElement of the formal
TemplateParameter and the kind of <actual-template-parameter> depends upon the kind of ParameteredElement for
that TemplateParameter.

An alternative presentation for the bindings for a bound element is to include the binding information within the
notation for the bound element. The name of the bound element is extended to contain binding expressions with the
following syntax:

[<element-name> ‘:’] <binding-expression> [*,’ <binding-expression>]*

<binding-expression> ::= <template-element-name> ‘<‘ <template-param-substitution> [, <template-param-
substitution] * >’

26 Unified Modeling Language 2.5.1

and <template-param-substitution™> is defined as above.

7.4 Namespaces

7.41 Summary

A Namespace is an Element in a model that contains a set of NamedElements that can be identified by name. Packages
(see Clause 12) are Namespaces whose specific purpose is to contain other NamedElements in order to organize a
model, but many other kinds of model Elements are also Namespaces, including Classifiers (see sub clause 9.2), which
contain named Features and nested Classifiers, and BehavioralFeatures (see sub clause 9.4), which contain named
Parameters.

7.4.2 Abstract Syntax

A N
{readOnly, union, subsets member, iz';:’gﬁgﬁzm
subsets ownedElement} Sublic
+ fowmedMember NamedElement {subsets owner} {subsets ownedElement} private
* e Sting [0.1] + namedElement + nameExpression Pmtke‘:ted
: y ri ession L package
* | + /qualifiedName : String [0..1] {readOnIy}‘ 0..1 0..1 st
+ visibility : VisibilityKind [0..1]
e o) T
r Y, uni
{readOnly, subsets member
H /memberNamespace Namespace * + /importedMember PackageableElement |
{readOnly, union} * + namespace ¥ + visibility : VisibilityKind [0..1] = public {redefines visibility}
! + importedElement
subsets memberNamespace 1
{ pace} {subsets target}
0..1
{subsets directedRelationship)
+
/na'mespace {subsets ownedElement, subsets *| + import
{readOnly, union, subsets directedRelationship}
memberNamespace, 1 + elementImport ElementImpori
subsets owner} + alias : String [0..1]
+ importingNamespace * |+ visibility : VisibilityKind = public
{subsets source,
subsets owner}
{subsets source, {subsets ownedElement, subsets
subsets owner} directedRelationship}
+ importingNamespace + packageImportJ PackageImport |
1 + visibility : VisibilityKind = public
+ packageImport
* {subsets directedRelationship}
subsets target
{subsets namespace} {subsets ownedMember} 1 ﬂ impo,tedpgacﬁage
+ context + ownedRule X $
o Constraint | [package |
0.1
Figure 7.5 Namespaces
743 Semantics
7.4.31 Namespaces

A Namespace provides a container for NamedElements, which are called its ownedMembers. A Namespace may also
import NamedElements from other Namespaces, in which case these, along with the ownedMembers, are members of the
importing Namespace. If a member of a Namespace with the name N is a NamedElement with the name x, then the
member can be referred to by a qualified name of the form N::x.

Unified Modeling Language 2.5.1 27

When a distinction is necessary, a simple name that is not qualified with Namespace names may be referred to as an
unqualified name. Within a Namespace, unqualified names may be used to refer to the members of that Namespace and
to outer names that are not hidden. An outer name is the name of a NamedElement that may be referenced using an
unqualified name in an immediately enclosing Namespace. An outer name is hidden unless it is distinguishable from all
members of the inner Namespace. (See the discussion on distinguishability below under “Named Elements”.)

As a Namespace is itself a NamedElement, the fully qualified name of a NamedElement may include multiple
Namespace names, such as N1.::N2::x.

The ownedRule Constraints for a Namespace represent well-formedness rules for the constrained elements (see sub
clause 7.6 on Constraints). These constraints are evaluated when determining if the constrained elements are well-
formed.

7.4.3.2 Named Elements

A NamedElement is an Element in a model that may have a name. The name may be used for identification of the
NamedElement within Namespaces where its name is accessible.

NOTE. The name of a NamedElement is optional, which provides for the possibility of the absence of a name (which is
different from the empty name).

NamedElements may appear within a Namespace according to rules that specify how one NamedElement is
distinguishable from another. The default rule is that two members are distinguishable if they have different names or if
they have the same names, but their metaclasses are different and neither is a (direct or indirect) subclass of the other.
This rule may be overridden for particular cases, such as Operations that are distinguished by their signature (see sub
clause 9.6).

The visibility of a NamedElement provides a means to constrain the usage of the Element, either in Namespaces or in
access to the Element. It is intended for use in conjunction with import, generalization, and access mechanisms.

A NamedElement may, in addition to having an explicit name, be associated with a StringExpression (see sub clause 8.3)
that may be used to specify a calculated name for the NamedElement. In a template (see sub clause 7.3), a
NamedElement may have an associated StringExpression whose subexpressions may be ParameteredElements exposed
by TemplateParameters. When the template is bound, the exposed subexpressions are substituted with the actuals
substituted for the TemplateParameters. The value of the StringExpression is then a string resulting from concatenating
the values of the subexpression, which then provides the name of the NamedElement.

A NamedElement may have both a name and a nameExpression associated with it. In this case, the name can be used as an
alias for the NamedElement, which may be used, for example, in referencing the element in a Constraint expression.
(This avoids the need to use StringExpressions in textual surface notation, which is often cumbersome, although it does
not preclude it.)

7.4.3.3 Packageable Elements and Imports

A PackageableElement is a NamedElement that may be owned directly by a Package (see Clause 12 on Packages). Any
such element may serve as a TemplateParameter (see sub clause 7.3 on Templates).

An ElementImport is a DirectedRelationship between an importing Namespace and a PackageableElement. It adds the
name of the PackageableElement to the importing Namespace. The visibility of the ElementImport may be either the
same or more restricted than that of the imported element.

In case of a name clash with an outer name (an element that is defined in an enclosing Namespace that is available using
its unqualified name in enclosed Namespaces) in the importing Namespace, the outer name is hidden by an
ElementImport, and the unqualified name refers to the imported element. The outer name can be accessed using its
qualified name.

A Packagelmport is a DirectedRelationship between an importing Namespace and a Package, indicating that the
importing Namespace adds the names of the members of the Package to its own Namespace. Conceptually, a Package
import is equivalent to having an ElementImport to each individual member of the imported Namespace, unless there is

28 Unified Modeling Language 2.5.1

a separately-defined ElementImport. If there is an ElementImport for an Element, then this takes precedence over a
potential import of the same Element via a Packagelmport.

If indistinguishable Elements would be imported into a Namespace as a consequence of ElementImports or
Packagelmports, the Elements are not added to the importing Namespace and the names of those Elements must be
qualified in order to be used in that Namespace. If the name of an imported Element is indistinguishable from an
Element owned by the importing Namespace, that Element is not added to the importing Namespace and the name of
that Element must be qualified in order to be used.

An Element that is publicly imported is a public member of the importing Namespace. This means that, if the
Namespace is a Package, a Packagelmport of it by another Namespace will result in the further import of those publicly
imported members into the other Namespace, in addition to the public ownedMembers of the Package.

NOTE. A Namespace may not import itself, nor may it import any of its own ownedMembers. This means that it is not
possible for a NamedElement to acquire an alias in its owning Namespace.

7.4.4 Notation

7441 Namespaces
There is no general notation for Namespaces. Specific kinds of Namespace have their own specific notation.

Conforming tools may optionally allow the “circle-plus” notation defined in sub clause 12.2.4 to show Package
membership to also be used to show membership in other kinds of Namespaces (for example, to show nestedClassifiers
and ownedBehaviors of Classes).

744.2 Name Expressions

The nameExpression associated with a NamedElement can be shown in two ways, depending on whether an alias is
required or not. Both notations are illustrated in Figure 7.6.

* No alias: The StringExpression appears as the name of the model Element.

* With alias: Both the StringExpression and the alias are shown wherever the name usually appears. The alias is
given first and the StringExpression underneath.

In both cases the StringExpression appears between “$” signs. The specification of Expressions in UML supports the
use of alternative string expression languages in the abstract syntax—they have to have String as their type and can be
some structure of operator Expressions with operands. The notation for this is discussed in sub clause 8.3 on Expressions.
In the context of templates, subexpressions of a StringExpression (usually LiteralStrings) that are parametered in a
template are shown between angle brackets.

7443 Imports

A Packagelmport or ElementImport is shown using a dashed arrow with an open arrowhead from the importing
Namespace to the imported Package or Element. The keyword «import» is shown near the dashed arrow if the visibility
is public; otherwise, the keyword «access» is shown to indicate private visibility. The alias may be shown after or below
the keyword «import». If the imported element for an ElementImport is a Package, the keyword may optionally be
preceded by “element”, i.e., «element importy.

As an alternative to the dashed arrow, it is possible to show a Packagelmport or ElementImport by having a text that
uniquely identifies the imported Package or Element within curly brackets either below or after the name of the
Namespace. The textual syntax for a Packagelmport is:

a0

Yimport * <qualified-name> *}’| ‘{access *<qualified-name>

The textual syntax for an ElementImport is:

‘

V| {element access *<qualified-name>

0

‘Yelement import’ <qualified-name>

Unified Modeling Language 2.5.1 29

Optionally, the alias, if any, may be shown as well:

‘{element import *<qualified-name> ‘as ’<alias> ‘}’| ‘{element access ’<qualified-name> ‘as’ <alias> ‘}’

7.4.5 Examples

7.4.51 Name Expressions

Figure 7.6 shows a ResourceAllocation Package template where the first two formal TemplateParameters are
StringExpression parameters. These formal TemplateParameters are used within the Package template to name some of
the Classes and Association ends. The figure also shows a bound Package (named TrainingAdmin) that has two
bindings to this ResourceAllocation template. The first binding substitutes the string “Instructor” for Resource, the
string “Qualification” for ResourceKind, and the Class TrainingAdminSystem for System. The second binding
substitutes the string “Facility” for Resource, the string “FacilitySpecification” for ResourceKind, and the Class
TrainingAdminSystem is again substituted for System.

The result of the binding includes Classes Instructor, Qualification, and InstructorAllocation as well as Classes Facility,
FacilitySpecification, and FacilityAllocation. The associations are similarly replicated.

NOTE. Request will have two attributes derived from the single “the<ResourceKind>" attribute (shown here by an
arrow), namely theQualification and theFacilitySpecification.

30 Unified Modeling Language 2.5.1

ResourceAllocation Resource: StringExpression,
ResourceKind: StringExpression,
System
Sa<Resource>$
*]
v allocation
$ $ resource Allocation $a<Resource>Allocation$
<Resource> — . SRS ——
1 $<Resource>Allocation$ *
resource | *
. timeSlot s
TimeSlot - ystem
1 request
kind | 1 \i
Sthe<ResourceKind>$ request

$<ResourceKind>$ <1 Request <€ "

* A Sa<ResourceKind>$

= A
S
\\ ///
\\\ s

«bind» N 7 «bind»

Resource -> "Instructor”, \\ e Resource -> "Facility",

ResourceKind -> "Qualification”, AN il ResourceKind -> "FacilitySpecification",

System -> TrainingAdminSystem \\\ /,/ System -> TrainingAdminSystem

TrainingAdmin

Figure 7.6 Template package with string parameters

7.4.5.2 Imports

The ElementImport shown in Figure 7.7 allows Elements in the Package Program to refer by name to the DataType
Time in Types without qualification. However, they still need to refer explicitly to Types::Integer, as this Element is not
imported. The DataType String is imported into the Program Package but it is not publicly visible as a member of
Program outside of that Package, and it cannot be further imported from the Program Package by other Namespaces.

Types

=datatypes
- String

caccesss -~
sdatatypes
Integer
- datatypes
Program |————————--— == sdataty]
¢ mport | Time

Figure 7.7 Example of element import

Unified Modeling Language 2.5.1

31

In Figure 7.8, the ElementImport is combined with aliasing, meaning that the DataType Types::Real will be referred to
by name as Double in the package Shapes.

Types Shapes

simports

cdatatypes P — Double | Circle
Real radius : Double

Figure 7.8 Example of element import with aliasing

In Figure 7.9, a number of Packagelmports are shown. The public members of Types are imported into ShoppingCart
and then further imported into WebShop. However, the members of Auxiliary are only privately imported by
ShoppingCart and cannot be referenced using unqualified names from WebShop.

1
Auxiliary Q.Jic?:. — —
’: ShoppingCart [€-=T2%2-4 WebShop
Types |&="cmports

Figure 7.9 Examples of public and private package imports

7.5 Types and Multiplicity

7.51 Summary

Types and multiplicity are used in the declaration of Elements that contain values, in order to constrain the kind and
number of values that may be contained.

32 Unified Modeling Language 2.5.1

7.5.2 Abstract Syntax

NamedElement | PackageableElement

TypedElement |+ typedElement + type Type
* 0..1

/\
{subsets owner} {subsets ownedElement}
MultiplicityElement + owningLowe + lowerValue | ValueSpecification
+ isOrdered : Boolean = false 0.1 0.1
: I/Skl)JerngLlle I;Ee%(irean = true {subsets owner} {subsets ownedElement}
+ Jupper : UnlimitedNatural + owningUpper + upperValue
0.1 0.1

Figure 7.10 Abstract syntax of types and multiplicity elements

7.5.3 Semantics

7.5.31 Types and Typed Elements

A Type specifies a set of allowed values known as the instances of the Type. Depending on the kind of Type, instances
of the Type may be created or destroyed over time. However, the rules for what constitutes an instance of the Type
remain fixed by the definition of that Type. All Types in UML are Classifiers (see Clause 9).

A TypedElement is a NamedElement that, in some way, represents particular values. Depending on the kind of
TypedElement, the actual values that it represents may change over time. Examples of kinds of TypedElement include
ValueSpecification, which directly specifies a collection of values (see Clause 8), and StructuralFeature, which
represents values held as part of the structure of the instances of the Classifier that owns it (see sub clause 9.4).

If a TypedElement has an associated Type, then any value represented by the TypedElement (at any point in time) shall
be an instance of the given Type. A TypeElement with no associated Type may represent any value.

7.5.3.2 Multiplicities

A MultiplicityElement is an Element that may be instantiated in some way to represent a collection of values.

Depending on the kind of MultiplicityElement, the values in the collection may change over time. Examples of kinds of
MultiplicityElement include StructuralFeature, which has values in the context of an instance of the Classifier that owns
it (see sub clause 9.4) and Variable, which has values in the context of the execution of an Activity (see sub clause 15.2).

The cardinality of a collection is the number of values contained in that collection. The multiplicity of a
MultiplicityElement specifies valid cardinalities of the collection it represents. The multiplicity is a constraint on the
cardinality, which shall not be less than the lower bound and not greater than the upper bound specified for the
multiplicity (unless the multiplicity is unlimited, in which case there is no constraint on the upper bound).

The lower and upper bounds for the multiplicity of a MultiplicityElement are specified by ValueSpecifications (see
Clause 8), which must evaluate to an Integer value for the lowerBound and an UnlimitedNatural value for the

Unified Modeling Language 2.5.1 33

upperBound (see Clause 21 on Primitive Types). A MultiplicityElement is unlimited if its upperBound has the
UnlimitedNatural value of unlimited (“*””). A MultiplicityElement is multivalued if it has an upperBound greater than 1
(including unbounded). A MultiplicityElement that is not multivalued can represent at most a single value.

A MultiplicityElement can define a multiplicity both of whose bounds are zero. This restricts the allowed cardinality to
be 0; that is, it requires that an instantiation of this element contain no values. This is useful in the context of
Generalizations (see sub clause 9.2) to constrain the cardinalities of a more general Classifier. It applies to (but is not
limited to) redefining properties existing in more general Classifiers.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this Element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this Element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this Element must be unique. That is, no two values in the collection may be equal, where equality of objects (instances
of Classes) is based on object identity while equality of data values (instances of DataTypes) and Signal instances is
based on value (see also sub clauses 10.2, 10.3, and 11.4 on DataTypes, Signals and Classes, respectively). If a
MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

Taken together, the isOrdered and isUnique properties can be used to specify that the collection of values in an
instantiation of a MultiplicityElement is of one of four types. Table 7.1shows the traditional names given to each of
these collection types.

Table 7.1 Collection types for MultiplicityElements

isOrdered isUnique Collection Type
false true Set
true true OrderedSet
false false Bag
true false Sequence

7.5.4 Notation

7541 Multiplicity Element

The specific notation for a MultiplicityElement is defined for each concrete kind of MultiplicityElement. In general, the
notation will include a multiplicity specification, which is shown as a text string containing the bounds of the
multiplicity and a notation for showing the optional ordering and uniqueness specifications.

The multiplicity bounds may be shown in the format:

<lower-bound> ".." <upper-bound>

where <lower-bound> is a ValueSpecification of type Integer and <upper-bound> is a ValueSpecification of type
UnlimitedNatural. The star character (*) is used as part of a multiplicity specification to represent an unlimited upper

bound.

If the multiplicity is associated with a MultiplicityElement whose notation is a text string (such as an attribute), the

multiplicity string is placed within square brackets ([]) as part of that text string.

If the multiplicity is associated with a MultiplicityElement that appears as a symbol (such as an Association end), the
multiplicity string is displayed without square brackets and may be placed near the symbol for the element.

34

Unified Modeling Language 2.5.1

If the lower bound is equal to the upper bound, then an alternate notation is to use a string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1” multiplicity. A multiplicity with zero as the lower bound
and an unspecified upper bound may use the alternative notation containing a single star “*” instead of “0..*”
multiplicity.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific kind of
MultiplicityElement. A general notation is to use a textual annotation containing “ordered” or “unordered” to define the
ordering, and “unique” or “nonunique” to define the uniqueness.

The following BNF defines the general syntax for a multiplicity string, including support order and uniqueness
designators:

<multiplicity> ::= <multiplicity-range> [[{* <order-designator> [‘,” <uniqueness-designator>] ‘}’] |
[{ <uniqueness-designator> [,” <order-designator>] }’] |

<multiplicity-range> ::= [<lower> "..”] <upper>

<lower> ::= <value-specification>

<upper> ::= <value-specification>
<order-designator> ::= ‘ordered’| ‘unordered’
<uniqueness-designator> ::= ‘unique’| ‘nonunique’

See also Clause 8 on the textual notation for ValueSpecifications.

7.5.5 Examples

Figure 7.11 shows two multiplicity strings as part of attribute specifications within a class symbol.

Customer

purchase : Purchase [*] {ordered, unique}
account : Account [0..5] {unique}

Figure 7.11 Multiplicity within a textual specification

Figure 7.12 shows two multiplicity strings as part of the specification of two association ends.

purchase account
Purchase [= - Customer = Account
. {urd_e.ed {unique}
unique} 0.5

Figure 7.12 Multiplicity as an adornment to a symbol

7.6 Constraints

7.6.1 Summary
A Constraint is an assertion that indicates a restriction that must be satisfied by any valid realization of the model

containing the Constraint. A Constraint is attached to a set of constrainedElements, and it represents additional semantic
information about those Elements.

Unified Modeling Language 2.5.1 35

7.6.2 Abstract Syntax

PackageableElement
A
" {ordered}
Constraint + constraint + constrainedElement
‘=|| Element
* *
{subsets namespace} {subsets ownedMember}
+ context + ownedRule
[Namespace joe>
0..1 *
{subsets owner} {subsets ownedElement}
+ owningConstraint + specification

s |

0.1 1

Figure 7.13 Abstract Syntax of Constraints

7.6.3 Semantics

The specification of a Constraint is given by a ValueSpecification (see Clause 8) of type Boolean. The computation of
the specification may reference the constrainedElements of the Constraint and also the context of the Constraint.

In general there are many possible kinds of context for a Constraint. The context of the Constraint determines when the
Constraint specification is evaluated. For example, a Constraint that is a precondition of an Operation is evaluated at the
start of the invocation of the Operation, while a Constraint that is a postcondition is evaluated at the conclusion of the
invocation (see sub clause 9.6 on Operations).

A Constraint is evaluated by evaluating its specification. If the specification evaluates to true, then the Constraint is
satisfied at that time. If the specification evaluates to false, then the Constraint is not satisfied, and the realization of the
model in which the evaluation occurs is not valid.

7.6.4 Notation

Certain kinds of Constraints are predefined in UML, others may be user-defined. The specification of a user-defined
Constraint is often expressed as a text string in some language, whose syntax and interpretation is as defined by that
language. In some situations, a formal language (such as OCL) or a programming language (such as Java) may be
appropriate, in other situations natural language may be used. Such a specification may be represented as an
OpaqueExpression with the appropriate language and body (see sub clause 8.3). The Constraint may then be notated
textually within braces ({}) according to the following BNF:

‘

<constraint> ::= {* [<name> ‘:’ | <boolean-expression> ‘}’

where <name> is the name of the Constraint and <boolean-expression> is the appropriate textual notation for the
Constraint specification.

Most generally, the constraint string is placed in a note symbol and attached to each of the symbols for the
constrainedElements by dashed lines. (See Figure 7.14 for an example.)

For a Constraint that applies to a single constrainedElement (such as a single Class or Association), the constraint string
may be directly placed near the symbol for the constrainedElement, preferably near the name, if any. A tool shall make it
possible to determine the constrainedElement.

For an Element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the Element
text string. The Element so annotated is then the single constrainedElement of the Constraint. (Figure 7.15 shows a
Constraint string that follows an attribute within a Class symbol.)

For a Constraint that applies to two Elements (such as two Classes or two Associations), the Constraint may be shown
as a dashed line between the Elements labeled by the constraint string. (See Figure 7.16 for an example.)

If the Constraint is shown as a dashed line between two Elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the Constraint. The Element at the tail of the arrow is mapped to

36 Unified Modeling Language 2.5.1

the first position and the element at the head of the arrow is mapped to the second position in the constrainedElement
collection.

For three or more paths of the same kind (such as Generalization paths or Association paths), the constraint string may
be attached to a dashed line crossing all of the paths.

7.6.5 Examples

Figure 7.14 shows an example of a Constraint in a note symbol.

0.4 boss
employee employer
Person Company
" 0.1
{self boss-=isEmpty() or
self employer = self boss employer}

Figure 7.14 Constraint in a note symbol

Figure 7.15 shows a constraint string attached to an attribute.

Stack

size: Integer {size >= 0}

push()
pop()

Figure 7.15 Constraint attached to an attribute

Figure 7.16 shows an {xor} constraint between two associations.

Person

Account

-| Corporation

Figure 7.16 {xor} constraint

1.7 Dependencies

7.71 Summary

A Dependency signifies a supplier/client relationship between model elements where the modification of a supplier may
impact the client model elements.

Unified Modeling Language 2.5.1 37

7.7.2 Abstract Syntax

DirectedRelationship | PackageableElement

{subsets directedRelationship.

{subsets target}
+ supplier + supplierDependenc
NamedElement i *pp dd P : Dependency
L.x %
+ client + /clientDependency
{subsets source}) S
{subsets directedRelationship’

{subsets ownedElement} {subsets owner}

+ mappin + abstraction -
OpaqueExpression 0 pPIng PN Abstraction Usage

.1 0.1

Realization

Figure 7.17 Abstract syntax of dependencies

7.7.3 Semantics

7.7.31 Dependency

A Dependency implies that the semantics of the clients are not complete without the suppliers. The presence of
Dependency relationships in a model does not have any runtime semantic implications. The semantics are all given in
terms of the NamedElements that participate in the relationship, not in terms of their instances.

7.73.2 Usage

A Usage is a Dependency in which one NamedElement requires another NamedElement (or set of NamedElements) for
its full implementation or operation. The Usage does not specify how the client uses the supplier other than the fact that
the supplier is used by the definition or implementation of the client.

7.7.3.3 Abstraction

An Abstraction is a Dependency that relates two NamedElements or sets of NamedElements that represent the same
concept at different levels of abstraction or from different viewpoints. The relationship may be defined as a mapping
between the suppliers and the clients. Depending on the specific stereotype of Abstraction, the mapping may be formal or
informal, and it may be unidirectional or bidirectional. Abstraction has predefined stereotypes (such as «Derive»,
«Refine», and «Trace») that are defined in the Standard Profile (see Clause 22). If an Abstraction has more than one
client, the supplier maps into the set of clients as a group. For example, an analysis-level Class might be split into several
design-level Classes. The situation is similar if there is more than one supplier.

7.7.34 Realization

Realization is a specialized Abstraction dependency between two sets of NamedElements, one representing a
specification (the supplier) and the other representing an implementation of that specification (the client). Realization can
be used to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework
composition, etc. A Realization signifies that the set of clients is an implementation of the set of suppliers, which serves

38 Unified Modeling Language 2.5.1

as the specification. The meaning of “implementation” is not strictly defined, but rather implies a more refined or
elaborate form in respect to a certain modeling context. It is possible to specify a mapping between the specification and
implementation elements, although this is not necessarily computable.

7.7.4 Notation

A Dependency is shown as a dashed arrow between two model Elements. The model Element at the tail of the arrow
(the client) depends on the model Element at the arrowhead (the supplier). The arrow may be labeled with an optional
keyword or stereotype and an optional name (see Figure 7.18).

«keywordOrStereotypeName»

dependencyName
NamedElement-1 9 NamedElement-2

Figure 7.18 Notation for a Dependency between two elements

It is possible to have a set of Elements for the client or supplier. In this case, one or more arrows with their tails on the
clients are connected to the tails of one or more arrows with their heads on the suppliers. A small dot can be placed on the
junction if desired. A note on the Dependency should be attached at the junction point.

A Usage is shown as a Dependency with a «use» keyword attached to it.

An Abstraction is shown as a Dependency with an «abstraction» keyword or the specific predefined stereotype attached
to it.

A Realization is shown as a dashed line with a triangular arrowhead at the end that corresponds to the realized Element.
7.7.5 Examples
In Figure 7.19, the CarFactory Class has a Dependency on the Car Class. In this case, the Dependency is a Usage with

the standard stereotype «Instantiate» applied, indicating that an instance of the CarFactory Class creates instances of the
Car Class.

«Instantiate»
CarFactory > Car

Figure 7.19 An example of an «Instantiate» Dependency

In Figure 7.20, an Order Class requires the Line Item Class for its full implementation.

guse» .
Order F—— —— ——] Line

Item

Figure 7.20 An example of a «use» Dependency

Figure 7.21 illustrates an example in which the Business class is realized by a combination of Owner and Employee
classes.

Unified Modeling Language 2.5.1 39

Business

Owner Employee

Figure 7.21 An example of a realization Dependency

7.8 Classifier Descriptions

7.81 Abstraction [Class]

7.8.1.1 Description

An Abstraction is a Relationship that relates two Elements or sets of Elements that represent the same concept at
different levels of abstraction or from different viewpoints.

7.8.1.2 Diagrams

Dependencies, Artifacts

7.81.3 Generalizations
Dependency
7.8.1.4 Specializations

Realization, Manifestation

7.8.1.5 Association Ends

® ¢ mapping : OpaqueExpression [0..1]{subsets Element::ownedElement} (opposite
A_mapping_abstraction::abstraction)
An OpaqueExpression that states the abstraction relationship between the supplier(s) and the client(s). In some
cases, such as derivation, it is usually formal and unidirectional; in other cases, such as trace, it is usually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the Elements is not specified.

7.8.2 Comment [Class]

7.8.21 Description

A Comment is a textual annotation that can be attached to a set of Elements.

7.8.2.2 Diagrams

7.8.2.3 Generalizations

Element

40 Unified Modeling Language 2.5.1

7.8.2.4

7.8.2.5

7.8.3

7.8.3.1

A Constraint is a condition or restriction expressed in natural language text or in a machine readable language for the

Attributes

body : String [0..1]
Specifies a string that is the comment.

Association Ends

annotatedElement : Element [0..*] (opposite A_annotatedElement comment::comment)
References the Element(s) being commented.

Constraint [Class]

Description

purpose of declaring some of the semantics of an Element or set of Elements.

7.8.3.2

7.8.3.3

7.8.3.4

7.8.3.5

7.8.3.6

Diagrams

Namespaces, Constraints, Intervals, Use Cases, Behavior State Machines, Protocol State Machines,
Interactions, Fragments, Behaviors, Features, Operations, Actions

Generalizations

PackageableElement
Specializations

IntervalConstraint, InteractionConstraint

Association Ends

constrainedElement : Element [0..*]{ordered} (opposite A_constrainedElement constraint::constraint)
The ordered set of Elements referenced by this Constraint.

context : Namespace [0..1]{subsets NamedElement::namespace} (opposite Namespace::ownedRule)
Specifies the Namespace that owns the Constraint.

¢ specification : ValueSpecification [1..1]{subsets Element::ownedElement} (opposite

A_specification owningConstraint::owningConstraint)
A condition that must be true when evaluated in order for the Constraint to be satisfied.

Constraints

boolean value
The ValueSpecification for a Constraint must evaluate to a Boolean value.

Cannot be expressed in OCL

no_side_effects
Evaluating the ValueSpecification for a Constraint must not have side effects.

Cannot be expressed in OCL

Unified Modeling Language 2.5.1

41

* not apply to_self
A Constraint cannot be applied to itself.

inv: not constrainedElement->includes(self)

784 Dependency [Class]

7.8.4.1 Description

A Dependency is a Relationship that signifies that a single model Element or a set of model Elements requires other
model Elements for their specification or implementation. This means that the complete semantics of the client
Element(s) are either semantically or structurally dependent on the definition of the supplier Element(s).

7.8.4.2 Diagrams

Dependencies, Collaborations, Deployments

7.8.4.3 Generalizations
DirectedRelationship, PackageableElement
7844 Specializations
Abstraction, Usage, Deployment

7.8.4.5 Association Ends

¢ client : NamedElement [1..*]{subsets DirectedRelationship::source} (opposite

NamedFElement::clientDependency)
The Element(s) dependent on the supplier Element(s). In some cases (such as a trace Abstraction) the

assignment of direction (that is, the designation of the client Element) is at the discretion of the modeler and is
a stipulation.

® supplier : NamedElement [1..*]{subsets DirectedRelationship::target} (opposite

A_supplier_supplierDependency::supplierDependency)
The Element(s) on which the client Element(s) depend in some respect. The modeler may stipulate a sense of

Dependency direction suitable for their domain.

7.8.5 DirectedRelationship [Abstract Class]

7.8.51 Description

A DirectedRelationship represents a relationship between a collection of source model Elements and a collection of
target model Elements.

7.8.5.2 Diagrams

Root, Template Bindings, Namespaces, Dependencies, Use Cases, Packages, Profiles, Information Flows,
Classifiers

7.8.5.3 Generalizations

Relationship

42 Unified Modeling Language 2.5.1

7.8.5.4 Specializations

Dependency, ElementIlmport, Packagelmport, TemplateBinding, Extend, Include, ProtocolConformance,
PackageMerge, ProfileApplication, InformationFlow, Generalization

7.8.5.5 Association Ends

® /source : Element [1..*]{union, subsets Relationship::relatedElement} (opposite

A_source directedRelationship::directedRelationship)
Specifies the source Element(s) of the DirectedRelationship.

® /target : Element [1..*]{union, subsets Relationship::relatedElement} (opposite

A_target directedRelationship::directedRelationship)
Specifies the target Element(s) of the DirectedRelationship.

7.8.6 Element [Abstract Class]

7.8.6.1 Description

An Element is a constituent of a model. As such, it has the capability of owning other Elements.

7.8.6.2 Diagrams

Root, Template Bindings, Templates, Namespaces, Types, Constraints, Activity Groups, Executable Nodes,

Profiles, Instances, Link End Data, Structured Actions

7.8.6.3 Specializations

Comment, MultiplicityElement, NamedElement, ParameterableElement, Relationship, TemplateableElement,

TemplateParameter, TemplateParameterSubstitution, TemplateSignature, ExceptionHandler, Image, Slot,
Clause, LinkEndData, QualifierValue

7.8.6.4 Association Ends

* ¢ ownedComment : Comment [0..*]{subsets Element::ownedElement} (opposite

A_ownedComment owningElement::owningElement)
The Comments owned by this Element.

* ¢ /ownedElement : Element [0..*]{union} (opposite Element::owner)
The Elements owned by this Element.

¢ /owner : Element [0..1]{union} (opposite Element::ownedElement)
The Element that owns this Element.

7.8.6.5 Operations

¢ allOwnedElements() : Element [0..*]
The query allOwnedElements() gives all of the direct and indirect ownedElements of an Element.

body: ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))->asSet()
* mustBeOwned() : Boolean

The query mustBeOwned() indicates whether Elements of this type must have an owner. Subclasses of
Element that do not require an owner must override this operation.

Unified Modeling Language 2.5.1

43

7.8.6.6

7.8.7

7.8.71

body: true

Constraints

has_owner
Elements that must be owned must have an owner.

inv: mustBeOwned() implies owner->notEmpty()

not_own_self
An element may not directly or indirectly own itself.

inv: not allOwnedElements()->includes(self)
Elementimport [Class]

Description

An ElementImport identifies a NamedElement in a Namespace other than the one that owns that NamedElement and
allows the NamedElement to be referenced using an unqualified name in the Namespace owning the ElementImport.

7.8.7.2

7.8.7.3

7.8.74

7.8.7.5

44

Diagrams
Namespaces, Profiles

Generalizations

DirectedRelationship

Attributes

alias : String [0..1]

Specifies the name that should be added to the importing Namespace in lieu of the name of the imported
PackagableElement. The alias must not clash with any other member in the importing Namespace. By default,
no alias is used.

visibility : VisibilityKind [1..1] = public

Specifies the visibility of the imported PackageableElement within the importingNamespace, i.e., whether the
importedElement will in turn be visible to other Namespaces. If the ElementImport is public, the
importedElement will be visible outside the importingNamespace while, if the ElementImport is private, it will
not.

Association Ends

importedElement : PackageableElement [1..1]{subsets DirectedRelationship::target} (opposite

A_importedElement import::import)
Specifies the PackageableElement whose name is to be added to a Namespace.

importingNamespace : Namespace [1..1]{subsets DirectedRelationship::source, subsets Element::owner}

(opposite Namespace::elementlmport)
Specifies the Namespace that imports a PackageableElement from another Namespace.

Unified Modeling Language 2.5.1

7.8.7.6

7.8.7.7

7.8.8

7.8.8.1

Operations

getName() : String
The query getName() returns the name under which the imported PackageableElement will be known in the
importing namespace.

body: if alias->notEmpty() then
alias

else
importedElement.name

endif

Constraints

imported _element is_public
An importedElement has either public visibility or no visibility at all.

inv: importedElement.visibility <> null implies importedElement.visibility =
VisibilityKind::public

visibility public or private
The visibility of an ElementImport is either public or private.

inv: visibility = VisibilityKind::public or visibility = VisibilityKind::private
MultiplicityElement [Abstract Class]

Description

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A MultiplicityElement embeds this information to specify the allowable
cardinalities for an instantiation of the Element.

7.8.8.2

7.8.8.3

7.8.8.4

7.8.8.5

Diagrams

Types, Activities, Structured Classifiers, Features, Actions
Generalizations

Element
Specializations

Attributes

isOrdered : Boolean [1..1] = false
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this
MultiplicityElement are sequentially ordered.

isUnique : Boolean [1..1] = true
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this
MultiplicityElement are unique.

/lower : Integer [1..1]
The lower bound of the multiplicity interval.

Unified Modeling Language 2.5.1 45

¢ /upper : UnlimitedNatural [1..1]
The upper bound of the multiplicity interval.

7.8.8.6 Association Ends

® ¢ lowerValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite
A_lowerValue owningl ower::owningl ower)
The specification of the lower bound for this multiplicity.

® ¢ upperValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_upperValue owningUpper::owningUpper)
The specification of the upper bound for this multiplicity.

7.8.8.7 Operations

® compatibleWith(other : MultiplicityElement) : Boolean
The operation compatibleWith takes another multiplicity as input. It returns true if the other multiplicity is
wider than, or the same as, self.

body: (other.lowerBound() <= self.lowerBound()) and ((other.upperBound() = *) or
(self.upperBound() <= other.upperBound()))

® includesMultiplicity(M : MultiplicityElement) : Boolean
The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the
specified multiplicity.

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty() and M.upperBound()-
>notEmpty() and M.lowerBound()->notEmpty()
body: (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

* is(lowerbound : Integer, upperbound : UnlimitedNatural) : Boolean
The operation is determines if the upper and lower bound of the ranges are the ones given.

body: lowerbound = self.lowerBound() and upperbound = self.upperBound()

® isMultivalued() : Boolean
The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.

pre: upperBound()->notEmpty ()
body: upperBound() > 1

* lower() : Integer [0..1]
The derived lower attribute must equal the lowerBound.

body: lowerBound()

® lowerBound() : Integer [1..1]
The query lowerBound() returns the lower bound of the multiplicity as an integer, which is the integerValue of
lowerValue, if this is given, and 1 otherwise.

body: if (lowerValue=null or lowerValue.integerValue()=null) then 1 else
lowerValue.integerValue() endif

¢ upper() : UnlimitedNatural [0..1]
The derived upper attribute must equal the upperBound.

46 Unified Modeling Language 2.5.1

body: upperBound()

¢ upperBound() : UnlimitedNatural [1..1]
The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited
natural, which is the unlimitedNatural Value of upperValue, if given, and 1, otherwise.

body: if (upperValue=null or upperValue.unlimitedValue()=null) then 1 else
upperValue.unlimitedvalue() endif

7.8.8.8 Constraints

e upper_ge lower
The upper bound must be greater than or equal to the lower bound.

inv: upperBound() >= lowerBound()

* lower ge O
The lower bound must be a non-negative integer literal.

inv: lowerBound() >= 0

* value specification no_side effects
If a non-literal ValueSpecification is used for lowerValue or upperValue, then evaluating that specification
must not have side effects.

Cannot be expressed in OCL

* value specification_constant
If a non-literal ValueSpecification is used for lowerValue or upperValue, then that specification must be a
constant expression.

Cannot be expressed in OCL

* lower is_integer
If it is not empty, then lowerValue must have an Integer value.

inv: lowerValue <> null implies lowerValue.integerValue() <> null

* upper_is_unlimitedNatural
If it is not empty, then upperValue must have an UnlimitedNatural value.

inv: upperValue <> null implies upperValue.unlimitedvValue() <> null

7.8.9 NamedElement [Abstract Class]

7.8.9.1 Description

A NamedElement is an Element in a model that may have a name. The name may be given directly and/or via the use of
a StringExpression.

7.8.9.2 Diagrams

Namespaces, Types, Dependencies, Activity Groups, Time, Use Cases, Collaborations, Behavior State
Machines, Interactions, Messages, Lifelines, Occurrences, Fragments, Information Flows, Deployments
Events, Classifiers

Unified Modeling Language 2.5.1 47

7.8.9.3

7.8.9.4

7.8.9.5

7.8.9.6

7.8.9.7

48

Generalizations

Element

Specializations

Namespace, PackageableElement, TypedElement, ActivityGroup, Trigger, Extend, Include, CollaborationUse,
Vertex, GeneralOrdering, InteractionFragment, Lifeline, Message, MessageEnd, DeployedArtifact
DeploymentTarget, ParameterSet, RedefinableElement

Attributes

name : String [0..1]
The name of the NamedElement.

/qualifiedName : String [0..1]

A name that allows the NamedElement to be identified within a hierarchy of nested Namespaces. It is
constructed from the names of the containing Namespaces starting at the root of the hierarchy and ending with
the name of the NamedElement itself.

visibility : VisibilityKind [0..1]
Determines whether and how the NamedElement is visible outside its owning Namespace.

Association Ends

/clientDependency : Dependency [0..*]{subsets A_source directedRelationship::directedRelationship }

(opposite Dependency::client)
Indicates the Dependencies that reference this NamedElement as a client.

¢ nameExpression : StringExpression [0..1]{subsets Element::ownedElement} (opposite

A nameExpression _namedElement::namedElement)
The StringExpression used to define the name of this NamedElement.

/namespace : Namespace [0..1]{union, subsets A_member _memberNamespace::memberNamespace, subsets

Element::owner} (opposite Namespace::ownedMember)
Specifies the Namespace that owns the NamedElement.

Operations

allNamespaces() : Namespace [0..*]{ordered}
The query allNamespaces() gives the sequence of Namespaces in which the NamedElement is nested, working
outwards.

body: if owner.oclIsKindOf (TemplateParameter) and
owner.oclAsType (TemplateParameter).signature.template.oclIsKindOf (Namespace) then
let enclosingNamespace : Namespace =
owner.oclAsType(TemplateParameter).signature.template.oclAsType(Namespace) in
enclosingNamespace.allNamespaces ()->prepend(enclosingNamespace)
else
if namespace->isEmpty()
then OrderedSet{}
else
namespace.allNamespaces () ->prepend(namespace)
endif
endif

Unified Modeling Language 2.5.1

7.8.9.8

allOwningPackages() : Package [0..*]
The query allOwningPackages() returns the set of all the enclosing Namespaces of this NamedElement,
working outwards, that are Packages, up to but not including the first such Namespace that is not a Package.

body: if namespace.oclIsKindOf (Package)
then
let owningPackage : Package = namespace.oclAsType(Package) in
owningPackage->union(owningPackage.allOwningPackages())
else
null
endif

isDistinguishableFrom(n : NamedElement, ns : Namespace) : Boolean

The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a
Namespace. By default, two named elements are distinguishable if (a) they have types neither of which is a
kind of the other or (b) they have different names.

body: (self.oclIsKindOf(n.oclType()) or n.oclIsKindOf(self.oclType())) implies
ns.getNamesOfMember (self)->intersection(ns.getNamesOfMember (n))->isEmpty ()

qualifiedName() : String
When a NamedElement has a name, and all of its containing Namespaces have a name, the qualifiedName is
constructed from the name of the NamedElement and the names of the containing Namespaces.

body: if self.name <> null and self.allNamespaces()->select(ns | ns.name=null)->isEmpty()
then
self.allNamespaces()->iterate(ns : Namespace; agg: String = self.name |
ns.name.concat(self.separator()).concat(agg))
else
null
endif

separator() : String
The query separator() gives the string that is used to separate names when constructing a qualifiedName.

body: '::'

clientDependency() : Dependency [0..*]
body: Dependency.allInstances()->select(d | d.client->includes(self))

Constraints

visibility _needs ownership

If a NamedElement is owned by something other than a Namespace, it does not have a visibility. One that is
not owned by anything (and hence must be a Package, as this is the only kind of NamedElement that overrides
mustBeOwned()) may have a visibility.

inv: (namespace = null and owner <> null) implies visibility = null

has_qualified name
When there is a name, and all of the containing Namespaces have a name, the qualifiedName is constructed
from the name of the NamedElement and the names of the containing Namespaces.

inv: (name <> null and allNamespaces()->select(ns | ns.name = null)->isEmpty()) implies
qualifiedName = allNamespaces()->iterate(ns : Namespace; agg: String = name |
ns.name.concat (self.separator()).concat(agg))

Unified Modeling Language 2.5.1 49

* has no qualified name
If there is no name, or one of the containing Namespaces has no name, there is no qualifiedName.

inv: name=null or allNamespaces()->select(ns | ns.name=null)->notEmpty() implies
qualifiedName = null

7.8.10 Namespace [Abstract Class]

7.8.10.1 Description

A Namespace is an Element in a model that owns and/or imports a set of NamedElements that can be identified by
name.

7.8.10.2 Diagrams

Namespaces, Constraints, Behavior State Machines, Packages, Fragments, Classifiers, Features, Structured
Actions

7.8.10.3 Generalizations

NamedElement

7.8.10.4 Specializations

Region, State, Transition, Package, InteractionOperand, BehavioralFeature, Classifier, StructuredActivityNode

7.8.10.5 Association Ends

® ¢ clementlmport : ElementImport [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite ElementImport::importingNamespace)
References the ElementImports owned by the Namespace.

* /importedMember : PackageableElement [0..*]{subsets Namespace::member} (opposite
A_importedMember_namespace::namespace)
References the PackageableElements that are members of this Namespace as a result of either Packagelmports
or ElementImports.

®* /member : NamedElement [0..*]{union} (opposite A_member memberNamespace::memberNamespace)
A collection of NamedElements identifiable within the Namespace, either by being owned or by being
introduced by importing or inheritance.

* ¢ /ownedMember : NamedElement [0..*]{union, subsets Namespace::member, subsets

Element::ownedElement} (opposite NamedElement::namespace)
A collection of NamedElements owned by the Namespace.

¢ ¢ ownedRule : Constraint [0..*]{subsets Namespace::ownedMember} (opposite Constraint::context)
Specifies a set of Constraints owned by this Namespace.

® ¢ packagelmport : Packagelmport [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite Packagelmport::importingNamespace)
References the Packagelmports owned by the Namespace.

50 Unified Modeling Language 2.5.1

7.8.10.6 Operations

excludeCollisions(imps : PackageableElement [0..*]) : PackageableElement [0..*]
The query excludeCollisions() excludes from a set of PackageableElements any that would not be
distinguishable from each other in this Namespace.

body: imps->reject(impl | imps->exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

getNamesOfMember(element : NamedElement) : String [0..%]

The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace,
taking importing into account. In general a member can have multiple names in a Namespace if it is imported
more than once with different aliases.

body: if self.ownedMember ->includes(element)
then Set{element.name}
else let elementImports : Set(ElementImport) = self.elementImport->select(ei |
ei.importedElement = element) in
if elementImports->notEmpty ()
then
elementImports->collect(el | el.getName())->asSet()
else
self.packageImport->select(pi |
pi.importedPackage.visibleMembers().oclAsType (NamedElement)->includes(element))-> collect(pi
| pi.importedPackage.getNamesOfMember (element))->asSet()
endif
endif

importMembers(imps : PackageableElement [0..*]) : PackageableElement [0..*]

The query importMembers() defines which of a set of PackageableElements are actually imported into the
Namespace. This excludes hidden ones, i.e., those which have names that conflict with names of
ownedMembers, and it also excludes PackageableElements that would have the indistinguishable names when
imported.

body: self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll (mem |
imp.isDistinguishableFrom(mem, self)))

importedMember() : PackageableElement [0..*]
The importedMember property is derived as the PackageableElements that are members of this Namespace as
a result of either Packagelmports or ElementImports.

body: self.importMembers(elementImport.importedElement->asSet()-
>union (packageImport.importedPackage->collect(p | p.visibleMembers()))->asSet())

membersAreDistinguishable() : Boolean
The Boolean query membersAreDistinguishable() determines whether all of the Namespace's members are
distinguishable within it.

body: member->forAll(memb |
member->excluding(memb)->forAll (other |
memb.isDistinguishableFrom(other, self)))

7.8.10.7 Constraints

members_distinguishable
All the members of a Namespace are distinguishable within it.

inv: membersAreDistinguishable()

Unified Modeling Language 2.5.1 51

e cannot import self
A Namespace cannot have a Packagelmport to itself.

inv: packageImport.importedPackage.oclAsType(Namespace)->excludes(self)

* cannot_import_ownedMembers
A Namespace cannot have an ElementImport to one of its ownedMembers.

inv: elementImport.importedElement.oclAsType(Element)->excludesAll (ownedMember)

7.8.11 Packagelmport [Class]

7.8.11.1 Description

A Packagelmport is a Relationship that imports all the non-private members of a Package into the Namespace owning
the Packagelmport, so that those Elements may be referred to by their unqualified names in the importingNamespace.

7.8.11.2 Diagrams

Namespaces, Profiles

7.8.11.3 Generalizations

DirectedRelationship

7.8.11.4 Attributes

® visibility : VisibilityKind [1..1] = public
Specifies the visibility of the imported PackageableElements within the importingNamespace, i.e., whether
imported Elements will in turn be visible to other Namespaces. If the Packagelmport is public, the imported
Elements will be visible outside the importingNamespace, while, if the Packagelmport is private, they will not.

7.8.11.5 Association Ends

* importedPackage : Package [1..1]{subsets DirectedRelationship::target} (opposite

A_importedPackage packagelmport::packagelmport)
Specifies the Package whose members are imported into a Namespace.

® importingNamespace : Namespace [1..1]{subsets DirectedRelationship::source, subsets Element::owner}
(opposite Namespace::packagelmport)
Specifies the Namespace that imports the members from a Package.

7.8.11.6 Constraints

* public_or private
The visibility of a Packagelmport is either public or private.

inv: visibility = VisibilityKind::public or visibility = VisibilityKind::private
7.8.12 PackageableElement [Abstract Class]

7.8.121 Description

A PackageableElement is a NamedElement that may be owned directly by a Package. A PackageableElement is also
able to serve as the parameteredElement of a TemplateParameter.

52 Unified Modeling Language 2.5.1

7.8.12.2 Diagrams

Namespaces, Types, Constraints, Dependencies, Literals, Time, Components, Packages, Information Flows
Deployments, Artifacts, Events, Instances, Generalization Sets

7.8.12.3 Generalizations

ParameterableElement, NamedElement

7.8.12.4 Specializations

Constraint, Dependency, Type, Event, Observation, ValueSpecification, Package, InformationFlow,
GeneralizationSet, InstanceSpecification

7.8.12.5 Attributes

* visibility : VisibilityKind [0..1] = public
A PackageableElement must have a visibility specified if it is owned by a Namespace. The default visibility is
public.

7.8.12.6 Constraints

* namespace _needs_visibility
A PackageableElement owned by a Namespace must have a visibility.

inv: visibility = null implies namespace = null
7.8.13 ParameterableElement [Abstract Class]

7.8.13.1 Description

A ParameterableElement is an Element that can be exposed as a formal TemplateParameter for a template, or specified
as an actual parameter in a binding of a template.

7.8.13.2 Diagrams

Template Bindings, Templates, Namespaces, Structured Classifiers, Properties, Operations

7.8.13.3 Generalizations
Element
7.8.13.4 Specializations

PackageableElement, ConnectableElement, Operation

7.8.13.5 Association Ends

¢ owningTemplateParameter : TemplateParameter [0..1]{subsets ParameterableElement::templateParameter,

subsets Element::owner} (opposite TemplateParameter::ownedParameteredElement)
The formal TemplateParameter that owns this ParameterableElement.

® templateParameter : TemplateParameter [0..1] (opposite TemplateParameter::parameteredElement)
The TemplateParameter that exposes this ParameterableElement as a formal parameter.

Unified Modeling Language 2.5.1 53

7.8.13.6 Operations

* isCompatibleWith(p : ParameterableElement) : Boolean
The query isCompatibleWith() determines if this ParameterableElement is compatible with the specified
ParameterableElement. By default, this ParameterableElement is compatible with another
ParameterableElement p if the kind of this ParameterableElement is the same as or a subtype of the kind of p.
Subclasses of ParameterableElement should override this operation to specify different compatibility
constraints.

body: self.oclIsKindOf(p.oclType())

® isTemplateParameter() : Boolean
The query isTemplateParameter() determines if this ParameterableElement is exposed as a formal
TemplateParameter.

body: templateParameter->notEmpty()

7.8.14 Realization [Class]

7.8.14.1 Description

Realization is a specialized Abstraction relationship between two sets of model Elements, one representing a
specification (the supplier) and the other represents an implementation of the latter (the client). Realization can be used
to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

7.8.14.2 Diagrams

Dependencies, Components, Interfaces, Classifiers

7.8.14.3 Generalizations
Abstraction
7.8.14.4 Specializations

ComponentRealization, InterfaceRealization, Substitution

7.8.15 Relationship [Abstract Class]

7.8.15.1 Description

Relationship is an abstract concept that specifies some kind of relationship between Elements.

7.8.15.2 Diagrams

Root, Associations, Information Flows

7.8.15.3 Generalizations
Element
7.8.15.4 Specializations

DirectedRelationship, Association

54 Unified Modeling Language 2.5.1

7.8.15.5 Association Ends

¢ /relatedElement : Element [1..*]{union} (opposite A_relatedElement relationship::relationship)
Specifies the elements related by the Relationship.

7.8.16 TemplateBinding [Class]

7.8.16.1 Description

A TemplateBinding is a DirectedRelationship between a TemplateableElement and a template. A TemplateBinding
specifies the TemplateParameterSubstitutions of actual parameters for the formal parameters of the template.

7.8.16.2 Diagrams

Template Bindings

7.8.16.3 Generalizations

DirectedRelationship

7.8.16.4 Association Ends

® boundElement : TemplateableElement [1..1]{subsets DirectedRelationship::source, subsets Element::owner}

(opposite TemplateableElement::templateBinding)
The TemplateableElement that is bound by this TemplateBinding.

® ¢ parameterSubstitution : TemplateParameterSubstitution [0..*]{subsets Element::ownedElement} (opposite

TemplateParameterSubstitution::templateBinding)
The TemplateParameterSubstitutions owned by this TemplateBinding.

® signature : TemplateSignature [1..1]{subsets DirectedRelationship::target} (opposite
A_signature_templateBinding::templateBinding)
The TemplateSignature for the template that is the target of this TemplateBinding.

7.8.16.5 Constraints

* parameter_substitution formal
Each parameterSubstitution must refer to a formal TemplateParameter of the target TemplateSignature.

inv: parameterSubstitution->forAll(b | signature.parameter->includes(b.formal))

* one parameter_substitution
A TemplateBiinding contains at most one TemplateParameterSubstitution for each formal TemplateParameter
of the target TemplateSignature.

inv: signature.parameter->forAll(p | parameterSubstitution->select(b | b.formal = p)->size()
<= 1)

7.8.17 TemplateParameter [Class]

78171 Description

A TemplateParameter exposes a ParameterableElement as a formal parameter of a template.

Unified Modeling Language 2.5.1 55

7.8.17.2 Diagrams

Template Bindings, Templates, Structured Classifiers, Classifier Templates, Operations

7.8.17.3 Generalizations
Element
7.8.17.4 Specializations

ConnectableElementTemplateParameter, ClassifierTemplateParameter, OperationTemplateParameter

7.8.17.5 Association Ends

¢ default : ParameterableElement [0..1] (opposite A_default templateParameter::templateParameter)
The ParameterableElement that is the default for this formal TemplateParameter.

® ¢ ownedDefault : ParameterableElement [0..1]{subsets Element::ownedElement, subsets
TemplateParameter::default} (opposite A_ownedDefault templateParameter::templateParameter)
The ParameterableElement that is owned by this TemplateParameter for the purpose of providing a default.

® ¢ ownedParameteredElement : ParameterableElement [0..1]{subsets Element::ownedElement, subsets

TemplateParameter::parameteredElement} (opposite ParameterableElement::owningTemplateParameter)
The ParameterableElement that is owned by this TemplateParameter for the purpose of exposing it as the

parameteredElement.

® parameteredElement : ParameterableElement [1..1] (opposite ParameterableElement::templateParameter)
The ParameterableElement exposed by this TemplateParameter.

® signature : TemplateSignature [1..1]{subsets A_parameter_templateSignature::templateSignature, subsets
Element::owner} (opposite TemplateSignature::ownedParameter)
The TemplateSignature that owns this TemplateParameter.

7.8.17.6 Constraints

* must_be compatible
The default must be compatible with the formal TemplateParameter.

inv: default <> null implies default.isCompatibleWith(parameteredElement)

7.8.18 TemplateParameterSubstitution [Class]

7.8.18.1 Description

A TemplateParameterSubstitution relates the actual parameter to a formal TemplateParameter as part of a template
binding.

7.8.18.2 Diagrams

Template Bindings
7.8.18.3 Generalizations

Element

56 Unified Modeling Language 2.5.1

7.8.18.4 Association Ends

actual : ParameterableElement [1..1] (opposite

A_actual templateParameterSubstitution::templateParameterSubstitution)
The ParameterableElement that is the actual parameter for this TemplateParameterSubstitution.

formal : TemplateParameter [1..1] (opposite
A _formal templateParameterSubstitution::templateParameterSubstitution)
The formal TemplateParameter that is associated with this TemplateParameterSubstitution.

¢ ownedActual : ParameterableElement [0..1]{subsets Element::ownedElement, subsets
TemplateParameterSubstitution::actual} (opposite

A_ownedActual owningTemplateParameterSubstitution::owningTemplateParameterSubstitution)

The ParameterableElement that is owned by this TemplateParameterSubstitution as its actual parameter.

templateBinding : TemplateBinding [1..1]{subsets Element::owner} (opposite

TemplateBinding::parameterSubstitution)
The TemplateBinding that owns this TemplateParameterSubstitution.

7.8.18.5 Constraints

7.8.19

7.8.19.1

must_be_compatible
The actual ParameterableElement must be compatible with the formal TemplateParameter, e.g., the actual
ParameterableElement for a Class TemplateParameter must be a Class.

inv: actual->forAll(a | a.isCompatibleWith(formal.parameteredElement))

TemplateSignature [Class]

Description

A Template Signature bundles the set of formal TemplateParameters for a template.

7.8.19.2 Diagrams

Template Bindings, Templates, Classifier Templates

7.8.19.3 Generalizations
Element
7.8.19.4 Specializations

RedefinableTemplateSignature

7.8.19.5 Association Ends

¢ ownedParameter : TemplateParameter [0..*]{ordered, subsets Element::ownedElement, subsets

TemplateSignature::parameter} (opposite TemplateParameter::signature)
The formal parameters that are owned by this TemplateSignature.

parameter : TemplateParameter [1..*]{ordered} (opposite A_parameter templateSignature::templateSignature)

The ordered set of all formal TemplateParameters for this TemplateSignature.

Unified Modeling Language 2.5.1

57

® template : TemplateableElement [1..1]{subsets Element::owner} (opposite
TemplateableElement::ownedTemplateSignature)
The TemplateableElement that owns this TemplateSignature.

7.8.19.6 Constraints

* own_elements
Parameters must own the ParameterableElements they parameter or those ParameterableElements must be
owned by the TemplateableElement being templated.

inv: template.ownedElement->includesAll (parameter.parameteredElement->asSet() -
parameter.ownedParameteredElement->asSet())

* unique parameters
The names of the parameters of a TemplateSignature are unique.

inv: parameter->forAll(pl, p2 | (pl <> p2 and
pl.parameteredElement.oclIsKindOf (NamedElement) and
p2.parameteredElement.oclIsKindOf (NamedElement)) implies
pl.parameteredElement.oclAsType(NamedElement) .name <>
p2.parameteredElement.oclAsType (NamedElement) .name)

7.8.20 TemplateableElement [Abstract Class]

7.8.20.1 Description

A TemplateableElement is an Element that can optionally be defined as a template and bound to other templates.
7.8.20.2 Diagrams

Template Bindings, Templates, Expressions, Packages, Classifiers, Classifier Templates, Operations

7.8.20.3 Generalizations
Element
7.8.20.4 Specializations

StringExpression, Package, Classifier, Operation

7.8.20.5 Association Ends

* ¢ ownedTemplateSignature : TemplateSignature [0..1]{subsets Element::ownedElement} (opposite

TemplateSignature::template)
The optional TemplateSignature specifying the formal TemplateParameters for this TemplateableElement. If a

TemplateableElement has a TemplateSignature, then it is a template.

* ¢ templateBinding : TemplateBinding [0..*]{subsets Element::ownedElement, subsets

A source directedRelationship::directedRelationship} (opposite TemplateBinding::boundElement)
The optional TemplateBindings from this TemplateableElement to one or more templates.

7.8.20.6 Operations

¢ isTemplate() : Boolean
The query isTemplate() returns whether this TemplateableElement is actually a template.

body: ownedTemplateSignature <> null

58 Unified Modeling Language 2.5.1

® parameterableElements() : ParameterableElement [0..*]
The query parameterableElements() returns the set of ParameterableElements that may be used as the
parameteredElements for a TemplateParameter of this TemplateableElement. By default, this set includes all
the ownedElements. Subclasses may override this operation if they choose to restrict the set of
ParameterableElements.

body: self.allOwnedElements()-
>select(oclIsKindOf (ParameterableElement)).oclAsType (ParameterableElement)->asSet()

7.8.21 Type [Abstract Class]

7.8.21.1 Description

A Type constrains the values represented by a TypedElement.

7.8.21.2 Diagrams

Types, Associations, Packages, Classifiers, Features, Operations

7.8.21.3 Generalizations

PackageableElement
7.8.21.4 Specializations

Classifier
7.8.21.5 Attributes

7.8.21.6 Association Ends

® package : Package [0..1]{subsets A_packagedElement owningPackage::owningPackage} (opposite

Package::ownedType)
Specifies the owning Package of this Type, if any.

7.8.21.7 Operations

¢ conformsTo(other : Type) : Boolean

The query conformsTo() gives true for a Type that conforms to another. By default, two Types do not conform

to each other. This query is intended to be redefined for specific conformance situations.

body: false

7.8.22 TypedElement [Abstract Class]

7.8.22.1 Description

A TypedElement is a NamedElement that may have a Type specified for it.

7.8.22.2 Diagrams

Types, Object Nodes, Literals, Structured Classifiers, Features

7.8.22.3 Generalizations

NamedFElement

Unified Modeling Language 2.5.1

59

7.8.22.4 Specializations

ObjectNode, ValueSpecification, ConnectableElement, StructuralFeature

7.8.22.5 Association Ends

* type: Type [0..1] (opposite A_type typedElement::typedElement)
The type of the TypedElement.

7.8.23 Usage [Class]

7.8.23.1 Description

A Usage is a Dependency in which the client Element requires the supplier Element (or set of Elements) for its full
implementation or operation.

7.8.23.2 Diagrams
Dependencies
7.8.23.3 Generalizations
Dependency
7.8.24 VisibilityKind [Enumeration]
7.8.24.1 Description
VisibilityKind is an enumeration type that defines literals to determine the visibility of Elements in a model.

7.8.24.2 Diagrams

®* Namespaces

7.8.24.3 Literals

* public
A Named Element with public visibility is visible to all elements that can access the contents of the Namespace
that owns it.

* private
A NamedElement with private visibility is only visible inside the Namespace that owns it.

* protected
A NamedElement with protected visibility is visible to Elements that have a generalization relationship to the
Namespace that owns it.

* package
A NamedElement with package visibility is visible to all Elements within the nearest enclosing Package (given
that other owning Elements have proper visibility). Outside the nearest enclosing Package, a NamedElement
marked as having package visibility is not visible. Only NamedElements that are not owned by Packages can
be marked as having package visibility.

60 Unified Modeling Language 2.5.1

7.9 Association Descriptions

791 A_actual_templateParameterSubstitution [Association]
7911 Diagrams

Template Bindings
7.9.1.2 Specializations

A_ownedActual owningTemplateParameterSubstitution

7.91.3 Owned Ends

® templateParameterSubstitution : TemplateParameterSubstitution [0..*] (opposite
TemplateParameterSubstitution::actual)

7.9.2 A_annotatedElement_comment [Association]
7.9.21 Diagrams

Root
7.9.2.2 Owned Ends

* comment : Comment [0..*] (opposite Comment::annotatedElement)

7.9.3 A_clientDependency_client [Association]
7.9.31 Diagrams

Dependencies

7.9.3.2 Member Ends
* NamedElement::clientDependency

¢ Dependency::client

794 A_constrainedElement_constraint [Association]
7.9.41 Diagrams

Constraints
7.9.4.2 Owned Ends

® constraint : Constraint [0..*] (opposite Constraint::constrainedElement)

7.9.5 A_default_templateParameter [Association]
7.9.5.1 Diagrams
Templates

Unified Modeling Language 2.5.1 61

7.9.5.2 Specializations

A_ownedDefault templateParameter

7.9.5.3 Owned Ends
* templateParameter : TemplateParameter [0..*] (opposite TemplateParameter::default)

7.9.6 A_elementlmport_importingNamespace [Association]
7.9.6.1 Diagrams
Namespaces
7.9.6.2 Member Ends
®* Namespace::elementlmport

¢ ElementImport::importingNamespace

7.9.7 A_formal_templateParameterSubstitution [Association]
7.9.71 Diagrams
Template Bindings

7.9.7.2 Owned Ends

¢ templateParameterSubstitution : TemplateParameterSubstitution [0..*] (opposite
TemplateParameterSubstitution::formal)

7.9.8 A_importedElement_import [Association]
7.9.8.1 Diagrams

Namespaces

7.9.8.2 Owned Ends

® import : ElementImport [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
ElementImport::importedElement)

7.9.9 A_importedMember_namespace [Association]
7.9.91 Diagrams
Namespaces

7.9.9.2 Owned Ends

® namespace : Namespace [0..*]{subsets A_member memberNamespace::memberNamespace } (opposite
Namespace::importedMember)

62 Unified Modeling Language 2.5.1

7.9.10 A_importedPackage_packagelmport [Association]
7.9.10.1 Diagrams

Namespaces
7.9.10.2 Owned Ends

® packagelmport : Packagelmport [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
Packagelmport::importedPackage)

7.9.11 A_lowerValue_owningLower [Association]
7.9.11.1 Diagrams
Types

7.9.11.2 Owned Ends

* owningLower : MultiplicityElement [0..1]{subsets Element::owner} (opposite
MultiplicityElement::lowerValue)

7.9.12 A_mapping_abstraction [Association]
7.9.121 Diagrams
Dependencies

7.9.12.2 Owned Ends

® abstraction : Abstraction [0..1]{subsets Element::owner} (opposite Abstraction::mapping)

7.9.13 A_member_memberNamespace [Association]
7.9.13.1 Diagrams
Namespaces

7.9.13.2 Owned Ends

* /memberNamespace : Namespace [0..*]{union} (opposite Namespace::member)

7.9.14 A_nameExpression_namedElement [Association]
7.9.14.1 Diagrams

Namespaces
7.9.14.2 Owned Ends

¢ namedElement : NamedElement [0..1]{subsets Element::owner} (opposite NamedElement::nameExpression)

Unified Modeling Language 2.5.1 63

7.9.15 A_ownedActual_owningTemplateParameterSubstitution [Association]
7.9.15.1 Diagrams

Template Bindings
7.9.15.2 Generalizations
A actual templateParameterSubstitution

7.9.15.3 Owned Ends

¢ owningTemplateParameterSubstitution : TemplateParameterSubstitution [0..1]{subsets Element::owner,

redefines A_actual templateParameterSubstitution::templateParameterSubstitution} (opposite
TemplateParameterSubstitution::ownedActual)

7.9.16 A_ownedComment_owningElement [Association]

7.9.16.1 Diagrams
Root

7.9.16.2 Owned Ends

* owningElement : Element [0..1]{subsets Element::owner} (opposite Element::ownedComment)

7.9.17 A_ownedDefault_templateParameter [Association]
79171 Diagrams

Templates

7.9.17.2 Generalizations

A_default templateParameter
7.9.17.3 Owned Ends

* templateParameter : TemplateParameter [0..1]{subsets Element::owner, redefines
A_default templateParameter::templateParameter} (opposite TemplateParameter::ownedDefault)

7.9.18 A_ownedElement_owner [Association]

7.9.18.1 Diagrams
Root

7.9.18.2 Member Ends
®* Element::ownedElement

®* Element::owner

64 Unified Modeling Language 2.5.1

7.9.19 A_ownedMember_namespace [Association]
7.9.19.1 Diagrams
Namespaces
7.9.19.2 Member Ends
® Namespace::ownedMember

® NamedElement::namespace

7.9.20 A_ownedParameter_signature [Association]
7.9.20.1 Diagrams
Templates
7.9.20.2 Member Ends
* TemplateSignature::ownedParameter

¢ TemplateParameter::signature

7.9.21 A_ownedParameteredElement_owningTemplateParameter [Association]
7.9.211 Diagrams
Templates
7.9.21.2 Member Ends
¢ TemplateParameter::ownedParameteredElement

¢ ParameterableElement::owningTemplateParameter

7.9.22 A_ownedRule_context [Association]

7.9.221 Diagrams
Namespaces, Constraints

7.9.22.2 Member Ends
®* Namespace::ownedRule

® (Constraint::context

7.9.23 A_ownedTemplateSignature_template [Association]
7.9.23.1 Diagrams

Templates

Unified Modeling Language 2.5.1 65

7.9.23.2 Member Ends
¢ TemplateableElement::ownedTemplateSignature
¢ TemplateSignature::template

7.9.24 A_packagelmport_importingNamespace [Association]
7.9.241 Diagrams
Namespaces
7.9.24.2 Member Ends
® Namespace::packagelmport

¢ Packagelmport::importingNamespace

7.9.25 A_parameterSubstitution_templateBinding [Association]
7.9.25.1 Diagrams
Template Bindings
7.9.25.2 Member Ends
¢ TemplateBinding::parameterSubstitution

¢ TemplateParameterSubstitution::templateBinding

7.9.26 A_parameter_templateSignature [Association]
7.9.26.1 Diagrams
Templates

7.9.26.2 Owned Ends

* templateSignature : TemplateSignature [0..*] (opposite TemplateSignature::parameter)

7.9.27 A_parameteredElement_templateParameter [Association]
7.9.271 Diagrams
Templates

7.9.27.2 Member Ends

® TemplateParameter::parameteredElement

® ParameterableElement::templateParameter

66 Unified Modeling Language 2.5.1

7.9.28 A_relatedElement_relationship [Association]

7.9.28.1 Diagrams

Root

7.9.28.2 Owned Ends
® /relationship : Relationship [0..*]{union} (opposite Relationship::relatedElement)

7.9.29 A_signature_templateBinding [Association]
7.9.291 Diagrams

Template Bindings
7.9.29.2 Owned Ends

¢ templateBinding : TemplateBinding [0..*]{subsets A_target_directedRelationship::directedRelationship }
(opposite TemplateBinding::signature)

7.9.30 A_source_directedRelationship [Association]

7.9.301 Diagrams
Root

7.9.30.2 Owned Ends

¢ /directedRelationship : DirectedRelationship [0..*]{union, subsets
A_relatedElement relationship::relationship} (opposite DirectedRelationship::source)

7.9.31 A_specification_owningConstraint [Association]

7.9.311 Diagrams
Constraints
7.9.31.2 Specializations

A_specification_intervalConstraint
7.9.31.3 Owned Ends

® owningConstraint : Constraint [0..1]{subsets Element::owner} (opposite Constraint::specification)

7.9.32 A_supplier_supplierDependency [Association]
7.9.32.1 Diagrams

Dependencies

Unified Modeling Language 2.5.1

67

7.9.32.2 Owned Ends

* supplierDependency : Dependency [0..*]{subsets A_target directedRelationship::directedRelationship}

(opposite Dependency::supplier)
Indicates the dependencies that reference the supplier.

7.9.33 A_target_directedRelationship [Association]

7.9.33.1 Diagrams

Root

7.9.33.2 Owned Ends

¢ /directedRelationship : DirectedRelationship [0..*]{union, subsets
A_relatedElement relationship::relationship} (opposite DirectedRelationship::target)

7.9.34 A_templateBinding_boundElement [Association]
7.9.34.1 Diagrams

Template Bindings

7.9.34.2 Member Ends
* TemplateableElement::templateBinding
¢ TemplateBinding::boundElement

7.9.35 A_type_typedElement [Association]
7.9.35.1 Diagrams

Types

7.9.35.2 Owned Ends
¢ typedElement : TypedElement [0..*] (opposite TypedElement::type)

7.9.36 A_upperValue_owningUpper [Association]
7.9.36.1 Diagrams
Types

7.9.36.2 Owned Ends

¢ owningUpper : MultiplicityElement [0..1]{subsets Element::owner} (opposite
MultiplicityElement::upperValue)

68 Unified Modeling Language 2.5.1

8 Values

8.1 Summary

This clause describes the specification of values. In general, a ValueSpecification is a model element that is considered
semantically to yield zero or more values. The type and number of values shall be suitable for the context in which the
ValueSpecification is used (as determined by the constraints given in that context).

The following sub clauses describe the various kinds of ValueSpecifications available in UML.

8.2 Literals

8.21 Summary

A LiteralSpecification is a ValueSpecification that specifies a literal value. There is a different kind of
LiteralSpecification for each of the UML standard PrimitiveTypes, with a corresponding textual literal notation, plus a
“null” literal that represents the “lack of a value.”

8.2.2 Abstract Syntax

| TypedElement | | PackageableElement
ValueSpecification
LiteralSpecification
LiteralNull LiteralInteger LiteralUnlimitedNatural
+ value : Integer = 0 + value : UnlimitedNatural = C
LiteralString LiteralBoolean LiteralReal
+ value : String [0..1 + value : Boolean = false + value : Real

Figure 8.1 Literals

8.2.3 Semantics

There are six kinds of LiteralSpecifications:

1 A LiteralNull is intended to be used to explicitly model the lack of a value. In the context of a
MultiplicityElement with a multiplicity lower bound of 0, this corresponds to the empty set (i.e., a set of no
values). It is equivalent to specifying no values for the Element.

2 A LiteralString specifies a constant value of the PrimitiveType String. Though a String is specified as a
sequence of characters, String values are considered to be primitive in UML, so their internal structure is not
specified as part of UML semantics.

Unified Modeling Language 2.5.1 69

A Literallnteger specifies a constant value of the PrimitiveType Integer.
A LiteralBoolean specifies a constant value of the PrimitiveType Boolean.
A LiteralUnlimitedNatural specifies a constant value of the PrimitiveType UnlimitedNatural.

A LiteralReal specifies a constant value of the PrimitiveType Real.

See also Clause 21 for further discussion of the standard UML primitive types.

8.24

Notation

LiteralSpecifications are notated textually.

8.3

8.3.1

The notation for a LiteralNull varies depending on where it is used. It often appears as the word “null.” Other
notations are described elsewhere for specific uses.

A LiteralString is shown as a sequence of characters within double quotes. The String value is the sequence of
characters, not including the quotes. The character set used is unspecified.

A Literallnteger is shown as a sequence of digits representing the decimal numeral for the Integer value.
A LiteralBoolean is shown as either the word “true” or the word “false,” corresponding to its value.

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk
denotes unlimited. Note that “unlimited” denotes the lack of a limit on the value of some element (such as a
multiplicity upper bound), not a value of “infinity.”

A LiteralReal is shown in decimal notation or scientific notation. Decimal notation consists of an optional sign
character (+/-) followed by zero or more digits followed optionally by a dot (.) followed by one or more digits.
Scientific notation consists of decimal notation followed by either the letter “e” or “E” and an exponent
consisting of an optional sign character followed by one or more digits. The scientific notation expresses a real
number equal to that given by the decimal notation before the exponent, times 10 raised to the power of the
exponent.

This notation is specified by the following EBNF rules:
<natural-literal> ::= ('0"..'9")+
<decimal-literal> ::= ['+'| -'] <natural-literal> | ['+'| -'] [<natural-literal>] "' <natural-literal>

<real-literal> ::= <decimal-literal> [("e' | 'E") ['+'| '] <natural-literal>]
Expressions

Summary

Expressions are ValueSpecifications that specify values resulting from a computation.

70

Unified Modeling Language 2.5.1

8.3.2 Abstract Syntax

{ordered, subsets ownedElement}

+ operand - -
" >-|.| ValueSpecification |
0.1 - OpaqueExpression
L @ Expression + body : String [*] {ordered, nonunique}§
+ expression + symbol : String [0..1] + lanquage : String [*] {ordered
{subsets owner} + opaqueExpression | % * | + opaqueExpression

{subsets owner}
+ owningExpression

0.1 {readOnly}
+ behavior | 0..1 0..1 | + /result
* . .
StringExpression Behavior | | Parameter |
+ subExpression

{ordered, subsets ownedElement}

V

| TemplateableElement

Figure 8.2 Expressions

8.3.3 Semantics

8.3.3.1 Expressions

An Expression is specified as a tree structure. Each node in this tree structure consists of a symbol and an optional set of
operands. If there are no operands, the Expression represents a terminal node. If there are operands, the Expression
represents the operator given by the symbol applied to those operands.

An Expression is evaluated by first evaluating each of its operands and then performing the operation denoted by the
Expression symbol to the resulting operand values. However, the actual interpretation of the symbol depends on the
context of use of the Expression and this specification does not provide any standard symbol definitions. A conforming
tool may define a specific set of symbols for which it provides interpretations or it may simply treat all Expressions as
uninterpreted.

8.3.3.2 String Expressions

A StringExpression is an Expression that specifies a String value that is derived by concatenating a list of substrings.
The substrings are given as either a list of LiteralString operands or as a list of StringExpression subExpressions (but it is
not allowed to mix the two). The String value of a StringExpression is obtained by concatenating, in order, the String
values of either the operands or the subExpressions, depending on which is given.

StringExpressions are intended to be used to specify the names of NamedElements in the context of Templates. Either
the entire StringExpression or one or more of its subExpressions may be used as the ParameterableElements of
TemplateParameters, allowing the name of a NamedElement to be parameterized within a template. See the semantics
of NamedElements in sub clause 7.4.3 for further discussion of this.

8.3.3.3 Opaque Expressions

An OpaqueExpression specifies the computation of a set of values either in terms of a UML Behavior or based on a
textual statement in a language other than UML.

Unified Modeling Language 2.5.1 71

An OpaqueExpression may have a body that consists of a sequence of text Strings representing alternative means of
computing the values of the OpaqueExpression. A corresponding sequence of language Strings may be used to specify
the languages in which each of the body Strings is to be interpreted. Languages are matched to body Strings by order.
The UML specification does not define how body Strings are interpreted relative to any language, though other
specifications may define specific language Strings to be used to indicate interpretation with respect to those
specifications (e.g., “OCL” for expressions to be interpreted according to the OCL specification). Note also that it is not
required to specify the languages. If they are unspecified, then the interpretation of any body Strings must be determined
implicitly from the form of the bodies or the context of use of the OpaqueExpression.

An OpaqueExpression may also be defined by a UML Behavior (see sub clause 13.2) that is restricted to have only in
Parameters and a return Parameter. The values of the OpaqueExpression are given by invoking the Behavior and
returning the values on the return Parameter. The in Parameters may be used to pass data into the Behavior. However,
what data is actually passed in is dependent on the context of the use of the OpaqueExpression. For example, the
Parameters could provide event data to the behavior of an OpaqueExpression used as a guard on an ActivityEdge or the
specification of a guard on a Transition. The exact mechanism for this is not further defined in this specification, but, to
evaluate an OpaqueExpression whose behavior has one or more input Parameters, a tool must provide a mechanism to
determine the values of all input Parameters as a tool-specific function of the OpaqueExpression and of its behavior.
Such a behavior may also access data through elements of its behavioral description, such as by reading attribute values
of a context object.

If an OpaqueExpression has more than one body String, or a behavior in addition to one or more body Strings, then any
one of the bodies or the behavior may be used to evaluate the OpaqueExpression. The UML specification does not
determine how this choice is made.

8.3.4 Notation

8.3.4.1 Expressions

An Expression with no operands is notated simply by its symbol (unlike a StringLiteral, the symbol is not enclosed in
quotes). An Expression with operands may be notated by its symbol, followed by round parentheses containing its
operands in order, separated by commas. However, in particular contexts, a conforming tool may permit special
notations, including infix operators.

See sub clause 7.4.4 for the notation of the use of StringExpressions with NamedElements.

8.34.2 Opaque Expressions

If an OpaqueExpression has one or more body Strings, then these are used to display the OpaqueExpression in the
context of its containing element. The UML Specification does not define the syntax of such Strings, but, if a
corresponding language is given for a body String, a conforming tool may enforce the syntax of that language. A
conforming tool may also restrict the languages allowed or assume a particular default language.

If languages are specified for an OpaqueExpression, then a language name may be displayed in braces ({}) before the
body String to which it corresponds. It is not required, however, that the languages of an OpaqueExpression be displayed.

If a language has a specification that defines its language name, then the language name used in an OpaqueExpression
should be spelled and capitalized exactly as it appears in the specification for the language. For example, use “OCL,”
not “ocl.”

8.3.5 Examples

8.3.5.1 Expressions
xXor

else

plus(x,1)

72 Unified Modeling Language 2.5.1

x+17

8.3.5.2 Opaque Expressions
a>0
{OCL} i > j and self-size > i

average hours worked per week

8.4 Time

8.4.1 Summary

This sub clause defines TimeExpressions and Durations that produce values based on a simple model of time. This
simple model of time is intended as an approximation for situations in which the more complex aspects of time and time
measurement can safely be ignored. For example, in many distributed systems there is no global notion of time, only the
notion of local time relative to each distributed element of the system. This relativity of time is not accounted for in the
simple time model, nor are the effects resulting from imperfect clocks with finite resolution, overflows, drift, skew, etc.
It is assumed that applications for which such characteristics are relevant will use a more sophisticated model of time
provided by an appropriate profile.

Unified Modeling Language 2.5.1 73

8.4.2 Abstract Syntax

{subsets ownedElement} {subsets ownedElement}
texpr ro———————— +expr
ValueSpecification
0..1 0..1

{subsets owner}

{subsets owner}
0..1| + duration

+ timeExpression | 0..1

[]
TimeExpression Duration

+ timeExpression | 0..1 0..1 | + duration

[

PackageableElement

+ observation + observation

Observation
* Zr *
TimeObservation DurationObservation
+ firstEvent : Boolean = true + firstEvent : Boolean [0..2]
+ timeObservation | x x| + durationObservation
+ event
+ event {ordered}

1.2
Figure 8.3 Time and Duration
8.4.3 Semantics
8.4.3.1 Time

The structural modeling constructs of UML are used to model the properties of entities at specific points in time. In
contrast, behavioral modeling constructs are used to model how these properties change over time. An event is a
specification of something that may occur at a specific point in time when something of interest happens relative to the
properties and behaviors being modeled, such as the change in value of a Property or the beginning of execution of an
Activity.

Time in this conception is simply a coordinate that orders the occurrence of events. Every event occurrence can be given
a time coordinate value and, based on this, can be said to be before, after or at the same time as another event
occurrence.

A duration is the period of time between two event occurrences, computed as the difference of the time coordinates of
those events. If a model Element has a behavioral effect, then this effect may occur over some duration. The starting
event of this duration is known as entering the element and the ending event is known as exiting the Element.

74 Unified Modeling Language 2.5.1

8.4.3.2 Observations

An Observation denotes the observation of events that may occur relative to some other part of a model. An
Observation is made on a NamedElement within the model. The events of interest are when the reference
NamedElement is entered and exited. If the referenced NamedElement is not a behavioral element, then the duration
between entering and exiting the NamedElement is considered to be zero, but this specification does not otherwise
define what specific events are observed on the Element.

There are two kinds of Observations, TimeObservations and DurationObservations.

A TimeObservation observes either entering or exiting a specific NamedElement. If firstEvent is true, then it is the entry
event that is observed, otherwise the exit event is observed. The result of a TimeObservation is the time at which the
observed event occurs.

A DurationObservation observes a duration relative to either one or two NamedElements. If a single element is
observed, then the observed duration is between sequential occurrences of the entry and exit events of the element. If
two elements are observed, then the duration is between either the entry or the exit event of the first element and a
subsequent entry or exit event of the second element. In the latter case, two corresponding firstEvent values must also be
given for the DurationObservation, such that, if firstEvent=true for an observed element, then it is the entry event that is
observed, otherwise it is the exit event that is observed.

8.4.3.3 TimeExpression

A TimeExpression is a ValueSpecification that evaluates to the time coordinate for an instant in time, possibly relative
to some given set of observations.

If the TimeExpression has an expr, then this is evaluated to produce the result of the TimeExpression. The expr must
evaluate to a single value, but UML does not define any specific type or units that the value must have. The expr may
reference the observations associated with the TimeExpression but no standard notation is defined for such references. If
the TimeExpression has an expr but no observations, then the expr evaluates to a time constant.

If the TimeExpression does not have an expr, then it must have a single TimeObservation and the result of that
observation is the value of the TimeExpression.

8.4.34 Duration

A Duration is a ValueSpecification that evaluates to some duration in time, possibly relative to some given set of
observations.

If the Duration has an expr, then this is evaluated to produce the result of the DurationExpression. The expr must
evaluate to a single value, but UML does not define any specific type or units that the value must have. The expr may
reference the observations associated with the Duration but no standard notation is defined for such references. If the
Duration has an expr but no observations, then the expr evaluates to a duration constant.

If the Duration does not have an expr, then it must have a single DurationObservation and the result of that observation is
the value of the Duration.

8.4.4 Notation

8.4.4.1 Observations

An Observation may be denoted by a straight line attached to the NamedElement it references. The Observation is given
a name that is shown close to the unattached end of the line. Additional notation conventions on Observations are given
elsewhere relative to the modeling constructs in which they are typically used (such as Interactions, see sub clause
17.2).

Unified Modeling Language 2.5.1 75

8.44.2 Time Expressions and Durations

A TimeExpression or Duration is denoted by the textual representation of its expr, if it has one (see sub clause 8.3.5).
The representation is of a formula for computing the time or duration value, which may include the names of related
Observations and constants. If a TimeExpression or Duration does not have an expr, then it is simply represented by its
single associated Observation.

A Duration is a value of relative time given in an implementation specific textual format. Often a Duration is a non-
negative integer expression representing the number of “time ticks” which may elapse during this duration.

8.4.5 Examples

Time is often represented using a numeric coordinate, in which case the expr of a TimeExpression should evaluate to a
numeric value, the units of which may be assumed by convention in a model (e.g., times are always in seconds).
Alternatively, DataTypes may be used to model time values with specific units (e.g., Second, Day, etc.) and the expr of a
TimeExpression should then have the appropriate one of those types.

A Duration is a value of relative time and, as such, is often represented as a non-negative number, such as an Integer
count of the number of “time ticks” on a reference clock that elapsed during the duration. In this case, the expr of a
DurationExpression should evaluate to a non-negative numeric value. A Duration value may also be used to represent a
time coordinate value as a Duration since some fixed “origin” of time.

See also Figure 8.5 in sub clause 8.5.5.

8.5 Intervals

8.5.1 Summary
An Interval is a range between two values, primarily for use in Constraints that assert that some other Element has a

value in the given range. Intervals can be defined for any type of value, but they are especially useful for time and
duration values as part of corresponding TimeConstraints and DurationConstraints.

76 Unified Modeling Language 2.5.1

8.5.2 Abstract Syntax

ValueSpecification
+ min| 1 1| + max
+ interval | * *| + interval . .
{redefines owningConstraint}

Interval L/ 1 + intervalConstraint IntervalConstraint

|] ™ + specification 0.1
{redefines specification}

{redefines specification} {redefines intervalConstraint}

TimeInterval + specification + timeConstraint ‘e TimeConstraint
1 0..1 + firstEvent : Boolean [0..1] = true
{redefines interval {redefines interval}
+ timeInterva? * *| + timelnterval
{redefines min} {redefines max}
+ minj/1 1\/+ max
TimeExpression
{redefines specification} {redefines intervalConstraint}
DurationInterval + specification + durationConstraint DurationConstraint
| 1 0.1 + firstEvent : Boolean [0..2]
{redefines interval} {redefines interval}

*

+ durationInterval | * + durationInterval

{redefines min} {redefines max}
+ mi + max

1 1
Duration

Figure 8.4 Intervals

8.5.3 Semantics

8.5.3.1 Intervals

An Interval is a ValueSpecification specified using two other ValueSpecifications, the min and the max. An Interval is
evaluated by first evaluating each of its constituent ValueSpecifications, which must each evaluate to a single value. The
value of the Interval is then the range from the min value to the max value—that is, the set of all values greater than or
equal to the min value and less than or equal to the max value (which may be the empty set). Note that, while
syntactically any ValueSpecifications of any type are allowed for the min and max of an Interval, a standard semantic
interpretation is only given for Intervals for which the min and max ValueSpecifications have the same type and that type
has a total ordering defined on it.

There are two specializations of Interval for use with timing constraints. A Timelnterval specifies the range between two
time values given by TimeExpressions. A DurationInterval specifies the range between two duration values given by
Durations.

8.5.3.2 IntervalConstraint

An IntervalConstraint defines a Constraint whose specification is given by an Interval (see also sub clause 7.6 on
Constraints). The constrainedElements of an IntervalConstraint are asserted to have values that are within the range
specified by the Interval of the IntervalConstraint. If a constrainedElement has a value outside this range, then the
IntervalConstraint is violated. If any constrainedElement cannot be interpreted to have a value, or its value is not the same
type as the range given by the IntervalConstraint, then the IntervalConstraint has no standard semantic interpretation.

There are two specializations of IntervalConstraint for use in specifying timing constraints. A TimeConstraint defines an
IntervalConstraint on a single constrainedElement in which the constraining Interval is a Timelnterval. A
DurationConstraint defines an IntervalConstraint on either one or two constrainedElements in which the constraining

Unified Modeling Language 2.5.1 77

Interval is a DurationInterval. If there are two constrainedElements, then the start of the duration being observed may be
between an event in the first constrainedElement and an event in the second.

8.5.4 Notation

8.5.4.1 Intervals

An Interval is denoted textually by the textual representation of its two ValueSpecifications separated by “..”:

¢

<interval> ::= <min-value> *.." <max-value>

A Timelnterval is shown with the notation of Interval where each ValueSpecification element is a TimeExpression. A
DurationInterval is shown using the notation of Interval where each ValueSpecification element is a Duration. (See sub
clause 8.4.4 on the notation for TimeExpressions and Durations.)

8.5.4.2 Interval Constraints

An IntervalConstraint is shown as an annotation of its constrainedElement. The general notation for Constraints (see sub
clause 7.6.4) may be used for an IntervalConstraint, with the specification Interval denoted textually as above. Special
notational constructs are defined for TimeConstraints and DurationConstraints, as given below.

A TimeConstraint of a single constrainedElement may be shown as a small line between the graphical representation of
the constrainedElement and the textual representation of the Timelnterval of TimeConstraint. A DurationConstraint may
also be shown using a graphical notation relating its constrainedElements. However, the notation used is specific to the
diagram type on which the DurationConstraint appears (see sub clause 17.8 for the notation on Sequence Diagrams and
sub clause 17.11 for the notation on Timing Diagrams).

8.5.5 Examples

Figure 8.5 shows a DurationConstraints associated with the duration of a Message and with the duration between two
OccurrenceSpecifications. It also shows a TimeConstraint associated with the reception of a Message. (See also sub
clause 17.2.5.)

sd UserAccepted)

‘User “ACSystem
l DurationObservation
Code d=duratien e With Duration

.

|
|
DurationConstraint —__'-—--—>{d..3‘d]|
|

\I/ o li'::i‘i,/”’f/] TimeObservation with
- I=N0W i

|_H_ = TimeExpression
- Ok
TimeConstraint "_'_'—'—-——-a. {t"[+314r£//

Unleck

/

Figure 8.5 Example of DurationConstraints and TimeConstraints

78 Unified Modeling Language 2.5.1

8.6 Classifier Descriptions

8.6.1 Duration [Class]

8.6.1.1 Description
A Duration is a ValueSpecification that specifies the temporal distance between two time instants.
8.6.1.2 Diagrams
Time, Intervals
8.6.1.3 Generalizations

ValueSpecification

8.6.1.4 Association Ends

® ¢ cxpr: ValueSpecification [0..1]{subsets Element::ownedElement} (opposite A_expr_duration::duration)
A ValueSpecification that evaluates to the value of the Duration.

® observation : Observation [0..*] (opposite A_observation duration::duration)
Refers to the Observations that are involved in the computation of the Duration value.

8.6.1.5 Constraints

* no_expr_requires_observation
If a Duration has no expr, then it must have a single observation that is a DurationObservation.

inv: expr = null implies (observation->size() = 1 and observation-
>forAll(oclIsKindOf (DurationObservation)))

8.6.2 DurationConstraint [Class]
8.6.2.1 Description
A DurationConstraint is a Constraint that refers to a DurationInterval.
8.6.2.2 Diagrams
Intervals
8.6.2.3 Generalizations
IntervalConstraint

8.6.2.4 Attributes

* firstEvent : Boolean [0..2]
The value of firstEvent[i] is related to constrainedElement[i] (where i is 1 or 2). If firstEvent[i] is true, then the
corresponding observation event is the first time instant the execution enters constrainedElement[i]. If
firstEvent[i] is false, then the corresponding observation event is the last time instant the execution is within
constrainedElement][i].

Unified Modeling Language 2.5.1 79

8.6.2.5 Association Ends

® ¢ specification : Durationlnterval [1..1]{redefines IntervalConstraint::specification} (opposite

A_specification durationConstraint::durationConstraint)
The Durationlnterval constraining the duration.

8.6.2.6 Constraints
e first_event multiplicity

The multiplicity of firstEvent must be 2 if the multiplicity of constrainedElement is 2. Otherwise the
multiplicity of firstEvent is 0.

inv: if (constrainedElement->size() = 2)
then (firstEvent->size() = 2) else (firstEvent->size() = 0)
endif

* has one or two constrainedElements
A DurationConstraint has either one or two constrainedElements.

inv: constrainedElement->size() = 1 or constrainedElement->size()=2
8.6.3 Durationinterval [Class]
8.6.3.1 Description

A DurationInterval defines the range between two Durations.
8.6.3.2 Diagrams

Intervals
8.6.3.3 Generalizations

Interval

8.6.3.4 Association Ends

® max : Duration [1..1]{redefines Interval::max} (opposite A_max durationlnterval::durationlnterval)
Refers to the Duration denoting the maximum value of the range.

® min : Duration [1..1]{redefines Interval::min} (opposite A_min durationInterval::durationlnterval)
Refers to the Duration denoting the minimum value of the range.

8.6.4 DurationObservation [Class]

8.6.4.1 Description

A DurationObservation is a reference to a duration during an execution. It points out the NamedElement(s) in the model
to observe and whether the observations are when this NamedElement is entered or when it is exited.

8.6.4.2 Diagrams

80 Unified Modeling Language 2.5.1

8.6.4.3

8.6.4.4

8.6.4.5

8.6.4.6

8.6.5

8.6.5.1

Generalizations

Observation

Attributes

firstEvent : Boolean [0..2]

The value of firstEvent[i] is related to event[i] (where i is 1 or 2). If firstEvent[i] is true, then the corresponding
observation event is the first time instant the execution enters event[i]. If firstEvent[i] is false, then the
corresponding observation event is the time instant the execution exits event[i].

Association Ends
event : NamedElement [1..2]{ordered} (opposite A_event durationObservation::durationObservation)
The DurationObservation is determined as the duration between the entering or exiting of a single event
Element during execution, or the entering/exiting of one event Element and the entering/exiting of a second.

Constraints

first_event_multiplicity
The multiplicity of firstEvent must be 2 if the multiplicity of event is 2. Otherwise the multiplicity of firstEvent
is 0.

inv: if (event->size() = 2)
then (firstEvent->size() = 2) else (firstEvent->size() = 0)
endif

Expression [Class]

Description

An Expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are ValueSpecifications. It denotes a (possibly empty) set of values
when evaluated in a context.

8.6.5.2

8.6.5.3

8.6.5.4

8.6.5.5

Diagrams
Expressions
Generalizations
ValueSpecification
Specializations
StringExpression
Attributes

symbol : String [0..1]
The symbol associated with this node in the expression tree.

Unified Modeling Language 2.5.1 81

8.6.5.6 Association Ends

® ¢ operand : ValueSpecification [0..*]{ordered, subsets Element::ownedElement} (opposite

A_operand_expression::expression)
Specifies a sequence of operand ValueSpecifications.

8.6.6 Interval [Class]

8.6.6.1 Description

An Interval defines the range between two ValueSpecifications.

8.6.6.2 Diagrams
Intervals
8.6.6.3 Generalizations

ValueSpecification
8.6.6.4 Specializations

DurationInterval, Timelnterval

8.6.6.5 Association Ends

® max : ValueSpecification [1..1] (opposite A_max_interval::interval)
Refers to the ValueSpecification denoting the maximum value of the range.

®* min : ValueSpecification [1..1] (opposite A_min_interval::interval)
Refers to the ValueSpecification denoting the minimum value of the range.

8.6.7 IntervalConstraint [Class]
8.6.7.1 Description
An IntervalConstraint is a Constraint that is specified by an Interval.
8.6.7.2 Diagrams
Intervals
8.6.7.3 Generalizations
Constraint
8.6.7.4 Specializations
DurationConstraint, TimeConstraint

8.6.7.5 Association Ends

® ¢ specification : Interval [1..1]{redefines Constraint::specification} (opposite

A_specification intervalConstraint::intervalConstraint)
The Interval that specifies the condition of the IntervalConstraint.

82 Unified Modeling Language 2.5.1

8.6.8 LiteralBoolean [Class]

8.6.8.1 Description

A LiteralBoolean is a specification of a Boolean value.

8.6.8.2 Diagrams
Literals
8.6.8.3 Generalizations

LiteralSpecification

8.6.8.4 Attributes

¢ value : Boolean [1..1] = false
The specified Boolean value.

8.6.8.5 Operations

® DbooleanValue() : Boolean {redefines ValueSpecification::booleanValue() }

The query booleanValue() gives the value.

body: wvalue

¢ isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

8.6.9 Literallnteger [Class]

8.6.9.1 Description

A Literallnteger is a specification of an Integer value.

8.6.9.2 Diagrams
Literals
8.6.9.3 Generalizations

LiteralSpecification

8.6.9.4 Attributes

¢ value: Integer [1..1]=0
The specified Integer value.

8.6.9.5 Operations

* integerValue() : Integer {redefines ValueSpecification::integerValue()}
The query integerValue() gives the value.

Unified Modeling Language 2.5.1

83

body: wvalue

* isComputable() : Boolean {redefines ValueSpecification::isComputable() }
The query isComputable() is redefined to be true.

body: true

8.6.10 LiteralNull [Class]
8.6.10.1 Description
A LiteralNull specifies the lack of a value.
8.6.10.2 Diagrams
Literals
8.6.10.3 Generalizations
LiteralSpecification

8.6.10.4 Operations

* isComputable() : Boolean {redefines ValueSpecification::isComputable() }
The query isComputable() is redefined to be true.

body: true

¢ isNull() : Boolean {redefines ValueSpecification::isNull()}
The query isNull() returns true.

body: true

8.6.11 LiteralReal [Class]

8.6.11.1 Description

A LiteralReal is a specification of a Real value.

8.6.11.2 Diagrams
Literals
8.6.11.3 Generalizations

LiteralSpecification

8.6.11.4 Attributes

® value: Real [1..1]
The specified Real value.

8.6.11.5 Operations

¢ isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

84

Unified Modeling Language 2.5.1

8.6.12

8.6.12.1

body: true

realValue() : Real {redefines ValueSpecification::realValue()}
The query realValue() gives the value.

body: wvalue
LiteralSpecification [Abstract Class]

Description

A LiteralSpecification identifies a literal constant being modeled.

8.6.12.2 Diagrams
Literals
8.6.12.3 Generalizations

ValueSpecification

8.6.12.4 Specializations

8.6.13

8.6.13.1

LiteralBoolean, Literallnteger, LiteralNull, LiteralReal, LiteralString, LiteralUnlimitedNatural

LiteralString [Class]

Description

A LiteralString is a specification of a String value.

8.6.13.2 Diagrams
Literals
8.6.13.3 Generalizations

LiteralSpecification

8.6.13.4 Attributes

value : String [0..1]
The specified String value.

8.6.13.5 Operations

isComputable() : Boolean {redefines ValueSpecification::isComputable() }

The query isComputable() is redefined to be true.

body: true

stringValue() : String {redefines ValueSpecification::stringValue()}
The query stringValue() gives the value.

body: value

Unified Modeling Language 2.5.1

85

8.6.14 LiteralUnlimitedNatural [Class]

8.6.14.1 Description

A LiteralUnlimitedNatural is a specification of an UnlimitedNatural number.

8.6.14.2 Diagrams
Literals
8.6.14.3 Generalizations

LiteralSpecification

8.6.14.4 Attributes

¢ value : UnlimitedNatural [1..1] =0
The specified UnlimitedNatural value.

8.6.14.5 Operations

¢ isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

¢ unlimitedValue() : UnlimitedNatural {redefines ValueSpecification::unlimitedValue() }
The query unlimitedValue() gives the value.

body: wvalue

8.6.15 Observation [Abstract Class]

8.6.15.1 Description

Observation specifies a value determined by observing an event or events that occur relative to other model Elements.

8.6.15.2 Diagrams

Time

8.6.15.3 Generalizations
PackageableElement

8.6.15.4 Specializations
DurationObservation, TimeObservation

8.6.16 OpaqueExpression [Class]

8.6.16.1 Description

An OpaqueExpression is a ValueSpecification that specifies the computation of a collection of values either in terms of
a UML Behavior or based on a textual statement in a language other than UML

86 Unified Modeling Language 2.5.1

8.6.16.2

8.6.16.3

Diagrams
Expressions, Dependencies
Generalizations

ValueSpecification

8.6.16.4 Attributes

body : String [0..*]
A textual definition of the behavior of the OpaqueExpression, possibly in multiple languages.

language : String [0..*]

Specifies the languages used to express the textual bodies of the OpaqueExpression. Languages are matched to

body Strings by order. The interpretation of the body depends on the languages. If the languages are
unspecified, they may be implicit from the expression body or the context.

8.6.16.5 Association Ends

8.6.16.6

behavior : Behavior [0..1] (opposite A_behavior_opaqueExpression::opaqueExpression)
Specifies the behavior of the OpaqueExpression as a UML Behavior.

/result : Parameter [0..1]{} (opposite A_result opaqueExpression::opaqueExpression)

If an OpaqueExpression is specified using a UML Behavior, then this refers to the single required return
Parameter of that Behavior. When the Behavior completes execution, the values on this Parameter give the
result of evaluating the OpaqueExpression.

Operations

isIntegral() : Boolean
The query isIntegral() tells whether an expression is intended to produce an Integer.

body: false

isNonNegative() : Boolean
The query isNonNegative() tells whether an integer expression has a non-negative value.

pre: self.isIntegral()
body: false

isPositive() : Boolean
The query isPositive() tells whether an integer expression has a positive value.

pre: self.isIntegral()
body: false

result() : Parameter [0..1]
Derivation for OpaqueExpression::/result

body: if behavior = null then
null

else
behavior.ownedParameter->first()

endif

Unified Modeling Language 2.5.1

87

® value() : Integer
The query value() gives an integer value for an expression intended to produce one.

pre: self.isIntegral()
body: 0

8.6.16.7 Constraints

* language body size
If the language attribute is not empty, then the size of the body and language arrays must be the same.

inv: language->notEmpty() implies (_'body'->size() = language->size())

* one return_result parameter
The behavior must have exactly one return result parameter.

inv: behavior <> null implies
behavior.ownedParameter->select(direction=ParameterDirectionKind: :return)->size() = 1

®* only in_or return parameters
The behavior may only have non-stream in or return parameters.

inv: behavior <> null implies behavior.ownedParameter->forAll(not isStream and
(direction=ParameterDirectionKind::in or direction=ParameterDirectionKind::return))

8.6.17 StringExpression [Class]
8.6.17.1 Description

A StringExpression is an Expression that specifies a String value that is derived by concatenating a sequence of
operands with String values or a sequence of subExpressions, some of which might be template parameters.

8.6.17.2 Diagrams
Expressions, Namespaces
8.6.17.3 Generalizations

TemplateableElement, Expression

8.6.17.4 Association Ends

* owningExpression : StringExpression [0..1]{subsets Element::owner} (opposite

StringExpression::subExpression)
The StringExpression of which this StringExpression is a subExpression.

® ¢ subExpression : StringExpression [0..*]{ordered, subsets Element::ownedElement} (opposite
StringExpression::owningExpression)
The StringExpressions that constitute this StringExpression.

8.6.17.5 Operations

® stringValue() : String {redefines ValueSpecification::stringValue() }
The query stringValue() returns the String resulting from concatenating, in order, all the component String
values of all the operands or subExpressions that are part of the StringExpression.

88 Unified Modeling Language 2.5.1

8.6.17.6

8.6.18

8.6.18.1

body: if subExpression->notEmpty()

then subExpression->iterate(se; stringValue: String = '' |
stringValue.concat(se.stringValue()))

else operand->iterate(op; stringValue: String = '' | stringValue.concat(op.stringValue()))
endif

Constraints

operands
All the operands of a StringExpression must be LiteralStrings

inv: operand->forAll (oclIsKindOf (LiteralString))

subexpressions
If a StringExpression has sub-expressions, it cannot have operands and vice versa (this avoids the problem of
having to define a collating sequence between operands and subexpressions).

inv: if subExpression->notEmpty() then operand->isEmpty() else operand->notEmpty() endif

TimeConstraint [Class]

Description

A TimeConstraint is a Constraint that refers to a Timelnterval.

8.6.18.2 Diagrams

Intervals

8.6.18.3 Generalizations

IntervalConstraint

8.6.18.4 Attributes

firstEvent : Boolean [0..1] = true

The value of firstEvent is related to the constrainedElement. If firstEvent is true, then the corresponding
observation event is the first time instant the execution enters the constrainedElement. If firstEvent is false,
then the corresponding observation event is the last time instant the execution is within the
constrainedElement.

8.6.18.5 Association Ends

¢ specification : Timelnterval [1..1]{redefines IntervalConstraint::specification} (opposite
A_specification_timeConstraint::timeConstraint)
TheTimelnterval constraining the duration.

8.6.18.6 Constraints

has_one constrainedElement
A TimeConstraint has one constrainedElement.

inv: constrainedElement->size() = 1

Unified Modeling Language 2.5.1 89

8.6.19 TimeExpression [Class]

8.6.19.1 Description

A TimeExpression is a ValueSpecification that represents a time value.

8.6.19.2 Diagrams

Time, Intervals, Events
8.6.19.3 Generalizations
ValueSpecification

8.6.19.4 Association Ends

® ¢ cxpr: ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_expr_timeExpression::timeExpression)
A ValueSpecification that evaluates to the value of the TimeExpression.

® observation : Observation [0..*] (opposite A_observation timeExpression::timeExpression)
Refers to the Observations that are involved in the computation of the TimeExpression value.

8.6.19.5 Constraints

* no_expr_requires_observation
If a TimeExpression has no expr, then it must have a single observation that is a TimeObservation.

inv: expr = null implies (observation->size() = 1 and observation-
>forAll(oclIsKindOf (TimeObservation)))

8.6.20 Timelnterval [Class]

8.6.20.1 Description

A Timelnterval defines the range between two TimeExpressions.

8.6.20.2 Diagrams

Intervals

8.6.20.3 Generalizations
Interval

8.6.20.4 Association Ends

®* max : TimeExpression [1..1]{redefines Interval::max} (opposite A_max_timelnterval::timelnterval)
Refers to the TimeExpression denoting the maximum value of the range.

®* min : TimeExpression [1..1]{redefines Interval::min} (opposite A_min_timelnterval::timelnterval)
Refers to the TimeExpression denoting the minimum value of the range.

20 Unified Modeling Language 2.5.1

8.6.21 TimeObservation [Class]

8.6.21.1 Description

A TimeObservation is a reference to a time instant during an execution. It points out the NamedElement in the model to
observe and whether the observation is when this NamedElement is entered or when it is exited.

8.6.21.2 Diagrams
Time

8.6.21.3 Generalizations
Observation

8.6.21.4 Attributes

® firstEvent : Boolean [1..1] = true
The value of firstEvent is related to the event. If firstEvent is true, then the corresponding observation event is
the first time instant the execution enters the event Element. If firstEvent is false, then the corresponding
observation event is the time instant the execution exits the event Element.

8.6.21.5 Association Ends

¢ cvent: NamedElement [1..1] (opposite A_event timeObservation::timeObservation)
The TimeObservation is determined by the entering or exiting of the event Element during execution.

8.6.22 ValueSpecification [Abstract Class]

8.6.22.1 Description

A ValueSpecification is the specification of a (possibly empty) set of values. A ValueSpecification is a
ParameterableElement that may be exposed as a formal TemplateParameter and provided as the actual parameter in the
binding of a template.

8.6.22.2 Diagrams

Expressions, Literals, Time, Intervals, Object Nodes, Activities, Control Nodes, Messages, Lifelines,
Fragments, Interaction Uses, Types, Constraints, Events, Features, Properties, Instances, Actions, Object
Actions

8.6.22.3 Generalizations
TypedElement, PackageableElement
8.6.22.4 Specializations

Duration, Expression, Interval, LiteralSpecification, OpaqueExpression, TimeExpression, InstanceValue

8.6.22.5 Operations

¢ booleanValue() : Boolean [0..1]
The query booleanValue() gives a single Boolean value when one can be computed.

body: null

Unified Modeling Language 2.5.1 91

8.7

8.71

8.7.1.1

92

integerValue() : Integer [0..1]
The query integerValue() gives a single Integer value when one can be computed.

body: null

isCompatibleWith(p : ParameterableElement) : Boolean {redefines

ParameterableElement::isCompatibleWith() }

The query isCompatibleWith() determines if this ValueSpecification is compatible with the specified
ParameterableElement. This ValueSpecification is compatible with ParameterableElement p if the kind of this
ValueSpecification is the same as or a subtype of the kind of p. Further, if p is a TypedElement, then the type of
this ValueSpecification must be conformant with the type of p.

body: self.oclIsKindOf(p.oclType()) and (p.oclIsKindOf (TypedElement) implies
self.type.conformsTo(p.oclAsType(TypedElement).type))

isComputable() : Boolean

The query isComputable() determines whether a value specification can be computed in a model. This
operation cannot be fully defined in OCL. A conforming implementation is expected to deliver true for this
operation for all ValueSpecifications that it can compute, and to compute all of those for which the operation is
true. A conforming implementation is expected to be able to compute at least the value of all
LiteralSpecifications.

body: false

isNull() : Boolean
The query isNull() returns true when it can be computed that the value is null.

body: false

realValue() : Real [0..1]
The query realValue() gives a single Real value when one can be computed.

body: null

stringValue() : String [0..1]
The query stringValue() gives a single String value when one can be computed.

body: null

unlimitedValue() : UnlimitedNatural [0..1]
The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.

body: null

Association Descriptions

A_behavior_opaqueExpression [Association]
Diagrams

Expressions

Unified Modeling Language 2.5.1

8.7.1.2 Owned Ends

* opaqueExpression : OpaqueExpression [0..*] (opposite OpaqueExpression::behavior)

8.7.2 A_event_durationObservation [Association]
8.7.21 Diagrams

Time
8.7.2.2 Owned Ends

® durationObservation : DurationObservation [0..*] (opposite DurationObservation::event)

8.7.3 A_event_timeObservation [Association]
8.7.3.1 Diagrams

Time
8.7.3.2 Owned Ends

® timeObservation : TimeObservation [0..*] (opposite TimeObservation::event)

8.74 A_expr_duration [Association]
8.7.4.1 Diagrams

Time
8.7.4.2 Owned Ends

® duration : Duration [0..1]{subsets Element::owner} (opposite Duration::expr)

8.7.5 A_expr_timeExpression [Association]
8.7.51 Diagrams

Time
8.7.5.2 Owned Ends

¢ timeExpression : TimeExpression [0..1]{subsets Element::owner} (opposite TimeExpression::expr)

8.7.6 A_max_durationinterval [Association]
8.7.6.1 Diagrams

Intervals
8.7.6.2 Generalizations

A_max_interval

Unified Modeling Language 2.5.1

93

8.7.6.3 Owned Ends

® durationInterval : DurationInterval [0..*]{redefines A_max_interval::interval} (opposite
DurationInterval::max)

8.7.7 A_max_interval [Association]
8.7.71 Diagrams

Intervals
8.7.7.2 Specializations

A_max_timelnterval, A_max_durationlnterval

8.7.7.3 Owned Ends

® interval : Interval [0..*] (opposite Interval::max)

8.7.8 A_max_timelnterval [Association]
8.7.8.1 Diagrams

Intervals
8.7.8.2 Generalizations

A_max_interval

8.7.8.3 Owned Ends

¢ timelnterval : Timelnterval [0..*]{redefines A_max_interval::interval} (opposite Timelnterval::max)

8.7.9 A_min_durationinterval [Association]
8.7.9.1 Diagrams

Intervals
8.7.9.2 Generalizations

A_min_interval

8.7.9.3 Owned Ends

¢ durationlnterval : DurationlInterval [0..*]{redefines A_min_interval::interval} (opposite DurationInterval::min)

8.7.10 A_min_interval [Association]

8.7.101 Diagrams

Intervals

94 Unified Modeling Language 2.5.1

8.7.10.2 Specializations

A_min_timelnterval, A _min_durationInterval

8.7.10.3 Owned Ends

* interval : Interval [0..*] (opposite Interval::min)

8.7.11 A_min_timelnterval [Association]

8.7.11.1 Diagrams
Intervals
8.7.11.2 Generalizations

A_min_interval

8.7.11.3 Owned Ends

¢ timelnterval : Timelnterval [0..*]{redefines A_min_interval::interval} (opposite Timelnterval::min)

8.7.12 A_observation_duration [Association]
8.7.121 Diagrams
Time

8.7.12.2 Owned Ends

® duration : Duration [0..1] (opposite Duration::observation)

8.7.13 A_observation_timeExpression [Association]

8.7.13.1 Diagrams
Time

8.7.13.2 Owned Ends
* timeExpression : TimeExpression [0..1] (opposite TimeExpression::observation)

8.7.14 A_operand_expression [Association]
8.7.141 Diagrams

Expressions

8.7.14.2 Owned Ends

® expression : Expression [0..1]{subsets Element::owner} (opposite Expression::operand)

Unified Modeling Language 2.5.1

95

8.7.15 A_result_opaqueExpression [Association]
8.7.15.1 Diagrams

Expressions
8.7.15.2 Owned Ends

® opaqueExpression : OpaqueExpression [0..*] (opposite OpaqueExpression::result)

8.7.16 A_specification_durationConstraint [Association]

8.7.16.1 Diagrams
Intervals
8.7.16.2 Generalizations

A_specification_intervalConstraint
8.7.16.3 Owned Ends

¢ durationConstraint : DurationConstraint [0..1]{redefines
A_specification_intervalConstraint::intervalConstraint} (opposite DurationConstraint::specification)

8.7.17 A_specification_intervalConstraint [Association]

8.7.171 Diagrams
Intervals
8.7.17.2 Generalizations

A_specification owningConstraint

8.7.17.3 Specializations

A_specification timeConstraint, A_specification durationConstraint
8.7.17.4 Owned Ends

* intervalConstraint : IntervalConstraint [0..1]{redefines A_specification owningConstraint::owningConstraint}
(opposite IntervalConstraint::specification)

8.7.18 A_specification_timeConstraint [Association]

8.7.18.1 Diagrams
Intervals
8.7.18.2 Generalizations

A_specification_intervalConstraint

96 Unified Modeling Language 2.5.1

8.7.18.3 Owned Ends

¢ timeConstraint : TimeConstraint [0..1]{redefines A_specification_intervalConstraint::intervalConstraint}
(opposite TimeConstraint::specification)

8.7.19 A_subExpression_owningExpression [Association]
8.7.191 Diagrams

Expressions

8.7.19.2 Member Ends
¢ StringExpression::subExpression

* StringExpression::owningExpression

Unified Modeling Language 2.5.1

97

9

9.1

Classification is an important technique for organization. This clause specifies concepts relating to classification. The
core concept is Classifier, an abstract metaclass whose concrete subclasses are used to classify different kinds of values.
The other metaclasses in this clause represent the constituents of Classifiers, models of how Classifiers are instantiated
using InstanceSpecifications, and various relationships between all of these concepts.

Classification

Summary

9.2 Classifiers

9.21 Summary

A Classifier represents a classification of instances according to their Features. Classifiers are organized in hierarchies
by Generalizations. RedefinableElements may be redefined in the context of Generalization hierarchies.

JAN

9.2.2 Abstract Syntax

* Namespace TemplateableElemen:

[Wemedeiemen
A + /inheritedMember

{readOnly, subsets member}

DirectedRelationship
JAN

+ inheritingClassifie

{subsets source, {subsets ownedElement, subsets

{subsets memberNamespace}* Classifier subsets owner} directedRelationship}
+ isAbstract : Boolean + specific + generalization
Teleat Boolean = false + isFinalSpecialization : Boolean 1 « | + isSubstitutable : Boolean [0..1] = true
: {subsets
{readOnly, union} {subsets target} directedRelationship}
+ /redefinableElement + general + generalization
*
* {subsets redefinedElement} 1 §
+ redefinedClassifier + classifier -
* * * | + generalization
*
*
+ /redefinedElement %
{readOnly, union} + dlassifier + /general * | + generalizationSet
{subsets redefinableElement} + powertype + powertypeExtent ﬁ:
. *
{readOnly, union} {readOnly, union} 0-1
+ /redetinableElement + /redefinitionContext + subject + useCase
* * * * UseCase
+ classifier + ownedUseCase
* 0..1 {subsets namespace} {subsets ownedMember}
Featu - "
cature + [feature + /featuringClassifier| 0.1 *
{readOnly, union, subsets member} {readOnly, union, subsets memberNamespace}| + contract + substitution
{subsets supplier} {subsets supplierDependency}
1 * Substitution
+ substitutingClassifie!
{readOnly, union, subsets featuringClassifier, {subsets client, subsets owner} *
subsets redefinitionContext} 1 + substitution
* + /classifier subsets memberNamespace} {Slébsfts IqwzeDdElerréent,
Property + /attribute 0.1 + inheritingClassifie subsets diientDependency} v
{ordered, readOnly, union, subsets *

feature, subsets redefinableElement} {redefines classifier}

{subsets owner}

N 1 0..1 | + classifier
+ classifier
{subsets ownedElement} {subsets collaborationUse} Ueéd:n!zﬂ ;;bse;s member}
+ collaborationUse | * 0..1 | + representation + [inheritedMember

NamedElemem

CollaborationUse

Figure 9.1 Classifiers

9.2.3 Semantics

9.2.3.1 Classifiers

A Classifier has a set of Features, some of which are Properties called the attributes of the Classifier. Each of the Features
is a member of the Classifier (see sub clause 7.4 Namespaces).

The values that are classified by a Classifier are called instances of the Classifier.

A Classifier may be redefined (see below).

Unified Modeling Language 2.5.1 929

A Classifier may own CollaborationUses that relate the Classifier to Collaborations. The Collaborations describes
aspects of this Classifier. See 11.7 Collaborations.

A Classifier may own UseCases. See 18.1 Use Cases.

9.2.3.2 Generalization

Generalizations define generalization/specialization relationships between Classifiers. Each Generalization relates a
specific Classifier to a more general Classifier. Given a Classifier, the transitive closure of its general Classifiers is often
called its generalizations, and the transitive closure of its specific Classifiers is called its specializations. The immediate
generalizations are also called the Classifier’s parents, and where the Classifier is a Class, its superClasses (see 11.4).

NOTE. The concept of parent (a generalization relationship between Classifiers) is unrelated to the concept of owner (a
composition relationship between instances).

An instance of a Classifier is also an (indirect) instance of each of its generalizations. Any Constraints applying to
instances of the generalizations also apply to instances of the Classifier.

When a Classifier is generalized, certain members of its generalizations are inherited, that is they behave as though they
were defined in the inheriting Classifier itself. For example, an inherited member that is an attribute may have a value or
collection of values in any instance of the inheriting Classifier, and an inherited member that is an Operation may be
invoked on an instance of the inheriting Classifier.

The set of members that are inherited is called the inheritedMembers. Unless specified differently for a particular kind of
Classifier, the inheritedMembers are members that do not have private visibility.

Type conformance means that if one Type conforms to another, then any instance of the first Type may be used as the
value of a TypedElement whose type is declared to be the second Type. A Classifier is a Type, and conforms to itself and
to all of its generalizations.

The isAbstract property of Classifier, when true, specifies that the Classifier is abstract, i.e., has no direct instances: every
instance of the abstract Classifier shall be an instance of one of its specializations.

If one Classifier (the parent) generalizes another (the child) it is not necessarily the case that instances of the child are
substitutable for instances of the parent under every possible circumstance. For example, Circle may be defined as a
specialization of Ellipse, and its instances would be substitutable in every circumstance involving accessing the
properties of an Ellipse. However, if Ellipse were to define a stretch behavior that modifies the length of its major axis
only, then a Circle object would be unable to implement such a behavior. The isSubstitutable property may be used to
indicate whether the specific Classifier can be used in every circumstance that the general Classifier can be used.

9.2.3.3 Redefinition

Any member (that is a kind of RedefinableElement) of a generalization of a specializing Classifier may be redefined
instead of being inherited. Redefinition is done in order to augment, constrain, or override the redefined member(s) in
the context of instances of the specializing Classifier. When this occurs, the redefining member contributes to the
structure or behavior of the specializing Classifier in place of the redefined member(s); specifically, any reference to a
redefined member in the context of an instance of the specializing Classifier shall resolve to the redefining member (note
that to avoid circularity “any reference” here excludes the redefinedElement reference itself).

The Classifier from which the member may be redefined is called the redefinitionContext. Although in the metamodel
redefinitionContext has the multiplicity ‘*’, there are no cases in the UML specification where there is more than one
redefinitionContext. The redefinitionContext is defined for each kind of RedefinableElement; it is often, but not always, the
owner of the member.

A redefining element shall be consistent with the RedefinableElement it redefines, but it may add specific constraints or
other details that are particular to instances of the specializing redefinitionContext that do not contradict constraints in the
general context.

One redefining element may redefine multiple RedefinableElements. Furthermore, a RedefinableElement may be
redefined multiple times, as long as it is unambiguous which definition applies for a particular instance.

100 Unified Modeling Language 2.5.1

The isLeaf property, when true for a particular RedefinableElement, specifies that it shall have no redefinitions.

The detailed semantics of redefinition vary for each specialization of RedefinableElement. There are various kinds of
compatibility between a redefined element and its redefining element, such as name compatibility (the redefining
element has the same name as the redefined element), structural compatibility (the client visible properties of the
redefined element are also properties of the redefining element), or behavioral compatibility (the redefining element is
substitutable for the redefined element). Any kind of compatibility involves a constraint on redefinitions.

Classifier is itself a RedefinableElement. This can come into play when a Classifier is nested in a Class or Interface,
which becomes the redefinitionContext. Redefining a Classifier in the context of a specializing Class or Interface has the
effect of making any references to the redefined Classifier from an instance of the specializing Class or Interface resolve
to the redefining Classifier.

9.2.34 Substitution

A Substitution is a relationship between two Classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract Classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract Classifier are expected. The Substitution dependency denotes runtime
substitutability that is not based on specialization. Substitution, unlike specialization, does not imply inheritance of
structure, but only compliance of publicly available contracts. It requires that:

* Interfaces implemented by the contract Classifier are also implemented by the substitutingClassifier or else the
substitutingClassifier implements a more specialized Interface type.

* Any Port owned by the contract Classifier has a matching Port (see 11.3.3) owned by the substitutingClassifier.

9.24 Notation

9.2.41 Classifiers

Classifier is an abstract metaclass. It is nevertheless convenient to define in one place a default notation available for
any concrete subclass of Classifier. Some specializations of Classifier have their own distinct notations.

The default notation for a Classifier is a solid-outline rectangle containing the Classifier’s name, and with compartments
separated by horizontal lines below the name. The name of the Classifier should be centered in boldface. For those
languages that distinguish between uppercase and lowercase characters, Classifier names should begin with an
uppercase character.

If the default notation is used for a Classifier, a keyword corresponding to the metaclass of the Classifier shall be shown
in guillemets above the name. The keywords for each metaclass are listed in Annex C and are specified in the notation
for each subclass of Classifier. No keyword is needed to indicate that the metaclass is Class.

Any keywords (including stereotype names) should also be centered in plain face within guillemets above the Classifier
name. If multiple keywords and/or stereotype names apply to the same model element, each may be enclosed in a
separate pair of guillemets and listed one after the other. Alternatively they may all appear between the same pair of
guillemets, separated by commas.

The name of an abstract Classifier is shown in italics, where permitted by the font in use. Alternatively or in addition,
an abstract Classifier may be shown using the textual annotation {abstract} after or below its name.

Some compartments in Classifier shapes are mandatory and shall be supported by tools that exhibit concrete syntax
conformance. Others are optional, in the sense that a conforming tool may not support such compartments.

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference may be drawn about the presence or absence of elements in it.

The compartment named “attributes” contains notation for the Properties that are reached via the attribute property. The
attributes compartment is mandatory and always appears above other compartments, if it is not suppressed.

Unified Modeling Language 2.5.1 101

file:///Users/seidewitz/C:%5CUsers%5Cstcook%5CDocuments%5COMG%5CUML-Spec-Simplification%5Ctrunk%5CModels%5CMetamodel%5CSpecification%5CUML_11_3_3

The compartment named “operations” contains notation for Operations. The operations compartment is mandatory and
always appears below the attributes compartment, if it is not suppressed. The operations compartment is used for
Classifiers that own Operations, including Class (see 11.4), DataType (see 10.2) and Interface (see 10.4).

The compartment named “receptions” contains notation for Receptions. The receptions compartment is mandatory and
always appears below the operations compartment, if it is not suppressed. The receptions compartment is used for
Classifiers that own Receptions, including Class (see 11.4).

Any compartment which contains notation for Features may show those Features grouped under the literals public,
private and protected, representing their visibility. The visibility literals are left-justified in the compartment with the
Features’ notation appearing indented beneath them. The groups may appear in any order. Visibility grouping is
optional: a conforming tool need not support it.

A conforming tool may provide the option to suppress individual Features in a compartment containing notation for
Features.

A conforming tool may optionally support compartment naming. A compartment’s name may be shown to remove
ambiguity, or it may be hidden. Compartment names should be centered and start with lower-case letters. Compartment
names may contain spaces and should not contain punctuation (including guillemets).

If a Classifier has ownedMembers that are Classifiers (including Behaviors — see 13.2), a conforming tool may provide
the option to show the owned Classifiers, and relationships between them, diagrammatically nested within a separate
compartment of the owning Classifier’s rectangle. Unless otherwise specified, the name of such a compartment shall be
derived from the corresponding metamodel property, pluralized if that property has multiplicity greater than 1. So, for
example, a compartment showing the contents of the property nestedClassifier for a Class (see 11.4.2) shall be called
“nested classifiers;” a compartment showing the contents of the property ownedBehavior for a BehavioredClassifier shall
be called “owned behaviors.”

If a Classifier owns Constraints, a conforming tool may implement a compartment to show the owned Constraints listed
within a separate compartment of the owning Classifier’s rectangle. The name of this optional compartment is
“constraints.”

9.2.4.2 Other elements

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved Classifiers. The arrowhead points to the symbol representing the general Classifier.

Multiple Generalization relationships that reference the same general Classifier may be shown as separate lines with
separate arrowheads. This notation is referred to as the “separate target style.” Alternatively they may be connected to
the same arrowhead in the “shared target style.”

There is no general notation for RedefinableElement. See the subclasses of RedefinableElement for specific notations.
A Substitution is shown as a Dependency with the keyword «substitute» attached to it.

Members that are inherited by a Classifier may be shown on a diagram of that Classifier by prepending a caret **’ symbol
to the textual representation that would be shown if the member were not inherited. Thus the notation for an inherited
Property is defined like this:

<inherited-property> ::= "’ <property>

where <property> is specified in 9.5.4.

Similarly, the notation for an inherited Connector is defined like this:
<inherited-connector> ::= "’ <connector>

where <connector> is specified in 11.2.4.

Analogous notations may be used for all NamedElements that are inheritedMembers of a Classifier to indicate that they
are inherited.

102 Unified Modeling Language 2.5.1

Inherited members may also be shown in a lighter color to help distinguish them from non-inherited members. A
conforming implementation does not need to provide this option.

9.2.5 Examples

Examples for Classifier notation are shown under its various concrete subclasses, especially Class (see 11.4.4).

Figure 9.2 illustrates Generalization notation with different target styles.

Shape
Separate target style
Polygon Ellipse Spline
Shape

Shared target style

Polygon Ellipse Spline

Figure 9.2 Generalization notation showing different target styles

In Figure 9.3, a generic Window class is substitutable in a particular environment by the Resizable Window class.

Window ResizableWindow

< ________________________

«substitute»

Figure 9.3 Example of Substitution notation

9.3 Classifier Templates

9.31 Summary

Classifier is a kind of TemplateableElement signifying that a Classifier may be parameterized. It is also (via
PackageableElement) a kind of ParameterableElement so that a Classifier may be a formal TemplateParameter and may
be specified as an actual parameter in a binding of a template. Sub clause 7.3 describes the general semantics of
templates and their parameters.

Unified Modeling Language 2.5.1 103

9.3.2 Abstract Syntax

TemplateableElement
\

RedefinableElement | | TemplateSignature |
{subsets redefinableElement, {subsets redefinitionContext,
redefines ownedTemplateSignature} redefines template}
+ ownedTemplateSignature + classifier
01 @
.. il
{subsets redefinableElement} {redefines parameteredElement} - N
+ constrainingClassifier
+ redefinableTemplateSignature + parameteredElement | 1 * 9
*
{subsets templateSignature} 1\ .
+ redefinableTemplateSignature | *
+ extendedSignature
{subsets redefinedElement}
{readOnly, subsets parameter} {redefines templateParameter} .
+ [inheritedParameter | * + templateParameter | 0..1 * | + classifierTemplateParameter
[remplateparameter | [<

[+ allowst - Boolean = trug|

Figure 9.4 Classifier Templates

9.3.3 Semantics

9.3.3.1 Template and Bound Classifiers
The meanings of the terms template and bound element are defined in 7.3 — Templates.

A Classifier that is parameterized using a RedefinableTemplateSignature is called a template Classifier, while a
Classifier with one or more TemplateBindings is called a bound Classifier.

The general semantics of templates as defined in sub clause 7.3.3. There the details of how the contents are merged into
a bound element are left open. In the case of Classifier the semantics are equivalent to inserting an anonymous general
bound Classifier representing the intermediate result for each binding, and specializing all these intermediate results by
the bound Classifier.

Members of the expanded bound Classifier may be used as actual parameters in a binding.
A bound Classifier may have contents in addition to those resulting from its bindings.

The parameters of a template Classifier can be any kind of TemplateParameter. Semantics and notation are only defined
when the parameter is a Classifier, a LiteralSpecification, a Property or an Operation.

When the parameter is a Classifier, represented by a ClassifierTemplateParameter, the semantics and notation are
defined in this clause.

When the parameter is a LiteralSpecification, the semantics and notation are as specified in 7.3.
When the parameter is an Operation, the semantics and notation are as specified in 9.6.

When the parameter is a Property, the semantics and notation are as specified in 9.5.

9.3.3.2 Template Classifier specialization

RedefinableTemplateSignature specializes both TemplateSignature and RedefinableElement in order to allow the
addition of new formal TemplateParameters in the context of a specializing template Classifier.

A RedefinableTemplateSignature redefines the RedefinableTemplateSignatures of all parent Classifiers that are
templates. All the formal TemplateParameters of the extended (redefined) signatures are included as formal
TemplateParameters of the extending signature, along with any TemplateParameters locally specified for the extending
signature.

104 Unified Modeling Language 2.5.1

9.3.3.3 Classifier Template Parameters

ClassifierTemplateParameter is a TemplateParameter where the parameteredElement is a Classifier in its capacity of being
a kind of ParameterableElement.

All subclasses of Classifier (such as Class, Collaboration, Component, Datatype, Interface, Signal, and UseCases) may
be parameterized, bound, and used as TemplateParameters. The same holds for Behavior as a subclass of Class, and
thereby all subclasses of Behavior (such as Activity, Interaction, StateMachine).

The constrainingClassifier property of ClassifierTemplateParameter specifies a set of Classifiers that constrain the
argument that can be used for the parameter. If there are any Classifiers in this set, then the argument shall be
compatible with all of them, in the following sense:

* If allowSubstitutable is false, then compatibility means being the same as or a specialization of all of the
constrainingClassifiers.

¢ If allowSubstitutable is true, then compatibility additionally allows a Substitution whose contract is a
constrainingClassifier.

Furthermore, if there are any constrainingClassifiers, the parameteredElement shall be constrained as follows:

* If allowSubstitutable is false, then compatibility means being the same as or a direct specialization of all of the
constrainingClassifiers, with no additional features.

¢ If allowSubstitutable is true, then compatibility additionally allows a Substitution whose contract is a
constrainingClassifier.

In all cases, if the parameteredElement is not abstract then the Classifier used as an argument shall not be abstract. Apart
from this, if the constrainingClassifier property is empty, there are no constraints on the Classifier that can be used as an
argument. In this case the parameteredElement shall have no generalizations and no features, and allowSubstitutable shall be
false.

9.34 Notation

See TemplateableElement for the general notation for displaying a template and a bound element.

When a bound Classifier is used directly as the type of a Property, then <template-param-name> acts as the prop-type of
the Property in its notation (see Property).

The general notation for template parameters specified in 7.3.4 is extended for the parameters of a template Classifier to
include the following:

<template-parameter> ::= <classifier-template-parameter> | <operation-template-parameter>| <connectable-
element-template-parameter>

A ClassifierTemplateParameter extends the notation for a TemplateParameter to include an optional type constraint:
<classifier-template-parameter> ::= <parameter-name> | ‘:* <parameter-kind> | [*>’ <constraint>] [‘=" <default>]
<constraint> ::=[*{contract }’] <classifier-name>*

<default> ::= <classifier-name>

The parameter-kind indicates the metaclass of the parameteredElement. It may be suppressed if it is ‘Class.’

The classifier-name of constraint designates a constrainingClassifier, of which there may be zero or more, with the
meaning specified in the semantics above. The ‘contract’ option indicates that allowSubstitutable is true.

Unified Modeling Language 2.5.1 105

9.3.5 Examples

The example shows a Class template (named FArray) with two formal TemplateParameters. The first formal
TemplateParameter (named T) is an unconstrained class TemplateParameter: the metaclass Class has been suppressed
from the diagram. The second formal TemplateParameter (named k) is a Literallnteger that has a default of 10. There is

also a bound Class (named AddressList) that substitutes Address for T and 3 for k.

FArray

T, k : LiteralInteger = 10

contents: T[0..k]

A

«bind» T -> Address, k -> 3

AddresslList

Figure 9.5 Template Class and Bound Class

The following figure shows an anonymous bound Class that substitutes the Point class for T. As there is no substitution
for k, the default (10) will be used.

FArray<T -> Point>

Figure 9.6 Anonymous Bound Class

The following figure shows a template Class (named Car) with two formal TemplateParameters. The first formal
TemplateParameter (named CarEngine) is a Class that is constrained to conform to the Class called Engine. The second
formal TemplateParameter (named n) is a Literallnteger.

Car

CarEngine->Engine,
n:LiteralInteger

e : CarEngine

dw : Wheel [n+1]

Figure 9.7 Template Class with constrained Class parameter

106

Unified Modeling Language 2.5.1

The following figure shows a bound Class (named DieselCar) that binds CarEngine to DieselEngine and n to 2: thus
defining a class of 3-wheeled diesel cars.

DieselCar : Car<CarEngine -> DieselEngine, n -> 2>

Figure 9.8 Bound Class

9.4 Features

9.41 Summary

Features represent structural and behavioral characteristics of Classifiers.

9.4.2 Abstract Syntax

RedefinableElement CallCe i irectionKil Parametel
. JAY uential in create
{readOnly, union, subsets ~ {readOnly, union, subsets ngrded inout read
memberNamespace} member} concurrent out update
+ /featuringClassifier + [feature Feature return delete
Classifier TypedElement
0.1 * [+ isStatic : Boolean = false JAN
" N
lil TypedElement MultiplicityElement ConnectableElement
Vi

{ordered, subsets

{subsets namespace} ownedMember} Parameter
StructuralFeature eature .+ ownerFormalParam + ownedParameter +/[default : String [0.1]
-+ isReadOnly : Boolean = false + concurrency : CallConcurrencyKind = sequential |+ 0.. + direction : ParameterDirectionkind = in
+ isAbstract :yBaolean = false il a 0.1 * + effect : ParameterEffectKind [0..1]
+ isException : Boolean = false
+ behavioralFeature | * + specification | 0..1 {subsets namespace} + isStream : Boolean = false

0.1] + behavioralFeature

+ parameter | 1.* {subsets owner}
{subsets ownedMember} 0..1| + owningParameter
* + ownedParameterSet

+ raisedException + method | *

*
P bsets ownedElement}
Behavior ¥ terset {sul
parameterse 0..1| + defaultvalue
{subsets owner}

0..1 | + parameterSet ValueSpecification

{subsets ownedElement}
+ condition

Constraint

*

Figure 9.9 Features

9.4.3 Semantics

9.4.3.1 Features

Each Feature is associated with a Classifier called its featuringClassifier. The Feature represents some structural or
behavioral characteristic for its featuringClassifier, except for Properties acting as qualifiers (see 9.5.3).

The isStatic property specifies whether the characteristic relates to the Classifier’s instances considered individually
(isStatic=false), or to the Classifier itself (isStatic=true). All semantics relating to Features that do not explicitly state
whether the feature is static shall be assumed to refer to non-static Features. Where semantics are not explicitly
specified for static Features, those semantics are undefined.

9.4.3.2 Structural Features

A StructuralFeature is a typed Feature of a Classifier that specifies the structure of instances of the Classifier.

Unified Modeling Language 2.5.1 107

The StructuralFeatures of a Classifier that are Properties are called the attributes of the Classifier (see 9.2.3). In UML,
Property is the only kind of StructuralFeature so all of the StructuralFeatures of a Classifier are Properties, and hence
attributes.

For each instance of a Classifier there is a value or collection of values for each direct or inherited non-static attribute of
the Classifier, as follows:

¢ Ifthe attribute’s multiplicity is 0..1, there shall either be no value or a single value whose Type conforms to the
Type of the attribute

¢ If'the attribute’s multiplicity is 1..1, there shall be a single value whose Type conforms to the Type of the
attribute.

e Ifthe attribute’s multiplicity is j..k where k is not 1, there shall be a collection of values whose size is not less
than j and not greater than k, each of whose Types conforms to the Type of the attribute.

¢ Ifthe attribute’s multiplicity is 0..0, there shall be no value or values.

If a StructuralFeature is marked with isStatic = true, then the bullet points above are relative to the Classifier itself
considered as an identifiable individual within some execution scope, rather than to individual instances. (See sub
clause 6.3.1 for a discussion of execution scope.)

In a semantically conforming tool, each inherited static StructuralFeature shall have one of two alternative semantics:

1. Within an execution scope, the value or collection of values of the StructuralFeature is always the same for any
inheriting Classifier as its value or collection of values for the owning Classifier. These semantics correspond
to those for static members in Java and C#.

2. Within an execution scope, the StructuralFeature has a separate and independent value or collection of values
for its owning Classifier and for each Classifier that inherits it. These semantics correspond to those for class
instance variables in Ruby and Smalltalk.

If a StructuralFeature is marked with isReadOnly true, then it may not be updated once it has been assigned an initial
value. Conversely, when isReadOnly is false (the default), the value may be modified.

9.4.3.3 Behavioral Features

A non-static BehavioralFeature specifies that an instance of its featuringClassifier will react to an invocation of the
BehavioralFeature by carrying out a specific behavioral response. Subclasses of BehavioralFeature model different
behavioral aspects of a Classifier.

The list of ownedParameters describes the order, type, and direction of arguments that may be given when the
BehavioralFeature is invoked, or which are output and returned when the invocation completes.

The ownedParameters with direction in or inout define the arguments that shall be provided when invoking the
BehavioralFeature. The ownedParameters with direction out, inout, or return define the arguments that will be output and
returned from a successful invocation.

A BehavioralFeature may raise an exception during its invocation. Possible exception types may be specified by
attaching them to the BehavioralFeature using the raisedException association.

One way to define the behavioral response of a BehavioralFeature is to specify one or more Behaviors as methods that
implement the BehavioralFeature. An invocation of the BehavioralFeature then results in the execution of one of the
associated methods (as further discussed in sub clause 13.2 on Behaviors). The isAbstract property, when true, specifies
that the BehavioralFeature does not have any methods implementing it, with the expectation that an implementation will
be supplied by a more specific element.

The concurrency property specifies the semantics of concurrent calls to the same instance. Its type is
CallConcurrencyKind, an enumeration with the following literals:

108 Unified Modeling Language 2.5.1

sequential | No concurrency management mechanism is associated with the BehavioralFeature and, therefore,
concurrency conflicts may occur. Instances that invoke a BehavioralFeature need to coordinate so
that only one invocation to a target on any BehavioralFeature occurs at once.

guarded Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance, but only
one is allowed to commence. The others are blocked until the performance of the currently executing
BehavioralFeature is complete. It is the responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocking.

concurrent | Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance and all of
them may proceed concurrently.

9.4.34 Parameters

A Parameter is a specification of an argument used to pass information into or out of an invocation of a
BehavioralFeature. The Type and Multiplicity of a Parameter restrict what values may be passed, how many, and
whether the values are ordered. The Multiplicity defines a lower and upper bound on the values passed to the Parameter
at runtime. A lower bound of zero means the Parameter is optional. Actions using the Parameter may execute without
having a value for optional Parameters. A lower bound greater than zero means values for the Parameter are required to
arrive sometime during the execution of the action.

If a defaultvalue is specified for a Parameter, then it is evaluated at invocation time and used as the argument for this
Parameter if and only if no argument is supplied at invocation of the BehavioralFeature.

A Parameter may be given a name, which then identifies the Parameter uniquely within the Parameters of the same
BehavioralFeature. If it is unnamed, it is distinguished only by its position in the ordered list of Parameters.

The direction property specifies whether a value is passed into, out of, or both into and out of the owning
BehavioralFeature. Its type is ParameterDirectionKind, an enumeration of the following literal values:

in Indicates that Parameter values are passed in by the caller.

inout Indicates that Parameter values are passed in by the caller and (possibly different) values passed out
to the caller.

out Indicates that Parameter values are passed out to the caller.

return Indicates that Parameter values are passed as return values back to the caller.

No more than one Parameter for a BehavioralFeature may be marked as a return Parameter by setting its direction to
return.

The effect property may be used to specify what happens to objects passed in or out of a Parameter. It does not apply to
parameters typed by data types, because these do not have identity with which to detect changes. It is a declaration of
modeler intent that must be consistent with the behaviors having the effect. Multiple effects might occur during
execution, whether or not an effect is specified. For example, an update effect does not preclude reading from occurring
during execution, and a lack of value for effect does not prevent effects from occurring during execution. The effect is
specified using an enumerated value typed by ParameterEffectKind, an enumeration of the following literals:

create Objects passed out of executions of the behavior as values of the parameter do not exist before those
executions start.

read Objects that are values of the parameter have values of their properties, or links in which they
participate, or their classifiers retrieved during executions of the behavior.

update Objects that are values of the parameter have values of their properties, or links in which they
participate, or their classification changed during executions of the behavior.

delete Objects that are values of the parameter do not exist after executions of the behavior are finished.

Only in and inout Parameters may have a delete effect. Only out, inout, and return Parameters may have a create effect.

The isException property applies to output Parameters. An output posted to a Parameter with isException true during an
invocation of a BehavioralFeature excludes outputs from being posted to any other outputs of the BehavioralFeature
during the same invocation. The type of such an exception Parameter may be included in the raisedException set, but does
not have to be included.

Unified Modeling Language 2.5.1 109

The isStream property, when true, designates a streaming Parameter. A streaming Parameter expresses the expectation
that any Behavior implementing this feature will exhibit streaming behavior on this Parameter — see sub clause 13.2.
The semantics for a Parameter designated as streaming when the implementing Behavior does not exhibit streaming

behavior are undefined.

A ParameterSet owned by a BehavioralFeature is an element that provides alternative sets of inputs or outputs that the

Behaviors that implements that BehavioralFeature may use. The Parameters in a ParameterSet shall all be inputs or all

outputs of the same BehavioralFeature: a ParameterSet with all inputs is called an input ParameterSet, and one with all
outputs is called an output ParameterSet.

A BehavioralFeature with input ParameterSets may only accept inputs from Parameters in one of the sets per
invocation. A BehavioralFeature with output ParameterSets may only return outputs to the Parameters in one of the sets
per invocation. The semantics of conditions on input and output ParameterSets of BehavioralFeatures is the same as
Operation preconditions and postconditions, respectively, but apply to only to invocations that accept inputs to or return
outputs from Parameters in the ParameterSet having the condition.

More detailed semantics and examples of ParameterSets may be found in sub clause 16.3.

944 Notation

There is no general notation for Feature. Subclasses define their specific notation.
Static Features are underlined.

Where Features are shown in lists, an ellipsis (...) as the final element of a list of Features may be used to indicate that
additional Features exist but are not shown in that list.

A read only StructuralFeature is shown using {readOnly} as part of the notation for the StructuralFeature. This
annotation may be suppressed, in which case it is not possible to determine its value from the diagram. Alternatively a
conforming tool may only allow suppression of the {readOnly} annotation when isReadOnly=false (the default). In this
case it is possible to assume this value in all cases where {readOnly} is not shown.

Feature redefinitions may either be explicitly notated with the use of a {redefines <x>} property string on the Feature or
implicitly by having a Feature which cannot be distinguished using isDistinguishableFrom() from another Feature in
one of the owning Classifier’s more general Classifiers. In both cases, the redefined Feature shall conform to the
compatibility constraint on the redefinitions.

A Parameter is shown as a text string of the form:
<parameter> ::= [<direction>]| <parameter-name>:’ <type-expression> [’[’<multiplicity-range>’1"] [’=" <default>]
[’ {* <parm-property> [’,” <parm-property>]* ’}’] where:
e <direction> ::="in’ | ’out’ | ’inout’ (defaults to ’in’ if omitted).
* <parameter-name> is the name of the Parameter.
* <type-expression> is an expression that specifies the type of the Parameter.
* <multiplicity-range> is the multiplicity of the Parameter. (See MultiplicityElement — sub clause 7.5).
* <default> is an expression that defines the value specification for the default value of the Parameter.
* <parm-property> indicates additional property values that apply to the Parameter.
<parm-property> ::="ordered’ | 'unordered’ | unique’ | 'nonunique’ | ’seq’ | ’sequence’ where
* ’ordered’ applies when there is a multi-valued Parameter and means that its values are ordered.
¢ ’unordered’ applies when there is a multi-valued Parameter and means that its values are not ordered.

* ’unique’ applies when there is a multi-valued Parameter and means that its values have no duplicates.

110 Unified Modeling Language 2.5.1

* ’nonunique’ applies when there is a multi-valued Parameter and means that its values may have duplicates.

* ’seq’ or sequence’ applies when there is a multi-valued Parameter and means that its values constitute an
ordered bag, i.e., isUnique = false and isOrdered = true.

Notation for ParameterSets in activity diagrams may be found in sub clause 16.3.4. There is no notation for
ParameterSets in other diagrams.

9.5 Properties

9.5.1 Summary

Properties are StructuralFeatures that represent the attributes of Classifiers, the memberEnds of Associations, and the parts
of StructuredClassifiers.

9.5.2 Abstract Syntax
«enumeration»
AggregationKind
none
: | Csctmarnre | [oopymentge] pe
{ordered, subsets feature, subsets {subsets featuringClassifier, subsets
redefinableElement, subsets namespace, subsets association,
memberEnd, subsets ownedMember} subsets redefinitionContext}
{subsets namespace, {ordered, subsets attribute, subsets Property + ownedEnd + owningAssociation
subsets classifier} ownedMember} - — * 0.1 Association
) + aggregation : AggregationKind = none
I:r“% + interface + ownedAttribute + [isComposite : Boolean = false
Interface " + isDerived : Boolean = false {ordered, subsets member} {subsets memberNamespace}
0.1 + isDerivedUnion : Boolean = false + memberEnd + association
+isID : Boolean = false o 0.1
{subsets namespace, {ordered, subsets attribute, subsets + ualer_ {ordered, subsets ownedElement
subsets classifier} ownedMember} *
+ datatype + ownedAttribute
DataType L,-% typ 0.1
0.1 *
+ associationEnd {subsets owner}
0.1
ordered, subsets attribute, subsets "
{subsets namespace, subsets c{anedMémber redefines ! + /opposite
structuredClassifier, subsets classifier} ownedAttributé}
+ class + ownedAttribute 0.1
[class b + property
0.1 * {subsets owner} {subsets ownedElement}
+ ingPs + defaultVal
o omProeey ¢ SRR Vauespecifcation |
0.1 0.1
ty " + subsettedProperty
+ property |«
{subsets redefinedElement} l sﬁi)%eerg
+ redefinedProperty | < redefinableElement}

Figure 9.10 Properties

9.5.3 Semantics

A Property may represent an attribute of a Classifier, a memberEnd of an Association, or in some cases both
simultaneously.

A useful convention for general modeling scenarios is that a Property whose type is a kind of Class is an Association
end, while a property whose type is a kind of DataType is not. This convention is not enforced by UML.

A Property represents a declared state of one or more instances in terms of a named relationship to a value or values.
When a Property is a non-static attribute of a Classifier, the value or values are related to the instance of the Classifier
by being held in slots of the instance. When a Property is an Association’s memberEnd, the value or values are related to
the instance or instances at the other end(s) of the association (see 11.5 Associations). When a Property is a static
attribute of a Classifier, the value or values are related to the Classifier itself within some execution scope.

A Property that is a memberEnd may itself have other Properties that serve as qualifiers.

Unified Modeling Language 2.5.1 111

When a Property is owned by a Classifier other than an Association via ownedAttribute, then it represents an attribute of
the Classifier. When related to an Association via memberEnd it represents an end of the Association. For a binary
Association, it may be both at once. In either case, when instantiated a Property represents a value or collection of
values associated with an instance of one (or in the case of a ternary or higher-order association, more than one)
Classifier. This set of Classifiers is called the context for the Property; in the case of an attribute the context is the owning
Classifier, and in the case of an association end the context is the set of Classifiers at the other end or ends of the
Association.

If there is a defaultValue specified for a Property, this default is evaluated when an instance of the Property is created in
the absence of a specific setting for the Property or a constraint in the model that requires the Property to have a specific
value. The evaluated default then becomes the initial value (or values) of the Property.

If a Property has isDerived = true, it is derived and its value or values may be computed from other information. Actions
involving a derived Property behave the same as for a nonderived Property. Derived Properties are often specified to be
read-only (i.e., clients may not directly change values). But where a derived Property is changeable, an implementation
is expected to make appropriate changes to the model in order for all the constraints to be met, in particular the
derivation constraint for the derived Property. The derivation for a derived Property may be specified by a constraint.

Property is indirectly a kind of RedefinableElement, so Properties may be redefined. The name and visibility of a Property
are not required to match those of any Property it redefines.

A derived Property may redefine one which is not derived. An implementation shall ensure that the constraints implied
by the derivation are maintained if the Property is updated.

If a Property has a specified default, and the Property redefines another Property with a specified default, then the
redefining Property’s default is used in place of the more general default from the redefined Property.

Sometimes a Property is used to model circumstances in which one instance is used to group together a set of instances;
this is called aggregation. To represent such circumstances, a Property has an aggregation property, of type
AggregationKind; the instance representing the whole group is classified by the owner of the Property, and the instances
representing the grouped individuals are classified by the type of the Property. AggregationKind is an enumeration with
the following literal values:

none Indicates that the Property has no aggregation semantics.

shared Indicates that the Property has shared aggregation semantics. Precise semantics of shared aggregation
varies by application area and modeler.

composite | Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).

Composite aggregation is a strong form of aggregation that requires a part object be included in at most one composite
object at a time. If a composite object is deleted, all of its part instances that are objects are deleted with it.

NOTE. A part object may (where otherwise allowed) be removed from a composite object before the composite object
is deleted, and thus not be deleted as part of the composite object.

Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
object in one part of the graph will also result in the deletion of all objects of the subgraph below that object. The
precise lifecycle semantics of composite aggregation is intentionally not specified. The order and way in which
composed objects are created is intentionally not defined. The semantics of composite aggregation when the container
or part is typed by a DataType are intentionally not specified.

A Property may be marked as the subset of another subsettedProperty. In this case, calculate a set by eliminating
duplicates from the collection of values denoted by the subsetting property in some context. Then that set shall be
included in (or the same as) a set calculated by eliminating duplicates from the collection of values denoted by the
subsettedProperty in the same context.

A Property may be marked as being a derived union, by setting isDerivedUnion to true. This means that the collection of
values denoted by the Property in some context is derived by being the strict union of all of the values denoted, in the

112 Unified Modeling Language 2.5.1

same context, by Properties defined to subset it. If the Property has a multiplicity upper bound of 1, then this means that
the values of all the subsets shall be null or the same.

When an attribute marked as a derived union is marked with isOrdered = true, and in a particular context all of its
subsetting properties are attributes marked as ordered or with upper bound 1, and the value in that context of the
Classifier::allAttributes() operation gives a well-defined ordering, then the ordering of the union is defined by
evaluating the subsetting properties in the order in which they appear in the result of allAttributes() and concatenating
the results. In all other cases the ordering of a property marked as an ordered derived union is undefined.

A Property may be marked, via the property isID, as being (part of) the identifier (if any) for Classifiers of which it is a
member. The interpretation of this is left open but this could be mapped to implementations such as primary keys for
relational database tables or ID attributes in XML. If multiple Properties are marked as isID (possibly in generalizing
Classifiers) then it is the combination of the (Property, value) tuples that will logically provide the uniqueness for any
instance. Hence there is no need for any specification of order and it is possible for some of the Property values to be
empty. If the Property is multivalued then all values are included.

Property specializes ParameterableElement to specify that a Property may be exposed as a formal
ConnectableElementTemplateParameter (see 11.2.3), and provided as an actual parameter in a binding of a template.
Within a template a Property TemplateParameter may be used like any other accessible Property. Any references to the
Property TemplateParameter within the template will end up being a reference to the actual Property in the bound
element.

9.5.4 Notation

The following general notation is defined for Properties.

NOTE. Some specializations of Property may also have additional notational forms. These are covered in the
appropriate Notation sub clauses of those classes.

<property> ::= [<visibility>] [/'] <name> [*:" <prop-type>] [[<multiplicity-range> ‘]’] [‘="<default>] [{*
<prop-modifier > [',” <prop-modifier >]* ’}’]

where:

* <visibility> is the visibility of the Property. (See VisibilityKind - sub clause 7.4.)
<visibility> ::= +7| “°| ‘#'| ~’

* ‘/signifies that the Property is derived.
* <name> is the name of the Property, or the empty string if the Property has no name.
* <prop-type> is the name of the Classifier that is the type of the Property.

* <multiplicity-range> is the multiplicity range of the Property. If this term is omitted, it implies a multiplicity
of 1 (exactly one). (See MultiplicityElement — sub clause 7.5.)

* <default> is an expression that evaluates to the default value or values of the Property.

e <prop-modifier> indicates a modifier that applies to the Property.
<prop-modifier> ::= ‘readOnly’ | ‘union’ | ‘subsets’ <property-name> |
‘redefines’ <property-name> | ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’
‘id’ | <prop-constraint>

where:
* ‘readOnly’ means that the Property is read only.
* ‘union’ means that the Property is a derived union of its subsets.
* ‘subsets’ <property-name> means that the Property is a proper subset of the Property identified by

<property-name>, where <property-name> may be qualified.

Unified Modeling Language 2.5.1 113

e ‘redefines’ <property-name> means that the Property redefines an inherited Property identified by
<property-name>, where <property-name> may be qualified.

* ‘ordered’ means that the Property is ordered, i.e., isOrdered = true.

* ‘unordered’ means that the Property is not ordered, i.e., isOrdered = false.

* ‘unique’ means that there are no duplicates in a multi-valued Property, i.e., isUnique = true.

* ‘nonunique’ means that there may be duplicates in a multi-valued Property, i.e., isUnique = false.

* ‘seq’or ‘sequence’ means that the property represents an ordered bag, i.e., isUnique = false and
isOrdered = true

* ‘id’ means that the Property is part of the identifier for the class.

* <prop-constraint> is an expression that specifies a constraint that applies to the Property.
The notation for qualifiers is defined in 11.5 Associations.
The notation for the aggregation of a Property is defined in 11.5 Associations.

In a Classifier, the type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if
there are values in the model.

In a Classifier, the individual properties of an attribute may be shown in columns rather than as a continuous string.

In a Classifier, an attribute may also be shown using association notation, where only an aggregation adornment (hollow
or filled diamond) may be shown at the tail of the arrow.

The notation for a ConnectableElementTemplateParameter used to parameterize a template Classifier by a Property is
this:

<connectable-element-template-parameter> ::= <property-name> ‘. Property’

114 Unified Modeling Language 2.5.1

9.5.5

E

xamples

ClassA

name: String

shape: Rectangle

+size: Integer[0..1]
/area: Integer {readOnly}
height: Integer =5
width: Integer

ClassB

id {red
shape:
Ntsize:

Integer =7

/width

efines name}
Square
Integer[0..1]

Figure 9.11 Examples of attributes

The attributes in Figure 9.11 are explained below.

ClassA

ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassB:

ClassB

ClassB
9.2.4).

ClassB
overrid

ClassB

::name is an attribute with type String.

:shape is an attribute with type Rectangle.

:size is a public attribute of type Integer with multiplicity 0..1.

:area is a derived attribute with type Integer. It is marked as read-only.
:height is an attribute of type Integer with a default initial value of 5.
:width is an attribute of type Integer.

:id is an attribute that redefines ClassA::name.

::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

shows size as an attribute inherited from ClassA, as signified by the prepended caret symbol (see

::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that
es the ClassA default of 5.

::width is a derived attribute that redefines ClassA::width, which is not derived.

Figure 9.12 shows how an attribute may be shown using association notation.

Unified Modeling Language 2.5.1

115

Window

size
=

Area

Figure 9.12 Association-like notation for attributes

9.6

9.6.1

Summary

Operations

An Operation is a BehavioralFeature that may be owned by an Interface, DataType or Class. Operations may also be
templated and used as template parameters.

9.6.2

Abstract Syntax

e] |

{subsets ownerFormalParam}

{ordered, redefines ownedParameter}

Operation + operation + ownedParameter :]
{subsets featuringClassifier, {ordered, sub;ets feature, + /isOrdered : Boolean {readOnly} 0.1 *
subsets namespace, subsets subsets redefinableElement, | + isQuery : Boolean = false
redefinitionContext}' subsets ownedMember} + /isUnique : Boolean {readOnly} {subsets context} {subsets ownedRule}
. . + [lower : Integer [0..1] {readOnly} + preContext + precondition
+ interface + ownedOperation + /upper : UnlimitedNatural [0..1] {readOnly} C
-‘—‘0 I " 0.1 *
{subsets context} {subsets ownedRule}
. N {ordered, subsets feature, + postContext + postcondition
{subsets featuringClassifier, g psets redefinableElement o1 .
subsets namespace, subsets g hsets ownedMember} B
redefinitionContext}
+ datatype + ownedOperation {subsets context} {subsets ownedRule}
- > 0.1 . ‘ + bodyContext + bodyCondition
0.1 0.1
{ordered, subsets .
{subsets featuringClassifier, feature, subsets + operation 0.1 Type
subsets namespace, subsets redefinableElement, % + [type P
rfdtlefmltlonContext} sut;sit; :e\néréedel\;lzi?;:er} {subsets behavioralFeature} {readOnly}
class P + operation *
0.1 * % + raisedException
{redefines raisedException}
{subsets redefinableElement}
+ operation
x
{redefines parameteredElement} *
+ parameteredElement | 1 + redefinedOperation
{subsets redefinedElement}
{redefines templateParameter}
+ templateParameter | 0..1

OperationTemplateParameter]
L I

\V4
TemplateParameter

Figure 9.13 Operations

9.6.3 Semantics

9.6.3.1 Operations

An Operation is a BehaviorialFeature of an Interface, DataType, or Class. An Operation may be directly invoked on
instances of its featuringClassifiers. The Operation specifies the name, type, Parameters, and Constraints for such
invocations.

If there is a return Parameter, the type of the Operation is the same as the type of this Parameter. Otherwise the
Operation has no type.

116 Unified Modeling Language 2.5.1

The preconditions for an Operation define conditions that shall be true when the Operation is invoked. These preconditions
may be assumed by an implementation of this Operation. The behavior of an invocation of an Operation when a
precondition 1s not satisfied is not defined in UML.

The postconditions for an Operation define conditions that will be true when the invocation of the Operation completes
successfully, assuming the preconditions were satisfied. These postconditions shall be satisfied by any implementation of
the Operation.

The bodyCondition for an Operation constrains the return result to a value calculated by the specification of the
bodyCondition. This value should satisfy the postconditions, if any. The bodyCondition differs from postconditions in that the
bodyCondition may be overridden when an Operation is redefined, whereas postconditions may only be added during
redefinition.

An Operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that
the postconditions or bodyCondition of the Operation are satisfied.

An Operation may be redefined in a specialization of the featuringClassifier. This redefinition may add new preconditions or
postconditions, add new raisedExceptions, or otherwise refine the specification of the Operation.

Different type-conformance systems adopt different schemes for how the types of parameters and results may vary
when an Operation is redefined in a specialization. When the type may not vary, it is called invariance. When the
parameter type may be specialized in a specialized type, it is called covariance. When the parameter type may be
generalized in a specialized type, it is called contravariance. In UML, such rules for type conformance are intentionally
not specified. Redefined parameters shall have compatible multiplicity, and the same direction, ordering and uniqueness
as the redefined parameters.

If the isQuery property is true, an invocation of the Operation shall not modify the state of the instance or any other
element in the model.

An Operation may be owned by and in the namespace of a Class, DataType or Interface that provides the context for its
possible redefinition. The owning classifier of the Operation provides its redefinitionContext.

9.6.3.2 Template Operations

Operation specializes TemplateableElement in order to support specification of template Operations and bound
Operations. Bound Operations must be owned by a Classifier. If the original operation was defined with a Behavior,
then the bound element has to be owned by a Classifier that is consistent with that Behavior. This means one of three
things: (a) the bound operation appears in the same Classifier as the template; (b) the bound operation appears in a
subtype of the template’s owner; (c) the template was defined without side-effects in a static class and the bound one
can then appear anywhere.

9.6.3.3 Operation Template Parameters

An Operation may be exposed by a template as a formal template parameter via an OperationTemplateParameter.
OperationTemplateParameter is a kind of TemplateParameter where the parametered element is an Operation. Within a
template Classifier an OperationTemplateParameter may be used like any other accessible Operation. Any references to
the OperationTemplateParameter within the template will end up being a reference to the actual Operation in the bound
Classifier. For example, a call to the OperationTemplateParameter will be a call to the actual Operation.

A default for an OperationTemplateParameter must be an Operation with the same parameter types, directions, and
multiplicities as the exposed Operation.

9.6.4 Notation

If shown in a diagram, an Operation is shown as a text string of the form:

[<visibility>] <name> ‘(‘ [<parameter-list>] ‘)’ [‘:’ [<veturn-type>] [‘[<multiplicity-range> ‘]’]
[" <oper-property> [",” <oper-property>]* ‘}']]

Unified Modeling Language 2.5.1 117

where:

* <visibility> is the visibility of the Operation (see 7.4).
<visibility> 1=+ | - | ‘# | °~°

* <name> is the name of the Operation.

* <parameter-list> is a list of Parameters of the Operation in the following format:
<parameter-list> ::= <parameter> [‘,’<parameter>]*

where <parameter> is defined in 9.4.4.
* <return-type> is the type of the return result Parameter if the Operation has one defined.
* <multiplicity-range> is the multiplicity of the return type (see 7.5).

* <oper-property> indicates the properties of the Operation.
<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | ‘unordered’ | “‘unique’ | ‘nonunique’ | ‘seq’ |
‘sequence’ | <oper-constraint>

where:

* ‘redefines’ <oper-name> means that the Operation redefines an inherited Operation identified by <oper-
name>, where <oper-name> may be qualified.

* ‘query’ means that the Operation does not change the state of the system.
¢ ‘ordered’ applies when there is a multi-valued return Parameter and means that its values are ordered.

* ‘unordered’ applies when there is a multi-valued return Parameter and means that its values are not
ordered.

* ‘unique’ applies when there is a multi-valued return Parameter and means that its values have no
duplicates.

* ‘nonunique’ applies when there is a multi-valued return Parameter and means that its values may have
duplicates.

* ‘seq’or ‘sequence’ applies when there is a multi-valued return Parameter and means that its values
constitute an ordered bag, i.e., isUnique = false and isOrdered = true.

* <oper-constraint> is a constraint that applies to the Operation. The parameter list may be suppressed.

The TemplateParameters of a template Operation are in a list between the name of the Operation and the Parameters of
the Operation.

[<visibility>] <name> ‘<* <template-parameter-list> >’ ‘(* [<parameter-list>])’ [*:” [<return-type>] [‘[* <multiplicity>
‘T1[*{* <oper-property> [*,” <oper-property>]* *}’]]

The TemplateParameter bindings of a bound template Operation are in a list between the name of the Operation and the
Parameters of the Operation.

[<visibility>] <name> ‘<<‘ <binding-expression-list> ‘>>" ‘(* [<parameter-list>] °)’ [*:” [<return-type>] [‘[*
<multiplicity> ‘1’| [*{* <oper-property> [‘,” <oper-property>]* ‘}’]]

where < binding-expression-list> ::= <binding-expression> [,’ <binding-expression>]*, and <binding-expression> is
defined in 7.3.4.

Within the notation for formal TemplateParameters and TemplateParameter bindings, an Operation is shown as
<operation-name> ‘(‘<parameter-list> °)’.

An OperationTemplateParameter extends the notation for a TemplateParameter to include the Parameters for the
Operation:

118 Unified Modeling Language 2.5.1

<operation-template-parameter> ::= <parameter> [‘. Operation’] [‘=" <default>]
<parameter> ::= <operation-name> ‘(‘<parameter-list> ‘)’
<default> ::= <operation-name ‘(‘<parameter-list>)’

The notation in class diagrams for exceptions and streaming Parameters on Operations has the keywords “exception” or
“stream” in the property string.

9.6.5 Examples
Normal Operations:
display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window
+toString (): String
A template Operation:
f <T:Class>(x: T)
A binding of that template Operation.
f << T -> Window >>(x : Window)

NOTE. Parameters may be suppressed; they are calculated by the binding.

9.7 Generalization Sets

9.71 Summary
GeneralizationSet provides a way to group Generalizations into orthogonal dimensions. A GeneralizationSet may be

associated with a Classifier called its powertype. These techniques provide additional expressive power for organizing
classification hierarchies.

9.7.2 Abstract Syntax

| PackageableElement

. + powertype + powertypeExtent GeneralizationSet | generalizationSet + generalization —
Classifier I- + isCovering : Boolean JI Generalization
0.1 * |+ isDisjoint : Boolean | * *

Figure 9.14 Generalization Sets

9.7.3 Semantics

Generalizations may be grouped to represent orthogonal dimensions of generalization. Each group is represented by a
GeneralizationSet. The generalizationSet property designates the GeneralizationSets to which the Generalization belongs.
All of the Generalizations in a particular GeneralizationSet shall have the same general Classifier.

The isCovering property of GeneralizationSet specifies whether the specific Classifiers of the Generalizations in that set
are complete, in the following sense: if isCovering is true, then every instance of the general Classifier is an instance of

Unified Modeling Language 2.5.1 119

(at least) one of the specific Classifiers. The isDisjoint property specifies whether the specific Classifiers of the
Generalizations in that set may overlap, in the following sense: if isDisjoint is true, then no instance of any of the specific
Classifiers may also be an instance of any other of the specific Classifiers. By default, both properties are false.

A GeneralizationSet may optionally be associated with a Classifier called its powertype. This means that for every
Generalization in the GeneralizationSet, the specializing Classifier is uniquely associated with an instance of the
powertype, i.e., there is a 1-1 correspondence between instances of the powertype and specializations in the
GeneralizationSet, so that the powertype instances and the corresponding Classifiers may be treated as semantically
equivalent. How this semantic equivalence is implemented and how its integrity is maintained is not defined within the
scope of UML.

9.7.4 Notation

When Generalization relationship lines are named, that name designates a GeneralizationSet to which the
Generalization belongs. All Generalization relationships with the same GeneralizationSet name are part of the same
GeneralizationSet. This notation form is depicted in Figure 9.15.

GeneralizationSet1 GeneralizationSet2

Generalizationbet1

Figure 9.15 GeneralizationSets designated by name

When two or more lines are drawn to the same arrowhead and labeled by a single GeneralizationSet name, i.e., “shared
target” style as illustrated in Figure 9.16, the specific Classifiers are part of the same GeneralizationSet.

A A

o GeneralizationSet2
GeneralizationSet1 GeneralizationSet1 GeneralizationSet2

e

Figure 9.16 GeneralizationSets designated by shared target

With either of the notation forms above, if there are no labels on the Generalization arrows it cannot be determined from
the diagram whether there are any GeneralizationSets in the model.

Lastly in Figure 9.17, a GeneralizationSet may be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set. Here, as in Figure 9.16, the GeneralizationSet is labeled with a
single name, instead of each line labeled separately. This label may be elided.

120 Unified Modeling Language 2.5.1

neralizationSetl
Generalizationsetl = _ | . GeneralizationSet2

Figure 9.17 GeneralizationSet designated by dashed line spanning Generalization arrows

To indicate whether or not a generalization set is covering and disjoint, each set may be labeled with a constraint
consisting of one of the textual annotations indicated below.

Table 9.1 GeneralizationSet constraints

{complete, disjoint} Indicates the generalization set is covering and its specific Classifiers have no common
instances.

{incomplete, disjoint} Indicates the generalization set is not covering and its specific Classifiers have no common

instances.
{complete, Indicates the generalization set is covering and its specific Classifiers do share common
overlapping} instances.
{incomplete, Indicates the generalization set is not covering and its specific Classifiers do share common
overlapping} instances.

The constraints may appear in either order: {complete, disjoint} is equivalent to {disjoint, complete}. The default
values are {incomplete, overlapping}. If only one constraint is shown, the other takes its default value.

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed as illustrated in Figure 9.18 below, or the dashed line notation as shown in Figure 9.19.

A

{GeneralizationSetConstraint1} {GeneralizationSetConstraint2}

Figure 9.18 GeneralizationSet constraint notation with shared target style

Unified Modeling Language 2.5.1 121

{GeneralizationSetConstraint3} {GeneralizationSetConstraint4}

Figure 9.19 GeneralizationSet constraint notation with dashed line style

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to
the corresponding Generalization