ISO/IEC 19505-2:2012(E)
Date: April 2012

Information technology - Object Management Group
Unified Modeling Language (OMG UML),
Superstructure

formal/2012-05-07

This version has been formally published by 1SO as the 2012 edition standard: |SO/IEC 19505-2.

ISO/IEC 19505-2:2012(E)

Table of Contents

Y 0 0 1 o I 1
2. ConformancCe e 1
2.1 Language Units 2

2.2 Compliance Levels e 2

2.3 Meaning and Types of Compliance 6

2.4 Compliance Level Contents e 8

3. Normative References i e 9
4. Terms and Definitions 10
5. Notational Conventions i 10
5.1 Keywords for Requirement Statements i 10

5.2 Annotations on Example Diagrams e 10

6. Additional Information 11
6.1 Architectural Alignmentand MDA Support 11

6.2 Onthe Run-Time Semanticsof UML 11

L A o 2 T T Tl o (=T o TR 11

6.2.2 The SEMANLICS ATCHILECIUIEveiiiiee e e e s e e e e e e e e enrnerenee e 11

6.2.3 The Basic Causality MOAEIccoeeiiiiiiiie et e e 12

6.2.4 Semantics Descriptions in the Specificationcccciiviiiie e 13

6.3 The UML Metamodel e 14

6.3.1 Models and What They MOGEIcoooiiiiiiiie e e e 14

6.3.2 Semantic Levels and NamiNgoooo it e e eeea e 14

6.4 Howto ReadthisProceed i 15

6.4.1 SPeCifiCatiON FOIMAL ... et e e e e e e e e e e e b eaeees 15

6.4.2 DIagram fOrMALoooiieieeie e ettt e e e e e e e s bbbt et e e e e e e e e nran e aee e 18

6.4.3 CoNteNtS OFf SUDPAISeeiiiiiiieie et e e e 19

Subpart | - Supplement ... 23
7. ClasSSES ... i e 25
7.l OVeIVIBW ot 25

© ISO/IEC 2012 - All rights reserved iii

ISO/IEC 19505-2:2012(E)

7.2 ADSIraCt SYNtaXo 26
7.3 Class DesCriptions 39
7.3.1 Abstraction (from DEePeNAENCIES)coiiiuuuiiiiiiiiiee ettt e e e e e e e nbeee e 39
7.3.2 AggregationKind (from KEINEI)cooi i 39
7.3.3 Association (from Kernel) ... e e e 40
7.3.4 AssociationClass (from ASSOCIAtIONCIASSES)eeieiiieiiiiiiiiiiie e e e 48
7.3.5 BehavioralFeature (from KErNel) ... 51
7.3.6 BehavioredClassifier (from INterfaces)c.uuveiiiiiioiiii e 52
7.3.7 Class (from KEINEI) ..ottt et e e e e e et e e e e e ae e e e e s aanenes 52
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)cccovveeieeiiiininiinnns 55
7.3.9 Comment (fromM KEIMEI) ...t e e e e e e e s aeaes 60
7.3.10 Constraint (from Kernel)o e e e e 61
7.3.11 DataType (from KEINEI)eeiiiiiiiii et e e e e 64
7.3.12 Dependency (from DEPENUENCIES)ccoiiiiiriiiiiieiiea ettt e e e e e e e e e e anaeaes 65
7.3.13 DirectedRelationship (from Kernel) ... 67
7.3.14 Element (from KEIMNEL)eeeiiieeeii ettt e e e e e e e e e 68
7.3.15 ElementImport (from KEernel) ... e 69
7.3.16 Enumeration (from Kernel) ... e 71
7.3.17 EnumerationLiteral (from Kernel) ... 72
7.3.18 EXPression (from KEINEI) ... ittt e e e e e e e 73
7.3.19 Feature (from KEINEI) ...ttt e e et e e e e e e e e e e e aaeaes 74
7.3.20 Generalization (from Kernel, POWEITYPES)uuuiiiiiiiiiiaiiaiiiiieieee et eee e e e e 75
7.3.21 GeneralizationSet (from POWEITYPES)uuiiiiiiiiiieeae et a e e 79
7.3.22 InstanceSpecification (from Kernel) ... 87
7.3.23 InstanceValue (from KerNel) ... 90
7.3.24 Interface (from INTEIFACES)eeiiiiiiiii e 91
7.3.25 InterfaceRealization (from INtErfaCes)cuvuuiiiiiiiiaei e 94
7.3.26 LiteralBoolean (from KEINEI)oooiiiiiiiiiie e 94
7.3.27 Literallnteger (from KEINEI)eeiiiiiii e e e 95
7.3.28 LiteralNUll (from KEINEI) ettt a e 96
7.3.29 LILEIAIREAL......ceei ettt s et e e 97
7.3.30 LiteralSpecification (from Kernel) ... 98
7.3.31 LiteralString (from KEIMNEI)eeeiiiiieiiee et e e e e e 99
7.3.32 LiteralUnlimitedNatural (from Kernel)c..eeeeiiiiiiiiii e 99
7.3.33 MultiplicityElement (from Kernel) ... 100
7.3.34 NamedElement (from Kernel, DEPENUENCIES)ooveiiiiiiiiiiiiiiiiieae et e e 104
7.3.35 Namespace (from KEINEI)eiiiiiiieii et e e e e e senees 105
7.3.36 OpaqueExpression (from Kernel) ... 108
7.3.37 Operation (from Kernel, INterfaces)ccuuuiiiiiiiiiiiiii e 109
7.3.38 Package (from KErNel) ittt e e e e e e e enaees 113
7.3.39 PackageableElement (from Kernel) ... 116
7.3.40 Packagelmport (from KEINEI)ooo oo 117
7.3.41 PackageMerge (from KEINEI)ottt 118
7.3.42 Parameter (from KEINEI)uueiiiiiiie e e e e e 127
7.3.43 ParameterDirectionKind (from Kernel)oueiiiiiiiiii e 129
7.3.44 PrimitiveType (from Kernel) ... 129
7.3.45 Property (from Kernel, AssociationClasses, INterfaces)cccccccvviiiiiiiiiiiiiieienneniies 130
7.3.46 Realization (from DEPENTENCIES)ccoiiuiiiiiiiiiie ettt a e 136
7.3.47 RedefinableElement (from Kernel) ... 137
7.3.48 Relationship (from KErNEI)oooo i 139

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

7.3.49 SIOt (froOM KEIMNEI) ...t r e e e e e e s e e e e e e e e e e s s nannreneenaeeees 140

7.3.50 StructuralFeature (from Kernel) ... 140

7.3.51 Substitution (from DEPENUENCIES)uvviviiiiiieie e e e e e s rreee s 141

7.3.52 TYPE (frOM KEINEI) ...ttt e e e e s e e e e e e e e e e s s s nnanrrnaeeees 142

7.3.53 TypedElement (from KEINEI)coov i e e 143

7.3.54 Usage (from DEPENUENCIES) ...eceeeiiiiiiiiiieie e e e e e e e st e e e e e e e e e s e rae e ee e e e e e e s e s nnenrrneeees 144

7.3.55 ValueSpecification (from Kernel)cc.euuiiiiiiiiie e 145

7.3.56 Visibility Kind (from KEINEI)ceeeeee i e e e aeee e 146

T4 DIAgIAMS . ottt e 147
8. COMPONENTS . .. 151
8.1 OVEIVIEW . o 151
8.2 ADSIraCt SYNtaXt 151
8.3 Class DeSCriptioNSo 155
8.3.1 Component (from BasicComponents, PackagingComponents)ccccueveeeeeeeeninniinnnns 155

8.3.2 ComponentRealization (from BasicCCOMPONENTS)ccouuiiiiiiiiiiieeei it 164

8.3.3 ConnectableElement (from BasiCCOMPONENTS)coiiiiiiiiiiiiiiiieaee et eee e e e e 165

8.3.4 Connector (from BasiCCOMPONENTS)uuuiiiiiiiiiiieeaaa it e e eeee e e e e e e s neeees 165

8.3.5 ConnectorEnd (from BaSiCCOMPONENTS)ueueiiiiiiiiiiiiiiiiiiiiee et e e e e e e eiibreeeee e e e e e e s e eaneees 169

8.3.6 ConnectorKind (from BasSiCCOMPONENTS)eueiiiiiiieiiiiiiiiiiiie e e e ee e e e e e 169

8.4 DIagramsS . .. 170
9. ComposSite StrUCTUIeS e e 173
0.1 OVEIVIEW . e 173
9.2 ADSIraCt SYNtaXt 173
9.3 Class DeSCrPtiONSo 178
9.3.1 Class (from StructuredClasses, INternalStruCtures)ccccceeiiiiiiiiiiiiiieie e, 178

9.3.2 Classifier (from InternalStructures, Collaborations) ..o, 179

9.3.3 Collaboration (from CollaborationS)cciieiiiiiiiiiiiiiiiie e 180

9.3.4 CollaborationUse (from Collaborations)cooiiiiiiiiiiiiieae e 183

9.3.5 ConnectableElement (from INternalStruCtures)cc.ueveiiiiiiiiiiiiie e 186

9.3.6 Connector (from INterNAISIIUCIUIES)ueiiiiiiiiiieii ittt 186

9.3.7 ConnectorEnd (from InternalStructures, POrtS)cc.ueeeiiiiiiiiiiiiieeeeee e 188

9.3.8 EncapsulatedClassifier (from POIS)ueiiiiiiiiiiiiiiiiie e 190

9.3.9 Feature (from INterNalSIrUCIUIES)eeiiiiiiiiiii et 190

9.3.10 InvocationAction (from INVOCAtIONACLIONS)coeiiiiiiiiiiiiieieie e 191

9.3.11 Parameter (from CollaborationS)c.eeiiiiiiiiiiiiiiiie e 191

9.3.12 POt (frOM POMS) ..ttt ettt et e e e e e e s et e e et e e e e e e e e e aannbeeesseeeeas 192

9.3.13 Property (from INterNalStrUCIUIES)ueviiiiiiiiiiii it 196

9.3.14 StructuredClassifier (from INternalStructures)ccueviiiiiiiiiiiiiee e 198

9.3.15 Trigger (from INVOCAtIONACLIONS) ...t e e e e 202

9.3.16 Variable (from StruCtUr@dACHVITIES)uuueieiiiiaiiiiiiiiie e 203

0.4 DIagramMS . .ttt 203

© ISO/IEC 2012 - All rights reserved Y

ISO/IEC 19505-2:2012(E)

10. Deployments 205
10.1 OVEIVIEW . e e e e 205
10.2 AbStract Syntaxt e 205
10.3 Class DeSCIIPLIONSottt 209

10.3.1 Artifact (from Artifacts, NOAES)ocoiueiiiiiiiii e 209
10.3.2 CommunicationPath (from NOUES)euiiiiiiiiiiiiiie e 211
10.3.3 DeployedArtifact (from NOAES)ccooueiiiiiiiiiei e 212
10.3.4 Deployment (from ComponentDeployments, NOAES)cccoeeiiiiiiiiiiiiiieeiieaeee e 213
10.3.5 DeploymentSpecification (from ComponentDeployments)ccccvveveeeieieeiniiniiiiieeeenn. 215
10.3.6 DeploymentTarget (from NOGES)uueiiiiiiiiiiiiiiii e 217
10.3.7 DEVICe (frOM NOUES)eeeteeeiiiieeeeee ittt ettt e e e e e e s e bbb e e e e e e e e e e e e e e annnbbeeeeeas 218
10.3.8 ExecutionEnvironment (from NOGES)eiiiiiiiiiiiiiiiiieiie e 219
10.3.9 InstanceSpecification (fromM NOGES)uueiiiiiiiiiiiiiie e 220
10.3.10 Manifestation (from ArtifactS)cooeeiiiiiii e 221
10.3.11 NOE (frOM NOGES)veeeeiiiiiieeeiie ittt ee e e e e st e e e e e e e e e s e nbnebeeeeeas 222
10.3.12 Property (fromM NOGES)coeiiiiiiiiiiiiiie ettt e e e e e e e ebeee e 224
10,4 DIagramS . .t 225

Subpart Il - BENAVIOT ...ooveiiie e 229

11, ACHIONS . 231
11,0 OVEIVIEW . e e e e e e e e e e 231
11.2 ADSEract SyntaxXot e 233
11.3 Class DesCriptioNS e e 247

11.3.1 AcceptCallAction (from ComPIEtEACIONS)ccoeeiiiiiiiiiiiiiiee e 247
11.3.2 AcceptEventAction (from CompleteACLIONS)ooiuiiiiiiiiiieee e 248
11.3.3 Action (from BASICACHIONS) ...ceieiiiiiiiiiee ettt e e e e e e e e s b b e e eeeaaens 250
11.3.4 ActionInputPin (from StruCtUr@dACLIONS)coeiiiiiiiiiiiiiiie e 251
11.3.5 AddStructuralFeatureValueAction (from Intermediate ACtions)cceeveeeiiiiriiniiiiiiinnen. 252
11.3.6 AddVariableValueAction (from StructuredACtioNS)eeeiiiiiiiiiiiiiiiiieeee e 254
11.3.7 BroadcastSignalAction (from Intermediate ACtioNS)ueeeiiiieiiiiiiiiiiiieeeeee e 255
11.3.8 CallAction (from BASICACLIONS)ccoiiiiiiiiiiiii ettt e e e e e 257
11.3.9 CallBehaviorAction (from BASICACLONS)ccouiiiiiiiiiiiiiiiiieeae e 257
11.3.10 CallOperationAction (from BaSICACHIONS)coiieiiiiiiiiiiiiiiieeee et 259
11.3.11 ClearAssociationAction (from Intermediate ACtIONS)eeeveiiiiiiiiiiiiiiiieee e, 260
11.3.12 ClearStructuralFeatureAction (from Intermediate ACtionS)cocvveeviiiieiiiiniiiiiiiieeen, 261
11.3.13 ClearVariableAction (from StructuredACtiONS)cccuviiiiiiiiiieee e 262
11.3.14 CreateLinkAction (from Intermediate ACtiONS)ccuviiiiiiiiieiiie e 263
11.3.15 CreateLinkObjectAction (from CompleteACtioNS)cceveieiiiiiiiiiiiiiiiiieee e, 265
11.3.16 CreateObjectAction (from IntermediateACtioONS)eeeeiiiiiiiiiiiiiiiiieeee e 266
11.3.17 DestroyLinkAction (from Intermediate ACtioNS)vuviiiiiiiiiiiiiiiiieee e 267
11.3.18 DestroyObjectAction (from Intermediate ACtioNS)cceveiieriiiiiiiiiiiiieeee e 268
11.3.19 InputPin (from BASICACHONS) ...ccoiiiiiiiiiiiiii ettt e e e e e e e 269
11.3.20 InvocationAction (from BASICACHONS)ceiiiiiiiiiiiiiiiiiiieie e 270
11.3.21 LinkAction (from Intermediat@ ACtIONS)coooiiiiiiiiiiiiiiiiieee e 270
Vi © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

11.3.22 LinkEndCreationData (from IntermediateACtioNS)cceevviiiiciiiiiiiiiee e 272
11.3.23 LinkEndData (from IntermediateActions, CompleteActions)cccccvvvveeeeevvivcvinnieneenn. 273
11.3.24 LinkEndDestructionData (from Intermediate ACtions)ccccvvviiiveeeeee e, 275
11.3.25 MultiplicityElement (from BaSICACHONS)cccoiiiiiiiiiiiii e e e e e e e ee e 276
11.3.26 OpaqueAction (from BaSICACHONS) ...ueviieeeiiiiiiiiiee e e e e e e s e s ere e e e e e e e e s s s eeeeeee s 276
11.3.27 OutputPin (from BaSICACHONS)uvueriiiiiiieeeeeeeisseiieie e e e e e e s e s sstr e e e e e e e e e s s e nnnrnnreeeees 277
11.3.28 Pin (from BASICACHONS) ..viivieeiiiiiiiiiieie e e e e e e e s e s e e e e e e e s e s st an e eeeeeeeessnnannnreneneeees 278
11.3.29 QualifierValue (from Complet@ACHIONS) ...ccooiveeiiiiieeiiie e e 278
11.3.30 RaiseExceptionAction (from StructuredACLIONS)cvvieeeeiiiiiiiiieeee e 279
11.3.31 ReadExtentAction (from ComPpleteACLIONS)vviiiiiiiieeeeieiicce e 280
11.3.32 ReadIsClassifiedObjectAction (from CompleteActions)cccccciiveiieee e 281
11.3.33 ReadLinkAction (from Intermediate ACLIONS)ueeiiiiiiiaiiiieiee e 282
11.3.34 ReadLinkObjectEndAction (from CompleteACtIONS)cccovviiiiiiiiiiiiiiiiee e 284
11.3.35 ReadLinkObjectEndQualifierAction (from CompleteActions)ccccceeeviiiiiiiiieeeenenenn. 285
11.3.36 ReadSelfAction (from Intermediate ACHIONS)uuiiiiiiiieeiie e 286
11.3.37 ReadStructuralFeatureAction (from Intermediate Actions)ccccvveeeeiiieiiiinniiiiiiieeeen, 288
11.3.38 ReadVariableAction (from StructuredACtIONS)uuiiiiiiiiiiiiiie e, 289
11.3.39 ReclassifyObjectAction (from CompleteACtIONS)evieviiaiiiiiiiiiiiie e 290
11.3.40 ReduceAction (from CompleteACIONS)cooiiiiiiiiiiiiiie e 291
11.3.41 RemoveStructuralFeatureValueAction (from Intermediate Actions)ccoocccvviveneenn. 292
11.3.42 RemoveVariableValueAction (from StructuredACtioNS)coooiiiiiiiieiiee e 294
11.3.43 ReplyAction (from COMPIELEACHONS) ...cceviiiiiiiiiiiiiie it 295
11.3.44 SendObjectAction (from IntermediateACtiONS)uueeiiiiiiaiiiiiie e 296
11.3.45 SendSignalAction (from BaSICACHONS)cccoiiiiiiiiiiiiiiiie e 297
11.3.46 StartClassifierBehaviorAction (from CompleteACtionS)cooooiiiieiieieiieeieeniiiieeen, 298
11.3.47 StartObjectBehaviorAction (from CompleteACtIONS)coveeiiiiiiiiiiiiiieieiee e 299
11.3.48 StructuralFeatureAction (from Intermediate ACtionS)ooociueiiiiiiiieiee e, 300
11.3.49 TestldentityAction (from Intermediate ACtIONS)ueeeiiiiiiiiiiiiiie e 302
11.3.50 UnmarshallAction (from CompleteACtIONS)cocuuiiiiiiiiiiee e 303
11.3.51 ValuePin (from BaSICACLIONS)c..ueiiiiiiiiieee ettt e ee e 304
11.3.52 ValueSpecificationAction (from Intermediate ACtioNS)c.oooiiiiiiiiiiiiie e 305
11.3.53 VariableAction (from StrucCturedACLIONS)cooiiiiiiiiiiiie e 306
11.3.54 WriteLinkAction (from Intermediate ACtioNS)cc.ueueiiiiiiiiiiiiiiee e 306
11.3.55 WriteStructuralFeatureAction (from Intermediate ACtionS)ccccvvveiieeeiieiiiiiiiiiiiieen, 307
11.3.56 WriteVariableAction (from StructuredACHIONS)euveiiiiiiiaiiiiiie e 308
11,4 DIagramS . .ottt 309
12. ACHIVITIES . . oo 311
12.1 OVEIVIEW . .ottt ettt e e e e 311
12.2 ADSEract SYNtaxX 313
12.3 Class DeSCrptiONSo ittt e e 325
12.3.1 AcceptEventAction (as SPECIAlIZEA)c.euiiiiiiiiiiiiiie e 325

12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities,
CompleteStruCtUredACHVILIES) ... 327
12.3.3 ActionInputPin (as SPeCIAliZEd)uuuiiiiiiiiieie e 331

12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,

SEUCIUFEAACTIVITIES) ...vetieeieeiie ettt e e e e e e e e s e e eeaeas 332

© ISO/IEC 2012 - All rights reserved Vii

ISO/IEC 19505-2:2012(E)

viii

12.3.5 ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities,

INtErMEIAEACHVITIES) ..vvveieiieee e et e e e s e e s e e e e e e e e e s s nnnenreneees 342
12.3.6 ActivityFinalNode (from BasicActivities, Intermediate ACtivities)ccccccveveerviiiicvvvennnnn. 347
12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities, IntermediateActivities,

StructuredActivities, CompleteActivities, CompleteStructuredActivities) 350
12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,

IntermediateActivities, CompleteStructuredACtiVIties)ccccovevviiivieeeee e 351
12.3.9 ActivityParameterNode (from BasiCACHVItIES)ccvvvviiiiiieeee e 354
12.3.10 ActivityPartition (from Intermediate ACtiVItIES)ccevviiiiiiiie e 358
12.3.11 AddVariableValueAction (as specialized)c.ooccuriiriiieeee e 363
12.3.12 Behavior (from COMPIELEACHVITIES)vvvieiiiieeeie it s s e e e e e e e eee e 364
12.3.13 BehavioralFeature (from CompleteACtiVItIES)ccuuviiiiiiiieiiee e 365
12.3.14 CallBehaviorAction (as specialized) ... 366
12.3.15 CallOperationAction (as SPECIAlIZEA)eeuiiiiiiiiiiie e 368
12.3.16 CentralBufferNode (from Intermediate ACtIVItIES)eveeeiiiiiiiiiiiiiii e, 369
12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)ccccccovviiiiirinnen. 370
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities) 371
12.3.19 ControlFIow (from BaSICACHVITIES)eeuiiiiiiiiiiiiiiiiiiiee it 374
12.3.20 ControlNode (from BaSiCACLVILIES)uueieiiiiiiiiiiiiiiiie et 375
12.3.21 DataStoreNode (from CompleteACHIVItIES)ooviiuiiiiiiiiieie e 377
12.3.22 DecisionNode (from Intermediate ACtiVItIES)occcueiiiiiiiiiiie e 378
12.3.23 ExceptionHandler (from ExtraStructuredACHVItIES)cevieiiiiiiiiiiiiiiieeee e 381
12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities)cccvveeeee.. 384
12.3.25 ExpansionKind (from ExtraStructuredACtiVItIES)c..uvveeeiieiiiiiiiiieec e 385
12.3.26 ExpansionNode (from ExtraStructuredACHVItIES)eueeiieriiiiiiiiiiiiiieeee e 385
12.3.27 ExpansionRegion (from ExtraStructuredACtVItIES)eeviiieiiiiiiiiiiiiieie e, 386
12.3.28 FinalNode (from IntermediateACLIVILIES)cciiiiiiiiiiiiie i 392
12.3.29 FlowFinalNode (from Intermediate ACtiVItIES)ceuvviiiiiiiiee e 394
12.3.30 ForkNode (from Intermediate ACHIVILIES)oooiiiiiiiiiiiie i 395
12.3.31 InitiaINode (from BaSICACHVILIES)cc.uuuiiiiiiiiiei e 397
12.3.32 InputPin (from CompleteStructuredACIVIIES)ccuueiiiiiiiieeee e 398
12.3.33 InterruptibleActivityRegion (from Complete ACtiVItIES)cocoveeiiiiiiiiiiiiiieee e, 399
12.3.34 JoinNode (from CompleteActivities, Intermediate ACtiVities)ccceeveeeiieiiiiiiiiiiiiieen. 401
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)cccvvvveeeeen. 404
12.3.36 MergeNode (from Intermediate ACHIVItIES)cooiiiiiiiiiiiiiii e 406
12.3.37 ObjectFlow (from BasicActivities, COomplete ACtIVItIES)ccoeeieiiiiiiiiiiiiiiiieeee e, 408
12.3.38 ObjectNode (from BasicActivities, COmplete ACtiVItIES)ccoerviiiiiiiiiiiiiiieeeeiiiieee, 413
12.3.39 ObjectNodeOrderingKind (from CompleteACtiVItIES)cccveeiiiiiiiiiiiiiiieiieee e, 416
12.3.40 OutputPin (from CompleteStructuredActivities, StructuredActivities)occcvvvveeeenn. 417
12.3.41 Parameter (from COmMPIEtEACHVILIES)eeiiiiiiiiiiiiiiieie e 417
12.3.42 ParameterEffectKind (from CompleteACtiVItIES)c.euvueiiiieiiiiiiiieeee e, 419
12.3.43 ParameterSet (from CompleteACtIVILIES)oooiiiiiiiiiiiiiiieie e 419
12.3.44 Pin (from BasicActivities, COMPIEtEACHVITIES)cc.uvviiiiiiiieeiieiiiiiee e 421
12.3.45 SendObjectAction (as SPECialiZed) ... 428
12.3.46 SendSignalAction (as specialized) ... 429
12.3.47 SequenceNode (from StructuredACHVItIES)coiiiiiiiiiiiiiie e 430
12.3.48 StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities) 431
12.3.49 UnmarshallAction (as SPeCialiZed)ceieiiiiiiiiiiiiiiiie e 434
12.3.50 ValuePin (8S SPECIAIIZEA)cuiiii it 435
12.3.51 ValueSpecificationAction (as specialized) ... 435
12.3.52 Variable (from StruCtur@dACHVItIES)eeiiiiiiiiiiiiiie e 436

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

12,4 DIagramS . .ottt 438
13. Common Behaviors 443
13,1 OVEBIVIEW . oottt et e e e e e 443
13.2 ADSEract SYNtaxXo 447
13.3 Class DeSCriptioNSo ittt e e e 452
13.3.1 AnyReceiveEvent (from CommuNIiCatiONS)ccccvviiiiiriiieeeie s cciirerr e e e e e e e e s reee e 452

13.3.2 Behavior (from BaSICBENAVIOIS)uuiiiiiieeieiiiiiiiiieeiiee e e e e e e s st e e e e e e e e s s s snnnenrneeeeeee s 453

13.3.3 BehavioralFeature (from BasicBehaviors, Communications)ccccccceeeeeriiiiiienneneenn. 456

13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)cccccceeeeveninivevreneenn. 457

13.3.5 CallConcurrencyKind (from COmMmMUNICAtIONS)uuuiiiiieiiaaiiiiiiiiie e 458

13.3.6 CallEvent (from COMMUNICALIONS)eeeiiiiiiiaiiiiiiiie et e et e e e e e e e eeeeeeas 459

13.3.7 ChangeEvent (from COMMUNICALIONS)coiiiiiiiiiiiiiiiiiiee et 460

13.3.8 Class (from COMMUNICALIONS)uuvueiiiiiiiieaea ettt e e e e e e e e e s snbee e eeeeas 461

13.3.9 Duration (from SIMPIETIME)euiiiiiiiiiiie e e e eeeeaae s 462

13.3.10 DurationConstraint (from SimpleTime)oooi i 462

13.3.11 DurationInterval (from SIMPIETIME) ...ccoeiiiiiiiiie e 464

13.3.12 DurationObservation (from SimpleTime)oooiiiiiiiiiii e 465

13.3.13 Event (from COMMUNICALIONS)uuiiiiiiiiiieea ettt e e e e e e e e e e e enb e beeee s 465

13.3.14 FunctionBehavior (from BasicBehaviors) ..., 466

13.3.15 Interface (from COMMUNICALIONS)eeiiiiiiiiiiiiiiiiiii e e e 467

13.3.16 Interval (from SIMPIETIME)eiiiiiiiiiiii e e e e 467

13.3.17 IntervalConstraint (from SIMPIeTIME)ccoiiiiiiiiiiiii e 468

13.3.18 MessageEvent (from COmMMUNICALIONS)ooueiiiiiiiiieeae e e e 469

13.3.19 Observation (from SIMPIETIME)uuiiiiiiiiiiiiie e e e e e e 469

13.3.20 OpaqueBehavior (from BasiCBENAVIOIS)oocuiiiiiiiiiiiaa e 470

13.3.21 OpaqueExpression (from BasiCBENAVIOIS)c.uuiiiiiiiiiiiiiiiiiieeee e 471

13.3.22 Operation (from COMMUNICALIONS)eeeiiiiiieiiii ittt ee e e e e e e e e e snbe e e eee s 471

13.3.23 Reception (from COMMUNICALIONS) ...cceeiiiiiiiiiiiiiiiee e a e 472
13.3.24 Signal (from COMMUNICALIONS)uveiieiiiiaieiiiiititiie e e e eee e e e e e e s e eibbbb e e e eaaaeeas 473

13.3.25 SignalEvent (from COMMUNICALIONS) ...cceeiiiiiiiiiiiiiiiieiee et e e ee e 474

13.3.26 TimeConstraint (from SIMPIETIME)coiiiiiiiiiiee e 475

13.3.27 TimeEvent (from SIMPIETIME)uuuiiiiiiiiieie e 476

13.3.28 TimeExpression (from SIMPIETIME)cooviiiiiiiiie e 477

13.3.29 Timelnterval (from SIMPIETIME)ueiiiiiiiiiiiii e 478

13.3.30 TimeObservation (from SIMPIETIME)coiiiiiiiiiiie e 479

13.3.31 Trigger (from COMMUNICALIONS)uuviiiiiiiiieaeeiii ittt e e e e e e e e e s e nb e eee s 479

14. InteraCtions 481
141 OVEIVIEW . o ettt e e e e e e e 481
14.2 ADSEract SYNtaX 482
14.3 Class DeSCIIPiONSot e 488
14.3.1 ActionExecutionSpecification (from BasicINteractions)cccoeeecvvvveveeee e vescciveeeeenn. 488

14.3.2 BehaviorExecutionSpecification (from BasicInteractions)cccccceceveeeeiiiviviinineneeeenn, 489

14.3.3 CombinedFragment (from FragmentS)coovoiiiiiiiiiiiieeee e e e e e 490

14.3.4 ConsiderlgnoreFragment (from Fragments)ccccuverieiieiieeiinsiiiiiieereee e e e e e e s s snennneeeees 495

© ISO/IEC 2012 - All rights reserved iX

ISO/IEC 19505-2:2012(E)

14.3.5 Continuation (from Fragments)cccuuiiiiiiiieee e e e e e s rrae e 496

14.3.6 DestructionOccurrenceSpecification(from Basiclnteractions)cccccceeeeeeveicvivivvennnn. 499

14.3.7 ExecutionOccurrenceSpecification (from BasicInteractions)ccccccceveveevniicicivvvennnnn. 499

14.3.8 ExecutionSpecification (from BasiCINteractions)cccvvveeveereriiisiiiiiiieeeeee e sesvvnenees 500

14.3.9 Gate (from FragmMeENTS)eeeiiieeeiii it e e e e e e e s s s st ee e e e e e e s s et e e e e e eeeseanannsnrrreeeees 501

14.3.10 GeneralOrdering (from BasiCINteractions)cccccuvririiireeeeiiiicsiiieee e e e e e e s e seneneveeee s 502

14.3.11 Interaction (from Basiclnteraction, Fragments)cceeuvireeeeiiiiciiiiieieeeee e seeevveeeees 503

14.3.12 InteractionConstraint (from Fragments)ccooiiiiiiiiiiiriiiee e e e e e 506

14.3.13 InteractionFragment (from Basiclnteractions, Fragments)cccccccceveeeevieicccvnvnennenn. 507
14.3.14 InteractionOperand (from FragmentS)cccooiiiiiiiiiiiiieiiee e e e s s aeee e 507

14.3.15 InteractionOperatorKind (from Fragments)ccccuviiiiiiereee e 508

14.3.16 InteractionUse (from FragmentS)ueeieiiiiiiiiiiiiiie e 509

14.3.17 Lifeline (from BasicInteractions, Fragments)c...eeieiiiiiriiiiiiiiiiiieiiee e 512

14.3.18 Message (from BasiCINtEraCtioNS)cccieiiiiiiiiiiiiiiiiiiiee e 513

14.3.19 MessageEnd (from BasiCINtEraCtioNS)oouiiiiuiiiiiiiiiiiaee e 516

14.3.20 MessageKind (from BasSiCINtEraCtionNS)coooeiiiiiiiiiiiiiieeee e 516

14.3.21 MessageOccurrenceSpecification (from Basiclnteractions)ccccccceeeeeeniiniiiivieenenn. 517

14.3.22 MessageSort (from BasiCINtEracCtions)cooiiiiiiiiiiiiiiiiia e 518

14.3.23 OccurrenceSpecification (from BasicINteractions)cccceeeeiiiiiiiiiieeiieeeee e, 518

14.3.24 PartDecomposition (from Fragments) ... 519

14.3.25 Statelnvariant (from BasSiCINtEractions)oooiiiiiiiiiiiiiieieee e 522

14,4 DIagramS . .ttt 523
15. State Machines 543
15,0 OVEIVIEW . . 543
15.2 ADSEract SYyNtaxttt 543
15.3 Class DeSCIIPLONSt e e 546
15.3.1 ConnectionPointReference (from BehaviorStateMachines)ccccccciiiiiniiiiiiiiinenn. 546

15.3.2 FinalState (from BehaviorStateMachines)ooouiiiiiiiiiiiini e, 549

15.3.3 Interface (from ProtocolStateMachingS)coooiiiiiiiiiiiiiiie e 550

15.3.4 Port (from ProtocolStateMacChiNgS)coiiiiiiiiiiiiiiiie e 551

15.3.5 ProtocolConformance (from ProtocolStateMachings)ccccooiiiiiiiiiiiiiie, 551

15.3.6 ProtocolStateMachine (from ProtocolStateMachings) ..., 552

15.3.7 ProtocolTransition (from ProtocolStateMachines) ..., 554

15.3.8 Pseudostate (from BehaviorStateMachings)ccccuiiiiiiiiiiiiiiiieee e 557

15.3.9 PseudostateKind (from BehaviorStateMachines)c.ceieiiiiiiiiiiiiiiieeeee e 564

15.3.10 Region (from BehaviorStateMachinesS)coooiiiiiiiiiiiiiiie e 565

15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines)ccccccceviiiiiiiiinennenn. 567

15.3.12 StateMachine (from BehaviorStateMachines)c.ccoueeiiiiiiiiiiiiii e, 581

15.3.13 TimeEvent (from BehaviorStateMachines)occooiiiiiiiiiiii e, 588

15.3.14 Transition (from BehaviorStateMachinesS)ccccuuuiiiiiiiiiiiiiie e 589

15.3.15 TransitionKind (from BehaviorStateMachines)cccooooiiiiiiiiiiiiii e, 597

15.3.16 Vertex (from BehaviorStateMachinesS)coooiiiiiiiiiiiiiiiie e 600

15,4 DIagramMS . .t 600
16. USe CasSesS 605

X © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

16. L OVeIVIEBW . .ottt e e e 605
16.2 AbStract SyntaxXt 605
16.3 Class DeSCIIPtiONSottt e e 606
16.3.1 ACOF (FrOM USECASES) .eeeiiiiieeiiiiiitietie ittt e e e e e e ettt e e e e e e s e e st b et e e e e e e e e e e s e annbnnbeeeeaas 606

16.3.2 Classifier (from USECASES)ccoiiiiieiiiiiie ettt ettt et e e e e e e e e s e anbeebeeeeeas 608

16.3.3 EXtENd (frOM USECASES) ..iiiiiiiiiiiiitiiiie ittt ettt et e e e ettt e e e e e e e e e e s e anbenbeeeeeas 609

16.3.4 ExtensionPoint (from USECASES)uuuriiiiiiiiaaaiiiai ittt e e e e e e e e ee e eeeeas 611

16.3.5 Include (from USECASES) ...cceeiiiiiitiiiieee ettt e ettt e e e e e e e e e s e nnn b b e e e e eaaeaens 612

16.3.6 USECASE (frOM USECASES) ...cceiiiiiiiiiiiiit et e e ettt e e e e e e ettt et e e e e e e e e s e s nbnebeeeeeas 614

16.4 DIagramsot 619
Subpart Il - Supplement ... 625
17. Auxiliary CONSEIIUCES e 627
17,0 OVEIVIEW . .ttt e e e 627
17.2 InformationFIoOwWs e 627
17.2.1 InformationFlow (from INformationFIOWS)ocoiuiiiiiiiiii e 628

17.2.2 Informationltem (from INformationFIOWS)cc.uuuiiiiiiiiiiiie e 630

17.3 MOdeIS ... 633
17.3.1 Model (from MOEIS)eveeeiiieeeeie et e e e e e e e e e e s e enrnaeeees 633

17.4 Templates 635
17.4.1 ParameterableElement (from Templates)cooiiciiiiiiiiiie e 637

17.4.2 TemplateableElement (from TeMPIAtES)cccvvviiiiiiiiiee e 639

17.4.3 TemplateBinding (from TEMPIAES)eevviiveeiiiiiicee e 641

17.4.4 TemplateParameter (from TemMPIAtes)coeeeeiiiiiiiiee e 642

17.4.5 TemplateParameterSubstitution (from Templates)cccccccevviiciiiiiiiiieee e 644

17.4.6 TemplateSignature (from TEMPIAtES)cceveeeeiiiii i 644

17.4.7 Classifier (from TemMPIAteS)ccocuviiiiiii e e e e e e s rraee s 646

17.4.8 ClassifierTemplateParameter (from Templates)cvvvveeiiiiiiciiiiiriee e 651

17.4.9 RedefinableTemplateSignature (from Templates)cccccceveiiiiiiiiiirieeee e, 652

17.4.10 Package (from TEMPIALES)uuveriiiiiiieieee et e e e e e s e e e e e e e s e e s enreaeaeeeeeas 653

17.4.11 PackageableElement (from TeMPIAtES)ccooiivciiiiiiiiiiee e 655

17.4.12 NamedElement (from TEMPIALES)vveeiiiieeeeiiiie e 656

17.4.13 StringEXpression (from TEMPIALES) ...ccceeeeeiiiiciiiee e e e e 658

17.4.14 Operation (from TEMPIALES)cccvvuiiiiiiiie e e s e e reeeeeas 659

17.4.15 Operation (from TEMPIALES)cccevuviiiiiiiie e e e e eeeeas 661

17.4.16 OperationTemplateParameter (from Templates)cccccceevviiiiiiiiieieeee e 661

17.4.17 ConnectableElement (from TempIates)ccccvviiiriiieee e 662

17.4.18 ConnectableElementTemplateParameter (from Templates)ccccccccevvviivcviviinenenennn. 663

17.4.19 Property (from TEMPIALES) ..cceueeeiiiiiiiie e e e s r e e e e e e s e e e aeeeeeas 664

17.4.20 ValueSpecification (from TEMPIALES)evveiieeiii i 665

18. Profiles 667
18. 1 OVEIVIEW . .ttt e e 667

© ISO/IEC 2012 - All rights reserved Xi

ISO/IEC 19505-2:2012(E)

18.1.1 Positioning profiles versus metamodels, MOF and UMLccccccviviiieee e, 667

18.1.2 Profiles History and design reqUIrEMENESc.covvciuvriiriieree e et e e e e e e eenrvneee e 667

18.2 AbStract Syntax e 669

18.3 Class DesCriptioNS 670

18.3.1 Class (from Profil@S)ueeieiiiiiiiiie e 670

18.3.2 Extension (from ProfileS) ... 671

18.3.3 ExtensionEnd (from ProfileS)coooeiiiii e 674

18.3.4 Image (from Profil@S) it 675

18.3.5 Package (from ProfileS) ...t 676

18.3.6 PackageableElement (from ProfileS) ... 677

18.3.7 Profile (from Profil@S)eeeiiiiiiiii e 678

18.3.8 ProfileApplication (from Profil@S)euiiiiiiiiii e 685

18.3.9 Stereotype (from ProfileS) ... 687

18.4 DIagramsS . ..t 694
SUDPArt IV - ANNEXES oo 697
ANNEX A: Diagrams . ..o 699
AnNnex B: KeYWOrdsS. 705
Annex C: Standard Stereotypes. 711
Annex D: Component Profile Examples 719
Annex E: Tabular Notations e 723
Annex F: Classifiers Taxonomy 727
Annex G: XMI Serialization and Schema. 729
Annex H: UML Compliance Level XMI Documents 731
Annex I: Legal Information 733
IND X . 737
Xii © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Foreword

I1SO (the International Organization for Standardization) is a worldwide federation of national standards bodies (1SO
member bodies). The work of preparing International Standards is normally carried out through 1SO technical
committees. Each member body interested in a subject for which atechnical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
IS0, also take part in the work. 1SO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the |SO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of 1SO/IEC 19505 may be the subject of patent
rights. 1SO shall not be held responsible for identifying any or all such patent rights.

This International Standard was prepared by Technical Committee |SO/IEC/TC JTC1, Information technology, in
collaboration with the Object Management Group (OMG), following the submission and processing as a Publicly
Available Specification (PAS) of the OMG Unified Modeling Language (UML) specification.

This International Standard is related to:

« |ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-
ODP).

This International Standard consists of the following parts, under the general title Information technology - Open
distributed processing - UML specification:

« Part 1: Infrastructure
« Part 2: Superstructure

Apart from this Foreword, the text of this International Standard is identical with that for the OMG specification for
UML, v2.4.1, Part 2.

© ISO/IEC 2012 - All rights reserved Xiii

ISO/IEC 19505-2:2012(E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability, and portability
can be integrated.

RM-ODP Part 2 (1SO/IEC 10746-2) defines the foundational concepts and modeling framework for describing distributed
systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and, in a number
of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts that are related but not identical
(e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using UML with
appropriate extensions (using stereotypes, tags, and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
2 of the RM ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint
specifications defined by the RM-ODP.

The Unified Modeling Language (UML) is a general-purpose modeling language with a semantic specification, a
graphical notation, an interchange format, and a repository query interface. It is designed for use in object-oriented
software applications, including those based on technol ogies recommended by the Object Management Group (OMG). As
such, it serves a variety of purposes including, but not limited to, the following:

» ameans for communicating requirements and design intent,
 abasisfor implementation (including automated code generation),
 areverse engineering and documentation facility.

As an international standard, the various components of UML provide a common foundation for model and metadata
interchange:

« between software development tools,
« between software developers, and
« between repositories and other object management facilities.

The existence of such a standard facilitates the communication between standardized UML environments and other
environments.

While not limited to this context, the UML standard is closely related to work on the standardization of Open Distributed
Processing (ODP).

Xiv © ISO/IEC 2012 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 19505-2:2012 (E)

Information technology - Object Management Group
Unified Modeling Language (OMG UML), Superstructure

1 Scope

1.1 General

This International Standard defines the Unified Modeling Language (UML), revision 2. The objective of UML is to
provide system architects, software engineers, and software developers with tools for analysis, design, and
implementation of software-based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming, and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly more
precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly improved
capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and notation is required. UML meets the following requirements:

» A formal definition of acommon MOF-based metamodel that specifies the abstract syntax of the UML. The abstract
syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the rules for
combining these concepts to construct partial or complete UML models.

« A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a technology-
independent manner, how the UML concepts are to be realized by computers.

» A specification of the human-readable notation elements for representing the individual UML modeling concepts as
well as rules for combining them into a variety of different diagram types corresponding to different aspects of
modeled systems.

» A detailed definition of ways in which UML tools can be made compliant with this International Standard. Thisis
supported (in a separate specification) with an XML -based specification of corresponding model interchange formats
(XMI) that must be realized by compliant tools.

2 Conformance

2.1 General

UML is alanguage with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

© ISO/IEC 2012 - Al rights reserved 1

ISO/IEC 19505-2:2012(E)

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to a large community of users. For that reason, this International Standard defines a small number of
compliance levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible
language subsets. However, in recognition of the need for flexibility in learning and using the language, UML also
provides the concept of language units.

2.2 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-
coupled modeling concepts that provide users with the power to represent aspects of the system under study according to
a particular paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete
event-driven behavior using a variant of the well-known statecharts formalism, while the Activities language unit
provides for modeling behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of
UML means that they need only be concerned with those parts of the language that they consider necessary for their
models. If those needs change over time, further language units can be added to the user’s repertoire as required. Hence,
a UML user does not have to know the full language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the
individual segments within this structure do not represent separate compliance points. The latter strategy would lead to an
excess of compliance points and result to the interoperability problems described above. Nevertheless, the groupings
provided by language units and their increments do serve to simplify the definition of UML compliance as explained
bel ow.

2.3 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of
modeling concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels.
Compliance levels cut across the various language units, although some language units are only present in the upper
levels. As their name suggests, each compliance level is a distinct compliance point.

For ease of model interchange, there are just four compliance levels defined for the whole of UML:

+ Level 0 (LO). Thiscompliance level isformally defined in the UML Infrastructure. It contains a single language unit
that provides for modeling the kinds of class-based structures encountered in most popular object-oriented
programming languages. As such, it provides an entry-level modeling capability. More importantly, it represents a
low-cost common denominator that can serve as a basis for interoperability between different categories of modeling
tools.

+ Level 1(L1). Thislevel adds new language units and extends the capabilities provided by Level 0. Specificaly, it
adds language units for use cases, interactions, structures, actions, and activities.

+ Level 2 (L2). Thislevel extends the language units already provided in Level 1land adds language units for
deployment, state machine modeling, and profiles.

« Level 3(L3). Thislevel represents the complete UML. It extends the language units provided by Level 2 and adds
new language units for modeling information flows, templates, and model packaging.

The contents of language units are defined by corresponding top-tier packages of the UML metamodel, while the contents
of their various increments are defined by second-tier packages within language unit packages. Therefore, the contents of
a compliance level are defined by the set of metamodel packages that belong to that level.

2 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this International
Standard for achieving this is package merge (see “ PackageMerge (from Kernel)” on page 118). Package merge allows
modeling concepts defined at one level to be extended with new features. Most importantly, this is achieved in the context
of the same namespace, which enables interchange of models at different levels of compliance as described in ““Meaning
and Types of Compliance” on page 6.

For this reason, all compliance levels are ultimately merged into a single core “UML” model package that defines the
common namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown in Figure
2.1. In this model, “L0" is originally an empty package that simply merges in the contents of the Basic package from the
UML Infrastructure. This package is then merged into the UML model. Package L0 contains elementary concepts such as
Class, Package, DataType, Operation, etc. merged in from Basic (see the Unified Modeling Language: Infrastructure
specification for the complete list of contents of this package).

«merge»

LO

Figure 2.1 - Level 0 package diagram

At the next level (Level 1) the packages merged into Level 0 and their contents are extended with additional packages as
shown in Figure 2.2 on page 4. Note that each of the four packages shown in the figure merges in additional packages that
are not shown in the diagram. They are defined in the corresponding package diagrams in this Part of 1SO/IEC 19505.
Consequently, the set of language units that results from this model is more than is indicated by the top-level model in the
diagram. The specific packages included at this level are listed in Table 2.3 on page 8.

© ISO/IEC 2012 - All rights reserved 3

ISO/IEC 19505-2:2012(E)

Dependencies BasicActions]
Kernel

B A

1 ; |
Interfaces —
<. <<I‘he\r\ge>> <<|§'I‘IBFGe>> afnerge» InternalStructures
H"‘n‘ . ; L0 aMErges .7
«mefiges, > [
@ Tral ' 2 el
L1
BasicBehaviors feoo--om-m---mm-ooTT e
< «MErges SFRSKEED- = FundamentalActivities
T K . - gmerges
«m&rgé» :J . !"u
Lot ;r «qurge» \‘a_:\
] £ «merges |
Communications BasicActivities
—| Jfl’ —|\‘J
L
UseCases Basiclnteractions

Figure 2.2 - Level 1 top-level package merges

Level 2 adds further language units and extensions to those provided by the Level 1. The actual language units and

packages included at this level of compliance are listed in Table 2.4 on page 8.

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

1 1 1
SimpleTime L1 Farts
N A Gl
InvacationActions . Intermediatesctivities
- zmerge: ZMerges e
Tl \‘; «IJ'nerge» ,,’ T
.;,:n‘grge» : ’ «merges. - StructuredActivities
StructuredActions Tl ’ o >
e [e emerges -7
«Merges "v-- .. = - ameryes —
__________________________________ N BasicComponents
——1 srnergey) p
BehaviorStateMachines < ',»"’ \ = N . T-..gmerges
roergen ' T
£ amerges 3 TEmerge» IntermediateActions
Fragments K ernérges «MEryes
L : . Profi
Modes / K rones
v —
Adifacts StructuredClasses

Figure 2.3 - Level 2 top-level package merges

Finally, Level3, incorporating the full UML definition, is shown in Figure 2.4 on page 6. Its contents are described in

Table 2.5 on page 9.

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

— 1 1 —
L2 AssocistionClasses
PovverTypes Madels
I3
™ ~. A 7
ProtocolStateMachines . * S . InformationFlows
., ecm\e‘rge» . «merg,é» «mergg»’
R . “ierges - -
\“"n‘ \L\ I“ ,'J f’J «merge».-”"
CampaonertDeployments EMELTEs . . N . et Completesctions
f—-,_____h_ . - | ; L R amerges .-
FimiErges. FON ’ I
T vl - T
’ L3) e e |
_ Camerges T} | T Tttt SRR LT oo zp| Completesdtiviies
PackaginaComponents jZ----7- . Tl
Tl amerge:
. xn‘fe'rge» - -
7 T) o [" emerges T
- £ . smErges . Templates
Collaborstions S | ~.
< EmErgeEs .
fJ I|
L W CompleteStructured A ctivities

Structuredactivities ExtraStructuredctivities

Figure 2.4 - Level 3 top-level package merges

2.4 Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language unitsin al the levels below that level. “Full realization” for alanguage unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level
1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels
without loss of information.

There are two distinct types of compliance. They are:

1. Abstract syntax compliance. For agiven compliance level, this entails:

« compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged
UML metamodel for that compliance level and,

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

6 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

2. Concrete syntax compliance. For a given compliance level, this entails:

» Compliance to the notation defined in the “Notation” sub clauses in this part of 1SO/IEC 19505 for those
metamodel elementsthat are defined as part of the merged metamodel for that compliance level and, by
implication, the diagram types in which those elements may appear. And, optionaly:

« the ability to output diagrams and to read in diagrams based on the XM schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the notation.
Compliance for a given level can be expressed as:

« abstract syntax compliance

- concrete syntax compliance

« abstract syntax with concrete syntax compliance
« abstract syntax with concrete syntax and diagram interchange compliance

Table 2.1 - Example compliance statement

Compliance Summary
Compliance level Abstract Syntax Concrete Syntax Diagram Interchange Option
Level O YES YES YES
Level 1 YES YES NO
Level 2 YES NO NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various “ Semantics” sub clauses of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which
ones to support. Finaly, it is recognized that some implementors and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this
potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementors and profile designers may
also provide informal feature support statements. These statements identify support for additional features in terms of
language units and/or individual metamodel packages, as well as for less precisely defined dimensions such as
presentation options and semantic variation points.

© ISO/IEC 2012 - All rights reserved 7

ISO/IEC 19505-2:2012(E)

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given
in Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 - Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
Deployments Deployments::Artifacts (L2) YES YES Note (4) Note (5)

Deployments::Nodes (L2)

State Machines StateMachines::BehaviorStateMachines (L2) | Note (1) | YES Note (2) Note (3)
StateMachines::ProtocolStateMachines (L3)

Note (1): States and state machines are limited to a single region
Shallow history pseudostates not supported

Note (2): FIFO queueing in event pool

Note (3): Inherited elements indicated using grey-toned lines, etc.

2.5 Compliance Level Contents

Table 2.3 - Metamodel packages added in Level 1

Language Unit Metamodel Packages
Actions Actions::BasicActions
Activities Activities::Fundamental Activities

Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors

CommonBehaviors::Communications

Structures CompositeStructure::Internal Structures
Interactions I nteractions::Basiclnteractions
UseCases UseCases

Table 2.4 - Metamodel packages added in Level 2

Language Unit Metamodel Packages
Actions Actions::StructuredActions
Actions::IntermediateActions
Activities Activities::IntermediateActivities
Activities::StructuredActivities
Components Components.:BasicComponents

8 © ISO/IEC 2012 - Al rights reserved

Table 2.4 - Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Deployments

Deployments::Artifacts

Deployments::Nodes

General Behavior

CommonBehaviors::SimpleTime

Interactions Interactions.:Fragments

Profiles AuxilliaryConstructs::Profiles

Structures CompositeStructures::InvocationActions
CompositeStructures::Ports
CompositeStructures:: StructuredClasses

State Machines StateM achines::BehaviorStateM achines

Table 2.5 - Metamodel packages added in Level 3

Language Unit

Metamodel Packages

Action Actions::CompleteActions

Activities Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes::AssociationClasses
Classes::PowerTypes

Components Components:: PackagingComponents

Deployments Deployments::ComponentDeployments

Information Flows

AuxilliaryConstructs::InformationFlows

Models AucxilliaryConstructs::Models

State Machines StateM achines:: Protocol StateM achines

Structures CompositeStructures::Collaborations
CompositeStructures:: StructuredActivities

Templates AuxilliaryConstructs:: Templates

3 Normative References

ISO/IEC 19505-2:2012(E)

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
part of ISO/IEC 19505. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

« RFC2119, http://ietf.org/rfc/rfc2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, March

1997.

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

» ISO/IEC 19505-1, Information technology — OMG Unified Modeling Language (OMG UML) Version 2.4.1 —
Part 1: Infrastructure (pas/2011-08-11)

» OMG Specification formal/2011-08-05, UML Infrastructure, v2.4.1

» OMG Specification formal/2010-02-01, Object Constraint Language, v2.2

» OMG Specification formal/2011-08-07, Meta Object Facility (MOF) Core, v2.4.1
+ OMG Specification formal/2011-08-09, XML Metadata I nterchange (XMI), v2.4.1
» OMG Specification formal/2006-04-04, UML 2.0 Diagram Interchange

Note—UML 2 is based on a different generation of MOF and XMI than that specified in ISO/IEC 19502:2005 Information
technology - Meta Object Facility (MOF) and 1SO/IEC 19503:2005 Information technology - XML M etadata | nterchange
(XMI) which are compatible with ISO/IEC 19501 UML version 1.4.1.

4 Terms and Definitions

There are no formal definitions in this part of ISO/IEC 19505 that are taken from other documents.

5 Notational Conventions

5.1 Keywords for Requirement Statements

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this part of ISO/IEC 19505
are to be interpreted as described in RFC 2119.

5.2 Annotations on Example Diagrams

Some of the diagram examples in this part of 1SO/IEC 19505 include explanatory annotations, which should not be
confused as being part of the formal UML graphical notation.

In these cases, the explanatory text originates outside the UML diagram boundary, and has an arrow pointing at the
feature of the diagram which is being explained by the annotation. The color rendition of this part of 1SO/IEC 19505
shows these annotations in red.

6 Additional Information

6.1 Architectural Alignment and MDA Support

Clause 1, “Language Architecture” of the Unified Modeling Language: Infrastructure explains how the Unified Modeling
Language: Infrastructure is architecturally aligned with the Unified Modeling Language: Superstructure that
complements it. It also explains how the Infrastructurelibrary defined in the Unified Modeling Language: Infrastructure
can be strictly reused by MOF 2 specifications.

10 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

It is the intent that the unified MOF 2 Core specification must be architecturally aligned with the Unified Modeling
Language: Infrastructure part of this International Standard. Similarly, the unified UML 2.0 Diagram Interchange
specification must be architecturally aligned with the Unified Modeling Language: Superstructure part of this
International Standard.

The OMG's Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This International Standard’s support for MDA is discussed in the Unified Modeling Language:
Infrastructure Annex B, “Support for Model Driven Architecture.”

6.2 On the Run-Time Semantics of UML

The purpose of this sub clause is to provide a very high-level view of the run-time semantics of UML and to point out
where the various elements of that view are covered in the specification. The term “run-time” is used to refer to the
execution environment. Run-time semantics, therefore, are specified as a mapping of modeling concepts into
corresponding program execution phenomena. There are, of course, other semantics relevant to UML specifications, such
as the repository semantics, that is, how a UML model behaves in a model repository. However, those semantics are
really part of the definition of the MOF. Still, it is worth remarking that not every concept in UML models a run-time
phenomenon (e.g., the “package” concept).

6.2.1 The Basic Premises

There are two fundamental premises regarding the nature of UML semantics. The first is the assumption that all behavior
in amodeled system is ultimately caused by actions executed by so-called “active” objects (see “Class (from
Communications)” on page 459). This includes behaviors, which are objects in UML 2, which can be active and
coordinate other behaviors. The second is that UML behavioral semantics only deal with event-driven, or discrete,
behaviors. However, UML does not dictate the amount of time between events, which can be as small as needed by the
application, for example, when simulating continuous behaviors.

6.2.2 The Semantics Architecture

Figure 6.1 identifies the key semantic areas covered by the current standard and how they relate to each other. The items
in the upper layers depend on the items in the lower layers but not the other way around. (Note that the structure of
metamodel package dependencies is somewhat similar to the dependency structure indicated here. However, they are not
the same and should be distinguished. This is because package dependencies specify repository dependencies not
necessarily run-time dependencies.)

© ISO/IEC 2012 - All rights reserved 11

ISO/IEC 19505-2:2012(E)

Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

At the highest level of abstraction, it is possible to distinguish three distinct composite layers of semantic definitions. The
foundational layer is structural. This reflects the premise that there is no disembodied behavior in UML — al behavior is
the consequence of the actions of structural entities. The next layer is behavioral and provides the foundation for the
semantic description of all the higher-level behavioral formalisms (the term “behavioral formalism” refers to aformalized
framework for describing behavior, such as state machines, Petri nets, data flow graphs, etc.). This layer, represented by
the shaded box in Figure 6.1, is the behavioral semantic base and consists of three separate sub areas arranged into two
sub layers. The bottom sub layer consists of the inter-object behavior base, which deals with how structural entities
communicate with each other, and the intra-object behavior base, which addresses the behavior occurring within
structural entities. The actions sub layer is placed on top of these two. It defines the semantics of individual actions.
Actions are the fundamental units of behavior in UML and are used to define fine-grained behaviors. Their resolution and
expressive power are comparable to the executable instructions in traditional programming languages. Actions in this sub
layer are available to any of the higher-level formalisms to be used for describing detailed behaviors. The topmost layer
in the semantics hierarchy defines the semantics of the higher-level behavioral formalisms of UML: activities, state
machines, and interactions. Other behavioral formalisms may be added to this layer in the future.

6.2.3 The Basic Causality Model

The “causality model” is a specification of how things happen at run time and is described in detail in “Common
Behaviors’ on page 441. It is briefly summarized here for convenience, using the example depicted in the communication
diagram in Figure 6.2. The example shows two independent and possibly concurrent threads of causally chained
interactions. The first, identified by the thread prefix ‘A’ consists of a sequence of events that commence with
activeObject-1 sending signal sl to activeObject-2. In turn, activeObject-2 responds by invoking operation opl() on
passiveObject-1 after which it sends signal s2 to activeObject-3. The second thread, distinguished by the thread prefix
‘B, starts with activeObject-4 invoking operation op2() on passiveObject-1. The latter responds by executing the method
that realizes this operation in which it sends signal s3 to activeObject-2.

The causality model is quite straightforward: Objects respond to messages that are generated by objects executing
communication actions. When these messages arrive, the receiving objects eventually respond by executing the behavior
that is matched to that message. The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML specification (i.e., it is a semantic
variation point).

12 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

A1l:s1 A3: s2
activeObject-1 activeObject-2 activeObject-3

A2: op1()l IB1.1: s3

B1: op2()
_—
activeObject-4 passiveObject-1

Figure 6.2 - Example illustrating the basic causality model of UML

The causality model also subsumes behaviors invoking each other and passing information to each other through
arguments to parameters of the invoked behavior, as enabled by CallBehaviorAction (see “CallBehaviorAction (from
BasicActions)” on page 257). This purely “procedura” or “process” model can be used by itself or in conjunction with
the object-oriented model of the previous example.

6.2.4 Semantics Descriptions in the Specification

The general causality model is described in the introductory part of Clause 13 (CommonBehaviors) and also, in part, in
the introduction to Clause 14 (Interactions) and the sub clause on Interaction (14.3.11) and Message (14.3.18).

The structural foundations are mostly covered in two clauses. The elementary level is mostly covered in Clause 7, where
the root concepts of UML are specified. In particular, the sub clauses on InstanceSpecifications (7.3.22), Classes (7.3.7),
Assaciations (7.3.3), and Features (7.3.19). The composites level is described primarily in Clause 9 (Composite
Structures), with most of the information related to semantics contained in sub clauses 9.3.13 (Property concept) and
9.3.14 (StructuredClassifier). In addition, the introduction to this clause contains a high-level view of some aspects of
composite structures.

The relationship between structure and behavior and the general properties of the Behavior concept, which are at the core
of the behavioral base are described in CommonBehaviors (in the introduction to Clause 13 and in sub clause 13.3.2 in
particular).

Inter-object behavior is covered in three separate clauses. The basic semantics of communications actions are described in
the introduction to Clause 11 (Actions) and, in more detail, in the clauses describing the specific actions. These can
potentially be used by an object on itself, so can be inter- or intra-object. The read/write actions can aso be used by one
object to access other objects, so are potentially inter- or intra-object. These actions can be used by any of the behavior
formalisms in UML, so al are potentially inter-object behaviors. However, the interactions diagram is designed
specifically to highlight inter-object behavior, under its concept of message. These are defined in the Interactions clause
(sub clauses 14.3.18 and 14.3.19), while the concepts of events and triggers are defined in the Communications package
of CommonBehaviors (Clause 13). Occurrence specifications are defined in sub clause 14.3.23 of the Interactions clause.
The other two behavior formalisms can be translated to interactions when they use inter-object actions.

All the behavior formalisms are potentially intra-object, if they are specified to be executed by and access only one
object. However, state machines are designed specifically to model the state of a single object and respond to events
arriving at that object. Activities can be used in a similar way, but also highlight input and output dependency between
behaviors, which may reside in multiple objects. Interactions are potentially intra-object, but generally not designed for
that purpose.

© ISO/IEC 2012 - All rights reserved 13

ISO/IEC 19505-2:2012(E)

The various shared actions and their semantics are described in Clause 13. Finally, the higher-level behavioral formalisms
are each described in their own clauses: Activities in Clause 12, Interactions in Clause 14, and State Machines in Clause
15.

6.3 The UML Metamodel

6.3.1 Models and What They Model

A model contains three major categories of elements. Classifiers, events, and behaviors. Each major category models
individuals in an incarnation of the system being modeled. A classifier describes a set of objects; an object is an
individual thing with a state and relationships to other objects. An event describes a set of possible occurrences; an
occurrence is something that happens that has some consegquence within the system. A behavior describes a set of possible
executions; an execution is the performance of an algorithm according to a set of rules. Models do not contain objects,
occurrences, and executions, because those things are the subject of models, not their content. Classes, events, and
behaviors model sets of objects, occurrences, and executions with similar properties. Value specifications, occurrence
specifications, and execution specifications model individual objects, occurrences, and executions within a particular
context. The distinction between objects and models of objects, for example, may appear subtle, but it is important.
Objects (and occurrences and executions) are the domain of a model and, as such, are always complete, precise, and
concrete. Models of objects (such as value specifications) can be incomplete, imprecise, and abstract according to their
purpose in the model.

6.3.2 Semantic Levels and Naming

A large number of UML metaclasses can be arranged into 4 levels with metasemantic relationships among the
metaclasses in the different levels that transcend different semantic categories (e.g., classifiers, events, behaviors). We
have tried (with incomplete success) to provide a consistent naming pattern across the various categories to place
elements into levels and emphasize metarel ationships among related elements in different levels. The following 4 levels
are important:

Type level — Represents generic types of entities in models, such as classes, states, activities, events, etc. These are the
most common constituents of models because models are primarily about making generic specifications.

Instance level — These are the things that models represent at runtime. They don’t appear in models directly (except very
occasionally as detailed examples), but they are necessary to explain the semantics of what models mean. These classes
do not appear at al in the UML2 metamodel or in UML models, but they underlie the meaning of models. We provide a
brief runtime metamodel in the Common Behavior clause, but we do not formally define the semantics of UML using the
runtime metamodel. Such a formal definition would be a major amount of work.

Value specifications — A realization of UML2, compared to UML, is that values can be specified at various levels of
precision. The specification of a value is not necessarily an instance; it might be a large set of possible instances
consistent with certain conditions. What appears in models is usualy not instances (individual values) but specifications
of values that may or may not be limited to a single value. In any case, models contain specifications of values, not values
themselves, which are runtime entities.

Individual appearances of a type within a context — These are roles within a generic, reusable context. When their context
isinstantiated, they are also bound to contained instances, but as model elements they are reusable structural parts of their
context; they are not instances themselves. A realization of UML2 was that the things called instances in UML1 were
mostly roles: they map to instances in an instance of their container, but they are model elements, not instances, because
they are generic and can be used many times to generate many different instances.

14 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

We have established the following naming patterns:
Types : Instances : Values : Uses

Classifier, Class : Instance, Object : InstanceSpecification : Part, Role, Attribute,
XXXUse (e.g., CollaborationUse)

Event : Occurrence : OccurrenceSpecification : various (e.g., Trigger)

Behavior : Execution : ExecutionSpecification : various (e.g., ActivityNode, State),
XXXUse (e.g., InteractionUse)

The appearances category has too wide a variety of elements to reduce to a single pattern, although the form XXXUseis
suggested for simple cases where an appearance of an element is contained in a definition of the same kind of element.

In particular, the word “event” has been used inconsistently in the past to mean both type and instance. The word “event”
now means the type and the word “occurrence” means the instance. When necessary, the phrases “event type” (for event)
and “event occurrence” (for occurrence) may be used. Note that this is consistent with the frequent English usage “an
event occurs’ = the occurrence of an event of a given type; so to describe a runtime situation, one could say “event X
occurs” or “an occurrence of event X" depending on which form is more convenient in a sentence. It is redundant and
incorrect to say “an event occurrence occurs.”

6.4 How to Proceed

The rest of this part is ISO/IEC 19505 contains the technical contect. As background for this part of 1SO/IEC 19505,
readers are encouraged to first read the UML.: Infrastructure specification that complements this text. Subpart I,
“Introduction” of UML: Infrastructure explains the language architecture structure and the formal approach used for its
specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Subpart I1,
“Infrastructure Library,” or the Classes::Kernel package that reuses it, described in Clause 7, “Classes.” The former
specifies the flexible metamodel library that is reused by the latter; the latter defines the basic constructs used to define
the UML metamodel. See the UML:Infrastructure specification, sub clause ‘6.2.2 Contents of Subparts' for more
information.

With that background the reader should be well prepared to explore the user level constructs defined in this UML:
Superstructure specification. These concepts are organized into three subparts: see 6.4.3.1, 'Contents of Subpart | -
Structure,” 6.4.3.2, ' Contents of Subpart Il - Behavior,” and 6.4.3.3, ' Contents of Subpart 111 - Supplement.’

Although the clauses are organized in alogical manner and can be read sequentially, this is a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.4.1 Specification format

The concepts of UML are grouped into three major subparts:

« Subpart |: Concepts related to the modeling of structure
» Subpart I1: Concepts related to the modeling of behavior
« Subpart I11: Supplementary concepts

© ISO/IEC 2012 - All rights reserved 15

ISO/IEC 19505-2:2012(E)

Within each subpart, the concepts are grouped into clauses according to modeling capability. A capability typically covers
a specific modeling formalism. For instance, all concepts related to the state machine modeling capability are gathered in
the State Machines clause and all concepts related to the activities modeling capability are in the Activities clause. The
Capability clauses in each subpart are presented in alphabetical order.

Within each clause, thereis first a brief informal description of the capability described in that clause. Thisis followed by
a sub clause describing the abstract syntax for that capability. The abstract syntax is defined by a CMOF model (i.e., the
UML metamodel) with each modeling concept represented by an instance of a MOF class or association. The model is
decomposed into packages according to capabilities. In the specification, this model is described by a set of UML class
and package diagrams showing the concepts and their relationships. The diagrams were designed to provide
comprehensive information about a related set of concepts, but it should be noted that, in many cases, the representation
of a concept in agiven diagram displays only a subset of its features (the subset that is relevant in that context). The same
concept may appear in multiple diagrams with different feature subsets. For a complete specification of the features of a
concept, readers should refer to its formal concept description (explained below). When the concepts in the capability are
grouped into sub packages, the diagrams are also grouped accordingly with a heading identifying the sub package
preceding each group of diagrams. In addition, the name of the owning package is included in each figure caption.

The “Concept Definitions” clause follows the abstract syntax clause. This clause includes formal specifications of all
concepts belonging to that capability, listed in alphabetical order. Each concept is described separately according to the
format explained below.

The final sub clause in most clauses gives an overview of the diagrams, diagram elements, and notational rules and
conventions that are specific to that capability.

The formal concept descriptions of individual concepts are broken down into sub clauses corresponding to different
aspects. In cases where a given aspect does not apply, its sub clause may be omitted entirely from the class description.
The following sub clauses and conventions are used to specify a concept:

« Theheading givesthe formal name of the concept and indicates, in parentheses, the sub package in which the concept
is defined. In some cases, there may be more than one sub package name listed. This occurs when a concept is
defined in multiple package merge increments — one per package. In afew instances, there is no package name, but
the phrase “ as specialized” appearsin parentheses. This indicates a“semantic” increment, which does not involve a
new increment in the metamodel and which, therefore, does not change the abstract syntax, but which adds new
semantics to previous increments (e.g., additional constraints).

» Insome cases, following the heading is a brief, one- or two-sentence informal description of the meaning of a
concept. Thisisintended as aquick reference for those who want only the basic information about a concept.

« All the direct generalizations of a concept are listed, aphabetically, in the “ Generalizations” sub clause. A “direct”
generalization of aconcept is aconcept (e.g., aclass) that isimmediately above it in the hierarchy of its ancestors
(i.e., its“parent”). Note that these items are hyperlinked in el ectronic versions of the document to facilitate navigation
through the metamodel class hierarchy. Readers of hardcopy versions can use the page numbers listed with the names
to rapidly locate the description of the superclass. This sub clause is omitted for enumerations.

« A more detailed description of the purpose, nature, and potential usage of the concept may be provided in the
“Description” sub clause. Thistoo isinformal. If a concept is defined in multiple increments, then the first part of the
description coversthe top-level package and is followed, in turn, by successive description increments for each sub
package. The individual increments are identified by a sub package heading such as

Package PowerTypes

This indicates that the text that follows the heading describes the increment that was added in the PowerTypes sub package.

16 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

The description continues either until the end of the sub clause or until the next sub package increment heading is encountered.
» Thisconvention for describing sub package incrementsis applied to al other sub clauses related to the concept.

- The"Attributes’ sub clause of a concept description lists each of the attributes that are defined for that metacl ass.
Each attribute is specified by its formal name, itstype, and multiplicity. If no multiplicity islisted, it defaultsto 1..1
(the default in UML). Thisisfollowed by atextual description of the purpose and meaning of the attribute. If an
attribute is derived, the name will be preceded by a slash. For example:

« body: String[1] Specifies a string that is the comment
specifies an attribute called “body” whose type is“ String” and whose multiplicity is 1.

« If anattributeis derived, where possible, the definition will also include a specification (usually expressed as an OCL
constraint) specifying how that attribute is derived. For instance;

« /isComposite: Boolean A state with isComposite = true is said to be a composite state. A composite state is a state that
contains at least one region>

isComposite = (region > 1)

+ The"Associations’ sub clauselists all the association ends owned by the concept. Note that this sub clause does not
list the associ ation-owned association ends. The format for concept-owned association ends is the same as the one for
attributes described above. Association ends that are subsets or redefinitions of other association ends owned by
super type concepts are appropriately noted in the text. Note that this association end notation specifically excludes
the notation for the subsetting or redefinition of association-owned association ends. For example:

* lowerValue: ValueSpecification[0..1] { subsets Element::ownedElement} The specification of the lower bound for this
multiplicity.
specifies an association end called “lowerValue” that is connected to the “ValueSpecification” class and whose multiplicity is
0..1. Furthermore, it is a specialization of the “ownedElement” association end of the class “Element.”

« Aswith derived attributes, if an association end is derived, where possible, the definition will also include a
specification (usually expressed as an OCL constraint) specifying how that association end is derived.

+ The“Constraints’” sub clause contains anumerical list of all the constraints that define additional well-formedness
rules that apply to this concept. Each constraint consists of a textual description and may be followed by aformal
constraint expressed in OCL. Note that in afew cases, it may not be possible to express the constraint in OCL, in
which case the formal expression is omitted.

- “Additional Operations’ contains a numerical list of operations that are applicable to the concept. These may be
queries or utility operations that are used to define constraints or other operations. Where possible, operations are
specified using OCL.

» The"Semantics’ sub clause describes the meaning of the concept in terms of its concrete manifestation. Thisisa
specification of the set of things that the concept models (represents) including, where appropriate, a description of
the behavior of those things (i.e., the dynamic semantics of the concept).

« “Semantic Variation Points’ explicitly identifies the areas where the semantics are intentionally under specified to
provide leeway for domain-specific refinements of the general UML semantics (e.g., by using stereotypes and
profiles).

« The"Notation” sub clause gives the basic notational forms used to represent a concept and its features in diagrams.
Only concepts that can appear in diagrams will have a notation specified. Thistypically includes a simple example
illustrating the basic notation. For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify
the legal formats. The conventions of this BNF are:

« All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

© ISO/IEC 2012 - All rights reserved 17

ISO/IEC 19505-2:2012(E)

« All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

« Non-terminal production rule definitions are signified with the *::=" operator.

« Repetition of an item is signified by an asterisk placed after that item: **’.

* Alternative choicesin a production are separated by the ‘| symbol (e.g., <alternative-A> | <alternative-B>).
« Items that are optional are enclosed in square brackets (e.g., [<itemx>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item1> | <item-2>) *

signifies a sequence of one or more items, each of which is<item-1> or <item-2>.

» The"Presentation Options’ sub clause supplementsthe “Notation” clause by providing alternative representations for
the concept or its parts. Users have the choice to use either the forms described in this sub clause or the forms
described in the “Notation” sub clause.

+ “Style Guidelines’ identifies notational conventions recommended by the specification. These are not normative but,
if applied consistently, will facilitate communication and understanding. For example, there is a style guideline that
suggests that the names of classes should be capitalized and another one that recommends that the names of abstract
classes be written out in italic font. (Note that these specific recommendations only make sense in certain writing
systems, which iswhy they cannot be normative.)

« The"Examples’ sub clause, if present, includes additional illustrations of the application of the concept and its
notation.

« “Changesfrom previous UML" identifies the main differencesin the specification of the concept relative to UML
versions 1.5 and earlier.

6.4.2 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this part of 1SO/IEC 19505

» An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and

« the opposite (unmarked) association end is owned by the association.

Note— This convention wasinherited from UML 1.x and was used in theinitial versions of the specification because there was
no explicit notation for indicating association end ownership. Such a notation was introduced in revision 2.1.1 (see the
notation sub clause of the Association metaclass on page 40) but was not applied to the diagramsin the specification due to
lack of tool support. In accord with the new notation, the ownership of an association end by the association would continue to
be shown by leaving the end unmarked, but the ownership of an end by the classifier would be shown by marking that
classifier-owned end with a dot.

« An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,

« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

18 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

» Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus;

« The constraint { subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

« A constraint { redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

« If nomultiplicity is shown on an association end, it implies amultiplicity of exactly 1.

« If anassociation end is unlabeled, the default name for that end is the name of the classto which the end is attached,
modified such that the first letter is alowercase letter. (Note that, by convention, non-navigable association ends are
often left unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal
constraints - although they may be needed for other purposes, such as M OF language bindings that use the
metamodel.)

» Associations that are not explicitly named, are given names that are constructed according to the following
production rule;
"A " <association-end-namel> " " <association-end-name2>

where <association-end-namel> is the name of the first association end and < association-end-name2> is the name
of the second association end.

« Anunlabeled dependency between two packagesis interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing
this part of ISO/IEC 19505, such as the unavailability of conforming modeling tools at the time the specification itself
was being defined. Therefore, they should not necessarily be deemed as recommendations for general use.

6.4.3 Contents of Subparts I, Il, and llI

6.4.3.1 Contents of Subpart| - Structure

This subpart includes the following clauses:
7 - Classes

8 - Components

9 - Composites

10 - Deployments

This subpart defines the static, structural constructs (e.g., classes, components, nodes, artifacts) used in various structural
diagrams, such as class diagrams, component diagrams, and deployment diagrams. The UML packages that support
structural modeling are shown in the figure below.

© ISO/IEC 2012 - All rights reserved 19

ISO/IEC 19505-2:2012(E)

1

Claszes

I

«mnports

1

CompositeStructures

I

wrnport s

—

Components

.ﬂ\
<<!n'|[:|Drt>>

:

Deployments

Figure 6.3 - UML packages that support structural modeling

6.4.3.2 Contents of Subpart Il - Behavior

This subpart includes the following clauses:
11 - Actions

12 - Activities

13 - CommonBehaviors

14 - Interactions

15 - StateMachines

16 - Use Cases

This subpart specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various
behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams. The UML packages that
support behavioral modeling, along with the structure packages they depend upon (CompositeStructures and Classes) are
shown in the figure below.

20 © ISO/IEC 2012 - Al rights reserved

1
Clazses
N
<<impDrt>>
“imports . -
CommonBehaviors
------------------------ > SO GRLCGRteEEEEEE
<<i|‘|’lipDrt>>
7 7
<<||'npDrt>:~E <<!mpDrt>>
. H . H
Activities Interactions Statetachines UzseCazes
7
<<i|'npDrt>>
.
Actions

Figure 6.4 - UML packages that support behavioral modeling

6.4.3.3 Contents of Subpart lll - Supplement

This subpart includes the following clauses:

17 - AuxiliaryConstructs

18 - Profiles

ISO/IEC 19505-2:2012(E)

This part defines auxiliary constructs (e.g., information flows, models, templates) and the profiles used to customize UML
for various domains, platforms, and methods. The UML packages that support auxiliary constructs, along with the
structure packages they depend upon (Internal Structures, Dependencies, and Kernel) are shown in the figure below.

© ISO/IEC 2012 - All rights reserved

21

ISO/IEC 19505-2:2012(E)

)
“imports UL Classes::
oTTTTIIII Kernel
| n
1 —1: :
hL:: UML::Classes:: i
CompositeStructures Dependencies i
cIrternalstructures '
A) ’
i i «imnport:
wimparts «mpart» ;
| » |
: L i

AuziliaryConstructs

Figure 6.5 - UML packages that support auxiliary constructs

22 © ISO/IEC 2012 - Al rights reserved

Subpart | - Structure

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

23

ISO/IEC 19505-2:2012(E)

24

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

7 Classes

7.1 Overview

The Classes package contains sub packages that deal with the basic modeling concepts of UML, and in particular classes
and their relationships.

Reusing packages from UML 2 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages.
This part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used
in, for example, MOF. The Kernel package is the central part of the UML, and merges the Constructs package of the
InfrastructureLibrary.

In many cases, the reused classes are extended in the Kernel with additional features, associations, or superclasses. In
subsequent diagrams showing abstract syntax, the subclassing of elements from the infrastructure library is always elided
since this information only adds to the complexity without increasing understandability. Each metaclass is completely
described as part of this clause; the text from the infrastructure library is repeated here.

It should also be noted that Kernel is a flat structure that like Constructs only contains metaclasses and no sub-packages.
The reason for this distinction is that parts of the infrastructure library have been designed for flexibility and reuse, while
the Kernel in reusing the infrastructure library has to bring together the different aspects of the reused metaclasses.

The packages that are explicitly merged from the InfrastructureLibrary are the following:
» Constructs

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged.

[]

Constructs | ____ «import» N
(from Core) "1 PrimitiveTypes

A

«merge»

1

Kernel
(from Classes)

Figure 7.1 - InfrastructureLibrary packages that are merged by
Kernel (all dependencies in the picture represent package merges)

© ISO/IEC 2012 - All rights reserved 25

ISO/IEC 19505-2:2012(E)

7.2 Abstract Syntax

Figure 7.2 shows the package dependencies of the Kernel packages.

amerges’ :
e <<iﬂerge»

- '

1 - 1.

AzsocistionClasses Dependencies

«IMEkg e

.
-
-

— 1

Pam

er Types

I
«merée»

i

Irterfaces

1

BasicBehaviors

Figure 7.2 - Subpackages of the Classes package and their dependencies

Package Kernel

{subsets owner} {subsets ownedElernent}

{readOr&}gmLérlj&Dn}

+lowned

*

t.

+ fowenet
{readOnly, union}

+ onvningElement + ownedComment
Flomant ‘D 1 g - Comment

{readOnly, union’

+ IrelatedElement

* 1.7

|

Raelationship

freadOnly, union,
subsets relatedElernent

Efenrent

+ annotatedElement

%

DirectedRelationship + farget
* 1.*

+ f3OUrGE

* 1.*

{readOnly, union,

subsets relatedElernent}

Figure 7.3 - Root diagram of the Kernel package

26

*

Comment

body © String

© ISO/IEC 2012 - All rights reserved

’{l}‘ wenumeration:
VisibilityKind
NamedEfenent public
hame | String [0.1] private
wisibility - \Wisibilihiind [0.1] protected
fgualifiedName - String [0.1] package
PackageabieFlement

{readrly, subsets member} = visibitity | VisibiiiteR ine

+ fimportedidember

Namespace

*

+ imember
. *
{readonly, union,
subsets ownerk
+ Inamespace

{readOnly, unionk

ISO/IEC 19505-2:2012(E)

* NanredElonrent

+ fovwnediember

{readnly, union, subsets
menber, subsets awnedElement}

0.1

| DirectodRelationship |

I

{subsets source, subsats owner}t

+ importingMamespace Elementimport

*

1 + elementimport

alias : String [0.1]

vigihility ; isibilityHind

{subsets
awnedElement}

| DirectedRelationsiip

{subsets source,

subsets owner}
+ importinglatnespace
d

T

Packagelmport
wizibility © VisibilityHind

*

&

+ packagelmport
{subsets awnedElement}

{subsets target}
+ importedElement

| PackageablaFlamant |

+ importedPackane

IE {subsets target}

Figure 7.4 - Namespaces diagram of the Kernel package

© ISO/IEC 2012 - All rights reserved

27

ISO/IEC 19505-2:2012(E)

Element
MultiplicityE lement {subsets owner} {subsets ownedElement]
isOrddarad - Bookean - owminglpper +uppervalue [vajueSpecification
isUnique : Boolean . 0.1
fupner - Unlimitedistural [0..1] {subsetsLowner} {subsets DiVPEdEEmlBﬂt}
flower - Integer 0.1] + owningLower oweryalue
0.1 0.1
‘ NamedElement | ‘ PackageableElement |
TypedElement +type Type
+ 0.1

Figure 7.5 - Multiplicities diagram of the Kernel package

TypedElement | | PackageableElement

{ordered, subsets ownedElement}

+ operand
ValueSpecification

*

0.1
& Expression OpaqueExpression LiteralSpecification | InstanceValue
symbol : String body : String {ordered, nonunique} "
language : String {ordered}

+ instanceValue

+ expression

1 + instance

{subsets owner} | |
| LiteraINuII| | LiteralInteger | LiteralString | InstanceSpecification

LiteralBoolean | LiteralReal | | LiteralUnlimitedNatural |

Figure 7.6 - Expressions diagram of the Kernel package

28 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Jordered}
+ constrainedElament

Flement

{subsets owner:
+ oWy ningConste zint

*

{subsets ownedElementt

+ specification VafueSpecification

PackageableFloment
Constraint
MNamespace R
{subsets
{subsets namespace} gwnadMambert
+ context + ownedRule oA
0.1 *

Figure 7.7 - Constraints diagram of the Kernel package

PackaqeableFlemont |

InstanceSpecification

{subszets ownert
+ ovvninginstance

£y

{subsets

ownedElermnent}
+ =

{subsets owner’
+ owvning=lot

1

{subsets ownedElerment,
ordered}

1

{fsubsets ownerk:

.1

+values [yaipeSpecification

{subsets ownedElerment;

+ owvninginstancesSpec — + specificatiol

|

o 10‘ VaiueSpecification

+ clazsifier, —
Classifior
.

Figure 7.8 - Instances diagram of the Kernel package

© ISO/IEC 2012 - All rights reserved

+ definingFesture
StructuraiFeature
1

29

ISO/IEC 19505-2:2012(E)

{readOnly, union}

RedefinableElement + /redefinedElement
*
*
+ redefinableElement
| Type | | Namespace |

{readOnly, subsets member}

+ /inheritedMember

RedefinableElement

Classifier

{subsets redefinedElement}

* + classifier
{subsets memberNamespace}

+ redefinableElement

+ isLeaf : Boolean = false

Feature

* + /redefinitionContext
{readOnly, union}

{readOnly, union,
subsets member}

+ isStatic : Boolean = false

StructuralFeature

Property

+ /feature
I
* + /featuringClassifier
{readOnly, union, subsets
memberNamespace}

{readOnly, union, subsets
redefinableElement,
subsets feature}

+ /attribute 0..1

+ isAbstract : Boolean = false
+ isFinalSpecialization : Boolean = false

* + classifier

{subsets redefinitionContext,
subsets featuringClassifier}

+ redefinedClassifier

+ classifier
{subsets redefinableElement}

+ /general

*

*

DirectedRelationship

{subsets target}
+ general

1 + specific
{subsets source,
subsets owner}

* + isSubstitutable : Boolean [0..1] = true

+ generalization

{subsets directedRelationship}

Generalization

+ generalization

{subsets directedRelationship,

subsets ownedElement}

Figure 7.9 - Classifiers diagram of the Kernel package

30

© ISO/IEC 2012 - All rights reserved

{readOnly, union}

+ /member + memberNamespace

NamedElement

Namespace

{readOnly, unior{readOnly, union, subsets
subsets memberhemberNamespace}

RedefinableElement
A

+ /feature + /featuringClassifier
Feature Classifier
+ isStatic : Boolean = false * *
0.1 + JownedMember

Namespace

*

A + [namespace
MultiplicityElement
[\

TypedElement

TypedElement A\

JAY ,—
_| {ordered, subsets ownedMember}
StructuralFeature BehavioralFeature
+ isReadOnly : Boolean = false PR 0.1 + ownedParameter

NamedElement

ISO/IEC 19505-2:2012(E)

MultiplicityElement
[\

Parameter

X
+ ownerFormalParam

{subsets namespace}
* + raisedException

+ direction : ParameterDirectionKind = in
+ /default : String [0..1] {readOnly}

+ behavioralFeature *

Figure 7.10 - Features diagram of the Kernel package

© ISO/IEC 2012 - All rights reserved

Type

31

ISO/IEC 19505-2:2012(E)

+ /namespace + /ownedMember
:: : I‘ NamedElement
0.1 *
TypedElement
{subsets namespace} {ordered, subsets ownedMember} A
Type | + raisedException * + ownerFormalParam + ownedParameter
Roahavi
alFeature Parameter
* + behavioralFeature 0.1 * + direction : ParameterDirectionKind = in
+ /default : String [0..1] {readOnly}
{ordered, redefines ownedParameter}
{redefines raisedException} 0.1 + ownedParameter
+ raisedException * - Operation - «
+ isQuery : Boolean = false + operation
. + /isOrdered : Boolean = false {readOnly} bsets FormalP:
* + operation | 4 /isUnique : Boolean = true {readOnly} {subsets ownerFormalParam} 0
. + /lower : Integer [0..1] = 1 {readOnly} .
{subsets behavioralFeature} Y _ + owningParameter
+ /upper : UnlimitedNatural [0..1] = 1 {readOnly} {subsets context} {subsets ownedRule} [Constraint 0.1 et ,
subsets owner’
{readOnly} ¢+ preContext + precondition
+ [type * 0.1 %
) {subsets ownedElement}
0.1 + operation {subsets context} {subsets ownedRule}
0.1
+ bodyContext + bodyCondition + defaultvalue
{subsets redefinedElement} > ValueSpecificati
+ redefinedOperatiof] 0.1 0.1 ‘alueSpecification
{subsets ownedElement}
* {subsets context} {subsets ownedRule} . ficati
specification
+ postContext + postcondition
x
0.1 *
+ operation
{subsets redefinableElement} {subsets namespace} {subsets ownedMember} + owningConstraint
+ context + ownedRule {subsets owner}
- 0.1 *

Figure 7.11 - Operations diagram of the Kernel package

32 © ISO/IEC 2012 - Al rights reserved

{subsets namespace, subsets {ordered, subsets ownedMember,
subsets redefinableElement}

A redefinitionContext}

+ nestedClassifier,

+ class
Class [@ >|| Classifier
0.1 *
{subsets featuringClassifier, ~ {ordered, subsets feature,
subsets redefinitionContext, subsets redefinableElement,
subsets namespace} subsets ownedMember}
+ class + ownedOperation
Operation
0.1 *
defi | {ordered, readOnly, | Relationship | | Classifier |
{redefines general} subsets relatedElement} {subsets relationship}
+ /endType + association
* + [superClass Type ||< Association
* + class 1. * + isDerived : Boolean = false
0.1
{subsets classifier} *>—
0.1 + dlass + association
{subsets classifier, subsets namespace} {subsets memberNamespace} 0..1 + association
{subsets owningAssociation}
StructuralFeature
o {ordered, subsets member}
2.% + memberEnd
{ordered, subsets attribute, P " * {subsets ownedEnd}
subsets ownedMember} roperty + navigableOwnedEnd
+ ownedAttribute | * isDerived : Boolean = false
+ isReadOnly : Boolean = false {redefines isReadOnly}
* + isDerivedUnion : Boolean = false %
+ /default : String [0..1]
+ aggregation : AggregationKind = none
+ ownedEnd

+ redefinedProperty

{subsets redefinedElement}

{subsets redefinableElement}

+ property

+ lisComposite : Boolean
+isID : Boolean = false

ISO/IEC 19505-2:2012(E)

0.1

+ owningAssociation

{subsets association,
subsets featuringClassifier,
subsets namespace, subsets
redefinitionContext}

{ordered, subsets memberEnd, subsets feature,
subsets ownedMember, subsets redefinableElement}

+ subsettedProperty

+ owningProperty
{subsets owner}

0.1 0.1

{subsets ownedElement}
+ defaultValue

0.1

Figure 7.12 - Classes diagram of the Kernel package

© ISO/IEC 2012 - All rights reserved

> ValueSpecification

+ /opposite

«enumeration»
AggregationKind
none
shared
composite

33

ISO/IEC 19505-2:2012(E)

+ instanceSpecification

StructuralFeature
N\

1_InstanceSpecification |

Feature

Classifier + classifier
*
{readOnly, union, subsets memberNamespace} {readOnly, union, subsets member}
+ /featuringClassifier + /[feature
* *
{subsets redefinitionContext, {readOnly, union, subsets
subsets featuringClassifier} redefinableElement, subsets feature}
+ classifier + /attribute
0..1 *
{subsets classifier, {ordered, subsets attribute,
subsets namespace} subsets ownedMember}
Dat:—iType + datatype + ownedAttribute
0..1 *

{subsets featuringClassifier,
subsets redefinitionContext,
subsets namespace}

+ datatype

{ordered, subsets feature,
subsets redefinableElement,
subsets ownedMember}

+ ownedOperation

Property

BehavioralFeature

0..1

{subsets namespace}

+ enumeration

ation @

{ordered, subsets ownedMember}

*

+ ownedLiteral

Operation

*

*

ionLiteral

+ /classifier
{redefines classifier}

+ enumerationLiteral

{redefines instanceSpecification}

Figure 7.13 - DataTypes diagram of the Kernel package

34

© ISO/IEC 2012 - All rights reserved

Namespace

| PackageableElement |

{subsets namespace}

+ owningPackage

Package <

{subsets ownedMember}

+ packagedEIement\I ||

URI : String [0..1] 0..1

{subsets owningPackage}

> Packag

*

{subsets packagedElement}

subsets owner}
+ receivingPackage

nt

+ package + /ownedType
> Type
0..1 *
{subsets source, | DirectedRelationship

{subsets directedRelationship,
subsets ownedElement}

+ packageMerge PackageMerge

1
{subsets target}

+ mergedPackage

*

{subsets directedRelationship}

+ packageMerge

{subsets packagedElement}

+ /nestedPackage

*

f..

+ nestingPackage

{subsets owningPackage}

Figure 7.14 - The Packages diagram of the Kernel package

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

35

ISO/IEC 19505-2:2012(E)

Package Dependencies

Element

1.%

(from Kernel)

+ /source

1.%

+ directedRelationship

NamedElement

+ /[target

{subsets source}

+ directedRelationship

{subsets directedRelationship}

DirectedRelationship
(from Kernel)

PackageableElement
(from Dependencies)

(from Dependencies)

Namespace
(from Dependencies)

Classifier
(from Dependencies)

+ client + clientDependency
1.% *
1.% *
+ supplier + supplierDependency
{subsets target} {subsets directedRelationship}

{subsets client,
subsets owner}

{subsets clientDependency,
subsets ownedElement}

Dependency

Abstraction

JAN

+ abstraction

{subsets owner}

+ substitutingClassifier + substitution
1 *
1 *

+ contract + substitution

{subsets supplier}

Substitution

{subsets ownedElement}

+ mapping 0..1

OpaqueExpression
(from Kernel)

{subsets supplierDependency}

Figure 7.15 - Contents of Dependencies package

36

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Package Interfaces

) {ordered, subsets redefinableElement,
+ redefinedClassifier Classifier subsets ownedMember}

(from Kernel) + nestedClassifier

StructuralFeature

(from Kernel) + classifier

{readOnly, union}

. + classifier
Property + /attribute Classifier
(from Interfaces) * 0.1 (from Interfaces)
{ordered, subsets attribute, {subsets classifier, {subsets redefinitionContext,
subsets ownedMember} subsets namespace} subsets namespace}
+ ownedAttribute + interface + interface
Interface >
. 0.1 0.1

{subsets redefinedClassifier}

+ redefinedInterface

BehavioralFeature {ordered, subsets feature, {subsets featuringClassifier,
(from Kernel) subsets redefinableElement, subsets redefinitionContext, *
A\

subsets ownedMember} subsets namespace} .
Operation + ownedOperation + interface
(from Interfaces) +interface
* 0..1

{subsets classifier}

1 + contract
{subsets supplier}

Classifier
(from Kernel)
JAN

{subsets clientDependency, {subsets supplierDependency}
subsets ownedElement} * + interfaceRealization
1 + interfaceRealization

Interf:

+ implementingClassifier *

Realization
(from Dependencies)

\V
Abstraction
(from Dependencies)

{subsets client,
subsets owner}

+ client + clientDependency
dElement Dependency
(from Dependencies) 1% * (from Dependencies)
1.% *
+ supplier + supplierDependency
{subsets target} {subsets directedRelationship}

Figure 7.16 - Contents of Interfaces package

© ISO/IEC 2012 - All rights reserved 37

ISO/IEC 19505-2:2012(E)

Package AssociationClasses

UML::Classes::Kernel:
StructuralFeature

{sUbsets ownert {subzets ownedElement, ordered}
Pl'openy + azsociationEnd + gjualifier Propeny
0.1 *
UML::Classes:: UML::Classes::
Kernel::Class Kernel::Association

AssociationClass

Figure 7.17 - Contents of AssociationClasses package

Package PowerTypes

Classifier UML::Classes::Kernel:: Generalization
PackageableElement

+ powvertype |0.1 + generalization |*

GeneralizationSet

+ powertypeExtent

- - + generalizationSet
isCovering : Boolean o

*|isDisjnint : Boolean

Figure 7.18 - Contents of PowerTypes package

38 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

7.3 Class Descriptions

7.3.1 Abstraction (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 65

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. In the metamodel, an Abstraction is a Dependency in which thereis a
mapping between the supplier and the client.

Attributes

No additional attributes

Associations

e mapping: Expression[0..1]
A composition of an Expression that states the abstraction relationship between the supplier and the client. In
some cases, such as Derivation, it isusually formal and unidirectional. In other cases, such as Trace, it isusually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the elements is not specified.

Constraints

No additional constraints

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional
or bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») that are defined in the

Standard Profiles clause. If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific
predefined stereotype name.

7.3.2 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Generalizations

None

© ISO/IEC 2012 - All rights reserved 39

ISO/IEC 19505-2:2012(E)

Description

AggregationKind is an enumeration of the following literal values:

* none
Indicates that the property has no aggregation.

e shared
Indicates that the property has a shared aggregation.

e composite
Indicates that the property is aggregated compositely, i.e., the composite object has responsibility for the existence
and storage of the composed objects (parts).

Semantic Variation Points

Precise semantics of shared aggregation varies by application area and modeler.
The order and way in which part instances are created is not defined.

7.3.3 Association (from Kernel)

An association describes a set of tuples whose values refer to typed instances. An instance of an association is called a
link.A link is atuple with one value for each end of the association, where each value is an instance of the type of the
end.

Generalizations

+ “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 55
- “Relationship (from Kernel)” on page 139

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association may
have the same type.

An end property of an association that is owned by an end class or that is a navigable owned end of the association
indicates that the association is navigable from the opposite ends; otherwise, the association is not navigable from the
opposite ends.

Attributes

e isDerived: Boolean
Specifies whether the association is derived from other model elements such as other associations or constraints. The
default value isfalse.

Associations

* memberEnd : Property [2..*]
Each end represents participation of instances of the classifier connected to the end in links of the association. Thisis
an ordered association. Subsets Namespace: : member.

40 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

e ownedEnd : Property [*]
The ends that are owned by the association itself. Thisis an ordered association. Subsets Association:: member End,
Classifier::feature, and Namespace: : ownedMember.

e navigableOwnedEnd : Property [*]
The navigable ends that are owned by the association itself. Subsets Association: :ownedEnd

e [endType: Type[l..*]
References the classifiers that are used as types of the ends of the association. Subsets Relationship: :relatedElement

Constraints

[1] Anassociation specializing another association has the same number of ends as the other association.

parents()->select(ocllsKindOf(Association)).oclAsType(Association)->
forAll(p | p.memberEnd->size() = self.memberEnd->size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

Sequence{l..self. nemberEnd->size()}->
forAll(i | self.general->select(oclisKindOf(Association)).oclAsType(Association)->
forAll(ga |self.memberEnd->at(i).type.conformsTo(ga.memberEnd->at(i).type)))

[3] endTypeisderived from the types of the member ends.

self.endType = self. memberEnd->collect(e | e.type)
[4] Only binary associations can be aggregations.

self.memberEnd->exists(aggregation <> Aggregation::none) implies self.memberEnd->size() = 2
[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2 then ownedEnd->includesAll(memberEnd)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise, it allows duplicate elements.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association ends,
not to the association itself. It means that the subsetting association end is a collection that is either equal to the collection
that it is subsetting or a proper subset of that collection. (Proper subsetting implies that the superset is not empty and that
the subset has fewer members.) Subsetting is a relationship in the domain of extensional semantics.

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naive but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In

© ISO/IEC 2012 - All rights reserved 41

ISO/IEC 19505-2:2012(E)

the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition is a relationship between features of classifiers within a specialization hierarchy. Redefinition may be used to
change the definition of a feature, and thereby introduce a specialized classifier in place of the original featuring
classifier, but this usage is incidental. The difference in domain (that redefinition applies to features) differentiates
redefinition from specialization.

The combination of constraints [1,2] above with the semantics of property subsetting and redefinition specified in section
7.3.45 in constraints [3,4,5] imply that any association end that subsets or redefines another association end forces the
association of the subsetting or redefining association end to be a specialization of the association of the subsetted or
redefined association end respectively.

Note — For n-ary associations, the lower multiplicity of an end istypically 0. A lower multiplicity for an end of an n-ary
association of 1 (or more) impliesthat one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at atime. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of al elements of the subgraph below that element.
Composition is represented by the isComposite attribute on the part end of the association being set to true.

Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently
from instances participating in links at the other ends of the association. The precise mechanism by which such access is
achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible,
and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating
associations from non-navigable ends.

Semantic Variation Points
» Theorder and way in which part instances in acomposite are created is not defined.

» Thelogical relationship between the derivation of an association and the derivation of its endsis not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on aline) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary association is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to atool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

42 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

» Theassociation’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

A slash appearing in front of the name of an association, or in place of the name if no name is shown, marks the
association as being derived.

» A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 7.21). This notation is for documentation purposes only
and has no general semantic interpretation. It is used to capture some application-specific detail of the relationship
between the associated classifiers.

» Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A hame string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:
« A multiplicity

« A property string enclosed in curly braces. The following property strings can be applied to an association end:
« { subsets <property-name>} to show that the end is a subset of the property called <property-name>.
« {redefines <end-name>} to show that the end redefines the one named <end-name>.
 {union} to show that the end is derived by being the union of its subsets.
« {ordered} to show that the end represents an ordered set.
« {nonunique} to show that the end represents a collection that permits the same element to appear more than once.
* {sequence} or {seq} to show that the end represents a sequence (an ordered bag).
« If the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

An open arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’'s
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a navigable end name as specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses, Interfaces)” on page 130.

An association with aggregationKind = shared differs in notation from binary associations in adding a hollow diamond as
aterminal adornment at the aggregate end of the association line. The diamond shall be noticeably smaller than the
diamond notation for associations. An association with aggregationKind = composite likewise has a diamond at the
aggregate end, but differs in having the diamond filled in.

© ISO/IEC 2012 - All rights reserved 43

ISO/IEC 19505-2:2012(E)

Ownership of association ends by an associated Classifier may be indicated graphically by a small filled circle, which for
brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets the
classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of the dot
shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This avoids
visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line.

This standard does not mandate the use of explicit end-ownership notation, but defines a notation which shall apply in
models where such use is elected. The dot notation must be applied at the level of complete associations or higher, so that
the absence of the dot signifies ownership by the association. Stated otherwise, when applying this notation to a binary
association in a user model, the dot will be omitted only for ends which are not owned by a classifier. In this way, in
contexts where the notation is used, the absence of the dot on certain ends does not leave the ownership of those ends
ambiguous.

This notation may only be used on association ends which may, consistent with the metamodel, be owned by classifiers.
Users may conceptualize the dot as showing that the model includes a property of the type represented by the classifier
touched by the dot. This property is owned by the classifier at the other end.

The dot may be used in combination with the other graphic line-path notations for properties of associations and
association ends. These include aggregation type and navigability.

The dot isillustrated in Figure 7.19, at the maximum allowed size. The diagram shows endA to be owned by classifier B,
and because of the rule requiring that the notation be applied at the level of complete associations (or above), this diagram
also shows unambiguously that endB is owned by BinaryAssociationAB.

endA endB

* *

BinaryAssociationAB

Figure 7.19 - Graphic notation indicating exactly one association end owned by the association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the association whereas navigable ends were assumed to be owned by the classifier at the
opposite end. This convention is now deprecated.

Aggregation type, navigability, and end ownership are orthogonal concepts, each with their own explicit notation. The
notational standard now provides for combining these notations as shown in Figure 7.20, where the associated nodes use
the default rectangular notation for Classifiers. The dot is outside the perimeter of the rectangle. If non-rectangular
notations represent the associated Classifiers, the rule is to put the dot just outside the boundary of the node.

44 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Figure 7.20 - Combining line path graphics

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on adiagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

« Show all arrows and x’s. Navigation and its absence are made completely explicit.

» Suppressall arrows and x’s. No inference can be drawn about navigation. Thisis similar to any situation in which
information is suppressed from a view.

» Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no
navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.

© ISO/IEC 2012 - All rights reserved 45

ISO/IEC 19505-2:2012(E)

Examples

Figure 7.21 shows a binary association from Player to Year hamed PlayedinYear.

* 4 PlayedinYear

Year

year

*

season

* *
Team Player

team goalie

Figure 7.21 - Binary and ternary associations

The solid triangle indicates the order of reading: Player PlayedinYear Year. The figure further shows a ternary association
between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0.1 {ordered}
d
C D
1 0.1

{subsets b}

Figure 7.22 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 7.22.
« Names a, b, and d on three of the ends.
» Multiplicities0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.
« Specification of ordering on b.

 Subsetting on d. For an instance of class C, the collection d is asubset of the collection b. Thisis equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

46 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

The following examples show notation for navigable ends.

a b

A B
1.4 2.5
c d

C D
1..4 2.5
e f

E F
1..4 2.5
g h

G H
1.4 2.5
i j

| J
1..4 2.5

Figure 7.23 - Examples of navigable ends

In Figure 7.23;

Thetop pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

Thefifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 7.24 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end.

b: B[*]

Figure 7.24 - Example of attribute notation for navigable end owned by an end class

© ISO/IEC 2012 - All rights reserved 47

ISO/IEC 19505-2:2012(E)

Figure 7.25 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, Al::bl. So for an instance of the class A1, bl is a subset of
b, and b is derived from b1.

/b {union}
a
A B
0..1 0.*
a bl
Al Bl
0..1 0.*

{subsets b}

Figure 7.25 - Derived supersets (union)

Figure 7.26 shows the black diamond notation for composite aggregation.

+scrollbar

Slider
Header Panel

Figure 7.26 - Composite aggregation is depicted as a black diamond

Changes from previous UML

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association. The metaatribute targetScope
that characterized AssociationEnd in prior UML is no longer supported. Fundamental changes in the abstract syntax make
it impossible to continue targetScope or replace it by a new metaattribute, or even a standard tag, there being no
appropriate model element to tag. In UML 2, the type of the property determines the nature of the values represented by
the members of an Association.

7.3.4 AssociationClass (from AssociationClasses)

A model element that has both association and class properties. An AssociationClass can be seen as an association that
also has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also
defines a set of features that belong to the relationship itself and not to any of the classifiers.

Generalizations
» “Association (from Kernel)” on page 40

» “Class (from Kernel)” on page 52

48 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Description

An AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of features of its own.
AssaciationClass is both an Association and a Class. An AssociationClass describes a set of objects that each share the
same specifications of features, constraints, and semantics entailed by the AssociationClass as a kind of Class, and
correspond to a unique link instantiating the AssociationClass as a kind of Association. An AssociationClass specifies a
Class whose instances are in 1-1 correspondence with a semantic relationship that can occur between typed instances. An
AssaciationClass preserves the static and dynamic semantics of both an Association and of a Class.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An AssociationClass cannot be defined between itself and something else.
self.endType->excludes(self) and self.endType>collect(et|et.allparents()->excludes(self))

[2] The owned attributes and owned ends of an AssociationClass are digjoint.
ownedAttribute->intersection(ownedEnd)->isEmpty()

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an
association, connecting a set of classifiers and a class, and as such have features and be included in other associations.
The semantics of an association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence
have a set of common properties, like being able to have features, having a name, etc. As these properties are inherited
from the same construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and
has the set of features that are defined for classes and associations. The constraints defined for class and association also
are applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.
Redefinition is applicable to an association class nested in the context of a classifier just asit is applicable to a nested
class.

An AssociationClass inherits the composite properties Class::ownedAttribute and Association::ownedEnd, which cannot
share values. Values of ownedAttribute are properties that are attributes of the class, not ends of the association class
owned through Association::ownedEnd. Values of Association::ownedEnd are the ends of the association owned by the
association class, not attributes of the association class. This means the ends of the association class that it owns cannot
be used to navigate from instances of the association class to the objects on their ends. As association ends, they can be
used for navigation between end objects, asin all associations, depending on whether they are navigable (see Navigability
in the semantics of Association in 7.3.3).

© ISO/IEC 2012 - All rights reserved 49

ISO/IEC 19505-2:2012(E)

An object instance of an association classisin 1-1 correspondence with a unique link representing an instantiation of the
association class as a kind of association. When one or more ends of the association class have isUnique=falseg, it is
possible to have several links associating the same set of instances of the end classes. In such a case, the links of an

association class instance carry their corresponding association class instance as their unique identifier apart from their
end values.

An association class cannot be the general classifier of an association or a class.

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path
and the association class symbol represent the same underlying model element, which has a single name. The name may
be placed on the path, in the class symbol, or on both, but they must be the same name. Association end hames appear in
the same position as regular associations, not in the attribute compartment of the association class.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct.

The association class symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the class symbol.

* Job 1.*
Person berson i company Company
|
|
Job
salary

Figure 7.27 - An AssociationClass is depicted by an association symbol (aline) and a class symbol (a box) connected
with a dashed line. The diagram shows the association class Job, which is defined between the two classes Person
and Company.

Changes from previous UML

AssociationClass was underspecified in prior UML. The guiding principle used for improving the specification of
association class is that of preserving the static and dynamic semantics of both associations and classes in clarifying the
static and dynamic semantics of association class. This guiding principle has important implications on the changes made
in this clause as explained below. The changes are:

[1] Constraint [1] in 7.3.3 Association changed to accommodate the fact that an AssociationClass can legitimately specializea
regular Class.

[2] Constraint [2] in 7.3.3 Association has an OCL specification that applies for both Association and AssociationClass.

[3] Two constraints are added to AssociationClass, the first for the allowed specializations of AssociationClasses, and the
second for digointness of ownedEnd and ownedAttribute.

[4] The previous semantic variation point about the interaction between association specialization and association end
redefinition and subsetting is removed because the semantics of subsetting and redefinition for association end properties
have been sufficiently clarified.

50 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

[5] The operation AssociationClass::allConnections() is removed, because it is redundant with constraints [1,2] specified in
7.3.3 for Association and constraints [3,4,5] specified in 7.3.44 for Property as explained in the semantics of 7.3.3 for
Association. It also inadvertently removed ordering of association ends.

7.3.5 BehavioralFeature (from Kernel)

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Generalizations
» “Feature (from Kernel)” on page 74
» “Namespace (from Kernel)” on page 106

Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled
by subclasses of Behavioral Feature.

Attributes
No additional attributes

Associations

e ownedParameter: Parameter[*]
Specifies the ordered set of formal parameters owned by this Behavioral Feature. The parameter direction can be
‘in,” ‘inout,” ‘out,” or ‘return’ to specify input, output, or return parameters. Subsets Namespace: : ownedMember

e raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation.

Constraints

No additional constraints

Additional Operations
[1] The query isDistinguishableFrom() determines whether two Behavioral Features may coexist in the same Namespace. It
specifies that they have to have different signatures.
BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif
else true
endif

© ISO/IEC 2012 - All rights reserved 51

ISO/IEC 19505-2:2012(E)

Semantics

The list of owned parameters describes the order, type, and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the Behavioral Feature terminates.

The owned parameters with direction in or inout define the type, and number of arguments that must be provided when
invoking the Behavioral Feature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A Behavioral Feature may raise an exception during its invocation.

Notation

No additional notation
7.3.6 BehavioredClassifier (from Interfaces)

Generalizations

» “BehavioredClassifier (from BasicBehaviors, Communications)” on page 455 (merge increment)

Description

A BehavioredClassifier may have an interface realization.

Associations

* interfaceRealization: InterfaceRealization [*]
(Subsets Element: :ownedElement and Realization:: clientDependency.)

7.3.7 Class (from Kernel)

A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Generalizations

» “Classifier (from Kernel, Dependencies, Power Types, Interfaces)” on page 55

Description

Classisakind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.
Attributes

No additional attributes

Associations
* nestedClassifier: Classifier [*]

References al the Classifiers that are defined (nested) within the Class. Subsets Namespace: : ownedMember
« ownedAttribute : Property [*]

The attributes (i.e., the properties) owned by the class. The association is ordered. Subsets Classifier:: attribute and
Namespace: : ownedMember

52 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

e ownedOperation : Operation [*]
The operations owned by the class. The association is ordered. Subsets Classifier::feature and
Namespace: : ownedMember

e /superClass: Class [*]
This gives the superclasses of aclass. It redefines Classifier::general. Thisis derived.

Constraints

No additional constraints

Additional Operations

[1] Theinherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as aresult, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

A class cannot access private features of another class, or protected features on another class that is not its supertype.
When creating and deleting associations, at least one end must allow access to the class.

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class’ need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

© ISO/IEC 2012 - All rights reserved 53

ISO/IEC 19505-2:2012(E)

Style Guidelines

¢ Center class name in boldface.

e Capitalizethefirst letter of class names (if the character set supports uppercase).
e Left justify attributes and operationsin plain face.

e Begin attribute and operation names with alowercase | etter.

e Puttheclassnameinitalicsif the classis abstract.

e Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples

Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- XWin: XWindow

Window display()

size: Area hide()

visibility: Boolean

- attachX(xWin: XWindow)

display()
hide()

Figure 7.28 - Class notation: details suppressed, analysis-level

details, implementation-level details

Window

public

size: Area = (100, 100)

defaultSize: Rectangle
protected

visibility: Boolean = true
private

XWin: XWindow

public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and
operations grouped according to visibility

54

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)

A classifier is a classification of instances, it describes a set of instances that have features in common.

Generalizations
» “Namespace (from Kernel)” on page 106
» “RedefinableElement (from Kernel)” on page 137
« “Type (from Kernel)” on page 142

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.
Attributes

Package Kernel

e isAbstract: Boolean
If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract
classifier isintended to be used by other classifiers (e.g., asthe target of general metarelationships or generalization
relationships). Default value is false.

e iskinalSpecialization: Boolean
If true, the Classifier cannot be specialized by generalization. Note that this property is preserved through package
merge operations; that is, the capability to specialize a Classifier (i.e., isFinal Specialization =false) must be preserved
inthe resulting Classifier of apackage merge operation where a Classifier with isFinal Specialization =false is merged
with a matching Classifier with isFinal Specialization =true: the resulting Classifier will have isFinal Specialization
=false. Default is false.

Associations

Package Kernel

e [attribute: Property [*]
Refersto all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets
Classifier::feature and is a derived union.

e [feature: Feature [*]
Specifies each feature defined in the classifier. Subsets Namespace::member. Thisis a derived union.

e /general : Classifier[*]
Specifies the general Classifiersfor this Classifier. Thisis derived.

e generalization: Generalization[*]
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general
classifiersin the generalization hierarchy. Subsets Element:: ownedElement

© ISO/IEC 2012 - All rights reserved 55

ISO/IEC 19505-2:2012(E)

e [inheritedMember: NamedElement[*]
Specifies all elementsinherited by this classifier from the general classifiers. Subsets Namespace: : member. Thisis
derived.

« redefinedClassifier: Classifier [*]
References the Classifiers that are redefined by this Classifier. Subsets Redefinabl eElement: : redefinedElement

Package Dependencies

e substitution : Substitution
References the substitutions that are owned by this Classifier. Subsets Element:: ownedElement and
NamedElement:: clientDependency.)

Package PowerTypes

e powertypeExtent : GeneralizationSet
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

Package Kernel

[1] The general classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)
[3] A classifier may only specialize classifiers of avalid type.
self.parents()->forAll(c | self.maySpecializeType(c))
[4] TheinheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember = self.inherit(self.parents()->collect(p | p.inheritableMembers(self))->asSet())
[5] The parents of aclassifier must be non-final.
self.parents()->forAll(not isFinalSpecialization)

Package PowerTypes

[6] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may itsinstances also be its subclasses.

Additional Operations

Package Kernel
[1] Thequery alFeatures() givesall of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, thiswill be alarger set than feature.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() gives al of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general

56 © ISO/IEC 2012 - Al rights reserved

(3]

[4]

(3]

(6]

(8]

ISO/IEC 19505-2:2012(E)

The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents()))
The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
The query hasVisibilityOf() determines whether a named element isvisible in the classifier. It is only called when the
argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)
hasVisibilityOf = (n.visibility <> #private)
The query conformsTo() gives true for a classifier that defines atype that conforms to another. Thisis used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It isintended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of

the specified type. By default a classifier may specialize classifiers of the same or a more general type. It isintended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.oclisKindOf(c.oclType)

Semantics

A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a
classifier have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms
to itself and to all of its ancestors in the generalization hierarchy.

© ISO/IEC 2012 - All rights reserved 57

ISO/IEC 19505-2:2012(E)

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets
for that class.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangle containing the classifier’'s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as atext string. The format of this string is specified in the Notation sub clause of “Property
(from Kernel, AssociationClasses, Interfaces)” on page 130.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elementsin it. Compartment names can be used
to remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword { abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

« Attribute namestypically begin with alowercase letter. Multi-word names are often formed by concatenating the words
and using lowercase for all letters except for upcasing the first letter of each word but the first.

« Center the name of the classifier in boldface.
» Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

« For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

- Left justify attributes and operationsin plain face.
« Begin attribute and operation names with alowercase | etter.

» Show full attributes and operations when needed and suppress them in other contexts or references.

58 © ISO/IEC 2012 - Al rights reserved

Examples

ISO/IEC 19505-2:2012(E)

ClassA

name: String
shape: Rectangle

+ size: Integer [0..1]

| area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 7.30 - Examples of attributes

The attributesin Figure 7.30 are explained below.

ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassB::
ClassB:
ClassB:

:name s an attribute with type String.

:shape is an attribute with type Rectangle.

:sizeisapublic attribute of type Integer with multiplicity 0..1.

.areais aderived attribute with type Integer. It is marked as read-only.
‘height is an attribute of type Integer with a default initial value of 5.

:width is an attribute of type Integer.

id is an attribute that redefines ClassA::name.

:shapeis an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.
:height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the

ClassA default of 5.

ClassB:

:width is a derived attribute that redefines ClassA::width, which is not derived.

© ISO/IEC 2012 - All rights reserved 59

ISO/IEC 19505-2:2012(E)

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure

7.31.

. size
Window Area

Figure 7.31 - Association-like notation for attribute

Package PowerTypes

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account
has two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings
Account, then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings
Account are both: instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and

examples, see Examples in the GeneralizationSet sub clause, below.)

7.3.9 Comment (from Kernel)

A comment is atextual annotation that can be attached to a set of elements.

Generalizations

« “Element (from Kernel)” on page 68.

Description

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain

information that is useful to a modeler.
A comment can be owned by any element.

Attributes

e body: String [0..1]
Specifies astring that is the comment.

Associations
e annotatedElement: Element[*]

References the Element(s) being commented.

Constraints
No additional constraints

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the

model.

60

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

Examples

This class was added

by Alan Wright after

meeting with the T
mission planning team. = Account

Figure 7.32 - Comment notation

7.3.10 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.

Generalizations

» “PackageableElement (from Kernel)” on page 116

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints are predefined in UML, others may be user-defined. A user-defined Constraint is described using a specified
language, whose syntax and interpretation is a tool responsibility. One predefined language for writing constraints is
OCL. In some situations, a programming language such as Java may be appropriate for expressing a constraint. In other
situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to that element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes

No additional attributes

Associations

e constrainedElement: Element[*]
The ordered set of Elements referenced by this Constraint.

© ISO/IEC 2012 - All rights reserved 61

ISO/IEC 19505-2:2012(E)

e context: Namespace [0..1]

Specifies the Namespace that is the context for evaluating this constraint. Subsets NamedElement: : namespace.
e gpecification: ValueSpecification[1]

A condition that must be true when evaluated in order for the constraint to be satisfied. Subsets

Element:: ownedElement.

Constraints

[1] The value specification for a constraint must evaluate to a Boolean value.
Cannot be expressed in OCL.

[2] Evauating the value specification for a constraint must not have side effects.
Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.
not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL ‘self’ is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
<congtraint> ::= ‘{* [<name> ‘:’ | <Boolean-expression> ‘ }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 7.33 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 7.34 shows an {xor} constraint
between two associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 7.35 shows an example of a constraint in a note symbol.

62 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the

first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

Examples

Stack

size: Integer {size >= 0}

push()
pop()

Figure 7.33 - Constraint attached to an attribute

/ Person
‘
!
\

Account ‘

Corporation

Figure 7.34 - {xor} constraint

© ISO/IEC 2012 - All rights reserved 63

ISO/IEC 19505-2:2012(E)

0.1/, boss
employee employer
Person Company
* 0.1
{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 7.35 - Constraint in a note symbol
7.3.11 DataType (from Kernel)

Generalizations

« “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 55.

Description

A datatype is atype whose instances are identified only by their value. A DataType may contain attributes to support the
modeling of structured data types.

A typical use of data types would be to represent programming language primitive types or CORBA basic types. For
example, integer and string types are often treated as data types.
Attributes

No additional attributes

Associations

« ownedAttribute: Property[*]
The Attributes owned by the DataType. Thisis an ordered collection. Subsets Classifier::attribute and
Namespace: : ownedMember

e ownedOperation: Operation[*]
The Operations owned by the DataType. Thisis an ordered collection. Subsets Classifier::feature and
Namespace: : ownedMember

Constraints

No additional constraints

64 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Additional Operations
[1] Theinherit operation is overriden to exclude redefined properties

DataType::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit=inhs->excluding(inh | ownedMember->
select(oclisKind Of (RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are
identified only by their value.

All copies of an instance of a data type and any instances of that data type with the same value are considered to be equal
instances. Instances of a data type that have attributes (i.e., is a structured data type) are considered to be equal if the
structure is the same and the values of the corresponding attributes are equal. If a data type has attributes, then instances
of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by (e.g., an
attribute) denoted by a string containing the name of the data type.

Examples

«dataType» size: Integer
Integer

Figure 7.36 - Notation of data type

Note — to the left is an icon denoting a data type and to theright is areference to a data type that is used in an attribute.
7.3.12 Dependency (from Dependencies)

Generalizations
 “DirectedRelationship (from Kernel)” on page 67
» “PackageableElement (from Kernel)” on page 116

Description

A dependency is arelationship that signifies that a single or a set of model elements requires other model elements for
their specification or implementation. This means that the complete semantics of the depending elements is either
semantically or structurally dependent on the definition of the supplier element(s).

© ISO/IEC 2012 - All rights reserved 65

ISO/IEC 19505-2:2012(E)

Attributes

No additional attributes

Associations

e client: NamedElement [1..*]
The element(s) dependent on the supplier element(s). In some cases (such as a Trace Abstraction) the assignment of
direction (that is, the designation of the client element) is at the discretion of the modeler, and is a stipulation. Subsets
DirectedRelationship: : source.

e supplier: NamedElement [1..*]
The element(s) independent of the client element(s), in the same respect and the same dependency relationship. In
some directed dependency relationships (such as Refinement Abstractions), a common convention in the domain of
class-based OO software is to put the more abstract element in this role. Despite this convention, users of UML may
stipulate a sense of dependency suitable for their domain, which makes a more abstract element dependent on that
which is more specific. Subsets DirectedRelationship: :target.

Constraints

No additional constraints

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier.
The presence of dependency relationships in a model does not have any runtime semantics implications, it isall givenin
terms of the model-elements that participate in the relationship, not in terms of their instances.

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the
client) depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional
stereotype and an optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more
arrows with their tails on the clients are connected to the tails of one or more arrows with their heads on the suppliers. A
small dot can be placed on the junction if desired. A note on the dependency should be attached at the junction point.

«dependencyName»

NamedElement-1f — — — — — — = NamedElement-2

Figure 7.37 - Notation for a dependency between two elements

66 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Examples

In the example below, the Car class has a dependency on the CarFactory class. In this case, the dependency is an
instantiate dependency, where the Car class is an instance of the CarFactory class.

«instantiate»
CarFactory — — — — — — Car

Figure 7.38 - An example of an instantiate dependency
7.3.13 DirectedRelationship (from Kernel)

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.

Generalizations

» “Relationship (from Kernel)” on page 139

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship is
an abstract metaclass.

Attributes
No additional attributes

Associations

e/ source: Element [1..%]
Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedElement. Thisis a derived union.

e /target: Element [1..*]
Specifies the targets of the DirectedRel ationship. Subsets Relationship: :relatedElement. Thisis a derived union.

Constraints
No additional constraints

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

© ISO/IEC 2012 - All rights reserved 67

ISO/IEC 19505-2:2012(E)

7.3.14 Element (from Kernel)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Generalizations

None

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library. Element has a derived composition association to itself to support the general capability for
elements to own other elements.

Attributes
No additional attributes

Associations
¢ ownedComment: Comment[*]
The Comments owned by this element. Subsets Element:: ownedElement.

e [/ ownedElement: Element[*]
The Elements owned by this element. Thisis a derived union.

e /owner: Element [0..1]
The Element that owns this element. Thisis aderived union.

Constraints

[1] Anelement may not directly or indirectly own itself.
not self.allOwnedElements()->includes(self)

[2] Elementsthat must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

Additional Operations

[1] The query alOwnedElements() givesall of the direct and indirect owned elements of an element.
Element::allOwnedElements(): Set(Element);
allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] Thequery mustBeOwned() indicates whether elements of thistype must have an owner. Subclasses of Element that do not
reguire an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.

68 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.
7.3.15 Elementimport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Generalizations

 “DirectedRelationship (from Kernel)” on page 67

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Attributes

» vighility: VisibilityKind
Specifies the visibility of the imported PackageableElement within the importing Package. The default visibility is
the same as that of the imported element. If the imported element does not have avisibility, it is possible to add
visibility to the element import. Default value is public.

e dias: String [0..1]
Specifies the name that should be added to the namespace of the importing Package in lieu of the name of the

imported PackagableElement. The aliased name must not clash with any other member name in the importing
Package. By default, no aliasis used.

Associations
¢ importedElement: PackageableElement [1]

Specifies the Packageabl eElement whose nameisto be added to a Namespace. Subsets DirectedRel ationship::target.
* importingNamespace: Namespace [1]

Specifies the Namespace that imports a Packageabl eElement from another Package. Subsets

DirectedRel ationship:: source and Element: :owner.

Constraints

[1] Thevisihility of an Elementlmport is either public or private.
self.visibility = #public or self.visibility = #private

[2] AnimportedElement has either public visibility or no visibility at all.
self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations

[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.

Elementimport::getName(): String;
getName =
if self.alias->notEmpty() then

© ISO/IEC 2012 - All rights reserved 69

ISO/IEC 19505-2:2012(E)

self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

In case of a name clash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an element import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the elements are not added to the importing namespace and the names of those elements must be
qualified in order to be used in that namespace. If the name of an imported element is the same as the name of an element
owned by the importing namespace, that element is not added to the importing namespace and the name of that element
must be qualified in order to be used.

An imported element can be further imported by other namespaces using either element or package imports.

The visibility of the Elementimport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public; otherwise, the keyword
«access» is shown to indicate private visibility.

If an element import has an alias, thisis used in lieu of the name of the imported element. The aliased hame may be
shown after or below the keyword «import».

Presentation options
If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

‘{element import’ <qualified-name> '}’ | ‘{element access’ <qualified-name> '}’
Optionally, the aliased name may be shown as well:

‘{element import ’ <qualified-name> * as’ <alias> '}’ | ‘{element access’ <qualified-name> ‘as <alias> '}’

70 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Examples

The element import that is shown in Figure 7.39 allows elements in the package Program to refer to the type Time in
Types without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not
imported. The Type string can be used in the Program package but cannot be further imported from that package.

Types

«datatype»
7 String
«access» //’
-7 «datatype»
Integer
Program «de_\rtiant]yg)e»
«import»

Figure 7.39 - Example of element import

In Figure 7.40, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

Types Shapes

«import» -
«datatype» Double Circle

Real radius : Double

Figure 7.40 - Example of element import with aliasing

7.3.16 Enumeration (from Kernel)

An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Generalizations

- “DataType (from Kernel)” on page 64

Description
Enumeration is a kind of data type, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Attributes

No additional attributes

© ISO/IEC 2012 - All rights reserved 71

ISO/IEC 19505-2:2012(E)

Associations

e ownedLiteral: EnumerationLiteral[*]
The ordered set of literals for this Enumeration. Subsets Namespace: : ownedMember

Constraints

No additional constraints

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to aline, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

«enumeration»
VisibilityKind
public
private
protected
package

Figure 7.41 - Example of an enumeration
7.3.17 EnumerationLiteral (from Kernel)

An enumeration literal is a user-defined data value for an enumeration.

Generalizations

 “InstanceSpecification (from Kernel)” on page 87

Description

An enumeration literal is a user-defined data value for an enumeration.

Attributes

No additional attributes

72 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Associations

e enumeration: Enumeration[1]
The Enumeration that this EnumerationLiteral is a member of. Subsets NamedElement: : namespace

e /classifier: Enumeration[1]
The classifier of this EnumerationLiteral is derived to be equal to its enumeration. Redefines
InstanceSpecification: : classifier.

Constraints

[1] The classifier of the EnumerationLiteral should be equal to its owning enumeration.
classifier = enumeration

Semantics
An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.
Notation
An EnumerationLiteral is typically shown as a name, one to a line, in the compartment of the enumeration notation.

7.3.18 Expression (from Kernel)

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Generalizations

» “ValueSpecification (from Kernel)” on page 145

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

Attributes

e symbol: String [0..1]
The symbol associated with the node in the expression tree.

Associations

e operand: ValueSpecification[*]
Specifies a sequence of operands. Subsets Element:: ownedEl ement.

Constraints

No additional constraints

© ISO/IEC 2012 - All rights reserved 73

ISO/IEC 19505-2:2012(E)

Semantics

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples

xor
else

plus(x,1)
x+1

7.3.19 Feature (from Kernel)

A feature declares a behavioral or structural characteristic of instances of classifiers.

Generalizations

» “RedefinableElement (from Kernel)” on page 137

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

e isStatic: Boolean
Specifies whether this feature characterizes individual instances classified by the classifier (false) or the classifier
itself (true). Default valueisfalse.

Associations

» [featuringClassifier: Classifier [0..%]
The Classifiers that have this Feature as a feature. Thisis a derived union.

Constraints

No additional constraints

Semantics

A feature represents some characteristic for its featuring classifiers; this characteristic may be of the classifier’s instances
considered individually (not static), or of the classifier itself (static). A Feature can be a feature of multiple classifiers.
The same feature cannot be static in one context but not another.

74 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantic Variation Points

With regard to static features, two alternative semantics are recognized. A static feature may have different values for
different featuring classifiers, or the same value for all featuring classifiers.

In accord with this semantic variation point, inheritance of values for static features is permitted but not required by UML
2. Such inheritance is encouraged when modeling systems will be coded in languages, such as C++, Java, and C#, which
stipulate inheritance of values for static features.

Notation

No general notation. Subclasses define their specific notation.
Static features are underlined.

Presentation Options

Only the names of static features are underlined.
An dlipsis (...) asthe final element of alist of features indicates that additional features exist but are not shown in that

list.
Changes from previous UML

The property isSatic in UML 2 serves in place of the metaattribute owner Scope of Feature in UML 1. The enumerated
data type ScopeKind with two values, instance and classifier, provided in UML 1 as the type for ownerScope is no longer
needed because isSatic is Boolean.

7.3.20 Generalization (from Kernel, PowerTypes)

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits
the features of the more genera classifier.

Generalizations

 “DirectedRelationship (from Kernel)” on page 67

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Package PowerTypes
A generalization can be designated as being a member of a particular generalization set.

Attributes

e isSubstitutable: Boolean [0..1]
Indicates whether the specific classifier can be used wherever the general classifier can be used. If true, the execution
traces of the specific classifier will be a superset of the execution traces of the general classifier. The default valueis
true.

© ISO/IEC 2012 - All rights reserved 75

ISO/IEC 19505-2:2012(E)

Associations

e general: Classifier [1]
References the general classifier in the Generalization relationship. Subsets DirectedRelationship: :target

e gpecific: Classifier [1]
References the specializing classifier in the Generalization relationship. Subsets DirectedRel ationship:: source and
Element:: owner

Package PowerTypes
e generalizationSet

Designates a set in which instances of Generalization are considered members.

Constraints

No additional constraints

Package PowerTypes

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, al
Generalizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Package PowerTypes

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass).
Each GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which
a specific Classifier (or class) may be divided into subclasses. The generalizationSet associates those instances of a
Generalization with a particular GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific
Classifier. Another Generalization could also relate Person as a general Classifier, but have Male Person as the specific
Classifier. These two Generalizations could be associated with the same GeneralizationSet, because they specify one way
of partitioning the Person class.

Notation

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style.” See the example sub clause below.

76 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package PowerTypes

A generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named,
that name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name
(which it inherits since it is a subclass of PackageableElement). Therefore, all Generalization relationships with the same
GeneralizationSet name are part of the same GeneralizationSet. This notation form is depicted in a), Figure 7.42.

When two or more lines are drawn to the same arrowhead, asillustrated in b), Figure 7.42, the specific Classifiers are part
of the same GeneralizationSet. When diagrammed in this way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

Lastly in c), Figure 7.42, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set, as illustrated at the bottom of Figure 7.42. Here, as with b), the
GeneralizationSet may be labeled with a single name, instead of each line labeled separately. However, such labels are
optional because the GeneralizationSet is clearly designated.

another
Generalization Set

one Generalization Set

generalization
set name-2

generalization

generalization
set name-1

set name-1

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

one another o o
Generalization N generalization generalization
ener A Generalization Set set name-1 set hame-2
Set generalization
set name-1 generalization
set name-2

another
Generalization Set

one Generalization Set
b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

one another
Generallzatlon it
N~ Generalization Set
generalization generalization
set name-1 - set name-2

¢) GeneralizationSet sharing same general Classifier using the dashed-line notation.

Figure 7.42 - GeneralizationSet designation notations

© ISO/IEC 2012 - All rights reserved 77

ISO/IEC 19505-2:2012(E)

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “ shared
target style.” See the example sub clause below.

Separate target style

Shared target style

Examples
Shape
Polygon Ellipse Spline
Shape
Polygon Ellipse Spline

Figure 7.43 - Examples of generalizations between classes

Package PowerTypes

In Figure 7.44, the Person class can be specialized as either a Female Person or a Male Person. Furthermore, Person’s can
be specialized as an Employee. Here, Female Person or a Male Person of Person constitute one GeneralizationSet and
Employee another. This illustration employs the notation forms depicted in the diagram above.

78

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Person Person
g employment
ender
d " employment 9 status
gender, gender status
Female Employee
Female Male Employee Person
Person Person
Mae
Person
Person Person
employment
gender 712 ?- SauS - — -
Female Mae Femal Male
Employee € Empl
Person Person pioy Person Person mployee

Figure 7.44 - Multiple subtype partitions (GeneralizationSets) example
7.3.21 GeneralizationSet (from PowerTypes)

A GeneralizationSet is a PackageableElement (from Kernel) whose instances define collections of subsets of
Generalization relationships.

Generalizations

» “PackageableElement (from Kernel)” on page 116

Description

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., from aclass
to its superclasses). Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. For example, a GeneralizationSet
could define a partitioning of the class Person into two subclasses: Male Person and Female Person. Here, the
GeneralizationSet would associate two instances of Generalization. Both instances would have Person as the general
classifier; however, one Generalization would involve Male Person as the specific Classifier and the other would involve
Female Person as the specific classifier. In other words, the class Person can here be said to be partitioned into two
subclasses: Male Person and Female Person. Person could also be divided into North American Person, Asian Person,
European Person, or something else. This collection of subsets would define a different GeneralizationSet that would
associate with three other Generalization relationships. All three would have Person as the general Classifier; only the
specific classifiers would differ (i.e., North American Person, Asian Person, and European Person).

© ISO/IEC 2012 - All rights reserved 79

ISO/IEC 19505-2:2012(E)

Attributes

e isCovering : Boolean
Indicates (viathe associated Generalizations) whether or not the set of specific Classifiers are covering for a
particular general classifier. When isCovering istrue, every instance of a particular general Classifier isalso an
instance of at least one of its specific Classifiers for the GeneralizationSet. When isCovering is false, there are one
or more instances of the particular general Classifier that are not instances of at least one of its specific Classifiers
defined for the GeneralizationSet. For example, Person could have two Generalization relationships each with a
different specific Classifier: Male Person and Female Person. This GeneralizationSet would be covering because
every instance of Person would be an instance of Male Person or Female Person. In contrast, Person could have a
three Generalization relationship involving three specific Classifiers: North American Person, Asian Person, and
European Person. This GeneralizationSet would not be covering because there are instances of Person for which
these three specific Classifiers do not apply. The first example, then, could be read: any Person would be specialized
as either being a Male Person or a Female Person— and nothing else; the second could be read: any Person would be
specialized as being North American Person, Asian Person, European Person, or something else. Default valueis
false.

« isDigoint : Boolean
Indicates whether or not the set of specific Classifiersin a Generalization relationship have instance in common. If
isDigoint istrue, the specific Classifiersfor a particular GeneralizationSet have no membersin common; that is, their
intersection is empty. If isDisjoint is false, the specific Classifiersin a particular GeneralizationSet have one or more
members in common; that is, their intersection is not empty. For example, Person could have two Generalization
relationships, each with the different specific Classifier: Manager or Staff. Thiswould be digoint because every
instance of Person must either be a Manager or Staff. In contrast, Person could have two Generalization relationships
involving two specific (and non- covering) Classifiers: Sales Person and Manager. This GeneralizationSet would not
be digoint because there are instances of Person that can be a Sales Person and a Manager. Default value is false.

Associations

e generalization : Generalization [*]
Designates the instances of Generalization that are members of a given GeneralizationSet (see constraint [1] below).

e powertype: Classifier [0..1]
Designates the Classifier that is defined as the power type for the associated GeneralizationSet (see constraint [2]
below).

Constraints

[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.
generalization->collect(g | g.general)->asSet()->size() <= 1

[2] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances be its subclasses.

Semantics

The generalizationSet association designates the collection of subsets to which the Generalization link belongs. All of the
Generalization links that share a given general Classifier are divided into subsets (e.g., partitions or overlapping subset
groups) using the generalizationSet association. Each collection of subsets represents an orthogonal dimension of
specialization of the general Classifier.

80 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

As mentioned above, in essence, a power type is a class whose instances are subclasses of another class. Power types,
then, are metaclasses with an extra twist: the instances can also be subclasses. The powertype association relates a
classifier to the instances of that classifier, which are the specific classifiers identified for a GeneralizationSet. For
example, the Bank Account Type classifier could associate with a GeneralizationSet that has Generalizations with specific
classifiers of Checking Account and Savings Account. Here, then, Checking Account and Savings Account are instances
of Bank Account Type. Furthermore, if the Generalization relationship has a general classifier of Bank Account, then
Checking Account and Savings Account are also subclasses of Bank Account. Therefore, Checking Account and Savings
Account are both instances of Bank Account Type and subclasses of Bank Account. (For more explanation and examples
see “Examples’ on page 83.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets was presented in the Notation sub clause
of Generalization, above. To indicate whether or not a generalization set is covering and disjoint, each set should be
|abeled with one of the constraints indicated below.

{complete, digoint} - Indicatesthe generalization set is covering and its specific Classifiers have no common
instances.
{incomplete, digoint} - Indicates the generalization set is not covering and its specific Classifiers have no common
instances*.
{complete, overlapping} - Indicates the generalization set is covering and its specific Classifiers do share common
instances.
{incomplete, overlapping} - Indicates the generalization set is not covering and its specific Classifiers do share common
instances.

* default is {incomplete, digoint}

Figure 7.45 - Generalization set constraint notation

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, as illustrated below.

© ISO/IEC 2012 - All rights reserved 81

ISO/IEC 19505-2:2012(E)

{Generalization {Generalization
Set constraint-1} Set constraint-2}

(a) GeneralizationSet constraint when sharing common generalization arrowhead.

{Generalization
Set constraint-3} L
- — — - {Generalization

Set constraint-4}

(b) GeneralizationSet constraint using dashed-line notation.

Figure 7.46 - GeneralizationSet constraint notation

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to the
GeneralizationSet graphically containing the specific classifiers that are the instances of the power type. The illustration
below indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation for

GeneralizationSets.

82

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

PowerType General PowerType
Classifier-1 Classifier Classifier-2
: powertype classifier-1 - powertype classifier-2
Specific Specific Specific
Classifier-1 Classifier-2 Classifier-3

(a) Power type specification when sharing common generalization arrowhead

PowerType General PowerType
Classifier-1 Classifier Classifier-2

: powertype classifier-

: powertype classifier-2

Specific Specific Specific
Classifier-1 Classifier-2 Classifier-3

(b) Power type specification using dashed-line notation

Figure 7.47 - Power type notation

Examples

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
GeneralizationSet is partitioned (i.e., is constrained to be complete and disjoint), each instance of Person must either be a
Female Person or a Male Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class
because a Person object may not exist without being either a Female Person or a Mae Person.) Furthermore, a Person
object can be specialized as an Employee. The generalization set here is expressed as {incomplete, disjoint}, which means
that instances of Persons can be subset as Employees or some other unnamed collection that consists of all non-Employee
instances. In other words, Persons can either be an Employee or in the complement of Employee, and not both. Taken
together, the diagram indicates that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or
not. When expressed in this manner, it is possible to partition the instances of a classifier using a disjunctive normal form
(DNF).

© ISO/IEC 2012 - All rights reserved 83

ISO/IEC 19505-2:2012(E)

Person

{complete, {incomplete,
disjoint} disjoint} An incomplete partition

Female indicating that a Person

A complete partition Employee can also be an Employee

indicating that a Person Person or not.

may be subtyped as

either aFemale Person

or a Male Person.

Male
Person

Figure 7.48 - Multiple ways of dividing subtypes (generalization sets) and constraint examples

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one
of the ways botanists organize trees is by species. In this way, each tree we see can be classified as an American elm,
sugar maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of the
instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local nursery.
Instances of Tree Species, such as sugar maple and apricot. Furthermore, this figure indicates the relationships that exist
between these two sets of objects. For instance, the tree in your front yard might be classified as a sugar maple, your
neighbor’s tree as an apricot, and so on. This class diagram expresses that each Tree Species classifies zero or more
instances of Tree, and each Tree is classified as exactly one Tree Species. It aso indicates that each Tree Speciesis
identified with a Leaf Pattern and has a general location in any number of Geographic Locations. For example, the
saguaro cactus has leaves reduced to large spines and is generally found in southern Arizona and northern Sonora.
Additionally, this figure indicates each Tree has an actual location at a particular Geographic Location. In this way, a
particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

Lastly, this diagram illustrates that Tree is subtyped as American EIm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly
maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila
Woodpecker, and so on. At first glance, it would seem that a modeler should only use either the Tree Species class or the
subclasses of Tree—since the instances of Tree Species are the same as the subclasses of tree. In other words, it seems
redundant to represent both on the same diagram. Furthermore, having both would seem to cause potential diagram
maintenance issues. For instance, if botanists got together and decided that the American elm should no longer be a
species of tree, the American EIm object would then be removed as an instance of Tree Species. To maintain the integrity
of our model in such asituation, the American EIm subtype of Tree must also be removed. Additionally, if a new species
were added as a subtype of Tree, that new species would have to be added as an instance of Tree Species. The same kind
of situation exists if the name of a tree species were changed—both the subtype of Tree and the instance of Tree Species
would have to be modified accordingly.

Asi it turns out, this apparent redundancy is not a redundancy semantically (although it may be implemented that way).
Different modeling approaches depicted above are not really all that different. In reality, the subtypes of Tree and the
instances of Tree Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species.
Furthermore, the instances of Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called
sugar maple and a subtype of Treeis called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple
subtype are the same object. The instances of Tree Species are—as the name implies—types of trees. The subtypes of
Tree are—by definition—types of trees. While Tree may be divided into various collections of subsets (based on size or

84 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

age, for example), in this example it is divided on the basis of species. Therefore, the integrity issue mentioned above is
not really an issue here. Deleting the American EIm subtype from the collection of Tree subtypes does not require also
deleting the corresponding Tree Species instance, because the American Elm subtype and the corresponding Tree Species
instance are the same object.

tree tree species
— P 1 Tree
Tree Species
* * l
actual general leaf
{disjoint, location locations pattern
incomplete} 1 * 1
: Tree Species Geographic Leaf
Location Pattern
— Sugar
Maple
— Apricot
American
Elm
— Saguaro

Figure 7.49 - Power type example and notation

As established above, the instances of Classifiers can also be Classifiers. (This is the stuff that metamodels are made of.)
These same instances, however, can also be specific classifiers (i.e., subclasses) of another classifier. When this occurs,
we have what is called a power type. Formally, a power typeis a classifier whose instances are also subclasses of another
classifier.

In the examples above, Tree Species is a power type on the Tree type. Therefore, the instances of Tree Species are
subtypes of Tree. This concept applies to many situations within many lines of business. Figure 7.50 depicts other
examples of power types. The name on the generalization set beginning with a colon indicates the power type. In other
words, this name is the name of the type of which the subtypes are instances.

Diagram (@) in the figure below, then, can be interpreted as: each instance of Account is classified with exactly one
instance of Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This
means that each instance of Checking Account can have its own attributes (based on those defined for Checking Account
and those inherited from Account), such as account number and balance. Additionally, it means that Checking Account as
an object in its own right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes
are sometimes referred to as class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling
example. Here, each Vehicle can be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car
are instances of Vehicle Type. In (c), Disease Occurrence classifies each occurrence of disease (e.g., my chicken pox and
your measles). Disease Classification is the power type whose instances are classes such as Chicken Pox and Measles.

© ISO/IEC 2012 - All rights reserved 85

ISO/IEC 19505-2:2012(E)

account classifier A vehicle category
ccount . 1 Vehicle

Account [Type Vehicle [+ Type

account classified vehicle
{disjoint, incomplete} {disjoint, incomplete}
:Account Type ‘Vehicle Type
Checking Truck

Account ruc

Savings

Account Car

(a) Bank account/account type example (b) Vehicle/vehicle type example
) disease classifierl . Installed service catego;-y Telephone
Disease Disease S :
Occurrence | * Classification Teleph_one * ervice
classified disease Service installed service Category
{disjoint, incomplete} {disjoint, incomplete}

: Disease Classification : Telephone Service Category

Chicken Call

Pox Waiting
Measles Call
Transferring
(c) Disease Occurrence/Disease Classification example (d) Telephone service example

Figure 7.50 - Other power type examples

Labeling collections of subtypes with the power type becomes increasingly important when a type has more than one
power type. The figure below is one such example. Without knowing which subtype collection contains Policy Coverage
Types and which Insurance Lines, clarity is compromised. This figure depicts an even more complex situation. Here, a
power type is expressed with multiple collections of subtypes. For instance, a Policy can be subtyped as either a Life,
Health, Property/Casualty, or some other Insurance Line. Furthermore, a Property/Casualty policy can be further subtyped
as Automobile, Equipment, Inland Marine, or some other Property/Casualty line of insurance. In other words, the
subtypes in the collection labeled Insurance Line are all instances of the Insurance Line power type.

86 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Policy issued POHCX insurance Iin(:el
Coverage 1 Policy Insurance
" -
Type coverage type issued policy Line
{disjoint, complete}4 {disjoint, complete}
:Policy Coverage Type :Insurance Line
Group Life
Policy | Policy
Individual Health
Policy —| Policy
Property/
Casualty
Policy

Figure 7.51 - Other power type examples

Power types are a conceptual, or analysis, notion. They express a real-world situation; however, implementing them may
not be easy and efficient. To implement power types with arelational database would mean that the instances of arelation
could aso be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation cannot directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’ re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) a data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, if a new subclass of Policy were added, a new instance
must also be added to the appropriate power type.

7.3.22 InstanceSpecification (from Kernel)

An instance specification is a model element that represents an instance in a modeled system.

Generalizations

 “PackageableElement (from Kernel)” on page 116

Description

An instance specification specifies existence of an entity in a modeled system and completely or partialy describes the
entity. The description may include:

- Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specifiedis
abstract, then the instance specification only partially describes the entity.

© ISO/IEC 2012 - All rights reserved 87

ISO/IEC 19505-2:2012(E)

» Thekind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier isa
class describes an object of that class, while an instance specification whose classifier is an association describes alink
of that association.

- Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

« Specification of how to compute, derive, or construct the instance (optional).

InstanceSpecification is a concrete class.

Attributes
No additional attributes

Associations

» classifier : Classifier [0..*]
The classifier or classifiers of the represented instance. If multiple classifiers are specified, the instance is classified
by al of them.

e dot: Sot[*]
A dot giving the value or values of astructural feature of the instance. An instance specification can have one slot
per structural feature of its classifiers, including inherited features. It is not necessary to model aslot for each
structural feature, in which case the instance specification is a partial description. Subsets Element: : ownedElement

e gpecification : ValueSpecification [0..1]
A specification of how to compute, derive, or construct the instance. Subsets Element: : ownedElement

Constraints

[1] The defining feature of each slot isastructural feature (directly or inherited) of a classifier of the instance specification.
slot->forAll(s | classifier->exists (c | c.allFeatures()->includes (s.definingFeature)))

[2] Onestructural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most one
slot in an instance specification.

classifier->forAll(c | (c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)))

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled
using multiple instance specifications, one for each snapshot.

It isimportant to keep in mind that I nstanceSpecification is a model element and should not be confused with the dynamic
element that it is modeling. Therefore, one should not expect the dynamic semantics of InstanceSpecification model
elements in a model repository to conform to the semantics of the dynamic elements that they represent.

88 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Note — When used to provide an illustration or example of an entity in amodeled system, an InstanceSpecification class does
not depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely — required
structural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity
would have a concrete classification.

Notation

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears
an underlined concatenation of the instance name (if any), a colon (*:") and the classifier name or names. The convention
for showing multiple classifiers is to separate their names by commas.

Names are optiona for UML classifiers and instance specifications. The absence of a name in a diagram may reflect its
absence in the underlying model.

The standard notation for an anonymous instance specification of an unnamed classifier is an underlined colon (*:’).

If an instance specification has a value specification as its specification, the value specification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the instance specification is shown using
an enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing
shape.

streetName: String
"S. Crown Ct."

Figure 7.52 - Specification of an instance of String

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign
(‘=") and a value specification. Other properties of the feature, such as its type, can optionally be shown.

myAddress: Address

streetName ="S. Crown Ct."
streetNumber : Integer = 381

Figure 7.53 - Slots with values

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

© ISO/IEC 2012 - All rights reserved 89

ISO/IEC 19505-2:2012(E)

Don : Person | father son | Josh: Person

Figure 7.54 - Instance specifications representing two objects connected by a link

Presentation Options

A dlot value for an attribute can be shown using a notation similar to that for alink. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

7.3.23 InstanceValue (from Kernel)

An instance value is a value specification that identifies an instance.

Generalizations

» “ValueSpecification (from Kernel)” on page 145

Description

An instance value specifies the value modeled by an instance specification.

Attributes
No additional attributes

Associations

e instance: InstanceSpecification [1]
The instance that is the specified value.

Constraints

No additional constraints

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
dlot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification.”

90 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

7.3.24 Interface (from Interfaces)

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 55

Description

An interface is akind of classifier that represents a declaration of a set of coherent public features and obligations. An
interface specifies a contract; any instance of a classifier that realizes the interface must fulfill that contract. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented by an
instance of an instantiable classifier, which means that the instantiable classifier presents a public facade that conforms to
the interface specification. Note that a given classifier may implement more than one interface and that an interface may
be implemented by a number of different classifiers (see “InterfaceRealization (from Interfaces)” on page 94).

Attributes

No additional attributes

Associations

« ownedAttribute: Property
References all the properties owned by the Interface. (Subsets Namespace: :ownedMember and Classifier::feature)

e ownedOperation: Operation

References all the operations owned by the Interface. (Subsets Namespace: :ownedMember and Classifier::feature)
e nestedClassifier: Classifier

(References all the Classifiers owned by the Interface. (Subsets Namespace: : ownedMember)

» redefinedinterface: Interface
(References all the Interfaces redefined by this Interface. (Subsets Classifier: :redefinedClassifier)

Constraints

[1] Thevisihility of all features owned by an interface must be public.
self.feature->forAll(f | f.visibility = #public)

Semantics

An interface declares a set of public features and obligations that constitute a coherent service offered by a classifier.
Interfaces provide a way to partition and characterize groups of properties that realizing classifier instances must possess.
An interface does not specify how it is to be implemented, but merely what needs to be supported by realizing instances.
That is, such instances must provide a public facade (attributes, operations, externally observable behavior) that conforms
to the interface. Thus, if an interface declares an attribute, this does not necessarily mean that the realizing instance will
necessarily have such an attribute in its implementation, only that it will appear so to external observers.

Because an interface is merely a declaration it is not an instantiable model element; that is, there are no instances of
interfaces at run time.

© ISO/IEC 2012 - All rights reserved 91

ISO/IEC 19505-2:2012(E)

The set of interfaces realized by a classifier are its provided interfaces, which represent the obligations that instances of
that classifier have to their clients. They describe the services that the instances of that classifier offer to their clients.
Interfaces may also be used to specify required interfaces, which are specified by a usage dependency between the
classifier and the corresponding interfaces. Required interfaces specify services that a classifier needsin order to perform
its function and fulfill its own obligations to its clients.

Properties owned by interfaces are abstract and imply that the conforming instance should maintain information
corresponding to the type and multiplicity of the property and facilitate retrieval and modification of that information. A
property declared on an Interface does not necessarily imply that there will be such a property on aclassifier realizing that
Interface (e.g., it may be realized by equivalent get and set operations). Interfaces may also own constraints that impose
constraints on the features of the implementing classifier.

An association between an interface and any other classifier implies that a conforming association must exist between any
implementation of that interface and that other classifier. In particular, an association between interfaces implies that a
conforming association must exist between implementations of the interfaces.

An interface cannot be directly instantiated. Instantiable classifiers, such as classes, must implement an interface (see
“InterfaceRealization (from Interfaces)”).

Notation
As a classifier, an interface may be shown using a rectangle symbol with the keyword «interface» preceding the name.

The interface realization dependency from a classifier to an interface is shown by representing the interface by a circle or
ball, labeled with the name of the interface, attached by a solid line to the classifier that realizes this interface (see Figure
7.55).

O‘ ProximitySensor

ISensor

Figure 7.55 - Isensor is the provided interface of ProximitySensor

The usage dependency from a classifier to an interface is shown by representing the interface by a half-circle or socket,
|abeled with the name of the interface, attached by a solid line to the classifier that requires this interface (see Figure
7.56).

TheftAlarm

—C

ISensor

Figure 7.56 - Isensor is the required interface of TheftAlarm

Presentation Options

Alternatively, in cases where interfaces are represented using the rectangle notation, interface realization and usage
dependencies are denoted with appropriate dependency arrows (see Figure 7.57). The classifier at the tail of the arrow
implements the interface at the head of the arrow or uses that interface, respectively.

92 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

«interface»

ISensor
TheftAlarm ——— > <]— — — —{ ProximitySensor

activate()
read()

Figure 7.57 - Alternative notation for the situation depicted in Figure 7.55 and Figure 7.56

It is often the case in practice that two or more interfaces are mutually coupled through application-specific dependencies.
In such situations, each interface represents a specific role in a multi-party “protocol.” These types of protocol role
couplings can be captured by associations between interfaces as shown in the example in Figure 7.58.

. «interface»
«interface» theAlarm the Sensor ISensor
I1Alarm
1 1 .
. activate
notify() read() 0

Figure 7.58 - Alarm is the required interface for any classifier implementing Isensor;
conversely, Isensor is the required interface for any classifier implementing IAlarm.

Examples

The following example shows a set of associated interfaces that specify an alarm system. (These interfaces may be
defined independently or as part of a collaboration.) Figure 7.59 shows the specification of three interfaces, 1Alarm,
ISensor, and 1Buzzer. | Alarm and I sensor are shown as engaged in a bidirectional protocol; |1Buzzer describes the required
interface for instances of classifiers implementing 1Alarm, as depicted by their respective associations.

«interface»
IBuzzer ; «interface»
interface
theBuzzer « Alarm » theAlarm the Sensor ISensor
Volume
1 : ! ! activate()
Start() notify() read()
Reset()

Figure 7.59 - A set of collaborating interfaces

Three classes. Door Sensor, DoorAlarm, and DoorBell implement the above interfaces (see Figure 7.60). These classifiers
are completely decoupled. Nevertheless, instances of these classifiers are able to interact by virtue of the conforming
associations declared by the associations between the interfaces that they realize.

ﬁ) ISensor ﬁ) IAlarm ﬁ) IBuzzer

DoorSensor DoorAlarm DoorBell

Figure 7.60 - Classifiers implementing the above interfaces

© ISO/IEC 2012 - All rights reserved 93

ISO/IEC 19505-2:2012(E)

7.3.25 InterfaceRealization (from Interfaces)

Generalizations

» “Readlization (from Dependencies)” on page 136

Description

An InterfaceRealization is a specialized Realization relationship between a Classifier and an Interface. This relationship
signifies that the realizing classifier conforms to the contract specified by the Interface.

Attributes

No additional attributes

Associations

e contract: Interface [1]
References the I nterface specifying the conformance contract. (Subsets Dependency::supplier).

« implementingClassifier: BehavioredClassifier [1]
References the BehavioredClassifier that owns this Interfacerealization (i.e., the classifier that realizes the Interface
towhich it points). (Subsets Dependency:: client, Element::owner.)

Constraints

No additional constraints

Semantics

A classifier that implements an interface specifies instances that are conforming to the interface and to any of its
ancestors. A classifier may implement a number of interfaces. The set of interfaces implemented by the classifier are its
provided interfaces and signify the set of services the classifier offersto its clients. A classifier implementing an interface
supports the set of features owned by the interface. In addition to supporting the features, a classifier must comply with
the constraints owned by the interface.

An interface realization relationship between a classifier and an interface implies that the classifier supports the set of
features owned by the interface, and any of its parent interfaces. For behavioral features, the implementing classifier will
have an operation or reception for every operation or reception, respectively, defined by the interface. For properties, the
realizing classifier will provide functionality that maintains the state represented by the property. While such may be done
by direct mapping to a property of the realizing classifier, it may also be supported by the state machine of the classifier
or by apair of operations that support the retrieval of the state information and an operation that changes the state
information.

Notation

See “Interface (from Interfaces)”
7.3.26 LiteralBoolean (from Kernel)

A literal Boolean is a specification of a Boolean value.

94 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Generalizations

 “Literal Specification (from Kernel)” on page 98

Description

A literal Boolean contains a Boolean-valued attribute. Default value is false.

Attributes

e value: Boolean
The specified Boolean value. Redefines ValueSpecification: : value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() givesthe value.

LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

Semantics

A LiteralBoolean specifies a constant Boolean value.
Notation
A LiteralBoolean is shown as either the word ‘true’ or the word ‘false,” corresponding to its value.

7.3.27 Literallnteger (from Kernel)

A literal integer is a specification of an integer value.

Generalizations

 “Literal Specification (from Kernel)” on page 98

Description

A literal integer contains an Integer-valued attribute.

© ISO/IEC 2012 - All rights reserved 95

ISO/IEC 19505-2:2012(E)

Attributes

e vaue Integer

The specified Integer value. Default value is 0. Redefines ValueSpecification: : value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
Literallnteger::isComputable(): Boolean;
isComputable = true

[2] The query integerValue() givesthe value.
Literalinteger::integerValue() : [Integer];
integerValue = value

Semantics

A Literallnteger specifies a constant Integer value.

Notation

A Literallnteger is shown as a sequence of digits.
7.3.28 LiteralNull (from Kernel)

A literal null specifies the lack of a value.

Generalizations

» “Literal Specification (from Kernel)” on page 98

Description

A literal null is used to represent null (i.e., the absence of a value).

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

96

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

[1] The query isComputable() is redefined to be true.
LiteralNull::isComputable(): Boolean;
isComputable = true

[2] Thequery isNull() returns true.
LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null.” Other notations are
described for specific uses.

7.3.29 LiteralReal
A literal real is a specification of areal value.

Description
A literal real contains a Real-valued attribute.

Generalizations

 “Literal Specification (from Kernel)” on page 98

Attributes

e vaue Red
The specified Real value. Redefines ValueSpecification:: value.

Associations

No additional associations

Constraints
No additional constraints

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralReal::isComputable(): Boolean;
isComputable = true

[2] Thequery realVaue() givesthe value.

LiteralString::realValue() : [Real];
realValue = value

© ISO/IEC 2012 - All rights reserved 97

ISO/IEC 19505-2:2012(E)

Semantics
A LiteralReal specifies a constant Real value.

Notation

A LiteralReal is shown in the decimal notation or scientific notation. Decimal notation consists of an optional sign
character (+/-) followed by zero or more digits followed optionally by a dot (.) followed by one or more digits. Scientific
notation consists of decimal notation followed by either the letter “€” or “E” and an exponent consisting of an optional
sign character followed by one or more digits. The scientific notation expresses a real number equal to that given by the
decimal notation before the exponent, times 10 raised to the power of the exponent.

This notation is specified by the following BNF rules:
<natural-literal> ::= ('0"..'9")+

<decimal-literal> ::=['+'| '-'] <natural-literal>

| ['+"|'-"] [<natural-literal>] "." <natural-literal>

<real-literal> ::= <decimal-literal> [(‘'e' | 'E") ['+' | -'] <natural-literal>]
7.3.30 LiteralSpecification (from Kernel)

A literal specification identifies a literal constant being modeled.

Generalizations

» “ValueSpecification (from Kernel)” on page 145

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being model ed.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics. Subclasses of Literal Specification are defined to specify literal values of different types.

Notation

No specific notation

98 © ISO/IEC 2012 - Al rights reserved

7.3.31 LiteralString (from Kernel)

A literal string is a specification of a string value.

Generalizations

» “Literal Specification (from Kernel)” on page 98.

Description

A literal string contains a String-valued attribute.

Attributes

e vaue String [0..1]
The specified String value. Redefines ValueSpecification::value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralString::isComputable(): Boolean;
isComputable = true

[2] Thequery stringValue() givesthe value.
LiteralString::stringValue() : [String];
stringValue = value

Semantics

A Literal String specifies a constant String value.

Notation
A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.
7.3.32 LiteralUnlimitedNatural (from Kernel)

A literal unlimited natural is a specification of an unlimited natural number.

Generalizations

» “Literal Specification (from Kernel)” on page 98

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

99

ISO/IEC 19505-2:2012(E)

Description

A literal unlimited natural contains an UnlimitedNatural-valued attribute.

Attributes

e value: UnlimitedNatura
The specified UnlimitedNatural value. Default value is 0. Redefines Val ueSpecification: : value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() gives the value.
LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation
A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk denotes
unlimited (and not infinity).

7.3.33 MultiplicityElement (from Kernel)

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Generalizations

» “Element (from Kernel)” on page 68

Description

A MultiplicityElement is an abstract metaclass that includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

100 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Attributes

e isOrdered : Boolean
For amultivalued multiplicity, this attribute specifies whether the values in an instantiation of this element are
sequentially ordered. Default isfalse.

e isUnique: Boolean
For amultivalued multiplicity, this attributes specifies whether the values in an instantiation of this element are
unique. Default istrue.

e [lower : Integer [0..1]
Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

e [upper : UnlimitedNatural [0..1]
Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited natural.

Associations

* lowerValue: ValueSpecification [0..1]
The specification of the lower bound for this multiplicity. Subsets Element:: ownedElement

e upperValue: ValueSpecification [0..1]
The specification of the upper bound for this multiplicity. Subsets Element: : ownedElement

Constraints

These constraints must handle situations where the upper bound may be specified by an expression not computable in the
model.
[1] A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0
[1] Thelower bound must be a non-negative integer literal.
lowerBound()->notEmpty() implies lowerBound() >= 0
[2] The upper bound must be greater than or equal to the lower bound.
(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

[3] If anon-literal ValueSpecification is used for the lower or upper bound, then eval uating that specification must not have
side effects.

Cannot be expressed in OCL.

[4] If anon-literal ValueSpecification is used for the lower or upper bound, then that specification must be a constant
expression.
Cannot be expressed in OCL.
[5] Thederived lower attribute must equal the lowerBound.
lower = lowerBound()
[6] Thederived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations

[1] Thequery isMultivalued() checks whether this multiplicity has an upper bound greater than one.
MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()

© ISO/IEC 2012 - All rights reserved 101

ISO/IEC 19505-2:2012(E)

isMultivalued = (upperBound() > 1)

[2] The query includesCardinality() checks whether the specified cardinality isvalid for this multiplicity.
MultiplicityElement::includesCardinality(C : Integer) : Boolean;
pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

[3] The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.
MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()
and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()

includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())
[4] The query lowerBound() returnsthe lower bound of the multiplicity as an integer.
MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 1 else lowerValue.integerValue() endif
[5] The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.
MultiplicityElement::upperBound() : [UnlimitedNaturall;
upperBound = if upperValue->isEmpty() then 1 else upperValue.unlimitedValue() endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C isvalid for multiplicity M
if M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite)
upper bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a collection of
values. The multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic
effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions. A MultiplicityElement can define a[0..0] multiplicity. This restricts cardinality
to be 0; that is, it forces the collection to be empty. Thisis useful in the context of generalizations - to constrain the
cardinalities of a more general classifier. It applies to (but is not limited to) redefining properties existing in more general
classifiers.

102 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Notation

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include
a multiplicity specification, which is shown as a text string containing the bounds of the interval, and a notation for
showing the optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
<lower-bound> *.." <upper-bound>

where <lower-bound> is an integer and <upper-bound> is an unlimited natural number. The star character (*) is used as
part of a multiplicity specification to represent the unlimited (or infinite) upper bound.

If the Multiplicity is associated with an element whose notation is atext string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 7.61 shows two multiplicity strings as
part of attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity
string is displayed without square brackets and may be placed near the symbol for the element. Figure 7.62 shows two
multiplicity strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation isto use a property string containing ordered or unordered to define the ordering,
and unigue or non-unique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1.”

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing
asingle star “*” instead of “0..*.” The following BNF defines the syntax for a multiplicity string, including support for
the presentation options:

<multiplicity> ::= <multiplicity-range>
[[‘{* <order-designator> [‘," <uniqueness-designator>1]‘}'] |
[{* <uniqueness-designator> [, <order-designator>1‘}']1]

<multiplicity-range> ::= [<lower> *.." | <upper>

<lower> ::= <integer> | <value-specification>

<upper> ::= ‘*’ | <value-specification>

<order-designator> ::= ‘ordered’ | ‘unordered’

<uniqueness-designator> ::= ‘unique’ | ‘ nonunique’

Examples

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Figure 7.61 - Multiplicity within a textual specification

© ISO/IEC 2012 - All rights reserved 103

ISO/IEC 19505-2:2012(E)

purchase account
Purchase Customer Account
, {ordered, {unique}
unique} 0.5

Figure 7.62 - Multiplicity as an adornment to a symbol
7.3.34 NamedElement (from Kernel, Dependencies)

A named element is an element in a model that may have a name.

Generalizations

» “Element (from Kernel)” on page 68

Description

A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes

e name: String [0..1]
The name of the NamedElement.

e [quaifiedName: String [0..1]
A name that allows the NamedElement to be identified within a hierarchy of nested Namespaces. It is constructed
from the names of the containing namespaces starting at the root of the hierarchy and ending with the name of the
NamedElement itself. Thisisaderived attribute.

« vighility: VisihilityKind [0..1]
Determines where the NamedElement appears within different Namespaces within the overall model, and its
accessibility..

Package Dependencies
e clientDependency: Dependency[*]
Indicates the dependencies that reference the client.

Associations

e [/ namespace: Namespace [0..1]
Specifies the namespace that owns the NamedElement. Subsets Element::owner. Thisis a derived union.

104 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Constraints
[1] If thereisno name, or one of the containing namespaces has no name, there is no qualified name.
(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()
[2] When thereisaname, and al of the containing namespaces have a name, the qualified name is constructed from the
names of the containing namespaces.
(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->union(result))
[3] If aNamedElement is not owned by a Namespace, it does not have avisihility.
namespace->isEmpty() implies visibility->isEmpty()

Additional Operations
[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.
NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =
if self.namespace->isEmpty()
then Sequence{}
else self.namespace.allNamespaces()->prepend(self.namespace)
endif

[2] Thequery isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but
different names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =
if self.oclisKindOf(n.oclType) or n.oclisKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
else true
endif
[3] The query separator() gives the string that is used to separate names when constructing a qualified name.
NamedElement::separator(): String;
separator = 7’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the attribute has a multiplicity of [0..1] that provides for the possibility of the absence of a name (which is different
from the empty name).

The visibility attribute provides the means to constrain the usage of a named element, either in namespaces or in access
to the element. It is intended for use in conjunction with import, generalization, and access mechanisms.

Notation
No additional notation

© ISO/IEC 2012 - All rights reserved 105

ISO/IEC 19505-2:2012(E)

7.3.35 Namespace (from Kernel)

A namespace is an element in a model that contains a set of named elements that can be identified by name.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

A namespace can own constraints. A constraint associated with a namespace may either apply to the namespace itself, or
it may apply to elements in the namespace.

A namespace has the ability to import either individual members or all members of a package, thereby making it possible
to refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary
to use qualified names or aliases to disambiguate the referenced elements.

Attributes
No additional attributes

Associations
e elementimport: Elementimport [*]
References the Elementlmports owned by the Namespace. Subsets Element:: ownedElement

e /importedMember: PackageableElement [*]
References the Packageabl eElements that are members of this Namespace as a result of either Packagel mports or
ElementImports. Subsets Namespace: : member

e/ member: NamedElement [*]
A collection of NamedElements identifiable within the Namespace, either by being owned or by being introduced by
importing or inheritance. Thisis a derived union.

¢/ ownedMember: NamedElement [*]
A collection of NamedElements owned by the Namespace. Subsets Element: : ownedElement and
Namespace::member. Thisis a derived union.

« ownedRule: Constraint[*]
Specifies a set of Constraints owned by this Namespace. Subsets Namespace: : ownedMember

e packagelmport: Packagel mport [*]
References the Packagel mports owned by the Namespace. Subsets Element: : ownedElement

Constraints
[1] All the members of a Namespace are distinguishable within it.
membersAreDistinguishable()

106 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

[2] TheimportedMember property is derived from the Elementl mports and the Packagel mports.

importedMember = self.elementimport.importedElement.asSet()->union(self.packagelmport.importedPackage->collect(p |
p.visibleMembers()))

Additional Operations
[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a

(2]

(3]

[4]

member can have multiple namesin a Namespace if it isimported more than once with different aliases. The query takes
account of importing. It gives back the set of names that an element would have in an importing namespace, either
because it is owned; or if not owned, then imported individually; or if not individually, then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember =
if self.ownedMember ->includes(element)
then Set{}->include(element.name)
else let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = element) in
if elementimports->notEmpty()
then elementimports->collect(el | el.getName())
else
self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))
endif
endif
The Boolean query membersAreDistinguishable() determines whether al of the namespace’s members are
distinguishable within it.
Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |
self.member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))
The query importMembers() defines which of a set of Packageabl eElements are actually imported into the namespace.

This excludes hidden ones, i.e., those that have names that conflict with names of owned members, and also excludes
elements that would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);

importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);

excludeCollisions = imps->reject(impl | imps.exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
namel::name2::name3. The member association identifies all named elements in a namespace called N that can be
referred to by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing namespaces.

© ISO/IEC 2012 - All rights reserved 107

ISO/IEC 19505-2:2012(E)

Named elements may appear within a namespace according to rules that specify how one named element is
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelated types, or
related types but different names. This rule may be overridden for particular cases, such as operations that are
distinguished by their signature.

The ownedRule constraints for a Namespace represent well-formedness rules for the constrained elements. These
constraints are evaluated when determining if the model elements are well-formed.

Notation

No additional notation. Concrete subclasses will define their own specific notation.
7.3.36 OpaqueExpression (from Kernel)

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

Generalizations

» “ValueSpecification (from Kernel)” on page 145

Description

An expression contains language-specific text strings used to describe a value or values, and an optional specification of
the languages.

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be
used.
Attributes

e body: String [0..*] { nonunique, ordered}
The text of the expression, possibly in multiple languages.

e language: String [0..*] { ordered}
Specifies the languages in which the expression is stated. The interpretation of the expression body depends on the
languages. If the languages are unspecified, they might be implicit from the expression body or the context.
Languages are matched to body strings by order.

Associations

No additional associations

Constraints

[1] If the language attribute is not empty, then the size of the body and language arrays must be the same.
language->notEmpty() implies
(body->size() = language->size())

Additional Operations

These operations are not defined within the specification of UML. They should be defined within an implementation that
implements constraints so that constraints that use these operations can be evaluated.

108 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

[1] The query value() gives an integer value for an expression intended to produce one.
Expression::value(): Integer;
pre: self.isintegral()

[2] Thequery isintegral() tells whether an expression is intended to produce an integer.
Expression::isintegral(): Boolean;

[3] The query isPositive() tells whether an integer expression has a positive value.
Expression::isPositive(): Boolean;
pre: self.isintegral()

[4] The query isNonNegative() tells whether an integer expression has a non-negative value.
Expression::isNonNegative(): Boolean;
pre: self.isintegral()

Semantics

The expression body may consist of a sequence of text strings - each in a different language - representing alternative
representations of the same content. When multiple language strings are provided, the language of each separate string is
determined by its corresponding entry in the “language” attribute (by sequence order). The interpretation of the text
strings is language specific. Languages are matched to body strings by order. If the languages are unspecified, they might
be implicit from the expression bodies or the context.

It is assumed that alinguistic analyzer for the specified languages will evaluate the bodies. The times at which the bodies
will be evaluated are not specified.

Notation

An opaque expression is displayed as text strings in particular languages. The syntax of the strings are the responsibility
of atool and linguistic analyzers for the languages.

An opaque expression is displayed as a part of the notation for its containing element.

The languages of an opague expression, if specified, are often not shown on a diagram. Some modeling tools may impose
a particular language or assume a particular default language. The language is often implicit under the assumption that the
form of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({})
before the expression string to which it corresponds.

Style Guidelines

A language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use OCL, not ocl.

Examples
a>0
{OCL} i > jand self.size> i
average hours worked per week
7.3.37 Operation (from Kernel, Interfaces)

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

© ISO/IEC 2012 - All rights reserved 109

ISO/IEC 19505-2:2012(E)

Generalizations

» “BehavioraFeature (from Kernel)” on page 51

Description

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Attributes

/isOrdered : Boolean
Specifies whether the return parameter is ordered or not, if present. Thisis derived.

isQuery : Boolean
Specifies whether an execution of the Behavioral Feature |eaves the state of the system unchanged (isQuery=true) or
whether side effects may occur (isQuery=false). The default valueisfalse.

/isUnique : Boolean
Specifies whether the return parameter is unique or not, if present. Thisis derived.

/lower : Integer[0..1]
Specifies the lower multiplicity of the return parameter, if present. Thisis derived.

/upper : UnlimitedNatural[0..1]
Specifies the upper multiplicity of the return parameter, if present. Thisis derived.

Associations

110

class: Class[0..1]
The class that owns this operation. Subsets Redefinabl eElement: : redefinitionContext, NamedElement: : namespace
and Feature::featuringClassifier

bodyCondition: Constraint[0..1]
An optional Constraint on the result values of an invocation of this Operation. Subsets Namespace: :ownedRule

ownedParameter: Parameter[*] { ordered}
Specifies the parameters owned by this Operation. Redefines Behavioral Feature: : ownedParameter.

postcondition: Constraint[*]
An optional set of Constraints specifying the state of the system when the Operation is completed. Subsets
Namespace: :ownedRule.

precondition: Constraint[*]
An optional set of Constraints on the state of the system when the Operation is invoked. Subsets
Namespace::ownedRule

raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation. Redefines
Basic:: Operation.raisedException and Behavioral Feature: : rai sedException.

redefinedOperation: Operation[*]
References the Operations that are redefined by this Operation. Subsets Redefinabl eElement: : redefinedElement

Itype: Type[0..1]
Specifies the return result of the operation, if present. Thisis aderived value.

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Package Interfaces

« interface: Interface [0..1]
The Interface that owns this Operation. (Subsets Redefinabl eElement: : redefinitionContext,
NamedElement: : namespace and Feature:: featuringClassifier)

Constraints

[1] An operation can have at most one return parameter (i.e., an owned parameter with the direction set to ‘return’).
ownedParameter->select(par | par.direction = #return)->size() <= 1

[2] If this operation has areturn parameter, isOrdered equals the value of isOrdered for that parameter; otherwise, isOrdered
isfalse.

isOrdered = if returnResult()->notEmpty() then returnResult()->any().isOrdered else false endif

[3] If this operation has areturn parameter, isUnique equals the value of isUnique for that parameter; otherwise, isUniqueis
true.

isUnique = if returnResult()->notEmpty() then returnResult()->any().isUnique else true endif

[4] If this operation has a return parameter, lower equals the value of lower for that parameter; otherwise, lower is not
defined.

lower = if returnResult()->notEmpty() then returnResult()->any().lower else Set{} endif

[5] If this operation has a return parameter, upper equal s the value of upper for that parameter; otherwise, upper is not
defined.

upper = if returnResult()->notEmpty() then returnResult()->any().upper else Set{} endif
[6] If this operation has areturn parameter, type equals the value of type for that parameter; otherwise, type is not defined.
type = if returnResult()->notEmpty() then returnResult()->any().type else Set{} endif

[7] A bodyCondition can only be specified for a query operation.
bodyCondition->notEmpty() implies isQuery

Additional Operations

[1] The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with a redefined operation if it hasthe
same number of owned parameters, and the type of each owned parameter conforms to the type of the corresponding
redefined parameter.

A redefining operation is consistent with aredefined operation if it has the same number of formal parameters, the same
number of return results, and the type of each formal parameter and return result conforms to the type of the
corresponding redefined parameter or return result.
Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
result = redefinee.oclisKindOf(Operation) and

let op: Operation = redefinee.oclAsType(Operation) in

self.ownedParameter->size() = op.ownedParameter->size() and

Sequence{l..self.ownedParameter->size()}->

forAll(i | op.ownedParameter->at(1).type.conformsTo(self.ownedParameter->at(1).type))

© ISO/IEC 2012 - All rights reserved 111

ISO/IEC 19505-2:2012(E)

[2] Thequery returnResult() returnsthe set containing the return parameter of the Operation if one exists; otherwise, it returns
an empty set.
Operation::returnResult() : Set(Parameter);
returnResult = ownedParameter->select (par | par.direction = #return)

Semantics
An operation is invoked on an instance of the classifier for which the operation is a feature.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of
the owned parameters, add new preconditions or postconditions, add new raised exceptions, or otherwise refine the
specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model

(isQuery).

An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

Semantic Variation Points

The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point. When
operations are redefined in a specialization, rules regarding invariance, covariance, or contravariance of types and
preconditions determine whether the specialized classifier is substitutable for its more general parent. Such rules
constitute semantic variation points with respect to redefinition of operations.

Notation
If shown in a diagram, an operation is shown as a text string of the form:

[<visibility>] <name> ‘(* [<parameter-list>] ‘)’ [*:" [<return-type>] [‘[* <multiplicity> ‘]’]
[‘{* <oper-property> [*,” <oper-property>]* ‘}'1]

where:
 <visibility> isthe visibility of the operation (See “VisibilityKind (from Kernel)” on page 146).
<visibility> = ‘+" | - | # |~
» <name> isthe name of the operation.

» <return-type> isthe type of the return result parameter if the operation has one defined.

112 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

« <multiplicity> isthe multiplicity of the return type. (See “MultiplicityElement (from Kernel)” on page 100).

» <oper-property> indicates the properties of the operation.
<oper-property> ::= ‘redefines <oper-name> | ‘query’ | ‘ordered’ | ‘unique’ | <oper-constraint>

where:
« redefines < oper-name> means that the operation redefines an inherited operation identified by <oper-name>.
« query means that the operation does not change the state of the system.
« ordered means that the values of the return parameter are ordered.
« unigque means that the values returned by the parameter have no duplicates.
 <oper-constraint> is a constraint that applies to the operation.
» <parameter-list> isalist of parameters of the operation in the following format:
<parameter-list> ::= <parameter> [, <parameter>]*
<parameter> ::= [<direction>] <parameter-name> ‘:’ <type-expression>
[‘[*'<multiplicity>"]"] ['=" <default>] [‘{* <parm-property> [*,” <parm-property>]* ‘}']
where:
e <direction> ::= ‘in’ | ‘out’ | ‘inout’ (defaultsto ‘in’ if omitted).
« <parameter-name> is the name of the parameter.
* <type-expression> is an expression that specifies the type of the parameter.
« <multiplicity> isthe multiplicity of the parameter. (See “MultiplicityElement (from Kernel)” on page 100).
« <default> is an expression that defines the value specification for the default val ue of the parameter.
« <parm-property> indicates additional property values that apply to the parameter.

Presentation Options

The parameter list can be suppressed. The return result of the operation can be expressed as a return parameter, or as the
type of the operation. For example:

toString(return : String)

means the same thing as
toString() : String

Style Guidelines

An operation name typically begins with a lowercase letter.

Examples
display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String

© ISO/IEC 2012 - All rights reserved 113

ISO/IEC 19505-2:2012(E)

7.3.38 Package (from Kernel)

A package is used to group elements, and provides a namespace for the grouped elements.

Generalizations
» “Namespace (from Kernel)” on page 106
» “PackageableElement (from Kernel)” on page 116

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other
packages, or all the members of other packages. In addition a package can be merged with other packages.

Attributes

e URI: String [0..1] {id}
Provides an identifier for the package that can be used for many purposes. A URI isthe universally unique
identification of the package following the IETF URI specification, RFC 2396 http://www.ietf.org/rfc/rfc2396.txt and
it must comply with those syntax rules.

Associations

¢ /nestedPackage: Package [*]
References the owned members that are Packages. Subsets Package: : packagedElement

* /packagedElement: PackageableElement [*]
Specifies the packageable elements that are owned by this Package. Subsets Namespace: :ownedMember.

* JownedType: Type[*]
References the packaged elements that are Types. Subsets Package: : packagedElement

* packageMerge: Package [*]
References the PackageM erges that are owned by this Package. Subsets Element:: ownedElement

¢ nestingPackage: Package [0..1]
References the Package that owns this Package. Subsets NamedElement: : namespace
Constraints

[1] If an dement that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.
Package::mustBeOwned() : Boolean
mustBeOwned = false

[2] The query visibleMembers() defines which members of a Package can be accessed outside it.
Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

114 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self. member->includes(el)

makesVisible =
-- case: the element is in the package itself

(ownedMember->includes(el)) or

-- case: it is imported individually with public visibility

(elementimport->select(ei|ei.importedElement = #public)->collect(ei|ei.importedElement)->includes(el)) or

-- case: it is imported in a package with public visibility

(packagelmport->select(pi|pi.visibility = #public)->collect(pi|pi.importedPackage.member->includes(el))->notEmpty())

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,
and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package are always accessible outside the package through the use of qualified names.

The URI can be specified to provide a unique identifier for a Package. Within UML there is no predetermined usage for
this, with the exception of profiles (see Using XMI to exchange Profilesin 18.3.6). It may, for example, be used by model
management facilities for model identification. The URI should hence be unique and unchanged once assigned. There is
no requirement that the URI be dereferenceable (though this is of course permitted).

Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by
branching lines to member elements, drawn outside the package. A plus sign (+) within acircle is drawn at the end
attached to the namespace (package).

« If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

« If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by a visibility symbol (‘+' for
public and ‘-’ for private). Package elements with defined visibility may not have protected or package visibility.

The URI for a Package may be indicated with the text { uri=<uri>} following the package name.

© ISO/IEC 2012 - All rights reserved 115

ISO/IEC 19505-2:2012(E)

Presentation Options

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showing a package
with contents must not necessarily show all its contents; it may show a subset of the contained elements according to
some criterion.

Elements that become available for use in an importing package through a package import or an element import may have
a distinct color or be dimmed to indicate that they cannot be modified.

Examples

There are three representations of the same package Types in Figure 7.63. The one on the left just shows the package
without revealing any of its members. The middle one shows some of the members within the borders of the package, and
the one to the right shows some of the members using the alternative membership notation.

]

Types
] {uri=http:/Aww.abc.com/models/Types}

Types

Types Integer [£2)

Time

Shape Point

Figure 7.63 - Examples of a package with members
7.3.39 PackageableElement (from Kernel)

A packageable element indicates a named element that may be owned directly by a package.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description

A packageable element indicates a named element that may be owned directly by a package.

Attributes

« vighility: VisibilityKind [1]
Indicates that packageable elements must always have avisibility (i.e., visibility is not optional). Redefines
NamedElement: :visibility. Default value is public.

Associations

No additional associations

116 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Constraints

No additional constraints

Semantics

No additional semantics

Notation

No additional notation

7.3.40 Packagelmport (from Kernel)

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Generalizations

» “DirectedRelationship (from Kernel)” on page 67

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

« vighility: VisibilityKind
Specifiesthe visibility of the imported Packageabl eElements within the importing Namespace, i.e., whether imported
elementswill in turn be visible to other packages that use that importingPackage as an importedPackage. If the

Packagelmport is public, the imported elements will be visible outside the package, while if it is private they will not.
By default, the value of visibility is public.

Associations

« importedPackage: Package [1]
Specifies the Package whose members are imported into a Namespace. Subsets DirectedRelationship: :target

* importingNamespace: Namespace [1]
Specifies the Namespace that imports the members from a Package. Subsets DirectedRelationship: : source and
Element:: owner

Constraints

[1] Thevisibility of a Packagelmport is either public or private.
self.visibility = #public or self.visibility = #private

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

© ISO/IEC 2012 - All rights reserved 117

ISO/IEC 19505-2:2012(E)

Notation

A package import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import isintended. The predefined
keywords are «import» for a public package import, and «access» for a private package import.

Presentation options

As an aternative to the dashed arrow, it is possible to show a package import by having a text that uniquely identifies the
imported package within curly brackets either below or after the name of the namespace. The textual syntax is then:

{import’ <qualified-name> ‘}’ | ‘{access’ <qualified-name> '}’
Examples

In Figure 7.64, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then
further imported to WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be
referenced using unqualified names from WebShop.

[]
AUXI|I8.I’ NSRS >
y ¥ ‘g(ffss] —
] ’: ShoppingCart - <"2%2 -4 WebShop
Types é"«‘import»

Figure 7.64 - Examples of public and private package imports
7.3.41 PackageMerge (from Kernel)

A package merge defines how the contents of one package are extended by the contents of another package.

Generalizations

 “DirectedRelationship (from Kernel)” on page 67

Description

A package merge is a directed relationship between two packages that indicates that the contents of the two packages are
to be combined. It is very similar to Generalization in the sense that the source element conceptually adds the
characteristics of the target element to its own characteristics resulting in an element that combines the characteristics of
both.

This mechanism should be used when elements defined in different packages have the same name and are intended to
represent the same concept. Most often it is used to provide different definitions of a given concept for different purposes,
starting from a common base definition. A given base concept is extended in increments, with each increment defined in

118 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

a separate merged package. By selecting which increments to merge, it is possible to obtain a custom definition of a
concept for a specific end. Package merge is particularly useful in meta-modeling and is extensively used in the definition
of the UML metamodel.

Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and produces a new
package that combines the contents of the packages involved in the merge. In terms of model semantics, there is no
difference between a model with explicit package merges, and a model in which all the merges have been performed.

Attributes

No additional attributes

Associations

* mergedPackage: Package [1]
References the Package that isto be merged with the receiving package of the PackageMerge. Subsets
DirectedRelationship: : target

« receivingPackage: Package [1]
References the Package that is being extended with the contents of the merged package of the PackageMerge. Subsets
Element::owner and DirectedRelationship:: source

Constraints

No additional constraints

Semantics

A package merge between two packages implies a set of transformations, whereby the contents of the package to be
merged are combined with the contents of the receiving package. In cases in which certain elements in the two packages
represent the same entity, their contents are (conceptually) merged into a single resulting element according to the formal
rules of package merge specified below.

As with Generalization, a package merge between two packages in a model merely implies these transformations, but the
results are not themselves included in the model. Nevertheless, the receiving package and its contents are deemed to
represent the result of the merge, in the same way that a subclass of a class represents the aggregation of features of all of
its superclasses (and not merely the increment added by the class). Thus, within a model, any reference to a model
element contained in the receiving package implies a reference to the results of the merge rather than to the increment that
is physically contained in that package. Thisisillustrated by the example in Figure 7.65 in which package P1 and package
P2 both define different increments of the same class A (identified as P1::A and P2::A respectively). Package P2 merges
the contents of package P1, which implies the merging of increment P1::A into increment P2::A. Package P3 imports the
contents of P2 so that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A) represents
the result of the merge of P1::A into P2::A and not just the increment P2::A. Note that if another package were to import
P1, then a reference to A in the importing package would represent the increment P1::A rather than the A resulting from
merge.

© ISO/IEC 2012 - All rights reserved 119

ISO/IEC 19505-2:2012(E)

P1

P2 P3

«merge» «import»
A A e A <F—— SubA

Figure 7.65 - lllustration of the meaning of package merge

To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities: the merged
increment (e.g., P1::A in Figure 7.65), the receiving increment (e.g., P2::A), and the result of the merge transformations.
The main difficulty comes from the fact that the receiving package and its contents represents both the operand and the
results of the package merge, depending on the context in which they are considered. For example, in Figure 7.65, with
respect to the package merge operation, P2 represents the increment that is an operand for the merge. However, with
respect to the import operation, P2 represents the result of the merge. This dual interpretation of the same model element
can be confusing, so it is useful to introduce the following terminology that aids understanding:

120

merged package - the first operand of the merge, that is, the package that is to be merged into the receiving package
(thisisthe package that is the target of the merge arrow in the diagrams).

receiving package - the second operand of the merge, that is, the package that, conceptually, contains the results of the
merge (and which is the source of the merge arrow in the diagrams). However, thisterm is used to refer to the package
and its contents before the merge transformations have been performed.

resulting package - the package that, conceptually, contains the results of the merge. In the model, thisis, of course, the
same package as the receiving package, but this particular term is used to refer to the package and its contents after the
merge has been performed.

merged element - refersto amodel element that exists in the merged package.

receiving element - isamodel element in the receiving package. If the element has a matching merged element, the two
are combined to produce the resulting element (see below). Thisterm is used to refer to the element before the merge
has been performed (i.e., the increment itself rather than the resuilt).

resulting element - isamodel element in the resulting package after the merge was performed. For receiving elements
that have a matching merged element, thisis the same element asthe receiving element, but in the state after the merge
was performed. For merged elements that have no matching receiving element, thisis the merged element. For
receiving elements that have no matching merged element, thisis the same as the receiving element.

element type - refersto the type of any kind of TypedElement, such as the type of a Parameter or Structural Feature.

element metatype - is the MOF type of amodel element (e.g., Classifier, Association, Feature).

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

This terminology is based on a conceptual view of package merge that is represented by the schematic diagram in Figure
7.66 (NB: thisis not aUML diagram). The owned elements of packages A and B are all incorporated into the namespace
of package B. However, it is important to emphasize that this view is merely a convenience for describing the semantics
of package merge and is not reflected in the repository model, that is, the physical model itself is not transformed in any
way by the presence of package merges.

merged receiving
package package

A A B
A < 77
I . .
I b N /'/ /
|
I /
I package /
«merge» I merge /
: «becomes»
| ! /
:)
— il
| | package | * l;
I |
B | B' |
| |
L |

Figure 7.66 - Conceptual view of the package merge semantics

The semantics of package merge are defined by a set of constraints and transformations. The constraints specify the
preconditions for a valid package merge, while the transformations describe its semantic effects (i.e., postconditions). If
any constraints are violated, the package merge is ill-formed and the resulting model that contains it isinvalid. Different
metatypes have different semantics, but the general principle is aways the same: a resulting element will not be any less
capable than it was prior to the merge. This means, for instance, that the resulting navigability, multiplicity, visibility, etc.
of areceiving model element will not be reduced as a result of a package merge. One of the key consequences of thisis
that model elements in the resulting package are compatible extensions of the corresponding elements in the (unmerged)
receiving package in the same namespace. This capability is particularly useful in defining metamodel compliance levels
such that each successive level is compatible with the previous level, including their corresponding XMI representations.

In this part of 1SO/IEC 19505, explicit merge transformations are only defined for certain general metatypes found mostly
in metamodels (Packages, Classes, Associations, Properties, etc.), since the semantics of merging other kinds of
metatypes (e.g., state machines, interactions) are complex and domain specific. Elements of all other kinds of metatypes
are transformed according to the default rule: they are simply deep copied into the resulting package. (This rule can be
superseded for specific metatypes through profiles or other kinds of language extensions.)

General package merge rules
A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1. There can be no cyclesin the «<merge» dependency graph.

2. A package cannot merge a package in which it is contained.

© ISO/IEC 2012 - All rights reserved 121

ISO/IEC 19505-2:2012(E)

7.
8.

A package cannot merge a package that it contains.

A merged element whose metatype is not akind of Package, Class, DataType, Property, Association, Operation,
Constraint, Enumeration, or EnumerationLiteral cannot have a receiving element with the same name and metatype
unless that receiving element is an exact copy of the merged element (i.e., they are the same).

A package mergeisvalid if and only if al the constraints required to perform the merge are satisfied.

Matching typed elements (e.g., Properties, Parameters) must have conforming types. For typesthat are classes or data
types, a conforming type is either the same type or acommon supertype. For all other cases, conformance means that
the types must be the same.

A receiving element cannot have explicit references to any merged element.

Any redefinitions associated with matching redefinable elements must not be conflicting.

TRANSFORMATIONS:

122

1

10.

11.

12.

13.

(The default rule) Merged or receiving elements for which there is no matching element are deep copied into the
resulting package.

The result of merging two elements with matching names and metatypes that are exact copies of each other isthe
receiving element.

Matching elements are combined according to the transformation rules specific to their metatype and the results
included in the resulting package.

All type references to typed elements that end up in the resulting package are transformed into references to the
corresponding resulting typed elements (i.e., not to their respective increments).

For all matching elements: if both matching elements have private visibility, the resulting element will have private
visibility; otherwise, the resulting element will have public visibility.

For all matching classifier elements: if both matching elements are abstract, the resulting element is abstract;
otherwise, the resulting element is non-abstract.

For all matching classifier elements: if both matching elements are final specializations, the resulting element isa
final specialization; otherwise, the resulting element is anon-final specialization.

For all matching elements: if both matching elements are not derived, the resulting element is also not derived;
otherwise, the resulting element is derived.

For all matching multiplicity elements: the lower bound of the resulting multiplicity is the lesser of the lower bounds
of the multiplicities of the matching elements.

For al matching multiplicity elements: the upper bound of the resulting multiplicity isthe greater of the upper bounds
of the multiplicities of the matching elements.

Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting el ement.

For matching redefinable elements: different redefinitions of matching redefinable elements are combined
conjunctively.

For matching redefinable elements: if both matching elements have isLeaf=true, the resulting element also has
isL eaf=true; otherwise, the resulting element hasisL eaf=false.

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Package rules

Elements that are a kind of Package match by name and metatype (e.g., profiles match with profiles and regular packages
with regular packages).

CONSTRAINTS:

1. All classifiersin the merged package must have a non-empty qualified name and be distinguishable in the merged
package.

2. All classifiersin the receiving package must have a non-empty qualified name and be distinguishable in the receiving
package.

TRANSFORMATIONS:

1. A nested package from the merged package is transformed into a nested package with the same name in the resulting
package, unless the receiving package already contains a matching nested package. In the latter case, the merged
nested package is recursively merged with the matching receiving nested package.

2. An€element import owned by the receiving package is transformed into a corresponding element import in the
resulting package. Imported elements are not merged (unless there is al so a package merge to the package owning the
imported element or its aias).

Class and DataType rules
Elements that are kinds of Class or DataType match by name and metatype.
TRANSFORMATIONS:

1. All properties from the merged classifier are merged with the receiving classifier to produce the resulting classifier
according to the property transformation rules specified below.

2. Nested classifiers are merged recursively according to the same rules.

Property rules
Elements that are kinds of Property match by name and metatype.
CONSTRAINTS:
1. Thestatic (or non-static) characteristic of matching properties must be the same.
2. The uniqueness characteristic of matching properties must be the same.
3. Any constraints associated with matching properties must not be conflicting.
TRANSFORMATIONS:

1. For merged properties that do not have a matching receiving property, the resulting property is a newly created
property in the resulting classifier that is the same as the merged property.

2. For merged properties that have a matching receiving property, the resulting property is a property with the same
name and characteristics except where these characteristics are different. Where these characteristics are different, the
resulting property characteristics are determined by application of the appropriate transformation rules.

© ISO/IEC 2012 - All rights reserved 123

ISO/IEC 19505-2:2012(E)

3. For matching properties: if both properties are designated read-only, the resulting property is also designated read-
only; otherwise, the resulting property is designated as not read-only.

4. For matching properties:. if both properties are unordered, then the resulting property is also unordered; otherwise, the
resulting property is ordered.

5. For matching properties: if neither property is designated as a subset of some derived union, then the resulting
property will not be designated as a subset; otherwise, the resulting property will be designated as a subset of that
derived union.

6. For matching properties: different constraints of matching properties are combined conjunctively.

7. For matching properties: if either the merged and/or receiving elements are non-unique, the resulting element is non-
unique; otherwise, the resulting element is designated as unique.

8. Theresulting property type is transformed to refer to the corresponding type in the resulting package.

Association rules
Elements that are a kind of Association match by name and metatype.
CONSTRAINTS:
1. Theserulesonly apply to binary associations. (The default rule is used for merging n-ary associations.)
2. Thereceiving association end must be a composite if the matching merged association end is a composite.

3. Thereceiving association end must be owned by the association if the matching merged association end is owned by
the association.

TRANSFORMATIONS:

1. A merge of matching associations is accomplished by merging the Association classifiers (using the merge rules for
classifiers) and merging their corresponding owned end properties according to the rules for properties and
association ends.

2. For matching association ends: if neither association end is navigable, then the resulting association end is aso not
navigable. In all other cases, the resulting association end is navigable.

Operation rules

Elements that are a kind of Operation match by name, parameter order, and parameter types, not including any return type.
CONSTRAINTS:

1. Operation parameters and types must conform to the same rules for type and multiplicity as were defined for
properties.

2. Thereceiving operation must be a query if the matching merged operation is a query.
TRANSFORMATIONS:

1. For merged operations that do not have a matching receiving operation, the resulting operation is an operation with
the same name and signature in the resulting classifier.

124 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

2. For merged operations that have a matching receiving operation, the resulting operation is the outcome of a merge of
the matching merged and receiving operations, with parameter transformations performed according to the property
transformations defined above.

Enumeration rules

Elements that are a kind of EnumerationL iteral match by owning enumeration and literal name.
CONSTRAINTS:

1. Matching enumeration literals must be in the same order.
TRANSFORMATIONS:

1. Non-matching enumeration literals from the merged enumeration are concatenated to the receiving enumeration.

Constraint Rules
CONSTRAINTS:

1. Constraints must be mutually non-contradictory.
TRANSFORMATIONS:

1. The constraints of the merged model elements are conjunctively added to the constraints of the matching receiving
model elements.

Notation

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receiving package (the source)
to the merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Target SN

TTe—____«merge»

Source

Figure 7.67 - Notation for package merge

© ISO/IEC 2012 - All rights reserved 125

ISO/IEC 19505-2:2012(E)

Examples

In Figure 7.68, packages P and Q are being merged by package R, while package S merges only package Q.

P | Q
A A
A A
/
/
,' «merge» /
/ /
B / /
/ /
/ /
/ !
/ ”
\ «merge»
«merge» \ ,’ ,’ 9
\
\‘ /I
/
\ /
R |\ / D
1 L
A
A B

Figure 7.68 - Simple example of package merges
The transformed packages R and S are shown in Figure 7.69. The expressions in square brackets indicating which
individual increments were merged into produce the final result, with the “@" character denoting the merge operator (note
that these expressions are not part of the standard notation, but are included here for explanatory purposes).

R

A

[P:A@(Q::A@R:A)]

] [Q:Cl

i

B
[P::B]

A
[Q:A@S::A]

[Q:C]

[S::B]

Figure 7.69 - Simple example of transformed packages following the merges in Figure 7.68

126

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

In Figure 7.70, additional package merges are introduced by having package T, which is empty prior to execution of the
merge operation, merge packages R and S defined previously.

1
R
ii\\\ «merge»
\\\\\\ 1
— A T
S é’/(:merge»

Figure 7.70 - Introducing additional package merges

In Figure 7.71, the transformed version of package T is depicted. In this package, the partial definitions of A, B, C, and
D have al been brought together. Note that the types of the ends of the associations that were originally in the packages
Q and S have al been updated to refer to the appropriate elements in package T.

D
[S::D]

]

A
[(P:A@(Q::A@R::A)) -
@S::A] [Q=:C]

B
[P::B@S::B]

Figure 7.71 - The result of the additional package merges in Figure 7.70

7.3.42 Parameter (from Kernel)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

© ISO/IEC 2012 - All rights reserved 127

ISO/IEC 19505-2:2012(E)

Generalizations
« “MultiplicityElement (from Kernel)” on page 100.
» “TypedElement (from Kernel)” on page 143.

Description

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature. It has a type, and may have a multiplicity and an optional default value.

Attributes

e/ default: String [0..1]
Specifies a String that represents a value to be used when no argument is supplied for the Parameter. Thisis a derived
value.

e direction: ParameterDirectionKind [1]
Indicates whether a parameter is being sent into or out of a behavioral element. The default valueisin.

Associations

« /operation: Operation[0..1]
References the Operation owning this parameter. Subsets NamedElement: : namespace

* defaultValue: ValueSpecification [0..1]
Specifies a ValueSpecification that represents a val ue to be used when no argument is supplied for the Parameter.
Subsets Element: : ownedEl ement

Constraints

No additional constraints

Semantics

A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The
type and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If adefault is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter
if and only if no argument is supplied at invocation of the behavioral feature.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

The parameter direction specifies whether its value is passed into, out of, or both into and out of the owning behavioral
feature. A single parameter may be distinguished as a return parameter. If the behavioral feature is an operation, then the
type and multiplicity of this parameter is the same as the type and multiplicity of the operation itself.

Notation

No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines

A parameter name typically starts with a lowercase letter.

128 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

7.3.43 ParameterDirectionKind (from Kernel)

Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Generalizations

None

Description

ParameterDirectionKind is an enumeration of the following literal values:
e in Indicates that parameter values are passed into the behavioral element by the caller.

e inout Indicatesthat parameter values are passed into a behavioral element by the caller and then back out to the caller
from the behavioral element.

e out Indicates that parameter values are passed from a behavioral element out to the caller.

e return Indicatesthat parameter values are passed as return values from abehavioral element back to the caller.
7.3.44 PrimitiveType (from Kernel)

A primitive type defines a predefined data type, without any relevant substructure (i.e., it has no parts in the context of
UML). A primitive datatype may have an algebra and operations defined outside of UML, for example, mathematically.

Generalizations

- “DataType (from Kernel)” on page 64.

Description

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

© ISO/IEC 2012 - All rights reserved 129

ISO/IEC 19505-2:2012(E)

Notation
A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types may be denoted with the same notation as provided for references to such
instances (see the subtypes of “ValueSpecification (from Kernel)”).

7.3.45 Property (from Kernel, AssociationClasses, Interfaces)

A property is a structural feature.

A property related to a classifier by ownedAttribute represents an attribute, and it may also represent an association end.
It relates an instance of the class to a value or collection of values of the type of the attribute.

A property related to an Association by memberEnd or its specializations represents an end of the association. The type
of property is the type of the end of the association.

Generalizations

« “StructuralFeature (from Kernel)” on page 140

Description

Property represents a declared state of one or more instances in terms of a nhamed relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can
be controlled by setting the property’s type.

Package AssociationClasses

A property may have other properties (attributes) that serve as qualifiers.

Attributes

e aggregation: AggregationKind [1]
Specifies the kind of aggregation that applies to the Property. The default valueis none.

e [default: String [0..1]
A String that is evaluated to give a default value for the Property when an object of the owning Classifier is
instantiated. Thisisaderived value.

e /isComposite: Boolean [1]
Thisisaderived value, indicating whether the aggregation of the Property is composite or not.

e isDerived: Boolean [1]
Specifies whether the Property is derived, i.e., whether its value or values can be computed from other information.
The default valueisfalse.

* isDerivedUnion : Boolean
Specifies whether the property is derived asthe union of al of the properties that are constrained to subset it. The
default value isfalse.

130 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

e isReadOnly : Boolean
If true, the attribute may only be read, and not written. The default value is false.

e isID: Boolean
Trueindicates this property can be used to uniquely identify an instance of the containing Class. Default valueisfalse

Associations

e association: Association [0..1]
References the association of which this property is amember, if any.

e owningAssociation; Association [0..1]
References the owning association of this property. Subsets Property: : association, NamedElement: : namespace,
Feature: :featuringClassifier, and Redefinabl eElement: : redefinitionContext.

e datatype: DataType[0..1]
References the DataType that owns the Property. Subsets NamedElement: : namespace and
Feature: :featuringClassifier

« defaultValue: ValueSpecification [0..1]
A ValueSpecification that is evaluated to give a default value for the Property when an object of the owning Classifier
isinstantiated. Subsets Element: : ownedEl ement.

* redefinedProperty : Property [*]
References the properties that are redefined by this property. Subsets RedefinableElement: : redefinedEl ement.

e subsettedProperty : Property [*]
References the properties of which this property is constrained to be a subset.

« | opposite: Property [0..1]
In the case where the property is one navigable end of a binary association with both ends navigable, this gives the
other end.

e class: Class[0..1]
References the Class that owns the Property. Subsets NamedElement: : namespace and Feature: : featuringClassifier

Package AssociationClasses

e associationEnd : Property [0..1]
Designates the optional association end that owns a qualifier attribute. Subsets Element::owner

e qualifier : Property [*]
An optional list of ordered qualifier attributes for the end. If the list is empty, then the Association is hot qualified.
Subsets Element: : ownedElement

Package Interfaces
« interface: Interface [0..1]

References the Interfce that owns the Property. Subsets NamedElement:: namespace and Feature: :featuringClassifier
Constraints

[1] If this property isowned by aclass associated with a binary association, and the other end of the association is aso owned
by a class, then opposite gives the other end.
opposite =
if owningAssociation->isEmpty() and association.memberEnd->size() = 2 then
let otherEnd = (association.memberEnd - self)->any() in

© ISO/IEC 2012 - All rights reserved 131

ISO/IEC 19505-2:2012(E)

(2]

(3]

[4]

(3]

(6]

[7]

(8]

(9]

if otherEnd.owningAssociation->isEmpty() then otherEnd else Set{} endif
else Set {}
endif
A multiplicity on an aggregate end of a composite aggregation must not have an upper bound greater than 1.
isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)
Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.
subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))
A redefined property must be inherited from a more general classifier containing the redefining property.
if (redefinedProperty->notEmpty()) then
(redefinitionContext->notEmpty() and
redefinedProperty->forAll(rp|
((redefinitionContext->collect(fc|
fc.allParents()))->asSet())->
collect(c| c.allFeatures())->asSet()->
includes(rp))
A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.
subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and
((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))
A derived union is derived.
isDerivedUnion implies isDerived
A derived union isread only.
isDerivedUnion implies isReadOnly
The value of isCompositeis true only if aggregation is composite.
isComposite = (self.aggregation = #composite)
A Property cannot be subset by a Property with the same name
if (self.subsettedProperty->notEmpty()) then
self.subsettedProperty->forAll(sp | sp.name <> self.name)

Additional Operations

(1

132

The query isConsistentWith() specifies, for any two Propertiesin a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conformsto the type of the redefined property, and the multiplicity of the redefining property (if
specified) is contained in the multiplicity of the redefined property.

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean

pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = redefinee.oclisKindOf(Property) and
let prop : Property = redefinee.oclAsType(Property) in

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

(prop.type.conformsTo(self.type) and
((prop.lowerBound()->notEmpty() and self.lowerBound()->notEmpty()) implies
prop.lowerBound() >= self.lowerBound()) and
((prop.upperBound()->notEmpty() and self.upperBound()->notEmpty()) implies
prop.lowerBound() <= self.lowerBound()) and
(self.isComposite implies prop.isComposite))

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, al of the classifiers at the other ends.
Property::subsettingContext() : Set(Type)
subsettingContext =

if association->notEmpty/()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif

endif
[3] The query isNavigable() indicates whether it is possible to navigate across the property.
Property::isNavigable() : Boolean
isNavigable = not classifier->isEmpty() or association.owningAssociation.navigableOwnedEnd->includes(self)
[4] Thequery isAttribute() istrue if the Property is defined as an attribute of some classifier

context Property::isAttribute(p : Property) : Boolean
post: result = Classifier.allinstances->exists(c| c.attribute->includes(p))

Semantics

When a property is owned by a classifier other than an association via ownedAttribute, then it represents an attribute of
the class or data type. When related to an association via memberEnd or one of its specializations, it represents an end of
the association. In either case, when instantiated a property represents a value or collection of values associated with an
instance of one (or in the case of aternary or higher-order association, more than one) type. This set of classifiersis called
the context for the property; in the case of an attribute the context is the owning classifier, and in the case of an
association end the context is the set of types at the other end or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain
the size of the collection. Typically and by default the maximum bound is 1.

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of
values may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

Table 7.1 - Collection types for properties

isOrdered isUnique Collection type
false true Set

true true OrderedSet

false false Bag

true false Sequence

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

© ISO/IEC 2012 - All rights reserved 133

ISO/IEC 19505-2:2012(E)

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e., clients
cannot directly change values). But where a derived property is changeable, an implementation is expected to make
appropriate changes to the model in order for all the constraints to be met, in particular the derivation constraint for the
derived property. The derivation for a derived property may be specified by a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by
the derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the
redefining property’s default is used in place of the more general default from the redefined property.

If a navigable property is marked as readOnly, then it cannot be updated once it has been assigned an initial value.

A property may be marked as the subset of another, as long as every element in the context of subsetting property
conforms to the corresponding element in the context of the subsetted property. In this case, the collection associated with
an instance of the subsetting property must be included in (or the same as) the collection associated with the
corresponding instance of the subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in
some context is derived by being the strict union of al of the values denoted, in the same context, by properties defined
to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of al the subsets must be
null or the same.

A property may be owned by and in the namespace of a datatype.

A property may be marked as being (part of) the identifier (if any) for classes of which it is a member. The interpretation
of thisis left open but this could be mapped to implementations such as primary keys for relational database tables or 1D
attributesin XML. If multiple properties are marked (possibly in superclasses), then it is the combination of the (property,
value) tuples that will logically provide the uniqueness for any instance. Hence there is no need for any specification of
order and it is possible for some (but not all) of the property values to be empty. If the property is multivalued, then all

values are included.

Package AssociationClasses

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the
qualified instance is at the end to which the qualifier is attached). A qualifier instance comprises one value for each
qualifier attribute. Given a qualified object and a qualifier instance, the number of objects at the other end of the
association is constrained by the declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and designates at most one associated object. In the general case of
multiplicity 0..*, the set of associated instances is partitioned into subsets, each selected by a given qualifier instance. In
the case of multiplicity 1 or 0..1, the qualifier has both semantic and implementation consequences. In the case of
multiplicity 0..*, it has no real semantic consequences but suggests an implementation that facilitates easy access of sets
of associated instances linked by a given qualifier value.

Note — The multiplicity of aqualifier is given assuming that the qualifier valueis supplied. The “raw” multiplicity without the
qualifier isassumed to be 0..*. Thisis not fully general but it isamost always adequate, as a situation in which the raw
multiplicity is 1 would best be modeled without a qualifier.

134 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Note — A qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while alower
bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with afinite
number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

Notation

The following general notation for properties is defined. Note that some specializations of Property may also have
additional notational forms. These are covered in the appropriate Notation sub clauses of those classes.

<property> ::= [<visibility>] ['/'] <name> [':" <prop-type>] ['[* <multiplicity> ‘]’] ['=" <default>]
[‘{* <prop-modifier > [*,” <prop-modifier >]* '}’]
where:
» <visibility> isthe visibility of the property. (See“VisibilityKind (from Kernel)” on page 146.)
<vigbility> ;= *+" | - ||~
- '/ signifiesthat the property is derived.
« <name> isthe name of the property.
» <prop-type> isthe name of the Classifier that isthe type of the property.

- <multiplicity> isthe multiplicity of the property. If thisterm isomitted, it impliesamultiplicity of 1 (exactly one). (See
“MultiplicityElement (from Kernel)” on page 100.)

» <default> isan expression that evaluates to the default value or values of the property.
» <prop-modifier > indicates a modifier that applies to the property.
<prop-modifier> ::= ‘readOnly’ | ‘union’ | ‘subsets’ <property-name> |
‘redefines’ <property-name> | ‘ordered’ | ‘unique’ | ‘nonunique’ | ‘id’ | <prop-constraint>
where:
* readOnly means that the property isread only.

« union means that the property is a derived union of its subsets.

« subsets < property-name> means that the property is a proper subset of the property identified by <property-
name>.

« redefines <property-name> means that the property redefines an inherited property identified by <property-
name>.

« ordered means that the property is ordered.
* unigue means that there are no duplicates in a multi-valued property.
« id means that the property is part of the identifier for the class.

 <prop-constraint> is an expression that specifies a constraint that applies to the property.
Feature redefinitions can either be explicit with the use of a {redefines <x>} property string on the feature or implicit by
having a feature with the same name as another feature in one of the owning classifier’'s more general classifiers. In both

cases, the redefined feature must conform to the compatibility constraint on the redefinitions (e.g., the type of the feature
must be a subtype of the feature’s type in the more general context).

© ISO/IEC 2012 - All rights reserved 135

ISO/IEC 19505-2:2012(E)

Package AssociationClasses

A quadlifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier.
The qualifier is attached to the source end of the association.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a source instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to aline.
Qualifier attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single association.

A qualifier may not be suppressed.
Style Guidelines

Package AssociationClasses

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always practical.
Examples

Package AssociationClasses

Bank Chessboard

accountNo rank : Rank
file : File

*

1
0.1 1

Person Square

Figure 7.72 - Qualified associations
7.3.46 Realization (from Dependencies)

Generalizations

« “Abstraction (from Dependencies)” on page 39

Description

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification
(the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

136 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A Readlization signifies that the client set of elements are an implementation of the supplier set, which serves as the
specification. The meaning of ‘implementation’ is not strictly defined, but rather implies a more refined or elaborate form
in respect to a certain modeling context. It is possible to specify a mapping between the specification and implementation
elements, although it is not necessarily computable.

Notation

A Realization dependency is shown as a dashed line with a triangular arrowhead at the end that corresponds to the
realized element. Figure 7.73 illustrates an example in which the Business class is realized by a combination of Owner
and Employee classes.

Business

Owner Employee

Figure 7.73 - An example of a realization dependency

7.3.47 RedefinableElement (from Kernel)

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

© ISO/IEC 2012 - All rights reserved 137

ISO/IEC 19505-2:2012(E)

Attributes

e isLeaf: Boolean
Indicates whether it is possible to further redefine a RedefinableElement. If the valueistrue, then it isnot possibleto
further redefine the RedefinableElement. Note that this property is preserved through package merge operations; that
is, the capability to redefine a RedefinableElement (i.e., isLeaf=false) must be preserved in the resulting
RedefinableElement of a package merge operation where a RedefinableElement with isLeaf=falseis merged with a
matching RedefinableElement with isLeaf=true: the resulting RedefinableElement will have isL eaf=false. Default
valueisfalse.

Associations

* | redefinedElement: Redefinabl eElement[*]
The redefinable element that is being redefined by this element. Thisis a derived union.

e /| redefinitionContext: Classifier[*]
References the contexts that this element may be redefined from. Thisis a derived union.

Constraints
[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.
self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))
[2] A redefining element must be consistent with each redefined element.
self.redefinedElement->forAll(re | re.isConsistentWith(self))
[3] A redefinable element can only redefine non-leaf redefinable elements
self.redefinedElement->forAll(not isLeaf)

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, thisis false; this operation must be overridden for
subclasses of RedefinableElement to define the consistency conditions.
RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
result = false

[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are
properly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the
other. By default at least one of the redefinition contexts of this element must be a specialization of at least one of the
redefinition contexts of the specified element.

RedefinableElement::isRedefinitionContextValid(redefined: RedefinableElement): Boolean;
result = self.redefinitionContext->exists(c | c.allParents()->includes(redefined.redefinitionContext))

Semantics

A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.

138 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine
the element from the general classifier in order to augment, constrain, or override the specification as it applies more
specifically to instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details
that are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the
general context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple
inherited redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Notation
No general notation. See the subclasses of RedefinableElement for the specific notation used.

7.3.48 Relationship (from Kernel)

Relationship is an abstract concept that specifies some kind of relationship between elements.

Generalizations

» “Element (from Kernel)” on page 68

Description

A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes
No additional attributes

Associations

e /relatedElement: Element [1..*]
Specifies the elements related by the Relationship. Thisis a derived union.

Constraints
No additional constraints

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

© ISO/IEC 2012 - All rights reserved 139

ISO/IEC 19505-2:2012(E)

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most cases the notation is a variation on a line drawn between the related elements.

7.3.49 Slot (from Kernel)

A dlot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Generalizations

« “Element (from Kernel)” on page 68

Description

A dlot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the dot.

Attributes
No additional attributes

Associations

e definingFeature : Structural Feature [1]
The structural feature that specifies the values that may be held by the slot.

e owninglnstance : InstanceSpecification [1]
The instance specification that owns this dot. Subsets Element: : owner

e value: ValueSpecification [*]
The value or values corresponding to the defining feature for the owning instance specification. Thisis an ordered
association. Subsets Element: : ownedElement

Constraints

No additional constraints

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The valuesin a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Notation

See “InstanceSpecification (from Kernel).”
7.3.50 StructuralFeature (from Kernel)

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

140 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Generalizations
» “Feature (from Kernel)” on page 74
« “MultiplicityElement (from Kernel)” on page 100
» “TypedElement (from Kernel)” on page 143

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

By specializing multiplicity element, it supports a multiplicity that specifies valid cardinalities for the collection of values
associated with an instantiation of the structural feature.

Attributes

¢ isReadOnly: Boolean
States whether the feature’s value may be modified by a client. Default is false.

Associations

No additional associations

Constraints

No additional constraints

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified
type.

Notation

A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. This annotation
may be suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Options

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.

Changes from previous UML

The meta-attribute targetScope, which characterized Structural Feature and AssociationEnd in prior UML is no longer
supported.

7.3.51 Substitution (from Dependencies)

Generalizations

- “Realization (from Dependencies)” on page 136

© ISO/IEC 2012 - All rights reserved 141

ISO/IEC 19505-2:2012(E)

Description

A substitution is a relationship between two classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract classifier are expected.

Associations

e contract: Classifier [1]
(Subsets Dependency: :target.).

e substitutingClassifier: Classifier [1]
(Subsets Dependency:: client).

Attributes

None

Constraints

No additional constraints

Semantics

The substitution relationship denotes runtime substitutability that is not based on specialization. Substitution, unlike
specialization, does not imply inheritance of structure, but only compliance of publicly available contracts. A substitution
like relationship is instrumental to specify runtime substitutability for domains that do not support specialization such as
certain component technologies. It requires that (1) interfaces implemented by the contract classifier are also implemented
by the substituting classifier, or else the substituting classifier implements a more specialized interface type. And, (2) the
any port owned by the contract classifier has a matching port (see ports) owned by the substituting classifier.

Notation

A Substitution dependency is shown as a dependency with the keyword «substitute» attached to it.

Examples

In the example below, a generic Window class is substituted in a particular environment by the Resizable Window class.

«substitute»

, Resizable
Window < - — — — — —

Window

Figure 7.74 - An example of a substitute dependency
7.3.52 Type (from Kernel)

A type constrains the values represented by atyped element.

142 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Generalizations

 “PackageableElement (from Kernel)” on page 116

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes

No additional attributes

Associations

No additional associations

Constraints
No additional constraints

Additional Operations

[1] Thequery conformsTo() givestruefor atypethat conformsto another. By default, two types do not conform to each other.
This query isintended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

Notation

No general notation

7.3.53 TypedElement (from Kernel)

A typed element has a type.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes
No additional attributes

© ISO/IEC 2012 - All rights reserved 143

ISO/IEC 19505-2:2012(E)

Associations

e type Type[0..1]
The type of the TypedElement.

Constraints

No additional constraints

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type
may represent values of any type.

Notation

No general notation

7.3.54 Usage (from Dependencies)

Generalizations

 “Dependency (from Dependencies)” on page 65

Description

A usage is arelationship in which one element requires another element (or set of elements) for its full implementation or
operation. In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The usage dependency does not specify how the client uses the supplier other than the fact that the supplier is used by the
definition or implementation of the client.

Notation

A usage dependency is shown as a dependency with a «use» keyword attached to it.

144 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Examples

In the example below, an Order class requires the Line Item class for its full implementation.

«use»

Line
Order | —————— —=

Iltem

Figure 7.75 - An example of a use dependency
7.3.55 ValueSpecification (from Kernel)

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Generalizations
» “PackageableElement (from Kernel)” on page 116
» “TypedElement (from Kernel)” on page 143

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Attributes
No additional attributes.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may
be able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] Thequery isComputable() determineswhether aval ue specification can be computed in amodel. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value
specifications that it can compute, and to compute all of those for which the operation istrue. A conforming
implementation is expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false

© ISO/IEC 2012 - All rights reserved 145

ISO/IEC 19505-2:2012(E)

[2] The query integerValue() gives asingle Integer value when one can be computed.
ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query realValue() gives asingle Real value when one can be computed.

ValueSpecification::realValue() : [Real];
realValue = Set{}

[4] The query booleanValue() gives a single Boolean value when one can be computed.
ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[5] The query stringValue() gives a single String value when one can be computed.
ValueSpecification::stringValue() : [String];
stringValue = Set{}

[6] The query unlimitedValue() gives asingle UnlimitedNatural value when one can be computed.
ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}

[7] The query isNull() returns true when it can be computed that the value is null.
ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the
context where the value specification is used.

Notation

No general notation

7.3.56 VisibilityKind (from Kernel)

VisibilityKind is an enumeration type that defines literals to determine the visibility of elementsin a model.

Generalizations

None

Description

VisibilityKind is an enumeration of the following literal values:

e public

e private

e protected
e package

146 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations, Packages, and Classes packages. Detailed semantics are specified with those mechanisms. If the
Visibility package is used without those packages, these literals will have different meanings, or no meanings.

» A public element isvisible to all elements that can access the contents of the namespace that ownsiit.
» A private element is only visible inside the namespace that ownsit.
A protected element is visible to elements that have a generalization relationship to the namespace that ownsit.

» A package element is owned by a namespace that is not a package, and is visible to elements that are in the same
package as its owning namespace. Only named elements that are not owned by packages can be marked as having
package visibility. Any element marked as having package visibility is visible to all elements within the nearest
enclosing package (given that other owning elements have proper visibility). Outside the nearest enclosing package, an
element marked as having package visibility is not visible.

In circumstances where a named element ends up with multiple visibilities (for example, by being imported multiple
times) public visibility overrides private visibility. If an element is imported twice into the same namespace, once using a
public import and once using a private import, it will be public.

Notation

The following visual presentation options are available for representing VisibilityKind enumeration literal values:
e '+’ public
o ‘- private
e '# protected

- ‘'~ package

7.4 Diagrams

Structure diagram

This sub clause outlines the graphic elements that may be shown in structure diagrams, and provides cross references
where detailed information about the semantics and concrete notation for each element can be found. It also furnishes
examples that illustrate how the graphic elements can be assembled into diagrams.

© ISO/IEC 2012 - All rights reserved 147

ISO/IEC 19505-2:2012(E)

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 7.2.

Table 7.2 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Class See 7.3.7, ' Class (from Kernel)’

ClassName

Interface See 7.3.24, ' Interface (from Interfaces)’

InterfaceName
—0

<<interface>>

InterfaceName
InstanceSpecification See 7.3.22, ' InstanceSpecification (from Kernel)' (Note that instances
of any classifier can be shown by prefixing the classifier name by the
Instancename : instance name followed by a colon and underlining the compl ete name
ClassName strin
9.)
Package See 7.3.38, ' Package (from Kernel)’
PackageName

Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 7.3.

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE

Aggregation See 7.3.2, ' AggregationKind (from Kernel)’

148 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE
Association See 7.3.3, ' Association (from Kernel)’
Composition See 7.3.2, ' AggregationKind (from Kernel)’

-
Dependency See 7.3.12, ' Dependency (from Dependencies)’
————————— >
Generalization See 7.3.20, ' Generalization (from Kernel, PowerTypes)’
=
InterfaceRealization See 7.3.25, ' InterfaceRealization (from Interfaces)’
———————— -
Realization See 7.3.46, ' Redlization (from Dependencies)’
———————— =
Usage See 7.3.54, ' Usage (from Dependencies)’
«use»
————————— >
Package Merge See 7.3.41, ' PackageMerge (from Kernel)’
«merge»
————————— >
Packagel mport See 7.3.40, ' Packagelmport (from Kernel)’
(public)
«import»
————————— >
Packagel mport See 7.3.40, ' Packagelmport (from Kernel)’
(private)
«access»
————————— >

© ISO/IEC 2012 - All rights reserved

149

ISO/IEC 19505-2:2012(E)

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Class diagram
The following nodes and edges are typically drawn in a class diagram:

- Association

» Aggregation

» Class

» Composition

» Dependency

» Generdization

« Interface

« InterfaceRealization
» Realization

Package diagram

The following nodes and edges are typically drawn in a package diagram:
» Dependency
» Package
» PackageExtension
 Packagelmport
Object diagram
The following nodes and edges are typically drawn in an object diagram:

« InstanceSpecification
« Link (i.e., Association)

150 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

8 Components

8.1 Overview

The Components package specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity. In particular, the package specifies a component as a modular unit with well-defined interfaces that is
replaceable within its environment. The component concept addresses the area of component-based devel opment and
component-based system structuring, where a component is modeled throughout the development life cycle and
successively refined into deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed components. A component
can always be considered an autonomous unit within a system or subsystem. It has one or more provided and/or required
interfaces (potentially exposed via ports), and its internals are hidden and inaccessible other than as provided by its
interfaces. Although it may be dependent on other elements in terms of interfaces that are required, a component is
encapsulated and its dependencies are designed such that it can be treated as independently as possible. As a result,
components and subsystems can be flexibly reused and replaced by connecting (“wiring”) them together. The aspects of
autonomy and reuse also extend to components at deployment time. The artifacts that implement component are intended
to be capable of being deployed and re-deployed independently, for instance to update an existing system.

The Components package supports the specification of both logical components (e.g., business components, process
components) and physical components (e.g., EJB components, CORBA components, COM+ and .NET components,
WSDL components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and
executed. It is anticipated that profiles based around components will be developed for specific component technologies
and associated hardware and software environments.

Basic Components

The BasicComponents package focuses on defining a component as an executable element in a system. It defines the
concept of a component as a specialized class that has an external specification in the form of one or more provided and
required interfaces, and an internal implementation consisting of one or more classifiers that realize its behavior. In
addition, the BasicComponents package allows a connector to carry one or more Behaviors that specify the valid
interaction patterns across the connector.

Packaging Components

The PackagingComponents package focuses on defining a component as a coherent group of elements as part of the
development process. It extends the concept of a basic component to formalize the aspects of a component as a ‘building
block’ that may own and import a (potentially large) set of model elements.

8.2 Abstract Syntax

Figure 8.1 shows the dependencies of the Component packages.

© ISO/IEC 2012 - All rights reserved 151

ISO/IEC 19505-2:2012(E)

]

StructuredClasses Dependencies

A e
7
‘ / <<merge>>

*‘ /

BasicComponents

<<merge>>

A

<<merge>>

PackagingComponents

Figure 8.1 - Dependencies between packages described in this clause
(transitive dependencies to Kernel and Interfaces packages are not shown).

152 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package BasicComponents

1.* + supplierDependency : 1.*
NamedElement Dependency + clientDependency
(from Dependencies) (from Dependencies) (fom Bependendie)
A + supplier % x rom Dependencies;
+ client Y
Abstraction
Class (from Dependencies)
(from StructuredClasses) Namespace
? (from Dependencies)
Realization
(from Dependencies)
Class
(from Kernel)
{subsets clientDependency}
A_realization_abstraction_component
Componer{t 0.1 * + componentRealization 1.*
isIndirectlylnstantiated : Boolean - ComponentReal (fromcé)aespse’rtz‘:ﬁ ies)
+ abstraction + realization * + realizingClassifi
{subsets owner, {subsets ownedElement, {subsets client}
subsets supplier} ~ subsets supplierDependency}
{readOnly} {readOnly}
+ [required + [provided

Interface
(from Interfaces)

Figure 8.2 - The metaclasses that define the basic Component construct

© ISO/IEC 2012 - All rights reserved 153

ISO/IEC 19505-2:2012(E)

Connector

+ connector

+ contract

+ /kind : ConnectorKind {readOnly}

1 + connector
2. +end
ConnectorEnd
+/end * * | + connectorEnd
{ordered,
readOnly} 0.1 | + partWithPort
Property
(from InternalStructures)
+role| 1
ConnectableElement

(from BasicComponents)

TypedElement
(from Kernel)

Behavior
(from BasicBehaviors)

«enumeration»
ConnectorKind

assembly
delegation

Figure 8.3 - The metaclasses that define the component wiring constructs

154

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Package PackagingComponents

UML::CompositeStructures::StructuredClasses:

Class
A\
{subsets ownedMember}
+ packagedElement
packaged=iemen UML::Classes::Kernel::
PackageableElement

0.1 *

Figure 8.4 - The packaging capabilities of Components

8.3 Class Descriptions

8.3.1 Component (from BasicComponents, PackagingComponents)
A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, a component serves as a type
whose conformance is defined by these provided and required interfaces (encompassing both their static as well as
dynamic semantics). One component may therefore be substituted by another only if the two are type conformant. Larger
pieces of a system’s functionality may be assembled by reusing components as parts in an encompassing component or
assembly of components, and wiring them together.

A component is modeled throughout the development life cycle and successively refined into deployment and run-time. A
component may be manifest by one or more artifacts, and in turn, that artifact may be deployed to its execution
environment. A deployment specification may define values that parameterize the component’s execution. (See
Deployment clause).

Generalizations

BasicComponents
» “Class (from Kernel)” on page 52"
» “Class (from StructuredClasses, Internal Structures)” on page 178"

» “NamedElement (from Kernel, Dependencies)” on page 104

PackagingComponents

» “Class (from StructuredClasses, Internal Structures)” on page 178"

© ISO/IEC 2012 - All rights reserved 155

ISO/IEC 19505-2:2012(E)

Description

BasicComponents

A component is a subtype of Class that provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations. A Component may form the abstraction for a set of realizingClassifiers
that realize its behavior. In addition, because a Class itself is a subtype of an EncapsulatedClassifier, a Component may
optionally have an internal structure and own a set of Ports that formalize its interaction points.

A component has a number of provided and required Interfaces. A provided Interface is one that is either realized directly
by the component or one of its realizingClassifiers, or it is provided by a public Port of the Component. A required
interface is designated by a Usage Dependency from the Component or one of its realizingClassifiers, or it is required by
a public Port.

PackagingComponents

A component is extended to define the grouping aspects of packaging components. This defines the Namespace aspects of
a Component through its inherited ownedMember and elementlmport associations. In the namespace of a component, all
model elements that are involved in or related to its definition are either owned or imported explicitly. This may include,
for example, UseCases and Dependencies (e.g., mappings), Packages, Components, and Artifacts.

Attributes

Package BasicComponents

e isIndirectlylnstantiated : Boolean { default = true}
The kind of instantiation that applies to a Component. If false, the component is instantiated as an addressable
object. If true, the Component is defined at design-time, but at run-time (or execution-time) an addressabl e object
specified by the Component does not exist. Instead, the runtime behavior of the component and its ports can be
completely inferred from the runtime behavior of itsrealizing classifiers or parts. Several standard stereotypes use
this meta attribute (e.g., «specification», «focus», «subsystems).

Associations

Package BasicComponents

e /provided: Interface [*]
The interfaces that the component exposes to its environment. These interfaces may be Realized by the Component
or any of itsrealizingClassifiers, or they may be the Interfaces that are provided by its public Ports. The provided
interfaces association is a derived association:

context Component::provided derive:

let realizedInterfaces : Set(Interface) = RealizedInterfaces(self),
realizingClassifiers : Set(Classifier) = Set{self.realizingClassifier}->union(self.allParents().realizingClassifier),
allRealizingClassifiers : Set(Classifier) = realizingClassifiers->union(realizingClassifiers.allParents()) ,

realizingClassifierinterfaces : Set(Interface) = allRealizingClassifiers->iterate(c; rci : Set(Interface) = Set{} |
rci->union(RealizedInterfaces(c))),

ports : Set(Port) = self.ownedPort->union(allParents.oclAsType(Set(EncapsulatedClassifier)).ownedPort) ,
providedByPorts : Set(Interface) = ports.provided
in realizedInterfaces->union(realizingClassifierInterfaces) ->union(providedByPorts)->asSet()

Irequired: Interface [*]
The interfaces that the component requires from other components in its environment in order to be able to offer
its full set of provided functionality. These interfaces may be Used by the Component or any of its

156 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

realizingClassifiers, or they may be the Interfaces that are required by its public Ports. The required interfaces
association is a derived association:

context Component::required derive:
let usedinterfaces : Set(Interface) = Usedinterfaces(self),

realizingClassifiers : Set(Classifier) = Set{self.realizingClassifier}->union(self.allParents().realizingClassifier),
allRealizingClassifiers : Set(Classifier) = realizingClassifiers->union(realizingClassifiers.allParents()),

realizingClassifierlnterfaces : Set(Interface) = allRealizingClassifiers->iterate(c; rci : Set(Interface) = Set{} |
rci->union(UsedIinterfaces(c))),

ports : Set(Port) = self.ownedPort->union(allParents.oclAsType(Set(EncapsulatedClassifier)).ownedPort),
usedByPorts : Set(Interface) = ports.required
in usedinterfaces->union(realizingClassifierInterfaces) ->union(usedByPorts)->asSet()

e redization: ComponentRealization [*]
The set of Realizations owned by the Component. These realizations reference the Classifiers of which the
Component is an abstraction (i.e., those that realize its behavior).

PackagingComponents

e packagedElement: Packageabl eElement [*]
The set of PackageableElements that a Component owns. In the namespace of a component, all model elements that
areinvolved in or related to its definition may be owned or imported explicitly. These may include e.g., Classes,
Interfaces, Components, Packages, Use cases, Dependencies (e.g., mappings), and Artifacts. Subsets
Namespace: : ownedMember.

Constraints

BasicComponents

[1] A component cannot nest classifiers.
self.nestedClassifier->isEmpty()

PackagingComponents

[1] A component nested in a Class cannot have any packaged elements.
(not self.class->isEmpty()) implies self.packagedElement->isEmpty()

Additional Operations

[1] Utility returning the set of realized interfaces of a component:

def: RealizedInterfaces : (classifier : Classifier) : Interface = (classifier.clientDependency->
select(dependency|dependency.oclisKindOf(Realization) and dependency.supplier.oclisKindOf(Interface)))->
collect(dependency|dependency.client)

[2] Utility returning the set of required interfaces of a component:

def: UsedInterfaces : (classifier : Classifier) : Interface = (classifier.supplierDependency->
select(dependency|dependency.ocliskKindOf(Usage) and dependency.supplier.oclisKindOf(interface)))->
collect(dependency|dependency.supplier)

Semantics

A component is a self contained unit that encapsulates the state and behavior of a number of classifiers. A component
specifies a formal contract of the services that it provides to its clients and those that it requires from other components
or services in the system in terms of its provided and required interfaces.

© ISO/IEC 2012 - All rights reserved 157

ISO/IEC 19505-2:2012(E)

A component is a substitutable unit that can be replaced at design time or run-time by a component that offers equivalent
functionality based on compatibility of its interfaces. As long as the environment obeys the constraints expressed by the
provided and required interfaces of a component, it will be able to interact with this environment. Similarly, a system can
be extended by adding new component types that add new functionality.

The required and provided interfaces of a component allow for the specification of structural features such as attributes
and association ends, as well as behavioral features such as operations and events. A component may implement a
provided interface directly, or, its realizing classifiers may do so, or they may be inherited. The required and provided
interfaces may optionally be organized through ports, these enable the definition of named sets of provided and required
interfaces that are typically (but not always) addressed at run-time.

A component has an external view (or “black-box” view) by means of its publicly visible properties and operations.
Optionally, a behavior such as a protocol state machine may be attached to an interface, port, and to the component itself,
to define the external view more precisely by making dynamic constraints in the sequence of operation calls explicit.
Other behaviors may also be associated with interfaces or connectors to define the ‘contract’ between participantsin a
collaboration (e.g., in terms of use case, activity, or interaction specifications).

The wiring between components in a system or other context can be structurally defined by using dependencies between
compatible simple Ports, or between Usages and matching InterfaceRealizations that are represented by sockets and
lollipops on Components on component diagrams. Creating a wiring Dependency between a Usage and a matching
InterfaceRealization, or between compatible simple Ports, means that there may be some additional information, such as
performance requirements, transport bindings, or other policies that determine that the interface is realized in a way that
is suitable for consumption by the depending Component. Such additional information could be captured in a profile by
means of stereotypes.

A component also has an internal view (or “white-box” view) by means of its private properties and realizing classifiers.
This view shows how the external behavior isrealized internally. Dependencies on the external view provide a convenient
overview of what may happen in the internal view; they do not prescribe what must happen. More detailed behavior
specifications such as interactions and activities may be used to detail the mapping from external to internal behavior.

A number of UML standard stereotypes exist that apply to component. For example, «subsystem» to model large-scale
components, and «specification» and «realization» to model components with distinct specification and realization
definitions, where one specification may have multiple realizations (see the UML Standard Elements Annex).

Notation

A component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
component icon can be displayed. This is a classifier rectangle with two smaller rectangles protruding from its left hand
side.

Quotelnf
O— 1 «component» & |

QuoteService

Figure 8.5 - A Component with one provided interface

158 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

ItemAllocation

: «component» @ Person :

Tracking Order

: Invoice i

/brderableltem

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external or black-
box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments of a
component box (for scalability, tools may offer a way of listing and abbreviating component properties and behavior).

«component» @

Order

«provided interfaces»
OrderEntry
Billing
«required interfaces»
Invoice
create (...)
registerPayment (...)

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

«Interface» @ «ser «Interface»
«component»

OrderEntry Jrmmmm s Order Person
Create() FindbyName()
ValidateDetails() Create() _
AddOrderline() GetDetails()

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
as operation to be displayed (when desired).

© ISO/IEC 2012 - All rights reserved 159

ISO/IEC 19505-2:2012(E)

An internal or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display alisting of any parts and connectors, or any implementing artifacts.

«component» @

Order

«provided interfaces»
OrderEntry
AccountPayable

«required interfaces»
Person

«realizations»
OrderHeader
Lineltem

«artifacts»
Order.jar

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed using realization arrows.

«component» @

Customer

Customerimpl

CustomerColl

CustomerDef

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the
component shape.

160

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

«component» @
Order

OrderHeader
OrderEntry
order 1 C
item * Person
Lineltem

Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of
parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names
to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is,
the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally,
specific instances (InstanceSpecifications) can aso be referred to as in this notation. If the icon symbol is shown, the
keyword «component» could be hidden.

If the parts have simple ports (ports with a single required or provided interface), then ball-and-socket notation can be
used to represent connectors between those ports, and normal connector notation for assembly or delegation may be
shown connected to the ball or socket symbol rather than to the port symbol itself.

If a part has no ports, or complex ports, the notation for connector wiring is as specified in Clause Composite Structures.

Interfaces that are exposed by a Component and notated on a diagram, either directly or through a port definition, may be
inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the
interface by a forward slash. An example of this can be found in Figure 8.14, where “/ordereditem” is an interface that is
implemented by a supertype of the Product component.

© ISO/IEC 2012 - All rights reserved 161

ISO/IEC 19505-2:2012(E)

«component» @
Store

OrderEntry
o—{F—
«component» @ Person «component» @
—o0—1] —O0——J
OrderEntry :Order Person :Customer
il il
Orderableltem Account I

‘ !
i,

Orderableltem I Account

LI

«component» @

:Product

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components
with simple ports as parts of its internal assembly

Artifacts that implement components can be connected to them by physical containment or by an «implement»
relationship, which is an instance of the meta association between Component and Artifact.

Examples
«component» @ «component»
Order — f---------------3 Account
|
1
1
1
1
i
1
A4
«component»
Product @

Figure 8.13 - Example of an overview diagram showing components
and their general dependencies

When a Dependency is wired from a Usage to an InterfaceRealization, the dependency arrow should be shown joining the
socket to the lollipop.

A Dependency may be wired from a simple Port with a required interface to a simple Port to a provided interface, in
which case it is a notational option to show the dependency arrow joining the socket to the lollipop.

A Dependency may be shown from a simple Port to an internal realizing Classifier to indicate that the interface provided
or required by the Port is in fact provided or required by the Dependency’s supplier.

All of these options are shown in Figure 8.14.

162 © ISO/IEC 2012 - All rights reserved

«component» @

Account L

J——%
\
\ «focus»
OrderHeader
Jordereditem

ISO/IEC 19505-2:2012(E)

«component»
Order @

account

«component» @
Product

AccountPayable
concerns /
/
i
/
!
i
/

*
Orderableltem

Lineltem

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces,

and wiring through dependencies on a structure diagram.

Figure 8.15 shows a set of parts wired through ball-and-socket notation between simple ports. The diagram shows a

binary connector between :ShoppingCart and :Order, a ternary connector between :Order, :Service and :Product, and a

quaternary connector between :BackOrder, :Order, :Customer and :Organization.

«component» @

:BackOrder
Person

«component» @

Person ’J] «component» @
L

:Customer

@ OrderEntry
«componem»
:ShoppingCart OrderEntry :Order Person
I
Orderableltem
Client
«component» @ Orderableltem ?
0 Orderableltem
:Service
()
«component» @

:Product

(Note: “Client” interface is a subtype of “Person”).

© ISO/IEC 2012 - All rights reserved

:Organization

«component» @

Figure 8.15 -Example of a composite structure of components, with connector wiring between simple ports on parts

163

ISO/IEC 19505-2:2012(E)

Changes from previous UML
The following changes from UML 1.x have been made.

The component model has made a number of implicit concepts from the UML 1.x model explicit, and made the concept
more applicable throughout the modeling life cycle (rather than the implementation focus of UML 1.x). In particular, the
“resides” relationship from 1.x relied on namespace aspects to define both namespace aspects as well as ‘residence’
aspects. These two aspects have been separately modeled in the UML metamodel in 2. The basic residence relationship in
1.x maps to the redlizingClassifiers relationship in 2. The namespace aspects are defined through the basic namespace
aspects of Classifiersin UML 2, and extended in the PackagingComponents metamodel for optional namespace
relationships to elements other than classifiers.

In addition, the Component construct gains the capabilities from the general improvements in CompositeStructures
(around Parts, Ports, and Connectors).

In UML 2, a Component is notated by a classifier symbol that no longer has two protruding rectangles. These were
cumbersome to draw and did not scale well in all circumstances. Also, they interfered with any interface symbols on the
edge of the Component. Instead, a «<component» keyword notation is used in UML 2. Optionally, a component icon that
is similar to the UML 1.4 icon can still be used in the upper right-hand corner of the component symbol. For backward
compatibility reasons, the UML 1.4 notation with protruding rectangles can still be used.

8.3.2 ComponentRealization (from BasicComponents)

The ComponentRealization concept is specialized in the Components package to (optionally) define the Classifiers that
realize the contract offered by a component in terms of its provided and required interfaces. The component forms an
abstraction from these various Classifiers.

Generalizations

» “Realization (from Dependencies)” on page 136 (merge increment)

Description

In the metamodel, a ComponentRealization is a subtype of Dependencies::Realization.

Attributes
No additional attributes

Associations

e abstraction : Component [0..1]
The Component that own this Realization and which isimplemented by its realizing classifiers. { Subsets
Element:: owner, Dependency:: supplier}

» redizingClassifier : Classifier [1..*]
A classifier that isinvolved in the implementation of the Component that owns this Realization. { Subsets
Dependency::client}

Constraints

No additional constraints

164 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

A component’s behavior may typically be realized (or implemented) by a number of Classifiers. In effect, it forms an
abstraction for a collection of model elements. In that case, a component owns a set of Component Realization
Dependencies to these Classifiers.

It should be noted that for the purpose of applications that require multiple different sets of realizations for a single
component specification, a set of standard stereotypes are defined in the UML Standard Profile. In particular,
«specification» and «realization» are defined there for this purpose.

Notation

A component realization is notated in the same way as the realization dependency (i.e., as a genera dashed line with a
hollow triangle as an arrowhead).

Changes from previous UML

The following changes from UML 1.x have been made: Realization is defined in UML 1.4 as a ‘free standing’ general
dependency - it is not extended to cover component realization specifically. These semantics have been made explicit in
UML 2.

8.3.3 ConnectableElement (from BasicComponents)

Generalizations

» “TypedElement (from Kernel)” on page 143 (merge increment)

Description

See 9.3.5, “ConnectableElement (from Internal Structures),” on page 186.

Associations

e /end: ConnectorEnd [0..*]
See 9.3.5, “ConnectableElement (from Internal Structures),” on page 186.

8.3.4 Connector (from BasicComponents)

The connector concept is extended in the Components package to include contracts and notation.

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the
realization of that behavior. It represents the forwarding of events (operation requests and events): asigna that arrives at
a port that has a delegation connector to one or more parts or ports on parts will be passed on to those targets for
handling.

An assembly connector is a connector between two or more parts or ports on parts that defines that one or more parts
provide the services that other parts use.

Generalizations

» “Connector (from Internal Structures)” on page 186 (merge increment)

© ISO/IEC 2012 - All rights reserved 165

ISO/IEC 19505-2:2012(E)

Description

In the metamodel, a derived connector kind attribute is added to the Connector metaclass. Its value is an enumeration type
with valid values “assembly” or “delegation.”

Attributes

Package BasicComponents

e /kind : ConnectorKind
Indicates the kind of connector. Thisis derived: a connector with one or more ends connected to a Port that is not on
a Part and that is not a behavior port is adelegation; otherwise it is an assembly.
context Connector::kind : ConnectorKind
derive: if end->exists(
e.role.oclisKindOf(Port) and
e.partWithPort->isEmpty() and
not e.role.oclAsType(Port).isBehavior)
then ConnectorKind::delegation
else ConnectorKind::assembly
endif

Associations

e contract : Behavior [0..*]
The set of Behaviors that specify the valid interaction patterns across the connector.

¢ end: ConnectorEnd [2..%]
see 9.3.6, “Connector (from Internal Structures),” on page 186

Constraints

[1] Each feature of each of the required interfaces of each Port or Part at the end of a connector must have at least one
compatible feature among the features of the provided interfaces of Ports or Parts at the other ends, where the required set
of (interface) features of a delegating port from the context of the delegating connector is the set of features that exist in
the port's provided interfaces, and the provided set of (interface) features of a delegating port from the context of the
delegating connector isthe set of features that exist in the port's required interfaces.

Semantics

A delegation connector is a declaration that behavior that is available on a component instance is not actually realized by
that component itself, but by one or more instances that have “compatible” capabilities. These situations are modeled
through a delegation connector from a Port to compatible Ports or Parts.

Delegation connectors can be used to model the hierarchical decomposition of behavior, where services provided by a
component may ultimately be realized by one that is nested multiple levels deep within it. The word delegation suggests
that concrete message and signal flow will occur between the connected ports, possibly over multiple levels. It should be
noted that such signal flow is not always realized in all system environments or implementations (i.e., it may be design
time only).

A port may delegate to a set of ports on subordinate components. In that case, these subordinate ports must collectively
offer the delegated functionality of the delegating port. At execution time, signals will be delivered to the appropriate
port. In cases where multiple target ports support the handling of the same signal, the signal will be delivered to all these
subordinate ports.

166 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

The execution time semantics for an assembly connector are that signals travel along an instance of a connector. Multiple
connectors directed to and from different parts, or n-ary connectors where n> 2, indicates that the instance that will
originate or handle the signal will be determined at execution time.

The interface compatibility between ports that are connected enables an existing component in a system to be replaced by
one that (minimally) offers the same set of services. Also, in contexts where components are used to extend a system by
offering existing services, but also adding new functionality, connectors can be used to link in the new component
definition.

Notation

A delegation connector is notated as a Connector from the delegating Port to the handling Port or Part. If the delegation
is handled by a simple Port, then the connector may optionally be shown connected to the single lollipop or socket as
illustrated by Figure 8.12.

«component»
OrderEntry Order @
oO———11
:OrderHeader
+—C
Person

:Lineltem

order item

OrderHeader ®————— Lineltem

1

Figure 8.16 - Delegation connectors connect the externally provided interfaces of a component to
the parts that realize or require them.

When an assembly connector connects simple ports (ports that provide or require a single interface), it may be notated by
a “ball-and-socket” connection between a provided interface and a required interface. This notation allows for succinct
graphical wiring of components, a requirement for scaling in complex systems.

© ISO/IEC 2012 - All rights reserved 167

ISO/IEC 19505-2:2012(E)

Ball-and-socket notation may not be used to connect “complex” ports or parts without ports.

OrderEntry «component» @ OrderEntry «component» @
Order :Order
]

Orderableltem
Orderableltem

«component»
Product

Orderableltem Orderableltem

LT
«component» @
:Product

Figure 8.17 - An assembly connector maps a simple port of a component to a matching simple port of another compo-
nent in a certain context (definition of components, e.g., in alibrary on the left, an assembly of those components on
the right).

Where multiple components have simple ports that provide or require the same interface, a single symbol representing the
interface can be shown, and lines from the components can be drawn to that symbol. This presentation option is
applicable whether the interface is shown using “ball-and-socket” notation, as in Figure 8.18, or just using a required or
provided interface symbol.

«component» @
:BackOrder
OrderEntry

Person
«component» @ Person «component»
:Order @ :Customer
OrderEntry Person
«component»
:Organization
Client

Note: Client interface is a subtype of Person interface

Figure 8.18 - An n-ary connector that assembles four parts.

Changes from previous UML

The following changes from UML 1.x have been made — Connector is not defined in UML 1.4.

168 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

8.3.5 ConnectorEnd (from BasicComponents)

Generalizations

» “ConnectorEnd (from Internal Structures, Ports)” on page 188 (merge increment)

Description

See “ConnectorEnd (from Internal Structures, Ports)” on page 188

Associations

« role: ConnectableElement [1]
See “ ConnectorEnd (from Internal Structures, Ports)” on page 188

e partWithPort: Property [0..1]
See “ ConnectorEnd (from Internal Structures, Ports)” on page 188

8.3.6 ConnectorKind (from BasicComponents)

Generalizations

None

Description

ConnectorKind is an enumeration of the following literal values:

e assembly
Indicates that the connector is an assembly connector.

e delegation
Indicates that the connector is a delegation connector.

© ISO/IEC 2012 - All rights reserved 169

ISO/IEC 19505-2:2012(E)

8.4 Diagrams

Structure diagram

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 8.1.

Table 8.1 - Graphic nodes included in structure diagrams

NoODE TYPE NOTATION REFERENCE
Component See “ Component”
<<component>>
ComponentName

5]

ComponentName

Component implements Interface See “Interface”

«component» @
O— Name

Component has provided Port (typed by Interface) See “Port”

«component» @
Name

Component uses Interface See “Interface”

«component» @

— Name

170 © ISO/IEC 2012 - All rights reserved

Table 8.1 - Graphic nodes included in structure diagrams

ISO/IEC 19505-2:2012(E)

NODE TYPE NOTATION REFERENCE
Component has required Port (typed by Interface) See “Port”
«component»
}—éﬁ Name @
Component has complex Port (typed by provided and See “Port”
required Interfaces) <components
N g
ame
Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 8.2.
Table 8.2 - Graphic paths included in structure diagrams
PATH TYPE NOTATION REFERENCE
Component realization See “ComponentRealization”
———————— =
Table 8.3 - Graphic paths included in composite structure diagrams
PATH TYPE NOTATION REFERENCE
Assembly connector See “Connector” - also used as notation option for wiring
between interfaces using Dependencies.
©

Delegate connector

See “ Connector”

© ISO/IEC 2012 - All rights reserved

171

ISO/IEC 19505-2:2012(E)

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Component diagram

The following nodes and edges are typically drawn in a component diagram:

172

Component

Interface

ComponentRealization, Interface Realization, Usage Dependencies
Class

Artifact

Port

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

9 Composite Structures

9.1 Overview

The term “structure” in this clause refers to a composition of interconnected elements, representing run-time instances
collaborating over communications links to achieve some common objectives.

Internal Structures

The Internal Structure subpackage provides mechanisms for specifying structures of interconnected elements that are
created within an instance of a containing classifier. A structure of this type represents a decomposition of that classifier
and is referred to as its “internal structure.”

Ports

The Ports subpackage provides mechanisms for isolating a classifier from its environment. This is achieved by providing
a point for conducting interactions between the internals of the classifier and its environment. This interaction point is
referred to as a “port.” Multiple ports can be defined for a classifier, enabling different interactions to be distinguished
based on the port through which they occur. By decoupling the internals of the classifier from its environment, ports allow
a classifier to be defined independently of its environment, making that classifier reusable in any environment that
conforms to the interaction constraints imposed by its ports.

Collaborations

Objects in a system typically cooperate with each other to produce the behavior of a system. The behavior is the
functionality that the system is required to implement.

A behavior of a collaboration will eventually be exhibited by a set of cooperating instances (specified by classifiers) that
communicate with each other by sending signals or invoking operations. However, to understand the mechanisms used in
a design, it may be important to describe only those aspects of these classifiers and their interactions that are involved in
accomplishing a task or arelated set of tasks, projected from these classifiers. Collaborations allow us to describe only
the relevant aspects of the cooperation of a set of instances by identifying the specific roles that the instances will play.
Interfaces allow the externally observable properties of an instance to be specified without determining the classifier that
will eventually be used to specify this instance. Consequentially, the roles in a collaboration will often be typed by
interfaces and will then prescribe properties that the participating instances must exhibit, but will not determine what class
will specify the participating instances.

StructuredClasses

The StructuredClasses subpackage supports the representation of classes that may have ports as well as internal structure.

Actions

The Actions subpackage adds actions that are specific to the features introduced by composite structures (e.g., the sending
of messages via ports).

9.2 Abstract Syntax

Figure 9.1 shows the dependencies of the CompositeStructures packages.

© ISO/IEC 2012 - All rights reserved 173

ISO/IEC 19505-2:2012(E)

Interfaces
cCommunications
I
1
[\
: :
| 1
| «MEr e
smerdes .
: :
| [
| 1
' [
i :
Ports smerges InternalStructures
AR AR
|’ : \\
: v amErggs
;r ‘\ E
! . BasicActions StructuredActivities ! Collaborations
amergEs «“merdes merges
‘ i :
JI ‘-\ :
; i A T :
.; '.‘ S N E
" «merqé» emehges :
N .
b 1
N 1
\
1
H

—

StructuredClasses

Invocstiondctions

Figure 9.1 - Dependencies between packages described in this clause

174

1

Structuredas.ctivities

© ISO/IEC 2012 - All rights reserved

Package InternalStructures

ISO/IEC 19505-2:2012(E)

UML::Classes::Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel::
Feature RedefinableElement Namespace StructuralFeature
N
{readOnly, union}
* * + classifier + /attribute
Feature Classifier Property
+ [feature + [featuringClassifier 0.1 *
. . UML::Classes::Kernel::
{readOnly, union} {readOnly, union} {readonly, union, TypedElement
{subsets memberNamespace} subsets member}
UML::Classes::Kernel:: + structuredClassifier + [role
Classifier kKl StructuredClassifier ConnectableElement
* *
{subsets featuringClassifier, {subsets classifier, subsets {ordered, subsets role,
subsets redefinitionContext, namespace, redefines subsets attribute, subsets
subsets namespace} structuredClassifier} ownedMember}
{subsets + structuredClassifier + structuredClassifier + ownedAttribute
redefinableElement} >
0.1 0.1 *
+ connector
Connector N {readOnly}
+ structuredClassifier + [part
+ ownedConnector
0.1 *
X {subsets feature, subsets
redefinableElement, subsets {subsets structuredClassifier} {ordered, redefines ownedAttribute}
ownedMember} I dttrbut
+ redefinedConnector m + class + ownedAttribute
*
{subsets redefinedElement} 0.1

Figure 9.2 - Structured classifier

UML::Classes:Kernel::

UML ::Classes:Kernel:

MuttiplicityElement Feature
{subzets ownedElernent,
ConnectableElement ConnectorEnd D_r'_der%d} Conmector
+raole + fend en -
1 * 2. 1
{readCrily
+ fdefiningEnd|0..1 +type|0.1

Figure 9.3 - Connectors

© ISO/IEC 2012 - All rights reserved

UML::Composite Structures::|
nternalStructures::Property

UML::Classes:Kermnel

::Association

175

ISO/IEC 19505-2:2012(E)

Package Ports

UML::CompositeStructures::IinternalStructures:: UML::CompositeStructures::InternalStructures: 0.1) ConnectorEnd
StructuredClassifier Property
JAY JAY + partWithPort

UML::Classes::Kernel:

Property
{subsets {subsets ownedAttribute} T
redefinitionContext}
EncapsulatedClassifier + fownedPort Port {readOnly}
*+ isBehavior : Boolean = false +/required | UML::Classes::Interfaces:
0..1 * | +isService : Boolean = true Interface
+isConjugated : Boolean = false . .
+ [provided
+ redefinedPort {readOnly}

{subsets redefinedProperty}

Figure 9.4 - The Port metaclass

Package StructuredClasses

UML ::CompositeStructires::
Ports::EncapsulatedClassifier

Class

Figure 9.5 - Classes with internal structure

Package Collaborations

176 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

UML:: UML::
CompositeStructures:: CommaonBehaviors:
InternalStructires:: BasicBehaviors::
StructuredClassifier BehavioredClassifier
UML:: T T
CompositeStructures:: N {SHbEEtS 1F.D|Bi_l>q |
internalStructures:: - cofaborationtoe - Collaboration
ConnectableElement
Parameter
Figure 9.6 - Collaboration
UML::Classes::Kernel:: UML::Classes::Kernel::
NamedElement Namespace
{subsets ownedElement}
. 01 + collaborationUse
UML::Classes::Dependencies: "I CollaborationUse - 0 1’ Classifier
Dependency + roleBinding ’
0.1 0.1
{subsets ownedElement}
+ representation

{subsets collaborationUse}

1 +type

Collaboration

Figure 9.7 - Collaboration.use and role binding

© ISO/IEC 2012 - All rights reserved 177

ISO/IEC 19505-2:2012(E)

Package InvocationActions

Invocationd ction + onPort UML:: port Trigger
0 CompositeStructures::
: - Ports::Port * *

Figure 9.8 - Actions specific to composite structures

Package StructuredActivities

UL ::
CompositeStructures::
InternalStructures::
ConnectableElement

|

Variable

Figure 9.9 - Extension to Variable

9.3 Class Descriptions

9.3.1 Class (from StructuredClasses, InternalStructures)

Generalizations
» “EncapsulatedClassifier (from Ports)” on page 190.

» “StructuredClassifier (from Internal Structures)” on page 198.

Description

Extends the metaclass Class with the capability to have an internal structure and ports.
Associations

Package InternalStructures

« ownedAttribute: Property [*]
The attributes (i.e., the properties) owned by the class. The association is ordered. { Redefines
SructuredClassifier::ownedAttribute} .

178 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

See “Property (from Internal Structures)” on page 196, “Connector (from Internal Structures)” on page 186, and “Port
(from Ports)” on page 192 for the semantics of the features of Class. Initialization of the internal structure of aclassis
discussed in sub clause “StructuredClassifier (from Internal Structures)” on page 198.

A class acts as the namespace for various kinds of classifiers defined within its scope, including classes. Nesting of
classifiers limits the visibility of the classifier to within the scope of the namespace of the containing class and is used for
reasons of information hiding. Nested classifiers are used like any other classifier in the containing class.

Notation

See “Class (from Kernel)” on page 52, “ StructuredClassifier” on page 196, and “Port” on page 192.

Presentation Options

A usage dependency may relate an instance value to a constructor for a class, describing the single value returned by the
constructor operation. The operation is the client, the created instance the supplier. The instance value may reference
parameters declared by the operation. A constructor is an operation having a single return result parameter of the type of
the owning class. The instance value that is the supplier of the usage dependency represents the default value of the single
return result parameter of a constructor operation. (The constructor operation is typically denoted by the stereotype
“create,” as shown in Figure 9.10.)

Window

———————> theW:Window

«create» make(...)

Figure 9.10 - Instance specification describes the return value of an operation
Changes from previous UML
Class has been extended with internal structure and ports.
9.3.2 Classifier (from InternalStructures, Collaborations)
Generalizations

» “Namespace (from Kernel)” on page 106
Description

Package Collaborations

Classifier is extended with the capability to own collaboration uses. The collaboration uses link a collaboration with the
classifier to give a description of the workings of the classifier.

© ISO/IEC 2012 - All rights reserved 179

ISO/IEC 19505-2:2012(E)

Associations

Package InternalStructures

e [attribute: Property [*]
See “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 55

e [feature: Feature [*]
See “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 55
Package Collaborations

» collaborationUse: CollaborationUse
References the collaboration uses owned by the classifier. (Subsets Element: : ownedElement)

e representation: CollaborationUse [0..1]
References a collaboration use that indicates the collaboration that represents this classifier. (Subsets
Classifier::collaborationUse)

Semantics

A classifier can own collaboration uses that relate (aspects of) this classifier to a collaboration. The collaboration
describes those aspects of this classifier.

One of the collaboration uses owned by a classifier may be singled out as representing the behavior of the classifier as a
whole. The collaboration that is related to the classifier by this collaboration use shows how the instances corresponding
to the structural features of this classifier (e.g., its attributes and parts) interact to generate the overall behavior of the
classifier. The representing collaboration may be used to provide a description of the behavior of the classifier at a
different level of abstraction than is offered by the internal structure of the classifier. The properties of the classifier are
mapped to roles in the collaboration by the role bindings of the collaboration use.

Notation

See “CollaborationUse (from Collaborations)” on page 183

Changes from previous UML
Replaces and widens the applicability of Collaboration.usedCollaboration. Together with the newly introduced internal
structure concept replaces Collaboration.representedClassifier.

9.3.3 Collaboration (from Collaborations)

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality. Its primary purpose is to explain how a system works and, therefore,
it typically only incorporates those aspects of reality that are deemed relevant to the explanation. Thus, details, such as the
identity or precise class of the actual participating instances are suppressed.

Generalizations
» “BehavioredClassifier (from BasicBehaviors, Communications)” on page 455

» “StructuredClassifier (from Internal Structures)” on page 198

180 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Description

A collaboration is represented as a kind of classifier and defines a set of cooperating entities to be played by instances (its
roles), as well as a set of connectors that define communication paths between the participating instances. The
cooperating entities are the properties of the collaboration (see “Property (from Internal Structures)” on page 196).

A collaboration specifies a view (or projection) of a set of cooperating classifiers. It describes the required links between
instances that play the roles of the collaboration, as well as the features required of the classifiers that specify the
participating instances. Several collaborations may describe different projections of the same set of classifiers.

Attributes
No additional attributes

Associations

e collaborationRole; ConnectableElement [*]
References connectable elements (possibly owned by other classifiers), which represent roles that instances may play
in this collaboration. (Subsets SructuredClassifier.rol€)

Constraints

No additional constraints

Semantics

Collaborations are generally used to explain how a collection of cooperating instances achieve ajoint task or set of tasks.
Therefore, a collaboration typically incorporates only those aspects that are necessary for its explanation and suppresses
everything else. Thus, a given object may be simultaneously playing roles in multiple different collaborations, but each

collaboration would only represent those aspects of that object that are relevant to its purpose.

A collaboration defines a set of cooperating participants that are needed for a given task. The roles of a collaboration will
be played by instances when interacting with each other. Their relationships relevant for the given task are shown as
connectors between the roles. Roles of collaborations define a usage of instances, while the classifiers typing these roles
specify all required properties of these instances. Thus, a collaboration specifies what properties instances must have to be
able to participate in the collaboration. A role specifies (through its type) the required set of features a participating
instance must have. The connectors between the roles specify what communication paths must exist between the
participating instances.

Neither all features nor al contents of the participating instances nor all links between these instances are always required
in a particular collaboration. Therefore, a collaboration is often defined in terms of roles typed by interfaces (see
“Interface (from Interfaces)” on page 91). An interface is a description of a set of properties (externally observable
features) required or provided by an instance. An interface can be viewed as a projection of the externally observable
features of aclassifier realizing the interface. Instances of different classifiers can play arole defined by a given interface,
as long as these classifiers realize the interface (i.e., have al the required properties). Several interfaces may be realized
by the same classifier, even in the same context, but their features may be different subsets of the features of the realizing
classifier.

Collaborations may be specialized from other collaborations. If arole is extended in the specialization, the type of arole
in the specialized collaboration must conform to the type of the role in the general collaboration. The specialization of the
types of the roles does not imply corresponding specialization of the classifiers that realize those roles. It is sufficient that
they conform to the constraints defined by those roles.

© ISO/IEC 2012 - All rights reserved 181

ISO/IEC 19505-2:2012(E)

A collaboration is not directly instantiable. Instead, the cooperation defined by the collaboration comes about as a
consequence of the actual cooperation between the instances that play the roles defined in the collaboration (the
collaboration is a selective view of that situation).

Notation

A collaboration is shown as a dashed ellipse icon containing the name of the collaboration. The internal structure of a
collaboration as comprised by roles and connectors may be shown in a compartment within the dashed ellipse icon.
Alternatively, a composite structure diagram can be used.

- - Observer o~
/ g h ™
\ Subject : CallQueue Observer : SlidingBarlcon /\
~ ~ P p

Figure 9.11 - The internal structure of the Observer collaboration shown inside the collaboration
icon (a connection is shown between the Subject and the Observer role).

Using an alternative notation for properties, a line may be drawn from the collaboration icon to each of the symbols
denoting classifiers that are the types of properties of the collaboration. Each line is labeled by the name of the property.
In this manner, a collaboration icon can show the use of a collaboration together with the actual classifiers that occur in
that particular use of the collaboration (see Figure 9.12).

Subject idi
CallQueue] Observer SlidingBarlcon
- T = ~
queue: List of Call A reading: Real
source: Object \ Observer \ color: Color
waitAlarm: Alarm / range: Interval
capacity: Integer S -
—_

Observer.reading = length (Subject.queue)
Observer.range = (0 .. Subject.capacity)

Figure 9.12 - In the Observer collaboration two roles, a Subject and an Observer, collaborate to produce the desired
behavior. Any instance playing the Subject role must possess the properties specified by CallQueue, and similarly for
the Observer role.

Rationale

The primary purpose of collaborations is to explain how a system of communicating entities collectively accomplish a
specific task or set of tasks without necessarily having to incorporate detail that isirrelevant to the explanation. It is
particularly useful as a means for capturing standard design patterns.

182 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Changes from previous UML

The contents of a collaboration is specified as its internal structure relying on roles and connectors; the concepts of
ClassifierRole, AssociationRole, and AssociationEndRole have been superseded. A collaboration in UML 2 is akind of
classifier, and can have any kind of behavioral descriptions associated. There is no loss in modeling capahilities.

9.3.4 CollaborationUse (from Collaborations)

A collaboration use represents the application of the pattern described by a collaboration to a specific situation involving
specific classes or instances playing the roles of the collaboration.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 104

Description

A collaboration use represents one particular use of a collaboration to explain the relationships between the properties of
a classifier. A collaboration use shows how the pattern described by a collaboration is applied in a given context, by
binding specific entities from that context to the roles of the collaboration. Depending on the context, these entities could
be structural features of a classifier, instance specifications, or even roles in some containing collaboration. There may be
multiple occurrences of a given collaboration within a classifier, each involving a different set of roles and connectors. A
given role or connector may be involved in multiple occurrences of the same or different collaborations.

Assaciated dependencies map features of the collaboration type to features in the classifier. These dependencies indicate
which role in the classifier plays which role in the collaboration.

Attributes

No additional attributes

Associations

e type: Collaboration [1]
The collaboration that is used in this occurrence. The collaboration defines the cooperation between its roles that are
mapped to properties of the classifier owning the collaboration use.

« roleBinding: Dependency [*]
A mapping between features of the collaboration type and features of the owning classifier. This mapping indicates
which connectable element of the classifier plays which role(s) in the collaboration. A connectable element may be
bound to multiple rolesin the same collaboration use (that is, it may play multiple roles).

Constraints

[1] All the client elements of aroleBinding are in one classifier and all supplier elements of aroleBinding arein one
collaboration and they are compatible.

[2] Every roleinthe collaboration is bound within the collaboration use to a connectable element within the owning classifier.
[3] Theconnectorsin the classifier connect according to the connectors in the collaboration.

© ISO/IEC 2012 - All rights reserved 183

ISO/IEC 19505-2:2012(E)

Semantics

A collaboration use relates a feature in its collaboration type to a connectable element in the classifier that owns the
collaboration use.

Any behavior attached to the collaboration type applies to the set of roles and connectors bound within a given
collaboration use. For example, an interaction among parts of a collaboration applies to the classifier parts bound to a
single collaboration use. If the same connectable element is used in both the collaboration and the represented element, no
role binding is required.

Semantic Variation Points

It is a semantic variation when client and supplier elements in role bindings are compatible.

Notation

A collaboration use is shown by a dashed ellipse containing the name of the occurrence, a colon, and the name of the
collaboration type. For every role binding, there is a dashed line from the ellipse to the client element; the dashed line is
labeled on the client end with the name of the supplier element.

Examples

This example shows the definition of two collaborations, Sale (Figure 9.13) and BrokeredSale (Figure 9.14). Sale is used
twice as part of the definition of BrokeredSale. Sale is a collaboration among two roles, a seller and a buyer. An
interaction, or other behavior specification, could be attached to Sale to specify the steps involved in making a Sale.

Figure 9.13 - The Sale collaboration

BrokeredSale is a collaboration among three roles, a producer, a broker, and a consumer. The specification of
BrokeredSale shows that it consists of two occurrences of the Sale collaboration, indicated by the dashed ellipses. The
occurrence wholesale indicates a Sale in which the producer is the seller and the broker is the buyer. The occurrence
retail indicates a Sale in which the broker is the seller and the consumer is the buyer. The connectors between sellers and
buyers are not shown in the two occurrences; these connectors are implicit in the BrokeredSale collaboration in virtue of
them being comprised of Sale. The BrokeredSale collaboration could itself be used as part of alarger collaboration.

184 © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

T BrokeredSale TSl
BTy iyt
// \\\
// ST T T T~ \\
// g \\ N
, 7 wholesale: \ AN
/ P ™~ N
\
/ broker |— T N Sale e ~ N
/ buyer B ~ \
} y ~ seller \
! \ ~~ \
\

(seller |
\ \ producer |
\]
\ I

\ \ /
/

\
. //"A‘\\\ /!

e ~ /

N / retail: M 7
% . Sale ! o7
~_ S o< buyer e
- - — ~
~_ —_— -
~ —| consumer -

Figure 9.14 - The BrokeredSale collaboration

Figure 9.15 shows part of the BrokeredSale collaboration in a presentation option.

e —— «occurrence» T aale -
//// T~ //,//////’/Z,,,,,,,a,e,,,,,,:>
- BrokeredSale < / N
———— e —— = N /
i N \ buyer seller //
s N = = p
/ IS N 7 ~
, ISy \ ~o_ -
/ T ! T T T
/ broker ;
\ e
\ ,,//’/
\
N producer /
\ i
AN Ve
\\ //
N ~

Figure 9.15 - A subset of the BrokeredSale collaboration

Rationale

A collaboration use is used to specify the application of a pattern specified by a collaboration to a specific situation. In
that regard, it acts as the invocation of a macro with specific values used for the parameters (roles).

Changes from previous UML

This metaclass has been added.

© ISO/IEC 2012 - All rights reserved 185

ISO/IEC 19505-2:2012(E)

9.3.5 ConnectableElement (from InternalStructures)

Generalizations

» “TypedElement (from Kernel)” on page 143

Description

A ConnectableElement is an abstract metaclass representing a set of instances that play roles of a classifier. Connectable
elements may be joined by attached connectors and specify configurations of linked instances to be created within an
instance of the containing classifier.

Attributes

No additional attributes

Associations

e /end: ConnectorEnd [0..*]
Denotes a set of connector ends that attaches to this connectable element. It is derived in the following way:

context ConnectableElement::end derive:
ConnectorEnd.allinstances() -> select (e | e.role = self)

Constraints

No additional constraints

Semantics

The semantics of ConnectableElement is given by its concrete subtypes.

Notation

None

Rationale

This metaclass supports factoring out the ability of a model element to be linked by a connector.

Changes from previous UML

This metaclass generalizes the concept of classifier role from 1.x.

9.3.6 Connector (from InternalStructures)

Specifies a link that enables communication between two or more instances. This link may be an instance of an
association, or it may represent the possibility of the instances being able to communicate because their identities are
known by virtue of being passed in as parameters, held in variables or slots, or because the communicating instances are
the same instance. The link may be realized by something as simple as a pointer or by something as complex as a network
connection. In contrast to associations, which specify links between any instance of the associated classifiers, connectors
specify links between instances playing the connected parts only.

186 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Generalizations

» “Feature (from Kernel)” on page 74

Description

Each connector may be attached to two or more connectable elements, each representing a set of instances. Each
connector end is distinct in the sense that it plays a distinct role in the communication realized over a connector. The
communications realized over a connector may be constrained by various constraints (including type constraints) that
apply to the attached connectable elements.

Attributes

No additional attributes

Associations

¢ end: ConnectorEnd [2..%]
A connector consists of at |east two connector ends, each representing the participation of instances of the classifiers
typing the connectable elements attached to this end. The set of connector endsis ordered.
(SubsetsElement: : ownedElement)

e type: Association [0..1]
An optional association that specifies the link corresponding to this connector.

* redefinedConnector: Connector [0..*]
A connector may be redefined when its containing classifier is specialized. The redefining connector may have atype
that specializes the type of the redefined connector. The types of the connector ends of the redefining connector may
specialize the types of the connector ends of the redefined connector. The properties of the connector ends of the
redefining connector may be replaced. (Subsets Element: : redefinedEl ement)

Constraints

[1] Thetypes of the connectable elements that the ends of a connector are attached to must conform to the types of the
association ends of the association that types the connector, if any.

[2] The connectable elements attached to the ends of a connector must be compatible.

[3] The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the Classifier
that owned the Connector, or they must be ports of such roles.

Semantics

If a connector between two roles of a classifier is a feature of an instantiable classifier, it declares that a link may exist
within an instance of that classifier. If a connector between two roles of a classifier is a feature of an uninstantiable
classifier, it declares that links may exist within an instance of the classifier that realizes the original classifier. These
links will connect instances corresponding to the parts joined by the connector.

Links corresponding to connectors may be created upon the creation of the instance of the containing classifier (see
“StructuredClassifier” on page 196). All such links corresponding to connectors are destroyed, when the containing
classifier instance is destroyed.

If the type of the connector is omitted, the type is inferred based on the connector, as follows: If the type of arole (i.e, the
connectable element attached to a connector end) realizes an interface that has a unique association to another interface
which is realized by the type of another role (or an interface compatible to that interface is realized by the type of another

© ISO/IEC 2012 - All rights reserved 187

ISO/IEC 19505-2:2012(E)

role), then that association is the type of the connector between these parts. If the connector realizes a collaboration (that
is, a collaboration use maps the connector to a connector in an associated collaboration through role bindings), then the
type of the connector is an anonymous association with association ends corresponding to each connector end.

» Thetype of each association end is the classifier that realizes the parts connected to the matching connector in the
collaboration. Any adornments on the connector ends (either the original connector or the connector in the
collaboration) specify adornments of the ends of the inferred association; otherwise, the type of the connector isan
anonymously named associ ation with association ends corresponding to each connector end.

» Thetype of each association end is the type of the part that each corresponding connector end is attached to. Any
adornments on the connector ends specify adornments of the ends of the inferred association. Any inferred associations
are always bidirectionally navigable and are owned by the containing classifier.

Semantic Variation Points

What makes connectable elements compatible is a semantic variation point.

Notation

A connector is drawn using the notation for association (see “Association (from Kernel)” on page 40). The optional name
string of the connector obeys the following syntax:

([name] *:’ <classname>) | <name>

where <name> is the name of the connector, and <classname> is the name of the association that isits type. A stereotype
keyword within guillemets may be placed above or in front of the connector name. A property string may be placed after
or below the connector name.

Examples

Examples are shown in “ StructuredClassifier” on page 196.
Changes from previous UML
Connector has been added in UML 2. The UML 1.4 concept of association roles is subsumed by connectors.

9.3.7 ConnectorEnd (from InternalStructures, Ports)

Generalizations

« “MultiplicityElement (from Kernel)” on page 100

Description

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector
end is part of one connector.

Attributes

No additional attributes

188 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Associations

InternalStructures

e role: ConnectableElement [1]
The connectable element attached at this connector end. When an instance of the containing classifier is created, a
link may (depending on the multiplicities) be created to an instance of the classifier that types this connectable
element.

e definingEnd: Property [0..1]
A derived association referencing the corresponding association end on the association that types the connector
owing this connector end. This association is derived by selecting the association end at the same placein the
ordering of association ends as this connector end.
Ports
e partWithPort: Property [0..1]
Indicates the role of the internal structure of a classifier with the port to which the connector end is attached.
Constraints
[1] If aconnector end is attached to a port of the containing classifier, partWithPort will be empty.
[2] If aconnector end references a partWithPort, then the role must be a port that is defined by the type of the partWithPort.
[3] The property held in self.partWithPort must not be a Port.
[4] Themuiltiplicity of the connector end may not be more general than the multiplicity of the association typing the owning
connector.
Semantics

InternalStructures

A connector end describes which connectable element is attached to the connector owning that end. Its multiplicity
indicates the number of instances that may be linked to each instance of the property connected on the other end.

Notation

InternalStructures

Adornments may be shown on the connector end corresponding to adornments on association ends (see “ Association
(from Kernel)” on page 40). In cases where there is no explicit association in the model typing the connector, these
adornments specify the multiplicities of an implicit association; otherwise, they show properties of that association, or
specializations of these on the connector. The multiplicity indicates the number of instances that may be connected to
each instance of the role on the other end. If no multiplicity is specified, the multiplicity matches the multiplicity of the
role the end is attached to.

Ports

If the end is attached to a port on a part of the internal structure and no multiplicity is specified, the multiplicity matches
the multiplicity of the port multiplied by the multiplicity of the part (if any).

© ISO/IEC 2012 - All rights reserved 189

ISO/IEC 19505-2:2012(E)

Changes from previous UML

Connector end has been added in UML 2. The UML 1.4 concept of association end roles is subsumed by connector ends.

9.3.8 EncapsulatedClassifier (from Ports)

Generalizations

» “StructuredClassifier (from Internal Structures)” on page 198

Description

Extends a classifier with the ability to own ports as specific and type checked interaction points.

Attributes

No additional attributes

Associations

e /ownedPort: Port [0..*]

The set of port attributes owned by EncapsulatedClassifier. (Subsets SructuredClassifier:: ownedAttribute)

Constraints

No additional constraints

Semantics

See “Port” on page 192.

Notation

See “Port” on page 192.
Changes from previous UML
This metaclass has been added to UML.

9.3.9 Feature (from InternalStructures)

Generalizations

» “RedefinableElement (from Kernel)” on page 137 (merge increment)

Description

See “Feature (from Kernel)” on page 74.

Associations

» [featuringClassifier: Classifier [0..*]
See “Feature (from Kernel)” on page 74.

190

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

9.3.10 InvocationAction (from InvocationActions)

Generalizations

» “InvocationAction (from BasicActions)” on page 269 (merge increment)

Description

In addition to targeting an object, invocation actions can also invoke behavioral features on ports from where the
invocation requests are routed onwards on links deriving from attached connectors. Invocation actions may also be sent to
atarget via a given port, either on the sending object or on another object.

Associations

e onPort: Port [0..1]
An optional port of the receiver object on which the behavioral featureisinvoked.

Constraints
[1] The onPort must be a port on the receiver object.
Semantics

The target value of an invocation action may also be a port. In this case, the invocation request is sent to the object
owning this port as identified by the port identity, and is, upon arrival, handled as described in “Port” on page 192.

Notation
The optional port isidentified by the phrase “via <port>" in the name string of the icon denoting the particular invocation
action.

9.3.11 Parameter (from Collaborations)

Generalizations
 “ConnectableElement (from Internal Structures)” on page 186

» “Parameter (from Kernel)” on page 127 (merge increment)

Description

Parameters are allowed to be treated as connectable elements.

Constraints

[1] A parameter may only be associated with a connector end within the context of a collaboration.

self.end->notEmpty() implies self.collaboration->notEmpty()

© ISO/IEC 2012 - All rights reserved 191

ISO/IEC 19505-2:2012(E)

9.3.12 Port (from Ports)

A port is a property of aclassifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to properties of the classifier by
connectors through which requests can be made to invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the services that a classifier expects (requires) of its
environment.

Generalizations
« “Property (from Internal Structures)” on page 196

» “Property (from Kernel, AssociationClasses, Interfaces)” on page 130

Description

Ports represent interaction points between a classifier and its environment. The interfaces associated with a port specify
the nature of the interactions that may occur over a port. The required interfaces of a port characterize the requests that
may be made from the classifier to its environment through this port. The provided interfaces of a port characterize
requests to the classifier that its environment may make through this port.

A port has the ability to specify that any requests arriving at this port are handled by the behavior of the instance of the
owning classifier, rather than being forwarded to any contained instances, if any.

Attributes

e isService: Boolean
If true, indicates that this port is used to provide the published functionality of a classifier. If false, this port is used to
implement the classifier but is not part of the essential externally-visible functionality of the classifier and can,
therefore, be altered or deleted along with the internal implementation of the classifier and other properties that are
considered part of itsimplementation. The default value for this attribute is true.

e isBehavior: Boolean
Specifies whether requests arriving at this port are sent to the classifier behavior of this classifier (see
“BehavioredClassifier (from BasicBehaviors, Communications)” on page 455). Such ports are referred to as behavior
port. Any invocation of a behavioral feature targeted at a behavior port will be handled by the instance of the owning
classifier itself, rather than by any instances that this classifier may contain. The default valueisfalse.

« isConjugated: Boolean
Specifies the way that the provided and required interfaces are derived from the Port’s Type. The default valueis
false.

Associations

e [required: Interface [*]
References the interfaces specifying the set of operations and receptions that the classifier expectsits environment to
handle via this port. This association is derived according to the value of isConjugated. If isConjugated isfalse,
required is derived as the union of the sets of interfaces used by the type of the port and its supertypes. If
isConjugated is true, it is derived as the union of the sets of interfaces realized by the type of the port and its
supertypes, or directly from the type of the port if the port istyped by an interface.

e /provided: Interface [*]
References the interfaces specifying the set of operations and receptions that the classifier offersto its environment
viathis port, and which it will handle either directly or by forwarding it to a part of itsinternal structure. This

192 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

association is derived according to the value of isConjugated. If isConjugated is false, provided is derived as the
union of the sets of interfaces realized by the type of the port and its supertypes, or directly from the type of the port
if the port istyped by aninterface. If isConjugated is true, it is derived as the union of the sets of interfaces used by
the type of the port and its supertypes.

» redefinedPort: Port
A port may be redefined when its containing classifier is specialized. The redefining port may have additional
interfaces to those that are associated with the redefined port or it may replace an interface by one of its subtypes.
(Subsets Kernel:: Property: : redefinedProperty)

Constraints

[1] Port.aggregation must be composite.

[2] When aport isdestroyed, all connectors attached to this port will be destroyed also.
[3] A defaultValue for port cannot be specified when the type of the Port is an Interface.

Semantics

A port represents an interaction point between a classifier instance and its environment or between a classifier instance
and instances it may contain. A port by default has public visibility.

The required interfaces characterize services that the owning classifier expects from its environment and that it may
access through this interaction point: Instances of this classifier expect that the features owned by its required interfaces
will be offered by one or more instances in its environment. The provided interfaces characterize the behavioral features
that the owning classifier offers to its environment at this interaction point. The owning classifier must offer the features
owned by the provided interfaces.

The provided and required interfaces completely characterize any interaction that may occur between a classifier and its
environment at a port with respect to the data communicated at this port and the behaviors that may be invoked through
this port. The interfaces do not necessarily establish the exact sequences of interactions across the port. When an instance
of aclassifier is created, instances corresponding to each of its ports are created and held in the slots specified by the
ports, in accordance with its multiplicity. These instances are referred to as “interaction points’ and provide unique
references. A link from that instance to the instance of the owning classifier is created through which communication is
forwarded to the instance of the owning classifier or through which the owning classifier communicates with its
environment. It is, therefore, possible for an instance to differentiate between requests for the invocation of a behavioral
feature targeted at its different ports. Similarly, it is possible to direct such requests at a port, and the requests will be
routed as specified by the links corresponding to connectors attached to this port. (In the following, “requests arriving at
a port” shall mean “request occurrences arriving at the interaction point of this instance corresponding to this port.”)

If connectors are attached to both the port when used on a property within the internal structure of a classifier and the port
on the container of an internal structure, the instance of the owning classifier will forward any requests arriving at this
port along the link specified by those connectors. If there is a connector attached to only one side of a port, any requests
arriving at this port will terminate at this port.

For a behavior port, the instance of the owning classifier will handle requests arriving at this port (as specified in the
behavior of the classifier, see Clause 13, “Common Behaviors”), if this classifier has any behavior. If there is no behavior
defined for this classifier, any communication arriving at a behavior port is lost.

© ISO/IEC 2012 - All rights reserved 193

ISO/IEC 19505-2:2012(E)

Semantic Variation Points

If several connectors are attached on one side of a port, then any request arriving at this port on a link derived from a
connector on the other side of the port will be forwarded on links corresponding to these connectors. It is a semantic
variation point whether these requests will be forwarded on all links, or on only one of those links. In the latter case, one
possibility is that the link at which this request will be forwarded will be arbitrarily selected among those links leading to
an instance that had been specified as being able to handle this request (i.e., this request is specified in a provided
interface of the part corresponding to this instance).

Notation

A port of aclassifier is shown as a small square symbol. The name of the port is placed near the square symbol. The port
symbol may be placed either overlapping the boundary of the rectangle symbol denoting that classifier or it may be shown
inside the rectangle symbol.

A port of a classifier may also be shown as a small square symbol overlapping the boundary of the rectangle symbol
denoting a part typed by that classifier (see Figure 9.16). The name of the port is shown near the port; the multiplicity
follows the name surrounded by brackets. Name and multiplicity may be elided.

The type of a port may be shown following the port name, separated by colon (“:"). When isConjugated is true for the
port, the type of the port is shown with atilde “~" prepended. A provided interface may be shown using the “lollipop”
notation (see “Interface (from Interfaces)” on page 91) attached to the port. A required interface may be shown by the
“socket” notation attached to the port. The presentation options shown there are also applicable to interfaces of ports.
Figure 9.16 shows the notation for ports. On the left figure, p is a port on the Engine class. The provided interface of port
p is powertrain and the required interface is feedback. The multiplicity of p is 1, its type is also powertrain, and
isConjugated is false. On the right figure, e is a port of the class Wheel, which also has the type powertrain and
isConjugated set to true.

Engine powertrain powertrain Wheel
C p: powertrain [1] e: ~powertrain [1]]
feedback feedback

Figure 9.16 - Port notation

A behavior port is indicated by a port being connected through a line to a small state symbol drawn inside the symbol
representing the containing classifier. (The small state symbol indicates the behavior of the containing classifier.) Figure
9.17 shows the behavior port p, as indicated by its connection to the state symbol representing the behavior of the Engine
class. Its provided interface is powertrain. In addition, a required interface, power, is shown also.

Engine
powertrain

e

power

Figure 9.17 - Behavior port notation

194 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Presentation Options
The name of a port may be suppressed. Every depiction of an unnamed port denotes a different port from any other port.

If there are multiple interfaces associated with a port, these interfaces may be listed with the interface icon, separated by
commas. Figure 9.18 below shows a port OnlineServices on the OrderProcess class with two provided interfaces,
OrderEntry and Tracking, as well as a required interface Payment.

Online OrderEntry,
Services Tracking

OrderProcess
Payment

Figure 9.18 - Port notation showing multiple provided interfaces

Examples

powertrain Engine Car

p

axle p
rear : Wheel [2] e: Engine
power

<<interface>>

powertrain
Boat
shaft p
<<interface>> . Propeller e : Engine
power

Figure 9.19 - Port examples

Figure 9.19 shows a class Engine with a port p with a provided interface powertrain. This interface specifies the services
that the engine offers at this port (i.e., the operations and receptions that are accessible by communication arriving at this
port). The interface power is the required interface of the engine. The required interface specifies the services that the
engine expects its environment to provide. At port p, the Engine class is completely encapsulated; it can be specified
without any knowledge of the environment the engine will be embedded in. As long as the environment obeys the
constraints expressed by the provided and required interfaces of the engine, the engine will function properly.

Two uses of the Engine class are depicted: Both a boat and a car contain a part that is an engine. The Car class connects
port p of the engine to a set of wheels via the axle. The Boat class connects port p of the engine to a propeller via the

shaft. Aslong as the interaction between the Engine and the part linked to its port p obeys the constraints specified by the
provided and required interfaces, the engine will function as specified, whether it is an engine of a car or an engine of a
boat. This example also shows that connectors need not necessarily attach to parts via ports (as shown in the Car class).

© ISO/IEC 2012 - All rights reserved 195

ISO/IEC 19505-2:2012(E)

Rationale

The required and provided interfaces of a port specify everything that is necessary for interactions through that interaction
point. If al interactions of a classifier with its environment are achieved through ports, then the internals of the classifier
are fully isolated from the environment. This allows such a classifier to be used in any context that satisfies the
constraints specified by its ports.

Changes from previous UML

This metaclass has been added to UML.
9.3.13 Property (from InternalStructures)

Generalizations
» “Property (from Kernel, AssociationClasses, Interfaces)” on page 130 (merge increment)

» “ConnectableElement (from Internal Structures)” on page 186

Description

A property represents a set of instances that are owned by a containing classifier instance.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

When an instance of the containing classifier is created, a set of instances corresponding to its properties may be created
either immediately or at some later time. These instances are instances of the classifier typing the property. A property
specifies that a set of instances may exist; this set of instances is a subset of the total set of instances specified by the
classifier typing the property.

A part declares that an instance of this classifier may contain a set of instances by composition. All such instances are
destroyed when the containing classifier instance is destroyed. Figure 9.20 shows two possible views of the Car class. In
subfigure (i), Car is shown as having a composition association with role name rear to a class Wheel and an association
with role name e to a class Engine. In subfigure (ii), the same is specified. However, in addition, in subfigure (ii) it is
specified that rear and e belong to the internal structure of the class Car. This allows specification of detail that holds
only for instances of the Wheel and Engine classes within the context of the class Car, but which will not hold for wheels
and engines in general. For example, subfigure (i) specifies that any instance of class Engine can be linked to an arbitrary
number of instances of class Wheel. Subfigure (ii), however, specifies that within the context of class Car, the instance
playing the role of e may only be connected to two instances playing the role of rear. In addition, the instances playing
the e and rear roles may only be linked if they are roles of the same instance of class Car.

196 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

In other words, subfigure (ii) asserts additional constraints on the instances of the classes Wheel and Engine, when they
are playing the respective roles within an instance of class Car. These constraints are not true for instances of Wheel and
Engine in general. Other wheels and engines may be arbitrarily linked as specified in subfigure (i).

Car
Car
e
rear 2 1 e a: Axle }
rear : Wheel [2] e: Engine
Wheel Axle Engine 2 1
* *
. (i)
(i)

Figure 9.20 - Properties

Notation

A part is shown by graphical nesting of a box symbol with a solid outline representing the part within the symbol
representing the containing classifier in a separate compartment. A property specifying an instance that is not owned by
composition by the instance of the containing classifier is shown by graphical nesting of a box symbol with a dashed
outline.

The contained box symbol has only a name compartment, which contains a string according to the syntax defined in the
Notation sub clause of “Property (from Kernel, AssociationClasses, Interfaces)” on page 130. Detail may be shown within
the box symbol indicating specific values for properties of the type classifier when instances corresponding to the
property symbol are created.

Presentation Options
The multiplicity for a property may also be shown as a multiplicity mark in the top right corner of the part box.

A property symbol may be shown containing just a single name (without the colon) in its name string. This implies the
definition of an anonymously named class nested within the namespace of the containing class. The part has this
anonymous class as its type. Every occurrence of an anonymous class is different from any other occurrence. The
anonymously defined class has the properties specified with the part symbol. It is allowed to show compartments defining
attributes and operations of the anonymously named class.

© ISO/IEC 2012 - All rights reserved 197

ISO/IEC 19505-2:2012(E)

Examples

\

4 | |

w: Wheel } e: Engine [1..2] }
|

|
|

Figure 9.21 - Property examples

Figure 9.21 shows examples of properties. On the left, the property denotes that the containing instance will own four
instances of the Wheel class by composition. The multiplicity is shown using the presentation option discussed above. The
property on the right denotes that the containing instance will reference one or two instances of the Engine class. For
additional examples, see 9.3.14, “StructuredClassifier (from Internal Structures),” on page 198.

Changes from previous UML

A connectable element used in a collaboration subsumes the concept of ClassifierRole.

9.3.14 StructuredClassifier (from InternalStructures)

Generalizations

» “Classifier (from Internal Structures, Collaborations)” on page 179

Description

A structured classifier is an abstract metaclass that represents any classifier whose behavior can be fully or partly
described by the collaboration of owned or referenced instances.

Attributes

No additional attributes

Associations

e [role: ConnectableElement [0..*]
References the roles that instances may play in this classifier. (Abstract union; subsets Classifier::feature)

« ownedAttribute: Property [0..*]
References the properties owned by the classifier. (Subsets SructuredClassifier::role, Classifier::attribute, and
Namespace: : ownedMember)

e /part: Property [0..*]
References the properties specifying instances that the classifier owns by composition. This association is derived,
selecting those owned properties where isComposite istrue.

¢ ownedConnector: Connector [0..*]
References the connectors owned by the classifier. (Subsets Classifier: :feature and Namespace: : ownedMember)

Constraints

[1] The multiplicities on connected elements must be consistent.

198 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

The multiplicities on the structural features and connector ends indicate the number of instances (objects and links) that
may be created within an instance of the containing classifier, either when the instance of the containing classifier is
created, or in the case of links, when an object is added as the value of arole, or at alater time. The lower bound of the
multiplicity range indicates the number of instances that are created (unless indicated differently by an associated instance
specification or an invoked constructor function); the upper bound of the multiplicity range indicates the maximum
number of instances that may be created. The slots corresponding to the structural features are initialized with these
instances.

The manner of creation of the containing classifier may override the default instantiation. When an instance specification
is used to specify the initial instance to be created for a classifier (see “Class’ on page 178), the multiplicities of its parts
determine the number of initial instances that will be created within that classifier. Initially, there will be as many
instances held in slots as indicated by the corresponding multiplicity. Multiplicity ranges on such instance specifications
may not contain upper bounds.

All instances corresponding to parts of a structured classifier are destroyed recursively, when an instance of that
structured classifier is deleted. The instance is removed from the extent of its classifier, and is itself destroyed.

When an instance is removed from arole of a composite object, links that exist due to connectors between that role and
others are destroyed.

Semantic Variation Points

The rules for matching the multiplicities of connector ends and those of parts and ports they interconnect are a semantic
variation point. Also, the specific topology that results from such multi-connectors will differ from system to system. One
possible approach to thisis illustrated in Figure 9.22 and Figure 9.23.

For each instance playing arole in an internal structure, there will initially be as many links as indicated by the
multiplicity of the opposite ends of connectors attached to that role (see “ ConnectorEnd” on page 188 for the semantics
where no multiplicities are given for an end). If the multiplicities of the ends match the multiplicities of the roles they are
attached to (see Figure 9.22 i), the initial configuration that will be created when an instance of the containing classifier
is created consists of the set of instances corresponding to the roles (as specified by the multiplicities on the roles) fully
connected by links (see the resultant instance, Figure 9.22 ii).

0] 2 2
a b:
2 2
(ii)
La Lb:
la /b

Figure 9.22 - “Star” connector pattern

© ISO/IEC 2012 - All rights reserved 199

ISO/IEC 19505-2:2012(E)

Multiplicities on connector ends serve to restrict the number of initial links created. Links will be created for each
instance playing the connected roles according to their ordering until the minimum connector end multiplicity is reached
for both ends of the connector (see the resultant instance, Figure 9.23 ii). In this example, only two links are created,
resulting in an array pattern.

0] 2 2
a b:
1 1
(ii)
[a [b:
lac Lb:

Figure 9.23 - “Array” connector pattern

Notation
The namestring of arole in an instance specification obeys the following syntax:
{<name> [/’ <rolename>] | ‘/’ <rolename>} [‘:’ <classifiername> [‘,’ <classifiername>]*]

The name of the instance specification may be followed by the name of the role which the instance plays. The role name
may only be present if the instance plays arole.

Examples

The following example shows two classes, Car and Wheel. The Car class has four parts, all of type Wheel, representing
the four wheels of the car. The front wheels and the rear wheels are linked via a connector representing the front and rear
axle, respectively. An implicit association is defined as the type of each axle with each end typed by the Wheel class.
Figure 9.24 specifies that whenever an instance of the Car class is created, four instances of the Wheel class are created
and held by composition within the car instance. In addition, one link each is created between the front wheel instances
and the rear wheel instances.

200 © ISO/IEC 2012 - Al rights reserved

Wheel

tire: String
size: String

Car
leftFront : frontaxie rightFront :
Wheel Wheel
leftRear : rearaxie rightRear :
Wheel Wheel

Figure 9.24 - Connectors and parts in a structure diagram

ISO/IEC 19505-2:2012(E)

Figure 9.25 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle
arrangement. This diagram specifies that there will be two instances of the left wheel and two instances of the right wheel
(as no multiplicity is specified for the connector at the right wheel, the multiplicity is taken from the attached role), with
each matching instance connected by a link deriving from the connector representing the axle. As specified by the
multiplicities, no additional instances of the Wheel class can be added as left or right parts for a Car instance.

Car

Wheel

left: Wheel [2]

axle

right: Wheel [2]

tire: String
size: String

Figure 9.25 - Connectors and parts in a structure diagram using multiplicities

Figure 9.26 shows an instance of the Car class (as specified in Figure 9.24). It describes the internal structure of the Car
that it creates and how the four contained instances of Wheel will be initialized. In this case, every instance of Wheel will
have the predefined size and use the brand of tire as specified. The left wheel instances are given names, and all wheel
instances are shown as playing the respective roles. The types of the wheel instances have been suppressed.

© ISO/IEC 2012 - All rights reserved

201

ISO/IEC 19505-2:2012(E)

Lar Wheel
tire: String
11/ leftfront frontaxle Lrightfront size: String
tire = "Michelin" tire = "Michelin"
size ="215x95" size ="215x95"
12/ leftrear rearaxle Lrightrear Car
tire = "Firestone" tire = "Firestone"

size ="215x95"

size ="215x95"

Figure 9.26 - An instance of the Car class

Finally, Figure 9.27 shows a constructor for the Car class (see “Class’ on page 178). This constructor takes a parameter
brand of type Sring. It describes the internal structure of the Car that it creates and how the four contained instances of
Wheel will be initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire
passed as parameter. The left wheel instances are given names, and all wheel instances are shown as playing the parts.
The types of the wheel instances have been suppressed.

Car
Car
. 11 / leftfront frontaxle Lrightfront
«create» createCar(brand:String) - -
tire = brand tire = brand
size = "215x95" size = "215x95"
12 / leftrear rearaxle [rightrear
tire = brand tire = brand
size = "215x95" size = "215x95"

Figure 9.27 - A constructor for the Car class
9.3.15 Trigger (from InvocationActions)

Generalizations

« “Trigger (from Communications)” on page 477 (merge increment)

Description

A trigger specification may be qualified by the port on which the event occurred.

202 © ISO/IEC 2012 - Al rights reserved

Associations

e port: Port [*]

ISO/IEC 19505-2:2012(E)

Specifies the ports at which acommunication that caused an event may have arrived.

Semantics

Specifying one or more ports for an event implies that the event triggers the execution of an associated behavior only if
the event was received via one of the specified ports.

Notation

The ports of atrigger are specified following atrigger signature by alist of port names separated by comma, preceded by

the keyword «from»:

‘«from»’ <port-name> [‘,” <port-name>]*

9.3.16 Variable (from StructuredActivities)

Generalizations

» “Variable (from StructuredActivities)” on page 434 (merge increment)

Description

A variable is considered a connectable element.

Semantics

Extends variable to specialize connectable element.

9.4 Diagrams

Composite structure diagram

A composite structure diagram depicts the internal structure of a classifier, as well as the use of a collaboration in a

collaboration use.

Graphical nodes

Additional graphical nodes that can be included in composite structure diagrams are shown in Table 9.1.

Table 9.1 - Graphic nodes included in composite structure diagrams

Node Type Notation Reference

Part See 9.3.13, ' Property (from Internal Structures)’
partName :
ClassName

© ISO/IEC 2012 - All rights reserved

203

ISO/IEC 19505-2:2012(E)

Table 9.1 - Graphic nodes included in composite structure diagrams

Node Type Notation Reference
Port See 9.3.12, ' Port (from Ports)’. A port may appear either on a
contained part representing a port on that part, or on the boundary
portName: of the class diagram, representing a port on the represented

ClassifierName classifier itself. The optional ClassifierNameis only used if it is

desired to specify aclass of an object that implements the port.

Collaboration See 9.3.3, ' Collaboration (from Collaborations)’
N
(CollaborationName)
\ N~ —_— - -~
CollaborationUse See 9.3.4, ' CollaborationUse (from Collaborations)’

— —

P ~
(usageName : N\
CollaborationNarme /
\ ~ -

—

Graphical paths

Additional graphical paths that can be included in composite structure diagrams are shown in Table 9.2.

Table 9.2 - Graphic nodes included in composite structure diagrams

Path Type Notation Reference
Connector See 9.3.6, ' Connector (from Internal Structures)’
Role binding See 9.3.4, ' CollaborationUse (from Collaborations)’

Structure diagram

All graphical nodes and paths shown on composite structure diagrams can also be shown on other structure diagrams.

204 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

10 Deployments

10.1 Overview

The Deployments package specifies a set of constructs that can be used to define the execution architecture of systems
that represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to create
network systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware
devices or software execution environments. Artifacts represent concrete elements in the physical world that are the result
of a development process.

The Deployment package supports a streamlined model of deployment that is deemed sufficient for the majority of
modern applications. Where more elaborate deployment models are required, it can be extended through profiles or meta
models to model specific hardware and software environments.

Artifacts

The Artifacts package defines the basic Artifact construct as a special kind of Classifier.

Nodes

The Nodes package defines the concept of Node, as well as the basic deployment relationship between Artifacts and
Nodes.

Component Deployments

The ComponentDeployments package extends the basic deployment model with capabilities to support deployment
mechanisms found in several common component technol ogies.

10.2 Abstract Syntax

Figure 10.1 shows the dependencies of the Deployments packages.

© ISO/IEC 2012 - All rights reserved 205

ISO/IEC 19505-2:2012(E)

1

Dependencies

™

v importe

1 I

Artifacts StructuredClasses

™ 7

H
amerdes
\

5

ComponentDeployments

Figure 10.1 - Dependencies between packages described in this clause

206

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Package Artifacts
Ll = laswessiDepende UML s Classes:Dapen
LR Classes: :Karmefl: Acfes=vamedtlement ilenc e st Al sction
Ciassifier
{subaats cwnadElameant,
{subssts 0.1 il.bwtschrtbmndnr-cr}
+ st i
P Artifact > + manitestation . | Manil e station
[fieriame - String 1 "
sibgat subveets namespace, subsets
im;mmﬂem o1 0.4 FeaturingClassifier, subsets classifier} .
subsets featuringClassifier)
{subsets faabure, . -
subsets owredMember, EiF o i ribute, subssts
uﬂdlﬂr;} . |ewredMember, ordered) {subsets suppler}
+ orwnecOperation |7 + oremedAttribute 1 + Ut Z edEhermuard
UML=Classes:ie UL el ol LA Chassans: Ko rael:
rnek:iperation el nekiPropeity :PackageableElement

Figure 10.2 - The elements defined in the Artifacts package

© ISO/IEC 2012 - All rights reserved 207

ISO/IEC 19505-2:2012(E)

Package Nodes

UnIL::
CompositeStructures::
StructuredClasses::

Class
0.1 ‘
. Node UML::Classes::
Kernel:
+ nestedMode Association
{subsets ownedMerber ?
Device ExecutionEmdaronment CommunicationPath
Figure 10.3 - The definition of the Node concept
UV Classas!: UML:Classes: LV Classas!:
Dopandencios::! Dependencies: Dopandencios::!
NamedFEiement Dependency NamodFlemont

{subsets ownedElement,

i subsets disntDependency: {subsets suppliert
{sueslgtcsa%ihoenn t + deployedArifact

depl rit
+ GEpl UYmea Deployment - DepioyedArtifact
*

URRE :: ClassesiBernel:: | 4+ ideployedElement
PackageabioElomant FEATTT ¥

DeploymentTarget

Hode Property InstanceSpecification Artifact

Figure 10.4 - Definition of the Deployment relationship between DeploymentTargets and DeployedArtifacts

208 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package ComponentDeployments

UML:Classes: UML:
Dependencies: Deployments:
Dependency MNodes::artifact
T denl - {subsets ownedElement) T
Deployment + CEployme + configuration

DeploymenmtSpecification

[

+ | deploymentLocation : String
executionLocation : String

Figure 10.5 - Metaclasses that define component Deployment

10.3 Class Descriptions

10.3.1 Artifact (from Artifacts, Nodes)

An artifact is the specification of a physical piece of information that is used or produced by a software development process,
or by deployment and operation of a system. Examples of artifactsinclude model files, source files, scripts, and binary
executable files, atable in a database system, a development deliverable, or aword-processing document, amail message.

Generalizations
» “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 55
» “DeployedArtifact (from Nodes)” on page 212
» “NamedElement (from Kernel, Dependencies)” on page 104

Description

Package Artifacts

In the metamodel, an Artifact is a Classifier that represents a physical entity. Artifacts may have Properties that represent
features of the Artifact, and Operations that can be performed on its instances. Artifacts can be involved in Associations to
other Artifacts (e.g., composition associations). Artifacts can be instantiated to represent detailed copy semantics, where
different instances of the same Artifact may be deployed to various Node instances (and each may have separate property
values, e.g., for a‘time-stamp’ property).

Package Node

As part of the Nodes package, an Artifact is extended to become the source of a deployment to a Node. Thisis achieved by
specializing the abstract superclass DeployedArtifact defined in the Nodes package.

© ISO/IEC 2012 - All rights reserved 209

ISO/IEC 19505-2:2012(E)

Attributes

Package Artifacts

e fileName: String [0..1]
A concrete name that is used to refer to the Artifact in aphysical context. Example: file system name, universal
resource locator.

Associations

Package Artifacts

¢ nestedArtifact: Artifact [*]
The Artifacts that are defined (nested) within the Artifact. The association is a specialization of the ownedMember
association from Namespace to NamedElement.

« ownedAttribute : Property [*]
The attributes or association ends defined for the Artifact. { Subsets Namespace: : ownedMember}

¢ ownedOperation : Operation [*]
The Operations defined for the Artifact. { Subsets Namespace: : ownedMember}

e manifestation : Manifestation [*]
The set of model elements that are manifested in the Artifact. That is, these model elements are utilized in the
construction (or generation) of the artifact. { Subsets NamedElement: : clientDependency, Subsets
Element: : ownedElement}

Constraints

No additional constraints

Semantics

An Artifact defined by the user represents a concrete element in the physical world. A particular instance (or ‘copy’) of
an artifact is deployed to a node instance. Artifacts may have composition associations to other artifacts that are nested
within it. For instance, a deployment descriptor artifact for a component may be contained within the artifact that
implements that component. In that way, the component and its descriptor are deployed to a node instance as one artifact
instance.

Specific profiles are expected to stereotype artifact to model sets of files (e.g., as characterized by a ‘file extension’ on a
file system). The UML Standard Profile defines several standard stereotypes that apply to Artifacts, e.g., «source» or
«executable» (See Annex C - Standard Stereotypes). These stereotypes can be further specialized into implementation and
platform specific stereotypes in profiles. For example, an EJB profile might define «jar» as a subclass of «executable» for
executable Java archives.

Notation

An artifact is presented using an ordinary class rectangle with the key-word «artifact». Alternatively, it may be depicted
by an icon.

Optionally, the underlining of the name of an artifact instance may be omitted, as the context is assumed to be known to
users.

210 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

«artifact» D
Order.jar

Figure 10.6 - An Artifact instance

«component» @
Oi Order

)

! «manifest»

«artifact» D
Order.jar

Figure 10.7 - A visual representation of the manifestation relationship between artifacts and components

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any PackageableElement (not just
Components, asin UML 1.x).

10.3.2 CommunicationPath (from Nodes)

A communication path is an association between two DeploymentTargets, through which they are able to exchange
signals and messages.

Generalizations

» “Association (from Kernel)” on page 40

Description

In the metamodel, CommunicationPath is a subclass of Association.

Attributes
No additional attributes

Associations

No additional associations

© ISO/IEC 2012 - All rights reserved 211

ISO/IEC 19505-2:2012(E)

Constraints

[1] The association ends of a CommunicationPath are typed by DeploymentTargets.
self.endType->forAll (t | t.oclisKindOf(DeploymentTarget))

Semantics

A communication path is an association that can only be defined between deployment targets, to model the exchange of
signals and messages between them.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made; CommunicationPath was implicit in UML 1.x. It has been made
explicit to formalize the modeling of networks of complex Nodes.

10.3.3 DeployedArtifact (from Nodes)

A deployed artifact is an artifact or artifact instance that has been deployed to a deployment target.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description

In the metamodel, DeployedArtifact is an abstract metaclass that is a specialization of NamedElement. A
DeployedArtifact is involved in one or more Deployments to a DeploymentTarget.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Deployed artifacts are deployed to a deployment target.

Notation

No additional notation

212 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Changes from previous UML
The following changes from UML 1.x have been made: The capability to deploy artifacts and artifact instances to nodes
has been made explicit based on UML 2 instance modeling through the addition of this abstract metaclass.

10.3.4 Deployment (from ComponentDeployments, Nodes)

Package Nodes

A deployment is the allocation of an artifact or artifact instance to a deployment target.

Package ComponentDeployments

A component deployment is the deployment of one or more artifacts or artifact instances to a deployment target,
optionally parameterized by a deployment specification. Examples are executables and configuration files.

Generalizations

» “Dependency (from Dependencies)” on page 65

Description

In the metamodel, Deployment is a subtype of Dependency.

Attribute
No additional attributes

Associations

Package Nodes

e deployedArtifact : Artifact [*]
The Artifacts that are deployed onto a Node. This association specializes the supplier association.

e location : DeploymentTarget [1]
The DeploymentTarget that is the target of a Deployment. This association specializes the client association.
Package ComponentDeployments

e configuration : DeploymentSpecification [*]
The specification of properties that parameterize the deployment and execution of one or more Artifacts. This
association is specialized from the ownedMember association.

Constraints

No additional constraints

Semantics

The deployment relationship between a DeployedArtifact and a DeploymentTarget can be defined at the “type” level and
at the “instance level.” For example, a ‘type level’ deployment relationship can be defined between an “application
server” Node and an “order entry request handler” executable Artifact. At the ‘instance level’ 3 specific instances “app-

© ISO/IEC 2012 - All rights reserved 213

ISO/IEC 19505-2:2012(E)

serverl” ... “app-server3” may be the deployment target for six “request handler*” instances. Finally, for modeling
complex deployment target models consisting of nodes with a composite structure defined through ‘parts,” a Property
(that functions as a part) may also be the target of a deployment.

Notation

Deployment diagrams show the allocation of Artifacts to Nodes according to the Deployments defined between them.

:AppServerl
«artifact» D «artifact» D
ShoppinCart.jar == > Order.jar

Figure 10.8 - A visual representation of the deployment location of artifacts
(including a dependency between the artifacts).

An alternative notation to containing the deployed artifacts within a deployment target symbol is to use a dependency
|abeled «deploy» that is drawn from the artifact to the deployment target.

:AppServerl
rd ﬂ v N
«deploy» -~ . N «deploy»
«artifact» 0 «artifag:t» 0
ShoppinCart.jar Order jar

Figure 10.9 - Alternative deployment representation of using a dependency called «deploy»

214 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

:AppServerl

Order.jar
ShoppingCart.jar
Account.jar

Product.jar

BackOrder.jar

Service.jar

Figure 10.10 - Textual list based representation of the deployment location of artifacts

Changes from previous UML

The following changes from UML 1.x have been made — an association to DeploymentSpecification has been added.
10.3.5 DeploymentSpecification (from ComponentDeployments)

A deployment specification specifies a set of properties that determine execution parameters of a component artifact that
is deployed on a node. A deployment specification can be aimed at a specific type of container. An artifact that reifies or
implements deployment specification properties is a deployment descriptor.

Generalizations

« “Artifact (from Artifacts, Nodes)” on page 209

Description

In the metamodel, a DeploymentSpecification is a subtype of Artifact. It defines a set of deployment properties that are
specific to a certain Container type. An instance of a DeploymentSpecification with specific values for these properties
may be contained in a complex Artifact.

Attributes

ComponentDeployments Package

e deploymentLocation : String [0..1]
The location where an Artifact is deployed onto aNode. Thisistypically a‘directory’ or ‘memory address.’

e executionLocation : String [0..1]
The location where a component Artifact executes. This may be alocal or remote location.

Associations

ComponentDeployments Package

e deployment : Deployment [0..1]
The deployment with which the DeploymentSpecification is associated.

© ISO/IEC 2012 - All rights reserved 215

ISO/IEC 19505-2:2012(E)

Constraints
[1] The DeploymentTarget of a DeploymentSpecification is a kind of ExecutionEnvironment.

self.deployment->forAll (d | d.location.ocllsKindOf(ExecutionEnvironment))

[2] The deployedElements of a DeploymentTarget that are involved in a Deployment that has an associated
DeploymentSpecification is a kind of Component (i.e., the configured components).

self.deployment->forAll (d | d.location.deployedElements->forAll (de | de.oclisKindOf(Component)))

Semantics

A Deployment specification is a general mechanism to parameterize a Deployment relationship, as is common in various
hardware and software technologies. The deployment specification element is expected to be extended in specific
component profiles. Non-normative examples of the standard stereotypes that a profile might add to deployment
specification are, for example, «concurrencyMode» with tagged values { thread, process, none}, or «transactionM ode»
with tagged values { transaction, nestedTransaction, none}.

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle (Figure 10.11) attached to a component
artifact deployed on a container using a regular dependency arrow.

«deployment spec»

Name

execution: execKind

«deployment spec»

Name

execution: thread

transaction : Boolean transaction : true

Figure 10.11 - DeploymentSpecification for an artifact (specification and instance levels)

:AppServerl

«artifact» 0O
ShoppingApp.ear

«artifact» 0 «artifact» 0O
ShoppinCart.jar — [----------=---m-m-mommmoeoee > Order.jar

«deployment spec» «deployment spec»

ShoppingAppdesc.xml Orderdesc.xml

Figure 10.12 - DeploymentSpecifications related to the artifacts that they parameterize

216 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

«artifact» D
Order.jar

I
«deploy» L
I
I
|

«deployment spec»
Orderdesc.xml

:AppServer

Figure 10.13 - A DeploymentSpecification for an artifact

Changes from previous UML

The following changes from UML 1.x have been made — DeploymentSpecification does not exist in UML 1.x.

10.3.6 DeploymentTarget (from Nodes)

A deployment target is the location for a deployed artifact.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description

In the metamodel, DeploymentTarget is an abstract metaclass that is a specialization of NamedElement. A
DeploymentTarget owns a set of Deployments.

Attributes

No additional attributes

Associations

Nodes Package

e deployment : Deployment [*]
The set of Deployments for a DeploymentTarget. { Subsets NamedElement: ; clientDependency, Subsets
Element:: ownedElement}

e/ deployedElement : PackageableElement [*]
The set of elementsthat are manifested in an Artifact that is involved in Deployment to a DeploymentTarget.
The association is a derived association.

© ISO/IEC 2012 - All rights reserved 217

ISO/IEC 19505-2:2012(E)

context DeploymentTarget::deployedElement derive:
((self.deployment->collect(deployedArtifact))->collect(manifestation))->collect(utilizedElement)

Constraints

No additional constraints

Semantics

Artifacts are deployed to a deployment target. The deployment target owns the set of deployments that target it.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: The capability to deploy artifacts and artifact instances to nodes
has been made explicit based on UML 2 instance modeling.

10.3.7 Device (from Nodes)

A Deviceis a physical computational resource with processing capability upon which artifacts may be deployed for
execution. Devices may be complex (i.e., they may consist of other devices).

Generalizations

» “Node (from Nodes)” on page 222

Description

In the metamodel, a Device is a subclass of Node.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace
ownership or through attributes that are typed by Devices.

Notation

A Deviceis notated by a perspective view of a cube tagged with the keyword «device».

218 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

«device»
‘AppServer
- : «device»
«executionEnvironment» :DBServer
:J2EES
erver OrderSchema.ddl
Order.jar

ltemSchema.ddl
ShoppingCart.jar

Account.jar
Product.jar

BackOrder.jar

Service.jar

Figure 10.14 - Notation for a Device

Changes from previous UML

The following changes from UML 1.x have been made — Device is not defined in UML 1.x.
10.3.8 ExecutionEnvironment (from Nodes)

An ExecutionEnvironment is a node that offers an execution environment for specific types of components that are
deployed on it in the form of executable artifacts.

Generalizations

» “Node (from Nodes)” on page 222

Description

In the metamodel, an ExecutionEnvironment is a subclass of Node. It is usually part of a general Node, representing the
physical hardware environment on which the ExecutionEnvironment resides. In that environment, the
ExecutionEnvironment implements a standard set of services that Components require at execution time (at the modeling
level these services are usually implicit). For each component Deployment, aspects of these services may be determined
by properties in a DeploymentSpecification for a particular kind of ExecutionEnvironment.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

© ISO/IEC 2012 - All rights reserved 219

ISO/IEC 19505-2:2012(E)

Semantics

ExecutionEnvironment instances are assighed to node instances by using composite associations between nodes and
ExecutionEnvironments, where the ExecutionEnvironment plays the role of the part. ExecutionEnvironments can be
nested (e.g., a database ExecutionEnvironment may be nested in an operating system ExecutionEnvironment).
Components of the appropriate type are then deployed to specific ExecutionEnvironment nodes.

Typical examples of standard ExecutionEnvironments that specific profiles might define stereotypes for are «OS»,
«workflow engine», «database system», and «J2EE container».

An ExecutionEnvironment can optionally have an explicit interface of system level services that can be called by the
deployed elements, in those cases where the modeler wants to make the ExecutionEnvironment software execution
environment services explicit.

Notation

An ExecutionEnvironment is notated by a Node annotated with the stereotype «executionEnvironment».

«executionEnvironment»
:J2EEServer

Order.jar
ShoppingCart.jar
Account.jar
Product.jar
BackOrder.jar

Service.jar

Figure 10.15 - Notation for an ExecutionEnvironment (example
of an instance of a J2EEServer ExecutionEnvironment)

Changes from previous UML

The following changes from UML 1.x have been made — ExecutionEnvironment is not defined in UML 1.x.
10.3.9 InstanceSpecification (from Nodes)

An instance specification is extended with the capability of being a deployment target in a deployment relationship, in the
case that it is an instance of a node. It is also extended with the capability of being a deployed artifact, if it is an instance
of an artifact.

Generalizations
» “DeployedArtifact (from Nodes)” on page 212
» “DeploymentTarget (from Nodes)” on page 217

» “InstanceSpecification (from Kernel)” on page 87 (merge increment)

Description

In the metamodel, InstanceSpecification is a specialization of DeploymentTarget and DeployedArtifact.

220 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Attributes
No additional attributes

Associations

No additional associations

Constraints

[1] AnlInstanceSpecification can be a DeploymentTarget if it isthe instance specification of aNode and functionsasapart in
the internal structure of an encompassing Node.

[2] An InstanceSpecification can be a DeployedArtifact if it is the instance specification of an Artifact.

Semantics

No additional semantics

Notation

An instance can be attached to a node using a deployment dependency, or it may be visually nested inside the node.

Changes from previous UML

The following changes from UML 1.x have been made — the capability to deploy artifact instances to node instances
existed in UML 1.x, and has been made explicit based on UML 2 instance modeling.

10.3.10 Manifestation (from Artifacts)

A manifestation is the concrete physical rendering of one or more model elements by an artifact.

Generalizations

» “Abstraction (from Dependencies)” on page 39

Description

In the metamodel, a Manifestation is a subtype of Abstraction. A Manifestation is owned by an Artifact.

Attributes
No additional attributes

Associations

Artifacts

e utilizedElement : PackageableElement [1]
The model element that is utilized in the manifestation in an Artifact. { Subsets Dependency:: supplier}

Constraints

No additional associations

© ISO/IEC 2012 - All rights reserved 221

ISO/IEC 19505-2:2012(E)

Semantics

An artifact embodies or manifests a number of model elements. The artifact owns the manifestations, each representing
the utilization of a packageable element.

Specific profiles are expected to stereotype the manifestation relationship to indicate particular forms of manifestation.
For example, «tool generated» and «custom code» might be two manifestations for different classes embodied in an
artifact.

Notation

A manifestation is notated in the same way as an abstraction dependency, i.e., as a general dashed line with an open
arrow-head labeled with the keyword «manifest».

Changes from previous UML

The following changes from UML 1.x have been made: Manifestation is defined as a meta association in UML 1.x,
prohibiting stereotyping of manifestations. In UML 1.x, the concept of Manifestation was referred to as ‘implementation’
and annotated in the notation as «implement». Since this was one of the many uses of the word ‘implementation’ this has
been replaced by «manifest».

10.3.11 Node (from Nodes)

A node is computational resource upon which artifacts may be deployed for execution.

Nodes can be interconnected through communication paths to define network structures.

Generalizations
» “Class (from StructuredClasses, Internal Structures)” on page 178

» “DeploymentTarget (from Nodes)” on page 217

Description

In the metamodel, a Node is a subclass of Class. It is associated with a Deployment of an Artifact. It is also associated
with a set of Elements that are deployed on it. This is a derived association in that these PackageableElements are
involved in a Manifestation of an Artifact that is deployed on the Node. Nodes may have an internal structure defined in
terms of parts and connectors associated with them for advanced modeling applications.

Attributes

No additional attributes
Associations

Nodes Package

¢ nestedNode : Node [*]
The Nodes that are defined (nested) within the Node. { Subsets Namespace: : ownedMember}

Constraints

[1] Theinternal structure of a Node (if defined) consists solely of parts of type Node.

222 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

Nodes can be connected to represent a network topology by using communication paths. Communication paths can be
defined between nodes such as “application server” and “client workstation” to define the possible communication paths
between nodes. Specific network topologies can then be defined through links between node instances.

Hierarchical nodes (i.e., nodes within nodes) can be modeled using composition associations, or by defining an internal
structure for advanced modeling applications.

Non-normative examples of nodes are «application server», «client workstation», «mobile device», «embedded device».

Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.

:AppServer

Figure 10.16 - An instance of a Node

Dashed arrows with the keyword «deploy» show the capability of a node type to support a component type. Alternatively,
this may be shown by nesting component symbols inside the node symbol.

Nodes may be connected by associations to other nodes. A link between node instances indicates a communication path
between the nodes.

AppServer 1 DBServer
*
«deploy» «deploy»
Order jar N RequestHandler.jar D

Figure 10.17 - Communication path between two Node types with deployed Artifacts

Artifacts may be contained within node instance symbols. This indicates that the items are deployed on the node
instances.

© ISO/IEC 2012 - All rights reserved 223

ISO/IEC 19505-2:2012(E)

:AppServerl

«artifact»

ShoppinCart.jar

O

«artifact»
Order.jar

O

Figure 10.18 - A set of deployed component artifacts on a Node

Changes from previous UML

The following changes from UML 1.x have been made: to be written.

10.3.12 Property (from Nodes)

A Property is extended with the capability of being a DeploymentTarget in a Deployment relationship. This enables
modeling the deployment to hierarchical Nodes that have Properties functioning as internal parts.

Generalizations

» “Property (from Internal Structures)” on page 196 (merge increment)

Description

In the metamodel, Property is a specialization of DeploymentTarget.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A Property can be a DeploymentTarget if it isakind of Node and functions as a part in the internal structure of an
encompassing Node.

Semantics

No additional semantics

Notation

No additional notation

224

© ISO/IEC 2012 - All rights reserved

Changes from previous UML

ISO/IEC 19505-2:2012(E)

The following changes from UML 1.x have been made — the capability to deploy to Nodes with an internal structure has

been added to UML 2.

10.4 Diagrams

Deployment diagram

Graphical nodes

The graphic nodes that can be included in deployment diagrams are shown in Table 10.1.

Table 10.1 - Graphic nodes included in deployment diagrams

«executionEnvironment»

NodeName

artifactl

artifact2

artifact3

Node Type Notation Reference
Artifact See“Artifact.”
«artifact» D
ArtifactName
Node See“Node.”
NodeName
Artifact deployed on Node See “Deployment.”
«artifact» O
ArtifactName
Node with deployed Artifacts See “Deployment.”
Node
«artifact» [
ArtifactName
Node with deployed Artifacts See “Deployment” (alternative, textual notation).

© ISO/IEC 2012 - All rights reserved

225

ISO/IEC 19505-2:2012(E)

Table 10.1 - Graphic nodes included in deployment diagrams

Node Type

Notation

Reference

Deployment specification

«deployment spec»
Name

See “Deployment Specification.”

Deployment specification - with
properties

«deployment spec»

Name

execution: execKind
transaction : Boolean

See “Deployment Specification.”

Deployment specification - with
property values

«deployment spec»
Name

execution: thread
transaction : true

See “Deployment Specification.

Artifact with annotated
deployment properties

«artifact» O
ArtifactName

{execution=thread,
transaction =true}

See “Avrtifact.”

Graphical paths

The graphic paths that can be included in deployment diagrams are shown in Table 10.2 .

Table 10.2 - Graphic nodes included in deployment diagrams

Path Type Notation Reference

Association See “Association (from Kernel)” on page 40. Used to model communication
paths between DeploymentTargets.

Dependency See “Dependency (from Dependencies)” on page 65. Used to model general

dependencies. In Deployment diagrams, this notation is used to depict the
following metamodel associations: (i) the relationship between an Artifact
and the model element(s) that it implements, and (ii) the deployment of an
Artifact (instance) on a Node (instance).

Generalization

See “Generalization (from Kernel, PowerTypes)” on page 75.

226

© ISO/IEC 2012 - All rights reserved

Table 10.2 - Graphic nodes included in deployment diagrams

ISO/IEC 19505-2:2012(E)

Path Type Notation Reference
Deployment The Deployment relationship
«deploy»
Manifestation The Manifestation relationship
«manifest»

© ISO/IEC 2012 - All rights reserved

227

ISO/IEC 19505-2:2012(E)

228 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Subpart Il - Behavior

© ISO/IEC 2012 - All rights reserved 229

ISO/IEC 19505-2:2012(E)

230 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

11 Actions

11.1 Overview

Basic Concepts

An action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set
of outputs, though either or both sets may be empty. This clause defines semantics for a number of specialized actions, as
described below. Some of the actions modify the state of the system in which the action executes. The values that are the
inputs to an action may be described by value specifications, obtained from the output of actions that have one output (in
StructuredActions), or in ways specific to the behaviors that use them. For example, the activity flow model supports
providing inputs to actions from the outputs of other actions.

Actions are contained in behaviors, which provide their context. Behaviors provide constraints among actions to
determine when they execute and what inputs they have. The Actions clause is concerned with the semantics of
individual, primitive actions.

Basic actions include those that perform operation calls, signal sends, and direct behavior invocations. Operations are
specified in the model and can be dynamically selected only through polymorphism. Signals are specified by a signal
object, whose type represents the kind of message transmitted between objects, and can be dynamically created. Note that
operations may be bound to activities, state machine transitions, or other behaviors. The receipt of signals may be bound
to activities, state machine transitions, or other behaviors.

Intermediate Concepts

The intermediate level describes the various primitive actions. These primitive actions are defined in such away as to
enable the maximum range of mappings. Specifically, a primitive action either carries out a computation or accesses
object memory, but never both. This approach enables clean mappings to a physical model, even those with data
organizations different from that suggested by the specification. In addition, any re-organization of the data structure will
leave the specification of the computation unaffected.

A surface action language would encompass both primitive actions and the control mechanisms provided by behaviors. In
addition, a surface language may map higher-level constructs to the actions. For example, creating an object may involve
initializing attribute values or creating objects for mandatory associations. The specification defines the create action to
only create the object, and requires further actions to initialize attribute values and create objects for mandatory
associations. A surface language could choose to define a creation operation with initialization as a single unit as a
shorthand for severa actions.

A particular surface language could implement each semantic construct one-to-one, or it could define higher-level,
composite constructs to offer the modeler both power and convenience. This part of 1SO/IEC 19505, then, expresses the
fundamental semanticsin terms of primitive behavioral concepts that are conceptually simple to implement. Modelers can
work in terms of higher-level constructs as provided by their chosen surface language or notation.

The semantic primitives are defined to enable the construction of different execution engines, each of which may have
different performance characteristics. A model compiler builder can optimize the structure of the software to meet
specific performance requirements, so long as the semantic behavior of the specification and the implementation remain
the same. For example, one engine might be fully sequential within a single task, while another may separate the classes
into different processors based on potential overlapping of processing, and yet others may separate the classes in a client-
server, or even athree-tier model.

© ISO/IEC 2012 - All rights reserved 231

ISO/IEC 19505-2:2012(E)

The modeler can provide “hints’ to the execution engine when the modeler has special knowledge of the domain solution
that could be of value in optimizing the execution engine. For example, instances could—by design—be partitioned to
match the distribution selected, so tests based on this partitioning can be optimized on each processor. The execution
engines are not required to check or enforce such hints. An execution engine can either assume that the modeler is correct,
or just ignore it. An execution engine is not required to verify that the modeler’s assertion is true.

When an action violates aspects of static UML modeling that constrain runtime behavior, the semantics is left undefined.
For example, attempting to create an instance of an abstract class is undefined - some languages may make this action
illegal, others may create a partial instance for testing purposes. The semantics are also left undefined in situations that
require classes as values at runtime. However, in the execution of actions the lower multiplicity bound is ignored and no
error or undefined semantics is implied. (Otherwise, it isimpossible to use actions to pass through the intermediate
configurations necessary to construct object configurations that satisfy multiplicity constraints.) The modeler must
determine when minimum multiplicity should be enforced, and these points cannot be everywhere or the configuration
cannot change.

Invocation Actions

More invocation actions are defined for broadcasting signals to the available “universe” and transmitting objects that are
not signals.

Read Write Actions

Objects, structural features, links, and variables have values that are available to actions. Objects can be created and
destroyed; structural features and variables have values; links can be created and destroyed, and can reference values
through their ends; al of which are available to actions. Read actions get values, while write actions modify values and
create and destroy objects and links. Read and write actions share the structures for identifying the structural features,
links, and variables they access.

Object actions create and destroy objects. Structural feature actions support the reading and writing of structural features.
The abstract metaclass Structural FeatureAction statically specifies the structural feature being accessed. The object to
access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The semantics
for static features is undefined. Association actions operate on associations and links. In the description of these actions,
the term “associations” does not include those modeled with association classes, unless specifically indicated. Similarly, a
“link” is not alink object unless specifically indicated. The semantics of actions that read and write associations that have
a static end is undefined.

Value specifications cover various expressions ranging from implementation-dependent constants to complex expressions,
with side-effects. An action is defined for evaluating these. Also see “ValuePin (from BasicActions)” on page 303.

Complete Concepts

The major constructs associated with complete actions are outlined below.

Read Write Actions

Additional actions deal with the relation between object and class and link objects. These read the instances of a given
classifier, check which classifier an instance is classified by, and change the classifier of an instance. Link object actions
operate on instances of association classes. Also the reading and writing actions of associations are extended to support
qualifiers.

232 © ISO/IEC 2012 - Al rights reserved

Other Actions

ISO/IEC 19505-2:2012(E)

Actions are defined for accepting events, including operation calls, and retrieving the property values of an object all at
once. The StartClassifierBehaviorAction provides a way to indicate when the classifier behavior of a newly created object
should begin to execute.

Structured Concepts

These actions operate in the context of activities and structured nodes. Variable actions support the reading and writing of
variables. The abstract metaclass VariableAction statically specifies the variable being accessed. Variable actions can only
access variables within the activity of which the action is a part. An action is defined for raising exceptions and a kind of
input pin is defined for accepting the output of an action without using flows.

11.2 Abstract Syntax

The package dependencies of the Actions clause are shown in Figure 11.1.

1
Kernel
~
y admnparte
—— «imports:
StructuredActivities BasicActions) > Communications
A TR
wrmparts "xﬂmport» mport
1+ .- I 1 1
StructuredActions Irtermediatections BehaviorStatemachines AzzocistionClasses
. A A
N . .
«merges aMmerges |) ,«|mport»" - simport
P
Completections

Figure 11.1 - Dependencies of the Action packages

© ISO/IEC 2012 - All rights reserved

233

ISO/IEC 19505-2:2012(E)

Package BasicActions

UML::Classes::Kernel::
NamedElement

T

Action

+/context | UML::Classes::Kernel::

OpaqueAction

0.1

Classifier

{subsets input}

+ inputValue

+body : String ['] {nonunique, ordered}
+ language : String [*] {ordered}

0.1

0.1

Figure 11.2 - Basic Actions

234

*

{subsets output}

+ outputValue

*

© ISO/IEC 2012 - All rights reserved

NamedElement
A

MultiplicityElement | | TypedElement
[\ /\

[pin_|

{ordered, readOnly, union,
" subsets ownedElement}
Action
0.1 + Joutput
g ’IJ OutputPin
+ action *
{subsets owner} rordered, readOnly, union,
subsets ownedElement}
0.1 + [input
> S InputPin
- *
+ action
{subsets owner}
B 0.1
ValueSpecification < 0[ValuePin
+ value + valuePin
{subsets ownedElement} {subsets owner}

Figure 11.3 - Basic pins

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

235

ISO/IEC 19505-2:2012(E)

UM Classes::
Kernef:
NamedElemernt

A

{SLibaergESn.liQrdetJ ordered} livocation Action

* 0.4
OutputPin zr
{subsets output,
ordered} 4 paeut|® .
o1 Califction sendSignalAction *

L age| ‘sSynchronous | Boolean

i 1.

fsubsets inputy i 1+ signal
+ target
i i subsets jnpu -
CallBehaviorAction CallOperationAction { + {a%;{-} InputPin UML::
K] 1 CommonBehaviors:
h :Communications:
* * Signal
+ hehaviar |1 + operation
L5 UML:Classes:
CommonBehaviors:: Kernel:Operation
BasicBehaviors::Beliavior

Figure 11.4 - Basic invocation actions

236 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package IntermediateActions

UV Actions::
BasicActions::
vocationAction

f

BroadecastSignalAction | | SendOhjectAction |

[1|]
*

0.1 0.1
+ =ignal | 1
UML:: + targ UML:: + request]
CommonBehaviors: 1 Actions::
CO"'";_"MT'O“S:: {subzets input} Baﬁ:ﬂ:ﬁ:ﬁ:‘s; {redefines
ignal An argument}

Figure 11.5 - Intermediate invocation actions

UL Actions::
BasicActions::Action <3

i

| CreateObjectAction | DestroyObjectAction | TestldentityAction | | ReadSelfAction |
| isDestroyLinks : Boolean [| []
* izDestroyOwnedOhjects : Boolean ’ ’ ’ *
0.1 0.1 o1 0.1 n..1
.1

{subsets output {subsets input} {subsets Dutputk fsubsets input}| {subsets input} {subsets output}
+ clgssifier | 1 + result |1 + target +result |4 +1irst [1 +zecond | ! +result [1
UV :: Classes:: UML::Actions:: UML::Actions:: UML::Actions:: UML::Actions:: UML::Actions::
Harwal:: Classifier BasicActions:: BasicActions:: BasicActions:: BasicActions:: BasicActions::

OutputPin InputPin OutputPin InputPin OuputPin
+ result
{subsets output}
UML ::Classes::Kernel:: L al 0.1
rer o value
ValueSpecification = ® ValueSpecificationAction
1 0.1

Figure 11.6 - Object actions

© ISO/IEC 2012 - All rights reserved 237

ISO/IEC 19505-2:2012(E)

UML::Actions::BasicActions::

Action
JA
{subsets input}
UML::Classes::Kernel:: | * structuralFeature [StructuralFeatureAction +object \| UML::Actions::BasicActions
StructuralFeature 1 L Ay 0.4 1 InputPin

ReadStructuralFeatureAction 1 ClearStructuralFeatureAction
| ' | OHI WriteStructuralFeatureAction IR =

0.1 0.4
{subsets output} T {subsets output}
1| +result | {subsets output} 0.1 [+ result
UML::Actions::BasicActions | AddStructuralFeatureValueAction | *result | UML::Actions::BasicActions
OutputPin 04 OutputPin
0.1 ..
{subsets input} {subsets input}
+value | 0.1 0.1 +insertAt

UML::Actions::BasicActions | 0-1 0.1
InputPin H RemoveStructuralFeatureValueAction
P ¥ removeAt

{subsets input}

Figure 11.7 - Structural Feature Actions

238 © ISO/IEC 2012 - Al rights reserved

Action
(from BasicActions)

LinkAction P

+ action

+ /input

InputPin

0..1

{subsets action}

*

{subsets input}

(from BasicActions)

+ linkAction + inputvalue
0..1 1.*
0..1
+ value
{subsets owner} {subsets ownedElement}
; ; 0..1
+ linkAction + endData
’lJ LinkEndData
1 2.*
*
1 + end
Property

Figure 11.8 - Link identification

LinkAction

ReadLinkAction

fsubsets output}
+ result

(] 1

Figure 11.9 - Read link actions

© ISO/IEC 2012 - All rights reserved

UML::Actions:
BasicActions:
utputPin

(from Kernel)

ISO/IEC 19505-2:2012(E)

239

ISO/IEC 19505-2:2012(E)

LV - Actions::
BasicActions::Action

i

LinkAction

Wiritel ink Action

f

ClearAssociationAction

0.1

{subsets input}

+ abject , [1

+ aszociation 1

UML:Actions:
BasicActionsiinputPin

UNML::Classes:
Kernel:
Association

CreateLinkAction

DestroviinkAction

{redefines endDatal

+endData (2.2

LinkEndCreationData

izsReplaceAll : Boolean = false

{redefines endDatal

+ endData fz__*

LinkEndDestructionData

isDestroyDuplicates : Boolean

UML=:Actions:
BasicActions:

0.1
0.1

InputPin

0.1
+ insertit
0.1
e o

+ destroy st

LinkEndData |<

!

UL Ciassos::
HernolirEfentent

Figure 11.10 - Write link actions

240

© ISO/IEC 2012 - All rights reserved

Action
(from BasicActions) @

+ action

VaIueSpeciﬁcétionAction >

Figure 11.11 - Miscellaneous actions

© ISO/IEC 2012 - All rights reserved

+ Joutput
OutputPin
0.1 *
{subsets action} {subsets output}
+ valueSpecificationAction + reslt
0.1 1
{subsets owner} {subsets ownedElement}
+ valueSpecificationAction + value
P ValueSpecification
0.1 1 (from Kernel)

ISO/IEC 19505-2:2012(E)

241

ISO/IEC 19505-2:2012(E)

Package CompleteActions

+ action + action *
InputPin
+ [input 0.1 A 0.1 + Joutput
) {subsets action}
{subsets action}
) + acceptEventAction
1 + replyAction ReplyAction AcceptEventAction *
+ isUnmarshall : Boolean 0.1 + result
+ returnInformation 0.1 JAY
. . {subsets output}
{subsets input} {subsets action}
{subsets action}
* + replyAction
PN + acceptCallAction 1
+ replyValue 0.1 AcceptCallAction I‘
) 0.1 + returnInformation
{subsets input}
{subsets output}
{subsets action} {subsets action}
1 + unmarshallAction + unmarshallAction 1.*
‘[UnmarshallAction I‘
+ object 0.1 * 0.1 + result
{subsets input} {subsets output}
1 + unmarshallType
{subsets owner} {subsets ownedElement}
. . Trigger
. + acceptEventAction + trigger (from Communications,
AcceptEventAction
+ isUnmarshall : Boolean
0.1 1.%
+ replyAction + replyToCall
ReplyAction |
0.1 1

Figure 11.12 - Accept event actions

242

© ISO/IEC 2012 - All rights reserved

OutputPin

UV Actions: :BasicActions:
sAction

ISO/IEC 19505-2:2012(E)

L rActionsaFasicActions
sraliAction

T L

ReclassifyObjectAction

StartClassifierBehaviorAction

ReadExtentAction

izReplace sl | Boolean

0.1

*

* ReadlsClassifiedObjectAction
izDirect : Boolean

¢

01 {subsets imput:

+ ohject 1

UML::Actions::Ba
sicActionszinput
Pin

*

+ oldClasaifier | * * |+ newClassifie {subsets outputh
{subsets oubput + classifi ! il result
+result | 1 classiTier LI = G o T 1 UML::Actions::BasicActions::
1 reelClassifior] utputPin
UML::ActionszBasic classifisr
ActionsOutputPin
Figure 11.13 - Object actions (CompleteActions)
{readOnly, union}
0.1 + JownedElement
Element P Element
(from Kernel) (from Kernel)
A + Jowner X
{readOnly, union}
{subsets ownedElement}
1 + qualifier | ;
LinkEndData Qualifiervalue + Qualifier Property
i from AssociationCl
+ linkEndData X X i (from AssociationClasses)
{subsets owner}
+ "
value InputPin
01 1 (from BasicActions)

[

0.1 0.4

{subsets input
+ object |1

{subsets input}:
+ object

* 0.1

StartObjectBehaviorAction

{subsets input}:

1 1 .|+ object

UML::Actions:BasicActions:InputPin

Figure 11.14 - Link identification (CompleteActions)

© ISO/IEC 2012 - All rights reserved

243

ISO/IEC 19505-2:2012(E)

UNGE . Actions::
BasicActions::
Action

i

ReadLinkObjectEndAction

+end (1

UML:Classes:
KernelzProperty

{ Property must be an
azsociation end.}

UML::Actions:
IntermediateActions:
CreateLinkAction

|

ReadLinkObjectEndQualifier Action

¢ ¢ 0.1
0.1
01 0.1 L :
+ qualifier 1 E
bsets oukput \
{subsats outputh UML:Classes:z: !
resuft UMLzActions: 1 AssociationClasses: H
1 BasicAmio_ns:: T result Property :
OutputPin {subsets output} !
{subsets input} UML=A ctionss {suE_sets input; :
) + H
+ ohject BasicActions:: i !
1 InputPin 1

{Property must ke an

CreateLinkObjectAction

0.1 1
-

+ resuft
{subsets output}

244

Figure 11.15 - Read link actions (CompleteActions)

qualifier attribute.}

UML::Actions:
BasicActions::

ouputPin

Figure 11.16 - Write link actions (CompleteActions)

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

UM A CTions::
BasicActions.:
Action

T

ReduceAction + reducer
isOrdered : Boolean

LV s CommorPefiaviors::
* 1 BasicBehaviors::Befavior

0.1 0.1

+ collection + resLlt
{subsets input} 1 1 4, fsubsets output}

UML::Actions:: UML::Actions::
BasicActions:: BasicActions::
InputPin OutputPin

Figure 11.17 - ReduceAction (CompleteActions)

Package StructuredActions

UML::Actions::BasicActions::
Action

*+ variable UML::Activities::StructuredActivities

Variable

VariableAction

ReadVariableAction | WriteVariableAction ClearVariableAction |

{subsets output} 0.1

0.1

1 + result

UML::Actions::BasicActions
OutputPin AddVariableValueAction | | RemoveVariableValueAction

0..1 0.1
{subsets input} {subsets input}

+value | 0.1 0.1] +insertAt

UML::Actions::BasicActions 0.1
InputPin

+ removeAt

{subsets input}

Figure 11.18 - Variable actions

© ISO/IEC 2012 - All rights reserved 245

ISO/IEC 19505-2:2012(E)

UV :: Actions::
BasicActions::Action

{subsets input}

RaiseExceptionAction + excephion UML:Actions::
04 1 BasicActions:InputPin

Figure 11.19 - Raise exception action

UML::Actions::
BasicActions::

InputPin
T {subsets ownedElement
ActionlnputPin ! UL ::Actions::
+ framaction
- BasicActions::
0.1 1 Action

Figure 11.20 - Action input pin
11.3 Class Descriptions

11.3.1 AcceptCallAction (from CompleteActions)

Generalizations

» “AcceptEventAction (from CompleteActions)” on page 247

Description

AcceptCallAction is an accept event action representing the receipt of a call request. In addition to the normal operation
parameters, the action produces an output that is needed later to supply the information to the ReplyAction necessary to
return control to the caller.

This action is primarily intended for synchronous calls, though it will also accept asynchronous calls to its referenced
operation. If it is used to handle an asynchronous call, then a reply action may still be executed on the return information
produced by the accept call action, but the reply action will complete immediately with no effect.

246 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Attributes
No additional attributes

Associations

e returninformation; OutputPin[1..1]
Pin where avalueis placed containing sufficient information to perform a subsequent reply and return control to the
caller. The contents of this value are opague. It can be passed and copied but it cannot be manipulated by the model.
{ Subsets Action: : output}

Constraints

[1] Theresult pins must match the in and inout parameters of the operation specified by the trigger event in number, type, and
order.

[2] Thetrigger event must be a CallEvent.
trigger.event.ocllsKindOf(CallEvent)

[3] isUnmarshall must be true for an AcceptCallAction.
isUnmarshall = true

Semantics

This action accepts (event) occurrences representing the receipt of calls on the operation specified by the trigger call
event. If an ongoing activity behavior has executed an accept call action that has not completed and the owning object has
an event occurrence representing a call of the specified operation, the accept call action claims the event occurrence and
removes it from the owning object. If several accept call actions concurrently request a call on the same operation, it is
unspecified which one claims the event occurrence, but one and only one action will claim the event. The argument
values of the call are placed on the result output pins of the action. Information sufficient to perform a subsequent reply
action is placed in the returninformation output pin. The execution of the accept call action is then complete. This return
information value is opaque and may only be used by ReplyAction.

Note that the target class must not define a method for the operation being received; otherwise, the operation call will be
dispatched to that method instead of being put in the event buffer to be handled by AcceptCallAction. In general, classes
determine how operation calls are handled, namely by a method, by a behavior owned directly by the class, by a state
machine transition, and so on. The class must ensure that the operation call is handled in away that AcceptCallAction has
access to the call event.

11.3.2 AcceptEventAction (from CompleteActions)
Generalizations
« “Action (from BasicActions)” on page 249

Description

AcceptEventAction is an action that waits for the occurrence of an event meeting specified condition.

Attributes

e isUnmarshall : Boolean = false
Indicates whether there is a single output pin for the event, or multiple output pins for attributes of the event.

© ISO/IEC 2012 - All rights reserved 247

ISO/IEC 19505-2:2012(E)

Associations

e trigger : Trigger [1..*]
The type of events accepted by the action, as specified by triggers. For triggers with signal events, asignal of the
specified type or any subtype of the specified signal type is accepted. { Subsets Element::ownedElement}

e result: OutputPin [0..*]
Pins holding the received event objects or their attributes. Event objects may be copied in transmission, so identity
might not be preserved. { Subsets Action:: output}

Constraints
[1] AcceptEventActions may have no input pins.

[2] There are no output pinsif the trigger events are only ChangeEvents, or if they are only CallEvents when this action is an
instance of AcceptEventAction and not an instance of a descendant of AcceptEventAction (such as AcceptCallAction).

[3] If thetrigger events are al TimeEvents, there is exactly one output pin.

[4] If isUnmarshalled istrue, there must be exactly one trigger for events of type Signal Event. The number of result output
pins must be the same as the number of attributes of the signal. The type and ordering of each result output pin must be the
same as the corresponding attribute of the signal. The multiplicity of each result output pin must be compatible with the
multiplicity of the corresponding attribute.

Semantics

Accept event actions handle event occurrences detected by the object owning the behavior (also see
“InterruptibleActivityRegion (from CompleteActivities)” on page 397). Event occurrences are detected by objects
independently of actions and the occurrences are stored by the object. The arrangement of detected event occurrences is
not defined, but it is expected that extensions or profiles will specify such arrangements. If the accept event action is
executed and the object detected an event occurrence matching one of the triggers on the action and the occurrence has
not been accepted by another action or otherwise consumed by another behavior, then the accept event action completes
and outputs a value describing the occurrence. If such a matching occurrence is not available, the action waits until such
an occurrence becomes available, at which point the action may accept it. In a system with concurrency, several actions
or other behaviors might contend for an available event occurrence. Unless otherwise specified by an extension or profile,
only one action accepts a given occurrence, even if the occurrence would satisfy multiple concurrently executing actions.

If the occurrence is a signal event occurrence and isUnmarshall is false, the result value contains a signal object whose
reception by the owning object caused the occurrence. If the occurrence is asignal event occurrence and isUnmarshall is
true, the attribute values of the signal are placed on the result output pins of the action. Signal objects may be copied in
transmission and storage by the owning object, so identity might not be preserved. An action whose trigger is a signal
event is informally called an accept signal action. If the occurrence is a time event occurrence, the result value contains
the time at which the occurrence transpired. Such an action is informally called await time action. If the occurrences are
all occurrences of ChangeEvent, or all CallEvent, or a combination of these, there are no output pins (however, see
“AcceptCallAction (from CompleteActions)” on page 246). See CommonBehavior for a description of Event
specifications. If the triggers are a combination of SignalEvents and ChangeEvents, the result is a null value if a change
event occurrence or a call event occurrence is accepted. If one of the triggers is an AnyReceiveEvent, and the event
occurrence is for a message that is not matched by any specific SignalEvent or CallEvent trigger on the same action, then
the event occurrence matches the AnyReceiveEvent (see also “ AnyReceiveEvent (from Communications)” on page 450).

This action handles asynchronous messages, including asynchronous calls. It cannot be used with synchronous calls
(except see “AcceptCallAction (from CompleteActions)” on page 246).

248 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Notation

An accept event action is notated with a concave pentagon. A wait time action is notated with an hour glass.

X

Accept event action Accept time event action

Figure 11.21 - Accept event notations

Examples

“AcceptEventAction (as specialized)” on page 323

Rationale

Accept event actions are introduced to handle processing of events during the execution of a behavior.

Changes from previous UML

AcceptEventAction is new in UML 2.
11.3.3 Action (from BasicActions)

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 104

Description
An action is a named element that is the fundamental unit of executable functionality. The execution of an action
represents some transformation or processing in the modeled system, be it a computer system or otherwise.

Attributes
No additional attributes

Associations

e finput: InputPin [*]
The ordered set of input pins connected to the Action. These are among the total set of inputs. { Specializes
Element:: ownedElement}

e Joutput : OutputPin [*]
The ordered set of output pins connected to the Action. The action places its results onto pinsin this set.
{ Specializes Element:: ownedElement}

e /context : Classifier [0..1]
The classifier that owns the behavior of which thisactionis a part.

© ISO/IEC 2012 - All rights reserved 249

ISO/IEC 19505-2:2012(E)

Constraints

No additional constraints

Semantics

An action execution represents the run-time behavior of executing an action within a specific behavior execution. As
Action is an abstract class, all action executions will be executions of specific kinds of actions. When the action executes,
and what its actual inputs are, is determined by the concrete action and the behaviors in which it is used.

Notation

No specific notation. See extensions in Activities clause.

Changes from previous UML

Action is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.4 ActioninputPin (from StructuredActions)

Generalizations

« “InputPin (from BasicActions)” on page 269

Description

An action input pin is akind of pin that executes an action to determine the values to input to another.

Attributes
No additional attributes

Associations
e fromAction: Action [1]
The action used to provide values. { Subsets Element::ownedElement}
Constraints
[1] ThefromAction of an action input pin must have exactly one output pin.
[2] ThefromAction of an action input pin must only have action input pins as input pins.

[3] ThefromAction of an action input pin cannot have control or data flows coming into or out of it or its pins.

Semantics

If an action is otherwise enabled, the fromActions on action input pins are enabled. The outputs of these are used as the
values of the corresponding input pins. The process recurs on the input pins of the fromActions, if they also have action
input pins. The recursion bottoms out at actions that have no inputs, such as for read variables or the self abject. This
forms a tree that is an action model for nested expressions.

Notation

No specific notation

250 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Example
Example (in action language provided just for example, not normative):
self.foo->bar(self.baz);

meaning get the foo attribute of self, then send a bar signal to it with argument from the baz attribute of self. The
repository model is shown below.

+signal bar: Si |
: SendSignalAction bar: signal
*Harget il : ActioninputPin
+fromAction
+structural Feature
gl : ReadStructuralFeatureAction foo : Property
+result
ol : OutputPin
+object
i2_: ActioninputPin
+fromAction
+result . ;
sl : ReadSelfAction 02 : OutputPin
+argument - N -
i3 . ActionlnputPin

#fromAction

+structural Feature

baz:Property

g2 : ReadStructualFe ature Action

+reault

03 : OutputPin

+obj ect - R R
! i4 : ActionlnputPin

+fromAction

s2 : ReadSelfAction +result 04 : OutputPin

Figure 11.22 - Example repository model

Rationale

ActionlnputPin is introduced to pass values between actions in expressions without using flows.

© ISO/IEC 2012 - All rights reserved 251

ISO/IEC 19505-2:2012(E)

11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)

AddStructural FeatureValueAction is a write structural feature action for adding values to a structural feature.

Generalizations

» “WriteStructural FeatureAction (from IntermediateActions)” on page 307.

Description

Structural Features are potentially multi-valued and ordered, so the action supports specification of insertion points for
new values. It also supports the removal of existing values of the structural feature before the new value is added.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime.
The type of the value of this pin is the classifier that owns the specified structural feature, and the value's multiplicity is
1.1

Attributes

« isReplaceAll : Boolean [1..1] =false
Specifies whether existing values of the structural feature of the object should be removed before adding the new
value.

Associations

e insertAt: InputPin [0..1]
Gives the position at which to insert a new value or move an existing value in ordered structural features. The type
of the pinis UnlimitedNatural, but the value cannot be zero. This pinis omitted for unordered structural features.
(Subsets Action::input)

Constraints
[1] Actionsadding a value to ordered structural features must have a single input pin for the insertion point with type
UnlimitedNatural and multiplicity of 1..1; otherwise, the action has no input pin for the insertion point.
let insertAtPins : Collection = self.insertAt in
if self.structuralFeature.isOrdered = #false
then insertAtPins->size() = 0
else let insertAtPin : InputPin= insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))
endif
[2] A vaueinput pinisrequired.
self.value -> notEmpty()

Semantics

If isReplaceAll is true, then the existing values of the structural feature are removed before the new one added, except if
the new value already exists, then it is not removed under this option. If isReplaceAll is false and the structural feature is
unordered and unique, then adding an existing value has no effect. If the feature is an association end, the semantics are
the same as creating a link, the participants of which are the object owning the structural feature and the new value.

252 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Values of a structural feature may be ordered or unordered, even if the multiplicity maximum is 1. Adding values to
ordered structural features requires an insertion point for a new value using the insertAt input pin. The insertion point is
a positive integer giving the position to insert the value, or unlimited, to insert at the end. A positive integer less than or
equal to the current number of values means to insert the new value at that position in the sequence of existing values,
with the integer one meaning the new value will be first in the sequence. A value of unlimited for insertAt means to insert
the new value at the end of the sequence. The semantics is undefined for a value of zero or an integer greater than the
number of existing values. The insertion point is required for ordered structural features and omitted for unordered
structural features. Reinserting an existing value at a new position in an ordered unique structural feature moves the value
to that position (this works because structural feature values are sets). The insertion point is ignored when replacing all
values.

The semantics is undefined for adding a value that violates the upper multiplicity of the structural feature. Removing a
value succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler
must determine when minimum multiplicity of structural features should be enforced.

The semantics is undefined for adding a new value for a structural feature with isReadonly=true after initialization of the
owning object.

Notation

No specific notation

Rationale

AddStructural FeatureValueAction is introduced to add structural feature values. isReplaceAll is introduced to replace and
add in a single action, with no intermediate states of the object where only some of the existing values are present.

Changes from previous UML

AddStructural FeatureVaueActionis new in UML 2. It generalizes AddAttributeActionin UML 1.5.
11.3.6 AddVariableValueAction (from StructuredActions)

AddVariableValueAction is awrite variable action for adding values to avariable.

Generalizations

» “WriteVariableAction (from StructuredActions)” on page 308

Description

Variables are potentially multi-valued and ordered, so the action supports specification of insertion points for new values.
It also supports the removal of existing values of the variable before the new value is added.

Attributes

« isReplaceAll : Boolean [1..1] =fase
Specifies whether existing values of the variable should be removed before adding the new value.

© ISO/IEC 2012 - All rights reserved 253

ISO/IEC 19505-2:2012(E)

Associations

e insertAt: InputPin [0..1]
Gives the position at which to insert a new value or move an existing value in ordered variables. Thetypeis
UnlimitediNatural, but the value cannot be zero. This pin is omitted for unordered variables. (Subsets Action: :input)

Constraints

[1] Actionsadding valuesto ordered variables must have asingle input pin for the insertion point with type UnlimitedNatural
and multiplicity of 1..1; otherwise, the action has no input pin for the insertion paint.

let insertAtPins : Collection = self.insertAt in
if self.variable.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))
endif
[2] A vaueinput pinisrequired.
self.value -> notEmpty()

Semantics

If isReplaceAll is true, then the existing values of the variable are removed before the new one added, except if the new
value already exists, then it is not removed under this option. If isReplaceAll is false and the variable is unordered and
unique, then adding an existing value has no effect.

Values of a variable may be ordered or unordered, even if the multiplicity maximum is 1. Adding values to ordered
variables requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive integer
giving the position to insert the value, or unlimited, to insert at the end. A positive integer less than or equal to the current
number of values means to insert the new value at that position in the sequence of existing values, with the integer one
meaning the new value will be first in the sequence. A value of unlimited for insertAt means to insert the new value at the
end of the sequence. The semantics is undefined for a value of zero or an integer greater than the number of existing
values. The insertion point is required for ordered variables and omitted for unordered variables. Reinserting an existing
value at a new position in an ordered unique variable moves the value to that position (this works because variable values
are sets). The insertion point is ignored when replacing all values.

The semantics is undefined for adding a value that violates the upper multiplicity of the variable. Removing a value
succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler must
determine when minimum multiplicity of variables should be enforced.

Notation

No specific notation

Rationale

AddVariableValueAction is introduced to add variable values. isReplaceAll is introduced to replace and add in a single
action, with no intermediate states of the variable where only some of the existing values are present.

254 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Changes from previous UML

AddVariableValueAction is unchanged from UML 1.5.
11.3.7 BroadcastSignalAction (from IntermediateActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 269

Description

BroadcastSignalAction is an action that transmits a signal instance to all the potential target objects in the system, which
may cause the firing of a state machine transitions or the execution of associated activities of a target object. The
argument values are available to the execution of associated behaviors. The requestor continues execution immediately
after the signals are sent out. It does not wait for receipt. Any reply messages are ignored and are not transmitted to the
requestor.

Attributes

No additional attributes

Associations
e signal: Signal [1]
The specification of signal object transmitted to the target objects.
Constraints
[1] Thenumber and order of argument pins must be the same as the number and order of attributes in the signal.

[2] Thetype, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

When all the prerequisites of the action execution are satisfied, a signal object is generated from the argument values
according to signal and this signal object is transmitted concurrently to each of the implicit broadcast target objects in the
system. The manner of identifying the set of objects that are broadcast targets is a semantic variation point and may be
limited to some subset of all the objects that exist. There is no restriction on the location of target objects. The manner of
transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions reach the
various target objects, and the path for reaching the target objects are undefined.

[1] When atransmission arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such
transmission is specified in Clause 13, “Common Behaviors.” Such effects include executing activities and firing state
machine transitions.

[2] A broadcast signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

Semantic Variation Points

The determination of the set of broadcast target objects is a semantic variation point.

© ISO/IEC 2012 - All rights reserved 255

ISO/IEC 19505-2:2012(E)

Notation

No specific notation

Rationale

Sends a signal to a set of system defined target objects.

Changes from previous UML

Same as UML 1.5.

11.3.8 CallAction (from BasicActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 269.

Description

CallAction is an abstract class for actions that invoke behavior and receive return values.

Attributes

e isSynchronous: Boolean = true
If true, the call is synchronous and the caller waits for completion of the invoked behavior. If false, the call is
asynchronous and the caller proceeds immediately and does not expect a return value.

Associations
e result: OutputPin [0..*]

A list of output pins where the results of performing the invocation are placed. { Subsets Action::input}
Constraints

[1] Only synchronous call actions can have result pins.

[2] The number and order of argument pins must be the same as the number and order of parameters of the invoked behavior
or behavioral feature. Pins are matched to parameters by order.

[3] Thetype, ordering, and multiplicity of an argument pin must be the same as the corresponding parameter of the behavior
or behavioral feature.

Semantics

Parameters on behaviors and operations are totally ordered lists. To match parameters to pins on call actions, select the
sublist of that list that corresponds to in and inout owned parameters (i.e., Behavior.ownedParameter). The input pins on
Action::input are matched in order against these parameters in the sublist order. Then take the sublist of the parameter list
that corresponds to out, inout, and return parameters. The output pins on Action::output are matched in order against these
parameters in sublist order.

If the behavior invoked by a call action is not reentrant, then no more than one execution of it will exist at any given time.
An invocation of a non-reentrant behavior does not start the behavior when the behavior is already executing.

256 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

An invocation of areentrant behavior may start a new execution of the behavior when offered the required tokens, even
if the behavior is aready executing. However, it will not invoke the behavior if there is an ongoing behavior execution
invocated by the same action within the same activity execution, and the action has isL ocallyReentrant=fal se (see “Action
(from CompleteActivities, Fundamental Activities, StructuredActivities, CompleteStructuredActivities)” on page 325).

See children of CallAction.
11.3.9 CallBehaviorAction (from BasicActions)

Generalizations

« “CallAction (from BasicActions)” on page 256

Description

CallBehaviorAction is acall action that invokes a behavior directly rather than invoking a behavioral feature that, in turn,
results in the invocation of that behavior. The argument values of the action are available to the execution of the invoked
behavior. For synchronous calls the execution of the call behavior action waits until the execution of the invoked behavior
completes and a result is returned on its output pin. The action completes immediately without a result, if the call is
asynchronous.

Attributes

No additional attributes

Associations

e behavior : Behavior [1..1]
The invoked behavior. It must be capable of accepting and returning control.

Constraints

[1] Thenumber of argument pins and the number of parameters of the behavior of type in and in-out must be equal .
[2] Thenumber of result pins and the number of parameters of the behavior of type return, out, and in-out must be equal.

[3] Thetype, ordering, and multiplicity of an argument or result pin is derived from the corresponding parameter of the
behavior.

Semantics

[1] When all the prerequisites of the action execution are satisfied, CallBehaviorAction invokes its specified behavior with
the values on the input pins as arguments. When the behavior is finished, the output values are put on the output pins.
Each parameter of the behavior of the action provides output to apin or takes input from one. No other implementation
specifics are implied, such as call stacks, and so on. See “Pin (from BasicActions)” on page 277.

[2] If the call is asynchronous, the action completes immediately. Execution of the invoked behavior proceeds without any
further dependency on the execution of the behavior containing the invoking action. Once the invocation of the behavior
has been initiated, execution of the asynchronous action is complete.

[3] Anasynchronousinvocation completes when its behavior is started, or is at least ensured to be started at some point. Any
return or out values from the invoked behavior are not passed back to the containing behavior. When an asynchronous
invocation is done, the containing behavior continues regardless of the status of the invoked behavior. For example, the
containing behavior may complete even though the invoked behavior is not finished.

© ISO/IEC 2012 - All rights reserved 257

ISO/IEC 19505-2:2012(E)

[4] If the call is synchronous, execution of the calling action is blocked until it receives areply from the invoked behavior.
The reply includes values for any return, out, or inout parameters.

[5] If thecall issynchronous, when the execution of the invoked behavior compl etes, the result values are placed on the result
pins of the call behavior action, and the execution of the action is complete (StructuredActions,
ExtraStructuredActivities). If the execution of theinvoked behavior yields an exception, the exception is transmitted to
the call behavior action to begin search for a handler. See Rai seExceptionAction.

Notation

See specialization of “CallBehaviorAction (as specialized)” on page 364.

Presentation Options

See specialization of “CallBehaviorAction (as specialized)” on page 364.

Rationale

Invokes a behavior directly without the need for a behavioral feature.

Changes from previous UML

Same as UML 1.5
11.3.10 CallOperationAction (from BasicActions)

Generalizations

« “CadlAction (from BasicActions)” on page 256

Description

CallOperationAction is an action that transmits an operation call request to the target object, where it may cause the
invocation of associated behavior. The argument values of the action are available to the execution of the invoked
behavior. If the action is marked synchronous, the execution of the call operation action waits until the execution of the
invoked behavior completes and a reply transmission is returned to the caller; otherwise, execution of the action is
complete when the invocation of the operation is established and the execution of the invoked operation proceeds
concurrently with the execution of the calling behavior. Any values returned as part of the reply transmission are put on
the result output pins of the call operation action. Upon receipt of the reply transmission, execution of the call operation
action is complete.

Attributes
No additional attributes

Associations

e operation: Operation [1]
The operation to be invoked by the action execution.

e target: InputPin [1]
The target object to which the request is sent. The classifier of the target object is used to dynamically determine a
behavior to invoke. This object constitutes the context of the execution of the operation. { Subsets Action::input}

258 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Constraints

[1] Thenumber of argument pins and the number of owned parameters of the operation of type in and in-out must be equal.

[2] The number of result pins and the number of owned parameters of the operation of type return, out, and in-out must be
equal.

[3] Thetype, ordering, and multiplicity of an argument or result pin is derived from the corresponding owned parameter of
the operation.

[4] Thetype of the target pin must be the same as the type that owns the operation.

Semantics

The inputs to the action determine the target object and additional actual arguments of the call.

[1] When all the prerequisites of the action execution are satisfied, information comprising the operation and the argument
pin values of the action execution is created and transmitted to the target object. The target objects may belocal or remote.
The manner of transmitting the call, the amount of time required to transmit it, the order in which the transmissions reach
the various target objects, and the path for reaching the target objects are undefined.

[2] When acall arrives at atarget object, it may invoke a behavior in the target object. The effect of receiving such call is
specified in 13, “Common Behaviors.” Such effects include executing activities and firing state machine transitions.

[3] If thecal is synchronous, when the execution of the invoked behavior completes, its return results are transmitted back as
areply to the calling action execution. The manner of transmitting the reply, the time required for transmission, the
representation of the reply transmission, and the transmission path are unspecified. If the execution of the invoked
behavior yields an exception, the exception is transmitted to the caller whereit isreraised as an exception in the execution
of the calling action. Possible exception types may be specified by attaching them to the called Operation using the
rai sedException association.

[4] If thecall isasynchronous, the caller proceedsimmediately and the execution of the call operation action is complete. Any
return or out values from the invoked operation are not passed back to the containing behavior. If the call is synchronous,
the caller is blocked from further execution until it receives areply from the invoked behavior.

[5] When the reply transmission arrives at the invoking action execution, the return result values are placed on the result pins
of the call operation action, and the execution of the action is compl ete.

Semantic Variation Points

The mechanism for determining the method to be invoked as a result of a call operation is unspecified.

Notation

See “CallBehaviorAction (as specialized)” on page 364

Presentation Options

See “CallOperationAction (as specialized)” on page 366

Rationale

Calls an operation on a specified target object.

Changes from previous UML

Same as UML 1.5.

© ISO/IEC 2012 - All rights reserved 259

ISO/IEC 19505-2:2012(E)

11.3.11 ClearAssociationAction (from IntermediateActions)

ClearAssaciationAction is an action that destroys all links of an association in which a particular object participates.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action destroys all links of an association that have a particular object at one end.

Attributes
No additional attributes

Associations

e association : Association [1..1]
Association to be cleared.

e object: InputPin[1..1]
Givesthe input pin from which is obtained the object whose participation in the association isto be cleared. (
Subsets Action::input)

Constraints

[1] Thetype of theinput pin must be the same as the type of at least one of the association ends of the association.
self.association->exists(end.type = self.object.type)

[2] Themuiltiplicity of theinput pinis1..1.
self.object.multiplicity.is(1,1)

Semantics

This action has a statically-specified association. It has an input pin for a runtime object that must be of the same type as
at least one of the association ends of the association. All links of the association in which the object participates are
destroyed even when that violates the minimum multiplicity of any of the association ends. If the association is a class,
then link object identities are destroyed.

Notation

No specific notation

Rationale

ClearAssociationAction is introduced to remove all links from an association in which an object participates in a single
action, with no intermediate states where only some of the existing links are present.

Changes from previous UML

ClearAssociationAction is unchanged from UML 1.5.

260 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

11.3.12 ClearStructuralFeatureAction (from IntermediateActions)

ClearStructural FeatureAction is a structural feature action that removes all values of a structural feature.

Generalizations

» “StructuralFeatureAction (from IntermediateActions)” on page 300

Description

This action removes all values of a structural feature.

Attributes
No additional attributes

Associations
e result: OutputPin[0..1]

Gives the output pin on which the result is put. { Subsets Action: output}
Constraints

[1] Thetype of theresult output pin is the same as the type of the inherited object input pin.
result->notEmpty() implies self.result.type = self.object.type

[2] Themuiltiplicity of the result output pin must be 1..1.
result->notEmpty() implies self.result.multiplicity.is(1,1)

Semantics

All values are removed even when that violates the minimum multiplicity of the structural feature—the same as if the
minimum were zero. The semantics is undefined for a structural feature with isReadOnly = true after initialization of the
object owning the structural feature, unless the structural feature has no values. The action has no effect if the structural
feature has no values. If the feature is an association end, the semantics are the same as for ClearAssociationAction on the
object owning the structural feature.

If aresult output pin is provided, then the input object, as modified, is placed on the output pin. If the input object is
actually a data value, then a copy of the input data value is placed on the output pin, but with the appropriate structural
feature cleared.

Notation

No specific notation

Rationale

ClearStructural FeatureAction is introduced to remove all values from a structural feature in a single action, with no
intermediate states where only some of the existing values are present.

Changes from previous UML

ClearStructuralFeatureAction is new in UML 2. It generalizes ClearAttributeAction from UML 1.5.

© ISO/IEC 2012 - All rights reserved 261

ISO/IEC 19505-2:2012(E)

11.3.13 ClearVariableAction (from StructuredActions)

ClearVariableAction is a variable action that removes all values of a variable.

Generalizations

» “VariableAction (from StructuredActions)” on page 305

Description

This action removes all values of a variable.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

All values are removed even when that violates the minimum multiplicity of the variable—the same as if the minimum
were zero.

Notation

No specific notation

Rationale

ClearVariableAction is introduced to remove all values from a variable in a single action, with no intermediate states
where only some of the existing values are present.

Changes from previous UML

ClearVariableAction is unchanged from UML 1.5.
11.3.14 CreateLinkAction (from IntermediateActions)

(IntermediateActions) Createl inkAction is a write link action for creating links.

Generalizations

« “WriteLinkAction (from IntermediateActions)” on page 306

262 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Description

This action can be used to create links and link objects. There is no return value in either case. This is so that no change
of the action is required if the association is changed to an association class or vice versa. CreateLinkAction uses a
specialization of LinkEndData called LinkEndCreationData, to support ordered associations. The insertion point is
specified at runtime by an additional input pin, which is required for ordered association ends and omitted for unordered
ends. The insertion point is an integer greater than 0 giving the position to insert the link, or unlimited, to insert at the
end. Reinserting an existing end at a new position in an ordered unique structural feature moves the end to that position.

CreateLinkAction also uses LinkEndCreationData to support the destruction of existing links of the association that
connect any of the objects of the new link. When the link is created, this option is available on an end-by-end basis, and
causes all links of the association emanating from the specified ends to be destroyed before the new link is created.

Attributes

No additional attributes

Associations

e endData: LinkEndCreationData [2..*]
Specifies ends of association and inputs. (Redefines LinkAction::endData)

Constraints

[1] The association cannot be an abstract classifier.
self.association().isAbstract = #false

Semantics

CreateLinkAction creates a link or link object for an association or association class. It has no output pin, because links
are not necessarily values that can be passed to and from actions. When the action creates a link object, the object could
be returned on output pin, but it is not for consistency with links. This allows actions to remain unchanged when an
association is changed to an association class or vice versa. The semantics of Createl inkObjectAction applies to creating
link objects with CreateLinkAction.

This action also supports the destruction of existing links of the association that connect any of the objects of the new
link. This option is available on an end-by-end basis, and causes al links of the association emanating from the specified
ends to be destroyed before the new link is created. If the link already exists, then it is not destroyed under this option;
otherwise, recreating an existing link has no effect if the structural feature is unordered and non-unique.

The semantics is undefined for creating a link for an association class that is abstract. The semantics is undefined for
creating alink that violates the upper multiplicity of one of its association ends. A new link violates the upper multiplicity
of an end if the cardinality of that end after the link is created would be greater than the upper multiplicity of that end.
The cardinality of an end is equal to the number of links with objects participating in the other ends that are the same as
those participating in those other ends in the new link, and with qualifier values on all ends the same as the new link, if
any.

The semantics is undefined for creating a link that has an association end with isReadOnly=true after initialization of the
other end objects, unless the link being created already exists. Objects participating in the association across from a
writeable end can have links created as long as the objects across from all read only ends are still being initialized. This
means that objects participating in links with two or more read only ends cannot have links created unless al the linked
objects are being initialized.

© ISO/IEC 2012 - All rights reserved 263

ISO/IEC 19505-2:2012(E)

Creating ordered association ends requires an insertion point for a new link using the insertAt input pin of
LinkEndCreationData. The pin is of type UnlimitedNatural with multiplicity of 1..1. A pin value that is a positive integer
less than or equal to the current number of links means to insert the new link at that position in the sequence of existing
links, with the integer one meaning the new link will be first in the sequence. A value of unlimited for insertAt means to
insert the new link at the end of the sequence. The semantics is undefined for value of zero or an integer greater than the
number of existing links. The insertAt input pin does not exist for unordered association ends. Reinserting an existing end
at a new position in an ordered unique structural feature moves the end so that it is in the position specified after the
action is complete.

Notation

No specific notation

Rationale

CreateLinkAction is introduced to create links.

Changes from previous UML

CreateLinkAction is unchanged from UML 1.5.
11.3.15 CreateLinkObjectAction (from CompleteActions)

Createl inkObjectAction creates a link object.

Generalizations

« “CreateLinkAction (from IntermediateActions)” on page 262

Description

This action is exclusively for creating links of association classes. It returns the created link object.

Attributes

No additional attributes

Associations

e result[1..1] : OutputPin[1..1]
Gives the output pin on which the result is put. (Subsets Action: : output)

Constraints

[1] The association must be an association class.
self.association().oclisKindOf(Class)

[2] Thetype of the result pin must be the same as the association of the action.
self.result.type = self.association()

[3] Themultiplicity of the output pinis1..1.
self.result.multiplicity.is(1,1)

264 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

Createl inkObjectAction inherits the semantics and constraints of CreatelLinkAction, except that it operates on association
classes to create a link object. The additional semantics over CreateLinkAction is that the new or found link object is put
on the output pin. If the link already exists, then the found link object is put on the output pin. The semantics of
CreateObjectAction applies to creating link objects with Createl inkObjectAction.

Notation

No specific notation

Rationale

CreateLinkObjectAction is introduced to create link objects in a way that returns the link object (Compare
CreatelinkAction).

Changes from previous UML

Createl inkObjectAction is unchanged from UML 1.5.

11.3.16 CreateObjectAction (from IntermediateActions)

CreateObjectAction is an action that creates an object that conforms to a statically specified classifier and puts it on an
output pin at runtime.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action instantiates a classifier.

Attributes

No additional attributes

Associations

e classifier : Classifier [1..1]
Classifier to be instanti ated.

e result: OutputPin[1..1]
Gives the output pin on which the result is put. (Subsets Action: :output)
Constraints

[1] Theclassifier cannot be abstract.
not (self.classifier.isAbstract = #true)

[2] Theclassifier cannot be an association class.
not self.classifier.oclisKindOf(AssociationClass)

© ISO/IEC 2012 - All rights reserved 265

ISO/IEC 19505-2:2012(E)

[3] Thetype of the result pin must be the same as the classifier of the action.
self.result.type = self.classifier

[4] Themuiltiplicity of the output pinis1..1.
self.result. multiplicity.is(1,1)

Semantics

The new object is created, and the classifier of the object is set to the given classifier. The new object is returned as the
value of the action. The action has no other effect. In particular, no behaviors are executed, no initial expressions are
evaluated, and no state machine transitions are triggered. The new object has no structural feature values and participates
in no links.

If the classifier being instantiated is a Behavior, then the instantiated object is an execution of that behavior. However,
this execution does not actually start immediately on instantiation. Rather, it must be explicitly started using a
StartObjectBehaviorAction..

Notation

No specific notation

Rationale

CreateObjectAction is introduced for creating new objects.

Changes from previous UML

Same as UML 1.5
11.3.17 DestroyLinkAction (from IntermediateActions)

DestroyLinkAction is a write link action that destroys links and link objects.

Generalizations

» “WriteLinkAction (from IntermediateActions)” on page 306

Description

This action destroys a link or a link object. Link objects can also be destroyed with DestroyObjectAction. The link is
specified in the same way as link creation, even for link objects. This allows actions to remain unchanged when their
associations are transformed from ordinary ones to association classes and vice versa.

DestroyLinkAction uses a specialization of LinkEndData, called LinkEndDestructionData, to support ordered non-unique
associations. The position of the link to be destroyed is specified at runtime by an additional input pin, which is required
for ordered non-unique association ends and omitted for other kinds of ends. This is a positive integer giving the position
of the link to destroy.

DestroyLinkAction also uses LinkEndDestructionData to support the destruction of duplicate links of the association on
ends that are non-unique. This option is available on an end-by-end basis, and causes all duplicate links of the association
emanating from the specified ends to be destroyed.

266 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Attributes
No additional attributes

Associations

e endData: LinkEndDestructionData [2..*]
Specifies ends of association and inputs. { Redefines LinkAction::endData}

Constraints

No additional constraints

Semantics

Destroying alink that does not exist has no effect. The semantics of DestroyObjectAction applies to destroying alink that
has a link object with DestroyLinkAction.

The semantics is undefined for destroying a link that has an association end with isReadOnly = true after initialization of
the other end objects, unless the link being destroyed does not exist. Objects participating in the association across from
a writeable end can have links destroyed as long as the objects across from all read only ends are still being initialized.
This means objects participating in two or more readOnly ends cannot have links destroyed, unless all the linked objects
are being initialized.

Destroying links for non-unique ordered association ends requires identifying the position of the link using the input pin
of LinkEndDestructionData. The pin is of type UnlimitedNatural with multiplicity 1..1. A pin value that is a positive
integer less than or equal to the current number of links means to destroy the link at that position in the sequence of
existing links, with the integer one meaning the first link in the sequence. The semantics is undefined for value of zero,
for an integer greater than the number of existing links, and for unlimited. The destroyAt input pin only exists for ordered
non-unique association ends.

Notation

No specific notation

Rationale

DestroyLinkAction is introduced for destroying links.

Changes from previous UML

DestroyLinkAction is unchanged from UML 1.5.
11.3.18 DestroyObjectAction (from IntermediateActions)

DestroyObjectAction is an action that destroys objects.

Generalizations

« “Action (from BasicActions)” on page 249

© ISO/IEC 2012 - All rights reserved 267

ISO/IEC 19505-2:2012(E)

Description

This action destroys the object on its input pin at runtime. The object may be a link object, in which case the semantics
of DestroyLinkAction also applies.

Attributes

e isDestroyLinks: Boolean = false
Specifies whether links in which the object participates are destroyed along with the object. Default valueis false.

« isDestroyOwnedObjects : Boolean = false
Specifies whether objects owned by the object through composite aggregation are destroyed along with the object.
Default valueisfalse.
Associations
e target: InputPin[1..1]
The input pin providing the object to be destroyed. (Subsets Action: :input)
Constraints
[1] Themuiltiplicity of theinput pinis1..1.
self.target.multiplicity.is(1,1)
[2] Theinput pin has no type.
self.target.type->size() = 0
Semantics

The classifiers of the object are removed as its classifiers, and the object is destroyed. The default action has no other
effect. In particular, no behaviors are executed, no state machine transitions are triggered, and references to the destroyed
objects are unchanged. If isDestroyLinksistrue, linksin which the object participates are destroyed along with the object
according to the semantics of DestroyLinkAction, except for link objects, which are destroyed according to the semantics
of DestroyObjectAction with the same attribute values as the original DestroyObjectAction. If isDestroyOwnedObjectsis
true, objects owned by the object through composite aggregation are destroyed according to the semantics of
DestroyObjectAction with the same attribute values as the original DestroyObjectAction.

Destroying an object that is already destroyed has no effect.

Notation

No specific notation

Rationale

DestroyObjectAction is introduced for destroying objects.

Changes from previous UML

Same as UML 1.5

268 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

11.3.19 InputPin (from BasicActions)

Generalizations

» “Pin (from BasicActions)” on page 277

Description

An input pin isapin that holds input values to be consumed by an action.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An action cannot start execution if an input pin has fewer values than the lower multiplicity. The upper multiplicity
determines the maximum number of values that can be consumed by a single execution of the action.

Notation

No specific notation. See extensions in Activities.
Rationale
Changes from previous UML

InputPin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.

11.3.20 InvocationAction (from BasicActions)

Generalizations

« “Action (from BasicActions)” on page 249

Description

Invocation is an abstract class for the various actions that invoke behavior.

Attributes

No additional attributes

© ISO/IEC 2012 - All rights reserved

269

ISO/IEC 19505-2:2012(E)

Associations
e argument : InputPin [0..*]

Specification of the ordered set of argument values that appear during execution.
Constraints

No additiona constraints

Semantics

See children of InvocationAction.
11.3.21 LinkAction (from IntermediateActions)

LinkAction is an abstract class for all link actions that identify their links by the objects at the ends of the links and by
the qualifiers at ends of the links.

Generalizations

« “Action (from BasicActions)” on page 249

Description

A link action creates, destroys, or reads links, identifying a link by its end objects and qualifier values, if any.

Attributes

No additional attributes

Associations

e endData: LinkEndData [2..*]
Dataidentifying one end of alink by the objects on its ends and qualifiers. { Subsets Element::ownedElement}

e inputVaue: InputPin[1..*]
Pins taking end objects and qualifier values as input. (Subsets Action::input)

Constraints
[1] The association ends of the link end data must all be from the same association and include all and only the association
ends of that association.
self.endData->collect(end) = self.association()->collect(connection)
[2] The association ends of the link end data must not be static.
self.endData->forall(end.oclisKindOf(NavigableEnd) implies end.isStatic = #false)
[3] Theinput pinsof the action are the same as the pins of the link end data and insertion pins.
self.input->asSet() =
let ledpins : Set = self.endData->collect(value) in
if self.ocllsKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

270 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package CompleteActions

[4] Theinput pins of the action are the same as the pins of the link end data, qualifier values, and insertion pins.
self.input->asSet() =
let ledpins : Set =
if self.endData.ocllsKindOf(CompleteActions::LinkEndData)
then self.endData->collect(value)->union(self.endData.qualifier.value)
else self.endData->collect(value) in
if self.oclisKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.
association();
association = self.endData->asSequence().first().end.association

Semantics

For actions that write links, all association ends must have a corresponding input pin so that al end objects are specified
when creating or deleting a link. An input pin identifies the end object by being given a value at runtime. It has the type
of the association end and multiplicity of 1..1 (see “LinkEndData (from IntermediateActions, CompleteActions)” on page
273), since alink always has exactly one abject at its ends. The input pins owned by the action are referenced by the link
end data, and as insertion pins (see “LinkEndCreationData (from IntermediateActions)” on page 271), and qualifier value
pins in CompleteActions.

The behavior is undefined for links of associations that are static on any end.

For the semantics of link actions see the children of LinkAction.

Notation

No specific notation

Rationale
LinkAction is introduced to abstract aspects of link actions that identify links by the objects on their ends.

In CompleteActions, LinkAction is extended for qualifiers.

Changes from previous UML

LinkAction is unchanged from UML 1.5.

11.3.22 LinkEndCreationData (from IntermediateActions)

LinkEndCreationData is not an action. It is an element that identifies links. It identifies one end of alink to be created by
CreateLinkAction.

© ISO/IEC 2012 - All rights reserved 271

ISO/IEC 19505-2:2012(E)

Generalizations

« “LinkEndData (from IntermediateActions, CompleteActions)” on page 273.

Description

This class is required when using CreateLinkAction to specify insertion points for ordered ends and for replacing al links
at end. A link cannot be passed as a runtime value to or from an action. Instead, alink isidentified by its end objects and
qualifier values, as required. This requires more than one piece of data, namely, the statically-specified end in the user
model, the object on the end, and the qualifier values for that end. These pieces are brought together around
LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Qualifier values are used in CompleteActions to specify links to create.

Attributes

e isReplaceAll : Boolean [1..1] =false
Specifies whether the existing links emanating from the object on this end should be destroyed before creating a new
link.

Associations

e insertAt: InputPin [0..1]
Specifies where the new link should be inserted for ordered association ends, or where an existing link should be
moved to. The type of the input is UnlimitedNatural, but the input cannot be zero. This pin is omitted for association
ends that are not ordered.

Constraints

[1] LinkEndCreationData can only be end datafor Createl inkAction or one of its specializations.
self.LinkAction.ocllsKindOf(CreateLinkAction)

[2] Link end creation data for ordered association ends must have a single input pin for the insertion point with type
UnlimitedNatural and multiplicity of 1..1; otherwise, the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in

if self.end.ordering = #unordered

then insertAtPins->size() = 0

else let insertAtPin : InputPin = insertAts->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Semantics

See CreateLinkAction, also see LinkAction and al its children.

Notation

No specific notation

272 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Rationale

LinkEndCreationData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndCreationData is unchanged from UML 1.5.
11.3.23 LinkEndData (from IntermediateActions, CompleteActions)

Generalizations

» “Element (from Kernel)” on page 68
Description

Package IntermediateActions

LinkEndData is not an action. It is an element that identifies links. It identifies one end of alink to be read or written by
the children of LinkAction. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified
by its end objects and qualifier values, if any. This requires more than one piece of data, namely, the statically-specified
end in the user model, the object on the end, and the qualifier values for that end, if any. These pieces are brought
together around LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Attributes

No additional attributes

Associations

e end: Property [1..1]
Association end for which this link-end data specifies values.

e vaue: InputPin[0..1]
Input pin that provides the specified object for the given end. This pin is omitted if the link-end data specifies an
“open” end for reading.

Associations

Package CompleteActions

e qualifier : QuaifierValue [*]
List of qualifier values. { Subsets Element::ownedElement}

Constraints

[1] The property must be an association end.
self.end.association->size() = 1

[2] Thetype of the end object input pin is the same as the type of the association end.
self.value.type = self.end.type

[3] Themultiplicity of the end object input pin must be “1..1.”
self.value.multiplicity.is(1,1)

© ISO/IEC 2012 - All rights reserved 273

ISO/IEC 19505-2:2012(E)

Constraints

Package CompleteActions

[1] Thequaifiersinclude all and only the qualifiers of the association end.
self.qualifier->collect(qualifier) = self.end.qualifier

[2] Theend object input pinisnot also a qualifier value input pin.
self.value->excludesAll(self.qualifier.value)

Semantics

See LinkAction and its children.

Notation

No specific notation

Rationale

LinkEndData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndData is unchanged from UML 1.5.
11.3.24 LinkEndDestructionData (from IntermediateActions)

LinkEndDestructionData is not an action. It is an element that identifies links. It identifies one end of alink to be
destroyed by DestroyLinkAction.

Generalizations

» “LinkEndData (from IntermediateActions, CompleteActions)” on page 273

Description

This class is required when using DestroyLinkAction, to specify links to destroy for non-unique ordered ends. A link
cannot be passed as a runtime value to or from an action. See description of “LinkEndData (from IntermediateActions,
CompleteActions)” on page 273.

Qualifier values are used in CompleteActions to identify which links to destroy.

Attributes
* isDestroyDuplicates : Boolean = false

Specifies whether to destroy duplicates of the value in non-unique association ends.
Associations

e destroyAt : InputPin [0..1]
Specifies the position of an existing link to be destroyed in ordered non-unique association ends. The type of the pin
is UnlimitedNatural, but the value cannot be zero or unlimited.

274 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Constraints
[1] LinkEndDestructionData can only be end data for DestroyLinkAction or one of its specializations.

[2] LinkEndDestructionData for ordered non-unique association ends must have a single destroyAt input pin if
isDestroyDuplicatesisfalse. It must be of type UnlimitedNatural and have a multiplicity of 1..1; otherwise, the action has
no input pin for the removal position.

Semantics

See “DestroyLinkAction (from IntermediateActions)” on page 266, also see “LinkAction (from IntermediateActions)” on
page 270 and all of its subclasses.

Notation

No specific notation

Rationale

LinkEndDestructionData is introduced to indicate which links to destroy for ordered non-unique ends.
11.3.25 MultiplicityElement (from BasicActions)

Generalizations

« “MultiplicityElement (from Kernel)” on page 100 (merge increment)

Operations

[1] The operation compatibleWith takes another multiplicity as input. It checksif one multiplicity is compatible with another.

compatibleWith(other : Multiplicity) : Boolean;
compatibleWith(other) = Integer.allinstances()->
forAll(i : Integer | self.includesCardinality(i) implies other.includesCardinality(i))

[2] The operation determines if the upper and lower bound of the ranges are the ones given.

is(lowerbound : integer, upperbound : integer) : Boolean;
is(lowerbound, upperbound) = (lowerbound = self.lowerbound and upperbound = self.upperbound)

11.3.26 OpaqueAction (from BasicActions)
Generalizations
» “Action (from BasicActions)” on page 249

Description

An action with implementation-specific semantics

Attributes

e body : String [0..*] { nonunique, ordered}
Specifies the action in one or more languages.

© ISO/IEC 2012 - All rights reserved 275

ISO/IEC 19505-2:2012(E)

e language: String [0..*] { ordered}
Languages the body strings use, in the same order as the body strings.

Associations

e inputVaue: InputPin[0..*]
Provides input to the action. (Specializes Action::input)

e outputValue : OutputPin [0..*]
Takes output from the action. (Specializes Action::output)

Constraints

No additional constraints

Semantics

The semantics of the action are determined by the implementation.

Notation

No specific notation

Rationale

OpagueAction is introduced for implementation-specific actions or for use as a temporary placeholder before some other
action is chosen.

11.3.27 OutputPin (from BasicActions)
Generalizations
« “Pin (from BasicActions)” on page 277

Description

An output pin is a pin that holds output values produced by an action.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

276 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

For each execution, an action cannot terminate itself unless it can put at least as many values on its output pins as
required by the lower multiplicity on those pins. The values are actually put in the pins once the action completes. Values
that may remain on the output pins from previous executions are not included in meeting this minimum multiplicity
requirement.

An action may not put more values in an output pin in a single execution than the upper multiplicity of the pin.

Notation

No specific notation - see extensions in Activities.

Changes from previous UML

OutputPin is the same concept asin UML 1.5, but modeled independently of the behaviors that use it.

11.3.28 Pin (from BasicActions)

Generalizations
« “MultiplicityElement (from BasicActions)” on page 275
» “TypedElement (from Kernel)” on page 143

Description

A pinis atyped element and multiplicity element that provides values to actions and accepts result values from them.

Attributes
No additional attributes

Associations

No additional associations

Constraints
[1] If the action isan invocation action, the number and types of pins must be the same as the number of parameters and
types of the invoked behavior or behavioral feature. Pins are matched to parameters by order.

Semantics

A pin represents an input to an action or an output from an action. The definition on an action assumes that pins are
ordered.

Pin multiplicity controls action execution, not the number of tokens in the pin (see upperBound on “ObjectNode (from
BasicActivities, CompleteActivities)” on page 411). See “InputPin (from BasicActions)” and “OutputPin (from
BasicActions)” for semantics of multiplicity. Pin multiplicity is not unique, because multiple tokens with the same value
can reside in an object node.

© ISO/IEC 2012 - All rights reserved 277

ISO/IEC 19505-2:2012(E)

Notation

No specific notation - see extensions in Activities.

Rationale

Pins are introduced to model inputs and outputs of actions.

Changes from previous UML

Pin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.

11.3.29 QualifierValue (from CompleteActions)

QualifierValue is not an action. It is an element that identifies links. It gives a single qualifier within a link end data
specification. See LinkEndData.

Generalizations

» “Element (from Kernel)” on page 68

Description

A link cannot be passed as a runtime value to or from an action. Instead, alink is identified by its end objects and
qualifier values, as required. This requires more than one piece of data, namely, the end in the user model, the object on
the end, and the qualifier values for that end. These pieces are brought together around LinkEndData. Each association
end is identified separately with an instance of the LinkEndData class.

Attributes
No additional attributes

Associations

e qualifier : Property [1..1]
Attribute representing the qualifier for which the value isto be specified.

e vaue: InputPin[1..1]
Input pin from which the specified value for the qualifier is taken.
Constraints

[1] The qualifier attribute must be a qualifier of the association end of the link-end data.
self.LinkEndData.end->collect(qualifier)->includes(self.qualifier)

[2] Thetype of the qualifier valueinput pin is the same as the type of the qualifier attribute.
self.value.type = self.qualifier.type

[3] Themultiplicity of the qualifier valueinput pinis*“1..1.”
self.value.multiplicity.is(1,1)

Semantics

See LinkAction and its children.

278 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Notation

No specific notation

Rationale

QualifierValue is introduced to indicate which inputs are for which link end qualifiers.

Changes from previous UML

QualifierValue is unchanged from UML 1.5.
11.3.30 RaiseExceptionAction (from StructuredActions)

Generalizations

« “Action (from BasicActions)” on page 249

Description

RaiseExceptionAction is an action that causes an exception to occur. The input value becomes the exception object.

Attributes

No additional attributes

Associations

e exception : InputPin[1..1]
An input pin whose val ue becomes an exception object. { Subsets Action: :input}

Semantics

When a raise exception action is executed, the value on the input pin is raised as an exception. The value may be copied
in this process, so identity may not be preserved. Raising the exception terminates the immediately containing structured
node or activity and begins a search of enclosing nested scopes for an exception handler that matches the type of the
exception object. See “ExceptionHandler (from ExtraStructuredActivities)” on page 379 for details of handling
exceptions.

Notation

No specific notation

Rationale

Raise exception action allows models to generate exceptions; otherwise, the only exception types would be predefined
built-in exception types, which would be too restrictive.

Changes from previous UML

RaiseExceptionAction replaces JumpAction from UML 1.5. Their behavior is essentially the same, except that it is no
longer needed for performing simple control constructs such as break and continue.

© ISO/IEC 2012 - All rights reserved 279

ISO/IEC 19505-2:2012(E)

11.3.31 ReadExtentAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 249

Description

ReadExtentAction is an action that retrieves the current instances of a classifier.

Attributes
No additional attributes

Associations

e classifier : Classifier [1..1]
The classifier whose instances are to be retrieved.

e result: OutputPin[1..1]
The runtime instances of the classifier. { Subsets Action: :input}

Constraints
[1] Thetype of the result output pinisthe classifier.

[2] Themuiltiplicity of the result output pinis“0..*.”
self.result.multiplicity.is(0,#null)

Semantics

The extent of a classifier is the set of al instances of a classifier that exist at any one time.

Semantic Variation Points

It is not generally practical to require that reading the extent produce all the instances of the classifier that exist in the
entire universe. Rather, an execution engine typically manages only a limited subset of the total set of instances of any
classifier and may manage multiple distributed extents for any one classifier. It is not formally specified which managed
extent is actually read by a ReadExtentAction.

Notation

No specific notation

Rationale

ReadExtentAction is introduced to provide access to the runtime instances of a classifier.

Changes from previous UML

ReadExtentAction is unchanged from UML 1.5.

280 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

11.3.32 ReadIsClassifiedObjectAction (from CompleteActions)

ReadlsClassifiedObjectAction is an action that determines whether a runtime object is classified by a given classifier.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action tests the classification of an object against a given class. It can be restricted to testing direct instances.

Attributes
e isDirect: Boolean[1..1]

Indicates whether the classifier must directly classify the input object. The default valueisfalse.
Associations

» classifier: Classifier [1..1]
The classifier against which the classification of the input object is tested.

e object: InputPin[1..1]
Holds the object whose classification is to be tested. (Subsets Action.input)

e result: OutputPin[1..1]
After termination of the action, will hold the result of the test. (Subsets Action.output)
Constraints

[1] Themultiplicity of theinput pinis1..1.
self.object.multiplicity.is(1,1)

[2] Theinput pin has no type.
self.object.type->isEmpty()

[3] Themuiltiplicity of the output pinis1..1.
self.result.multiplicity.is(1,1)

[4] Thetype of the output pin is Boolean.
self.result.type = Boolean

Semantics

The action returns true if the input object is classified by the specified classifier. It returns true if the isDirect attribute is
false and the input object is classified by the specified classifier, or by one of its (direct or indirect) descendents;
otherwise, the action returns false.

Notation

No specific notation

Rationale

ReadisClassifiedObjectAction is introduced for run-time type identification.

© ISO/IEC 2012 - All rights reserved 281

ISO/IEC 19505-2:2012(E)

Changes from previous UML

ReadisClassifiedObjectAction is unchanged from UML 1.5.
11.3.33 ReadLinkAction (from IntermediateActions)

ReadLinkAction is a link action that navigates across associations to retrieve objects on one end.

Generalizations

« “LinkAction (from IntermediateActions)” on page 270

Description

This action navigates an association towards one end, which is the end that does not have an input pin to take its object
(the “open” end). The objects put on the result output pin are the ones participating in the association at the open end,
conforming to the specified qualifiers, in order if the end is ordered. The semantics is undefined for reading a link that
violates the navigability or visibility of the open end.

Attributes

No additional attributes

Associations

e result: OutputPin [1]
The pin on which are put the objects participating in the association at the end not specified by the inputs. (Subsets
Action: : output)

Constraints

[1] Exactly onelink-end data specification (the “ open” end) must not have an end object input pin.
self.endData->select(ed | ed.value->size() = 0)->size() = 1
[2] Thetype and ordering of the result output pin are the same as the type and ordering of the open association end.
let openend : Property = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
self.result.type = openend.type
and self.result.ordering = openend.ordering
[3] The muiltiplicity of the open association end must be compatible with the multiplicity of the result output pin.
let openend : Property = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.multiplicity.compatibleWith(self.result.multiplicity)
[4] The open end must be navigable.
let openend : Property = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.isNavigable()
[5] Visibility of the open end must allow access to the object performing the action.
let host : Classifier = self.context in
let openend : Property = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.visibility = #public
or self.endData->exists(oed | not oed.end = openend
and (host = oed.end.participant

282 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

or (openend.visibility = #protected
and host.allSupertypes->includes(oed.end.participant))))

Semantics

Navigation of a binary association requires the specification of the source end of the link. The target end of the link is not
specified. When qualifiers are present, one navigates to a specific end by giving objects for the source end of the
association and qualifier values for all the ends. These inputs identify a subset of all the existing links of the association
that match the end objects and qualifier values. The result is the collection of objects for the end being navigated towards
one object from each identified link. Note that, if there are no matching links, then the action produces a single null token
on its output pin.

In a ReadLinkAction, generalized for n-ary associations, one of the link-end data must have an unspecified object (the
“open” end). The result of the action is a collection of abjects on the open end of links of the association, such that the
links have the given objects and qualifier values for the other ends and the given qualifier values for the open end. The
order of the retrieved values in the output pin is the same as the ordering of the values of the links. This result is placed
on the output pin of the action, which has a type and ordering given by the open end. The multiplicity of the open end
must be compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to
support multiple values even when the open end only allows a single value. This way the action model will be unaffected
by changes in the multiplicity of the open end. The semantics are defined only when the open end is navigable, and
visible to the host object of the action.

Notation

No specific notation

Rationale

ReadLinkAction is introduced to navigate across links.

Changes from previous UML

ReadLinkAction is unchanged from UML 1.5.
11.3.34 ReadLinkObjectEndAction (from CompleteActions)

ReadLinkObjectEndAction is an action that retrieves an end object from a link object.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action reads the object on an end of alink object. The association end to retrieve the object from is specified
statically, and the link object to read is provided on the input pin at run time.

Attributes

No additional attributes

© ISO/IEC 2012 - All rights reserved 283

ISO/IEC 19505-2:2012(E)

Associations

e end: Property [1..1]
Link end to be read.

e object: InputPin[1..1]
Givesthe input pin from which the link object is obtained. { Subsets Action: :input}

e result: OutputPin[1..1]
Pin where the result value is placed. { Subsets Action:: output}

Constraints

[1] The property must be an association end.
self.end.association.notEmpty()

[2] The association of the association end must be an association class.
self.end.Association.ocllsKindOf(AssociationClass)

[3] Theends of the association must not be static.
self.end.association.memberEnd->forall(e | not e.isStatic)

[4] Thetype of the object input pin is the association class that owns the association end.
self.object.type = self.end.association

[5] Themultiplicity of the object input pinis“1..1.”
self.object.multiplicity.is(1,1)

[6] Thetype of the result output pinisthe same as the type of the association end.
self.result.type = self.end.type

[7] Themultiplicity of the result output pinis1..1.
self.result. multiplicity.is(1,1)

Semantics

ReadLinkObjectEndAction retrieves an end object from alink object. The value of the specified end of theinput link object
is placed on the output pin of the action. Note that this is not the same as reading links of the link object’s association with
the specified end as the open end. Identifying alink object explicitly identifies a single specific link, independently of the

values of link ends other than the one specified to be read. Even if the multiplicity of the specified end is different from 1..1
in the association, it only has a single value from the point of view of a specified link object. Thisis why the output pin of
a ReadLinkObjectEndAction always has a multiplicity of 1..1.

Notation

No specific notation

Rationale

ReadLinkObjectEndAction is introduced to navigate from a link object to its end objects.

Changes from previous UML

ReadLinkObjectEndAction is unchanged from UML 1.5.

284 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

11.3.35 ReadLinkObjectEndQualifierAction (from CompleteActions)

ReadLinkObjectEndAction is an action that retrieves a qualifier end value from a link object.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action reads a qualifier value or values on an end of alink object. The association end to retrieve the qualifier from
is specified statically, and the link object to read is provided on the input pin at run time.

Attributes

No additional attributes

Associations

e qualifier : Property [1..1]
The attribute representing the qualifier to be read.

e object: InputPin[1..1]
Givesthe input pin from which the link object is obtained. (Subsets Action::input)

e result: OutputPin[1..1]
Pin where the result value is placed. (Subsets Action:: output)

Constraints

[1] Thequaifier attribute must be a qualifier attribute of an association end.
self.qualifier.associationEnd->size() = 1

[2] Theassociation of the association end of the qualifier attribute must be an association class.
self.qualifier.associationEnd.association.oclisKindOf(AssociationClass)

[3] Theends of the association must not be static.
self.qualifier.associationEnd.association.memberEnd->forall(e | not e.isStatic)

[4] Thetype of the object input pin is the association class that owns the association end that has the given qualifier attribute.
self.object.type = self.qualifier.associationEnd.association

[5] Themultiplicity of the qualifier attributeis 1..1.
self.qualifier.multiplicity.is(1,1)

[6] Themultiplicity of the object input pinis“1..1.”
self.object.multiplicity.is(1,1)

[7] Thetype of the result output pin isthe same as the type of the qualifier attribute.
self.result.type = self.qualifier.type

[8] Themultiplicity of the result output pinis“1..1.”
self.result.multiplicity.is(1,1)

Semantics

ReadLinkObjectEndAction retrieves a qualifier end value from a link object.

© ISO/IEC 2012 - All rights reserved 285

ISO/IEC 19505-2:2012(E)

Notation

No specific notation

Rationale

ReadLinkObjectEndQualifierAction is introduced to navigate from a link object to its end objects.

Changes from previous UML

ReadLinkObjectEndQualifierAction is unchanged from UML 1.5, except the name was corrected from
ReadLinkObjectQualifierAction.

11.3.36 ReadSelfAction (from IntermediateActions)

ReadSelfAction is an action that retrieves the host object of an action.

Generalizations

« “Action (from BasicActions)” on page 249

Description

Every action is ultimately a part of some behavior, which is in turn optionally attached in some way to the specification
of aclassifier (for example, as the body of a method or as part of a state machine). When the behavior executes, it does
so in the context of some specific host instance of that classifier. This action produces this host instance, if any, on its
output pin. The type of the output pin is the classifier to which the behavior is associated in the user model.

Attributes
No additional attributes

Associations

e result: OutputPin[1..1]
Gives the output pin on which the hosting object is placed. (Subsets Action:: output)

Constraints
[1] The action must be contained in a behavior that has a host classifier.
self.context->size() = 1

[2] If theactioniscontained in abehavior that is acting as the body of amethod, then the operation of the method must not be
static.

[3] Thetype of the result output pinisthe host classifier.
self.result.type = self.context

[4] Themuiltiplicity of the result output pinis“1..1.”
self.result.multiplicity.is(1,1)

Semantics

Every action is part of some behavior, as are behaviors invoked by actions or other elements of behaviors. Behaviors are
optionally attached in some way to the specification of a classifier.

286 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

For behaviors that have no other context object, the behavior itself is the context object. See behaviors as classes in
Common Behaviors and discussion of reflective objects in Activity (from BasicActivities, CompleteActivities,
Fundamental Activities, StructuredActivities).

Notation

No specific notation

Rationale

ReadSelfAction is introduced to provide access to the context object when it is not available as a parameter.

Changes from previous UML

ReadSelfAction is unchanged from UML 1.5.

11.3.37 ReadStructuralFeatureAction (from IntermediateActions)

ReadStructural FeatureAction is a structural feature action that retrieves the values of a structural feature.

Generalizations

« “StructuralFeatureAction (from IntermediateActions)” on page 300.

Description

This action reads the values of a structural feature in order, if the structural feature is ordered.

Attributes

No additional attributes

Associations

e result: OutputPin[1..1]
Gives the output pin on which the result is put. (Subsets Action: :output)

Constraints

[1] Thetype and ordering of the result output pin are the same as the type and ordering of the structural feature.
self.result.type = self.structuralFeature.type
and self.result.ordering = self.structuralFeature.ordering

[2] Themultiplicity of the structural feature must be compatible with the multiplicity of the output pin.
self.structuralFeature.multiplicity.compatibleWith(self.result. multiplicity)

Semantics

The values of the structural feature of the input object are placed on the output pin of the action. If the feature is an
association end, the semantics are the same as reading links of the association with the feature as the open end. The type
and ordering of the output pin are the same as the specified structural feature. The order of the retrieved values in the
output pin is the same as the ordering of the values of the structural feature. The multiplicity of the structural feature must
be compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to

© ISO/IEC 2012 - All rights reserved 287

ISO/IEC 19505-2:2012(E)

support multiple values even when the structural feature only allows a single value. This way the action model will be
unaffected by changes in the multiplicity of the structural feature. Note that, if there are no retrieved values (that is, the
structural feature is empty), then the action produces a single null token on its output pin.

Notation

No specific notation

Rationale

ReadStructural FeatureAction is introduced to retrieve the values of a structural feature.

Changes from previous UML

ReadStructural FeatureAction is new in UML 2. It generalizes ReadAttributeAction from UML 1.5.
11.3.38 ReadVariableAction (from StructuredActions)

ReadVariableAction is a variable action that retrieves the values of a variable.

Generalizations

» “VariableAction (from StructuredActions)” on page 305

Description

This action reads the values of a variable in order, if the variable is ordered.

Attributes

No additional attributes

Associations

e result: OutputPin[1..1]
Gives the output pin on which the result is put. (Subsets Action: : output)

Constraints

[1] Thetype and ordering of the result output pin of aread-variable action are the same as the type and ordering of the
variable.
self.result.type =self.variable.type
and self.result.ordering = self.variable.ordering

[2] Themultiplicity of the variable must be compatible with the multiplicity of the output pin.
self.variable.multiplicity.compatibleWith(self.result. multiplicity)

Semantics

The values of the variable are placed on the output pin of the action. The type and ordering of the output pin are the same
as the specified variable. The order of the retrieved values in the output pin is the same as the ordering of the values of
the variable. The multiplicity of the variable must be compatible with the multiplicity of the output pin. For example, the

288 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

modeler can set the multiplicity of this pin to support multiple values even when the variable only allows a single value.
This way the action model will be unaffected by changes in the multiplicity of the variable. Note that, if there are no
retrieved values (that is, the variable is empty), then the action produces a single null token on its output pin.

Notation

No specific notation

Rationale

ReadVariableAction is introduced to retrieve the values of a variable.

Changes from previous UML

ReadVariableAction is unchanged from UML 1.5.
11.3.39 ReclassifyObjectAction (from CompleteActions)

ReclassifyObjectAction is an action that changes which classifiers classify an object.

Generalizations

« “Action (from BasicActions)” on page 249

Description

ReclassifyObjectAction adds given classifier to an object and removes given classifiers from that object. Multiple
classifiers may be added and removed at a time.

Attributes
* isReplaceAll : Boolean [1..1]
Specifies whether existing classifiers should be removed before adding the new classifiers. The default valueisfalse.

Associations

e object: InputPin[1..1]
Holds the object to be reclassified. (Subsets Action::input)

e newClassifier ; Classifier [0..*]
A set of classifiers to be added to the classifiers of the object.

» oldClassifier : Classifier [0..*]
A set of classifiers to be removed from the classifiers of the object.

Constraints

[1] None of the new classifiers may be abstract.
not self.newClassifier->exists(isAbstract = true)

[2] Themuiltiplicity of theinput pinis1..1.
self.argument.multiplicity.is(1,1)

[3] Theinput pin has no type.
self.argument.type->size() = 0

© ISO/IEC 2012 - All rights reserved 289

ISO/IEC 19505-2:2012(E)

Semantics

After the action completes, the input object is classified by its existing classifiers and the “new” classifiers given to the
action; however, the “old” classifiers given to the actions no longer classify the input object. The identity of the object is
preserved, no behaviors are executed, and no initial expressions are evaluated. “New” classifiers replace existing
classifiers in an atomic step, so that structural feature values and links are not lost during the reclassification, when the
“old” and “new” classifiers have structural features and associations in common.

Neither adding a classifier that duplicates an already existing classifier, nor removing a classifier that is not classifying
the input object has any effect. Adding and removing the same classifiers has no effect.

If isReplaceAll is true, then the existing classifiers are removed before the “new” classifiers are added, except if the
“new” classifier already classifies the input object, in which case this classifier is not removed. If isReplaceAll is false,
then adding an existing value has no effect.

It is an error, if any of the “new” classifiers is abstract or if all classifiers are removed from the input object.

Notation

No specific notation

Rationale

ReclassifyObjectAction is introduced to change the classifiers of an object.

Changes from previous UML

ReclassifyObjectAction is unchanged from UML 1.5.
11.3.40 ReduceAction (from CompleteActions)

(CompleteActions) ReduceAction is an action that reduces a collection to a single value by combining the elements of the
collection.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action takes a collection as input and produces an output by applying a behavior with two inputs pairwise to the
elements of the collection.
Attributes

e iSOrdered : Boolean = false
Tells whether the order of the input collection should determine the order in which the behavior is applied to its
elements.

Associations

e collection : InputPin [1]
The collection to be reduced (subsets Action::input)

290 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

e reducer : Behavior [1]
Behavior that is applied to two elements of theinput collection to produce a value that is the same type as elements of
the collection.

e result: OutputPin[1]
Gives the output pin on which the result is put (subsets Action::output).

Constraints
[1] The type of theinput must be a collection.
[2] Thetype of the output must be compatible with the type of the output of the reducer behavior.

[3] Thereducer behavior must have two input parameters and one output parameter, of types compatible with the types of
elements of the input collection.

Semantics

The behavior is invoked repeatedly on pairs of elements in the input collection. Each time it is invoked, it produces one
output that is put back in an intermediate version of the collection. This repeats until the collection is reduced to a single
value, which is the output of the action.

If isOrdered is false, the order in which the behavior is applied to pairs of values is indeterminate. This will not affect the
result of the action if the behavior is commutative and associative, see below. If separate invocations of the behavior
affect each other (for example, through side-effects), the result of the actions may be unpredictable. If the reducing
behavior is not commutative and associative, as with matrix multiplication, the order of the elements in the collection will
affect the result of the behavior and the action. In this case, isOrdered should be set to true, so the behavior will be
applied to adjacent pairs according to the collection order. The result of each invocation of the behavior replaces the two
values taken as input in the same position in the order as the two values. If isOrdered = false, the reducer behavior should
be commutative and associative so it will produce the same reduced value regardless of which two elements are paired at
each invocation. For example, addition is commutative because a+ b = b + a. It is also associative because ((a + b) + c)
= (a+ (b + ¢)). Commutativity and associativity are not required, but the result will be indeterminate if isOrdered = false.

Notation

None

Examples

ReduceAction can be used to reduce a list of numbers to the sum of the numbers. It would have one input pin for a
collection of numbers, one result pin for a number, and an addition function as the reducer behavior. For example,
suppose the input collection has four integers: (2, 7, 5, -3). The result of applying the reduce action to this collection with
an addition function is 11. This can be computed in a number of ways, for example, (((2+7) + 5) +-3), (2 + (7 +
(5+-3),(2+7) +(5+-3)).

Rationale

The purpose of ReduceAction is to specify the transformation of a collection to a single value by pairwise application of
a behavior, without necessarily committing to the order in which the pairs are chosen.

© ISO/IEC 2012 - All rights reserved 291

ISO/IEC 19505-2:2012(E)

Changes from previous UML

ReduceAction replaces ReduceAction in UML 1.5. It has the same functionality, except it takes one collection instead of
multiple as input, and produces one result instead of multiple. The effect of multiple input collections can be achieved in
UML 2 with an input that is a collection of collections, where the nested collections are created by taking one element
from each of the multiple collection inputs to the UML 1.5 ReduceAction.

11.3.41 RemoveStructuralFeatureValueAction (from IntermediateActions)

RemoveStructural FeatureValueAction is a write structural feature action that removes values from structural features.

Generalizations

» “WriteStructural FeatureAction (from IntermediateActions)” on page 307

Description

One value is removed from the set of values contained in the specified structural feature. The value to be removed may
be specified either explicitly or, in the case of an ordered, non-unique feature, by giving a specific position at which the
value is to be removed. It is also possible to specify the removal of all duplicate values.

Attributes

¢ isRemoveDuplicates : Boolean = false[1..1]
Specifies whether to remove duplicates of the value in non-unique structural features.

Associations

e removeAt: InputPin[0..1]
Specifies the position of an existing value to remove in ordered non-unique structural features. The type of the pin
is UnlimitednNatural, but the value cannot be zero or unlimited. { Subsets Action::input}

Constraints

[1] Actionsremoving avaue from ordered non-unique structural features must have a single removeAt input pin and no
value input pin if isRemoveDuplicatesis false. The removeAt pin must be of type Unlimited Natural with multiplicity
1..1. Otherwise, the action has a value input pin and no removeAt input pin.

if not self.structuralFeature.isOrdered or self.structuralFeature.isUnique or isRemoveDuplicates then
self.removeAt -> isEmpty() and self.value -> notEmpty()
else
self.value -> isEmpty() and
self.removeAt -> notEmpty() and
self.removeAt.type = UnlimitedNatural and
self.removeAt.lower() = 1 and
self.removeAt.upper() = 1
endif

292 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

Structural features are potentially multi-valued. Removing a value succeeds even when it violates the minimum
multiplicity. Removing a value that does not exist has no effect. If the feature is an association end, the semantics are the
same as for destroying links, the participants of which are the object owning the structural feature and the value being
removed.

Values of a structural feature may be duplicate in non-unique structural features. The isRemoveDuplicates attribute
indicates whether to remove all duplicates of the specified value. The removeAt input pin is required if
isRemoveDuplicates is false in ordered non-unique structural features. It indicates the position of an existing value to
remove. It must be a positive integer less than or egual to the current number of values. The semantics is undefined for
zero or an integer greater than the number of existing values, and for unlimited.

The semantics is undefined for removing an existing value for a structural feature with isReadOnly=true. The semantics
is undefined for removing an existing value of a structural feature with settability readOnly after initialization of the
owning object.

Notation

No specific notation

Rationale

RemoveStructural FeatureValueAction is introduced to remove structural feature values.
Changes from previous UML
RemoveStructural FeatureValueAction is new in UML 2.

11.3.42 RemoveVariableValueAction (from StructuredActions)

RemoveVariableValueAction is a write variable action that removes values from variables.

Generalizations

» “WriteVariableAction (from StructuredActions)” on page 308

Description

One value is removed from the set of possible variable values.

Attributes
¢ isRemoveDuplicates : Boolean = false[1..1]

Specifies whether to remove duplicates of the value in non-unique variables.
Associations

e removeAt : InputPin [0..1]
Specifies the position of an existing value to remove in ordered non-unique variables. The type of the pinis
UnlimitedNatural, but the value cannot be zero or unlimited. { Subsets Action::input}

© ISO/IEC 2012 - All rights reserved 293

ISO/IEC 19505-2:2012(E)

Constraints

[1] Actionsremoving avalue from ordered non-unique variables must have a single removeAt input pin and no value input
pinif isRemoveDuplicates is false. The removeAt pin must be of type Unlimited Natural with multiplicity 1..1.
Otherwise, the action has a value input pin and no removeAt input pin.

if not self.variable.isOrdered or self.variable.isUnique or isRemoveDuplicates then
self.removeAt -> isEmpty() and self.value -> notEmpty()
else
self.value -> isEmpty() and
self.removeAt -> notEmpty() and
self.removeAt.type = UnlimitedNatural and
self.removeAt.lower() = 1 and
self.removeAt.upper() = 1
endif

Semantics

Variables are potentially multi-valued. Removing a value succeeds even when it violates the minimum multiplicity.
Removing a value that does not exist has no effect. Variables are potentially multi-valued and ordered, and may support
duplicates, so the action supports specification of removal points for new values. It aso supports the removal of all
duplicate values.

Values of a variable may be duplicate in non-unique variables. The isRemoveDuplicates attribute indicates whether to
remove all duplicates of the specified value. The removeAt input pinisrequired if isRemoveDuplicates is false in ordered
non-unique variables. It indicates the position of an existing value to remove. It must be a positive integer less than or
equal to the current number of values. The semantics is undefined for zero, for an integer greater than the number of
existing values and for unlimited.

Notation

No specific notation

Rationale

RemoveVariableValueAction is introduced to remove variable values.
Changes from previous UML

RemoveVariableValueAction is unchanged from UML 1.5.

11.3.43 ReplyAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 249

Description

ReplyAction is an action that accepts a set of return values and a value containing return information produced by a
previous accept call action. The reply action returns the values to the caller of the previous call, completing execution of
the call.

294 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Attributes

No additional attributes

Associations

e replyToCall : Trigger [1..1]
The trigger specifying the operation whose call is being replied to.

e replyVaue: InputPin [0..*]
A list of pins containing the reply values of the operation. These values are returned to the caller. { Subsets
Action::input}

e returninformation : InputPin [1..1]
A pin containing the return information value produced by an earlier AcceptCallAction. { Subsets Action::input}

Constraints

[1] Thereply value pins must match the return, out, and inout parameters of the operation on the event on the trigger in
number, type, and order.

[2] Theevent on replyToCall trigger must be a CallEvent.
replyToCallEvent.ocllsKindOf(CallEvent)

Semantics

The execution of a reply action completes the execution of a call that was initiated by a previous AcceptCallAction. The
two are connected by the returninformation value, which is produced by the AcceptCallAction and consumed by the
ReplyAction. The information in this value is used by the execution engine to return the reply values to the caller and to
complete execution of the original call. The details of transmitting call requests, encoding return information, and
transmitting replies are opaque and unavailable to models, therefore they need not be and are not specified in this
document.

Return information may be copied, stored in objects, and passed around, but it may only be used in a reply action once.
If the same return information value is supplied to a second ReplyAction, the execution isin error and the behavior of the
system is unspecified. It is not intended that any profile give any other meaning the return information. The operation
specified by the call event on the trigger must be consistent with the information returned at runtime.

If the return information is lost to the execution or if areply is never made, the caller will never receive areply and
therefore will never complete execution. This is not inherently illegal but it represents an unusual situation at the very
least.

11.3.44 SendObjectAction (from IntermediateActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 269

Description

SendObjectAction is an action that transmits an object to the target object, where it may invoke behavior such as the
firing of state machine transitions or the execution of an activity. The value of the object is available to the execution of
invoked behaviors. The requestor continues execution immediately. Any reply message is ignored and is not transmitted
to the requestor.

© ISO/IEC 2012 - All rights reserved 295

ISO/IEC 19505-2:2012(E)

Attributes

No additional attributes

Associations

e request: InputPin [1]
The request object, which is transmitted to the target object. The object may be copied in transmission, so identity
might not be preserved. (Redefines InvocationActon.:: argument)

e target: InputPin [1]
The target object to which the object is sent. (Subsets Action::input)

Constraints

No additional constraints

Semantics

[1] When al the control and data flow prerequisites of the action execution are satisfied, the object on the input pinis
transmitted to the target object. The target object may belocal or remote. The object on the input pin may be copied
during transmission, so identity might not be preserved. The manner of transmitting the object, the amount of time
required to transmit it, the order in which the transmissions reach the various target objects, and the path for reaching the
target objects are undefined.

[2] When atransmission arrives at atarget object, it may invoke behavior in the target object. The effect of receiving an
object is specified in 13, “Common Behaviors.” Such effects include executing activities and firing state machine
transitions.

[3] A send object action receives no reply from the invoked behavior; any attempted reply is ssimply ignored, and no
transmission is performed to the requestor.

Notation

No specific notation

Presentation Options

If the activity in which a send object action is used will always send a signal, then the SendSignal Action notation can be
used.

Rationale

Sends any object to a specified target object.

Changes from previous UML

SendObjectAction is new in UML 2.
11.3.45 SendSignalAction (from BasicActions)

Generalizations

» “InvocationAction (from BasicActions)” on page 269

296 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Description

SendSignalAction is an action that creates a signal instance from its inputs, and transmits it to the target object, where it
may cause the firing of a state machine transition or the execution of an activity. The argument values are available to the
execution of associated behaviors. The requestor continues execution immediately. Any reply message isignored and is
not transmitted to the requestor. If the input is aready a signal instance, use SendObjectAction.

Attributes
No additional attributes

Associations

e signal: Signal [1]
The type of signal transmitted to the target object.

e target: InputPin[1]
The target object to which the signal is sent. { Subsets Action: :input}
Constraints
[1] Thenumber and order of argument pins must be the same as the number and order of attributes in the signal.

[2] Thetype, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

[1] When all the prerequisites of the action execution are satisfied, a signal instance of the type specified by signal is
generated from the argument values and this signal instance is transmitted to the identified target object. The target object
may be local or remote. The signal instance may be copied during transmission, so identity might not be preserved. The
manner of transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions
reach the various target objects, and the path for reaching the target objects are undefined.

[2] When atransmission arrives at atarget object, it may invoke behavior in the target object. The effect of receiving asignal
object is specified in 13, “Common Behaviors.” Such effects include executing activities and firing state machine
transitions.

[3] A send signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

Notation

A send signal action is notated with a convex pentagon.

Signa
Type

Send signal action

Figure 11.23 - Send signal notation

© ISO/IEC 2012 - All rights reserved 297

ISO/IEC 19505-2:2012(E)

Examples

See extension in “ SendSignal Action (as specialized)” on page 427.

Rationale

Sends a signal to a specified target object.

Changes from previous UML

Same as UML 1.5.
11.3.46 StartClassifierBehaviorAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 249

Description

StartClassifierBehaviorAction is an action that starts the classifier behavior of the input.

Attributes

No additional attributes

Associations

e object: InputPin[1..1]
Holds the object on which to start the owned behavior. (Subsets Action::input.)

Constraints

[1] Themultiplicity of theinput pinis1..1.

[2] If theinput pin has atype, then the type must have a classifier behavior.
Semantics

When a StartClassifierBehaviorAction is invoked, it initiates the classifier behavior of the classifier of the input object. If
the behavior has already been initiated, or the object has no classifier behavior, this action has no effect.

Notation

No specific notation

Rationale

This action is provided to permit the explicit initiation of classifier behaviors, such as state machines and code, in a
detailed, low-level “raw” specification of behavior.

Changes from previous UML

StartClassifierBehaviorAction is a generalization of the UML 1.5 StartStateMachineAction.

298 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

11.3.47 StartObjectBehaviorAction (from CompleteActions)

Generalizations

» “CalAction (from BasicActions)” on page 256

Description

StartObjectBehaviorAction is an action that starts the execution either of adirectly instantiated behavior or of the classifier
behavior of an object. Argument values may be supplied for the input parameters of the behavior. If the behavior isinvoked
synchronously, then output values may be obtained for output parameters.

Attributes

No additional attributes

Associations

e object: InputPin[0..1]
Holds the object which is either a behavior to be started or has a classifier behavior to be started. (Subsets
Action::input)

Constraints

[1] Thetype of the object input pin must be either a Behavior or a BehavioredClassifier with a classifier behavior.
[2] Themuiltiplicity of the object input pin must be [1..1].

[3] Thenumber and order of the argument pins must be the same as the number and order of the in and in-out parameters of
the invoked behavior. Pins are matched to parameters by order.

[4] The number and order of result pins must be the same as the number and order of the in-out, out and return parameters of
the invoked behavior. Pins are matched to parameters by order.

[5] Thetype, ordering, and multiplicity of an argument or result pin must be the same as the corresponding parameter of the
behavior.

Semantics

A StartObjectBehaviorAction invokes an instantiated behavior or the classifier behavior of the input object. If the input

object is an instantiated behavior that is not already executing, then it begins executing. If the input object has a classifier
behavior that is not already executing, then it isinstantiated and started. In either case, if the invoked behavior has aready
been initiated, then the action has no effect.

Note that, if the input object is not an instantiated behavior, then it must have a classifier behavior. If the input object is
an instantiated behavior, then it may also have a classifier behavior, which is also started. If this classifier behavior itself
has a classifier behavior, then this is also recursively started, and so on.

As akind of CallAction, a StartObjectBehaviorAction must also provide argument values for all the in and inout
parameters of the invoked behavior. Argument values provided on the input pins are available to the execution of the
invoked behavior. If the invoked behavior is started asynchronously, StartObjectBehaviorAction completes after the
behavior starts. If the invoked behavior is started synchronously, StartObjectBehaviorAction completes after the behavior
does, and if the behavior has output parameters, then values produced for those parameters during execution are available
on the result output pins of the action.

© ISO/IEC 2012 - All rights reserved 299

ISO/IEC 19505-2:2012(E)

11.3.48 StructuralFeatureAction (from IntermediateActions)

(IntermediateActions) Structural FeatureAction is an abstract class for all structural feature actions.

Generalizations

« “Action (from BasicActions)” on page 249

Description
This abstract action class statically specifies the structural feature being accessed.

The type of thispin is either the classifier that owns the specified structural feature or, if the structural feature is an owned
end of a binary association, the type of the opposite end of the association. The multiplicity of the pinis 1..1.

Attributes

No additional attributes

Associations

e dtructuraFeature : Structural Feature [1..1]
Structural feature to be read.

e object: InputPin[1..1]
Givesthe input pin from which the object whose structural feature isto be read or written is obtained. (Subsets
Action::input)

Constraints

[1] The structural feature must not be static.
self.structuralFeature.isStatic = #false

[2] The structural feature must either be owned by the type of the object input pin, or it must be an owned end of a binary
association with the type of the opposite end being the type of the object input pin.

self.structuralFeature.featuringClassifier.oclAsType(Type)->includes(self.object.type) or
self.structuralFeature.oclAsType(Property).opposite.type = self.object.type
[3] Themultiplicity of the object input pin must be 1..1.
self.object.lowerBound()=1 and self.object.upperBound()=1
[4] Vishility of structural feature must allow access to the abject performing the action.
let host : Classifier = self.context in
self.structuralFeature.visibility = #public
or host = self.structuralFeature.featuringClassifier.type
or (self.structuralFeature.visibility = #protected and host.allSupertypes
->includes(self.structuralFeature.featuringClassifier.type)))
[5] A structura feature has exactly one featuringClassifier.
self.structuralFeature.featuringClassifier->size() = 1

300 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

A structural feature action operates on a statically specified structural feature of some classifier. The action requires an
object on which to act, provided at runtime through an input pin. If the structural feature is an association end, then
actions on the feature have the same semantics as actions on the links that have the feature as an end. See specializations
of Structural FeatureAction. The semantics is undefined for accessing a structural feature that violates its visibility. The
semantics for static features are undefined.

The structural features and associations of an object may change over time due to dynamic classification. However, the
type of the object input pin of a structural feature action is identified as a single classifier, and it is assumed that the
object passed to the action is classified by that classifier directly or indirectly. The structural feature is referred to as a
user model element, so it is uniquely identified, even if there are other structural features of the same name on other
classifiers.

Notation

No specific notation

Rationale

Structural FeatureAction is introduced for the abstract aspects of structural feature actions.

Changes from previous UML

Structural FeatureAction is new in UML 2. It generalizes AttributeAction in UML 1.5.

11.3.49 TestldentityAction (from IntermediateActions)

TestldentifyAction is an action that tests if two values are identical objects.

Generalizations

« “Action (from BasicActions)” on page 249

Description

This action returns true if the two input values are the same identity, false if they are not.

Attributes

No additional attributes

Associations

e first: InputPin[1..1]
Givesthe pin on which an object is placed. (Subsets Action: :input)

e result: OutputPin[1..1])
Tellswhether the two input objects are identical. (Subsets Action:: output)

e second: InputPin[1..1]
Givesthe pin on which an object is placed. (Subsets Action::input)

© ISO/IEC 2012 - All rights reserved 301

ISO/IEC 19505-2:2012(E)

Constraints

[1] Theinput pins have no type.
self first.type->size() = 0
and self.second.type->size() = 0
[2] Themultiplicity of theinput pinsis 1..1.
self.first.multiplicity.is(1,1)
and self.second.multiplicity.is(1,1)

[3] Thetypeof theresult isthe UML standard primitive type Boolean. (Thisis not directly representable in OCL at the
metamodel level.)

Semantics

When all the prerequisites of the action have been satisfied, the input values are obtained from the input pins and made
available to the computation. If the two input values represent the same object (regardless of any implementation-level
encoding), the value true is placed on the output pin of the action execution; otherwise, the value false is placed on the
output pin. The execution of the action is complete.

Notation

No specific notation

Rationale

TestldentityAction is introduced to tell when two values refer to the same object.

Changes from previous UML

TestldentityAction is unchanged from UML 1.5.
11.3.50 UnmarshallAction (from CompleteActions)

UnmarshallAction is an action that breaks an object of a known type into outputs each of which is equal to a value from
a structural feature of the object.

Generalizations

« “Action (from BasicActions)” on page 249

Description

The outputs of this action correspond to the structural features of the specified type. The input must be of this type.

Attributes
No additional attributes

Associations

e object: InputPin[1..1]
The object to be unmarshalled. { Subsets Action::input}

302 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

e unmarshallType: Classifier [1..1]
The type of the object to be unmarshalled.

e result: OutputPin[1..*]
The values of the structural features of the input object. { Subsets Action:: output}

Constraints

[1] Thetype of the object input pin must be the same as the unmarshall classifier.

[2] Themuiltiplicity of the object input pinis1..1.

[3] Thenumber of result output pins must be the same as the number of structural features of the unmarshall classifier.

[4] Thetype and ordering of each result output pin must be the same as the corresponding structural features of the
unmarshall classifier.

[5] Themultiplicity of each result output pin must be compatible with the multiplicity of the corresponding structural features
of the unmarshall classifier.

[6] Theunmarshall classifier must have at least one structural feature.
[7] unmarshall Type must be a Classifier with ordered attributes.
Semantics

When an object is available on the input pin, the values of the structural features of the specified classifier are retrieved
from the object and placed on the output pins, in the order of the structural features of the specified classifier. The order
of the values in an output pin are the same as the order of the corresponding structural features, if any.

Notation

No specific notation

Examples

See “Unmarshall Action (as specialized)” on page 432.

Rationale

UnmarshallAction is introduced to read all the structural features of an object at once.

Changes from previous UML

UnmarshallAction is the same as UML 1.5, except that the name of the metaassociation to the input pin is changed.
11.3.51 ValuePin (from BasicActions)

Generalizations

« “InputPin (from BasicActions)” on page 269

Description

A value pin is an input pin that provides a value by evaluating a value specification.

© ISO/IEC 2012 - All rights reserved 303

ISO/IEC 19505-2:2012(E)

Attributes
No additional attributes

Associations

e vaue: VaueSpecification [1..1]
Value that the pin will provide. { Subsets Element::ownedElement}

Constraints

[1] Thetype of value specification must be compatible with the type of the value pin.

Semantics

The value of the pin is the result of evaluating the value specification.

Notation

No specific notation. See extensions in Activities.

Rationale

ValuePin is introduced to provide the most basic way of providing inputs to actions.

Changes from previous UML

ValuePin is new to UML 2.
11.3.52 ValueSpecificationAction (from IntermediateActions)

ValueSpecificationAction is an action that evaluates a value specification.

Generalizations

« “Action (from BasicActions)” on page 249

Description

The action returns the result of evaluating a value specification.

Attributes

No additional attributes

Associations

e vaue: ValueSpecification [1]
Value specification to be evaluated. { Subsets Element::ownedElement}

e result: OutputPin [1]
Givesthe output pin on which the result is output. { Subsets Action:: output}

304

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Constraints

[1] Thetype of value specification must be compatible with the type of the result pin.
[2] Themultiplicity of theresult pinis1..1.

Semantics

The value specification is evaluated when the action is enabled.
Notation

See “ValueSpecificationAction (as specialized)” on page 433.
Examples

See “ValueSpecificationAction (as specialized)” on page 433.
Rationale

ValueSpecificationAction is introduced for injecting constants and other value specifications into behavior.

Changes from previous UML

ValueSpecificationAction replaces LiteralValueAction from UML 1.5.

11.3.53 VariableAction (from StructuredActions)

Generalizations

« “Action (from BasicActions)” on page 249

Description

VariableAction is an abstract class for actions that operate on a statically specified variable.

Attributes

No additional attributes

Associations

e variable: Variable[1..1]
Variable to be read.

Constraints

[1] Theaction must be in the scope of the variable.
self.variable.isAccessibleBy(self)

Semantics

Variable action is an abstract metaclass. For semantics see its concrete subtypes.

© ISO/IEC 2012 - All rights reserved 305

ISO/IEC 19505-2:2012(E)

Notation

No specific notation

Rationale

VariableAction is introduced for the abstract aspects of variable actions.

Changes from previous UML

VariableAction is unchanged from UML 1.5.
11.3.54 WriteLinkAction (from IntermediateActions)

WriteLinkAction is an abstract class for link actions that create and destroy links.

Generalizations

« “LinkAction (from IntermediateActions)” on page 270

Description

A write link action takes a complete identification of a link and creates or destroys it.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] All end data must have exactly one input object pin.
self.endData.forall(value->size() = 1)
[2] Thevisibility of at least one end must allow access to the class using the action.

Semantics

See children of WriteLinkAction.

Notation

No specific notation

Rationale

WriteLinkAction is introduced to navigate across links.

Changes from previous UML

WriteLinkAction is unchanged from UML 1.5.

306

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

11.3.55 WriteStructuralFeatureAction (from IntermediateActions)

WriteStructural FeatureAction is an abstract class for structural feature actions that change structural feature values.

Generalizations

» “StructuralFeatureAction (from IntermediateActions)” on page 300

Description

A write structural feature action operates on a structural feature of an object to modify its values. It has an input pin on
which the value that will be added or removed is put. Other aspects of write structural feature actions are inherited from
Structural FeatureAction.

Attributes

No additional attributes

Associations

e vaue: InputPin[0..1])
Value to be added or removed from the structural feature. (Subsets Action::input)

e result : OutputPin [0..1]
Gives the output pin on which the result is put. { Subsets Action:: output}

Constraints

[1] Thetype of the value input pin is the same as the type of the structural feature.
self.value->notEmpty() implies self.value.type = self.structuralFeature.type

[2] Themultiplicity of theinput pinis1..1.
self.value.multiplicity.is(1,1)

[3] Thetype of the result output pin isthe same as the type of the inherited object input pin.
result->notEmpty() implies self.result.type = self.object.type

[4] Themultiplicity of the result output pin must be 1..1.
result->notEmpty() implies self.result.multiplicity.is(1,1)

Semantics

A write structural feature action operates on a structural feature of an object to modify its values. The semantics of this
modification depend on the specific kind of structural feature action. However, in all cases, if a result output pin is
provided, then the input object, as modified, is placed on the output pin. If the input object is actually a data value, then
a copy of the input data value is placed on the output pin, but with the appropriate structural feature modified.

Notation

No specific notation

Rationale

WriteStructural FeatureAction is introduced to abstract aspects of structural feature actions that change structural feature
values.

© ISO/IEC 2012 - All rights reserved 307

ISO/IEC 19505-2:2012(E)

Changes from previous UML

WriteStructural FeatureAction is new in UML 2. It generalizes WriteAttributeAction in UML 1.5.
11.3.56 WriteVariableAction (from StructuredActions)

WriteVariableAction is an abstract class for variable actions that change variable values.

Generalizations

» “VariableAction (from StructuredActions)” on page 305

Description

A write variable action operates on a variable to modify its values. It has an input pin on which the value that will be
added or removed is put. Other aspects of write variable actions are inherited from VariableAction.

Attributes
No additional attributes

Associations

e vaue: InputPin[0..1]
Value to be added or removed from the variable. (Subsets Action::input)

Constraints

[1] Thetypeinput pinisthe same asthe type of the variable.
self.value -> notEmpty() implies self.value.type = self.variable.type

[2] Themuiltiplicity of theinput pinis1..1.
self.value.multiplicity.is(1,1)

Semantics

See children of WriteVariableAction.

Notation

No specific notation

Rationale

WriteVariableAction is introduced to abstract aspects of structural feature actions that change variable values.

Changes from previous UML

WriteVariableAction is unchanged from UML 1.5.

11.4 Diagrams
See “Diagrams’ on page 436

308 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

12 Activities

12.1 Overview

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The actions coordinated
by activity models can be initiated because other actions finish executing, because objects and data become available, or
because events occur externa to the flow.

Actions and activities

An action execution corresponds to the execution of a particular action. Similarly, an activity execution is the execution
of an activity, ultimately including the executions of actions within it. Each action in an activity may execute zero, one,
or more times for each activity execution. At the minimum, actions need access to data, they need to transform and test
data, and actions may require sequencing. The activities specification (at the higher compliance levels) allows for several
(logical) threads of control executing at once and synchronization mechanisms to ensure that activities execute in a
specified order. Semantics based on concurrent execution can then be mapped easily into a distributed implementation.
However, the fact that the UML allows for concurrently executing objects does not necessarily imply a distributed
software structure. Some implementations may group together objects into a single task and execute sequentially—so
long as the behavior of the implementation conforms to the sequencing constraints of the specification.

There are potentially many ways of implementing the same specification, and any implementation that preserves the
information content and behavior of the specification is acceptable. Because the implementation can have a different
structure from that of the specification, there is a mapping between the specification and its implementation. This
mapping need not be one-to-one: an implementation need not even use object-orientation, or it might choose a different
set of classes from the original specification.

The mapping may be carried out by hand by overlaying physical models of computers and tasks for implementation
purposes, or the mapping could be carried out automatically. This part of 1SO/IEC 19505 neither provides the overlays,
nor does it provide for code generation explicitly, but the specification makes both approaches possible.

See the “Activity (from BasicActivities, CompleteActivities, Fundamental Activities, StructuredActivities)” and “Action
(from CompleteActivities, Fundamental Activities, StructuredActivities, CompleteStructuredActivities)” metaclasses for
more introduction and semantic framework.

FundamentalActivities

The fundamental level defines activities as containing nodes, which includes actions. This level is shared between the
flow and structured forms of activities.

BasicActivities

This level includes control sequencing and data flow between actions, but explicit forks and joins of control, as well as
decisions and merges, are not supported. The basic and structured levels are orthogonal. Either can be used without the
other or both can be used to support modeling that includes both flows and structured control constructs.

IntermediateActivities

The intermediate level supports modeling of activity diagrams that include concurrent control and data flow, and
decisions. It supports modeling similar to traditional Petri nets with queuing. It requires the basic level.

© ISO/IEC 2012 - All rights reserved 309

ISO/IEC 19505-2:2012(E)

The intermediate and structured levels are orthogonal. Either can be used without the other or both can be used to support
modeling that includes both concurrency and structured control constructs.

CompleteActivities

The complete level adds constructs that enhance the lower level models, such as edge weights and streaming.

StructuredActivities

The structured level supports modeling of traditional structured programming constructs, such as sequences, loops, and
conditionals, as an addition to fundamental activity nodes. It requires the fundamental level. It is compatible with the
intermediate and complete levels.

CompleteStructuredActivities

This level adds support for data flow output pins of sequences, conditionals, and loops. It depends on the basic layer for
flows.

ExtraStructuredActivities

The extra structure level supports exception handling as found in traditional programming languages and invocation of
behaviors on sets of values. It requires the structured level.

310 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

12.2 Abstract Syntax

Figure 12.1 shows the dependencies of the activity packages.

BasicBehaviors Kernel BasicActions
<<merge>> ‘ <<import>> /l\
FundamentalActivities <<merge>> ‘
A‘ \

I

<<me+ge>> S <<merge>>
‘ BasicActivitie s

I

StructuredActivities | ﬁ

/ |
<<import>>/ /

T T A
<<mEVQLH<<me’ge» / / IntermediateActivities E‘StateMachines
/ /

‘ ExtraStructuredActivities
‘ <<mer@#3>> /k

CompleteActivities

‘ <<merge>>

<<merge>> /
/ <<import>>

CompleteStructuredActivities

Figure 12.1 - Dependencies of the Activity packages

© ISO/IEC 2012 - All rights reserved 311

ISO/IEC 19505-2:2012(E)

Package FundamentalActivities

UML::CommonBehaviors::BasicBehaviors::

UML::Classes::Kernel::

NamedElement

{subsets ownedElement}

+ node

JAY

Behavior
{subsets owner}
Activity ‘+ activity
0.1

Figure 12.2 - Fundamental nodes

*

ActivityNode

JAY

Action

+ isLocallyReentrant : Boolean

UML::Classes::Kernel:: 0.1 Activity
NamedElement D 4
{subsets ownedElement} + inActivity
+ group {subsets owner}
{readOnly, union,
subsets owner}
ActivityGroup . *
+ /superGroup ActivityNode
————
0.1 + /inGroup + /containedNode
{readOnly, union} {readOnly, union}

* | + /subgroup

{readOnly, union,
subsets ownedElement}

Figure 12.3 - Fundamental groups

312

© ISO/IEC 2012 - All rights reserved

Package BasicActivities

{readOnly, union}

RedefinableElement + /redefinedElement

*

*

+ redefinableElement

{subsets redefinedElement}

+ redefinedNode

ActivityNode
*

*

+ activityNode

{subsets redefinableElement}

TypedEl
JAN

Parameter | | ObjectNode

+ parameter 1

*

| ActivityParameterNode |

|Pin|

Figure 12.4 - Nodes (BasicActivities)

© ISO/IEC 2012 - All rights reserved

ControlNode

| ActivityFinalNode | [InitialNode

ISO/IEC 19505-2:2012(E)

313

ISO/IEC 19505-2:2012(E)

{readOnly, union}

+ /redefinedElement

RedefinableEl
(from Kernel)

* %

+ redefinableElement

{subsets redefinedElement}

+ redefinedEdge

ActivityNode ActivityEdge
+ target + incoming

*

1 *
A_incoming_target_node

+ activityEdge

Behavior
(from BasicBehaviors)
/\

{subsets redefinableElement}

+ source + outgoing
* 0.1
" -
A_outgoing_source_node + edge + activity
{subsets ownedElement}
? {subsets owner}

ControlFlow | | ObjectFlow
Figure 12.5 - Flows
{readonly, union} {readOnly, union}
ActivityGroap | + finlSroup +/containedEdge | Activitybdge
* *

Figure 12.6 - Groups

314 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

LAV 22 Comnron Bekaviors::
BasicBehaviors::Behavior

i

Activity
sReadCniy © Booksan

Figure 12.7 - Elements

Package IntermediateActivities

HasicActivities::
Obpectivode

Fa

|

ey alfult e Hode

‘ LA s tivitiens:

Figure 12.8 - Object nodes (IntermediateActivities)

LR - Activitias: : BasicActivities::
ControiNode

FinafMode ForkHode JoinHode MergeHode Decisionlode

[ls 0.1 *

+ decisionInputFlow
+ decisioninput 0.1

0.1
ActivityFinallode FlowFinalHode UML::Activities: UV CommonRelt
:BasicActivities aviors::BasicBelkavi
=z0bjectFlows ors:;:Refavior

Figure 12.9 - Control nodes (IntermediateActivities)

© ISO/IEC 2012 - All rights reserved 315

ISO/IEC 19505-2:2012(E)

{subsets superGroup} {subsets group}
{default value is true} + superPartition + partition Activity
UML::Classes::Kernel::
ValueSpecification 0.1 ‘ ’ 0.1
*tguard | 4 * ActivityPartition +represents | UML::Classes::Kernel::
{subsets ownedElement} + subpartition * 0.1 Element
{subsets subGroup}

* + inPartition * + inPartition

UML::Classes::Kernel::
RedefinableElement

0.1 {subsets inGroup} {subsets inGroup}

¢

ActivityEdge

{subsets containedNode}

+ edge +node | ActivityNode

{subsets containedEdge}

+ [containedEdge + [containedNode

{readOnly, union}
{readOnly, union} V * {readOnly, union}

+ finGroup ActivityGroup

+ [inGroup

{readOnly, union}

Figure 12.10 - Partitions

UV Cizsses::
Kernel:
RedefinableEientant

? {subsets ownedElernent} U2 Classes::

— 0.1 + Harnel:
guard
ActivityEdge > ; ValueSpecification

{default value is true}

Figure 12.11 - Flows (IntermediateActivities)

316 © ISO/IEC 2012 - Al rights reserved

Package CompleteActivities

Activity

iz=ingleExecution | Baolean = falze

Figure 12.12 - Elements (CompleteActivities)

UL o Classes::
Herwel::
NamedEfemant

T

Action 0.1

*

{eubsets ownedElermentt

+ localPrecondition

UML:Classes:

Kernel:
Constraint

Figure 12.13 - Constraints (CompleteActivities)

+ localPostocondition

{subsets ownedElerment}

Figure 12.14 - Flows (CompleteActivities)

© ISO/IEC 2012 - All rights reserved

ObjectFlow +transformation_ UL -
* _
izhiulticast : Boolean 0.1 c‘;::::;ﬂ'::‘:;’f"
izhiuttireceive : Boolean + =election Behavior
. 0.1
LI - Cfasses: Mornei::
RedefinablfeEfoment
T {eubsets ownedElerment}
ActivityFdge + weight UL 2 Ciassos:: Kornal::
"E 1 1 VafneSpacification

{ default value is 1 }

ISO/IEC 19505-2:2012(E)

317

ISO/IEC 19505-2:2012(E)

U Classes::
Harmal::
TypadElament
‘T‘ {subsets ownedElerment}
OhjeciMode +
upperBound . .. ”
arcering | ObjectMNode Orderingfind [w%};g‘?*::?ﬁ:;:::i’"
IsControlTyge | Boolean 0.1 1 #
* * { default walue is unlimited }
+ inState * + =zelection | 0.1
v - W wenumeration:
UML:StateMachines: [ObjectlodedrderingKind
BehaviorStateMachine s:: CommonrFakaviors: Unordered
State :RasicBefkaviors: ardered
Hafavi
afr3vior LFO
FIF

Figure 12.15 - Object nodes (CompleteActivities)

Pin
+ isControl : Boolean = false

Figure 12.16 - Control pins

UML:Activities::
IntermediateActivities:
CentralBuffertlode

i

DataStorelode

Figure 12.17 - Data stores

318

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

UV Ciassesl:
Harnal::
NawedElenent

i

Parameter ParameterSet
izException : Boolean
izStream : Boolean
seAttributes effect | ParameterEffectkind | 1 * *
feubsets ownedMernbert

+ ovynedParameter Set

+ parameter + parameterSet

UML:Classes: L+ Befravior e -
Kernel:Class 0.1
LI :: Classes:: - {subsets ownedhernbert
HornelFeature EF——— ARekavioraiFeature + ownedParameterSet
- "
0.1
LNV - Classes!: 0.1
Hernel:
Na -
fmespace Senumeration:: Isubsets ownedElement}
ParameterEffectKind + condition |+
create
]
red UML:Classes:
update K e .
delete ernel:Constraint
Figure 12.18 - Parameter sets
U s Activities::
RasicActivitias::
CostroiNode
‘T‘ {subsets owne!:IEIement}
JoinHode - +Join Sp ELC U Crasses: Mernel::
isCombineDuplicate - Boolean 01 VafueSpecification
h {detault value iz "and"}

Figure 12.19 - Control nodes (CompleteActivities)

© ISO/IEC 2012 - All rights reserved 319

ISO/IEC 19505-2:2012(E)

{readOnly, union}

ActivityGroup
(from BasicActivities)

ActivityGroup

(from CompleteActivities)

{readOnly, union}

InterruptibleActivityRegion I

0.1

*

+ interrupts

+ interruptingEdge

ActivityEdge

Figure 12.20 - Interruptible regions

320

+ [inGroup + JcontainedNode [ActivityNode
* *
* *
|
+ inInterruptibleRegion + node
{subsets inGroup} {subsets containedNode}

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-2:2012(E)

Package StructuredActivities

Hohadtr el a tieF apemimnt
;trerr: Pt wh ey L
i B cwnar |mieat cerwcBamne) { mnaCeiy, urice) ol

Ackvity Aty * g = dmrtareiode
& Activitytiode
ot .
(s T)
- actvEy
g
a.l
{ reeledires acthty,
redelngs RACTVEY)
- vy
e
Gl
{ bty mGrows, {putnaty, cotanaifiods,
(nabstets nartucapuca} fuhsen owrer) ST
+ atvity oo . + NSt ashiade = nide
iz EMH!I o
ol = warabie 2.1
{mutnets, cwneTHemie |
e [T IR Loopiteds CondlicraMode =
E—
& e mFire - Bocdest = + alFewmrmicai . Boosan
N Heopho +whsmed : Booiean |+ condtoratioos 1.* + ot
[ty et}
= Bty a1 ot .
- ke + dnchiee T T
o Evcndl -
1 Ll L

Figure 12.21 - Structured Nodes

© ISO/IEC 2012 - All rights reserved 321

ISO/IEC 19505-2:2012(E)

Package CompleteStructuredActivities

{readOnly, union}

UML::Classes::Kernel::
RedefinableElement

{readOnly, union}

o]

*

(;r claélse
+ finGroup + [containedEdge {fordered}
ActivityGroup ActivityEdge + bodyOutputy|, *
: +edge | * OutputPin
{subsets containedEdge,
subsets ownedElement} {readOnly, union}
InputPin {readOnly, union}
+ [input N 0.1 N + /output
* 7 + action 7 «
{subsets inGroup, subsets owner}
0..1 | +inStructuredNode
{subsets input} {subsets output}
+ structuredNodelnput + structuredNodeOutput
StructureaNodeinpu 0.1 StructuredActivityNode 0.1
+ mustlsolate : Boolean = false . .
N + structuredActivityNode + structuredActivityNode

{subsets action}

{ordered, redefines

ConditionalNode

{subsets action}

{ordered, redefines structuredNodeOutput}

0.1 + result

+ conditionalNode *

{subsets structuredActivityNode} {ordered}

structuredNodeInput} LoopNode 0-1 + loopVariable
+ loopVariableInput 0.1
+ loopNode *
* + loopNode fordered}
* + bodyOutput
{subsets structuredActivityNode}
+ loopNode *
{ordered, redefines structuredNodeOutput}
0.1 + result
[
+ loopNode *

{subsets structuredActivityNode}

Figure 12.22 - Structured nodes (CompleteStructuredActivities)

Package ExtraStructuredActivities

A - Activities::
StructuredActivitios::

UNA - Classes::
Hoerpol::Elopront

+ exceptioninput
* 1

ExceptionHandler

ActivityMode
ExecutableNode {subsets owner}
+ protectediode *
1 + handler

{subsets ownedElement}
+ handlerBody

LYV -2 Activities::
BasicActivities::
Qbjectiode

+ exceptionType

1 *

Figure 12.23 - Exceptions

322

. 1.2

LYV o Ciassas:
Hernel:: Classifior

© ISO/IEC 2012 - All rights reserved

UML::Activities:
StructuredActivities:
StructuredActivitylode

+ redionA singput

Objectiode

LNV - Activities::
BasicActivities::

zenumeration:
ExpansionKind

ISO/IEC 19505-2:2012(E)

+ inputElement

|El..1

ExpansionRegion
made : Expansionking

||:|..1

1.4]

parallel
iterative
stream

Expansiontode

+ outputElemert r

+ regionasoutput

Figure 12.24 - Expansion regions

12.3 Class Descriptions

12.3.1 AcceptEventAction (as specialized)

See “AcceptEventAction (from CompleteActions)” on page 247.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

If an AcceptEventAction has no incoming edges, then the action starts when the containing activity or structured node
does, whichever most immediately contains the action. In addition, an AcceptEventAction with no incoming edges
remains enabled after it accepts an event. It does not terminate after accepting an event and outputting a value, but
continues to wait for other events. This semantic is an exception to the normal execution rules in Activities. An
AcceptEventAction with no incoming edges and contained by a structured node is terminated when its container is

terminated.

Notation

See “AcceptEventAction (from CompleteActions)” on page 247.

© ISO/IEC 2012 - All rights reserved

323

ISO/IEC 19505-2:2012(E)

Examples

Figure 12.25 is an example of the acceptance of a signal indicating the cancellation of an order. The acceptance of the
signal causes an invocation of a cancellation behavior. This action is enabled on entry to the activity containing it,
therefore no input arrow is shown.

Cancel] Cancel
order

Figure 12.25 - Accept signal - top level in scope

In Figure 12.26, arequest payment signal is sent after an order is processed. The activity then waits to receive a payment
confirmed signal. Acceptance of the payment confirmed signal is enabled only after the request for payment is sent; no
confirmation is accepted until then. When the confirmation is received, the order is shipped.

Process Request Pay t
. ymen Shi
Payment | confirmed
| /

Figure 12.26 - Accept signal - explicit enable

In Figure 12.27, the end-of-month accept time event action generates an output at the end of the month. Since there are no
incoming edges to the time event action, it is enabled aslong asits containing activity or structured nodeis. It will generate an
output at the end of every month.

End of Report
month Meter
occurred Readin

Figure 12.27 - Repetitive time event

Rationale

See “AcceptEventAction (from CompleteActions)” on page 247.

Changes from previous UML

See “AcceptEventAction (from CompleteActions)” on page 247.

324 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities,
CompleteStructuredActivities)

Generalizations

« “ActivityNode (from BasicActivities, CompleteActivities, Fundamental Activities, IntermediateActivities,
CompleteStructuredActivities)” on page 349.

» “ExecutableNode (from ExtraStructuredActivities, StructuredActivities)” on page 382.

« “Action (from BasicActions)” on page 249 (merge increment).

Description

An action represents a single step within an activity, that is, one that is not further decomposed within the activity. An
activity represents a behavior that is composed of individual elements that are actions. Note, however, that a call behavior
action may reference an activity definition, in which case the execution of the call action involves the execution of the
referenced activity and its actions (similarly for all the invocation actions). An action is therefore simple from the point
of view of the activity containing it, but may be complex in its effect and not be atomic. As a piece of structure within an
activity model, it is a single discrete element; as a specification of behavior to be performed, it may invoke referenced
behavior that is arbitrarily complex. As a conseguence, an activity defines a behavior that can be reused in many places,
whereas an instance of an action is only used once at a particular point in an activity.

An action may have sets of incoming and outgoing activity edges that specify control flow and data flow from and to
other nodes. An action will not begin execution until all of its input conditions are satisfied. The completion of the
execution of an action may enable the execution of a set of successor nodes and actions that take their inputs from the
outputs of the action.

Package CompleteActivities

In CompleteActivities, action is extended to have pre- and postconditions.
Attributes

Package FundamentalActivities

e isLocallyReentrant : Boolean = false
If true, the action can begin a new, concurrent execution, even if thereis already another execution of the action
ongoing. If false, the action cannot begin anew execution until any previous execution has completed. The default is
false.

Associations

Package CompleteActivities

e locaPrecondition : Constraint [0..*]
Congtraint that must be satisfied when execution is started. { Subsets Element: : ownedElement}

e locaPostcondition : Congtraint [0..*]
Constraint that must be satisfied when execution is completed. { Subsets Element: : ownedElement}

© ISO/IEC 2012 - All rights reserved 325

ISO/IEC 19505-2:2012(E)

Package CompleteStructuredActivities

e [input: InputPin [0..*]
The ordered set of input pins connected to the Action.

e Joutput: InputPin [0..*]
The ordered set of output pins connected to the Action.

Constraints

No additional constraints

Operations

[1] activity operates on Action. It returns the activity containing the action.
activity() : Activity;
activity = if self.Activity->size() > 0 then self.Activity else self.group.activity() endif

Semantics

The sequencing of actions are controlled by control edges and object flow edges within activities, which carry control and
object tokens respectively (see Activity). Alternatively, the sequencing of actions is controlled by structured nodes, or by
a combination of structured nodes and edges. Except where noted, an action can only begin execution when it has been

offered control tokens on all incoming control flows and all its input pins have been offered object tokens sufficient for
their multiplicity. The action begins execution by accepting all the offers of control and object tokens allowed by input

pin multiplicity. When the execution of an action is complete, it offers control tokens on its outgoing control flows and

object tokens from its output pins.

The steps of executing an action with control and object flow are as follows:;

[1] Anaction execution is created when all its object flow and control flow prerequisites have been satisfied (implicit join).
Exceptionsto this are listed below. The object flow prerequisite is satisfied when all of the input pins are offered all
necessary tokens, as specified by their minimum multiplicity, and accept them all at once up to their maximum
multiplicity, precluding them from being consumed by any other actions. This ensures input pins on separate actions
competing for the same tokens do not accept any the action cannot immediately consume, causing deadlock or starvation
as actions wait for tokens taken by input pins of other actions but not used.

[2] When an action accepts the offers for control and object tokens, the tokens are removed from the original sources that
offered them. If multiple control tokens are available on a single incoming control flow, they are all consumed. Object
tokens accepted on an incoming object flow to an input pin are placed on the input pin, from which they are consumed by
the execution of the action. For structured actions, tokens can remain on input pins during action execution, otherwise
they are immediately removed from the input pins by the action execution.

[3] Anaction continues executing until it has completed. Most actions operate only on their inputs. Some give accessto a
wider context, such as variablesin the containing structured activity node, or the self object, which is the object owning
the activity containing the executing action. The detailed semantic of execution an action and definition of completion
depends on the particular subclass of action.

[4] When completed, an action execution offers any object tokensthat have been placed on its output pins and control tokens
on all its outgoing control flows (implicit fork), and it terminates. Exceptions to this are listed below. The offered tokens
may now satisfy the control or object flow prerequisites for other action executions.

[5] After an action execution hasterminated, its resources may be reclaimed by an implementation, but the details of resource
management are not part of thistext and are properly part of an implementation profile.

See ValuePin and Parameter for exceptions to rule for starting action execution.

326 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

If an action is not locally reentrant (isL ocallyReentrant=false, the default), then no more than one execution of it will
exist at any given time within the context of a single execution of the containing activity. Even if the action would
normally begin an execution according to the rules above, it will not start a new execution if there is already one ongoing
within the same activity execution. In this case, the action simply does not accept any tokens offered to it until its ongoing
execution has finished. At this point, if the required tokens are still available, the action may accept the offers and begin
a new execution.

On the other hand, if an action is locally reentrant (isLocallyReentrant=true), then it will begin a new execution any time
the rules above allow it, even if there are one or more executions already going within the same activity execution. This
means that there may be, within any one execution of the containing activity, more than one concurrent execution of the
action ongoing at any given time.

A call action for a non-reentrant behavior will also act locally non-reentrant, whatever the value of the isL ocallyReentrant
property for the action. Moreover, an invocation action for a non-reentrant behavior will not execute if there is any
currently running execution for the behavior, whether invoked by this action or any other (see “CallAction (from
BasicActions)” on page 256).

Package ExtraStructuredActivities

If an exception occurs during the execution of an action, the execution of the action is abandoned and no regular output
is generated by this action. If the action has an exception handler, it receives the exception object as a token. If the action
has no exception handler, the exception propagates to the enclosing node and so on until it is caught by one of them. If an
exception propagates out of a nested node (action, structured activity node, or activity), all tokens in the nested node are
terminated. The data describing an exception is represented as an object of any class.

Package CompleteActivities

Streaming allows an action execution to take inputs and provide outputs while it is executing. During one execution, the
action may consume multiple tokens on each streaming input and produce multiple tokens on each streaming output. See
Parameter.

Local pre- and post-conditions are constraints that should hold when the execution starts and compl etes, respectively.
They hold only at the point in the flow that they are specified, not globally for other invocations of the behavior at other
places in the flow or on other diagrams. Compare to pre and postconditions on Behavior (in Activities). See semantic
variations below for their effect on flow.

Semantic Variation Points

Package CompleteActivities

How local pre- and postconditions are enforced is determined by the implementation. For example, violations may be
detected at compile time or runtime. The effect may be an error that stops the execution or just a warning, and so on.
Since local pre- and post-conditions are model er-defined constraints, violations do not mean that the semantics of the
invocation is undefined as far as UML goes. They only mean the model or execution trace does not conform to the
modeler’s intention (although in most cases this indicates a serious modeling error that calls into question the validity of
the model).

See variations in ActivityEdge and ObjectNode.

Notation

Use of action and activity notation is optional. A textual notation may be used instead.

© ISO/IEC 2012 - All rights reserved 327

ISO/IEC 19505-2:2012(E)

Actions are notated as round-cornered rectangles. The name of the action or other description of it may appear in the
symbol. See children of action for refinements.

Figure 12.28 - Action

Package CompleteActivities

Local pre- and post-conditions are shown as notes attached to the invocation with the keywords «local Precondition» and
«local Postcondition», respectively.

«local Precondition»
constraint

«local Postcondition»
constraint

Figure 12.29 - Local pre- and post-conditions

Examples

Examples of actions are illustrated below. These perform behaviors called Send Payment and Accept Payment.

Send Accept
Payment Payment

Figure 12.30 - Examples of actions

Below is an example of an action expressed in an application-dependent action language:

FOR every Employee
calculate salary

print check

ENDFOR

Figure 12.31 - Example of action with tool-dependent action language

328 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package CompleteActivities

The example below illustrates local pre- and postconditions for the action of a drink-dispensing machine. Thisis
considered “local” because a drink-dispensing machine is constrained to operate under these conditions for this particular
action. For a machine technician scenario, the situation would be different. Here, a machine technician would have a key
to open up the machine, and therefore no money need be inserted to dispense the drink, nor change need be given. In such
a situation, the global pre- and post-conditions would be all that is required. (Global conditions are described in Activity
specification, in the next sub clause.) For example, aglobal pre-condition for a Dispense Drink activity could be “A drink
is selected that the vending machine dispenses.” The post-condition, then, would be “The vending machine dispensed the
drink that was selected.” In other words, there is no global requirement for money and correct change.

«local Precondition»

A drink is selected that

the vending machine contains and
the correct payment is made.

Dispense
Drink

«local Postcondition»
The vending machine dispensed
the drink that is selected and
correct change is provided.

Figure 12.32 - Example of an action with local pre- and post-conditions

Changes from previous UML

Explicitly modeled actions as part of activities are new in UML 2, and replace ActionState, Call State, and
SubactivityState in UML 1.5. They represent a merger of activity graphs from UML 1.5 and actions from UML 1.5.

Local pre- and post-conditions are new to UML 2.

12.3.3 ActionIinputPin (as specialized)

See “ActionlnputPin (from StructuredActions)” on page 250.

Attributes
No additional attributes

Associations

No additional associations

Constraints

No additional constraints

© ISO/IEC 2012 - All rights reserved 329

ISO/IEC 19505-2:2012(E)

Semantics

See “ActionlnputPin (from StructuredActions)” on page 250.

Notation

An action input pin with a ReadVariableAction as a fromAction is notated as an input pin with the variable name written
beside it. An action input pin with a ReadSelfObject as a fromAction is notated as an input pin with the word “self”
written beside it. An action input pin with a ValueSpecification as a fromAction is notated as an input pin with the value
specification written beside it.

Examples

See “ActionlnputPin (from StructuredActions)” on page 250.

12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
StructuredActivities)

An activity is the specification of parameterized behavior as the coordinated sequencing of subordinate units whose
individual elements are actions. There are actions that invoke activities (directly by “CallBehaviorAction (from
BasicActions)” on page 257 or indirectly as methods by “ CallOperationAction (from BasicActions)” on page 258).

Generalizations

» “Behavior (from BasicBehaviors)” on page 451

Description

An activity specifies the coordination of executions of subordinate behaviors, using a control and data flow model. The
subordinate behaviors coordinated by these models may be initiated because other behaviors in the model finish
executing, because objects and data become available, or because events occur external to the flow. The flow of execution
is modeled as activity nodes connected by activity edges. A node can be the execution of a subordinate behavior, such as
an arithmetic computation, a call to an operation, or manipulation of object contents. Activity nodes also include flow-of-
control constructs, such as synchronization, decision, and concurrency control. Activities may form invocation hierarchies
invoking other activities, ultimately resolving to individual actions. In an object-oriented model, activities are usually
invoked indirectly as methods bound to operations that are directly invoked.

Activities may describe procedural computation. In this context, they are the methods corresponding to operations on
classes. Activities may be applied to organizational modeling for business process engineering and workflow. In this
context, events often originate from inside the system, such as the finishing of atask, but aso from outside the system,
such as a customer call. Activities can also be used for information system modeling to specify system level processes.

Activities may contain actions of various kinds:
» Occurrences of primitive functions, such as arithmetic functions.
« Invocations of behavior, such as activities.
« Communication actions, such as sending of signals.

» Manipulations of objects, such as reading or writing attributes or associations.

330 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Actions have no further decomposition in the activity containing them. However, the execution of a single action may
induce the execution of many other actions. For example, a call action invokes an operation that is implemented by an
activity containing actions that execute before the call action completes.

Most of the constructs in the Activity clause deal with various mechanisms for sequencing the flow of control and data
among the actions:

» Object flows for sequencing data produced by one node that is used by other nodes.
« Control flows for sequencing the execution of nodes.

 Control nodes to structure control and object flow. These include decisions and merges to model contingency. These
asoincludeinitia and final nodes for starting and ending flows. In IntermediateActivities, they include forks and joins
for creating and synchronizing concurrent subexecutions.

« Activity generalization to replace nodes and edges.

» Object nodes to represent objects and data as they flow in and out of invoked behaviors, or to represent collections of
tokens waiting to move downstream.

Package StructuredActivities

» Composite nodes to represent structured flow-of-control constructs, such as|oops and conditionals.

Package IntermediateActivities

- Partitions to organize lower-level activities according to various criteria, such as the real-world organization
responsible for their performance.

Package CompleteActivities

« Interruptible regions and exceptions to represent deviations from the normal, mainline flow of control.
Attributes

Package BasicActivities

e isReadOnly : Boolean = false
If true, this activity must not make any changes to variables outside the activity or to objects. (Thisisan assertion, not
an executable property. It may be used by an execution engine to optimize model execution. If the assertion is
violated by the action, then the model isill-formed.) The default is false (an activity may make non-local changes).
Package CompleteActivities
« isSingleExecution : Boolean = false
If true, al invocations of the activity are handled by the same execution.

Associations

Package FundamentalActivities

e group: ActivityGroup [0..*]
Top-level groups in the activity. { Subsets Namespace: : ownedElement}

¢ node: ActivityNode [0..*]
Nodes coordinated by the activity. { Subsets Namespace: : ownedElement}

© ISO/IEC 2012 - All rights reserved 331

ISO/IEC 19505-2:2012(E)

Package BasicActivities

e edge: ActivityEdge [0..*]
Edges expressing flow between nodes of the activity. { Subsets Namespace: : ownedEl ement}

Package IntermediateActivities

e partition : ActivityPartition [0..*]
Top-level partitions in the activity. { Subsets Activity: : group}

Package StructuredActivities

e structuredNode : StructuredActivityNode [0..*]
Top-level structured nodes in the activity. { Subsets Activity::node, Activity::group}

e variable: Variable[0..*]
Top-level variablesin the activity. Subsets Namespace: : ownedMember.

Constraints
[1] The nodes of the activity must include one ActivityParameterNode for each parameter.
[2] Anactivity cannot be autonomous and have a classifier or behavioral feature context at the same time.

[3] The groups of an activity have no supergroups.

Semantics

The semantics of activities is based on token flow. By flow, we mean that the execution of one node affects, and is
affected by, the execution of other nodes, and such dependencies are represented by edges in the activity diagram. A token
contains an object, datum, or locus of control, and is present in the activity diagram at a particular node. Each token is
distinct from any other, even if it contains the same value as another. A node may begin execution when specified
conditions on its input tokens are satisfied; the conditions depend on the kind of node. When a node begins execution,
tokens are accepted from some or all of itsinput edges and a token is placed on the node. When a node completes
execution, atoken is removed from the node and tokens are offered to some or all of its output edges. See later in this sub
clause for more about how tokens are managed.

All restrictions on the relative execution order of two or more actions are explicitly constrained by flow relationships. If
two actions are not directly or indirectly ordered by flow relationships, they may execute concurrently. This does not
require parallel execution; a specific execution engine may choose to perform the executions sequentialy or in parallel, as
long as any explicit ordering constraints are satisfied. In most cases, there are some flow relationships that constrain
execution order. Concurrency is supported in IntermediateActivities, but not in BasicActivities.

Activities can be parameterized, which is a capability inherited from Behavior (see 12.3.9, “ActivityParameterNode (from
BasicActivities),” on page 352). Functionality inherited from Behavior also supports the use of activities on classifiers
and as methods for behavioral features. The classifier, if any, is referred to as the context of the activity. At runtime, the
activity has access to the attributes and operations of its context object and any objects linked to the context object,
transitively. An activity that is also a method of a behavioral feature has access to the parameters of the behavioral
feature. In workflow terminology, the scope of information an activity uses is called the process-relevant data.
Implementations that have access to metadata can define parameters that accept entire activities or other parts of the user
model.

332 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

An activity with a classifier context, but that is not a method of a behavioral feature, can be invoked after the classifier is
instantiated. An activity that is a method of a behavioral feature is invoked when the behavioral feature is invoked. The
Behavior metaclass also provides parameters, which must be compatible with the behavioral feature it is a method of, if
any. Behavior also supports overriding of activities used as inherited methods. See the Behavior metaclass for more
information.

Activities can also be invoked directly by other activities rather than through the call of a behavioral feature that has an
activity as a method. This functional or monomorphic style of invocation is useful at the stage of development where
focus is on the activities to be completed and goals to be achieved. Classifiers responsible for each activity can be
assigned at a later stage by declaring behavioral features on classifiers and assigning activities as methods for these
features. For example, in business reengineering, an activity flow can be optimized independently of which departments
or positions are later assigned to handle each step. This is why activities are autonomous when they are not assigned to a
classifier.

Regardless of whether an activity is invoked through a behavioral feature or directly, inputs to the invoked activity are
supplied by an invocation action in the calling activity, which gets its inputs from incoming edges. Likewise an activity
invoked from another activity produces outputs that are delivered to an invocation action, which passes them onto its
outgoing edges. See “Parameter (from CompleteActivities)” on page 415 for more about how activities start and stop
execution.

An activity execution represents an execution of the activity. An activity execution, as a reflective object, can support
operations for managing execution, such as starting, stopping, aborting, and so on; attributes, such as how long the
process has been executing or how much it costs; and links to objects, such as the performer of the execution, who to
report completion to, or resources being used, and states of execution such as started, suspended, and so on. Used this
way activity is the modeling basis for the WfProcess interface in the OMG Workflow Management Facility,
www.omg.org/cgi-bin/doc?formal/00-05-02. It is expected that profiles will include class libraries with standard classes
that are used as root classes for activities in the user model. Vendors may define their own libraries, or support user-
defined features on activity classes.

Nodes and edges have token flow rules. Nodes control when tokens enter or leave them. Edges have rules about when a
token may be taken from the source node and moved to the target node. A token traverses an edge when it satisfies the
rules for target node, edge, and source node all at once. This means a source node can only offer tokens to the outgoing
edges, rather than force them along the edge, because the tokens may be rejected by the edge or the target node on the
other side. Multiple tokens offered to an edge at once is the same as if they were offered one at a time. Since multiple
edges can |eave the same node, the same token can be offered to multiple targets. However, atoken can only be accepted
at one target. This means flow semantics is highly distributed and subject to timing issues and race conditions, as is any
distributed system. There is no specification of the order in which rules are applied on the various nodes and edgesin an
activity. It is the responsibility of the modeler to ensure that timing issues do not affect system goals, or that they are
eliminated from the model. Execution profiles may tighten the rules to enforce various kinds of execution semantics. Start
at ActivityEdge and ActivityNode to see the token management rules.

Tokens cannot “rest” at control nodes, such as decisions and merges, waiting to move downstream. Control nodes act as
traffic switches managing tokens as they make their way between object nodes and actions, which are the nodes where
tokens can rest for a period of time. Initial nodes are excepted from this rule.

A data token with no value in is called the null token. It can be passed along and used like any other token. For example,
an action can output a null token and a downstream decision point can test for it and branch accordingly. Null tokens
satisfy the type of all object nodes.

© ISO/IEC 2012 - All rights reserved 333

ISO/IEC 19505-2:2012(E)

The semantics of activities is specified in terms of these token rules, but only for the purpose of describing the expected
runtime behavior. Token semantics is not intended to dictate the way activities are implemented, despite the use of the
term “execution.” They only define the sequence and conditions for behaviors to start and stop. Token rules may be
optimized in particular cases as long as the effect is the same.

Package IntermediateActivities

Activities can have multiple tokens flowing in them at any one time, if required. Special nodes called object nodes
provide and accept objects and data as they flow in and out of invoked behaviors, and may act as buffers, collecting
tokens as they wait to move downstream.

Package CompleteActivities

Each time an activity is invoked, the isSingleExecution attribute indicates whether the same execution of the activity
handles tokens for all invocations, or a separate execution of the activity is created for each invocation. For example, an
activity that models a manufacturing plant might have a parameter for an order to fill. Each time the activity is invoked,
a new order enters the flow. Since there is only one plant, one execution of the activity handles all orders. This applies
even if the behavior is a method, for example, on each order. If a single execution of the activity is used for all
invocations, the modeler must consider the interactions between the multiple streams of tokens moving through the nodes
and edges. Tokens may reach bottlenecks waiting for other tokens ahead of them to move downstream, they may overtake
each other due to variations in the execution time of invoked behaviors, and most importantly, may abort each other with
constructs such as activity final.

If a separate execution of the activity is used for each invocation, tokens from the various invocations do not interact. For
example, an activity that is the behavior of a classifier, is invoked when the classifier is instantiated, and the modeler will
usually want a separate execution of the activity for each instance of the classifier. The same is true for modeling methods
in common programming languages, which have separate stack frames for each method call. A new activity execution for
each invocation reduces token interaction, but might not eliminate it. For example, an activity may have a loop creating
tokens to be handled by the rest of the activity, or an unsynchronized flow that is aborted by an activity final. In these
cases, modelers must consider the same token interaction issues as using a single activity execution for al invocations.
Also see the effect of non-reentrant behaviors described at Except in CompleteActivities, each invocation of an activity is
executed separately; tokens from different invocations do not interact.

Nodes and edges inherited from more general activities can be replaced. See RedefinableElement for more information on
overriding inherited elements.

Package IntermediateActivities

If a single execution of the activity is used for all invocations, the modeler must consider additional interactions between
tokens. Tokens may reach bottlenecks waiting for tokens ahead of them to move downstream, they may overtake each
other due to the ordering algorithm used in object node buffers, or due to variations in the execution time of invoked
behaviors, and most importantly, may abort each other with constructs such as activity final, exception outputs, and
interruptible regions.

Package CompleteActivities

Complete activities add functionality that also increases interaction. For example, streaming outputs create tokens to be
handled by the rest of the activity. In these cases, modelers must consider the same token interaction issues even when
using a separate execution of activity execution for al invocations.

Interruptible activity regions are groups of nodes within which all execution can be terminated if an interruptible activity
edge is traversed leaving the region.

334 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

See “ActivityNode (from BasicActivities, CompleteActivities, Fundamental Activities, IntermediateActivities,
CompleteStructuredActivities)” and “ActivityEdge (from BasicActivities, CompleteActivities,
CompleteStructuredActivities, IntermediateActivities)” for more information on the way activities function. An activity
with no nodes and edges is well-formed, but unspecified. It may be used as an aternative to a generic behavior in activity
modeling. See “ActivityPartition (from IntermediateActivities)” for more information on grouping mechanisms in
activities.

Semantic Variation Points

No specific variations in token management are defined, but extensions may add new types of tokens that have their own
flow rules. For example, a BPEL extension might define a failure token that flows along edges that reject other tokens. Or
an extension for systems engineering might define a new control token that terminates executing actions.

Notation
Use of action and activity notation is optional. A textual notation may be used instead.

The notation for an activity is a combination of the notations of the nodes and edges it contains, plus a border and name
displayed in the upper left corner. Activity parameter nodes are displayed on the border. Actions and flows that are
contained in the activity are also depicted.

Pre- and post-condition constraints, inherited from Behavior, are shown as with the keywords «precondition» and
«postcondition», respectively. These apply globally to all uses of the activity. See Figure 12.33 and Behavior in Common
Behavior; compare to local pre- and post-conditions on Action.

(CompleteActivities) The keyword «singleExecution» is used for activities that execute as a single shared execution;
otherwise, each invocation executes in its space. See the notation sub clauses of the various kinds of nodes and edges for
more information.

activity name «precondition» constraint)
parameter name: Type «postconditions» constraint

e)

Figure 12.33 - Activity notation

© ISO/IEC 2012 - All rights reserved 335

ISO/IEC 19505-2:2012(E)

The notation for classes can be used for diagramming the features of a reflective activity as shown below, with the
keyword “activity” to indicate it is an activity class. Association and state machine notation can also be used as necessary.

«activity»
Activity Name

attribute : type
attribute : type

operation (parameters)
operation (parameters)

Figure 12.34 - Activity class notation

Presentation Options

The round-cornered border of Figure 12.33 may be replaced with the frame notation described in Annex A. Activity
parameter nodes are displayed on the frame. The round-cornered border or frame may be omitted completely. See the
presentation option for “ ActivityParameterNode (from BasicActivities)” on page 352.

Examples

The definition of Process Order below uses the border notation to indicate that it is an activity. It has pre- and post
conditions on the order (see Behavior). All invocations of it use the same execution.

Process Order «precondition» Order complete _ _
Requested Order: Order «postcondition» Order closed «singleExecution»

[order
rejected]

Requested
Order

L Invoice

Figure 12.35 - Example of an activity with input parameter

336 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

The diagram below is based on a standard part selection workflow within an airline design process. Notice that the
Standards Engineer insures that the substeps in Provide Required Part are performed in the order specified and under the
conditions specified, but doesn’t necessarily perform the steps. Some of them are performed by the Design Engineer even
though the Standards Engineer is managing the process. The Expert Part Search behavior can result in a part found or not.
When a part is not found, it is assigned to the Assign Standards Engineer activity. Lastly, Schedule Part Mod Workflow
invocation produces entire activities and they are passed to subsequent invocations for scheduling and execution (i.e.,
Schedule Part Mod Workflow, Execute Part Mod Workflow, and Research Production Possibility). In other words,
behaviors can produce tokens that are activities that can in turn be executed; in short, runtime activity generation and
execution.

© ISO/IEC 2012 - All rights reserved 337

ISO/IEC 19505-2:2012(E)

Design Part

[part
Design
Engineer [part not

found]
Standards
Engineer
\
Provide Required Part Standards Design
Engineer Engineer

\[Q Clarify
equirement;
Review
Schedule

X [cancel]
o @
—{ Provide

addt’| part
mod info

[stream]

Execute
Part Mod
Workflow,

Research
Production
Possibility,

Figure 12.36 - Workflow example

338 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Figure 12.37 shows another example activity for a process to resolve atrouble ticket.

4 -
Trouble Ticket
[problem statement rectified)]
[cannot
reproduce
problem
s Correct <
[not recorded)]
known
[can oblem
reproduce
problem]
Communicatg
Results
Audit and
Record
[problem not solved]
\ J

Figure 12.37 - Workflow example

Below is an example of using class notation to show the class features of an activity. Associations and state machines can
aso be shown.

«activity»
Fill Order

costSoFar : USD
timeToComplete : Integer

suspend ()
resume ()

Figure 12.38 - Activity class with attributes and operations

Rationale

Activities are introduced to flow models that coordinate other behaviors, including other flow models. It supports class
features to model control and monitoring of executing processes, and relating them to other objects (for example, in an
organization model).

Changes from previous UML

Activity replaces ActivityGraph in UML 1.5. Activities are redesigned to use a Petri-like semantics instead of state
machines. Among other benefits, this widens the number of flows that can be modeled, especially those that have parallel
flows. Activity also replaces procedures in UML 1.5, as well as the other control and sequencing aspects, including
composite and collection actions.

© ISO/IEC 2012 - All rights reserved 339

ISO/IEC 19505-2:2012(E)

12.3.5 ActivityEdge (from BasicActivities, CompleteActivities,
CompleteStructuredActivities, IntermediateActivities)

An activity edge is an abstract class for directed connections between two activity nodes.

Generalizations

» “RedefinableElement (from Kernel)” on page 137

Description

ActivityEdge is an abstract class for the connections along which tokens flow between activity nodes. It covers control
and data flow edges. Activity edges can control token flow.

Package CompleteActivities

Complete activity edges can be contained in interruptible regions.

Attributes
No additional attributes

Associations

Package BasicActivities

e activity : Activity[0..1]
Activity containing the edge. { Subsets Element::owner}

e [inGroup : ActivityGroup[0..*]
Groups containing the edge. Multiplicity specialized to [0..1] for StructuredActivityGroup.

e redefinedEdge : ActivityEdge [0..*]
Inherited edges replaced by this edge in a specialization of the activity. { Subsets
Redefinabl eElement: : redefinedElement}

e source: ActivityNode [1..1]
Node from which tokens are taken when they traverse the edge.

e target: ActivityNode[1..1]
Node to which tokens are put when they traverse the edge.
Package IntermediateActivities

e inPartition : Partition [0..*]
Partitions containing the edge. { Subsets ActivityEdge: :inGroup}

e guard: VaueSpecification [1..1] = true
Specification evaluated at runtime to determine if the edge can be traversed. { Subsets Element:: ownedElement}
Package CompleteStructuredActivities

e inStructuredNode : StructuredActivityNode [0..1]
Structured activity node containing the edge. { Subsets ActivityEdge: :inGroup, Element::owner}

340 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package CompleteActivities

e interrupts: InterruptibleActivityRegion [0..1]
Region that the edge can interrupt.

e weight : ValueSpecification [1..1] =1
The minimum number of tokens that must traverse the edge at the same time. { Subsets Element: : ownedElement}

Constraints
[1] The source and target of an edge must be in the same activity as the edge.
[2] Activity edges may be owned only by activities or groups.

Package CompleteStructuredActivities

[1] Activity edges may be owned by at most one structured node.

Semantics
Activity edges are directed connections, that is, they have a source and a target, along which tokens may flow.

Other rules for when tokens may be passed along the edge depend on the kind of edge and characteristics of its source
and target. See the children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm as
long as the effect is the same.

The guard must evaluate to true for every token that is offered to pass along the edge. Tokens in the intermediate level of
activities can only pass along the edge individually at different times. See application of guards at DecisionNode.

Package CompleteActivities

Any number of tokens can pass along the edge, in groups at one time, or individually at different times. The weight
attribute dictates the minimum number of tokens that must traverse the edge at the same time. It is a value specification
evaluated every time a new token becomes available at the source. It must evaluate to a positive LiteralUnlimitedNatural,
and may be a constant. When the minimum number of tokens are offered, all the tokens at the source are offered to the
target al at once. The minimum number of tokens must be accepted by the target for any tokens to traverse the edge. The
guard must evaluate to true for each token. If the guard fails for any of the tokens, and this reduces the number of tokens
that can be offered to the target to less than the weight, then all the tokens fail to be offered. An unlimited weight means
that all the tokens at the source must be accepted by the target for any of them to traverse the edge. This can be combined
with ajoin to take al of the tokens at the source when certain conditions hold (see examples in Figure 12.45). A weaker
but simpler alternative to weight is grouping information into larger objects so that a single token carries all necessary
data (see additional functionality for guards at DecisionNode).

Other rules for when tokens may be passed along the edge depend on the kind of edge and characteristics of its source
and target. See the children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm as
long as the effect is the same. For example, if the target is an object node that has reached its upper bound, no token can
be passed. The implementation can omit unnecessary weight evaluations until the downstream object node can accept
tokens.

Edges can be named, by inheritance from RedefinableElement, which is a NamedElement. However, edges are not
required to have unique names within an activity. The fact that Activity is a Namespace, inherited through Behavior, does
not affect this, because the containment of edges is through ownedElement, the general ownership metaassociation for
Element that does not imply unique names, rather than ownedM ember.

© ISO/IEC 2012 - All rights reserved 341

ISO/IEC 19505-2:2012(E)

Edges inherited from more general activities can be replaced. See RedefinableElement for more information on overriding
inherited elements.

Semantic Variation Points

See variations at children of ActivityEdge and ActivityNode.

Notation

An activity edge is notated by an open arrowhead line connecting two activity nodes. If the edge has a name, it is notated
near the arrow.

name

Regular activity edge Activity edge with name

Figure 12.39 - Activity edge notation

An activity edge can also be notated using a connector, which is a small circle with the name of the edge in it. Thisis
purely notational. It does not affect the underlying model. The circles and lines involved map to a single activity edge in
the model. Every connector with a given label must be paired with exactly one other with the same label on the same
activity diagram. One connector must have exactly one incoming edge and the other exactly one outgoing edge, each with

the same type of flow, object or control. This assumes the UML 2.0 Diagram Interchange specification supports the
interchange of diagram elements and their mapping to model elements.

%@ % (where, n is connector name)

Figure 12.40 - Activity edge connector notation

342 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Package CompleteActivities

The weight of the edge may be shown in curly braces that contain the weight. The weight is a value specification, which
may be a constant, that evaluates to a non-zero unlimited natural value. An unlimited weight is notated as “*”. When
regions have interruptions, a lightning-bolt style activity edge expresses this interruption (see InterruptibleActivityRegion;
see Pin for filled arrowhead notation).

{weight=n}
{weight=*}
Activity edge for interruptible regions
Wth edge weight

(where nis a value specification)

Figure 12.41 - Activity edge notation
Examples

Package BasicActivities

In the example illustrated below, the arrowed line connecting Fill Order to Ship Order is a control flow edge. This means
that when the Fill Order behavior is completed, control is passed to the Ship Order. Below it, the same control flow is
shown with an edge name. The one at the bottom left employs connectors, instead of a continuous line. On the upper
right, the arrowed lines starting from Send Invoice and ending at Make Payment (via the Invoice object node) are object
flow edges. This indicates that the flow of Invoice objects goes from Send Invoice to Make Payment.

Order Order
Send Make
Payment

Invoice

Fill Filled Ship
Order Order Invoice
Fill Ship . . Fill Ship
® @ st (53, {8

Figure 12.42 - Activity edge examples

© ISO/IEC 2012 - All rights reserved 343

ISO/IEC 19505-2:2012(E)

In the example below, a connector is used to avoid drawing a long edge around one tine of the fork. If a problem is not
priority one, the token going to the connector is sent to the merge instead of the one that would arrive from Revise Plan
for priority one problems. This is equivalent to the activity shown in Figure 12.44, which is how Figure 12.43 is stored in

the model.

Figure 12.43 - Connector example

Figure 12.44 - Equivalent model to Figure 12.43

Package CompleteActivities

The figure below illustrates three examples of using the weight attribute. The Cricket example uses a constant weight to
indicate that a cricket team cannot be formed until eleven players are present. The Task example uses a non-constant
weight to indicate that an invoice for a particular job can only be sent when all of its tasks have been completed. The

344 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

example depicts an activity for placing bids for a proposal, where many such bids can be placed. Then, when the bidding
period is over, the Award Proposal Bid activity reads all the bids as a single set and determines which vendor to award the
bid.

{weight=11} {weight=no_of job tasks}
- Form Send
glrlcket — = Cricket Task b
kil Team [compl eted] Invoice
Ready

to award
bid \
Award
Bid
Bid Bids for /

Figure 12.45 - Activity edge examples

Rationale

Activity edges are introduced to provide a general class for connections between activity nodes.

Changes from previous UML

ActivityEdge replaces the use of (state) Transition in UML 1.5 activity modeling. It also replaces data flow and control
flow links in UML 1.5 action model.

12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)

An activity final node is a final node that stops all flows in an activity.

Generalizations
» “ControlNode (from BasicActivities)” on page 373
» “FinaNode (from IntermediateActivities)” on page 390

Description

An activity may have more than one activity final node. The first one reached stops all flows in the activity.

Attributes
No additional attributes

© ISO/IEC 2012 - All rights reserved 345

ISO/IEC 19505-2:2012(E)

Associations

No additional associations

Constraints

No additional constraints

Semantics

A token reaching an activity final node terminates the activity (or structured node, see “ StructuredActivityNode (from
CompleteStructuredActivities, StructuredActivities)” on page 429). In particular, it stops all executing actions in the
activity, and destroys all tokens in object nodes, except in the output activity parameter nodes. Terminating the execution
of synchronous invocation actions also terminates whatever behaviors they are waiting on for return. Any behaviors
invoked asynchronously by the activity are not affected. All tokens offered on the incoming edges are accepted. The
content of output activity parameter nodes are passed out of the containing activity, using the null token for object nodes
that have nothing in them. If there is more than one final node in an activity, the first one reached terminates the activity,
including the flow going towards the other activity final.

If it is not desired to abort all flows in the activity, use flow final instead. For example, if the same execution of an
activity is being used for al its invocations, then multiple streams of tokens will be flowing through the same activity. In
this case, it is probably not desired to abort all tokens just because one reaches an activity final. Using a flow final will
simply consume the tokens reaching it without aborting other flows. Or arrange for separate invocations of the activity to
use separate executions of the activity, so tokens from separate invocations will not affect each other.

Notation

Activity final nodes are notated as a solid circle with a hollow circle, as indicated in the figure below. It can be thought
of as a goal notated as “bull’s eye,” or target.

®

Figure 12.46 - Activity final notation

Examples

The first example below depicts that when the Close Order behavior is completed, al tokens in the activity are
terminated. Thisis indicated by passing control to an activity final node.

Cl
E

Figure 12.47 - Activity final example

346 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

The next figure is based on an example for an employee expense reimbursement process. It uses an activity diagram that
illustrates two paralléel flows racing to complete. The first one to reach the activity final aborts the others. The two flows
appear in the same activity so they can share data. For example, who to notify in the case of no action.

[decision = rgject] Notify
__9 H)
[amount >= 200] Submit for
Service
S
[decision = accept] (Approval ’ @

Auto
= Approve
[amount < 200] PP
No action Notify Cancel Cancel
timer No Action Transactiol Service

Figure 12.48 - Activity final example

In Figure 12.49, two ways to reach an activity final exist; but it is the result of exclusive “or” branching, not a “race’
situation like the previous example. This example uses two activity final nodes, which has the same semantics as using
one with two edges targeting it. The Notify of Modification behavior must not take long or the activity finals might kill it.

Notify of
J_J_ = \Modificatio
[decision = modify]

/ Publish
Proposal ®
[decision = accept]
Notify of
.] { Rejection) >©
[decision = reject]

Figure 12.49 - Activity final example

Rationale

Activity final nodes are introduced to model non-local termination of all flows in an activity.

Changes from previous UML

ActivityFinal isnew in UML 2.

© ISO/IEC 2012 - All rights reserved 347

ISO/IEC 19505-2:2012(E)

12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities,
IntermediateActivities, StructuredActivities, CompleteActivities,
CompleteStructuredActivities)

An activity group is an abstract class for defining sets of nodes and edges in an activity.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 104

Description

Activity groups are a generic grouping construct for nodes and edges. Nodes and edges can belong to more than one
group. They have no inherent semantics and can be used for various purposes. Subclasses of ActivityGroup may add
semantics.

Attributes
No additional attributes

Associations

Package FundamentalActivities, IntermediateActivities

e inActivity : Activity [0..1]
Activity containing the group. { Subsets NamedElement:: owner}

e [superGroup : ActivityGroup [0..1]
Group immediately containing the group.

e [subgroup : ActivityGroup [0..*]
Groups immediately contained in the group.
Package BasicActivities, IntermediateActivities, CompleteStructuredActivities
» /containedEdge : ActivityEdge [0..*]
Edges immediately contained in the group. Thisis a derived union.
Package FundamentalActivities, IntermediateActivities, StructuredActivities, CompleteActivities
» /containedNode : ActivityNode [0..*] {readOnly}
Nodesimmediately contained in the group. Thisis aderived union.
Constraints
[1] All nodes and edges of the group must be in the same activity as the group.
[2] No node or edge in agroup may be contained by its subgroups or its containing groups, transitively.

[3] Groups may only be owned by activities or groups.

Semantics

None

348 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Notation

No specific notation

Rationale

Activity groups provide a generic grouping mechanism that can be used for various purposes, as defined in the subclasses
of ActivityGroup, and in extensions and profiles.

Changes from previous UML

ActivityGroups are new in UML 2.

12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,
IntermediateActivities, CompleteStructuredActivities)

An activity node is an abstract class for points in the flow of an activity connected by edges.

Generalizations
» “NamedElement (from Kernel, Dependencies)” on page 104
 “RedefinableElement (from Kernel)” on page 137

Description

An activity node is an abstract class for the steps of an activity. It covers executable nodes, control nodes, and object
nodes.

(BasicActivities) Nodes can be replaced in generalization and (CompleteActivities) be contained in interruptible regions.

Attributes

No additional attributes
Associations

Package FundamentalActivities

e activity : Activity[0..1]
Activity containing the node. { Subsets NamedElement::owner}

e [inGroup : ActivityGroup [0..*]
Groups containing the node. Multiplicity specialized to [0..1] for StructuredActivityGroup.
Package BasicActivities

e incoming : ActivityEdge [0..*]
Edges that have the node as target.

e outgoing : ActivityEdge [0..*]
Edges that have the node as source.

© ISO/IEC 2012 - All rights reserved 349

ISO/IEC 19505-2:2012(E)

« redefinedNode : ActivityNode [0..*]
Inherited nodes replaced by this node in a specialization of the activity. { Subsets
Redefinabl eElement: : redefi nedEl ement}

Package IntermediateActivities

e inPartition : Partition [0..*]
Partitions containing the node. { Subsets ActivityNode: :inGroup}

Package CompleteActivities

« ininterruptibleRegion : InterruptibleActivityRegion [0..*]
Interruptible regions contai ning the node. { Subsets ActivityNode: :inGroup}

e inStructuredNode : StructuredActivityNode [0..1]
Structured activity node containing the node. { Subsets ActivityNode: :inGroup, Element::owner}
Constraints

[1] Activity nodes can only be owned by activities or groups.

Package StructuredActivities

[1] Activity nodes may be owned by at most one structured node.

Semantics

Nodes can be named, however, nodes are not required to have unique names within an activity to support multiple
invocations of the same behavior or multiple uses of the same action. See Action, which is a kind of node. The fact that
Activity is a Namespace, inherited through Behavior, does not affect this, because the containment of nodes is through
ownedElement, the general ownership metaassociation for Element that does not imply unique names, rather than
ownedMember. Other than naming, and functionality added by the complete version of activities, an activity node is only
apoint in an activity at this level of abstraction. See the children of ActivityNode for additional semantics.

Package BasicActivities

Nodes inherited from more general activities can be replaced. See RedefinableElement for more information on
overriding inherited elements, and Activity for more information on activity generalization. See children of ActivityNode
for additional semantics.

350 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Notation

The notations for activity nodes are illustrated below. There are three kinds of nodes: action node, object node, and
control node. See these classes for more information.

() 0] e ®©@®

Action node Object node ——————— Control nodes

Figure 12.50 - Activity node notation

Examples

This figure illustrates the following kinds of activity node: action nodes (e.g., Receive Order, Fill Order), object nodes
(Invoice), and control nodes (the initial node before Receive Order, the decision node after Receive Order, and the fork
node and Join node around Ship Order, merge node before Close Order, and activity final after Close Order).

[order
rejected)]

Ship Close
Order Order

accepted]

Send
Invoice

Figure 12.51 - Activity node example (where the arrowed lines are only the non-activity node symbols)

Rationale

Activity nodes are introduced to provide a general class for nodes connected by activity edges.

Changes from previous UML

ActivityNode replaces the use of StateVertex and its children for activity modeling in UML 1.5.

© ISO/IEC 2012 - All rights reserved 351

ISO/IEC 19505-2:2012(E)

12.3.9 ActivityParameterNode (from BasicActivities)

An activity parameter node is an object node for inputs and outputs to activities.

Generalizations

» “ObjectNode (from BasicActivities, CompleteActivities)” on page 411

Description

Activity parameter nodes are object nodes at the beginning and end of flows that provide a means to accept inputs to an
activity and provide outputs from the activity, through the activity parameters.

Activity parameters inherit support for streaming and exceptions from Parameter.

Attributes

No additional attributes

Associations

e parameter : Parameter [1..1]
The parameter the object node will be accepting or providing values for.

Constraints
[1] Activity parameter nodes must have parameters from the containing activity.
[2] Thetype of an activity parameter node is the same as the type of its parameter.

[3] Anactivity parameter node may have either al incoming edges or al outgoing edges, but it must not have both incoming
and outgoing edges.

[4] Activity parameter object nodes with no incoming edges and one or more outgoing edges must have a parameter with in
or inout direction.

[5] Activity parameter object nodes with no outgoing edges and one or more incoming edges must have a parameter with out,
inout, or return direction.

[6] A parameter with direction other than inout must have at most one activity parameter node in an activity.

[7] A parameter with direction inout must have at most two activity parameter nodes in an activity, one with incoming flows
and one with outgoing flows.

See “Action (from CompleteActivities, Fundamental Activities, StructuredActivities, CompleteStructuredActivities)” on
page 325.

Semantics

As akind of behavior, an activity may have owned parameters. Within the activity, in and inout parameters may be
associated with activity parameter nodes that have no incoming edges—they provide a source within the activity for the
overall “input values’ of the activity. Similarly, inout, out, and return parameters may be associated with activity nodes
that have no outgoing edges—they provide a sink within the activity for the overall “output values’ of the activity.

352 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Per the general semantics of a behavior, when the activity is invoked, its in and inout parameters may be given actual
values. These input values are placed as tokens on those activity parameter nodes within the activity that are associated
with the corresponding in and inout parameters, the ones which do not have incoming edges. The overall activity input
values are then available within the activity via the outgoing edges of the activity parameter nodes.

During the course of execution of the activity, tokens may flow into those activity parameter nodes within the activity that
have incoming edges. When the execution of the activity completes, the output values held by these activity parameter
nodes are given to the corresponding inout, out, and return parameters of the activity.

If the parameter associated with an activity parameter node is marked as streaming, then the above semantics are extended
to alow for inputs to arrive and outputs to be posted during the execution of the activity (see the semantics for
Parameter). In this case, for an activity parameter node with no incoming edges, an input value is placed on the activity
parameter node whenever an input arrives on the corresponding streaming in or inout parameter. For an activity parameter
node with no outgoing edges, an output value is posted on the corresponding inout, out or return parameter whenever a
token arrives at the activity parameter node.

Notation
The label for parameter nodes can be a full specification of the corresponding parameter.

Also see notation at Activity.

Activity name)
Parameter name: type

Figure 12.52 - Activity notation

© ISO/IEC 2012 - All rights reserved 353

ISO/IEC 19505-2:2012(E)

The figure below shows annotations for streaming and exception activity parameters, which are the same as for pins. See
Parameter for semantics of stream and exception parameters.

Activity name)
{ stream} Parameter name: type

.

Figure 12.53 - Activity notation

Presentation Options

If the round-cornered border of Figure 12.53 is replaced with the frame notation that is described in Annex A, then
activity parameter nodes overlap the frame instead. If the round-cornered border or frame is omitted completely, then the
activity parameter nodes can be placed anywhere, but it is clearer if they are placed in the same locations they would be
in if the frame or border was shown.

The presentation option at the top of the activity diagram below may be used as notation for a model corresponding to the
notation at the bottom of the diagram.

4 I

Parameterl Parameter2

Parameterl P Parameter2

N /

Figure 12.54 - Presentation option for flows between pins and parameter nodes

See presentation option for Pin when parameter is streaming. This can be used for activity parameters also.

354 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Examples

In the example below, production materials are fed into printed circuit board. At the end of the activity, computers are
quality checked.

-

(Rejected
Computers
Production bri Pre(c)jdg(_:e _ Assemble Test
Materials inted-Circuit Computers Computers |
Boards
Accepted
%: ?(t:ﬁﬂ A bled Computers
Boards Computers J

Figure 12.55 - Example of activity parameters.nodes

In the example below, production materials are streaming in to feed the ongoing printed circuit board fabrication. At the
end of the activity, computers are quality checked. Computers that do not pass the test are exceptions. See Parameter for
semantics of streaming and exception parameters.

-
N\
{stream}(/\ | Rejected
Computers
Production .Prec&dgge : Assemble Test
Materials Printed-Circuit Computers Computers |
Boards
Accepted
Z: péﬁﬂ- A bled Computers
Boards Computers J

Figure 12.56 - Example of activity parameter nodes for streaming and exceptions

Rationale

Activity parameter nodes are introduced to model parameters of activities in a way that integrates easily with the rest of
the flow model.

Changes from previous UML

ActivityParameterNode is new in UML 2.

© ISO/IEC 2012 - All rights reserved 355

ISO/IEC 19505-2:2012(E)

12.3.10 ActivityPartition (from IntermediateActivities)

An activity partition is a kind of activity group for identifying actions that have some characteristic in common.

Generalizations

« “ActivityGroup (from BasicActivities, Fundamental Activities, IntermediateActivities, StructuredActivities,
CompleteActivities, CompleteStructuredActivities)” on page 348

Description

Partitions divide the nodes and edges to constrain and show a view of the contained nodes. Partitions can share contents.
They often correspond to organizational units in a business model. They may be used to allocate characteristics or
resources among the nodes of an activity.

Attributes

e isDimension: Boolean[1..1] =false
Tells whether the partition groups other partitions along a dimension.

e isExterna : Boolean[1..1] =fadse
Tells whether the partition represents an entity to which the partitioning structure does not apply.

Associations

e superPartition : ActivityPartition [0..1]
Partition immediately containing the partition. (Subsets ActivityGroup:: super Group)

e represents: Element [0..1]
An element constraining behaviors invoked by nodes in the partition.

e subpartition : ActivityPartition [0..*]
Partitions immediately contained in the partition. (Subsets ActivityGroup:: subgroup)

¢ node: ActivityNode [0..*]
Nodesimmediately contained in the partition. (Subsets ActivityGroup: : containedNode)

e edge: ActivityEdge [0..*]
Edges immediately contained in the partition. (Subsets ActivityGroup: : containedEdge)

Constraints

[1] A partition with isDimension = true may not be contained by another partition.

[2] If apartition represents a part, then all the non-external partitions in the same dimension and at the same level of nesting
in that dimension must represent parts directly contained in the internal structure of the same classifier.

[3] If anon-external partition represents a classifier and is contained in another partition, then the containing partition must
represent a classifier, and the classifier of the subpartition must be nested in the classifier represented by the containing
partition, or be at the contained end of a strong composition association with the classifier represented by the containing
partition.

[4] If apartition representsapart and is contained by another partition, then the part must be of a classifier represented by the
containing partition, or of a classifier that is the type of a part representing the containing partition.

356 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-2:2012(E)

Semantics

Partitions do not affect the token flow of the model. They constrain and provide a view on the behaviors invoked in
activities. Constraints vary according to the type of element that the partition represents. The following constraints are
normative.

1) Classifier

Behaviors of invocations contained by the partition are the responsibility of instances of the classifier represented by the
partition. This means the context of invoked behaviors is the classifier. Invoked procedures containing a call to an
operation or sending a signal must target objects at runtime that are instances of the classifier.

2) Instance

This imposes the same constraints as classifier, but restricted to a particular instance of the classifier.

3) Part

Behaviors of invocations contained by the partition are the responsibility of instances playing the part represented by the
partition. This imposes the constraints for classifiers above according to the type of the part. In addition, invoked
procedures containing a call to an operation or sending a signal must target objects at runtime that play the part at the time
the message is sent. Just as partitions in the same dimension and nesting must be represented by parts of the same
classifier'sinternal structure, all the runtime target objects of operation and signal passing invoked by the same execution
of the activity must play parts of the same instance of the structured classifier. In particular, if an activity is executed in
the context of a particular object at runtime, the parts of that object will be used as targets. If a part has more than one
object playing it at runtime, the invocations are treated as if they were multiple, that is, the calls are sent in parallel, and
the invocation does not complete until all the operations return.

4) Attribute and Value

A partition may be represented by an attribute and its subpartitions by values of that attribute. Behaviors of invocations
contained by the subpartition have this attribute and the value represented by the subpartition. For example, a partition
may represent the location at which a behavior is carried out, and the subpartitions would represent specific values for
that attribute, such as Chicago. The location attribute could be on the process class associated with an activity, or added
in a profile to extend behaviors with these attributes.

A partition may be marked as being a dimension for its subpartitions. For example, an activity may have one dimension
of partitions for location at which the contained behaviors are carried out, and another for the cost of performing them.
Dimension partitions cannot be contained in any other partition.

Elements other than actions that have behaviors or value specifications, such as transformation behaviors on edges, adhere
to the same partition rules above for actions.

Partitions may be used in a way that provides enough information for review by high-level modelers, though not enough
for execution. For example, if a partition represents a classifier, then behaviors in that partition are the responsibility of
instances of the classifier, but the model may or may not say which instance in particular. In particular, a behavior in the
partition calling an operation would be limited to an operation on that classifier, but an input object flow to the invocation
might not be specified to tell which instance should be the target at runtime. The object flow could be specified in a later
stage of development to support execution. Another option would be to use partitions that represent parts. Then when the
activity executes in the context of a particular object, the parts of that object at runtime will be used as targets for the
operation calls, as described above.

© ISO/IEC 2012 - All rights reserved 357

ISO/IEC 19505-2:2012(E)

External partitions are intentional exceptions to the rules for partition structure. For example, a dimension may have
partitions showing parts of a structured classifier. It can have an external partition that does not represent one of the parts,
but a completely separate classifier. In business modeling, external partitions can be used to model entities outside a
business.

Notation

Activity partition may be indicated with two, usually parallel lines, either horizontal or vertical, and a name labeling the
partition in a box at one end. Any activity nodes and edges placed between these lines are considered to be contained
within the partition. Swimlanes can