
Utility Management System (UMS)
Data Access Facility

Version 1.0
June 2001

Copyright 1999, 2000 Alstom ESCA
Copyright 1999, 2000 Langdale Consultants

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . v

1. Overview . 1-1
1.1 Introduction . 1-1

1.2 Problems Being Addressed . 1-2

1.3 Problems Not Being Addressed . 1-3

1.4 Design Rationale . 1-3

1.5 Module Dependencies . 1-6

2. Resource Description Framework . 2-1
2.1 Motivation . 2-1

2.1.1 Fundamentals . 2-2

2.2 Resources . 2-2

2.3 Properties . 2-2

2.4 Property Values . 2-2

2.5 Resource Descriptions . 2-2

2.6 Classes . 2-3

2.7 Relationship To Other Models . 2-3
2.7.1 Enumerations . 2-3

3. Data Access Interfaces . 3-1

3.1 Simple Values . 3-1

3.2 Resource Descriptions . 3-3

3.3 Resource Query Service . 3-5

3.4 Resource Identifiers . 3-9
UMS Data Access Facility i

Contents
3.4.1 Purpose of Resource Identifiers 3-9
3.4.2 Purpose of URIs . 3-9

3.4.3 Resource Identifier Service 3-10
3.4.4 Containers and Fragments 3-12

3.4.5 Resource Identifier Allocation 3-12
3.4.6 URI to Resource Identifier Translation 3-13

3.4.7 Standard and Implementation-Specific URIs . . 3-13
3.4.8 Resource Identifiers for Standard URIs 3-13

3.4.9 Resource Identifier Persistence 3-14
3.4.10 Null Resource Identifiers and Null Fragments . 3-14

3.5 Query Sequence . 3-14

4. Events . 4-1
4.1 Introduction . 4-1

4.2 Event Sequence . 4-2

4.3 Current Version and Transactions 4-3

4.3.1 Implementation Examples 4-5

4.4 Event Compression . 4-6

4.5 Event Handling Guidelines . 4-6

5. Service Location . 5-1
5.1 Introduction . 5-1

5.2 Client View . 5-2

5.3 Data Provider View . 5-2

6. Proxies . 6-1
6.1 Introduction . 6-1

6.2 Rules for Proxy Data Providers . 6-2

6.3 Proxy Resource Query Service . 6-2
6.3.1 Proxy Query Sequence 6-2

6.4 Proxy Resource Identification Service 6-3

6.5 Proxy Resource Event Source . 6-3

7. Schema . 7-1

7.1 Introduction . 7-1

7.2 Industry and Application-Specific Schema 7-2

7.3 Schema Extension . 7-2

7.4 Schema Support Testing . 7-3

7.4.1 Schema and Version Test 7-3
7.4.2 Conformance Block Test 7-3
ii UMS Data Access Facility June 2001

Contents
7.4.3 Class and Property Test 7-3

7.4.4 Schema Query Test . 7-4

7.5 Schema Query . 7-4

7.6 Schema Query Sequence . 7-5

8. EPRI Common Information Model 8-1
8.1 Schema . 8-1

8.2 Mapping . 8-2

Appendix A - References. A-1

Appendix B - OMG IDL . B-1

Appendix C - SQL Examples . C-1

Glossary . 1
June 2001 UMS Data Access Facility iii

Contents
iv UMS Data Access Facility June 2001

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by several hundred members, including information system vendors, software
developers and users. Founded in 1989, the OMG promotes the theory and practice of
object-oriented technology in software development. The organization's charter
includes the establishment of industry guidelines and object management specifications
to provide a common framework for application development. Primary goals are the
reusability, portability, and interoperability of object-based software in distributed,
heterogeneous environments. Conformance to these specifications will make it possible
to develop a heterogeneous applications environment across all major hardware
platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
June 2001 UMS Data Access Facility, v1.0 v

OMG Documents

The OMG documentation is organized as follows:

OMG Modeling

• Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

• Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

• OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer’s programming language of choice in a style that is natural to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.
vi UMS Data Access Facility, v1.0 June 2001

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such as Collection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such as Internationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

• CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

• CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.
June 2001 UMS Data Access Facility: OMG Documents vii

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

Obtaining OMG Documents

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Alstom ESCA

• COMPAQ

• Langdale Consultants

• Oracle

• Power Technologies Inc.

• Psycor International

• Siemens

• SISCO Systems
viii UMS Data Access Facility, v1.0 June 2001

Overview 1
Contents

This chapter contains the following topics.

1.1 Introduction

Utilities operate their water, gas, or power assets through control systems. The scope of
control may include production facilities, bulk transmission networks, distribution
networks, and supply points.

The most basic control system provides Supervisory Control and Data Acquisition
(SCADA) functions. More sophisticated systems provide simulation and analysis
applications that help the operators optimize performance, quality, and security of supply.

We will use the umbrella term Utility Management System (UMS) to refer to this class of
system. It covers Water Quality and Energy Management Systems (WQEMS) in the water
sector, and Energy Management Systems (EMS) or Distribution Management Systems
(DMS) in the power sector.

Topic Page

“Introduction” 1-1

“Problems Being Addressed” 1-3

“Problems Not Being Addressed” 1-3

“Design Rationale” 1-4

“Module Dependencies” 1-6

“Conformance to the DAF” 1-7
June 2001 UMS Data Access Facility, v1.0 1-1

1

Figure 1-1 illustrates a UMS. Two interfaces are shown as block arrows: SCADA interface
(which will be covered in other RFPs) and the analysis data interface (the subject of this
specification).

Figure 1-1 Utility Management System

The applications in a UMS employ extensive physical models representing networks,
production facilities, and demand behavior among other things. These models distinguish
a UMS from other types of control system.

For example, a power system model in an EMS may contain several hundred classes
representing both physical and circuit theoretical concepts. Parts of this model must be
understood by any external application that hopes to interpret the simulation and analysis
results.

However, in all extant systems, this model is implemented in one or another proprietary
database management system. There are no standard query languages or APIs for today’s
EMS, DMS, or WQEMS resident data.

This sets the UMS data access problem apart from conventional database access on the
one hand, and from SCADA data access on the other where just a few classes are involved
representing generic concepts such as measure and device.

Notwithstanding the difficulties, the need for inter-operation between the UMS and other
applications or systems is evident. The UMS automates key utility activities that touch on
many other parts of the business. Moreover, UMS functions are being redefined as the
utility business environment is reshaped. Consequently, new inter-operation requirements
are steadily emerging.

The goal of the Utility Management System Data Access Facility is to improve the
interoperability of these UMS applications with other applications and systems.

 Equipment Telemetry

PLC

RTU

TFE
Simulation
& Analysis
~103 classes

UMS

SCADA
~101

classes

I/F I/F

(separate RFP’s) (this See section 1.4 for terminology specification)
1-2 UMS Data Access Facility, v1.0 June 2001

1

1.2 Problems Being Addressed

This specification addresses the problem of obtaining the analysis data (both inputs and
results) from a UMS on a read-only basis. This includes information describing a real or
simulated state of the system together with the system’s physical model data. The
specification should be sufficient for integrating many applications and systems that
operate “downstream” of a UMS in a near-real-time or non-real-time mode. It will apply
to water, gas and electric power systems. This facility is also intended to work in concert
with future facilities to handle more extensive integration cases.

Data Access

The specification provides interfaces to query the data that occur in a UMS including
analysis inputs, analysis results, and physical model data.

Notification

Interfaces are provided for coarse-grained notification of changes in this data.

Concurrency Control

A mechanism is provided to allow a self-consistent group of data to be read from the
UMS.

Data Semantics

For electric power systems, the specification establishes the semantics and structure of the
data by reference to the Electric Power Research Institute Common Information Model
(EPRI CIM).

1.3 Problems Not Being Addressed

The scope of the DAF was limited to exclude functionality that is likely to be system-
specific, or which might increase the complexity of implementations. Accordingly, this
specification does not address the following areas:

• Interfaces to update data in the UMS.

• Interfaces to define data schema, that is, classes, relationships, and attributes.

• Higher level functionality such as programmable data derivations, generalized query
processing, or programmable event filtering. Nor does this specification address the
following areas that are anticipated to be the subject of other RFPs:

• Interfaces for generic SCADA functionality.

• Interfaces for schedule and trading functionality.
June 2001 UMS Data Access Facility: Problems Being Addressed 1-3

1

1.4 Design Rationale

Simple Implementations

The DAF is distinguished from some other database APIs because it can be applied to very
simple systems, which may not contain a full-blown database management system. We
want people to create quick and simple implementations of the DAF to solve small-scale
integration problems, without prejudice to more elaborate implementations.

Accordingly, the DAF defines very few interfaces, and does not require implementations
to manage large, dynamic populations of CORBA objects. Most activity centers on the
interface ResourceQueryService, which defines a small but sufficient set of queries as
methods. The queries defined by the DAF are simple enough to be implemented in any
UMS database and many related systems and applications.

High Performance Implementations

A UMS is a real-time system in the sense that it is used to make and execute operational
decisions within strictly limited time boundaries. The performance requirements mean
that a typical UMS does not use a typical database management system, which again leads
to the need for the DAF.

To be effective in operational as well as off-line roles, the DAF must not introduce
performance bottlenecks of its own. This has influenced the design in several ways, listed
below. The first two emerged from performance testing and optimization in the prototype:

• Query Results Granularity - While simple, DAF queries can return a large amount
of data at once in the form of a ResourceDescriptionSequence. On the server
side, this allows implementations to optimize data retrieval without the need for
read-ahead schemes. On the client, it minimizes network latency without the need
for caching schemes.

Data access patterns for UMS analysis software are well known, and are not
friendly to caches. A typical analysis module reads a large amount of input data
exactly once at the beginning of each analysis cycle. This input data is generally
out-of-date by the next analysis cycle and therefore not amenable to caching.

• Data Value Representation - The basic unit of data, from which query results are
composed, is a union type: SimpleValue. SimpleValue exploits our knowledge of
the basic data types needed and eliminates CORBA any from the highest bandwidth
part of the interface. This can make a significant impact on performance when
accumulated across large amounts of data.

• Support for Pre-joined Views - Join optimizations are particularly applicable to
relational databases, whether real-time or general-purpose. Here views are often
defined to flatten the schema, effectively pre-joining tables along the lines of
anticipated queries. The DAF includes a query, get_descendent_values(), which
gives implementations the opportunity to optimize this type of query.
1-4 UMS Data Access Facility, v1.0 June 2001

1

Partial Schema

The EPRI CIM is relatively large schema and a given DAF data provider (in the electric
power domain) may not support all of it. In an effort to enable partial implementations of
the EPRI CIM, the EPRI CCAPI task force is in the process of defining conformance
blocks for specific application areas. A need for partial schema support is envisaged in the
water and gas domains as well. The DAF provides a method, get_resource_ids(),
which clients can use to determine whether a given class or attribute is supported by a
given implementation. The same method will be used to determine whether a
conformance block as a whole is supported, once those blocks are defined.

• Attribute-level Decomposition - A partial schema may omit whole classes of data,
but just as often it will omit some attributes of a class and support others. This
reflects the observation that different groups of attributes correspond to different
functional areas. Members of the EPRI CCAPI and OMG Utility Domain Task
Forces have frequently referred to these functionally related groups of attributes as
aspects.

In a traditional object oriented design, aspects would be classes in their own right.
However, the EPRI CIM defines no such classes and it would be very difficult to
keep such definitions up-to-date as new applications are discovered.

Accordingly, the DAF allows implementations to support or omit data at the level of
individual attributes on individual objects. This influences the design of the query
results structures and, more fundamentally, the model of data that underlies the
DAF.

• Federation of Data Providers - This specification anticipates that a number of data
providers, each supporting part of an overall schema, could be combined to create a
complete system. This would permit independent developers to extend a UMS with
data providers as well as clients. However, this implies the need for system and
configuration dependent logic that must direct queries to the appropriate data
providers and merge the results obtained. The DAF provides for a proxy data
provider to hide these details from both the clients and the ultimate data providers,
ensuring that these components can be developed independently of any given
system.

Schema Access

The DAF is not required to support access to metadata (i.e., schema information);
however, it is not possible to formulate queries without reference to at least some schema
elements: classes, attributes, and relationships. Furthermore, many generic applications
not only reference schema information but also query it in detail. To take an example, an
XML export facility might determine what to export and how by querying what classes
exist, what attributes belong to each, and what the attribute types are.

• Identifying Schema Elements - This specification deals with schema at two levels.
For simple clients and servers it is sufficient to identify the schema elements. The
DAF employs Universal Resource Identifier references (URIs) for this purpose. A
simple client is expected to know the URIs for the classes and attributes it wants to
access. A mapping is provided between the EPRI CIM defined in UML and the
URIs used in the DAF.
June 2001 UMS Data Access Facility: Design Rationale 1-5

1

• Querying Schema Information - More sophisticated clients may want to query the
schema information in greater detail. This is accommodated without requiring every
client and data provider to deal with the complexities. Experience with developing
data providers indicates that the schema query capabilities add significant cost and
complexity and may even dominate the overall implementation cost. The design
rationale employed here is that implementations only pay for what they use.

When available, schema information is provided by reflection through the same
query interface that provides population data. A standard meta-model has been
adopted as the basis of schema queries. As with cases of partial schema support
described above, the specification allows for a proxy data provider to match clients
to the ultimate data providers. The proxy may add or merge schema information in
those cases where it is required by the client but is not available from the ultimate
data provider.

• Schema Versions - The DAF provides a way for clients and data providers to
negotiate schema versions. All schema elements are designated by URI references
that may include version identification. Mismatches between clients and data
providers are exposed when the data provider does not recognize a given schema
URI. Alternatively, a data provider can support multiple schema versions at once,
an approach that is especially useful when the differences are slight.

• Schema and Meta-Model Extensions - The DAF provides a way for an existing or
standard schema to be extended in a system-specific or proprietary way. In
particular, because schema elements are named by URI references, additional
elements can be introduced without name conflicts. Similarly, it is possible to
extend the meta-model to provide richer schema information for those generic
applications that need it.

Consistency with XML/CIM

The DAF shares both a model of data and a schema with the XML/CIM language. Thus
the same interpretations of the CIM model are made in both standards. Moreover, this
common basis should insure that these standards remain compatible in the future.

1.5 Module Dependencies

The following dependency diagram shows the modules that make up the DAF
specification and their dependencies.
1-6 UMS Data Access Facility, v1.0 June 2001

1

Figure 1-2 Module Dependencies

1.6 Conformance to the DAF

The DAF has two conformance points:

• The DAF interfaces.

• The EPRI CIM schema.

1.6.1 The DAF Interfaces

The DAF interfaces defined in Chapters 3 and 4, their semantics and the underlying data
model are the first conformance point. The consolidated IDL is given in Appendix B.
This is a mandatory conformance point

1.6.2 EPRI CIM Schema

The EPRI CIM schema for power system data, as defined in [8], is the second
conformance point. This is an optional conformance point.

Cos Nam ingDAFIden tifiers

DAFDesc riptions

DAFQ uery DA FEvents

Cos Event Ch anne lAdmin
June 2001 UMS Data Access Facility: Conformance to the DAF 1-7

1

1-8 UMS Data Access Facility, v1.0 June 2001

Resource Description Framework 2
Contents

This chapter contains the following topics.

2.1 Motivation

The Resource Description Framework (RDF), standardized by a W3C recommendation
[1], provides the DAF with a formal model of data and a consistent terminology. The
RDF model is similar in scope to the relational model of data but it is easier to adapt
to various object oriented and hierarchical data repositories, while remaining
compatible with the relational model. It also links the DAF to Web technologies and to
the XML CIM language. Like the DAF, this language is based on a combination of
RDF and the EPRI CIM.

Adopting an explicit model of data in the DAF is expected to help implementers adapt or
wrap data repositories. Without it, they would need to infer an implicit structure behind
the DAF interfaces. Implementers will find it useful to refer to the W3C
recommendation, however this specification can be understood without it.

2.1.1 Fundamentals

The DAF formulates queries and their results in terms of resources, properties, and
values. For example, the simplest query asks for the values of several properties of a
given resource. The results are collectively known as a resource description. Other
queries request information for all the resources belonging to a given class. These raw
ingredients of the DAF are defined below.

Topic Page

“Motivation” 2-1

“Relationship To Other Models” 2-3
June 2001 UMS Data Access Facility, v1.0 2-1

2

2.1.1.1 Resources

A resource is anything with a distinct identity including, but not limited to, utility
assets such as switches, pumps, and generators. In general, a Uniform Resource
Identifier (URI) with an optional fragment identifier, as defined in [3], can identify any
resource. However, a more compact proxy for the URI, the ResourceID, is used in
DAF queries and query results. The Events chapter elaborates on how and when URIs
and ResourceIDs are used.

2.1.1.2 Properties

A property is some aspect of a resource that can be described. For example, location
and operation-count could be properties of a switch. When properties appear in
queries they are represented by the type PropertyID. However, a property is itself a
resource and PropertyID is defined as a ResourceID.

A property has a domain, which is the set of resources to which it applies and a range,
which is the set of values it can take. Associations between resources are created by
properties whose range, like the domain, is a set of resources. For example, the
location property might associate a switch with the substation in which it is located.

2.1.1.3 Property Values

A value in the Resource Description Framework is an elementary unit of data, which
can be a literal such as a string or integer, or a reference to a resource.

A value represented in the DAF by the type SimpleValue, which is essentially a union
of several fundamental CORBA types and the ResourceID.

2.1.1.4 Resource Descriptions

The purpose of the DAF is to supply information about resources, or resource
descriptions. A resource description gives a value for each of several properties of a
given resource. The simplest resource description describes a single property and is
made up of a resource identifier, a property identifier, and a simple value. This
elemental resource description is sometimes called a statement, or a triple. In the DAF
a resource description is represented by the type ResourceDescription.

2.1.1.5 Classes

A class is a set of resources to which a given set of properties applies. For example, the
set of all switches is a class that appears in a power system schema. Classes are
referenced in queries by the type ClassID. As with properties, a class is itself a kind
of resource and a ClassID is defined as a ResourceID.
2-2 UMS Data Access Facility, v1.0 June 2001

2

2.2 Relationship To Other Models

The foregoing concepts are fundamental enough that they should find equivalents in
any data repository. Some, perhaps approximate, equivalents are given in the following
table as a guide.

2.2.1 Enumerations

It is often necessary to represent an enumeration, that is, a finite set of labeled values.
Data models do not always provide a specific technique for this. For example, in the
relational model an enumeration could be represented by a string or integer, with or
without an associated reference table.

Similarly, the RDF model does not prescribe a specific way to represent an
enumeration. However, the EPRI CIM RDF schema adopts the following convention:

• An enumeration type is represented by a Class.

• An enumerated value is represented by a resource whose type is that Class.

This convention does not support ordered enumerations. These are not used in the EPRI
CIM schema.

Table 2-1 Relationship to Other Models

RDF DAF Relational Model UML

Resource Resource, ResourceID Tuple (i.e., row) Object

Property Property, PropertyID Attribute (i.e., column)
or foreign key

Attribute or
association

Class Class, ClassID Relation (i.e., table) Class

Resource Description ResourceDescription Tuple value -

URI URI, ResourceID Key value -

Value SimpleValue Field value -

Incomplete Information Absence of a requested
Property-Value in a
Resource-Description

NULL value -
June 2001 UMS Data Access Facility: Relationship To Other Models 2-3

2

2-4 UMS Data Access Facility, v1.0 June 2001

Data Access Interfaces 3
Contents

This chapter contains the following topics.

This chapter defines the structures used to convey data, the resource descriptions, and the
operations used to obtain data, the queries. Queries are formulated in terms of identifiers,
which are dealt with at the end of the chapter.

3.1 Simple Values

The basic types, from which resource descriptions are constructed, are defined below.

module DAFDescriptions
{
// imported from identifiers module.

typedef DAFIdentifiers::ResourceID ResourceID;
typedef DAFIdentifiers::URI URI;

// absolute time stamps in 100 nanosecond units
// base time is 15 October 1582 00:00 UTC
// as per Time Service specification
typedef TimeBase::TimeT DateTime;

Topic Page

“Simple Values” 3-1

“Resource Descriptions” 3-3

“Resource Query Service” 3-5

“Resource Identifiers” 3-9

“Query Sequence” 3-14
June 2001 UMS Data Access Facility, v1.0 3-1

3

// a complex number
struct Complex
{

double real;
double imaginary;

};

// SimpleValue's can take on the following types.
typedef short SimpleValueType;
const SimpleValueType RESOURCE_TYPE = 1;
const SimpleValueType URI_TYPE = 2;
const SimpleValueType STRING_TYPE = 3;
const SimpleValueType BOOLEAN_TYPE = 4;
const SimpleValueType INT_TYPE = 5;
const SimpleValueType UNSIGNED_TYPE = 6;
const SimpleValueType DOUBLE_TYPE = 7;
const SimpleValueType COMPLEX_TYPE = 8;
const SimpleValueType DATE_TIME_TYPE = 9;
const SimpleValueType ULONG_LONG_TYPE = 10;

// a SimpleValue is the object of a resource description.
union SimpleValue switch(SimpleValueType)
{

case RESOURCE_TYPE : ResourceID resource_value;
case URI_TYPE : URI uri_value;
case STRING_TYPE : string string_value;
case BOOLEAN_TYPE : boolean boolean_value;
case INT_TYPE : long int_value;
case UNSIGNED_TYPE : unsigned long unsigned_value;
case DOUBLE_TYPE : double double_value;
case COMPLEX_TYPE : Complex complex_value;
case DATE_TIME_TYPE : DateTime date_time_value;
case ULONG_LONG_TYPE : unsigned long long ulong_long_value;

};

ResourceID and URI

These types are imported from the DAFIdentifiers module. Property values can refer to
other resources through ResourceIDs.

DateTime

Time is expressed by a 64 bit unsigned number (a ULongLong), which counts the
number of 100 nanosecond units passed since 15 October 1582 00:00 UTC (the date of
Gregorian reform to the Christian calendar). This convention is adopted from the CORBA
Time Service, which in turn takes it from the X/Open DCE Time Service.

Complex

Complex numbers are used in a range of scientific applications and especially in power
system analysis. In the DAF, complex numbers are expressed in Cartesian form.
3-2 UMS Data Access Facility, v1.0 June 2001

3

SimpleValue, SimpleValueType

SimpleValues are the object of properties; their role in the resource description framework
was outlined in the previous section. The DAF defines a SimpleValue as a discriminated
union, where SimpleValueType is the discriminant. Fundamentally, a SimpleValue can
be a resource identifier or a literal. The basic type of literal is a string to which the DAF
adds explicit representation of the types defined above and (the largest variant of) each
CORBA intrinsic type.

3.2 Resource Descriptions

All DAF queries return results in the form of resource descriptions.

module DAFDescriptions
{

// ... see the previous section for first part of the module

// properties are represented by their resource identifiers
typedef ResourceID PropertyID;

// predicate and object for a resource description
struct PropertyValue
{

PropertyID property;
SimpleValue value;

};
typedef sequence<PropertyValue> PropertyValueSequence;

// resource description with one subject, multiple predicates
struct ResourceDescription
{

ResourceID id;
PropertyValueSequence values;

};
typedef sequence<ResourceDescription> ResourceDescriptionSequence;

// iterator for handling large numbers of resource descriptions
interface ResourceDescriptionIterator
{

unsigned long max_left();
boolean next_n(

in unsigned long n,
out ResourceDescriptionSequence descriptions);

void destroy();
};

};

PropertyValue, PropertyValueSequence

A property value specifies a property by its resource identifier and its associated value for
a given resource. The types ResourceID and SimpleValue are defined in the
DAFBasic module.
June 2001 UMS Data Access Facility: Resource Descriptions 3-3

3

ResourceDescription, ResourceDescriptionSequence

Each resource description identifies a single resource, by its resource identifier, and zero
or more property values for that resource. The properties must be single valued, no
provision is made for returning more than one value per property within a resource
description. The class of the resource can be included in the resource description as the
value of the type property (refer to the Schema chapter for details).

ResourceDescriptionIterator

Queries that return information about more than one resource return an iterator. The

resource description iterator1 allows a client to access a large query result sequentially,
several resources at a time. This is necessary where the ORB limits message sizes. It also
enables implementations to overlap the client and server processing of query results, if
necessary.

The client and the data provider should cooperate to manage the lifetime of the iterator and
the resources it consumes. The destroy() and next_n() methods allow the client and
data provider respectively to indicate that the iterator may be destroyed.

In addition, the data provider may autonomously destroy the iterator at any time (for
resource management or other reasons). If a client detects that an iterator has been
destroyed, it will not interpret this condition in itself as either an indication that the end of
the iteration has been reached, or as a permanent failure of the data provider.

next_n()

This operation returns possibly 0 and at most n resource descriptions in the form of a
resource description sequence. In all cases the state of the iteration is indicated by the
Boolean return value:

• True means that there may be more resource descriptions beyond those returned so
far.

• False means all the resource descriptions have now been returned. No further calls
are expected for this iterator and the data provider may destroy the iterator at any
time after the call returns.

destroy()

This operation is used to terminate iteration before all the resource descriptions have been
returned. After destroy() is invoked, no further calls are expected for this iterator. The
data provider may destroy the iterator at any time after the call returns.

1.The use of an iterator and the details of its design in this specification are an attempt to
follow the pattern established in other CORBA standards. However, there are slight
differences between specifications in the way that the lifetime of the iterator is managed and
the behavior of the next_n method.
3-4 UMS Data Access Facility, v1.0 June 2001

3

max_left()

This operation returns an estimate of the number of resource descriptions remaining in the
iteration. The result is intended to provide feedback in user interfaces or to select query
strategies, but it cannot be used to detect the end of the iteration. Clients should allow that
this operation might be expensive.

3.3 Resource Query Service

Resource descriptions are obtained from operations on the resource query service. The
interface provides a family of three operations intended to be easy to use: get_values(),
get_extent_values(), and get_related_values(). A fourth operation,
get_descendent_values(), is a generalization of the other three and is capable of
greater optimization.

The resource query service is defined as follows:

module DAFQuery
{

// properties and classes are represented by resource identifiers
// imported from the identifiers module.
typedef DAFIdentifiers::ResourceID ResourceID;
typedef DAFIdentifiers::ResourceID ClassID;
typedef DAFIdentifiers::ResourceID PropertyID;
typedef DAFIdentifiers::ResourceIDSequence PropertySequence;

// results are resource descriptions from the descriptions module
typedef DAFDescriptions::ResourceDescription ResourceDescription;
typedef DAFDescriptions::ResourceDescriptionIterator

ResourceDescriptionIterator;

// queries that perform navigation use the association concept
struct Association
{

PropertyID property;
ClassID type;
boolean inverse;

};
typedef sequence<Association> AssociationSequence;

// exceptions generated by queries
exception UnknownAssociation { string reason; };
exception UnknownResource { string reason; };
exception QueryError { string reason; };

// the query service
interface ResourceQueryService
{

ResourceDescription get_values(
in ResourceID resource,
in PropertySequence properties)
raises(UnknownResource, QueryError);

ResourceDescriptionIterator get_extent_values(
June 2001 UMS Data Access Facility: Resource Query Service 3-5

3

in PropertySequence properties,
in ClassID class_id)
raises (UnknownResource, QueryError);

ResourceDescriptionIterator get_related_values(
in PropertySequence properties,
in Association assoc,
in ResourceID source)
raises (UnknownResource, UnknownAssociation, QueryError);

ResourceDescriptionIterator get_descendent_values(
in PropertySequence properties,
in AssociationSequence path,
in ResourceIDSequence sources,
out AssociationSequence tail)
raises (UnknownResource, QueryError);

};
};

ResourceQueryService

Each operation on this interface performs a single query. From a client’s perspective there
is always exactly one resource query service in a given context. (The section on proxies
describes how multiple data providers are handled. The section on service location defines
what is meant by a context.)

Each resource description returned by a query contains values for a subset of the
properties requested. The property values appear in the same order as the properties that
were passed to the query, although some may be omitted. A property value is omitted
when it is not available from the data provider for the particular resource, or when the
property identifier is unrecognized. This behavior makes it possible to federate multiple
query services where each answers part of the query.

On the other hand, if the property is recognized but the data provider detects that it is not a
member of the resource’s class, the QueryError exception is raised. Similarly,
QueryError is raised if the data provider determines that a property is many-valued (a
resource description cannot represent multiple values for a property).

get_values()

This query requests a resource description for a single resource given by its resource
identifier. If the resource identifier is unknown to the data provider, the
UnknownResource exception is raised.

get_extent_values()

This query requests a description for each resource of a given class, that is, for each
member of the class extent set. The class is given by its ClassID, which is a resource
identifier.

• If the resource identifier is unknown to the data provider, the UnknownResource
exception is raised.
3-6 UMS Data Access Facility, v1.0 June 2001

3

• If it is recognized but does not represent a class, the QueryError exception is
raised.

get_related_values()

This query requests a description for each resource associated with a given source
resource. The source is specified by a ResourceID, and the association by an
Association structure (defined below).

The data provider evaluates the association for the source resource, which yields zero or
more result resources. For each result resource the data provider evaluates the given
properties and generates a resource description, which is returned through the iterator.

• If the source resource identifier is unknown to the data provider, the
UnknownResource exception is raised.

• If the data provider does not recognize the property specified in the association, the
UnknownAssociation exception is raised.

Since data providers sometimes have only partial information, it is possible that the
association is recognized but its value is not available for the given source resource. In that
case, the UnknownAssociation exception is also raised. This distinguishes the case
where no information is available from the case where the association value is empty.

If the data provider detects an error in the association or determines that it is not type-
compatible with the source resource (as defined below), the QueryError exception is
raised.

get_descendent_values()

This query is a generalization of the foregoing queries and is designed for clients that form
queries in a generic manner. It also provides the most opportunity for optimization on the
part of the data provider.

Comparison to other operations

The inputs to the query are the properties, path, and sources sequences.

• When the path has length 0 and the sources sequence has length 1, this operation
is equivalent to the get_values() operation.

• When the path and sources are both of length 1, this operation is equivalent to the
get_related_values() operation. However, where get_related_values() would
raise UnknownAssociation this operation returns a non-empty tail sequence.

• When path and sources are of length 1 and the path specifies the inverse of the
rdf:type property, this operation is equivalent to the get_extent_values()
operation.

Normal Cases

The get_descendent_values() operation requests a description for each resource in a
result set. The result set is formed from the given set of source resources, by following a
chain of associations. The source set is specified by a ResourceIDSequence,
June 2001 UMS Data Access Facility: Resource Query Service 3-7

3

sources, and the chain of associations by an AssociationSequence path. If the
length of the path argument is 0, the source set becomes the result set. Otherwise, the data
provider evaluates the first association in the path for each source resource. This yields
zero or more intermediate-result resources. For each intermediate-result the data provider
evaluates the second association to yield another generation of intermediate-results. This
process continues until the end of the association sequence is reached or an association is
encountered that is not recognized or not available. In this way the query traverses a tree
of resources.

If all of the associations are recognized and available, the result set is the set of resources
generated from the last association in the path. The data provider returns descriptions for
the result set. For each, the data provider evaluates the given properties and generates a
resource description, which is returned through the iterator. The query also returns an
empty association sequence through its tail argument.

Error Cases

If an unknown or unavailable association is reached before the end of the path the query
returns partial results. The result set is the set of resources generated from the last
association in the path that was recognized and available. If the n’th association is
unrecognized or unavailable for a particular resource, the result set is obtained from the n-
1’th association. If the first association fails, the result set is the source set. A resource
description containing no property values is generated for each resource in the result set
and is returned through the iterator.

An association sequence representing the failed part of the chain is returned through the
tail argument. This tail sequence begins with the failed association and continues with the
associations that follow it in the chain. The purpose of the tail is to enable proxy data
providers (see Chapter 6) to complete the query by decomposing it and retrying the parts,
through other data providers.

Exceptions are raised in limited circumstances. If any of the source resource identifiers is
unknown to the data provider, the UnknownResource exception is raised. If the data
provider detects an error in the association sequence (as defined below) or detects that the
first association is not type-compatible with the source resource, the QueryError
exception is raised.

Association

An association is a mapping from source set of resources to a destination set of resources.
It contains a property and a class, each represented by their resource identifier. The
interpretation of the property depends on the inverse member, a boolean. In any case, the
property range must be a resource, not a literal type. It may be single-valued or many-
valued. An association may be evaluated in the context of a source resource to yield a set
of zero or more destination resources. There are two cases:

Inverse is false

If inverse is false, the value or values of the property for the source resource are obtained.
If the association class is not a null resource identifier, then the results are further
restricted to be members of that class.
3-8 UMS Data Access Facility, v1.0 June 2001

3

The association is said to be type-compatible with the source resource if the type of the
source resource is the same or a sub-class of the property’s domain class.

Inverse is true

If inverse is true, the inverse of the property is evaluated. All resources are obtained for
which the property value is the source resource. If the association class is not a null
resource identifier, then the results are further restricted to be members of that class.

The association is said to be type-compatible with the source resource if the type of the
source resource is the same or a sub-class of the property’s range class.

The association class can be used to deal with a common pattern in schema which employ
inheritance, such as the EPRI CIM, where the property range is a general class but the
query addresses one of its more specific derived classes. If an EPRI CIM application
wants all GeneratingUnits belonging to a given Substation, it must query the
Substation.MemberOf property. But the range of this property includes all kinds of
PowerSystemResource, so the association class can be used to limit the result to
GeneratingUnits.

AssociationSequence

An association sequence defines a mapping from a source set of resources via zero or
more intermediate sets, to a destination set of resources.

An association sequence is evaluated by repeated application of the procedure defined for
a single association. Beginning with the source resource, the first association in the
sequence is evaluated yielding a set of intermediate resources. For each of these the
second association is navigated and the results concatenated forming a multi-set.
Duplicates may or may not be eliminated from this intermediate result reducing it to a
proper set. The get_descendent_values() query does not eliminate duplicates. The
next association is then evaluated and the procedure is repeated for each subsequent
association.

If any step in the sequence can yield resources that are not type-compatible with the next
association in the sequence, then the association sequence is in error.

3.4 Resource Identifiers

Resource identifiers are compact tokens that designate resources in queries, query results,
and events. The ResourceIDService provides methods to translate ResourceIDs to
and from a standard textual form, the Uniform Resource Identifier (URI) [3].

3.4.1 Purpose of Resource Identifiers

Queries use resource identifiers in two main ways:

• To designate properties and classes in queries. Class and property resource
identifiers would be typically obtained from the resource identification service.
June 2001 UMS Data Access Facility: Resource Identifiers 3-9

3

• To cascade queries, so that a resource identifier returned by one query is input to
another.

3.4.2 Purpose of URIs

Unlike Resource Identifiers, URIs provide a universal naming scheme and thus a vehicle
for interoperation between independent software and systems.

The main uses for URIs in the DAF relate to schema elements:

• Bootstrapping - No query can be issued without at least some Resource Identifiers
(to designate the class and properties to be queried). Initial Resource Identifiers are
obtained from URIs via the Resource Identifier Service.

• Standard schema - URIs are used as agreed names for the classes and properties of
the EPRI Common Information Model (CIM) and the Resource Description
Framework Schema (RDFS).

• Custom schema - URIs are used to designate system-specific classes and properties.
URIs avoid name conflicts, especially among properties of the same class.

• Version control - URIs may contain version information, which enables clients and
data providers to distinguish different versions of a class or property.

The role of URIs in the DAF is further elaborated in the Schema chapter.

3.4.3 Resource Identifier Service

Resource identifiers and the resource identification service are defined by the following
IDL.

module DAFIdentifiers
{

// the uniform resource identifier from IETF RFC 2396
typedef string URI;
typedef sequence< URI > URISequence;

// the resource identifier
struct ResourceID
{

unsigned long long container;
unsigned long long fragment;

};
typedef sequence < ResourceID > ResourceIDSequence;

// service for translating and managing resource identifiers
exception LookupError { string reason; };

interface ResourceIDService
{

ResourceIDSequence get_resource_ids(
in URISequence uris)
raises(LookupError);
3-10 UMS Data Access Facility, v1.0 June 2001

3

URISequence get_uris(
in ResourceIDSequence ids)
raises(LookupError);

};
};

URI, URISequence

A URI is a Uniform Resource Identifier with an optional fragment identifier as defined in
[3]. This combination is more properly called a URI-reference. In order to clarify the
following discussion, the syntax of a URI-reference is:

<scheme-name> ’:’ <opaque-part> ’#’ <fragment-identifier>

The opaque-part represents the main body of the URI and (depending on the scheme) it
may include a domain name and a pathname.

In principle, anything that can be named can be given a unique URI. Moreover, any
existing naming scheme can be subsumed into this universal system by, for example,
assigning it a scheme-name. In the DAF it is assumed that all objects in a UMS, both
concrete and abstract, population and schema, have unique URIs.

A DAF implementation is not required to use the protocol implied by the scheme-name of
the URIs it employs. For example, if the URI for the class of Transformers was
http://iec.ch/TC57/2000/CIM-schema-cimu09a#Transformer, it would not imply that a
DAF implementation needs to use the http protocol, nor contact a host in the IEC domain
(iec.ch). In this example, the URI is merely the agreed designation of a commonly
understood concept.

However, the DAF does require URIs to be in absolute, canonical form so that they may be
consistently compared and translated into DAF resource identifiers. In addition, the DAF
treats the fragment separately from the rest of the URI-reference, as explained below.

ResourceID, ResourceID

A ResourceID is a compact, fixed length substitute for a URI. It is introduced to enable
high performance implementations of the DAF where repeated URI parsing, comparison,
and lookups would be too expensive. The ResourceID may also simplify some DAF
implementations.

A ResourceID is divided into two 64-bit fields to further improve the performance of
implementations when dealing with large groups of related resources and multiple data
providers. The container and fragment fields correspond to equivalent fields in a URI-
reference and support a similar division of responsibility for allocation and resolution of
the identifier (see below).

ResourceIDService

This interface enables translation of resource identifiers to and from URI-references. From
a client’s perspective there is always exactly one resource identifier service in a given
context. (The section on proxies describes how multiple data providers are handled. The
section on service location defines what is meant by a context.)
June 2001 UMS Data Access Facility: Resource Identifiers 3-11

3

Each data provider implements this interface and most must be prepared to use this
interface as a client of another data provider. The latter is required of data providers that
use shared resources, such as the EPRI CIM schema.

get_resource_ids()

This operation accepts a sequence of URI-references and returns the corresponding
resource identifiers. The returned sequence is the same length as the input sequence and in
the same order. If the data provider does not recognize a particular URI or is not
responsible for its translation, a null resource identifier is returned for that position.

If the data provider needs a resource identifier for a resource it does not control, it invokes
this operation as a client of the responsible data provider or the proxy data provider. For
example, a data provider might manage a population of UMS data but not the schema for
that population. It would then need to obtain schema resource identifiers from another
data provider.

get_uris()

This operation accepts a sequence of resource identifiers and returns the corresponding
URI-references. The returned sequence is the same length as the input sequence and in the
same order. If the data provider does not recognize a particular resource identifier or is not
responsible for its translation, an empty string is returned for that position.

As with the get_resource_ids() method, a data provider may need to invoke
get_uris() acting as a client of another data provider.

3.4.4 Containers and Fragments

ResourceIDs are grouped by container. The following holds true for two
ResourceIDs with the same container value and different fragment values in a system
with multiple data providers:

• The same data provider allocates the two ResourceIDs and is able to translate
them to and from URIs via its ResourceIDService.

• When translated to URIs the two ResourceIDs yield the same scheme-name and
opaque-part, respectively.

In addition:

• An implementation should attempt to ensure that the Property values of two
resources with the same container value are more likely to be available from the
same data provider than otherwise.

In effect, the container field corresponds to the main part of the URI-reference and the
fragment field corresponds to the fragment-identifier.

3.4.5 Resource Identifier Allocation

In a DAF implementation, resources and ResourceIDs correspond on a one-to-one basis.
In other words, a resource has one and only one ResourceID.
3-12 UMS Data Access Facility, v1.0 June 2001

3

To ensure uniqueness, a DAF implementation must coordinate allocation of container
values among all participating data providers. The allocation of ResourceID container
values takes place at system initialization or configuration time and is beyond the scope of
this specification.

However, each data provider is solely responsible for fragment allocation within some
given set of containers. Thus, in a URI-reference the fragment-identifier is
independently allocated and interpreted in the context of the containing resource.
Similarly, in a ResourceID the fragment field is allocated in the context of the
container.

3.4.6 URI to Resource Identifier Translation

URI-references and resources correspond on a many-to-one basis. A URI-reference
designates a single distinct resource, but a given resource may have more than one URI-
reference.

In a DAF implementation one URI-reference for each resource is distinguished. This is the
URI returned by ResourceIDService when the ResourceID is translated.

Conversely, the ResourceIDService must be able to translate the distinguished URI-
reference of a resource to its ResourceID. It is implementation dependent whether the
ResourceIDService can translate any other URIs for the same resource to its
ResourceID.

3.4.7 Standard and Implementation-Specific URIs

Each URI-reference used in a DAF implementation is either standard or implementation-
specific.

A standard URI-reference is fixed at design time and represents a point of coordination
between otherwise independent client and/or data provider implementations. Generally, a
standard URI-reference will include the domain name of the organization that defined it
and information to identify the version of the standard. This specification standardizes the
URI-references of CIM classes and properties.

Implementation-specific URI-references may be used in all other cases. This type of URI
can be generated by the data-provider in one of several ways:

• Based the resource’s (numeric) ResourceID.

• From attributes of the resource.

• By mapping a proprietary naming scheme to a URI syntax.

3.4.8 Resource Identifiers for Standard URIs

Standard URIs are, by definition, known to more than one client and/or data provider. If
there are multiple data providers that support a given URI, then only one of them can be
responsible for translating it to a ResourceID (along with the other URIs with the same
container).
June 2001 UMS Data Access Facility: Resource Identifiers 3-13

3

The designated data provider must supply the translation to the other data providers,
which must function as clients of its ResourceIDService.

A conforming DAF data provider implementation must be capable of obtaining the
translations of standard URIs from another data provider if so configured.

3.4.9 Resource Identifier Persistence

The mapping between resource identifiers and resources is required to be stable for the
lifetime of a system, that is, for as long as there are active clients or data providers
operating in the same context. In practice this may mean that a data provider must make its
resource identifiers persistent in case it is restarted during the lifetime of the system.

However, this is the minimum standard of persistence. The resource identifier design is
intended to support implementations that want to permanently assign identifiers to
resources.

3.4.10 Null Resource Identifiers and Null Fragments

The null resource identifier is a reserved value, which refers to no resource. The
container and fragment of the null resource identifier are both zero.

A URI-reference with no fragment identifier also has a special representation. This type of
URI corresponds to a non-null resource identifier with a fragment value of zero.

3.5 Query Sequence

The following diagram illustrates the sequence of operations involved in a query, and the
interaction of the ResourceIDService and ResourceQueryService.
3-14 UMS Data Access Facility, v1.0 June 2001

3

Figure 3-1 Query Sequence Diagram

client query service : ResourceQuery
Service

id service : Resource
IDService

get_resource_ids(URISequence)

get_extent_values(PropertySequence, ClassID)

get_related_values(PropertySequence, Association,

Translate URI's for CIM
classes and properties to
ClassID's and PropertyID's

Discover (all) instances of a
given "initial" class. ClassID
designates the class.
ResourceID's and selected
property values are
obtained.

Discover instances related t
o an instance obtained
above, designated by its
ResourceID. ResourceID's
and selected property value
s are obtained.

Client obtains
URI's from CIM
RDF schema.
June 2001 UMS Data Access Facility: Query Sequence 3-15

3

3-16 UMS Data Access Facility, v1.0 June 2001

Events 4
Contents

This chapter contains the following topics.

4.1 Introduction

The DAFEvents module provides the means to notify clients of data changes and to
ensure consistent data access.

module DAFEvents
{

// event emitted by data provider after data changes
struct ResourceChangeEvent
{

DAFIdentifiers::ResourceIDSequence affected;
};

// interface for connection an event push consumer
interface ResourceEventSource
{

CosEventChannelAdmin::ProxyPushSupplier obtain_push_supplier();
unsigned long long current_version();

};

Topic Page

“Introduction” 4-1

“Event Sequence” 4-2

“Current Version and Transactions” 4-3

“Event Compression” 4-6

“Event Handling Guidelines” 4-6
June 2001 UMS Data Access Facility, v1.0 4-1

4

};

ResourceChangeEvent

This structure is passed as an event to indicate a data change. Events of this type are
delivered after a data change and indicate that the client may begin reading or rereading
data.

affected

The affected member is a sequence of resource identifiers that indicates what data has
changed. If affected is empty, then the client must assume that any or all of data supplied
by the data provider may have changed.

Otherwise, affected contains one or more class identifiers. The client should assume that
instances of each class have been created or destroyed, or their property values have
changed.

ResourceEventSource

This interface allows a client to detect updates and concurrency conflicts. The interface is
implemented as a singleton object.

obtain_push_supplier()

This operation is similar to the obtain_push_supplier() defined in the CORBA Events
interface CosEventChannelAdmin::ConsumerAdmin. It is used by a client to
connect its CosEventComm::PushConsumer to the data provider, through which
resource change events will be delivered.

Connection is a two step process. First, obtain_push_supplier() is invoked to return a
ProxyPushSupplier. Then connect_push_consumer() is invoked on that object,
passing the client’s PushConsumer.

Events of type ResourceChangeEvent will then be passed via the PushConsumer’s
push() operation.

Disconnection is achieved by invoking disconnect_push_supplier() on the
ProxyPushSupplier object.

current_version()

This operation is used by clients to detect concurrency conflicts. A client should query the
current version before and after issuing a set of queries. If the values are equal and non-
zero, then the query results are taken to be self-consistent. Section 4.3, “Current Version
and Transactions,” on page4-3 elaborates on this protocol and its motivation.

4.2 Event Sequence

The following sequence diagram illustrates the lifecycle of an event connection between a
client and a data provider.
4-2 UMS Data Access Facility, v1.0 June 2001

4

Figure 4-1 Life Cycle Diagram

4.3 Current Version and Transactions

The DAF interfaces are intended to be useful for a wide variety of data providers with and
without transaction support. The DAF interfaces may be used in conjunction with CORBA
Transactions where the data provider supports transactions.

On the other hand, DAF interfaces can be implemented by realtime, legacy, or other
systems where transaction support is not available.

The following protocol must be implemented by all data providers and may be
implemented by any client.

data provider : Res ourc e

Even tSource

consumer : Push

Consum er

supplier : P roxyP ush

S upp lier

c lient

pus h(any)

E st ablish a

subscription.

Data provider

Notifies client of
updates .

pus h(any)

Clien t cancels

s ubscription .

obtain_pus h_supp lier()

connect_push_consumer(P us hConsum er)

disconnec t_pus h_supplier()
June 2001 UMS Data Access Facility: Current Version and Transactions 4-3

4

The definition of consistency is determined by the implementation of the data provider and
is beyond the scope of this specification.

The response of the client to potentially inconsistent query results (when X != Y or Y = 0)
is implementation-specific. A client may retry the same query sequence in an attempt to
obtain consistent results.

A data provider that never produces inconsistent results may implement
current_version() to return the same, non-zero value on every invocation. Assuming
the value 1 was chosen, X = Y = 1 in every query scenario. As a special case, this applies
to data providers that produce constant results for queries.

A data provider that implements CORBA transactions is not required to report potentially
inconsistent results via current_version(). It may implement current_version() to
return the same, non-zero value on every invocation. It is assumed that clients will bracket
queries with a transaction if consistent results are required.

Other data providers must implement a strategy for generating current_version() values
so that X = Y !=0 implies the query results gathered between X and Y are consistent.
Examples are provided in the next section.

The protocol is illustrated in the following interaction diagram:

Client Data Provider

Invokes current_version() Returns X

Invokes ResourceQueryService
operations.

Returns query results.

Invokes current_version() Returns Y such that X = Y != 0 only if
query results are consistent.
4-4 UMS Data Access Facility, v1.0 June 2001

4

Figure 4-2 current_version() Diagram

4.3.1 Implementation Examples

This section is non-normative and other implementations are permitted. A data provider
that does not implement CORBA Transactions could implement the current_version()
operation using one of the techniques below.

4.3.1.1 Version Numbering Example

Define an internal variable, V, as follows.

client query service : ResourceQuery
Service

event source : Resource
EventSource

Obtain instances of some
class.

Obtain some related data.

get_extent_values(PropertySequence, ClassID)

get_related_values(PropertySequence, Association, ResourceID)

current_version()

Obtain initial version
Number, X.

current_version()

Obtain final version
number, Y. Results are self-
consistent iff X=Y and X!=0.
June 2001 UMS Data Access Facility: Current Version and Transactions 4-5

4

i. On initialization set V to 1.

ii. On entering a new, consistent state increment V.

iii. When current_version() is invoked return V if the current state is consistent,
 otherwise return 0.

4.3.1.2 Timestamp Example

Define a persistent datum variable T, managed as part of the model.

i. On model creation set T to the current time.

ii. During model update suspend query service.

iii. On completion of model update set T to the current time.

iv. When current_version() is invoked return T.

4.4 Event Compression

An implementation is not required to issue an event for every update as it occurs. A data
provider may be capable of grouping a series of transactions or simple updates into a
larger unit. This series may constitute a logical grouping or a temporal grouping of
changes. A single resource change event may be issued after the last of change of the
series, to cover all of the changes. This is referred to as event compression.

4.5 Event Handling Guidelines

A resource change event can be issued at either of two levels of precision. A general
update event contains an empty affected sequence, while a specific event identifies the
changed data via a non-empty affected member. The precision used depends on both the
capability of the data provider and the nature of the update. A given data provider may use
either technique depending on circumstances.

To ensure interoperability, the following guidelines for events should be observed:

• If affected is not empty then it should identify every class of data changed since
the preceding event.

• The data provider should emit exactly one event for an update or series of updates.
It should not issue a general event and a specific event for the same update.

• Any client that responds to events should respond to both general and specific
update events.

If a client is not capable of interpreting the affected information, it should treat specific
update events the same way as general update events.
4-6 UMS Data Access Facility, v1.0 June 2001

Service Location 5
Contents

This chapter contains the following topics.

5.1 Introduction

The goal of the service location protocol is to ensure that independently developed clients
and data providers can be combined to form a coherent system, isolated from other
systems that may be operating in the same host or network. Such a system is referred to as
a context. Three context configurations are considered by this specification:

1. The simplest context consists of one client and one data provider. It is only
necessary for the client to locate the data provider (and not some other data provider
belonging to a different context).

2. The next most elaborate context consists of a number of clients and one data
provider. Here, all of the clients must locate (the same) data provider.

3. The most general context contemplated by this specification consists of multiple
clients, multiple data providers, and a single proxy data provider (described in the
Proxies chapter).

Clients and data providers must be capable of operating in any of these contexts without
modification.

Topic Page

“Introduction” 5-1

“Client View” 5-2

“Data Provider View” 5-2
June 2001 UMS Data Access Facility, v1.0 5-1

5

5.2 Client View

From a client’s perspective it is only necessary to locate three persistent CORBA
singletons implementing ResourceQueryService, ResourceIDService, and
ResourceEventSource respectively. Together, these services constitute a data provider.

The client locates the three services in a single CosNaming::NamingContext within
the CORBA Naming service. The location of this NamingContext must be configurable
for each instance of the client implementation.

The client resolves the three services using the following standard names.

5.3 Data Provider View

A data provider exports the three services above. In addition, the data provider may need
to locate a ResourceIDService to translate standard URI’s to ResourceIDs (see the
Data Access Interfaces chapter).

The data provider exports its three services by binding the respective objects in a
CosNaming::NamingContext, which it implements directly or creates within the
CORBA Naming service implementation. It uses the same names as a client, given in the
table above.

The data provider obtains the ResourceIDService to translate standard URIs from this
NamingContext. It does so by resolving the following standard name.

The location of the NamingContext used must be configurable for each data provider. If
the context contains multiple data providers, then a different NamingContext will be
used by each and the clients will use the NamingContext of a proxy data provider (see
the Proxies chapter).

Service Name Kind

ResourceQueryService “resource_query_service” “”

ResourceIDService “resource_id_service” “”

ResourceEventSource “resource_event_source” “”

Service Name Kind

ResourceIDService “standard_id_service” “”
5-2 UMS Data Access Facility, v1.0 June 2001

Proxies 6
Contents

This chapter contains the following topics.

6.1 Introduction

A proxy data provider is intended to enable multiple, independently developed data
providers to be combined in one context. In the simpler DAF configurations no proxy is
required. Multiple clients can share a single, data provider, which has a comprehensive
schema and population. For example, the data provider might be a wrapper on an existing
UMS.

However, a data provider that handles only part of the overall data needed by clients may
be combined with others to form a complete system. This leads to a configuration in which
multiple clients share multiple data providers. It would arise when the DAF interfaces are
used to wrap individual data providers in a UMS rather than the UMS as a whole. This
permits independent developers to extend a UMS with data providers as well as clients.

6.2 Rules for Proxy Data Providers

A proxy data provider presents a simple facade to the clients, on the one hand, and

Topic Page

“Introduction” 6-1

“Rules for Proxy Data Providers” 6-1

“Proxy Resource Query Service” 6-2

“Proxy Resource Identification Service” 6-3

“Proxy Resource Event Source” 6-3
June 2001 UMS Data Access Facility, v1.0 6-1

6

combines the services of multiple data providers on the other. At one extreme, very
simple proxies could be envisaged. At the other, the proxy may actually be a wrapper for a
more extensive application integration environment, an “integration bus” or a “data
federation service.”

In any case, the proxy data provider must provide the following capabilities:

• The proxy must hide the existence of multiple data providers from the clients so
that they can operate unchanged in both single-data provider contexts and multiple-
data provider contexts.

• The proxy must encapsulate configuration information about which data providers
are present and what data they are responsible for supplying. Data providers and
clients must be insulated from the configuration details.

• A proxy must not require additional interfaces to be exposed either to clients or the
ultimate data providers. It acts as both a server and a client for the
ResourceQueryService, ResourceIDService, and ResourceEventSource
interfaces defined in this specification.

• A proxy must present a unified view of all the data in the context to the clients,
combining information provided by the ultimate data providers. A query must return
all the requested information that is available, even though it may be obtained from
multiple data providers.

• A proxy may implement various policies and optimizations to delegate queries, but
these must be transparent to clients and the ultimate data providers.

6.3 Proxy Resource Query Service

A proxy data provider must implement a ResourceQueryService. Each query invoked
by a client will be directed to this service, which will delegate to one or more of the
ultimate data providers. The results of the delegated queries (if there were more than one)
will then be merged to form the reply to the client.

A proxy ResourceQueryService would therefore contain logic and configuration
information for selecting the ultimate data providers, partitioning queries among them,
combining the results and resolving conflicts between results.

The query interfaces are designed so that each data provider can return partial query
results (without raising an exception).

6.3.1 Proxy Query Sequence

The following diagram illustrates the delegation of queries through a proxy
ResourceQueryService.
6-2 UMS Data Access Facility, v1.0 June 2001

6

Figure 6-1 Proxy Query Sequence Diagram

6.4 Proxy Resource Identification Service

A proxy data provider must implement a ResourceIDService. Each translation request
will be delegated to one or more of the ultimate data providers and the results combined.
The translation methods are designed so that each data provider can return results for those
resources known to it without raising an exception for unknown resources.

6.5 Proxy Resource Event Source

A proxy data provider must implement a ResourceEventSource. This involves
synthesizing a current_version() operation and acting as an event channel for
ResourceChangeEvents.

The proxy must report:

• A different current version whenever the current version reported by one of the
ultimate data providers changes.

• The value zero when any of the ultimate data providers reports zero.

In order to combine event sources, the proxy must connect to all of the ultimate data
providers and receive their ResourceChangeEvents. It must then provide an event

Client's query is
directed to appropriate
data provider.

client proxy query service : Resource
QueryService

query service 1 : Resource
QueryService

query service 2 : Resource
QueryService

get_extent_values(PropertySequence, ClassID)

get_extent_values(PropertySequence, ClassID)

get_extent_values(PropertySequence, ClassID)

Client's query is relayed
to all data providers.

get_related_values(PropertySequence, Association, ResourceID)

get_related_values(PropertySequence, Association, ResourceID)

Client queries proxy
instead of ultimate dat
a providers.
June 2001 UMS Data Access Facility: Proxy Resource Identification Service 6-3

6

service to the clients. Each event from each data provider is passed on to the clients. An
implementation could employ a standard CORBA Events service in this role.
6-4 UMS Data Access Facility, v1.0 June 2001

Schema 7
Contents

This chapter contains the following topics.

7.1 Introduction

The information made available through DAF interfaces can be described by one or more
schema. At least some agreement on schema must exist between a data provider and a
client before effective communication is possible.

In particular, every operation on ResourceQueryService requires the ResourceIDs
of some properties. Moreover, the results of a query are meaningful only to the extent that
the client and data provider agree on the definition of these properties.

Therefore, this specification provides:

• A standard schema for EMS applications, generated from the EPRI CIM [3].

• Provision for additional industry and application-specific schema, and revisions of
the EPRI CIM.

Topic Page

“Introduction” 7-1

“Industry and Application-Specific Schema” 7-2

“Schema Extension” 7-2

“Schema Support Testing” 7-3

“Schema Query” 7-4

“Schema Query Sequence” 7-5
June 2001 UMS Data Access Facility, v1.0 7-1

7

• A means to extend standard schema or merge custom and standard schema without
conflicts.

• A means to manage multiple versions of a schema.

• A means for the data provider to support a subset of a schema, and for the client to
discover which parts are supported.

• A standard schema, taken from [2], for querying other schema.

7.2 Industry and Application-Specific Schema

The standard schema to be used with the DAF in EMS applications is described in the
EPRI Common Information Model chapter. It is fully defined in RDF syntax in [8].

Additional industry and application-specific schema can be defined in a similar way.
Alternatives to RDF syntax may be used provided that the schema unambiguously
specifies:

• A unique URI for the schema as a whole, which includes version identification.
(Uniqueness may require the inclusion of the Internet domain name of the issuer.)

• Unique URI-references for any conformance blocks and a list of the classes and
properties belonging to each conformance block. A conformance block URI-
reference may be constructed from the schema URI appended with a fragment
identifier. (Note that EPRI CIM version 9a does not define conformance blocks.)

• A unique URI-reference for each class and property that also includes version
identification. Again, the URI-reference may be constructed from the schema URI
appended with a fragment identifier.

• The domain and range of each property. (Where domain and range indicate the
property from and to classes respectively, as per RDF schema.)

• The multiplicity of each property. (Whether it is single or many-valued.)

• The inverse property of each property (if present).

• Any sub-class/super-class relationships.

Clients can use an industry or application-specific schema in scenarios similar to that
shown in Section 3.5, “Query Sequence,” on page3-14. Since the URI-reference of each
class and property is specified, the client simply translates them to ResourceIDs that are
used in queries.

7.3 Schema Extension

A data provider may implement extensions to a standard schema, such as the EPRI CIM or
the RDF schema (described below). Standard schema may be extended provided
compatibility with standard clients is maintained. Extensions may be made as follows:

• The extension may add classes and/or properties.

• Classes may be added which are sub-classes or super-classes of standard classes.
7-2 UMS Data Access Facility, v1.0 June 2001

7

• Properties may be added whose domain and/or range is a standard class.

• The URI of each added class or property must be unique. (Uniqueness may require
the inclusion of the Internet domain name of the extender.)

• The definition of any standard property may not be changed.

• No sub-class/super-class relationships between standard classes may be altered.

Unlike standard schema, an extension is not necessarily agreed by more than one
independent software developer. Therefore schema extensions are not necessarily
published according to the rules in Section 7.2, “Industry and Application-Specific
Schema,” on page7-2.

An implementation that extends a nominally standard schema in an incompatible way
(violating one or more of the foregoing rules) must rename the resulting schema or the
affected elements so as not to conflict with a standard implementation.

7.4 Schema Support Testing

An implementation may support all, part, or none of a given standard schema. In addition,
an implementation may support one or more versions of a standard schema. The scope of
support is indicated to the client by the get_resource_ids() operation.

A client may test a collection of schema features with a get_resource_ids() operation
at any time, possibly preceding any other interactions with the data provider. The result of
the operation will indicate which of the listed features are supported and which are not.
The client might use this information to decide whether it can proceed normally, whether
it can proceed with limited capabilities, or to choose an internal strategy that will be
compatible with the data provider.

The schema features that can be tested in this way are as follows.

7.4.1 Schema and Version Test

If some or all of a schema of a particular version is supported, then the schema URI for
that version will be translated to a non-null resource identifier. For example the schema
URI for EPRI CIM 9a is http://iec.ch/TC57/2000/CIM-schema-cimu09a and this URI can
be tested to determine if general support of that CIM version is available.

7.4.2 Conformance Block Test

If an entire conformance block of a particular schema and version is supported, then the
URI-reference for that conformance block will be translated to a non-null resource
identifier. This differs from schema discovery in that complete conformance is tested.

7.4.3 Class and Property Test

If a class is supported (with all, some, or none of its properties), then the URI-reference for
that class will be translated to a non-null resource identifier. Similarly, if a property is
June 2001 UMS Data Access Facility: Schema Support Testing 7-3

7

supported, then its URI-reference will be translated to a non-null resource identifier.

7.4.4 Schema Query Test

Support for schema queries (described in the next section) can also be tested. Schema
query is available if the URI http://www.w3.org/2000/01/rdf-schema translates to a non-
null resource identifier.

7.5 Schema Query

Some clients may want to query the schema information in greater detail than is possible
with the feature tests defined in the previous section. This specification aims to
accommodate these clients without requiring every data provider to implement a full

schema query facility1.

If a data provider supports schema queries, they are performed via its
ResourceQueryService interface in the same way as general population queries. The
meta-model supporting schema query is derived from the RDF schema candidate
recommendation [2].

A data provider that supports schema query must, at a minimum, translate the following
URI-references to ResourceIDs and implement the designated classes and properties in
its ResourceQueryService.

1. Experience with developing data providers indicates that the schema query capabilities add
significant cost and complexity and may even dominate the overall implementation cost. The
design rationale adopted here is that implementations should only pay for what they use.

URI Meaning

http://www.w3.org/2000/01/rdf-schema#Class The class of all classes.

http://www.w3.org/2000/01/rdf-schema#Property The class of all properties.

http://www.w3.org/2000/01/rdf-schema#label A property of Class and Property
giving a short name.

http://www.w3.org/2000/01/rdf-schema#comment A property of Class and Property
giving a human-readable description.

http://www.w3.org/2000/01/rdf-schema#domain The domain property of Property (see
Section 2.1.1.2, “Properties,” on
page 2-2).
7-4 UMS Data Access Facility, v1.0 June 2001

7

A proxy data provider is required when clients require schema query features but the
ultimate data providers do not support the foregoing metadata. The proxy must supply the
missing metadata, which may be available from a third data provider.

7.6 Schema Query Sequence

The following sequence diagram illustrates the use of the ResourceQueryService to
query schema information. This sequence should be compared with that of Secti on3.5,
“Query Sequence,” on page3-14. The client begins by obtaining resource identifiers for
Class, Property domain, range, and label metadata. These resource identifiers may
then be used in schema queries. For example, to ask for the names of all classes the Class
and label resource identifiers are passed to the get_extent_values() query.

http://www.w3.org/2000/01/rdf-schema#range The range property of Property (see
Section 2.1.1.2, “Properties,” on
page 2-2).

http://iec.ch/TC57/1999/rdf-schema-extensions-
19990926#Multiplicity

The multiplicity property of Property.

http://iec.ch/TC57/1999/rdf-schema-extensions-
19990926#M:0..n

The value of multiplicity which
indicates a many-valued property.
June 2001 UMS Data Access Facility: Schema Query Sequence 7-5

7

Figure 7-1 Schema Query Sequence Diagram

client query service : ResourceQuery
Service

id service : Resource
IDService

Translate RDF schema
URI's to (meta) Property
ID's and (meta) ClassID's

Discover (all) available classes
of data.

Discover the properties defined
for one selected class. The
ResourceID designates the
class.

get_extent_values(PropertySequence, ClassID)

get_related_values(PropertySequence, Association, ResourceID)

get_resource_ids(URISequence)

get_extent_values(PropertySequence, ClassID)

Discover instances of the
selected class. Their Resource
ID's and values for the properties
discovered above are obtained.

Client obtains
URI's from RDF
schema spec.
7-6 UMS Data Access Facility, v1.0 June 2001

EPRI Common Information Model 8
Contents

This chapter contains the following topics.

8.1 Schema

When the DAF is used to access power system model data, a schema derived from the
EPRI CIM will be employed. This schema is undergoing standardization in the IEC under
Technical Committee TC57. From time to time, the IEC may standardize newer versions
of this schema, which the OMG may designate as the DAF standard. When this happens a
new OMG document number will be issued.

There are two URIs designating the EPRI CIM schema:

1. The EPRI CIM document URI gives the location of the schema document on the
public internet. This URI points to the OMG document dtc/2000-11-10 [8] and is
subject to change if the OMG rearranges its web site. The document URI plays no
part in the operation of the interface. Neither clients nor data providers need to
recognize the document URI.

2. The EPRI CIM namespace URI identifies a schema, including its version. This URI
is used purely as a name and it does not necessarily identify any document on the
public internet. It is used in the interface to uniquely and universally identify CIM
classes, properties, and enumerated values. Implementations complying with the
EPRI CIM conformance point must recognize this URI in the
ResourceIDService::get_resource_ids() operation.

Topic Page

“Schema” 8-1

“Mapping” 8-2
June 2001 UMS Data Access Facility, v1.0 8-1

8

The EPRI CIM namespace URI will normally take the following form:

http://iec.ch/TC57/2000/CIM-schema-<version>

The current version of this schema has the following namespace URI:

http://iec.ch/TC57/2000/CIM-schema-cimu09a

8.2 Mapping

As the EPRI CIM is updated it will be necessary to create new versions of the schema used
with the DAF. The EPRI CIM is published in UML and the following guidelines are to be
used in mapping the UML form to RDF schema. In the following mapping table the
namespaces are:

rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
rdfs="http://www.w3.org/2000/01/rdf-schema#"

UML RDF Schema Mapping

Schema Element Property Schema Element Value

Class Type rdfs:Class

ID UML class name

Attribute Type rdf:Property

ID C.a where C is the class name and a is the UML
attribute name with first letter lower case and
subsequent words capitalized.

Domain The RDF class corresponding to the attribute’s
class.

Range The RDF class corresponding to the attribute’s
type.

Association role Type rdf:Property

ID C.A where C is the class name and A is the
UML attribute name with first letter upper case
and subsequent words capitalized.

Domain The RDF class corresponding to the attribute’s
class.

Range The RDF class corresponding to the attribute’s
type.
8-2 UMS Data Access Facility, v1.0 June 2001

References A
A.1 List of References

1. Resource Description Framework (RDF) Model and Syntax Specification, W3C
Recommendation 22 February 1999 http://www.w3.org/TR/REC-rdf-syntax, Ora
Lassila, Ralph R. Swick.

2. Resource Description Framework (RDF) Schema Specification, W3C Candidate
Recommendation 27 March 2000 http://www.w3.org/TR/2000/CR-rdf-schema-
20000327, Dan Brickley, R.V. Guha, Netscape

3. Uniform Resource Identifiers (URI): Generic Syntax; Berners-Lee, Fielding,
Masinter, Internet Draft Standard August, 1998; RFC2396.

4. Namespaces in XML; Bray, Hollander, Layman eds, W3C Recommendation;
http://www.w3.org/TR/1999/REC-xml-names-19990114

5. Naming Service Specification, OMG Document formal/97-12-10

6. Event Service Specification, OMG Document formal/97-12-11

7. Guidelines for Control Center Application Program Interfaces, EPRI Technical
Report TR-106324, Project 3654-01, Final Report, June 1996.

8. CIM RDF Schema Exported from Ccapi.mdl Version: CIMU09a, Leila Schneberger.
OMG TC Document dtc/2000-11-10.

9. Additional Metadata Definitions for CIM, Leila Schneberger. OMG TC Document
dtc/2000-11-11.

10. IDL for UMS DAF Specification. OMG TC Document dtc/2000-11-12.

11. UML Model for UMS DAF, Arnold deVos. OMG TC Document dtc/2000-11-13.
June 2001 UMS Data Access Facility, v1.0 A-1

A

A-2 UMS Data Access Facility, v1.0 June 2001

Complete IDL B
B.1 DAFIdentifiers Module

//File: DAFIdentifiers.idl
#ifndef _DAF_IDENTIFIERS_IDL_
#define _DAF_IDENTIFIERS_IDL_

#pragma prefix "omg.org"
module DAFIdentifiers
{

// the uniform resource identifier from IETF RFC 2396
typedef string URI;
typedef sequence< URI > URISequence;

// the resource identifier
struct ResourceID
{

unsigned long long container;
unsigned long long fragment;

};
typedef sequence < ResourceID > ResourceIDSequence;

// service for translating and managing resource identifiers
exception LookupError { string reason; };

interface ResourceIDService
{

ResourceIDSequence get_resource_ids(
in URISequence uris)
raises(LookupError);

URISequence get_uris(
in ResourceIDSequence ids)
raises(LookupError);

};
};
June 2001 UMS Data Access Facility, v1.0 B-1

B

#endif // _DAF_IDENTIFIERS_IDL_

B.2 DAFDescriptions Module

//File: DAFDescriptions.idl
#ifndef _DAF_DESCRIPTIONS_IDL_
#define _DAF_DESCRIPTIONS_IDL_

#include <DAFIdentifiers.idl>
#include <TimeBase.idl>

#pragma prefix "omg.org"
module DAFDescriptions
{

//++
// Simple Types used as property values.
//--

// imported from identifiers module.
typedef DAFIdentifiers::ResourceID ResourceID;
typedef DAFIdentifiers::URI URI;

// absolute time stamps in 100 nanosecond units
// base time is 15 October 1582 00:00 UTC
// as per Time Service specification
typedef TimeBase::TimeT DateTime;

// a complex number
struct Complex
{

double real;
double imaginary;

};

// SimpleValue's can take on the following types.
typedef short SimpleValueType;
const SimpleValueType RESOURCE_TYPE = 1;
const SimpleValueType URI_TYPE = 2;
const SimpleValueType STRING_TYPE = 3;
const SimpleValueType BOOLEAN_TYPE = 4;
const SimpleValueType INT_TYPE = 5;
const SimpleValueType UNSIGNED_TYPE = 6;
const SimpleValueType DOUBLE_TYPE = 7;
const SimpleValueType COMPLEX_TYPE = 8;
const SimpleValueType DATE_TIME_TYPE = 9;
const SimpleValueType ULONG_LONG_TYPE = 10;

// a SimpleValue is the object of a resource description.
union SimpleValue switch(SimpleValueType)
{

case RESOURCE_TYPE : ResourceID resource_value;
case URI_TYPE : URI uri_value;
case STRING_TYPE : string string_value;
case BOOLEAN_TYPE : boolean boolean_value;
B-2 UMS Data Access Facility, v1.0 June 2001

B

case INT_TYPE : long int_value;
case UNSIGNED_TYPE : unsigned long unsigned_value;
case DOUBLE_TYPE : double double_value;
case COMPLEX_TYPE : Complex complex_value;
case DATE_TIME_TYPE : DateTime date_time_value;
case ULONG_LONG_TYPE: unsigned long long ulong_long_value;

};

//++
// Resource Descriptions
//--

// properties are represented by their resource identifiers
typedef ResourceID PropertyID;
// predicate and object for a resource description
struct PropertyValue
{

PropertyID property;
SimpleValue value;

};
typedef sequence<PropertyValue> PropertyValueSequence;

// resource description with one subject, multiple predicates
struct ResourceDescription
{

ResourceID id;
PropertyValueSequence values;

};
typedef sequence<ResourceDescription> ResourceDescriptionSequence;

// iterator for handling large numbers of resource descriptions
interface ResourceDescriptionIterator
{

unsigned long max_left();
boolean next_n(

in unsigned long n,
out ResourceDescriptionSequence descriptions);

void destroy();
};

};

#endif // _DAF_DESCRIPTIONS_IDL_

B.3 DAFQuery Module

//File: DAFQuery.idl
#ifndef _DAF_QUERY_IDL_
#define _DAF_QUERY_IDL_

#include <DAFDescriptions.idl>

#pragma prefix "omg.org"
module DAFQuery
{

June 2001 UMS Data Access Facility: DAFQuery Module B-3

B

// properties and classes are represented by resource identifiers
// imported from the identifiers module.
typedef DAFIdentifiers::ResourceID ResourceID;
typedef DAFIdentifiers::ResourceID ClassID;
typedef DAFIdentifiers::ResourceID PropertyID;
typedef DAFIdentifiers::ResourceIDSequence PropertySequence;

// results are resource descriptions from the descriptions module
typedef DAFDescriptions::ResourceDescription ResourceDescription;
typedef DAFDescriptions::ResourceDescriptionIterator

ResourceDescriptionIterator;

// queries that perform navigation use the association concept
struct Association
{

PropertyID property;
ClassID type;
boolean inverse;

};
typedef sequence<Association> AssociationSequence;

// exceptions generated by queries
exception UnknownAssociation { string reason; };
exception UnknownResource { string reason; };
exception QueryError { string reason; };

// the query service
interface ResourceQueryService
{

ResourceDescription get_values(
in ResourceID resource,
in PropertySequence properties)
raises(UnknownResource, QueryError);

ResourceDescriptionIterator get_extent_values(
in PropertySequence properties,
in ClassID class_id)
raises (UnknownResource, QueryError);

ResourceDescriptionIterator get_related_values(
in PropertySequence properties,
in Association association,
in ResourceID source)
raises (UnknownResource, UnknownAssociation, QueryError);

ResourceDescriptionIterator get_descendent_values(
in PropertySequence properties,
in AssociationSequence path,
in ResourceIDSequence sources,
out AssociationSequence tail)
raises (UnknownResource, QueryError);

};
};
#endif // _DAF_QUERY_IDL_
B-4 UMS Data Access Facility, v1.0 June 2001

B

B.4 DAFEvents Module

//File: DAFEvents.idl
#ifndef _DAF_EVENTS_IDL_
#define _DAF_EVENTS_IDL_

#include <DAFIdentifiers.idl>
#include <CosEventChannelAdmin.idl>

#pragma prefix "omg.org"
module DAFEvents
{

// event emitted by data provider after data changes
struct ResourceChangeEvent
{

DAFIdentifiers::ResourceIDSequence affected;
};

// interface for connection an event push consumer
interface ResourceEventSource
{

CosEventChannelAdmin::ProxyPushSupplier obtain_push_supplier();
unsigned long long current_version();

};
};
#endif // _DAF_EVENTS_IDL_
June 2001 UMS Data Access Facility: DAFEvents Module B-5

B

B-6 UMS Data Access Facility, v1.0 June 2001

SQL Examples C
This is a non-normative appendix and does not constitute part of the definition of the DAF.
It is provided for illustration only.

The four queries provided by the resource query service can be understood in terms of
their SQL equivalents. In comparing the SQL form to the IDL, it should be noted that the
IDL encompasses an API as well as a query formulation. That is, the DAF IDL combines
a (vastly simplified) equivalent to the ODBC API and the SQL queries given below.

C.1 SQL Identifiers

In the following illustration, the SQL identifiers are

property1, property2 ...

Attributes corresponding to the properties in the property sequence in the DAF
query.

implied-class ...

The table corresponding to the class to which the given resource belongs. Given a
resource identifier, an implementation needs to be able to determine the class of the
resource.

Class

The table corresponding to the class_id in the DAF query.

resource, source ...

The key value of a record that represents a resource.

association-type, path-type ...
June 2001 UMS Data Access Facility, v1.0 C-1

C

The table corresponding to the Association.type in the DAF query.

association-inverse, path-inverse

The attribute corresponding to the inverse of the Association.property in the DAF
query.

path1, path2 ...

The associations in the path sequence in the DAF query.

C.2 get_values()

IDL

ResourceDescription get_values(
in ResourceID resource,
in PropertySequence properties)
raises(UnknownResource, QueryError);

SQL
select property1, property2 ... from implied-class where
implied-class.ID = resource;

C.3 get_extent_values()

IDL

ResourceDescriptionIterator get_extent_values(
in PropertySequence properties,
in ClassID class_id)
raises (UnknownResource, QueryError);

SQL
select property1, property2 ... from class;

C.4 get_related_values()

IDL

ResourceDescriptionIterator get_related_values(
in PropertySequence properties,
in Association association,
in ResourceID source)
raises (UnknownResource, UnknownAssociation, QueryError);
C-2 UMS Data Access Facility, v1.0 June 2001

C

SQL
select property1, property2 ...
from association-type
where association-type.association-inverse = source;

C.5 get_descendent_values()

IDL

ResourceDescriptionIterator get_descendent_values(
in PropertySequence properties,
in AssociationSequence path,
in ResourceIDSequence sources,
out AssociationSequence tail)
raises (UnknownResource, QueryError);

SQL
select property1, property2 ... from implied-view;

SQL (alternative)
select property1, property2 ...
from path1-type, path2-type, path3-type..
where path1-type.path1-inverse in sources

and path2-type.path2-inverse = path1-type.ID
and path3-type.path3-inverse = path2-type.ID
and ...;
June 2001 UMS Data Access Facility: get_descendent_values() C-3

C

C-4 UMS Data Access Facility, v1.0 June 2001

Glossary
Glossary Terms

DAF The Utility Management System Data Access Facility,
the subject of this specification.

DAF Client A program or software entity that uses the DAF
interfaces to obtain information. Abbreviated to client
in most of this specification.

Data Provider An implementation of the DAF. That is, a program or
software entity that supplies information via the DAF
interfaces. Also referred to as a DAF server or just a
server.

DMS A Distribution Management System. This is a UMS
for operating an electric power sub-transmission and
distribution system.

EMS An Energy Management System. This is a UMS for
operating an electric power main transmission and/or
production system.

EPRI Electric Power Research Institute. A power industry
body that is engaged in an effort to define APIs and
data models for EMS systems and applications.

EPRI CIM The EPRI Common Information Model. A data model
defined in UML that can be used to describe power
systems and related concepts. This model is undergoing
standardization in the IEC.

Power System The integrated facilities and resources that produce,
transmit and/or distribute electric energy.
June 2001 UMS Data Access Facility Glossary - 1

PLC Programmed Logic Controller, a device that controls an
item or items of equipment. A PLC may transmit data
it gathers to a UMS and receive control commands
from the UMS. In this case it fills a role similar to an
RTU.

RDF Resource Description Framework. A model of data
that has been defined by a W3C recommendation and
is used in conjunction with XML notation.

RTU Remote Terminal Unit, a device located at a (usually)
remote site that connects equipment with a central
UMS. An RTU gathers data from equipment, and
transmits that data back to the UMS. It also receives
commands from the UMS and controls the equipment.

SCADA Supervisory Control and Data Acquisition, a system
that gives operators oversight and control of
geographically dispersed facilities.

UML Unified Modeling Language. The OMG standard
modeling language, which has been used to define the
EPRI Common Information Model.

UMS Utility Management System, a control system that
incorporates simulation and analysis applications used
by a water, gas or electric power utility for operations
or operational decision support.

WQEMS A Water Quality and Energy Management System.
This is a UMS for operating water supply and/or waste
water systems.

XML Extensible Markup Language. A generic syntax
defined by a W3C recommendation that can be used to
represent UMS data and schema, among other things.
Glossary - 2 UMS Data Access Facility June 2001

Index
A
Application-Specific Schema 7-2
Attribute-level Decomposition 1-5

C
Class and Property Test 7-3
Classes 2-3
Client View 5-2
Concurrency Control 1-3
Conformance Block Test 7-3
Containers and Fragments 3-12
CORBA

contributors viii
documentation set vi

Current Version and Transactions 4-3

D
Data Access 1-3
Data Provider View 5-2
Data Semantics 1-3
Data Value Representation 1-4
Dependencies 1-7
Distribution Management Systems (DMS) 1-1

E
Energy Management Systems (EMS) 1-1
Enumerations 2-3
Event Compression 4-6
Event Handling Guidelines 4-6
Event Sequence 4-2
Examples 4-5

F
Federation of Data Provider s1-5

G
get_descendent_values() C-3
get_extent_values() C-2
get_related_values() C-2
get_values() C-2

I
Identifying Schema Elements 1-5
Implementation Examples 4-5
Implementations 1-3, 1-4
Implementation-Specific URIs 3-13
Industry schema 7-2

M
Mapping 8-2

N
Notification 1-3
Null Fragments 3-14
Null Resource Identifiers 3-14

O
Object Management Group v

address of viii

P
Partial Schema 1-4
Pre-joined Views 1-4
Properties 2-2
Property Values 2-2
Proxy 6-1
Proxy data provide r6-2
Proxy Query Sequence 6-2
Proxy Resource Event Source 6-3
Proxy Resource Identification Service 6-3
Proxy Resource Query Service 6-2

Q
Query Results 1-4
Query Sequence 3-14
Querying Schema Information 1-5

R
Relationship to Other Models 2-3
Resource Description Framework (RDF) 2-1
Resource Descriptions 2-2, 3-3
Resource Identifier Allocation 3-12
Resource Identifier Persistence 3-14
Resource Identifier Service 3-10
Resource Identifiers 3-9
Resource Identifiers for Standard URIs 3-13
Resource Query Service 3-5
Resources 2-2

S
Schema 7-1, 8-1
Schema Access 1-5
Schema and Meta-Model Extensions1-6
Schema and Version Tes t7-3
Schema Extension 7-2
Schema Query 7-4
Schema Query Sequence 7-5
Schema Query Test 7-4
Schema Support Testing 7-3
Schema Versions 1-6
Simple Values 3-1
SQL Identifiers C-1
Standard URIs 3-13
Supervisory Control and Data Acquisition (SCADA) 1-1

T
Timestamp Example 4-6

U
URI to Resource Identifier Translation 3-13
Utility Management System (UMS) 1-1

V
Version Numbering Example 4-5

W
Water Quality and Energy Management Systems (WQEMS) 1-1

X
XML CIM 2-1
XML/CIM 1-6
June 2001 UMS Data Access Facility Index-1

Index
Index-2 UMS Data Access Facility June 2001

	Preface
	1. Overview
	1.1 Introduction
	1.2 Problems Being Addressed
	1.3 Problems Not Being Addressed
	1.4 Design Rationale
	1.5 Module Dependencies
	1.6 Conformance to the DAF
	1.6.1 The DAF Interfaces
	1.6.2 EPRI CIM Schema

	2. Resource Description Framework
	2.1 Motivation
	2.1.1 Fundamentals

	2.2 Relationship To Other Models
	2.2.1 Enumerations

	3. Data Access Interfaces
	3.1 Simple Values
	3.2 Resource Descriptions
	3.3 Resource Query Service
	3.4 Resource Identifiers
	3.4.1 Purpose of Resource Identifiers
	3.4.2 Purpose of URIs
	3.4.3 Resource Identifier Service
	3.4.4 Containers and Fragments
	3.4.5 Resource Identifier Allocation
	3.4.6 URI to Resource Identifier Translation
	3.4.7 Standard and Implementation-Specific URIs
	3.4.8 Resource Identifiers for Standard URIs
	3.4.9 Resource Identifier Persistence
	3.4.10 Null Resource Identifiers and Null Fragments

	3.5 Query Sequence

	4. Events
	4.1 Introduction
	4.2 Event Sequence
	4.3 Current Version and Transactions
	4.3.1 Implementation Examples

	4.4 Event Compression
	4.5 Event Handling Guidelines

	5. Service Location
	5.1 Introduction
	5.2 Client View
	5.3 Data Provider View

	6. Proxies
	6.1 Introduction
	6.2 Rules for Proxy Data Providers
	6.3 Proxy Resource Query Service
	6.3.1 Proxy Query Sequence

	6.4 Proxy Resource Identification Service
	6.5 Proxy Resource Event Source

	7. Schema
	7.1 Introduction
	7.2 Industry and Application-Specific Schema
	7.3 Schema Extension
	7.4 Schema Support Testing
	7.4.1 Schema and Version Test
	7.4.2 Conformance Block Test
	7.4.3 Class and Property Test
	7.4.4 Schema Query Test

	7.5 Schema Query
	7.6 Schema Query Sequence

	8. EPRI Common Information Model
	8.1 Schema
	8.2 Mapping

	Appendix A - References
	Appendix B - Complete IDL
	Appendix C - SQL Examples
	Glossary
	Index

