

 An OMG® Unified POS Retail Peripheral Architecture Publication

 Sept. 20 2024

Unified POS Retail Peripheral Architecture

Version 1.15.1 Beta1

OMG Document Number: dtc/24-09-12
Standard document URL: https://www.omg.org/spec/UPOS/

Normative Machine Readable Files:

 UnifiedPOS XML Schema Files: dtc/24-08-40

Copyright © 2019-2024 Object Management Group

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of
this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

Trademarks

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this International Standard, but may not claim compliance or conformance with this International
Standard. In the event that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this International Standard may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page https://www.omg.org, under Documents, Report a Bug/Issue (https://issues.omg.org/issues/create-new-issue).

Unified POS, v1.15.1 Beta1 i

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PDF format, may be obtained
from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to
(https://issues.omg.org/issues/create-new-issue).

ii Unified POS, v1.15.1 Beta1

UnifiedPOS Technical Committee Members
Bizerba GmbH & Co. KG

Datalogic Scanning, Inc.

Epson America, Inc.

Fujitsu Frontech Limited

IBM Corporation

Microsoft Corporation

NCR Corporation

OPOS-Japan

Seiko Epson Corporation

Sorimachi Giken CO, LTD

Star Micronics, CO. LTD

Toshiba Global Commerce Solutions, Inc.

Wincor Nixdorf International GmbH.

UPOS, v1.15.1 Beta1 i

UPOS Table of Contents

1 Preface ..xvii

1 Introduction and Architecture ..1-1
1.1 What is Unified POS? ..1-1
1.2 Conformance ...1-5
1.3 Architectural Overview ..1-6

2 Common Properties, Methods, and Events2-1
2.1 General ...2-1
2.2 Summary ...2-1
2.3 General Information ...2-3
2.4 Properties (UML attributes) ...2-5
2.5 Methods (UML operations) ..2-15
2.6 Events (UML interfaces) ..2-26

3 Belt ...3-1
3.1 General ...3-1
3.2 Summary..3-1
3.3 Belt Class Diagram ..3-5
3.4 Belt Sequence Diagram ..3-6
3.5 Properties (UML attributes) ...3-9
3.6 Methods (UML operations) ..3-17
3.7 Events (UML interfaces) ..3-20

4 Bill Acceptor ..4-1
4.1 General ...4-1
4.2 Summary ..4-1
4.3 General Information ...4-4

ii UPOS, v1.15.1 Beta1

4.4 Bill Acceptor Class Diagram.. 4-5
4.5 Properties (UML attributes) ...4-9
4.6 Method (UML operations) ..4-14
4.7 Events (UML interfaces) ..4-19

5 Bill Dispenser ..5-1
5.1 General ..5-1
5.2 Summary ...5-1
5.3 General Information ...5-4
5.4 Properties (UML attributes) ...5-9
5.5 Methods (UML operations) ..5-14
5.6 Events (UML interfaces) ..5-17

6 Biometrics ...6-1
6.1 General ..6-1
6.2 Summary ...6-1
6.3 General Information ...6-5
6.4 Properties (UML Attributes) ...6-14
6.5 Events (UML Interfaces) ..6-28

7 Bump Bar ..7-1
7.1 General ..7-1
7.2 Summary ...7-1
7.3 General Information ...7-4
7.4 Properties (UML attributes) ...7-9
7.5 Methods (UML operations) ..7-14
7.6 Events (UML interfaces) ..7-18

8 Cash Changer ...8-1
8.1 General ..8-1

UPOS, v1.15.1 Beta1 iii

8.2 Summary ...8-1
8.3 General Information ...8-5
8.4 Properties (UML attributes) ...8-13
8.5 Methods (UML operations) ..8-26
8.6 Events (UML interfaces) ..8-32

9 Cash Drawer ...9-1
9.1 General ...9-1
9.2 Summary ...9-1
9.3 General Information ...9-4
9.4 Properties (UML attributes) ...9-7
9.5 Methods (UML operations) ..9-9
9.6 Events (UML interfaces) ..9-10

10 CAT - Credit Authorization Terminal 10-1
10.1 General ...10-1
10.2 Summary ...10-1
10.3 General Information ...10-5
10.4 Properties (UML attributes) ...10-16
10.5 Methods (UML operations) ..10-35
10.6 Events (UML interfaces) ..10-45

11 Check Scanner ...11-1
11.1 General ...11-1
11.2 Summary ...11-1
11.3 General Information ...11-5
11.4 Properties (UML attributes) ...11-12
11.5 Methods (UML operations) ..11-26
11.6 Events (UML interfaces) ..11-35

12 Coin Acceptor ...12-1
12.1 General ...12-1

iv UPOS, v1.15.1 Beta1

12.2 Summary ...12-1
12.3 General Information ...12-5
12.4 Properties (UML attributes) ...12-10
12.5 Methods (UML operations) ..12-15
12.6 Events (UML interfaces) ..12-19

13 Coin Dispenser ..13-1
13.1 General ..13-1
13.2 Summary ...13-1
13.3 General Information ...13-4
13.4 Properties (UML attributes) ... 13-9
13.5 Methods (UML operations) ..13-11
13.6 Events ..13-13

14 Electronic Journal ..14-1
14.1 General...14-1
14.2 Summary ...14-1
14.3 General Information ...14-5
14.4 Properties (UML Attributes) ...14-12
14.5 Methods (UML operations) ..14-19
14.6 Events (UML interfaces) ..14-28

15 Electronic Value Reader/Writer15-1
15.1 General ..15-1
15.2 Summary ...15-1
15.3 General Information ...15-8
15.4 Properties (UML attributes) ...15-35
15.5 Methods (UML operations) ..15-68
15.6 Events (UML interfaces) ..15-108

UPOS, v1.15.1 Beta1 v

16 Fiscal Printer ...16-1
16.1 General ...16-1
16.2 Summary ...16-1
16.3 General Information ...16-5
16.4 Properties (UML attributes) ...16-23
16.5 Methods (UML operations) ..16-59
16.6 Events ..16-143

17 Gate .. 17-1
17.1 General ...17-1
17.2 Summary ...17-1
17.3 General Information ...17-4
17.4 Properties (UML attributes) ...17-8
17.5 Methods (UML operations) ..17-9
17.6 Events (UML interfaces) ..17-10

18 Hard Totals ... 18-1
18.1 General ...18-1
18.2 Summary ...18-1
18.3 General Information ...18-5
18.4 Properties (UML attributes) ...18-10
18.5 Methods (UML operations) ..18-12
18.6 Events (UML interfaces) ..18-22

19 Image Scanner ...19-1
19.1 General ...19-1
19.2 Summary ...19-1
19.3 General Information ...19-5
19.4 Properties (UML attributes) ...19-13
19.5 Methods (UML operations) ..19-22
19.6 Events (UML interfaces) ..19-23

vi UPOS, v1.15.1 Beta1

20 Item Dispenser ..20-1
20.1 General ..20-1
20.2 Summary ...20-1
20.3 General Information... 20-4
20.4 Properties (UML attributes) ...20-8
20.5 Methods (UML operations) ..20-10
20.6 Events (UML interfaces) ..20-2

21 Keylock ...21-1
21.1 General ..21-1
21.2 Summary ...21-1
21.3 General Information ...21-4
21.4 Properties (UML attributes) ...21-7
21.5 Methods (UML operations) ..21-9
21.6 Events (UML interfaces) ..21-10

22 Lights ..22-1
22.1 General ..22-1
22.2 Summary ...22-1
22.3 General Information ...22-4
22.4 Properties (UML attributes) ...22-7
22.5 Methods (UML operations) ..22-9
22.6 Events (UML interfaces) ..22-11

23 Line Display ..23-1
23.1 General ..23-1
23.2 Summary ..23-1
23.3 General Information ...23-6
23.4 Properties (UML attributes) ...23-12
23.5 Methods (UML operations) ..23-34

UPOS, v1.15.1 Beta1 vii

23.6 Events (UML interfaces) ..23-52

24 MICR - Magnetic Ink Character Recognition Reader ... 24-1
24.1 General ...24-1
24.2 Summary ...24-1
24.3 General Information ...24-4
24.4 Properties (UML attributes) ...24-11
24.5 Methods (UML operations) ..24-15
24.6 Events (UML interfaces) ..24-19

25 Motion Sensor ..25-1
25.1 General ...25-1
25.2 Summary ...25-1
25.3 General Information ...25-4
25.4 Properties (UML attributes) ...25-8
25.5 Methods (UML operations) ..25-9
25.6 Events (UML interfaces) ..25-10

26 MSR - Magnetic Stripe Reader26-1
26.1 General ...26-1
26.2 Summary ...26-1
26.3 General Information ...26-5
26.4 Properties (UML attributes) ...26-17
26.5 Methods (UML operations).. 26-43
26.6 Events (UML interfaces) ..26-49

27 Pin Pad ... 27-1
27.1 General ...27-1
27.2 Summary ...27-1
27.3 General Information ...27-5
27.4 Properties (UML attributes) ...27-11
27.5 Methods (UML operations) ..27-22

viii UPOS, v1.15.1 Beta1

27.6 Events (UML interfaces) ..27-26

28 Point Card Reader/Writer ...28-1
28.1 General ..28-1
28.2 Summary ...28-1
28.3 General Information ...28-6
28.4 Properties (UML attributes) ...28-17
28.5 Methods (UML operations) ..28-38
28.6 Events (UML Interfaces) ..28-46

29 POS Keyboard ..29-1
29.1 General ..29-1
29.2 Summary ...29-1
29.3 General Information ...29-4
29.4 Properties (UML attributes) ...29-7
29.5 Events (UML interfaces) ..29-9

30 POS Power ...30-1
30.1 General ..30-1
30.2 Summary ...30-1
30.3 General Information ..30- 4
30.4 Properties (UML attributes) ...30-16
30.5 Methods (UML operations) ..30-23
30.6 Events (UML interfaces) ..30-27

31 POS Printer ...31-1
31.1 General ..31-1
31.2 Summary ...31-1
31.3 General Information ...31-9
31.4 Properties (UML attributes) ...31-33

UPOS, v1.15.1 Beta1 ix

31.5 Methods (UML operations) ..31-87
31.6 Events (UML interfaces) ..31-125

32 Remote Order Display ..32-1
32.1 General ...32-1
32.2 Summary ...32-1
32.3 General Information ...32-6
32.4 Properties (UML attributes) ...32-12
32.5 Methods (UML operations) ..32-23
32.6 Events (UML interfaces) ..32-40

33 RFID Scanner ...33-1
33.1 General ...33-1
33.2 Summary ...33-1
33.3 General Information ...33-5
33.4 Properties (UML Attributes) ...33-13
33.5 Methods (UML operations) ..33-18
33.6 Events (UML Interfaces) ..33-26

34 Scale ...34-1
34.1 General ...34-1
34.2 Summary ...34-1
34.3 General Information..34-5
34.4 Scale Class Diagram ...34-7
34.5 Scale Sequence Diagram.. 34-8
34.6 Properties (UML attributes) ...34-10
34.7 Methods (UML operations) ..34-20
34.8 Events (UML interfaces) ..34-33

35 Scanner (Bar Code Reader) ... 35-1
35.1 General ...35-1
35.2 Summary ...35-1

x UPOS, v1.15.1 Beta1

35.3 General Information..35-4
35.4 Properties (UML attributes) ...35-8
35.5 Events (UML interfaces) ..35-15

36 Signature Capture ...36-1
36.1 General ..36-1
36.2 Summary ...36-1
36.3 General Information..36-4
36.4 Properties (UML attributes) ...36-9
36.5 Methods (UML operations) ..36-13
36.6 Events (UML interfaces) ..36-15

37 Smart Card Reader/Writer ..37-1
37.1 General ..37-1
37.2 Summary ...37-1
37.3 General Information ...37-4
37.4 Smart Card Reader / Writer Class Diagram37-5
37.5 Model ...37-6
37.6 Card Insertion Diagram ...37-8
37.7 Device Sharing ..37-9
37.8 Data Transfer Modes ...37-10
37.9 Smart Card Reader / Writer Sequence Diagram37-11
37.10 Smart Card Reader / Writer State Diagram37-12
37.11 Properties (UML Attributes) ...37-13
37.12 Methods (UML operations) ..37-19
37.13 Events (UML Interfaces) ..37-24

38 Tone Indicator ...38-1
38.1 General ..38-1
38.2 Summary ...38-1

UPOS, v1.15.1 Beta1 xi

38.3 General Information ...38-4
38.4 Properties (UML attributes) ...38-8
38.5 Methods (UML operations) ..38-13
38.6 Events (UML interfaces)...38-15

A OLE for Retail POS - OPOS Implementation Reference A-1

B Java for Retail POS - JavaPOS Implementation Reference B-1

C POS for .NET Implementation Reference... C-1

D XMLPOS - XML POS Mapping Reference ... D-1

E Change History ... E-1

F Additional Software References ...F-1

G Additional Hardware References .. G-1

H Deprecation History .. H-1

I Systems Managwement Information ..I-1

J Device Statistics ... J-1

xii UPOS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 1- 1

1 Introduction and Architecture

1.1 What is Unified POS?
UnifiedPOS is the acronym for Unified Point of Service. It is an architectural specification for application
interfaces to point-of-service devices that are used in the retail environment. This standard is both operating
system independent and language neutral and defines:

• An architecture for application interface to retail devices.

• A set of retail device behaviors sufficient to support a range of POS solutions.

The UnifiedPOS standard will include:

• The UnifiedPOS Retail Peripheral Architecture overview.

• Text descriptions of the interface to the functions of the device.

• UML terminology and diagrams for each device category, to describe:

• Relationships between classes/interfaces and objects in the system.

• Basis for creating C++, Java, IDL, or other OO technology to implement the UML design.

• Operational characteristics and details for implementations which are compliant to the UnifiedPOS
 architecture. These were added in the Appendices for UnifiedPOS starting in Version 1.6. As new
 Implementations become available, additional Appendices will be added in future versions of the standard.

The UnifiedPOS standard will not include:

• Specific language API specifications.

• Complete software components. Hardware providers, software providers, or third-party providers develop and
distribute these components.

• Certification mechanism; this must be handled by individual language standard committees (such as the OLE for
Retail POS (OPOS), POS for .NET, and Java for Retail POS (JavaPOS) committees).

1.1.1 About This Documentation Updated in Release 1.12

Since the release of UnifiedPOS Version 1.4, the Retail Standards’ committees had been maintaining three
separate standard documents, OPOS, JavaPOS and UnifiedPOS. The architecture and device characteristics are
identical in each of these documents. The addition of new device categories and/or enhancements to existing
chapters required consultation and agreement on the technical content for the each of the separate standards.
However, in addition to that technical work, there is a heavy administrative burden in generating the correct
documentation for three different versions of the standard’s specification. That process was inherently error
prone in that the same changes had to be maintained in multiple documents. Confusion has resulted in cases
where differences have inadvertently appeared in the documentation.

In order to simplify the process and bring a higher quality of review to ongoing modifications of the
documentation, the UnifiedPOS standard committee made a change in the process for documenting its
requirements. Beginning with UnifiedPOS Version 1.6, only the UnifiedPOS document was updated and the
structure of the documentation was changed. The main body of the documentation includes the abstracted generic

1 - 2 Unified POS, V1.15.1 Beta1

description of all device categories plus additional general design and utilization guidelines. Specific reference
platform requirements are now found in the included annexes that outline the implementation information for
each of the specific existing implementations, such as OPOS, JavaPOS and POS For Dot Net. (Note: OPOS-J,
the POS Standards body from Japan, has and plans to continue to maintain a translated Japanese version of the
OPOS documentation for their developer community.)

The documentation is arranged in such a fashion that allows the new user to gather a general education about the
UnifiedPOS Standard by reading the “Introduction and Architecture” section. This section is designed to give an
overview of the material covered in the entire standard and provide an outline of the design features that must be
adhered to for a developer to implement the standard. For a first time reader, this section should be read and
understood, as it will make the remaining chapters and appendices more beneficial. For a familiar user, this
section may serve as a “fall-back” reference for clarification of the requirements when developing a Device
Service or usage of the Device Services by an Application.

Chapter 2 outlines the Properties, Methods, and Events that are Common to all peripheral devices. It is important
to understand this section and make reference to it when questions arise on the common functionality that apply
to all device classes.

The following chapters define each of the POS peripheral devices that are covered in the standard. The specific
Properties, Methods, and Events that are peculiar to the peripheral are defined. Any additional helpful
information relevant to the POS peripheral are also included. As new POS peripherals are added a new chapter
will be added to describe the devices unique requirements.

Following the chapters describing the POS peripheral devices, annexes are included that outline specific details
on implementation dependencies for each of the supported Operating Systems and/or language specific
development platforms.

“Annex A” includes the definition, goals, and deliverables for OPOS. There are explanations for the input/output
and device sharing for Microsoft’s COM model for the operation of the interface. Event and error handling
unique to this implementation is described. It concludes with a version change history that guides the user in
understanding the evolution of the OPOS implementation of the standard.

“Annex B” includes the definition, goals, and deliverables for JavaPOS. There are explanations for the input/
output and device sharing for the Java model for the operation of the interface. Event and error handling unique
to this implementation is included. It also concludes with a version change history that is helpful to the user to
understand the evolution of the JavaPOS implementation requirements.

“Annex C” includes the definition, goals, and deliverables for POS for .NET. There are explanations for the
input/output and device sharing for Microsoft’s .NET model for the operation of the interface and the differences
from the OPOS COM architecture that affect implementation. Event and error handling unique to this
implementation are described. It also includes a version change history section and brief clarifications of the
design philosophy.

“Annex D” is included to provide information on the usage of XML for peripheral message mapping. Future
versions of the UnifiedPOS standard will evolve to a greater dependence upon XML as the command and
interoperability infrastructure of choice. There is increasing interest and focus on using XML for communicating
with peripheral devices. It opens up many new possibilities for creating Device Services that, when coupled with
Universal Plug and Play hardware connection technologies such as USB, will provide for true language and
operating system independence.

Unified POS, v1.15.1 Beta1 1- 3

“Annex E” incorporates an overall Change History for the documentation. It is highly recommended that the
experienced user refer to this section as an aide for understanding the version to version documentation changes
as a resource to help in the updating of the device support and/or implementation changes necessary to the
software for efficient usage.

“Annex F” provides some additional software reference material that may prove helpful to the understanding of
the principals and documentation constructs that the UnifiedPOS standard incorporates. The developer is
encouraged to check this section as additional resource material will be added as the standard evolves from
version to version.

“Annex G” includes additional hardware reference material that is pertinent to the hardware design for
compliance to the UnifiedPOS standard. The USB Plus Power connector recommendations are outlined in this
section as well.

“Annex H” provides information on functionality and changes that are documented in the UnifiedPOS standard
in a version that will cause a previously defined function to be deprecated. While every attempt is made to
minimize the use of Deprecation, the reader is highly encouraged to review this section to ensure a firm
understanding of direction the standard is evolving.

“Annex I” includes the definition, goals, and deliverables for Systems Management. Appendix I is targeted at a
systems management solution developer who requires access to POS-specific device information. It is also
targeted to the system developer who will provide device information from within the Services he provided.

“Annex J” includes the definitions and deliverables for UnifiedPOS Device Statistics. This information was
previously issued in a separate document, but starting with v1.12, the device statistics appendix was added as an
appendix to the specification

1.1.2 Goals

The goals of UnifiedPOS are to provide:

• Common device architecture that is international and extends across vendors, platforms, and retail format.

• Standards for application to device interfaces in an operating system independent and language neutral manner.

• Reduced implementation costs for vendors to support multiple (for example, Windows/COM, Windows/.NET, and
 Java) platforms because they share the same architecture. This should produce speed to market for innovation.

• An environment avoiding competition between standards while encouraging competition among implementations.

1.1.3 Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard committees (such as JavaPOS and
OLE for Retail POS (OPOS) technical committees) to advance the architecture into platform specific
documentation, API definitions and implementations.

The specific technical implementations require:

• Platform specific implementation references. (See Annexes A, B, C, & D.)

• Source files, including:

• Definition files. Various interface and class files described in the standard.

1 - 4 Unified POS, V1.15.1 Beta1

• Example files. These will include a set of sample Control classes, to illustrate the interface presented to an
 application.

1.1.4 UnifiedPOS Relationship to Conforming Platform Mappings

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by the
JavaPOS, OPOS, and POS for .NET standards, in an operating system independent and language neutral manner.
The first release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as conformant platform mappings of
the UnifiedPOS specification. In UnifiedPOS Version 1.6, appendices were added in order to document specific
implementation details for each of these platforms. JavaPOS will be recognized as the only UnifiedPOS
conformant, operating system neutral, Java language mapping (See Annex B). OPOS will be recognized as the
only UnifiedPOS conformant language neutral COM mapping (See Annex A). POS for .NET will be recognized
as the only UnifiedPOS conformant language neutral .NET mapping (See Annex C). Future UnifiedPOS
mappings to platforms other than Java, COM, and .NET will be included as appendices to the UnifiedPOS
specification as they become available.

This acceptance of the existing standards is based on their close conformance to a common design model.
Historically, the OPOS standards provided device interfaces for Win32-based terminals using ActiveX
technologies. The OPOS standard was used as the starting point for JavaPOS, due to:

• Similar purposes. Both standards involved developing device interfaces for a segment of the software community.

• Reuse of device models. The majority of the OPOS documentation specifies the properties, methods, events, and
 constants used to model device behavior. These behaviors are in large part independent of programming language.

• Reduced learning curve. Many application and hardware vendors are already familiar with using and
 implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write their code in conformance with
one or both of the JavaPOS or OPOS standards. The content of the UnifiedPOS specification, however, along
with the appropriate annex, will constitute the definition of how an application can be developed to meet the
UnifiedPOS standard. The standards committees do not intend to release future versions of the specific OPOS
and JavaPOS documents after the Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET implementation, which similarly adheres to
this common approach for the access and control of POS peripherals.

1.1.5 Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will provide the language specific
mapping and Programmer’s Guides. However, the application developer who will use POS devices, the system
developer who will write POS device code, and the suppliers of POS devices for retail may be interested in the
device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the following:

• General characteristics of POS peripheral devices.

• UnifiedPOS terminology and architecture.

• UML for reading the design.

Unified POS, v1.15.1 Beta1 1- 5

1.2 Conformance

1.2.1 Unified POS

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by
JavaPOS, OPOS, and POS for .NET, which provide standard platform specific mappings of the UnifiedPOS
specification. JavaPOS, OPOS and POS for .NET also provide base classes and/or interfaces to be used for
implementations of UnifiedPOS conformant device interfaces. To be UnifiedPOS conformant POS applications
and device vendors have to provide implementation using an appropriate platform-specific mapping.

1.2.1.1 ARTS IP Policy

This specification was originally created under the ARTS IP Policy which can be found

here: https://www.omg.org/cgi-bin/doc?retail/2017-12-01

Summary Points

1. The Policy is applicable to all members of ARTS and acceptance of this Policy will be a condition of ARTS
 membership. Non-members wishing to attend technical meetings must agree in writing to accept the Policy.

2. The Policy is applicable to the Data Model, ARTS XML, UnifiedPOS and future technical committees established
 by the ARTS Board to develop specifications.

3. The Policy permits members that disclose intellectual property to reserve rights on how they will license its use.

4. The Policy encourages members to immediately disclose upon discovery of intellectual property that maybe
 embedded in ARTS specifications.

5. No member is required to conduct patent searches to search for intellectual property within ARTS specification(s.)

6. Members who participate in the development of ARTS specifications must assign representatives with reasonable
 knowledge in the field of work.

7. The Policy establishes defined periods for review of developing draft specifications for both technical accuracy
 and intellectual property. A public review period is also provided.

8. Members who do not disclose intellectual property within an ARTS specification before that specification is
 approved by the ARTS Board, must provide a 12-month royalty-free license to all implementers, during which
 time ARTS may modify the specification to remove the infringing IP and each implementer may make appropriate
 resolution.

9. There is a default reasonable and non-discriminatory (“RAND”) licensing obligation for members of Work teams
 and Technical Committees with only limited exceptions.UnifiedPOS specification formalizes and documents the
 underlying retail device.

http://www.omg.org/cgi-bin/doc?retail/2017-12-01

1 - 6 Unified POS, V1.15.1 Beta1

1.3 Architectural Overview

1.3.1 General

UnifiedPOS defines a multi-layered architecture in which a POS Application interacts with the Physical or
Logical Device through the UnifiedPOS Control layer.

1.3.2 Architectural Components

The POS Application (or Application) is an Application that uses one or more UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such as Cash Drawer and POS
Printer.

Each UnifiedPOS Device is a combination of these components:

• Control for a device category. The Control class provides the interface between the Application and the device
 category. It contains no graphical component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device category’s control will be compatible.
Therefore, the Control can be developed independently of the Service for the same device category (they can even be
developed by different companies).

 POS Application

 UnifiedPOS Control

 UnifiedPOS Service

 Physical (or logical) Device

UnifiedPOS Device

Unified POS, v1.15.1 Beta1 1- 7

• Service, which is a component called by the Control through the Service Interface. The Service is used by the
 Control to implement UnifiedPOS-prescribed functionality for a Physical Device. It can also call special event
 methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or peripheral) by calling the platform
specific APIs which conform to the UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and some Bar Code Scanners include
an integrated Scale. However with UnifiedPOS, an application treats each of these device categories as if it were
an independent Physical Device. The UnifiedPOS Device standard developer is responsible for presenting the
peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-exposed hardware, in which case it
is called a Logical Device.

1.3.3 Use of UML

The UnifiedPOS standard includes the use of UML terminology and diagrams to define device categories.
Following is a brief description of the extensions to UML to make it better fit the UnifiedPOS architecture (this
extension is expected and allowed by the UML, see Booch98 reference in the “UML References” in Annex D).

Should any discrepancies exist between the UML diagrams and the specification text, then the text takes
precedence.

Name Applies to UML
Symbol Meaning

<<capability>> Class attribute stereotype which flags the attribute as a UnifiedPOS capability

<<prop>> Class attribute stereotype which flags the attribute as a UnifiedPOS property

<<event>> Class
stereotype to indicate that the class/interface will be mapped to a UnifiedPOS
event which in turn is mapped to a JavaPOS event class or a COM event for
OPOS or a .NET event

exclusive-use Class
constraint that indicates this Device Service or Service Object follows the
exclusive-use behavior defined in the UnifiedPOS documentation in section
“Exclusive-Use Devices” in Chapter 1.

sharable Class
constraint that indicates this Device Service or Service Object follows the
sharable behavior defined in the UnifiedPOS documentation in section
“Sharable Devices” in Chapter 1.

read-only
read-write

Class attribute

constraint that indicates the mutability of the attribute. For example, in
JavaPOS, read-only attributes translate to having a getter method for the
attribute and read-write attributes have getter and setter methods for
attributes.

1 - 8 Unified POS, V1.15.1 Beta1

1.3.3.1 Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

Note: This package diagram is included to give some logical structure to the interfaces in the UnifiedPOS
interfaces UML diagrams. Some implementations may have a corresponding equivalence for the packages and
some may not. Also, note that the name ‘upos’ may be replaced by an implementation specific prefix (e.g.,
JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

 access after
<open>|

<open-claim>|
<open-enable>|
<open-claim-

enable>

Class attribute

constraint that indicates this attribute is accessible when the service is in the
state indicated. For example {access after opened-claim-enable} indicates
that the attribute is accessible when the service has been opened, claimed and
enabled in the order indicated.

raises-exception Class operation

constraint that indicates this method can throw an exception if the
implementation language supports exception; otherwise, some mechanism is
used to notify the application that an invalid condition occurred. A value is
returned to indicate the error.

 use after
<open>|

<open-claim>|
<open-enable>|
<open-claim-

enable>

Class operation

constraint that indicates this operation is accessible when the service is in the
state indicated. For example {use after open-claim-enable} indicates that the
method is accessible when the service has been opened, claimed and enabled
in the order indicated.

Name Applies to UML
Symbol Meaning

upos events
(from upos)

Unified POS, v1.15.1 Beta1 1- 9

1.3.4 Data Types Updated in Release 1.13

UnifiedPOS uses textual references to data types which will be defined for specific language usage:

UnifiedPOS JavaPOS OPOS POS for
.NET UML UnifiedPOS text Usage

boolean boolean BOOL bool in boolean Boolean true or false.

boolean by
reference

boolean[1] BOOL* Not used
**

inout boolean Mutable boolean.

binary byte[] BSTR byte[] in binary Immutable array of bytes.

binary by
reference

byte[1][] BSTR* Not used
**

inout binary Mutable array of bytes. (Both its size
and contents may be modified.)

array of
binary

byte[][] SAFEARRAY
of BSTR

Not used
**

in binary[] Immutable array of array of bytes.

byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)

int32 int LONG int or
enum

in int32 32-bit integer.

int32 array int[] SAFEARRAY
of LONG

int[] in int32 array Immutable array of 32-bit integers.

int32 array
by reference

int[1][] SAFEARRAY
*
of LONG

Not used
**

inout int32
array

Mutable array of 32-bit integers.
(Both its size and contents may be
modified.)

int32 by
reference

int[1] LONG* Not used
**

inout int32 Mutable 32-bit integer.

currency long CURRENCY
or CY

decimal in currency 64-bit integer. Sometimes used for
currency values where 4 decimal
places are implied. E.g., if the integer
is “1234567”, then the currency value
is “123.4567”. See footnotea

currency by
reference

long[1] CURRENCY*
or CY*

Not used
**

inout
currency

Mutable 64-bit integer.

string String BSTR string in string Text character string. See footnoteb

string by
reference

String[1] BSTR* Not used
**

inout string Mutable text character string. (Both its
size and contents may be modified.)

array of
points

Point[] BSTR Point[] inout point[] Immutable array of points. Used by
Signature Capture.

object Object BSTR* object inout object An object. This will usually be
subclassed to provide a Service-
specific parameter.

nls String LONG CultureI
nfo

in nls Operating System National Language
Support data type.

1 - 10 Unified POS, V1.15.1 Beta1

For Java:
The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s primitive types, such as
int and boolean, are passed by value, and its primitive wrapper types, such as Integer and Boolean, do not support modification. For
strings and arrays, do not use a null value to report no information. Instead use an empty string (“”) or an empty array (zero length). In
some chapters, an integer may contain a “bit-wise mask.” That is, the integer data may be interpreted one or more bits at a time. The
individual bits are numbered beginning with Bit 0 as the least significant bit.
** POS for .NET does not use “out” parameters, return values are used instead.

1.3.5 Device Behavior Models

1.3.5.1 Introduction to Properties, Methods, and Events

An application accesses a POS Device via platform specific APIs.

The three elements of UnifiedPOS standard for APIs are:

• Properties. Properties are device characteristics or settings. A type is associated with each property, such as
 boolean or string. An application may retrieve a property’s value, and it may set a writable property’s value.

• Methods. An application calls a method to perform or initiate some activity at a device. Some methods require
 parameters of specified types for sending and/or returning additional information.

• Events. A Device implementation may call back into the application via events. The application may need to
 register for events. The mechanism to do this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the interface will be included in a table.
The properties are indicated as attributes. The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }

where:

visibility in this document is always public for application visible interfaces but is not explicitly
shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types defined in Intro-8.

default-value1 the default value of the attributes in UML, (optional)

a. Six decimal place precision is required for all computations in conversion between currencies but is not required for the
representation of the solution.

b. For data elements within comma delimited string data, no leading or trailing whitespace is permitted, unless that whitespace is
part of the data element. Comma delimited string data is typically used for a series of numbers, in which no whitespace should
be included in the string.

1.Not used by UnifiedPOS standard

Unified POS, v1.15.1 Beta1 1- 11

property-string property value to apply to the element. For attributes, we define two such strings:
read-only and read-write, which indicates the mutability of the attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

Methods (UML Operations)

The generic UML pattern for methods is the following:

visibility name (parameter-list): return-type-expr { property string }

where:

parameter - list is a comma separated list of formal parameters using the following generic UML
naming pattern:

kind name: type-expression (= default-value)1

where:
kind is either: ‘in,’ ‘out,’ or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an additional property
string called ‘raises-exception’ is defined which means that this method can throw the exception if
the implementation language supports exception; otherwise, some mechanism is used to notify the
application that an invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes stereotyped with the event
stereotype. The generic UML pattern for events is a UML box with the stereotype <<event>> (class diagram)
with the event name and a list of the properties. This representation is different from Properties and Methods.

where:

XxxEvent stands for the UnifiedPOS event name and the second compartment of the box would contain a list of
attributes for the event.

1. default-value is not used by the UnifiedPOS standard

<<event>>
 xxEvent

1 - 12 Unified POS, V1.15.1 Beta1

1.3.5.2 Device Initialization and Finalization Updated in Release 1.11

Initialization

The first actions that an application must take to use a Device are:

• Obtain a reference to a Control,

• Prepare Control for the events that the application needs to receive, if necessary.

To initiate activity with the Physical Device, an application calls the Control’s open method:

The logicalDeviceName parameter specifies a logical device to associate with the Device. The open method
performs the following steps:

• Creates and initializes an instance of the proper Service class for the specified name.

• Initializes many of the properties, including the descriptions and version numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same time. Therefore, after the
Device is opened, an application might need to call the claim method to gain exclusive access to it. Claiming the
Device ensures that other Control instances do not interfere with the use of the Device. An application can
release the Device to share it with another Control instance– for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to true. This value brings the
Physical Device to an operational state, while false disables it. For example, if a Scanner Device is disabled, the
Physical Device will be put into its non-operational state (when possible). Whether physically operational or not,
any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the initialization APIs - open, claim, and/
or DeviceEnabled=true. The following are recommendations for initialization-time error handling by Service
implementers. These guidelines are not mandated, however, because of the wide variation in some hardware
devices and their initialization requirements, and due to variations in already released Services.

open Primary purpose: Initialize the software stack, including the creation of the Service and initialization
 of its supporting software components.

1. The Service must fail an open API call if software initialization fails.
 Example: Supporting software components are not installed or available, so fail the API call.

2. If the Service must probe the device in order to correctly set open-time properties (such as capabilities), then the
 Service should fail an open API call if it cannot access the device.
 Example: A Service supports several line display models and sets the UnifiedPOS capabilities after
 communicating with the device. If the device’s port is not available or the device does not respond, then the
 Service cannot complete its open work and will need to fail the API call.

3. For other cases, the Service should succeed the open API call and report a failure (if needed) later.
 Example: A Service cannot open an RS232 port during open. If the previous case (#2) above does not apply, then
 the Service should succeed the open and report the port open failure during claim, if the port is still not available.

claimPrimary purpose: Acquire exclusive access to the device, for exclusive-use devices.

Unified POS, v1.15.1 Beta1 1- 13

1. The Service must fail a claim API call if another process has claimed the device and the claim timeout expires.

2. If the device is not accessible, then the Service should fail a claim API call.
 Examples: A required communications or I/O port cannot be opened or claimed. The Service determines that the
 device is not present or is offline. For each of these cases, the Service should fail the API call.

For other cases, the Service should succeed the claim API call. This specifically includes cases where runtime
faults exist.
Examples: A POSPrinter receipt station is out-of-paper, or the POSPrinter receipt station detects a printer jam.
These are runtime faults that occur from time to time during operation, and are user correctable. The Service
should succeed the claim. POSPrinter runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and/or by exceptions from APIs such as printNormal.

DeviceEnabled = true Primary purpose: Final preparation for operation and application use.

1. If the device is not accessible, then the Service should fail a DeviceEnabled= true API call. (Note that the device
 may have been accessible at claim but is now inaccessible.)
 Example: The Service determines that the device is not present or is offline, so the Service should fail the API call.

2. For other cases, the Service should succeed the DeviceEnabled=true API call. This specifically includes cases
 where runtime faults exist.
 Examples: See claim case (#3) above.

An application developer must be prepared for failures at any of the initialization points. With the variations in
hardware devices and in their Service implementations, a well-written application will respond predictably to the
widest range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of ports, including RS232, RS485,
Parallel, USB, Ethernet, and Wireless. In addition, devices may be powered directly by the terminal or by an
external power source. These guidelines may be applied to all of these devices. Two examples with typical
initialization follow.

Example 1: Hand-held scanner attached to a terminal's powered RS232 port.

• open: Succeed if software initialization is successful.

• claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

• DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

• While enabled: If the device is unplugged from the powered RS232 port, then detect the power state change and
report to the application. If the device is later plugged back in, then detect the power state change and report to the
application. For many devices, power state changes can be accomplished by monitoring the RS232 DSR signal.
(Note that hot unplugging and plugging in with this port type is probably not recommended by the hardware
vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a “brick.”

• open: Succeed if software initialization is successful.

• claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

• DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

1 - 14 Unified POS, V1.15.1 Beta1

• While enabled: If the device is unplugged from the USB port or from its power source, then detect the power state
change and report to the application. If the device is later plugged back in, then detect the power state change and
report to the application. An operating system-specific mechanism detects power state changes, such as an open,
write, or read failure with specific failure statuses.

Notice that the general initialization handling is very similar, even though the second example will typically
require somewhat more logic within the Service to monitor and re-initialize the device connection.

Finalization

After an application finishes using the Physical Device, it should call the close method. If the DeviceEnabled
property is true, close disables the Device. If the Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device resources in a timely manner.

Summary

In general, an application follows this general sequence to open, use, and close a Device:

Obtain a Control reference.

Prepare for events if necessary.

Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical Device. Required for
exclusive-use Devices; optional for some sharable Devices. (See “Device Sharing Model”
on page 14 for more information).

Set the DeviceEnabled property to true to make the Physical Device operational. (For
sharable Devices, the Device may be enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical Device.

Call the release method to release exclusive access to the Physical Device.

Call the close method to unlink the Service from the Control.

Release events receipt if necessary

Remove the reference to the Control

1.3.6 Device Sharing Model

Devices fall into two sharing categories:

• Devices that are to be used exclusively by one Control instance.

• Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time. However, activities that an
application can perform with a Control may be restricted to the Control instance that has claimed access to the
Physical Device.

Unified POS, v1.15.1 Beta1 1- 15

1.3.6.1 Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is the POS printer. Due to physical
or operational characteristics, an exclusive-use device can only be used by one Control at a time. An application
must call the Device’s claim method to gain exclusive access to the Physical Device before most methods,
properties, or events are legal. Until the Device is claimed and enabled, calling methods or accessing properties
may cause a failure condition to occur.

An application may in effect share an exclusive-use device by calling the Control’s claim method before a
sequence of operations, and then calling the release method when the device is no longer needed. While the
Physical Device is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform the sequence of close method
followed by open method on the device), some settable device characteristics are restored to their condition at
the release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and
the printer’s characters per line. However, state characteristics are not restored, such as the printer’s sensor
properties. Instead, these are updated to their current values.

1.3.6.2 Sharable Devices

Some devices are sharable devices. An example is the keylock. A sharable device allows multiple Control
instances to call its methods and access its properties. Also, it may deliver its events to multiple Controls. A
sharable device may still limit access to some methods or properties to the Control that has claimed it, or it may
deliver some events only to the Control that has claimed it.

1.3.7 Events Updated in Release 1.12

UnifiedPOS architecture uses events to inform the application of various activities or changes with the Device.
The five event types follow.

Event Class Description Supported When A Device
Category Supports...

DataEvent Input data has been placed into device class-
category properties.

Event-driven input

ErrorEvent An error has occurred during event-driven input or
asynchronous output.

Event-driven input
-or-

Asynchronous output

OutputCompleteEvent An asynchronous output has successfully
completed.

Asynchronous output

StatusUpdateEvent A change in the Physical Device’s status has
occurred.
Devices may be able to report device power state.
See “Device Power Reporting Model,” page 22.

Status change notification

DirectIOEvent This event may be defined by a Service provider
for purposes not covered by the specification.

Always, for Service-specific use

1 - 16 Unified POS, V1.15.1 Beta1

The Service must enqueue these events on an internally created and managed queue. All events are delivered in
a first-in, first-out manner. (The only exception is that a special input error event is delivered early if some data
events are also enqueued. See “Device Input Model,” page 1-18.) Events are delivered by an internally created
and managed Service thread. The Service causes event delivery by calling an event firing callback method in the
Control, which then delivers the event to the application.

The following conditions cause event delivery to be delayed until the condition is corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled is false. (See “Device
 Input Model,” page 1-18.)

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents
property.

Rules for event queue management are:

• The Device may only enqueue new events while the Device is enabled.

• The Device delivers enqueued events until the application calls the release method (for exclusive-use devices) or
 the close method (for any device), at which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears data and output error events.

1.3.8 Errors

UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods (UML Operations)” on page
1-11 and explanation of exceptions:

• Errors that are “invalid or bad invocations” which are recognized by the Service validation of the request. Method
 invocations and property accesses may be valid or invalid. If the action is invalid, an invalid condition is set and the
 application is notified in a fashion appropriate to the platform. For specific implementations, OPOS would produce
 a ResultCode other than OPOS_SUCCESS and JavaPOS would produce an exception.

• Errors that are caused by errant device behavior and produce error events.

1.3.9 Error Codes Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid condition occurs. In general,
the property and method descriptions in later chapters list error codes only when specific details or information
are added to these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning
E_CLOSED An attempt was made to access a closed Device.

Unified POS, v1.15.1 Beta1 1- 17

E_CLAIMED An attempt was made to access a Physical Device that is claimed by
another Control instance. The other Control must release the Physical
Device before this access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device before the access
is legal.

E_NOTCLAIMED An attempt was made to access an exclusive-use device that must be
claimed before the method or property set action can be used.
If the Physical Device is already claimed by another Control instance,
then the status E_CLAIMED is returned instead.

E_NOSERVICE The Control cannot communicate with the Service, normally because of
a setup or configuration error.

E_DISABLED Cannot perform this operation while the Device is disabled.
E_ILLEGAL An attempt was made to perform an illegal or unsupported operation

with the Device, or an invalid parameter value was used.
E_NOHARDWARE The Physical Device is not connected to the system or is not powered on.
E_OFFLINE The Physical Device is off-line.
E_NOEXIST The file name (or other specified value) does not exist.
E_EXISTS The file name (or other specified value) already exists.
E_FAILURE The Device cannot perform the requested procedure, even though the

Physical Device is connected to the system, powered on, and on-line.
E_TIMEOUT The Service timed out waiting for a response from the Physical Device,

or the Control timed out waiting for a response from the Service.
E_BUSY The current Service state does not allow this request. For example, if

asynchronous output is in progress, certain methods may not be allowed.
E_EXTENDED A device category-specific error condition occurred. The error condition

code is held in an extended error code.
E_DEPRECATED The requested operation can not be performed since it has been

deprecated.

When more than one error code is valid, the most descriptive code
should be selected. For example, the closed, claimed, not claimed, and
disabled errors must follow this order of error reporting precedence,
from higher to lower:

E_CLOSED The device must be opened.
E_CLAIMED The device is opened but not claimed. Another application has the device

 claimed, so it cannot be claimed at this time.
E_NOTCLAIMED The device is opened but not claimed. No other application has the

 device claimed, so it can and must be claimed.
E_DISABLED The device is opened and claimed (if this is an exclusive-use device), but

 not enabled.

1 - 18 Unified POS, V1.15.1 Beta1

Extended Error Code

The extended error code is set as follows:

• When the error code is E_EXTENDED, the extended error code is set to a device category-specific value, and must
 match one of the values given in this document under the appropriate device category chapter.

• When the error code is any other value, the extended error code may be set by the Service to any Service-specific
 value. These values are only meaningful if an application adds Service-specific code to handle them.

1.3.10 Device Input Model Updated in Release 1.13

The standard UnifiedPOS input model for exclusive-use devices is event-driven input. Event-driven input allows
input data to be received after DeviceEnabled is set to true. Received data is enqueued as a DataEvent, which
is delivered to an application.

If the AutoDisable property is true when data is received, then the Device will automatically disable itself,
setting DeviceEnabled to false. This will inhibit the Device from enqueuing further input and, when possible,
physically disable the device.

When the application is ready to receive input from the Device, it sets the DataEventEnabled property to true.
Then, when input is received (usually as a result of a hardware interrupt), the Device delivers a DataEvent. (If
input has already been enqueued, the DataEvent will be delivered immediately after DataEventEnabled is set
to true.) The DataEvent may include input status information through its Status property. The Device places the
input data plus other information as needed into device category-specific properties just before the event is
delivered.

Just before delivering this event, the Device disables further data events by setting the DataEventEnabled
property to false. This causes subsequent input data to be enqueued by the Device while an application processes
the current input and associated properties. When an application has finished the current input and is ready for
more data, it enables data events by setting DataEventEnabled to true.

(Added in 1.13) If an application causes disabling of the device (by setting DeviceEnabled=false, or by setting
AutoDisable=true and a subsequent input event is enqueued), then it may need logic to ignore additional data
until it reenables the device. In particular, input that is already received and enqueued will continue to be
delivered (unless the clearInput, release or close API is called, at which time undelivered input is discarded).
As stated in the Events section, the application may control the input delivery by using the DataEventEnabled
or FreezeEvents properties.

Error Handling Updated in Release 1.12

If the Device encounters an error while gathering or processing event-driven input, then the Device:

• Changes its State to S_ERROR.

• Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the error condition. This event is added to
 the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional ErrorEvent with locus
 EL_INPUT_DATA is enqueued before the DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is true, so that orderly
application sequencing occurs.

Unified POS, v1.15.1 Beta1 1- 19

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

The application can cause the ErrorResponse property to be set one of the following:

ErrorLocus Description

EL_INPUT_DATA Only delivered if the error occurred when one or more DataEvents are already enqueued.
This event gives the application the ability to immediately clear the input, or to optionally
alert the user to the error before processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of the error condition
quickly.
This locus was created especially for the Scanner: When this error event is received from
a Scanner Device, the operator can be immediately alerted to the error so that no further
items are scanned until the error is resolved. Then, the application can process any backlog
of previously scanned items before error recovery is performed.

EL_INPUT Delivered when an error has occurred and there is no data available.
If some input data was buffered when the error occurred, then an ErrorEvent with the
locus EL_INPUT_DATA was delivered first, and then this error event is delivered after
all DataEvents have been delivered.
If the Service has partial data that can be delivered with an ErrorEvent, the related data
properties should be filled in prior to delivery of the event with this ErrorLocus. If there
is no partial data to be delivered with the ErrorEvent, the data properties should be
cleared prior to delivery of this event.
Note: This EL_INPUT event is not delivered if: an EL_INPUT_DATA event was
delivered and the application event handler responded with an ER_CLEAR error response.

ErrorResponse Description

ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit the error state, changing
State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT This response acknowledges the error and directs the Device to continue processing.
The Device remains in the error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all input has been delivered and
the DataEventEnabled property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.
This is the default response when the locus is EL_INPUT_DATA, and is legal only
with this locus.

ER_RETRY This response directs the Device to retry the input. The error state is exited, and State
is changed to S_IDLE.
This response may only be selected when the device chapter specifically allows it and
when the locus is EL_INPUT. An example is the scale.

1 - 20 Unified POS, V1.15.1 Beta1

The Device exits the Error state when one of the following occurs:

• The application returns from the EL_INPUT ErrorEvent.

• The application calls the clearInput method.

• The application returns from the EL_INPUT_DATA ErrorEvent with ErrorResponse set to ER_CLEAR.

Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven input. After the input is received by
the Device, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”
The DataCount property contains the number of DataEvents enqueued by the Device.
Calling the clearInput method deletes all input enqueued by a Device. clearInput may be called after open for
sharable devices and after claim for exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device categories containing
methods or properties that return input data directly. Some device categories define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input
is sometimes called “synchronous input.”

1.3.11 Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and asynchronous. A device category
may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device does not return until the output
is completed; this means the physical device has performed the intended operation. For example the printer has
successfully transferred all the output data as ink on the paper.
This type of output is preferred when device output can be performed relatively quickly. Its merit is simplicity.

Asynchronous Output Updated in Release 1.13

The application calls a category-specific method to start the output. The Device validates the method parameters
and produces an error condition immediately if necessary. If the validation is successful, the Device does the
following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device can
 receive and process it.

2. Sets the OutputID property to a unique integer identifier for this request. (For more information about the
 OutputID property, see Chapter 2.)

Unified POS, v1.15.1 Beta1 1- 21

3. Returns as soon as possible.

When the Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery to the
application. A property of this event contains the output ID of the completed request. The application should
compare the returned OutputCompleteEvent property OutputID value with the OutputID value set by the
asynchronous process method call used to send the data in order to track what data has been successfully sent to
the device. If the request is terminated before completion, due to reasons such as the application calling the
clearOutput method or responding to an ErrorEvent with a ER_CLEAR response, then no
OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules). No further asynchronous output will occur until the event has been delivered to the application.
If the response is ER_CLEAR, then outstanding asynchronous output is cleared. If the response is ER_RETRY,
then output is retried; note that if several outputs were simultaneously in progress at the time that the error was
detected, then the Service may need to retry all of these outputs.
This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

1.3.12 Device Power Reporting Model Updated in Release 1.8

Applications frequently need to know the power state of the devices they use. Note: This model is not intended
to report Workstation or POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of
these conditions is now managed by the POSPower device category.

Model

UnifiedPOS architecture segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the “operational” state.

• OFF. The device is powered off or detached from the terminal. This is a “non-operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to respond to requests. It may need to be
 placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational”
 state.

In addition, one combination state is defined:
• OFF_OFFLINE. The device is either off or offline, and the Service cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

1 - 22 Unified POS, V1.15.1 Beta1

1.3.13 Power State Diagram

Note - Enabled/Disabled vs. Power States
These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline.” It may also be logically “disabled” but
physically “online.” Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)
If a device is “offline,” then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

PowerState Unknown
PS_UNKNOWN

Known PowerStates

PowerState Online
PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline
PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Online
PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline
PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Standard Off/Offline
PS_OFF_OFFLINE

[Device is Online]

[Device is Off or Offline]

Advanced Off/Offline States

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

[Device is Offline]

[CapPowerReporting == PR_ADVANCED]

[D evice is closed]

[Device is closed]

[Device is Off]

Unified POS, v1.15.1 Beta1 1- 23

1.3.14 Power Properties

The UnifiedPOS device power reporting model adds the following common elements across all device classes.

• CapPowerReporting property. Identifies the reporting capabilities of the device.
 The UML pattern for the property is:

PR_xxx : int32 { frozen }

This property may be one of:

• PR_NONE. The Service cannot determine the state of the device. Therefore, no power reporting is possible.

• PR_STANDARD. The Service can determine and report two of the power states - OFF_OFFLINE (that is, off
 or offline) and ONLINE.

• PR_ADVANCED. The Service can determine and report all three power states - ONLINE, OFFLINE, and
 OFF.

• PowerState property. Maintained by the Service at the current power condition, if it can be determined.
 The UML pattern for the property is:

PS_xxx : int32 { frozen }

 This property may be one of:

• PS_UNKNOWN

• PS_ONLINE

• PS_OFF

• PS_OFFLINE

• PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power reporting via StatusUpdateEvents and
the PowerState property. This property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation of power notification with no adverse
effects on the application. The application is either prepared to receive notifications or doesn't want them, and has no
need to switch between these cases. The UML pattern for the property is:

PN_xxx : int32 { frozen }

 This property may be one of:

• PN_DISABLED

• PN_ENABLED

1.3.15 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin monitoring the power state:

• If the Physical Device is ONLINE, then PowerState is set to PS_ONLINE. A StatusUpdateEvent is enqueued

1 - 24 Unified POS, V1.15.1 Beta1

 with its Status property set to SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or OFF_OFFLINE, then the Service may choose to fail the
 enable by notifying the application with error code E_NOHARDWARE or E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Service chooses to return success for
the enable, then PowerState is set to PS_OFF, PS_OFFLINE, or PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to SUE_POWER_OFF, SUE_POWER_OFFLINE, or
SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, UnifiedPOS assumes that the Device is no longer
 monitoring the power state and sets the value of PowerState to PS_UNKNOWN.

1.3.16 Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See below for examples of XML definitions of the
device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the claim method and by setting DeviceEnabled to true
when access to a device is required and then setting DeviceEnabled to false and using the release method when
access to the device is no longer needed. Coordination of device access via this mechanism is the responsibility
of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

• CapStatisticsReporting property. Identifies the reporting capabilities of the device. When CapStatisticsReporting
 is false, then no statistical data regarding the device is available. This is equivalent to Services compatible with prior
 versions of the specification. When CapStatisticsReporting is true, then some statistical data for the device is
 available.

• CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by the
 application. This property is only valid if CapStatisticsReporting is true. When CapUpdateStatistics is false, then
 none of the statistical data can be reset/updated by the application. Otherwise, when CapUpdateStatistics is true,

Unified POS, v1.15.1 Beta1 1- 25

 then (some of) the statistical data can be reset/updated by the application.

• resetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true. This
 method resets one, some, or all of the resettable device statistics to zero.

• retrieveStatistics method. Can only be called if CapStatisticsReporting is true. This method retrieves one, some,
 or all of the accumulated statistics for the device.

• updateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true.
 This method updates one, some, or all of the resettable device statistics to the supplied values.

XML Definitions for POS Device Statistics

The XML files containing the UnifiedPOS defined statistics for each device category are provided as downloads
from the web sites that also host this specification. These statistics can be referenced individually by name or as
a group using the “U_” string as (part of) the parameter to the statistics methods.

Manufacturers/Service providers can add their specific statistics in the provided “ManufacturerSpecific” section.
These statistics can be referenced individually by name or as a group using the “M_” string as (part of) the
parameter to the statistics methods.

The following table contains the definitions of the information contained in the UnifiedPOS defined
DeviceInformation section covering all device categories.

The following is an example of the XML file that describes the “UnifiedPOS” defined statistics for the
CashDrawer device category.

<?xml version=’1.0’ ?>

<DeviceInformation>
XML Definition Name

Definition description

UnifiedPOSVersion Version of the UnifiedPOS specification supported

DeviceCategory Device category (e.g., POSPrinter)

ManufacturerName Device manufacturer’s name

ModelName Device model name

SerialNumber Device serial number

ManufactureDate Device manufacture date

MechanicalRevision Device hardware revision

FirmwareRevision Device firmware revision

Interface Device hardware interface (e.g., serial, USB)

InstallationDate Device installation date

1 - 26 Unified POS, V1.15.1 Beta1

<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

<Event>
<Parameter>

<Name>DrawerGoodOpenCount</Name>
<Value>1353</Value>

</Parameter>
<Parameter>

<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>

</Parameter>
<ManufacturerSpecific>

<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasure>meters</unitofmeasure>

</ManufacturerSpecific>
</Event>
<Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevision>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>
</UPOSStat>

1.3.17 Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by a UnifiedPOS control.

This model has the following capabilities:

• A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

• A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be compared
 against the firmware version of the device.

The most up-to-date files defining the XML tag names that conform to the ARTS Data
Dictionary and example schemas for the statistics for all device categories can be
downloaded from the ARTS web site at http://retail.omg.org

http://www.nrf-arts.org
http://www.nrf-arts.org

Unified POS, v1.15.1 Beta1 1- 27

• A method, updateFirmware, to perform an asynchronous update of the firmware in a device.

• A method, compareFirmwareVersion, to compare the firmware file’s version against the firmware version of the
 device.

• Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not covered by this document, only
the means by which the update firmware process is started and progress is reported.

1.3.18 Device States

UnifiedPOS defines a property State with the following values:

S_CLOSED
S_IDLE
S_BUSY
S_ERROR

The State property is set as follows:

• State is initially S_CLOSED.

• State is changed to S_IDLE when the open method is successfully called.

• State is set to S_BUSY when the Service is processing output. The State is restored to S_IDLE when the output has
 completed.

• The State is changed to S_ERROR when an asynchronous output encounters an error condition, or when an error is
 encountered during the gathering or processing of event-driven input.

After the Service changes the State property to S_ERROR, it notifies the application of this error. The properties of
this event are the error code and extended error code, the locus of the error, and a mutable response to the error.

1 - 28 Unified POS, V1.15.1 Beta1

1.3.19 Device State Diagram

1.3.20 Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of some Devices. UnifiedPOS
imposes the following requirements on Control and Service versions:

• Control requirements. A Control for a device category must operate with any Service for that category, as long as
 its major version number matches the Service's major version number. If they match, but the Control's minor version
 number is greater than the Service’s minor version number, then the Control may support some new methods or
 properties that are not supported by the Service’s release. If an application calls one of these methods or accesses
 one of these properties, the application will be notified of an error condition (E_NO_SERVICE).

• Service requirements. A Service for a device category must operate with any Control for that category, as long as
 its major version number matches the Control's major version number. If they match, but the Service's minor version
 number is greater than the Control's minor version number, then the Service may support some methods or
 properties that cannot be accessed from the Control.

Opened

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

Closed
State == S_CLOSED

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

/open

/close

[input event error]

[async output in progress]

[error event done and no async output]

[error event done and async output]

[async output done]

[async output error or input event error]

Unified POS, v1.15.1 Beta1 1- 29

When an application wishes to take advantage of the enhancements of a version, it must first determine that the
Control and Service are at the proper major version and at or greater than the proper minor version. The versions
are reported by the properties DeviceControlVersion and DeviceServiceVersion.

1.3.21 Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the specification, a method of deprecation
is required in order to eliminate these items over time.

Deprecation can be applied to Properties and Methods, as well as parameters, constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to support the element’s
functionality for the following two minor releases of the standard. Starting with the third release of the standard
after an element has been marked as deprecated, usage of the element will result in an E_DEPRECATED status.

When an element is marked as deprecated, then support for the element will be removed from the standard in the
next major release of the standard after it is marked as deprecated.

All deprecated elements and the related versions when they were first marked as deprecated are listed in Annex
H, Deprecation History on page H-1.

1.3.22 Hydra Device Considerations Updated in Release 1.12

Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that the most flexible methodology
would be to have an application be able to communicate to a peripheral through a two-layer process. Since the
Microsoft’s COM platform was the first supported architecture, Control Object and Service Object names were
chosen. Later when Java was defined and the technology used precluded the use of “objects” as defined in the
Windows world, the names were closely linked using the terminology Device Control and Device Service.
Functionality however at the higher, abstracted level, remained the same.

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what is commonly called “connecting the pipes”
wherein a communication port would be opened and a device name would be assigned so that the application is
able to communicate to the peripheral using that device name.

Service Object or Device Service (Service)

This incorporates usually vendor-specific code that interfaces with the peripheral device to allow for accessing,
monitoring, processing, all the functionality of the peripheral device and exposing it to a common set of
properties, methods, and events that an application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the most simplistic system one
instance of a Control is instantiated to connect to the Service. As example for a simple POSPrinter:

Note: only one physical connection port (RS-232 for example) is used in this example.

1 - 30 Unified POS, V1.15.1 Beta1

Keeping things simple but adding another level of complexity is the case when more than one application needs
to use the device. In this case, another Control is instantiated to the peripheral Service and all applications need
to recognize that the peripheral is capable of being shared (for this example, assuming a shareable device) and
utilize the claim and release methodology that the standard provides. In the POSPrinter example, this would look
like…

Note: only one physical connection port (RS-232 for example) is used in this example.

Application

Control

Service
Service for Functionality of Peripheral

Device and supports Physical
Connection to the Peripheral Device

POS Receipt
Printer

Application One

Control One

Service
Service for Functionality of Peripheral Device and

supports Physical Connection to the Peripheral
Device

Application Two

Control Two

POS Receipt
Printer

Unified POS, v1.15.1 Beta1 1- 31

Note, that as far as each application is concerned, it is connected to the peripheral device and only one physical
connection to the device is required... via the RS-232 serial connection in this example. This served the needs of
device sharing where cooperating applications were utilized.

1.3.23 Multi-Function (Hydra) Peripheral Devices

The model needed to be expanded to cover the peripherals that include multiple device class
functionality in a single unit. An example of such a device is a POS printer that may have additional
functionality of being able to control a Customer Line Display, Cash Drawer, MICR, or other
devices. These peripherals are referred to as “Hydra” peripherals alluding to the Greek mythology of
a multi-headed animal that was connected to a single body interface.

In the interaction of POS peripherals, the interface to the Application needs to be agnostic in its
knowledge in either of the following cases…one where multiple physical peripheral devices are used
or the other where one physical peripheral device incorporates the functionality of multiple physical
peripheral devices.

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232 serial ports for instance) are
required…one for each of the physical peripheral devices.

In a Hydra peripheral only one “pipe” is required and it is used to communicate with all the various Device
peripheral functionality of the connected peripheral device.

For example, consider the cases where in one instance a separate POSPrinter device and a separate MICR device
is present; in another instance, a Hydra POSPrinter that has an incorporated MICR reader. The “look” to the
Application(s) has to be agnostic…it should not care nor should it have to know which type of hardware
device(s) are physically present. Ideally it should be able to use the same Application code to interact with either
of the two implementations. For example:

Note: Application interfacing with two distinct peripherals.

Application That Needs Functionality for
MICR POSPrinter

MICR
Control

POSPrinter
Control

MICR Service
Separate Physical

Device
RS-232 Port 1

POSPrinter Service
Separate Physical

Device
RS-232 Port 2

1 - 32 Unified POS, V1.15.1 Beta1

Note that in this case the application running the MICR and the POSPrinter consumes two separate ports but as
far as the Application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the
fact that the two ports are used.

Note: Application interfacing with a Hydra peripheral.

Note that in this case the application running the MICR and POSPrinter consumes only one port but as far as the
application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the fact that
only one port is used. It is up to the Hydra Service to control the port and route the functionality to and from the
proper interface.

Considerations

While the desire is to have both interconnection techniques work the same with regards to the Application
interface, problems do arise. In the Hydra case, an error state in one of the specific device functions may block
the usage of the other function. This would not happen in the non-Hydra case since each peripheral is truly
separate.

In our Printer and MICR Hydra case, the printer running out of paper might present a condition that would
prevent reading a MICR code for instance. An error condition of “Out of Paper” would be reported through the
POSPrinter interface but would not have any meaning to a route through the MICR interface. The Application
requesting a MICR read in the Hydra case would be presented with an error or status condition that it would not
get in the discrete MICR peripheral case. This presents a potential “hang up” condition or unresolved error
situation.

Obviously an error condition needs to be reported to the application that is using the MICR functionality to alert
it of a problem and allow for resolution. Rather than reporting a meaningless error of “Out of Paper” to the
MICR application, a general E_FAILURE error would be sent back to the MICR application to alert it of the
problem. The MICR application would then be responsible to go through an error recovery procedure to rectify
the situation. It would go through an error recover operation that would present a console message informing the
operator of an impending problem with usage of the MICR device.

Application That Needs Functionality for
MICR POSPrinter

MICR
Control

POSPrinter
Control

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One

Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function

Unified POS, v1.15.1 Beta1 1- 33

Operator knowledge of the specific device would then be used to correct the problem. In this case knowing that
the MICR is part of the printer would focus the attention of the Operator to the “Paper Out” status indicator. The
resolution would be to replace the paper which would then clear the error condition for the MICR as well as the
Printer.

Notice that every attempt is made to make the interaction with the peripheral device or Hydra peripheral device
“look the same” to the application. Careful Service design needs to be used to make sure this is accomplished.
Device vendors should define any limitations and unusual error conditions that may exist when accessing such
hydra devices in their user documentation. Application developers should be aware of the possibility of discrete
and Hydra POS devices when crafting their software and plan their error resolution accordingly.

1 - 34 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 2 - 1

2 Common Properties, Methods, and Events

2.1 General
The following Properties, Methods, and Events are used for all device categories unless noted otherwise in the
Usage Notes table entry. For an overview of the general rules and guidelines, see “Device Behavior Models” on
page 1-10.

2.2 Summary Updated in Release 1.10
The following property list is a summary of the JavaPOS Common Properties. This list is used throughout the
main UnifiedPOS chapters. Further details may be found in Annex B.

The OPOS implementation adds the following Common Properties:

BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.

Also, the last six properties are replaced by:

ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription, ServiceObjectVersion,
DeviceDescription, and DeviceName.

Further details may be found in Annex A.

Properties (UML attributes)

Name Type Mutability Version Usage
Notes

AutoDisable: boolean { read-write } 1.2 1
CapCompareFirmwareVersion: boolean { read-only } 1.9
CapPowerReporting: int32 { read-only } 1.3
CapStatisticsReporting: boolean { read-only } 1.8
CapUpdateFirmware: boolean { read-only } 1.9
CapUpdateStatistics: boolean { read-only } 1.8
CheckHealthText: string { read-only } 1.0
Claimed: boolean { read-only } 1.0
DataCount: int32 { read-only } 1.2 1
DataEventEnabled: boolean { read-write } 1.0 1
DeviceEnabled: boolean { read-write } 1.0
FreezeEvents: boolean { read-write } 1.0
OutputID: int32 { read-only } 1.0 2
PowerNotify: int32 { read-write } 1.3
PowerState: int32 { read-only } 1.3
State: int32 { read-only } 1.0

DeviceControlDescription: string { read-only } 1.0

2 - 2 Unified POS, V1.15.1 Beta1

Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

DeviceControlVersion: int32 { read-only } 1.0
DeviceServiceDescription: string { read-only } 1.0
DeviceServiceVersion: int32 { read-only } 1.0
PhysicalDeviceDescription: string { read-only } 1.0
PhysicalDeviceName: string { read-only } 1.0

Methods (UML operations)
Name Version
open (logicalDeviceName: string):

 void { raises-exception }
1.0

close ():
void { raises-exception }

1.0

claima (timeout: int32):
void { raises-exception }

1.0

releasea ():
void { raises-exception }

1.0

checkHealth (level: int32):
void { raises-exception }

1.0

clearInput ():
void { raises-exception }

1.0

clearInputProperties ():
void { raises-exception }

1.10

clearOutput ():
void { raises-exception }

1.0

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception }

1.8

Unified POS, v1.15.1 Beta1 2 - 3

Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

2.3 General Information
This section lists properties, methods, and events that are common to many of the peripheral devices covered in
this standard.

The summary section of each device category marks those common properties, methods, and events that do not
apply to that category as “Not Supported.” Items identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is required. Please see “Device
Behavior Models” on page 1-10 for additional information.

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively due to
Release being a reserved method used by Microsoft’s Component Object Model
(COM).

Events (UML interfaces)

Name Type Mutability Version Usage
Notes

upos::events::DataEvent
Status: int32 { read-only }

1.0 1

upos::events::DirectIOEvent
EventNumber:
Data:
Obj:

int32
int32
object

{ read-only }
{ read-write }
{ read-write }

1.0

upos::events::ErrorEvent
ErrorCode:
ErrorCodeExtended:
ErrorLocus:
ErrorResponse:

int32
int32
int32
int32

{ read-only }
{ read-only }
{ read-only }
{ read-write }

1.0

upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

1.0 2

upos::events::StatusUpdateEvent
Status: int32 { read-only }

1.0

2 - 4 Unified POS, V1.15.1 Beta1

2.3.1 Common PME Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the Common classes.

Notes:AutoDisable, DataCount, and DataEventEnabled are used only with Devices that have Event Driven
 Input. OutputID is used only with Asynchronous Output Devices.

UposEvent
(from events)

<<event>>

BaseControl

<<capability>> CapCompareFirmwareVersion : boolean
<<capability>> CapPowerReporting : int32
<<capability>> CapStatisticsReporting : boolean
<<capability>> CapUpdateFirmware : boolean
<<capability>> CapUpdateStatistics : boolean
<<prop>> AutoDisable : boolean
<<prop>> CheckHealthText : string
<<prop>> Claimed : boolean
<<prop>> DataCount : int32
<<prop>> DataEventEnabled : boolean
<<prop>> DeviceEnabled : boolean
<<prop>> FreezeEvents : boolean
<<prop>> OutputID : int32
<<prop>> PowerNotify : int32
<<prop>> PowerState : int32
<<prop>> State : int32
<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceServiceDescription : string
<<prop>> DeviceServiceVersion : int32
<<prop>> PhysicalDeviceDescription : string
<<prop>> PhysicalDeviceName : string

open(logicalDeviceName : string) : void
close() : void
claim(timeout : int32) : void
compareFirmwareVersion(firmwareFileName : string, out result : int32) : void
release() : void
resetStatistics(statisticsBuffer : string) : void
checkHealth(level : int32) : void
clearInput() : void
clearInputProperties() : void
clearOutput() : void
directIO(command : int32, inout data : int32, inout obj : Object) : void
retrieveStatistics(inout statisticsBuffer : string) : void
updateFirmware(firmwareFileName : string) : void
updateStatistics(statisticsBuffer : string) : void

(from upos)

<<Interface>>

fires

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...

BumpBarControl
(from upos)

<<Interface>>
MSRControl

(from upos)

<<Interface>>
POSPrinterControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<sends>>
<<sends>>

<<sends>> <<sends>>

UposConst
(from upos)

<<utility>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<DevCat>Control
(from upos)

<<interface>>

<<sends>>

<<uses>>

Unified POS, v1.15.1 Beta1 2 - 5

2.4 Properties (UML attributes)

2.4.1 AutoDisable Property

Syntax AutoDisable: boolean { read-write }

Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives and enqueues data
as a DataEvent. Before any additional input can be received, the application must set
DeviceEnabled to true.
If false, the UnifiedPOS Service does not automatically disable the device when data is received.
This property provides the application with an additional option for controlling the receipt of input
data. If an application wants to receive and process only one input, or only one input at a time, then
this property should be set to true. This property applies only to event-driven input devices.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18.

2.4.2 CapCompareFirmwareVersion Property Revised in Release 1.14

Syntax CapCompareFirmwareVersion: boolean { read-only, access after open }

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical
device against that of a firmware file; initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also compareFirmwareVersion Method.

2.4.3 CapPowerReporting Property Updated in Release 1.11

Syntax CapPowerReporting: int32 { read-only }

Remarks Identifies the reporting capabilities of the Device. It has one of the following values:

Value Meaning
PR_NONE The UnifiedPOS Service cannot determine the state of the device.

Therefore, no power reporting is possible.
PR_STANDARD The UnifiedPOS Service can determine and report two of the power states

- OFF_OFFLINE (that is, off or offline) and ONLINE.
PR_ADVANCED The UnifiedPOS Service can determine and report all three power states

- OFF, OFFLINE, and ONLINE.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Power Reporting Model” on page 1-22, PowerState Property, PowerNotify Property.

2 - 6 Unified POS, V1.15.1 Beta1

2.4.4 CapStatisticsReporting Property Added in Release 1.8

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage; otherwise no
usage statistics are accumulated. The information accumulated and reported is device specific, and
is retrieved using the retrieveStatistics method.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also retrieveStatistics Method.

2.4.5 CapUpdateFirmware Property Updated in Release 1.14

Syntax CapUpdateFirmware: boolean { read-only, access after open }

Remarks If true, then the device’s firmware can be updated via the updateFirmware method; initialized by
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also updateFirmware Method.

2.4.6 CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the resetStatistics
method, or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics Method.

Unified POS, v1.15.1 Beta1 2 - 7

2.4.7 CheckHealthText Property

Syntax CheckHealthText: string { read-only }

Remarks Holds the results of the most recent call to the checkHealth method. The following examples
illustrate some possible diagnoses:
• “Internal HCheck: Successful”
• “External HCheck: Not Responding”
• “Interactive HCheck: Complete”
This property is empty (“”) before the first call to the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also checkHealth Method.

2.4.8 Claimed Property

Syntax Claimed: boolean { read-only }

Remarks If true, the device is claimed for exclusive access. If false, the device is released for sharing with
other applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will deliver events to the application.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Initialization and Finalization” on page 1-12, “Device Sharing Model” on page 1-14, claim
Method, release Method.

2.4.9 DataCount Property

Syntax DataCount: int32 { read-only }

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a
device, but has not yet been delivered because of other application processing, freezing of events,
or other causes.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18, DataEvent.

2 - 8 Unified POS, V1.15.1 Beta1

2.4.10 DataEventEnabled Property

Syntax DataEventEnabled: boolean { read-write }

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other
conditions may delay “immediate” delivery: if FreezeEvents is true or another event is already
being processed at the application, the DataEvent will remain queued at the UnifiedPOS Service
until the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs,
the ErrorEvent is not delivered while this property is false.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Events” on page 1-15, DataEvent.

2.4.11 DeviceControlDescription Property

Syntax DeviceControlDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Control and the company that produced it.

A sample returned string is:
“POS Printer UnifiedPOS Compatible Control, (C) 1998 Epson”

This property is always readable.
Errors None.

See Also DeviceControlVersion Property.

Unified POS, v1.15.1 Beta1 2 - 9

2.4.12 DeviceControlVersion Property

Syntax DeviceControlVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Control version number.

Three version levels are specified, as follows:
Version Level Description
Major The “millions” place.

A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control developer. Updated
when corrections are made to the UnifiedPOS Control implementation.

A sample version number is: 1002038
This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the UnifiedPOS Control. This property is always readable.

Errors None.

See Also “Version Handling” on page 29, DeviceControlDescription Property.

2.4.13 DeviceEnabled Property

Syntax DeviceEnabled: boolean { read-write }

Remarks If true, the device is in an operational state. If changed to true, then the device is brought to an
operational state.

If false, the device has been disabled. If changed to false, then the device is physically disabled when
possible, any subsequent input will be discarded, and output operations are disallowed.
Changing this property usually does not physically affect output devices. For consistency, however,
the application must set this property to true before using output devices.
The Device’s power state may be reported while DeviceEnabled is true; See “Device Power
Reporting Model” on page 1-22 for details.
This property is initialized to false by the open method. Note that an exclusive use device must be
claimed before the device may be enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Initialization and Finalization” on page 1-12.

2 - 10 Unified POS, V1.15.1 Beta1

2.4.14 DeviceServiceDescription Property

Syntax DeviceServiceDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Service and the company that produced it.

A sample returned string is:
“TM-U950 Printer UnifiedPOS Compatible Service Driver, (C) 1998 Epson”

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

2.4.15 DeviceServiceVersion Property

Syntax DeviceServiceVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Service version number.

Three version levels are specified, as follows:
Version Level Description
Major The “millions” place.

A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service developer. Updated
when corrections are made to the UnifiedPOS Service implementation.

A sample version number is:
1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the UnifiedPOS Service.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Version Handling” on page 1-29, DeviceServiceDescription Property.

Unified POS, v1.15.1 Beta1 2 - 11

2.4.16 FreezeEvents Property Updated in Release 1.12

Syntax FreezeEvents: boolean { read-write }

Remarks If true, the UnifiedPOS Control will not deliver events. Events will be enqueued until this property
is set to false.

If false, the application allows events to be delivered. If some events have been held while events
were frozen and all other conditions are correct for delivering the events, then changing this
property to false will allow these events to be delivered. An application may choose to freeze events
for a specific sequence of code where interruption by an event is not desirable.
Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of this
property.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

2.4.17 OutputID Property

Syntax OutputID: int32 { read-only }

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns an identifier to
the request. When the output completes, an OutputCompleteEvent will be enqueued with this
output ID as a parameter.
The output ID numbers are assigned by the UnifiedPOS Service and are guaranteed to be unique
among the set of outstanding asynchronous outputs. No other facts about the ID should be assumed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Output Models” on page 1-21, OutputCompleteEvent.

2 - 12 Unified POS, V1.15.1 Beta1

2.4.18 PowerNotify Property

Syntax PowerNotify: int32 { read-write }

Remarks Contains the type of power notification selection made by the Application. It has one of the
following values:

Value Meaning
PN_DISABLED The UnifiedPOS Service will not provide any power notifications to the

application. No power notification StatusUpdateEvents will be fired,
and PowerState may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState, beginning when
DeviceEnabled is set to true. The level of functionality depends upon
CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is false.
This property is initialized to PN_DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following occurred:

• The device is already enabled.
• PowerNotify = PN_ENABLED but CapPowerReporting =

PR_NONE.

See Also “Device Power Reporting Model” on page 1-22, CapPowerReporting Property, PowerState
Property.

Unified POS, v1.15.1 Beta1 2 - 13

2.4.19 PowerState Property Updated in Release 1.11

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning
PS_UNKNOWN Cannot determine the device’s power state for one of the following

reasons:
CapPowerReporting = PR_NONE; the device does not support power
reporting.
PowerNotify = PN_DISABLED; power notifications are disabled.
DeviceEnabled = false; Power state monitoring does not occur until the
device is enabled.

PS_ONLINE The device is powered on and ready for use. Can be returned if
CapPowerReporting = PR_STANDARD or PR_ADVANCED.

PS_OFF The device is powered off or detached from the POS terminal. Can only
be returned if CapPowerReporting = PR_ADVANCED.

PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting =
PR_ADVANCED.

PS_OFF_OFFLINE The device is either off or off-line. Can only be returned if
CapPowerReporting = PR_STANDARD.

This property is initialized to PS_UNKNOWN by the open method. When PowerNotify is set to
enabled and DeviceEnabled is true, then this property is updated as the UnifiedPOS Service detects
power condition changes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Power Reporting Model” on page 1-22, CapPowerReporting Property, PowerNotify
Property.

2.4.20 PhysicalDeviceDescription Property

Syntax PhysicalDeviceDescription: string { read-only }

Remarks Holds an identifier for the physical device.

A sample returned string is:
“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also PhysicalDeviceName Property.

2 - 14 Unified POS, V1.15.1 Beta1

2.4.21 PhysicalDeviceName Property

Syntax PhysicalDeviceName: string { read-only }

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application message box, where the
full description is too verbose. A sample returned string is:
“IBM Model II Printer, Japanese”

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also PhysicalDeviceDescription Property.

2.4.22 State Property

Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning
S_CLOSED The Device is closed.

S_IDLE The Device is in a good state and is not busy.

S_BUSY The Device is in a good state and is busy performing output.

S_ERROR An error has been reported, and the application must recover the Device
to a good state before normal I/O can resume.

This property is always readable.
Errors None.

See Also “Device Information Reporting Model” on page 1-25.

Unified POS, v1.15.1 Beta1 2 - 15

2.5 Methods (UML operations)

2.5.1 checkHealth Method

Syntax checkHealth (level: int32): void { raises-exception }

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:
Value Meaning
CH_INTERNAL Perform a health check that does not physically change the device. The

device is tested by internal tests to the extent possible.
CH_EXTERNAL Perform a more thorough test that may change the device. For example, a

pattern may be printed on the printer.
CH_INTERACTIVE Perform an interactive test of the device. The supporting UnifiedPOS

Service will typically display a modal dialog box to present test options
and results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the CheckHealthText property. The
health of many devices can only be determined by a visual inspection of these test results.
This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The specified health check level is not supported by the UnifiedPOS

Service.

See Also CheckHealthText Property.

2.5.2 claim Method Updated in Release 1.11

Syntax claim (timeout: int32): void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to
be satisfied. If zero, then immediately either returns (if successful) or throws an appropriate
exception. If FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to claim them before
they can be used.

When successful, the Claimed property is changed to true.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

2 - 16 Unified POS, V1.15.1 Beta1

Value Meaning
E_ILLEGAL This device cannot be claimed for exclusive access, or an invalid timeout

parameter was specified.
E_TIMEOUT Another application has exclusive access to the device, and did not

relinquish control before timeout milliseconds expired.

See Also “Device Initialization and Finalization” on page 1-12, “Device Sharing Model” on page 1-14,
release Method.

2.5.3 clearInput Method

Syntax clearInput (): void { raises-exception }

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18.

2.5.4 clearInputProperties Method Added in Release 1.10

Syntax clearInputProperties (): void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back
to their default values. This does not reset the DataCount or State properties.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18.

Unified POS, v1.15.1 Beta1 2 - 17

2.5.5 clearOutput Method Updated in Release 1.7

Syntax clearOutput (): void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts
outputs that are in progress. Any output error events that are enqueued – usually waiting for
FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Output Models” on page 1-21.

2.5.6 close Method

Syntax close ():void { raises-exception }

Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.
If the Claimed property is true, then exclusive access to the device is released.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Initialization and Finalization” on page 1-12, open Method.

2.5.7 compareFirmwareVersion Method Added in Release 1.9

Syntax compareFirmwareVersion (firmwareFileName: string, out result: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file
 containing a set of firmware files whose versions are to be compared
 against those of the device.
result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer
than, older than, or the same as the version of the firmware in the physical device.
The Service should check that the specified firmware file exists and that its contents are valid for
this device before attempting to perform the comparison operation.
The result of the comparison is returned in the result parameter and will be one of the following
values:

2 - 18 Unified POS, V1.15.1 Beta1

Value Meaning
CFV_FIRMWARE_OLDER Indicates that the version of one or more of the firmware files is
 older than the firmware in the device and that none of the

firmware files is newer than the firmware in the device.
CFV_FIRMWARE_SAME Indicates that the versions of all of the firmware files are the same

as the firmware in the device.
CFV_FIRMWARE_NEWER Indicates that the version of one or more of the firmware files is

newer than the firmware in the device and that none of the
firmware files is older than the firmware in the device.

CFV_FIRMWARE_DIFFERENT
Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
• The chronological relationship cannot be determined, or
• The relationship is inconsistent -- one or more are older while

one or more are newer.
CFV_FIRMWARE_UNKNOWN

Indicates that a relationship between the two firmware versions
could not be determined. A possible reason for this result could
be an attempt to compare Japanese and US versions of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapCompareFirmwareVersion is false.
E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

E_EXTENDED ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

See Also CapCompareFirmwareVersion Property.

Unified POS, v1.15.1 Beta1 2 - 19

2.5.8 directIO Method

Syntax directIO (command: int32, inout data: int32, inout obj: object):
 void { raises-exception }

Parameter Description
command Command number whose specific values are assigned by the UnifiedPOS

Service.
data An array of one mutable integer whose specific values or usage vary by

command and UnifiedPOS Service.
obj Additional data whose usage varies by command and UnifiedPOS

Service.
Remarks Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality to the application
that is not otherwise supported by the standard UnifiedPOS Control for its device category.
Depending upon the UnifiedPOS Service’s definition of the command, this method may be
asynchronous or synchronous.
Use of this method will make an application non-portable. The application may, however, maintain
portability by performing directIO calls within conditional code. This code may be based upon the
value of the DeviceServiceDescription, PhysicalDeviceDescription, or PhysicalDeviceName
property.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also DirectIOEvent.

2.5.9 open Method Updated in Release 1.7

Syntax open (logicalDeviceName: string):
void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.
Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this UnifiedPOS Control
should be used. The logicalDeviceName must exist in the operating system’s reference locater
system (such as the JavaPOS Configurator/Loader (JCL) or the Window’s Registry) for this device
category so that its relationship to the physical device can be determined. Entries in the reference
locator’s system are created by a setup or configuration utility.
The following sequence diagram shows the details of what needs to happen during the open method
call processing to allow the creation of the Service and its binding to the Control.

2 - 20 Unified POS, V1.15.1 Beta1

When this method is successful, it initializes the properties Claimed, DeviceEnabled,
DataEventEnabled, and FreezeEvents, as well as descriptions and version numbers of the
UnifiedPOS software layers. Additional category-specific properties may also be initialized.

Errors A UposException may be thrown when this method is invoked. For further information,
 see “Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The UnifiedPOS Control is already open.
E_NOEXIST The specified logicalDeviceName was not found.
E_NOSERVICE Could not establish a connection to the corresponding UnifiedPOS

Service.

See Also “Device Initialization and Finalization” on page 1-12, “Version Handling” on page 1-29, close
 Method.

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular
platform. Note also, that some platform binding might have "easier" or "harder" API to accomplish the same task.

:<DevCat> :Config
(registry of service properties)

:Loader :<DevCat>
Service

:ClientApp

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the
services that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories

1: open(logicalName) 2: find properties of service with logicalName

3: pass loader properties and ask to create service

4: loader parses properties and loads the <DevCat>Service

5: create and/or bind to service

6: return service instance to control

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.
However, logically the actions above are happening on the
system.

Unified POS, v1.15.1 Beta1 2 - 21

2.5.10 release Method

Syntax release ():
void { raises-exception }

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device, then the device is
also disabled (this method does not change the device enabled state of sharable devices).

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E_ILLEGAL The application does not have exclusive access to the device.

See Also “Device Sharing Model” on page 1-14, claim Method.

2.5.11 resetStatistics Method Updated in Release 1.10

Syntax resetStatistics (statisticsBuffer: string):void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics that are to be reset.
This is a comma-separated list of name(s), where an empty string (“”) means ALL resettable
statistics are to be reset, “U_” means all UnifiedPOS defined resettable statistics are to be reset,
“M_” means all manufacturer defined resettable statistics are to be reset, and “actual_name1,
actual_name2” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be reset.

Remarks Resets the defined resettable statistics in a device to zero. All the requested statistics must be
successfully reset in order for this method to complete successfully, otherwise an ErrorCode of
E_EXTENDED is returned.
Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use
this method.
This method is always executed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:

2 - 22 Unified POS, V1.15.1 Beta1

Value Meaning
E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named

statistic is not defined/resettable.
E_EXTENDED ErrorCodeExtended = ESTATS_ERROR:

At least one of the specified statistics could not be reset.
ErrorCodeExtended = ESTATS_DEPENDENCY:
At least one other statistic is required to be reset in addition to a requested
statistic.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

2.5.12 retrieveStatistics Method Added in Release 1.8

Syntax retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics to be retrieved and in which the
 retrieved statistics are placed.
This is a comma-separated list of name(s), where an empty string (“”) means ALL statistics are to
be retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_” means all
manufacturer defined statistics are to be retrieved, and “actual_name1, actual_name2” (from the
XML file definitions) means that the specifically defined statistic(s) are to be retrieved.

Remarks Retrieves the requested statistics from a device.
CapStatisticsReporting must be true in order to successfully use this method.
This method is always executed synchronously.
All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

 <Event>
 <Parameter>
 <Name>RequestedStatistic</Name>
 <Value>1234</Value>
 </Parameter>
 </Event>
 <Equipment>
<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

 </Equipment>
</UPOSStat>

Unified POS, v1.15.1 Beta1 2 - 23

If the application requests a statistic name that the device does not support, the <Parameter> entry
will be returned with an empty <Value>. e.g.,
<Parameter>
 <Name>RequestedStatistic</Name>
 <Value></Value>
</Parameter>

All statistics that the device collects that are manufacturer specific (not defined in the schema) will
be returned in a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,
<ManufacturerSpecific>
 <Name>TheAnswer</Name>
 <Value>42</Value>
</ManufacturerSpecific>
When an application requests all statistics from the device, the device will return a <Parameter>
entry for every defined statistic for the device category as defined by the XML schema version
specified by the version attribute in the <UPOSStat> tag. If the device does not record any of the
statistics, the <Value> tag will be empty.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapStatisticsReporting is false or the named statistic is not defined.

See Also CapStatisticsReporting Property.

2.5.13 updateFirmware Method Added in Release 1.9

Syntax updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file
 containing a set of firmware files that are to be downloaded into the
 device.

Remarks This method updates the firmware of a device with the version of the firmware contained or defined
in the file specified by the firmwareFileName parameter regardless of whether that firmware’s
version is newer than, older than, or the same as the version of the firmware already in the device.
If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http://
retail.omg.org.

http://retail.omg.org
http://retail.omg.org
http://retail.omg.org
http://retail.omg.org

2 - 24 Unified POS, V1.15.1 Beta1

When this method is invoked, the Service should check that the specified firmware file exists and
that its contents are valid for this device. If so, this method should return immediately and the
remainder of the update firmware process should continue asynchronously.
The Service should notify the application of the status of the update firmware process by firing
StatusUpdateEvents with values of SUE_UF_PROGRESS + an integer between 1 and 100
indicating the completion percentage of the update firmware process. For application convenience,
the StatusUpdateEvent value SUE_UF_COMPLETE is defined to be the same value as
SUE_UF_PROGRESS + 100.
For consistency, the update firmware process is complete after the new firmware has been
downloaded into the physical device, any necessary physical device reset has completed, and the
Service and the physical device have been returned to the state they were in before the update
firmware process began.
For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete
progress completion percentage (i.e., a percentage between 1 and 99), even if the device cannot
physically report the progress of the update firmware process. If the update firmware process
completes successfully, the Service must fire a StatusUpdateEvent with a progress of 100 or use
the special constant SUE_UF_COMPLETE, which has the same value. These Service requirements
allow applications using this method to be designed to always expect some level of progress
notification.
If an error is detected during the asynchronous portion of a update firmware process, one of the
following StatusUpdateEvents will be fired:
Value Meaning
SUE_UF_FAILED_DEV_OK The update firmware process failed but the device is still

operational.
SUE_UF_FAILED_DEV_UNRECOVERABLE

The update firmware process failed and the device is neither
usable nor recoverable through software. The device requires
service to be returned to an operational state.

SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapUpdateFirmware is false.
E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

E_EXTENDED ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

See Also CapUpdateFirmware Property.

Unified POS, v1.15.1 Beta1 2 - 25

2.5.14 updateStatistics Method Updated in Release 1.10

Syntax updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics with values that are to be updated.
This is a comma-separated list of name-value pair(s), where an empty string name (““”=value1”)
means ALL resettable statistics are to be set to the value “value1,” “U_=value2” means all
UnifiedPOS defined resettable statistics are to be set to the value “value2,” “M_=value3” means all
manufacturer defined resettable statistics are to be set to the value “value3,” and
“actual_name1=value4, actual_name2=value5” (from the XML file definitions) means that the
specifically defined resettable statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device. All the requested statistics must be successfully
updated in order for this method to complete successfully, otherwise an ErrorCode of
E_EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use
this method.
This method is always executed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named

statistic is not defined/updatable.
E_EXTENDED ErrorCodeExtended = ESTATS_ERROR:

At least one of the specified statistics could not be updated.
ErrorCodeExtended = ESTATS_DEPENDENCY:
At least one other statistic is required to be updated in addition to a
requested statistic.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

2 - 26 Unified POS, V1.15.1 Beta1

2.6 Events (UML interfaces)
The UnifiedPOS standard utilizes a common UML base control structure to derive a specific implementation
case. The UML event base control model and interfaces are shown below for the events.

upos::BaseControl

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BaseControl
(from upos)

<<Interface>>
UposEvent
(from events)

<<event>> fires

<<uses>>

<<sends>>

Unified POS, v1.15.1 Beta1 2 - 27

upos::events interfaces

UposEvent
(from events)

<<event>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32
(from events)

<<event>>

2 - 28 Unified POS, V1.15.1 Beta1

2.6.1 DataEvent

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available from the device.

Attribute This event contains the following attribute:

Attribute Type Description
Status int32 The input status with its value dependent upon the device category; it may

describe the type or qualities of the input data.

Remarks When this event is delivered to the application, the DataEventEnabled property is changed to false,
so that no further data events will be delivered until the application sets DataEventEnabled back
to true. The actual byte array input data is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is enqueued in an
internal buffer, the device-specific input data properties are not updated, and the event is not
delivered. When DataEventEnabled is subsequently changed back to true, the event will be
delivered immediately if input data is enqueued and FreezeEvents is false.

See Also “Errors” on page 1-16, “Device Input Model” on page 1-18, DataEventEnabled Property,
FreezeEvents Property.

2.6.2 DirectIOEvent Updated in Release 1.7

<<event>> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides UnifiedPOS Service information directly to the application. This event provides a means
for a vendor-specific UnifiedPOS Service to provide events to the application that are not otherwise
supported by the UnifiedPOS Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Unified

POS Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the UnifiedPOS Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the
UnifiedPOS Service. This attribute is settable.1

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See Binary
 Conversion property in Annex A.

Unified POS, v1.15.1 Beta1 2 - 29

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described as part of the UnifiedPOS standard. Use of this event may restrict the application program
from being used with other vendor’s devices which may not have any knowledge of the UnifiedPOS
Service’s need for this event.

See Also “Events” on page 1-15, directIO Method.

2.6.3 ErrorEvent Updated in Release 1.13

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is necessary to
process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes under

“Errors” on page 1-16.

ErrorCodeExtended
int32 Extended Error Code causing the error event. These values are device

category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this attribute is settable). See values below.

The ErrorLocus attribute has one of the following values:
Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one of the following
values: (Updated in 1.13)

2 - 30 Unified POS, V1.15.1 Beta1

Value Meaning
ER_RETRY Retry sending the data. The error state is exited.

May be valid for some input devices when the locus is EL_INPUT, in
which case the input is retried and the error state is exited. Typically valid
for asynchronous output devices when the locus is EL_OUTPUT, in
which case the asynchronous output is retried and the error state is exited.
This is the default response when the locus is EL_OUTPUT.

ER_CLEAR Valid for all loci: EL_INPUT, EL_INPUT_DATA, and EL_OUTPUT.
Clear all buffered input or output data (including all asynchronous
output). The error state is exited. This is the default response when the
locus is EL_INPUT.

ER_CONTINUEINPUT
Only valid when the locus is EL_INPUT_DATA.
Acknowledges that a data error has occurred and directs the Device to
continue input processing. The Device remains in the error state and will
deliver additional DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered with locus
EL_INPUT.
This is the default response when the locus is EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected and the Device’s State transitions into the error
state. Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it
leaves the DataEventEnabled property value at true. Note that the application may set
DataEventEnabled to false within its event handler if subsequent input events need to be disabled
for a period of time.

See Also “Device Input Model” on page 1-18, “Error Handling” on page 1-19, “Device Output Models” on
page 1-21.

2.6.4 OutputCompleteEvent Updated in Release 1.13

<<event>> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the qeued output request associated with the OutputID attribute has
completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

 Remarks This event is enqueued after the requested data has been both sent and the UnifiedPOS Service has
confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 1-21, OutputID Property.

Unified POS, v1.15.1 Beta1 2 - 31

2.6.5 StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.

Attribute This event contains the following attribute:

Attribute Type Description
Status int32 Device category-specific status, describing the type of status change.

Release 1.3 and later – Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning
SUE_POWER_ONLINE

The device is powered on and ready for use. Can be returned if
CapPowerReporting =PR_STANDARD or PR_ADVANCED.

SUE_POWER_OFF The device is off or detached from the terminal. Can only be returned if
CapPowerReporting =PR_ADVANCED.

SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to
requests. Can only be returned
if CapPowerReporting = PR_ADVANCED.

SUE_POWER_OFF_OFFLINE
The device is either off or off-line. Can only be returned
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at the current power state of the device.

2 - 32 Unified POS, V1.15.1 Beta1

Release 1.9 and later – Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:
Value Meaning
SUE_UF_PROGRESS + 1 to 100

The update firmware process has successfully completed 1 to 100 percent
of the total operation.

SUE_UF_COMPLETE The update firmware process has completed successfully. The value of
this constant is identical to SUE_UF_PROGRESS + 100.

SUE_UF_COMPLETE_DEV_NOT_RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the
update firmware process started. The Service has restored all properties to
their default initialization values.
To ensure consistent Service and physical device states, the application
needs to close the Service, then open, claim, and enable again, and also
restore all custom application settings.

SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still operational.

SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned
to an operational state.

SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

Remarks This event is enqueued when a Device needs to alert the application of a device status change.
Examples are a change in the cash drawer position (open vs. closed) or a change in a POS printer
sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the application of the device
state. This behavior, however, is not required.

See Also “Events” on page 1-15, “Device Power Reporting Model” on page 1-22, CapPowerReporting
Property, CapUpdateFirmware Property, PowerNotify Property.

Unified POS, v1.15.1 Beta1 3 - 1

3 Belt

3.1 General
This Chapter defines the Belt device category.

3.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 Not supported
DataEventEnabled: boolean { read-write } 1.12 Not supported
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 Not supported
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open

3 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapAutoStopBackward: boolean { read-only } 1.12 open
CapAutoStopBackwardItemCount: boolean { read-only } 1.12 open
CapAutoStopForward: boolean { read-only } 1.12 open
CapAutoStopForwardItemCount: boolean { read-only } 1.12 open
CapLightBarrierBackward: boolean { read-only } 1.12 open
CapLightBarrierForward: boolean { read-only } 1.12 open
CapMoveBackward: boolean { read-only } 1.12 open
CapSecurityFlapBackward: boolean { read-only } 1.12 open
CapSecurityFlapForward: boolean { read-only } 1.12 open
CapSpeedStepsBackward: int32 { read-only } 1.12 open
CapSpeedStepsForward: int32 { read-only } 1.12 open

AutoStopBackward: boolean { read-write } 1.12 open
AutoStopBackwardDelayTime: int32 { read-write } 1.12 open
AutoStopBackwardItemCount: int32 { read-only } 1.12 open
AutoStopForward: boolean { read-write } 1.12 open
AutoStopForwardDelayTime: int32 { read-write } 1.12 open
AutoStopForwardItemCount: int32 { read-only } 1.12 open
LightBarrierBackwardInterrupted: boolean { read-only } 1.12 open, claim, & enable
LightBarrierForwardInterrupted: boolean { read-only } 1.12 open, claim, & enable
MotionStatus: int32 { read-only } 1.12 open, claim, & enable
SecurityFlapBackwardOpened: boolean { read-only } 1.12 open, claim, & enable
SecurityFlapForwardOpened: boolean { read-only } 1.12 open, claim, & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

Unified POS, v1.15.1 Beta1 3 - 3

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12

Specific
Name
adjustItemCount (direction: int32, count: int32):

void { raises-exception, use after open, claim, enable }
1.12

moveBackward (speed: int32):
void { raises-exception, use after open, claim, enable }

1.12

moveForward (speed: int32):
void { raises-exception, use after open, claim, enable }

1.12

resetBelt ():
void { raises-exception, use after open, claim, enable }

1.12

resetItemCount (direction: int32):
void { raises-exception, use after open, claim, enable }

1.12

stopBelt ():
void { raises-exception, use after open, claim, enable }

1.12

3 - 4 Unified POS, v1.15.1 Beta1

3.3 General Information
The Belt programmatic name is “Belt”.

 This device category was added to Version 1.12 of the specification.

3.3.1 Capabilities

The Belt Control has the following capability:

• Supports a command to move the belt in forward direction.

• Supports commands to stop and reset the belt.

The Belt may have several additional capabilities, these are moving in backward direction, moving with different
speeds, light barriers, security flap, controlling an automatic stop and emergency stop. See 3.5.1 Model and the
capabilities properties for specific information.

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 3 - 5

3.4 Belt Class Diagram
The following diagram shows the relationships between the Belt classes.

+adjustItemCount(direction : int32, count : int32) : void
+moveBackward(speed : int32) : void
+moveForward(speed : int32) : void
+resetBelt() : void
+resetItemCount(direction : int32) : void
+stopBelt() : void

+CapAutoStopBackward : boolean
+CapAutoStopBackwardItemCount : boolean
+CapAutoStopForward : boolean
+CapAutoStopForwardItemCount : boolean
+CapLightBarrierBackward : boolean
+CapLightBarrierForward : boolean
+CapMoveBackward : boolean
+CapSecurityFlapBackward : boolean
+CapSecurityFlapForward : boolean
+CapSpeedStepsBackward : int32
+CapSpeedStepsForward : int32
+AutoStopBackward : boolean
+AutoStopBackwardDelayTime : int32
+AutoStopBackwardItemCount : int32
+AutoStopForward : boolean
+AutoStopForwardDelayTime : int32
+AutoStopForwardItemCount : int32
+LightBarrierBackwardInterrupted : boolean
+LightBarrierForwardInterrupted : boolean
+MotionStatus : int32
+SecurityFlapBackwardOpened : boolean
+SecurityFlapForwardOpened : boolean

«interface»
BeltControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

BeltConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl

3 - 6 Unified POS, v1.15.1 Beta1

3.5 Belt Sequence Diagram
The following sequence diagram shows the typical usage of the Belt device during an automatic stop scenario.

Application Belt Control Belt Service Belt

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. The belt should automatically stop after five items passing
the light barrier, that means CapAutoStopForward and CapAutoStopForwardItemCount are true.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

8: moveForward(speed1)

9: moveForward(speed1)

10: moves the belt forward

11: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

11: notify client of new event

3: connect or somehow have
access to the hardware

4: adjustItemCount
(BELT_AIC_FORWARD, 5)

5: adjustItemCount
(BELT_AIC_FORWARD, 5)

Assume that five items passed the light barrier
and another one is detected. The belt stops.

Application event handling
code takes appropriate action

6: setAutoStopForward(true)

7: setAutoStopForward(true)

Unified POS, v1.15.1 Beta1 3 - 7

The following sequence diagram shows the typical usage of the Belt device during an emergency stop
scenario caused by an open security flap.

Application Belt Control Belt Service Belt

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. Emergency stop caused by an open security flap, that
means CapSecurityFlapForward is true.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: moveForward(speed1)

5: moveForward(speed1)

6: moves the belt forward

12: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

8: notify client of new event

3: connect or somehow have
access to the hardware

Assume that an item opens the security flap.
The belt stops due to an emergency condition.

Application event handling code takes
appropriate action, calls for assistance
and the problem is finally fixed.

9: resetBelt()

10: resetBelt()

11: resets the belt

Application goes on with
normal operation.

14: moveForward(speed1)

15: moveForward(speed1)

16: moves the belt forward

7: update MotionStatus to BELT_MT_EMERGENCY
and deliver SUE

13: notify client of new event

3 - 8 Unified POS, v1.15.1 Beta1

3.5.1 Model

The general model of a Belt is:

• After the belt is enabled an application can call moveForward and stopBelt in order to control the motion.

• If CapMoveBackward is true, the application may also call moveBackward.

• Moving forward and backward may be available in different speeds defined by CapSpeedStepsBackward and
 CapSpeedStepsForward.

• Due to safety regulations a belt is usually equipped with security flaps at the end of the belt, at both ends if it can
 move backwards. CapSecurityFlapBackward and CapSecurityFlapForward are defining the availability of
 them.

• CapAutoStopBackward and CapAutoStopForward tell an application if the belt supports an automatic stop.
 Whether the application wants to use this feature can be controlled by setting AutoStopBackward and
 AutoStopForward properties. The belt is stopped if an automatic stop condition becomes true. Usually such a
 condition is controlled by light barriers, but it can also correspond to an internal state of the device which is not
 exposed. The condition is device specific and has to be explained in the device documentation.

• Light barriers may be available for handling an automatic stop feature. CapLightBarrierBackward and
 CapLightBarrierForward define the availability of such barriers.

• If CapAutoStopForwardItemCount is true the application may control the automatic stop feature depending on a
 number of items passing the light barrier or any other item counting mechanism in forward direction by calling
 adjustItemCount and resetItemCount. In this case the belt is automatically stopped if
 AutoStopForwardItemCount is zero and an additional item is detected. This feature may be also available for
 backward direction.

• If CapAutoStopForward is true, an application may also delay automatic stop in forward direction by setting
 AutoStopForwardDelayTime. The delay time starts when an automatic stop condition becomes true. The belt is
 stopped when the delay time has expired. During delay time automatic stop is cancelled if the automatic stop
 condition becomes false. This feature may be also available for backward direction.

• The application will be informed about any status change with a StatusUpdateEvent, also all corresponding status
 properties will be updated before event delivery.

• An emergency stop will occur if one of the security flaps is open or the operator presses an emergency button. In this
 case technical assistance is needed and the application has to reset the belt by calling resetBelt. A security stop will
 occur if the belt has been stopped due to safety requirement regulations but no technical assistance is needed.

3.5.2 Device Sharing

Belt is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties and methods, or receiving
 events.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 3 - 9

3.5.3 Belt State Diagram

The following diagram illustrates the various state transitions within the Belt device category.

3.6 Properties (UML attributes)

3.6.1 AutoStopBackward Property

Syntax AutoStopBackward: boolean { read-write, access after open }

Remarks If true, the automatic stop feature in backward direction is enabled. If false, it is disabled. The belt
will automatically stop if an automatic stop condition becomes true.

If CapAutoStopBackward is false, then this property is always false.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAutoStopBackward Property.

Closed Opened Claimed

open claim

close release

Enabled

close release

se
tD

ev
ice

En
ab

led
(fa

lse
)

se
tD

ev
ice

En
ab

led
(tr

ue
)

Forward
moveForward

Stopped
stopBelt

Backward
moveBackward

Fire Events

Motor Fault

Emergency
Stop

fire event

done

au
to

m
at

ic
 s

to
p

au
to

m
at

ic
 s

to
p

done

fire
event

fire
event

done

motor fault

emergency stop

emergency stop

motor fault

fire
eventdone

fire
event

done

m
oveForw

ard
m

oveBackw
ard

3 - 10 Unified POS, v1.15.1 Beta1

3.6.2 AutoStopBackwardDelayTime Property

Syntax AutoStopBackwardDelayTime: int32 { read-write, access after open }

Remarks Specifies a delay time in milliseconds for an automatic stop in backward direction. The delay time
starts when an automatic stop condition becomes true. The delay time counting stops and automatic
stop is cancelled if the condition becomes false.

If CapAutoStopBackward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAutoStopBackward Property.

3.6.3 AutoStopBackwardItemCount Property

Syntax AutoStopBackwardItemCount: int32 { read-only, access after open }

Remarks Holds the actual item counter for an automatic stop in backward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter
mechanism detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be
reset to zero by calling the resetItemCount method.

If CapAutoStopBackward or CapAutoStopBackwardItemCount is false, then this property has
no meaning.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAutoStopBackward Property, CapAutoStopBackwardItemCount Property,
adjustItemCount Method, resetItemCount Method.

3.6.4 AutoStopForward Property

Syntax AutoStopForward: boolean { read-write, access after open }

Remarks If true, the automatic stop feature in forward direction is enabled. If false, it is disabled. The belt
will automatically stop if an automatic stop condition becomes true.

If CapAutoStopForward is false, then this property is always false.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAutoStopForward Property.

Unified POS, v1.15.1 Beta1 3 - 11

3.6.5 AutoStopForwardDelayTime Property

Syntax AutoStopForwardDelayTime: int32 { read-write, access after open }

Remarks Specifies a delay time in milliseconds for an automatic stop in forward direction. The delay time
starts when an automatic stop condition becomes true. The delay time counting stops and automatic
stop is cancelled if the condition becomes false.

If CapAutoStopForward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAutoStopForward Property.

3.6.6 AutoStopForwardItemCount Property

Syntax AutoStopForwardItemCount: int32 { read-only, access after open }

Remarks Holds the actual item counter for an automatic stop in forward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter
mechanism detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be
reset to zero by calling the resetItemCount method.

If CapAutoStopForward or CapAutoStopForwardItemCount is false, then this property has no
meaning.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAutoStopForward Property, CapAutoStopForwardItemCount Property, adjustItemCount
Method, resetItemCount Method.

3.6.7 CapAutoStopBackward Property

Syntax CapAutoStopBackward: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving backward, based on an automatic
stop condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

3 - 12 Unified POS, v1.15.1 Beta1

3.6.8 CapAutoStopBackwardItemCount Property

Syntax CapAutoStopBackwardItemCount: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving backward depending on the
number of items specified by AutoStopBackwardItemCount.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AutoStopBackwardItemCount Property.

3.6.9 CapAutoStopForward Property

Syntax CapAutoStopForward: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving forward, based on an automatic
stop condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

3.6.10 CapAutoStopForwardItemCount Property

Syntax CapAutoStopForwardItemCount: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving forward depending on the number
of items specified by AutoStopForwardItemCount.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AutoStopForwardItemCount Property.

3.6.11 CapLightBarrierBackward Property

Syntax CapLightBarrierBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward light barrier and LightBarrierBackwardInterrupted holds the
actual state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also LightBarrierBackwardInterrupted Property.

Unified POS, v1.15.1 Beta1 3 - 13

3.6.12 CapLightBarrierForward Property

Syntax CapLightBarrierForward: boolean { read-only, access after open }

Remarks If true, the device has a forward light barrier and LightBarrierForwardInterrupted holds the
actual state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also LightBarrierForwardInterrupted Property.

3.6.13 CapMoveBackward Property

Syntax CapMoveBackward: boolean { read-only, access after open }

Remarks If true, the belt can move backward.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

3.6.14 CapSecurityFlapBackward Property

Syntax CapSecurityFlapBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward security flap and SecurityFlapBackwardOpened holds the
actual state of the flap.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also SecurityFlapBackwardOpened Property.

3.6.15 CapSecurityFlapForward Property

Syntax CapSecurityFlapForward: boolean { read-only, access after open }

Remarks If true, the device has a forward security flap and SecurityFlapForwardOpened holds the actual
state of the flap.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also SecurityFlapForwardOpened Property.

3 - 14 Unified POS, v1.15.1 Beta1

3.6.16 CapSpeedStepsBackward Property

Syntax CapSpeedStepsBackward: int32 { read-only, access after open }

Remarks Defines how many speed steps the belt motor supports in backward direction, minimum is one (1).
This property is only valid if CapMoveBackward is true. If CapMoveBackward is false this
property is initialized to zero (0).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapMoveBackward Property.

3.6.17 CapSpeedStepsForward Property

Syntax CapSpeedStepsForward: int32 { read-only, access after open }

Remarks Defines how many speed steps the belt motor supports in forward direction, minimum is one (1).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page1-16.

3.6.18 LightBarrierBackwardInterrupted Property

Syntax LightBarrierBackwardInterrupted: boolean { read-only, access after open-claim-enable }

Remarks If true, the light barrier in backward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierBackward is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapLightBarrierBackward Property.

3.6.19 LightBarrierForwardInterrupted Property

Syntax LightBarrierForwardInterrupted: boolean { read-only, access after open-claim-enable }

Remarks If true, the light barrier in forward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

Unified POS, v1.15.1 Beta1 3 - 15

If CapLightBarrierForward is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapLightBarrierForward Property.

3.6.20 MotionStatus Property

Syntax MotionStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current motion state of the device. It has one of the following values:

Value Meaning
BELT_MT_FORWARD The device is moving forward.

BELT_MT_BACKWARD
The device is moving backward.

BELT_MT_STOPPED The device has stopped due to an automatic stop, security stop or motor
timeout stop.

BELT_MT_EMERGENCY
Emergency stop, either a security flap is open or the emergency button
was pressed. Technical assistance is needed in order to reactivate the belt
device.

BELT_MT_MOTOR_FAULT
The device has stopped due to a motor failure like overheating or a
defective fuse. Technical assistance may be needed in order to reactivate
the motor.

This property is initialized and kept current while the device is enabled.

An appropriate StatusUpdateEvent indicating a status change will be enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page1-16.

3.6.21 SecurityFlapBackwardOpened Property

Syntax SecurityFlapBackwardOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, the security flap in backward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued. If CapSecurityFlapBackward
is false, then this property is always false. This property is initialized and kept current while the
device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapSecurityFlapBackward Property.

3 - 16 Unified POS, v1.15.1 Beta1

3.6.22 SecurityFlapForwardOpened Property

Syntax SecurityFlapForwardOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, the security flap in forward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapForward is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapSecurityFlapForward Property.

Unified POS, v1.15.1 Beta1 3 - 17

3.7 Methods (UML operations)

3.7.1 adjustItemCount Method
Syntax adjustItemCount (direction: int32, count: int32):

 void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be adjusted. May be either

BELT_AIC_BACKWARD or BELT_AIC_FORWARD.

count The count parameter contains the number of items to be adjusted.

Remarks Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount
will be adjusted by count. It can be an increment or decrement depending on whether count is
positive or negative.

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL adjustItemCount is not supported or an invalid direction was specified.

See Also CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
resetItemCount Method.

3.7.2 moveBackward Method
Syntax moveBackward (speed: int32):

 void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through

CapSpeedStepsBackward.

Remarks Starts the belt motor to move backward with the specified speed.

This method is only valid if CapMoveBackward is true.

Subsequent calls to moveBackward will change the speed.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL moveBackward is not supported or an invalid speed step was specified.

See Also CapMoveBackward Property, CapSpeedStepsBackward Property.

3 - 18 Unified POS, v1.15.1 Beta1

3.7.3 moveForward Method

Syntax moveForward (speed: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through

CapSpeedStepsForward.

Remarks Starts the belt motor to move forward with the specified speed.

Subsequent calls to moveForward will change the speed.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CapSpeedStepsForward Property.

3.7.4 resetBelt Method

Syntax resetBelt ():
 void { raises-exception, use after open-claim-enable }

Remarks Resets the belt after an emergency stop caused by an open security flap or a pressed emergency
button.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page1-16.

Unified POS, v1.15.1 Beta1 3 - 19

3.7.5 resetItemCount Method

Syntax resetItemCount (direction: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be reset. May be either

BELT_RIC_BACKWARD or BELT_RIC_FORWARD.

Remarks Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount
will be reset to zero (0).

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL resetItemCount is not supported or an invalid direction was specified.

See Also CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
adjustItemCount Method.

3.7.6 stopBelt Method

Syntax stopBelt ():
 void { raises-exception, use after open-claim-enable }

Remarks Stops the belt motor.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

3 - 20 Unified POS, v1.15.1 Beta1

3.8 Events (UML interfaces)

3.8.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Belt Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
 the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
 This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Belt devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1-15, directIO Method.

3.8.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Belt changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Belt.

The Status attribute has one of the following values:

Value Description
BELT_SUE_AUTO_STOP

The belt has automatically stopped.

BELT_SUE_EMERGENCY_STOP
The belt has stopped caused by an emergency condition, either a security
flap is open or an emergency button has been pressed. Technical
assistance is needed.

Unified POS, v1.15.1 Beta1 3 - 21

BELT_SUE_SAFETY_STOP
The belt has stopped for safety reasons. Technical assistance is not
needed.

BELT_SUE_TIMEOUT_STOP
The belt has stopped due to a hardware timeout protecting the motor
against overheating.

BELT_SUE_MOTOR_OVERHEATING
The belt has stopped due to a motor overheating.

BELT_SUE_MOTOR_FUSE_DEFECT
The belt has stopped due to a defective fuse.

BELT_SUE_LIGHT_BARRIER_BACKWARD_INTERRUPTED
The light barrier in backward direction is interrupted.

BELT_SUE_LIGHT_BARRIER_BACKWARD_OK
The light barrier in backward direction is no longer interrupted.

BELT_SUE_LIGHT_BARRIER_FORWARD_INTERRUPTED
The light barrier in forward direction is interrupted.

BELT_SUE_LIGHT_BARRIER_FORWARD_OK
The light barrier in forward direction is no longer interrupted.

BELT_SUE_SECURITY_FLAP_BACKWARD_OPENED
The security flap in backward direction is open.

BELT_SUE_SECURITY_FLAP_BACKWARD_CLOSED
The security flap in backward direction is closed.

BELT_SUE_SECURITY_FLAP_FORWARD_OPENED
The security flap in forward direction is open.

BELT_SUE_SECURITY_FLAP_FORWARD_CLOSED
The security flap in forward direction is closed.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the belt. It depends on the capabilities of the device which
status changes can be reported.

See Also “Events” on page 1-15.

3 - 22 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 4 - 1

4 Bill Acceptor

4.1 General
This Chapter defines the Bill Acceptor device category.

4.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.11 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string {read-only} 1.11 open

Claimed: boolean {read-only} 1.11 open

DataCount: int32 {read-only} 1.11 open

DataEventEnabled: boolean {read-write} 1.11 open

DeviceEnabled: boolean {read-write} 1.11 open & claim

FreezeEvents: boolean {read-write} 1.11 open

OutputID: int32 {read-only} 1.11 Not supported

PowerNotify: int32 {read-write} 1.11 open

PowerState: int32 {read-only} 1.11 open

State: int32 {read-only} 1.11 --

DeviceControlDescription: string {read-only} 1.11 --

DeviceControlVersion: int32 {read-only} 1.11 --

DeviceServiceDescription: string {read-only} 1.11 open

DeviceServiceVersion: int32 {read-only} 1.11 open

PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open

4 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After

CapDiscrepancy: boolean {read-only} 1.11 open

CapFullSensor: boolean {read-only} 1.11 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearFullSensor: boolean {read-only} 1.11 open

CapPauseDeposit: boolean {read-only} 1.11 open

CapRealTimeData: boolean {read-only} 1.11 open

CurrencyCode: string {read-write} 1.11 open

DepositAmount: int32 {read-only} 1.11 open

DepositCashList: string {read-only} 1.11 open

DepositCodeList: string {read-only} 1.11 open

DepositCounts: string {read-only} 1.11 open

DepositStatus: int32 {read-only} 1.11 open, claim, & enable

FullStatus: int32 {read-only} 1.11 open, claim, & enable

RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

1.11

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

Unified POS, v1.15.1 Beta1 4 - 3

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.11

Specific
Name
adjustCashCounts (cashCounts: string):

void { raises-exception, use after open, claim, enable }
1.11

beginDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

endDeposit (success: int32):
void { raises-exception, use after open, claim, enable }

1.11

fixDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

pauseDeposit (control: int32):
void { raises-exception, use after open, claim, enable }

1.11

readCashCounts (inout cashCounts: string, inout discrepancy:
boolean):
void { raises-exception, use after open, claim, enable }

1.11

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.11
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.11
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

4 - 4 Unified POS, v1.15.1 Beta1

4.3 General Information
The Bill Acceptor programmatic name is “BillAcceptor”.
This device category was added to Version 1.11 of the specification.

4.3.1 Capabilities

The Bill Acceptor has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Bill Acceptor.

• Reports jam conditions within the device.

• Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

• Reporting the levels of the Bill Acceptor’s cash units. Conditions which may be indicated include full, and near full
 states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

• The money (bills) which are deposited into the device between the start and end of cash acceptance is reported to the
 application. The contents of the report are cash units and cash counts.

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11
 Status: int32 { read-only }

Events (UML interfaces)
Name Type Mutability Version

Unified POS, v1.15.1 Beta1 4 - 5

4.4 Bill Acceptor Class Diagram
The following diagram shows the relationships between the Bill Acceptor classes.

UposConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

UposException
(from upos)

<<exception>>

BillAcceptorConst
(from upos)

<<utility>>

BillAcceptorControl

<<capability>> CapDiscrepancy : boolean
<<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRealTimeData : Boolean
<<prop>> CurrencyCode : string
<<prop>> DepositAmount : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositStatus : int32
<<prop>> FullStatus : int32
<<prop>> RealTimeDataEnabled : boolean

adjustCashCounts(cashCounts : string)
beginDeposit()
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>
<<uses>>

<<sends>>

<<fires>>

<<fires>>

<<fires>>

4 - 6 Unified POS, v1.15.1 Beta1

4.4.1 Model

The general model of a Bill Acceptor is:

• Supports several bill denominations. The supported cash type for a particular currency is noted by the list of cash
 units in the DepositCashList property.

• Consists of any combination of features to aid in the cash processing functions such as a cash entry holding bin, a
 number of slots or bins which can hold the cash, and cash exits.

• The removal of cash from the device (for example, to empty deposited cash) is controlled by the adjustCashCounts
 method, unless the device can determine the amount of cash on its own. The application can call readCashCounts
 to retrieve the current unit count for each cash unit.

• Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there are one
 or more full cash slots, then FullStatus is BACC_STATUS_FULL.

• Cash acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The
 previous values of the properties DepositCounts and DepositAmount are initialized to zero.

• The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method or
 the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of accumulated
 cash is stored in the DepositCounts and DepositAmount properties. If the pauseDeposit method is executed with a
 parameter value of BACC_DEPOSIT_PAUSE, then the counting of the deposited cash is suspended and the current
 amount of accumulated cash is also updated to the DepositCounts and DepositAmount properties. When

pauseDeposit method is executed with a parameter value of BACC_DEPOSIT_RESTART, counting of deposited
cash is resumed and added to the accumulated totals.

When the fixDeposit method is executed, the current amount of accumulated cash is updated in the DepositCounts
and DepositAmount properties, and the process remains static until the endDeposit method is invoked with a
BACC_DEPOSIT_COMPLETE parameter to complete the deposit.

• When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared. The
 DepositCounts and DepositAmount properties remain set and are not cleared.

Unified POS, v1.15.1 Beta1 4 - 7

4.4.2 Bill Acceptor Sequence Diagram

:ClientApp : BillAcceptorControl BillAcceptorService : DataEvent Human Actor

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

3: beginDeposit()

4: beginDeposit()

5: initial ize DepositAmount and DepositCounts

1: setRealTimeDataEvents(true)

2: setRealTimeDataEvents(true) Set so DepositAmount and
DepositCounts are updated for
each Data Event

6: accept Cash

9: update DepositAmount and DepositCounts

7: create Data Event

8: enqueue Data Event for delivery

10: deliver Data Event

11: notify ClientApp of event

12: fixDeposit()

13: fixDeposit

14: updateDepositAmount and DepositCounts

15: endDeposit(int32)

16: endDeposit(int32)

4 - 8 Unified POS, v1.15.1 Beta1

4.4.3 Bill Acceptor State Diagram

4.4.4 Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
 or receiving events.

• See the “Summary” table for precise usage prerequisites.

Closed Opened Claimed

Enabled

open

releaseclose

claim

setDeviceEnabled(true)

setDeviceEnabled(false)

release
close

ClearInput processing

entry/ empty data queue

clearInput

clearInput

readCashCounts

adjustCashCounts

Cash Acceptance

entry/ DepositAmount = 0
entry/ DepositCount = 0

has room
for cash

near full

ful l

jammed

Fix Mode

entry/ sync DepostAmount and DepositCount

Pause Mode

entry/ sync DepostAmount and DepositCount

beginDeposit

endDeposit clearInput

fixDeposit

pauseDeposit(BACC_DEPOSIT_PAUSE)

pauseDeposit(BACC_DEPOSIT_RESTART)

fixDeposit

has room
for cash

near full

ful l

jammed

fire events

adjustCashCounts / remove cash

adjustCashCounts / remove cash

Unified POS, v1.15.1 Beta1 4 - 9

4.5 Properties (UML attributes)

4.5.1 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also readCashCounts Method.

4.5.2 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also FullStatus Property, StatusUpdateEvent.

4.5.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the bill acceptor can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also StatusUpdateEvent.

4.5.4 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also FullStatus Property, StatusUpdateEvent.

4 - 10 Unified POS, v1.15.1 Beta1

4.5.5 CapPauseDeposit Property

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor has the capability to suspend cash acceptance processing temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also pauseDeposit Method.

4.5.6 CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RealTimeDataEnabled Property.

4.5.7 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value is guaranteed to
be one of the set of currencies specified by the DepositCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGALA value was specified that is not within DepositCodeList.

See Also DepositCodeList Property.

Unified POS, v1.15.1 Beta1 4 - 11

4.5.8 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Bill Acceptor.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

4.5.9 DepositCashList Property

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Bill Acceptor for the currency represented by the
CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the ASCII semicolon character
(“;”) followed by ASCII numeric comma delimited values for the bills that can be used with the Bill
Acceptor. The semicolon (“;”) is present to denote the start of bills when integrated within the bill
dispenser

Below are sample DepositCashList values in Japan.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

• This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property, DepositCodeList Property.

4.5.10 DepositCodeList Property

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if
the string is “JPY,USD,” then the Bill Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property, DepositCashList Property.

4 - 12 Unified POS, v1.15.1 Beta1

4.5.11 DepositCounts Property Updated in Release 1.12

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the bill acceptor. Cash units inside the string are the same as
the DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:

“;1000:80,5000:77,10000:0”

After the call to the beginDeposit method, there would be 80 one thousand yen bills and 77 five
thousand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

4.5.12 DepositStatus Property

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
BACC_STATUS_DEPOSIT_START

Cash acceptance started.
BACC_STATUS_DEPOSIT_END

Cash acceptance stopped.
BACC_STATUS_DEPOSIT_COUNT

Counting or repaying the deposited money.
BACC_STATUS_DEPOSIT_JAM

A mechanical fault has occurred.
 This property is initialized and kept current while the device is enabled.

This property is set to BACC_STATUS_DEPOSIT_END after initialization.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 4 - 13

4.5.13 FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }

Remarks Holds the current full status of the cash slots. It may be one of the following:

 Value Meaning
BACC_STATUS_OK All cash slots are neither nearly full nor full.
BACC_STATUS_FULL Some cash slots are full.
BACC_STATUS_NEARFULL

Some cash slots are nearly full.
 This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

4.5.14 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing. This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

4 - 14 Unified POS, v1.15.1 Beta1

4.6 Method (UML operations)

4.6.1 adjustCashCounts Method Updated in Release 1.12

Syntax adjustCashCounts (cashCounts: string);
 void { raises-exception, use after open-claim-enable }
 Parameter Description

 cashCounts The cashCounts parameter contains cash types and amounts to be
 initialized.

Remarks This method is called to set the initial amounts in the Bill Acceptor after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the adjustCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also readCashCounts Method.

4.6.2 beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.
• The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called
while the deposit process is not paused.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 4 - 15

Value Meaning
E_ILLEGAL The call sequence is not correct.

See Also DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method,
pauseDeposit Method.

4.6.3 endDeposit Method

Syntax endDeposit (success: int32):

void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains
one of the following values:

Parameter Description
BACC_DEPOSIT_COMPLETE The deposit is accepted and the mode is complete.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

4 - 16 Unified POS, v1.15.1 Beta1

4.6.4 endDeposit Method

Syntax endDeposit (success: int32):
 void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of the
following values:

Parameter Description
BACC_DEPOSIT_COMPLETE The deposit is accepted and the mode is complete.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

4.6.5 fixDeposit Method

Syntax fixDeposit ():
 void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Bill
Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on pag1-16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 4 - 17

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before
calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

4.6.6 pauseDeposit Method

Syntax pauseDeposit (control: int32):

void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description
BACC_DEPOSIT_PAUSE Cash acceptance is paused.
BACC_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT_PAUSE, the cash acceptance operation is paused. The deposit
process will remain paused until this method is called with control set to
BACC_DEPOSIT_RESTART. It is valid to call fixDeposit then endDeposit while the deposit
process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount properties are
updated to reflect the current state of the Bill Acceptor. The property values are not changed again
until the deposit process is resumed.

If control is BACC_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before
calling this method.

• The deposit process is already paused and control is set to
BACC_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to BACC_DEPOSIT_RESTART.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.

4 - 18 Unified POS, v1.15.1 Beta1

4.6.7 readCashCounts Method Updated in Release 1.12

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):

void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which
was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill
Acceptor. There are some cases where a discrepancy may occur because of existing uncountable
cash in a Bill Acceptor. An example would be when a cash slot is “overflowing” such that the device
has lost its ability to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also DepositCashList Property.

Unified POS, v1.15.1 Beta1 4 - 19

4.7 Events (UML interfaces)

4.7.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Bill Acceptor has accepted a bill.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

4.7.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Acceptor Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the

 EventNumber and the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and

 Service. This property is settable.
Remarks This event is to be used only for those types of vendor specific functions that are not otherwise

described. Use of this event may restrict the application program from being used with other
vendor’s Bill Acceptor devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directIO Method.

4 - 20 Unified POS, v1.15.1 Beta1

4.7.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Acceptor status condition:

Value Meaning
BACC_STATUS_FULL Some cash slots are full.
BACC_STATUS_NEARFULL Some cash slots are nearly full.
BACC_STATUS_FULLOK No cash slots are either full or nearly full.
BACC_STATUS_JAM A mechanical fault has occurred.
BACC_STATUS_JAMOK A mechanical fault has recovered.

Remarks Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full or near full states and the corresponding
capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 1-15.

Unified POS, v1.15.1 Beta1 5 - 1

5 Bill Dispenser

5.1 General
This Chapter defines the Bill Dispenser device category.

5.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.11 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string {read-only} 1.11 open

Claimed: boolean {read-only} 1.11 open

DataCount: int32 {read-only} 1.11 Not supported

DataEventEnabled: boolean {read-write} 1.11 Not supported

DeviceEnabled: boolean {read-write} 1.11 open & claim

FreezeEvents: boolean {read-write} 1.11 open

OutputID: int32 {read-only} 1.11 Not supported

PowerNotify: int32 {read-write} 1.11 open

PowerState: int32 {read-only} 1.11 open

State: int32 {read-only} 1.11 --

DeviceControlDescription: string {read-only} 1.11 --

DeviceControlVersion: int32 {read-only} 1.11 --

DeviceServiceDescription: string {read-only} 1.11 open

DeviceServiceVersion: int32 {read-only} 1.11 open

PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open

5 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After

CapDiscrepancy: boolean {read-only} 1.11 open

CapEmptySensor: boolean {read-only} 1.11 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearEmptySensor: boolean {read-only} 1.11 open

AsyncMode: boolean {read-write} 1.11 open

AsyncResultCode: int32 {read-only} 1.11 open, claim, & enable

AsyncResultCodeExtended: int32 {read-only} 1.11 open, claim, & enable

CurrencyCashList: string {read-only} 1.11 open

CurrencyCode: string {read-write} 1.11 open

CurrencyCodeList: string {read-only} 1.11 open

CurrentExit: int32 {read-write} 1.11 open

DeviceExits: int32 {read-only} 1.11 open

DeviceStatus: int32 {read-only} 1.11 open, claim, & enable

ExitCashList: string {read-only} 1.11 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11

Unified POS, v1.15.1 Beta1 5 - 3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.11

Specific
Name
adjustCashCounts (cashCounts: string):

void { raises-exception, use after open, claim, enable }
1.11

dispenseCash (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

readCashCounts (inout cashCounts: string, inout discrepancy:
boolean):
void { raises-exception, use after open, claim, enable }

1.11

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.11
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11
 Status: int32 { read-only }

5 - 4 Unified POS, V1.15.1 Beta1

5.3 General Information
The Bill Dispenser programmatic name is “BillDispenser.” This device category was added in Version 1.11 of the
specification.

5.3.1 Capabilities

The Bill Dispenser has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Bill Dispenser.

• Dispenses a specified number of cash units from the device in bills into a user-specified exit.

• Reports jam conditions within the device.

• Supports more than one currency.

The Bill Dispenser may also have the following additional capabilities:

• Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions which may be indicated include empty
 and near empty states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

Unified POS, v1.15.1 Beta1 5 - 5

5.3.2 Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

5.3.3 Model

The general model of a Bill Dispenser is:

• Supports several bill denominations. The supported bill denomination for a particular currency is noted by the list of
 cash units in the CurrencyCashList property.

• Consists of any combination of features to aid in the cash processing functions such as a number of slots or bins
 which can hold the cash, and cash exits.

• This specification provides programmatic control only for the dispensing of cash. The accepting of cash by the
 device (for example, to replenish cash) is controlled by the adjustCashCounts method, unless the device can
 determine the amount of cash on its own. The application can call readCashCounts to retrieve the current unit
 count for each cash unit, but cannot control when or how cash is added to the device.

• May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses a
 dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current exit are
 indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary exit” which is
 typically used during normal processing for dispensing cash to a customer following a retail transaction. When
 CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit” typically is used for
 special purposes such as dispensing quantities or types of cash not targeted for the “primary exit.”

UposConst
(f rom upos)

<<utility>>

DirectIOEvent
(f rom ev ents)

<<event>>

StatusUpdateEvent
(f rom events)

<<event>>

UposException
(f rom upos)

<<exception>>

BillDispenserConst
(f rom upos)

<<utility>>BillDispenserControl

<<capability>> CapDiscrepancy : boolean
<<capability>> CapEmptySensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearEmptySensor : boolean
<<prop>> AsyncMode : boolean
<<prop>> AsyncResultCode : int32
<<prop>> AsyncResultCodeExtended : int32
<<prop>> CurrencyCashList : string
<<prop>> CurrencyCode : s tring
<<prop>> CurrencyCodeList : string
<<prop>> CurrentExit : int32
<<prop>> DeviceExits : int32
<<prop>> DeviceStatus : int32
<<prop>> ExitCashList : string

adjustCashCounts(cashCounts : string)
beginDeposit()
dispenseCash(cashCounts : string)
dispenseChange(amount : int32)
endDeposit(amount : int32)
fixDeposit()
pauseDeposi t(control : int32)
readCashCounts(cashCounts : str ing, discrepancy : boolean)

(f rom upos)

<<Interface>>

<<uses>>

<<sends>>

<<fires>>

<<fires>>

5 - 6 Unified POS, V1.15.1 Beta1

• Dispenses cash into the exit specified by CurrentExit when dispenseCash is called. With dispenseCash, the
 application specifies a count of each cash unit to be dispensed.

• Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
 When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense method
 returns the completion status to the application.

When AsyncMode is true and no exception is thrown by dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with its Data property set to
BDSP_STATUS_ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode and
ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one asynchronous method can be processed at a
time.

The readCashCounts method may not be called while an asynchronous method is being performed since doing so
could likely report incorrect cash counts.

• May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
 currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
 readCashCounts all act upon the current currency only.

• Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status. If
 there are one or more empty cash slots, then DeviceStatus is BDSP_STATUS_EMPTY.

Unified POS, v1.15.1 Beta1 5 - 7

5.3.4 Bill Dispenser Sequence Diagram

::Cl ientApp : BillDispenserControl ::BillDispenserService : StatusUpdateEvent

NOTE: We are assuming the clienApp has already successfully opened,
claimed and enabled the device

1: dispenseCash(string)

2: dispenseCash(string)
Assume Bill
Dispenser is
getting low

3: update deviceStatus to BDSP_STATUS_NEAREMPTY (CapNearEmptySensor = true)

4: create new SUE Event

5: deliver SUE to control

6: notify ClientApp of new event

5 - 8 Unified POS, V1.15.1 Beta1

5.3.5 Bill Dispenser State Diagram

5.3.6 Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
 or receiving events.

• See the “Summary” table for precise usage prerequisites.

Closed Opened
Claimed

Enabled

Empty

Jammed

Fire Events

Has Bills

Synchronous

Asynchronous

Near Empty

Synchronous

Asynchronous

open

close

claim

release

setDeviceEnabled(true)

adCashCounts

Empty

Jammed

Fire Events

Has Bills

Synchronous

Asynchronous

Near Empty

Synchronous

Asynchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

setDeviceEnabled(false)release

close

fire events

jams

fire events
fire events

fires events

done

done
done

done

done

jams

fire events

dispenseCashdispenseCash

setAsyncMode(false)

setAsyncMode(true)

setAsyncMode(false)

setAsyncMode(true)

Unified POS, v1.15.1 Beta1 5 - 9

5.4 Properties (UML attributes)

5.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the dispenseCash method will be performed asynchronously. If false, this method will be
performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseCash Method.

5.4.2 AsyncResultCode Property

Syntax AsyncResultCode: int32 { read-only, access after open-claim-enable }

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash
was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncMode Property, dispenseCash Method.

5.4.3 AsyncResultCodeExtended Property

Syntax AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash
was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncMode Property, dispenseCash Method.

5 - 10 Unified POS, V1.15.1 Beta1

5.4.4 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also readCashCounts Method.

5.4.5 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.

5.4.6 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the occurrence of a mechanical fault in the Bill Dispenser.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.

5.4.7 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are nearly empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.

Unified POS, v1.15.1 Beta1 5 - 11

5.4.8 CurrencyCashList Property

Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Bill Dispenser for the currency represented by the
CurrencyCode property.

The string consists of an ASCII semicolon character (“;”) followed by ASCII numeric comma
delimited units of bills that can be used with the Bill Dispenser. The semicolon (“;”) is present to
indicate the units are bills. This is used for merging multiple device services into the Cash Changer.

Below are sample CurrencyCashList values in Japan.
• “;1000,5000,10000” ---

1000, 5000, 10000 yen bill.
This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

5.4.9 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Bill Dispenser operations. This property is
initialized to an appropriate value by the open method. This value is guaranteed to be one of the set
of currencies specified by the CurrencyCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A value was specified that is not within CurrencyCodeList.

See Also CurrencyCodeList Property.

5.4.10 CurrencyCodeList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example,
if the string is “JPY,USD”, then the Bill Dispenser supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

5 - 12 Unified POS, V1.15.1 Beta1

5.4.11 CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit),
while values greater than 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

• Bill Dispenser supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

5.4.12 DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }

Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentExit Property.

Unified POS, v1.15.1 Beta1 5 - 13

5.4.13 DeviceStatus Property

Syntax DeviceStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS_OK The current condition of the Bill Dispenser is satisfactory.
BDSP_STATUS_EMPTY

Some cash slots are empty.
BDSP_STATUS_NEAREMPTY

Some cash slots are nearly empty.
BDSP_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition
is present, then the order of precedence starting at the highest is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

5.4.14 ExitCashList Property

Syntax ExitCashList: string { read-only, access after open }
Remarks Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property.

The supported cash units are either the same as CurrencyCashList, or a subset of it. The string
format is identical to that of CurrencyCashList.

This property is initialized by the open method, and is updated when CurrencyCode or
CurrentExit is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

5 - 14 Unified POS, V1.15.1 Beta1

5.5 Methods (UML operations)

5.5.1 adjustCashCounts Method Updated in Release 1.12

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be

initialized.

Remarks This method is called to set the initial amounts in the Bill Dispenser after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be initialized because an asynchronous

method is outstanding.

See Also readCashCounts Method.

5.5.2 dispenseCash Method

Syntax dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format
of “;cash unit:cash counts,, cash unit:cash counts.” Units must be preceded by “;” to represent
bills.

Remarks Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit. The cash
dispensed is specified by pairs of cash units and counts.

Unified POS, v1.15.1 Beta1 5 - 15

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

• “;1000:10”
Dispense 10 one thousand yen bills.

• “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash cannot be dispensed because an asynchronous method is in progress.

E_ILLEGAL One of the following errors occurred:
The cashCounts parameter value was illegal for the current exit.

E_EXTENDED ErrorCodeExtended = EBDSP_OVERDISPENSE:
The specified cash cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.

5.5.3 readCashCounts Method Updated in Release 1.12

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which

was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each
unit in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill
Dispenser. There are some cases where a discrepancy may occur because of existing uncountable
cash in a Bill Dispenser. An example would be when a bill dispenser has diverted unusable bill to a
holding area.

5 - 16 Unified POS, V1.15.1 Beta1

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be read because an asynchronous method is

in process.

See Also CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

Unified POS, v1.15.1 Beta1 5 - 17

5.6 Events (UML interfaces)

5.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Dispenser Service to provide events to the application that are not otherwise supported
by the Control

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Bill Dispenser devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directIO Method.

5 - 18 Unified POS, V1.15.1 Beta1

5.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Dispenser device.

Attributes This event contains the following attribute:
Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Dispenser status condition:

Value Meaning
BDSP_STATUS_EMPTY Some cash slots are empty.
BDSP_STATUS_NEAREMPTY Some cash slots are nearly empty.
BDSP_STATUS_EMPTYOK No cash slots are either empty or nearly empty.
BDSP_STATUS_JAM A mechanical fault has occurred.
BDSP_STATUS_JAMOK A mechanical fault has recovered.
BDSP_STATUS_ASYNC Asynchronously performed method has completed.

Remarks Fired when the Bill Dispenser detects a status change.
For changes in the fullness levels, the Bill Dispenser is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full, near full, empty, and/or near empty states and
the corresponding capability properties for these states are set.
Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode
and AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on page 1-15.

Unified POS, v1.15.1 Beta1 6 - 1

6 Biometrics

6.1 General
This Chapter defines the Biometrics device category.

6.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.10 open
CapCompareFirmwareVersion: boolean { read-only } 1.10 open
CapPowerReporting: int32 { read-only } 1.10 open
CapStatisticsReporting: boolean { read-only } 1.10 open
CapUpdateFirmware: boolean { read-only } 1.10 open
CapUpdateStatistics: boolean { read-only } 1.10 open
CheckHealthText: string { read-only } 1.10 open
Claimed: boolean { read-only } 1.10 open
DataCount: int32 { read-only } 1.10 open
DataEventEnabled: boolean { read-write } 1.10 open
DeviceEnabled: boolean { read-write } 1.10 open & claim
FreezeEvents: boolean { read-write } 1.10 open
OutputID: int32 { read-only } 1.10 Not supported
PowerNotify: int32 { read-write } 1.10 open
PowerState: int32 { read-only } 1.10 open
State: int32 { read-only } 1.10 --

DeviceControlDescription: string { read-only } 1.10 --
DeviceControlVersion: int32 { read-only } 1.10 --
DeviceServiceDescription: string { read-only } 1.10 open
DeviceServiceVersion: int32 { read-only } 1.10 open
PhysicalDeviceDescription: string { read-only } 1.10 open
PhysicalDeviceName: string { read-only } 1.10 open

6 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific: Type Mutability Version May Use After
Algorithm: int32 { read-write } 1.10 open & claim
AlgorithmList: string { read-only } 1.10 open
BIR: binary { read-only } 1.10 open & claim
CapPrematchData: boolean { read-only } 1.10 open
CapRawSensorData: boolean { read-only } 1.10 open
CapRealTimeData: boolean { read-only } 1.10 open
CapSensorColor: int32 { read-only } 1.10 open
CapSensorOrientation: int32 { read-only } 1.10 open
CapSensorType: int32 { read-only } 1.10 open

CapTemplateAdaptation: boolean { read-only } 1.10 open
RawSensorData: binary { read-only } 1.10 open & claim
RealTimeDataEnabled: boolean { read-write } 1.10 open
SensorBPP: int32 { read-only } 1.10 open
SensorColor: int32 { read-write } 1.10 open
SensorHeight: int32 { read-only } 1.10 open
SensorOrientation: int32 { read-write } 1.10 open, claim, & enable
SensorType: int32 { read-write } 1.10 open, claim, & enable
SensorWidth: int32 { read-only } 1.10 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.10

close ():
void { raises-exception, use after open }

1.10

claim (timeout: int32):
void { raises-exception, use after open }

1.10

release ():
void { raises-exception, use after open, claim }

1.10

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.10

clearInput ():
void { raises-exception, use after open, claim }

1.10

Unified POS, v1.15.1 Beta1 6 - 3

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.10

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.10

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.10

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

SpecificUpdated in Release 1.11
Name
beginEnrollCapture (referenceBIR: binary, payload: binary):

void { raises-exception, use after open, claim, enable }
1.10

beginVerifyCapture ():
void { raises-exception, use after open, claim, enable }

1.10

endCapture ():
void { raises-exception, use after open, claim, enable }

1.10

identify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }

1.11

identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

1.11

processPrematchData (capturedBIR: binary, prematchDataBIR: binary,
inout processedBIR: binary):

void { raises-exception, use after open, claim, enable }

1.10

identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

1.11

processPrematchData (capturedBIR: binary, prematchDataBIR: binary,
inout processedBIR: binary):

void { raises-exception, use after open, claim, enable }

1.10

6 - 4 Unified POS, V1.15.1 Beta1

verify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR:
binary, inout result: boolean, inout FARAchieved: int32, inout
FRRAchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

1.10

verifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

1.10

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.10

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.10
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.10
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.10
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 6 - 5

6.3 General Information

6.3.1 Capabilities

All Biometric devices have the following capabilities:

• The device captures biometrics data from a biometrics sensor. The biometrics data is in the form of a Biometrics
Information Record (BIR) containing one or more Biometrics Data Blocks (BDB) which in turn contain one or more
biometric data samples or biometric templates.
This standard uses the term template (as adapted from the BioAPI1) to refer to the biometric enrollment data for a
user. The term biometric information record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for verification or identification, as well as
enrollment data. Typically, the only data stored persistently by the application is the BIR generated for enrollment
(i.e., the template). The format of the Opaque Biometric Data Block (BDB) is indicated by the Format field of the
Header. This may be a standard or proprietary format. The BDB may be encrypted. The digital signature is optional,
and may be used to ensure integrity of the data during transmission and storage. When present, it is calculated on the
Header + BDB. For standardized BIR formats, the signature will take a standard form (to be determined when the
format is standardized). For proprietary BIR formats (all that exists at the present time), the signature can take any
form that suits the Service. For this reason, there is no C structure definition of the signature. The BIR Data Type
indicates whether the BIR is signed and/or encrypted.

• The Device captures Biometric data for the purposes of enrollment. The notion of enrollment requires a higher level
of quality for the final BIR that is created. Generally, the BIR will be the aggregation of series of biometric captures.

1. BioAPI is defined by the BioAPI consortium (www.bioapi.org).

6 - 6 Unified POS, V1.15.1 Beta1

• The Device captures Biometric data for the purposes of verification. Verification does not require the same level of
quality as enrollment.

• The Device has the ability to determine if two BIRs match within the degree of error specified by the False Accept
Rate (FAR) and False Reject Rate (FRR). The FAR is the margin of percentage error acceptable that two non-
matching biometric samples will be falsely deemed to match. The FRR is the margin of percentage error acceptable
that two matching biometric samples will be falsely deemed not to match.

• The Device has the ability to compare a BIR against a sample population of BIRs and create a rank ordering of the
population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

• The Device Returns the raw biometric data in “real time” as it is captured by the device. If this capability is true and
has been enabled by application by setting the RealTimeDataEnabled property to true, then a series of
StatusUpdateEvents are enqueued, each as a raw image defined by SensorBPP, SensorColor, SensorHeight, and
SensorWidth representing a partial biometrics image capture.

Unified POS, v1.15.1 Beta1 6 - 7

6.3.2 Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void
+identify() : void
+identifyMatch() : void
+processPrematchData() : void
+verify() : void
+verifyMatch() : void

+Algorithm : int32
+AlgorithmList : string
+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary
+RealTimeDataEnabled : boolean
+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32

«interface»
BiometricsControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
DataEvent

«fires»

+ErrorCode : int32
+ErrorCodeExtended : int32
+ErrorLocus : int32
+ErrorResponse : int32

«event»
ErrorEvent

+Status : int32

«event»
StatusUpdateEvent

«fires»

«fires»

«exception»
UposException

«sends»

«sends»

«utility»
BiometricsConst

«utility»
UposConst

«uses»

«uses»«interface»
BaseControl

Note: Method parameters are
not listed due to space
limitations - refer to the
Methods section for details.

6 - 8 Unified POS, V1.15.1 Beta1

6.3.3 Model

The Biometrics device usage model is:

• Open and claim the device.

• Enable the device and set the property DataEventEnabled to true.

• Begin capturing biometrics data by calling on of the following asynchronous methods beginVerifyCapture or
 beginEnrollCapture. These methods activate the biometrics sensor to begin acquiring the biometrics data in the
 relevant manner for the particular biometrics device. The result biometric data is stored in the BIR property. The
 BIR data can be provided to the identifyMatch method and verifyMatch method for comparison and matching
 purposes. The archival process of the BIR for future verification is application dependent.

• Perform synchronous biometric verifications through the verify method or synchronous biometric identifications
 through the identify method.

• If the device is capable of supplying biometrics data in real time as the biometric sample is captured
 (CapRealTimeData is true), and if RealTimeDataEnabled is true, the biometrics data is presented to the
 application as a series of partial biometric data through the RawSensorData property and notified to the application
 through StatusUpdateEvents until the biometric sample is fully acquired. RawSensorData is not queued rather it
 is up to the application to capture the data upon receiving the StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-driven input:

• When input is received by the Service, it enqueues a DataEvent.

• If AutoDisable is true, then the Device automatically disables itself when a DataEvent is enqueued.

• A queued DataEvent can be delivered to the application when the property DataEventEnabled is true and other
 event delivery requirements are met. Just before delivering this event, data is copied into properties, and further data
 events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be enqueued while
 the application processes the current input and associated properties. When the application has finished processing
 the current input and is ready for more data, it re-enables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if the an error occurs while gathering or processing input, and is delivered
 to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more details.

Deviations from the general “Device Input Model” for event-driven input are:

• The capture of biometrics data begins when beginEnrollCapture or beginVerifyCapture is called.

• If biometrics capture is terminated by calling endCapture, then no DataEvent or ErrorEvent will be enqueued.

Unified POS, v1.15.1 Beta1 6 - 9

6.3.4 Device Sharing

The Biometrics is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the Biometrics specific properties.

• The application must claim and enable the device before calling methods that manipulate the device or before
 changing some writable properties.

• See the “Summary” table for precise usage prerequisites.

6 - 10 Unified POS, V1.15.1 Beta1

6.3.5 Biometrics Sequence Diagrams

The following diagram illustrates the enrollment sequence for the Biometrics device category.

Application Biometrics Control Biometrics Service Hardware

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginEnrollCapture()

4: beginEnrollCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered

9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

13: BIR data persisted

Unified POS, v1.15.1 Beta1 6 - 11

The following diagram illustrates the verify sequence for the Biometrics device category.

Application Biometrics Control Biometrics Service Hardware

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered

9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

13: verify()

14: verify()

The application provides a set of enrollment BIRs from which a match is to be found.

15: Hardware compares each enrollment BIR against the verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

6 - 12 Unified POS, V1.15.1 Beta1

The following diagram illustrates the verify - match sequence for the Biometrics device category.

Application Biometrics Control Biometrics Service Hardware

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered

9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

13: verifyMatch()

14: verifyMatch()

The application provides the enrollment BIR of the user to verify.

15: Hardware compares enrollment BIR against verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

Unified POS, v1.15.1 Beta1 6 - 13

6.3.6 Biometrics State Diagram

The following diagram illustrates the various state transitions within the Biometrics device category.

Closed Opened Claimed

Enabled

Enroll Capture

Verify Capture

Identify

Identify Matching Preprocess Data Verify

Verify Matching

/ open()

/ close()

/ close()

/ close()

/ claim()

/ release()

/ release() / setDeviceEnabled(true)
/ setDeviceEnabled(false)

/ beginEnrollCapture()

/ endCapture()
/ endCapture()

/ beginVerifyCapture()

/ identify()

/ identifyMatch() / processPrematchData() / verify()

/ verifyMatch()

/ DataEvent fired
/ DataEvent fired

6 - 14 Unified POS, V1.15.1 Beta1

6.4 Properties (UML Attributes)

6.4.1 Algorithm Property

Syntax Algorithm: int32 { read-write, access after open-claim }

Remarks Contains the biometric algorithm currently in use for generating the biometrics template. The values
can be set to index the values contained in AlgorithmList. For example:

Value Meaning
0 Default value
1 First algorithm in AlgorithmList
2 Second algorithm in AlgorithmList, etc.

This property can only be updated when the device is opened and claimed, but not enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AlgorithmList Property.

6.4.2 AlgorithmList Property

Syntax AlgorithmList: string { read-only, access after open }

Remarks Contains the comma-delimited list of algorithms that are supported by the device.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also Algorithm Property.

6.4.3 BIR Property 2

Syntax BIR: binary { read-only, access after open-claim-enable }3

Remarks This standard uses the term template to refer to the biometric enrollment data for a user. The term
biometric information record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for verification or identification,
as well as enrollment data. Typically, the only data stored persistently by the application is the BIR
generated for enrollment (i.e., the template). The format of the Opaque Biometric Data Block
(BDB) is indicated by the Format field of the Header. This may be a standard or proprietary format.
The BDB may be encrypted. The digital signature is optional, and may be used to ensure integrity
of the data during transmission and storage. When present, it is calculated on the Header + BDB.

2. Biometrics Information Record (BIR) was originally defined by the BioAPI consortium
(www.bioapi.org).

3. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6 - 15

For standardized BIR formats, the signature will take a standard form (to be determined when the
format is standardized). For proprietary BIR formats (all that exists at the present time), the
signature can take any form that suits the Service. For this reason, there is no C structure definition
of the signature. The BIR Data Type indicates whether the BIR is signed and/or encrypted.
Processed biometric data obtained through the methods beginEnrollCapture,
beginVerifyCapture, and verify are stored in this property upon successful completion.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also beginEnrollCapture Method, beginVerifyCapture Method, verify Method.

6.4.4 CapPrematchData Property Updated in Release 1.11

Syntax CapPrematchData: boolean { read-only, access after open }

Remarks If true, the Service is capable of using MOC (Match-On-Card) SmartCard technology to generate a
processed BIR based on prematch data stored on a SmartCard.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also processPrematchData Method.

6 - 16 Unified POS, V1.15.1 Beta1

6.4.5 CapRawSensorData Property Updated in Release 1.12

Syntax CapRawSensorData: boolean { read-only, access after open }
Remarks If true, the Service is able to return unprocessed raw data from the biometrics sensor.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also RawSensorData Property.

6.4.6 CapRealTimeData Property Updated in Release 1.12

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply raw biometrics data as the biometrics information is being
captured (“real time”). This property value will be false if CapRawSensorData is false, since real
time data is only delivered via the RawSensorData property which requires that
CapRawSensorData is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RawSensorData Property, SensorBPP Property, SensorColor Property, SensorHeight Property,
SensorWidth Property.

6.4.7 CapSensorColor Property

Syntax CapSensorColor: int32 { read-only, access after open }

Remarks This capability indicates if this device supports image formats other than bi-tonal. CapSensorColor
is a logical OR combination of any of the following values:

Value Meaning
BIO_CSC_MONO Bi-tonal (B/W)
BIO_CSC_GRAYSCALE Gray scale
BIO_CSC_16 16 Colors
BIO_CSC_256 256 Colors
BIO_CSC_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 6 - 17

6.4.8 CapSensorOrientation Property

Syntax CapSensorOrientation: int32 { read-only, access after open }

Remarks This capability indicates the ability of the sensor image to be rotated prior to processing.
CapSensorOrientation is a logical OR combination of any of the following values:

Value Meaning
BIO_CSO_NORMAL 0°
BIO_CSO_RIGHT 90°
BIO_CSO_INVERTED 180°
BIO_CSO_LEFT 270°

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

6.4.9 CapSensorType Property Updated in Release 1.11

Syntax CapSensorType: int32 { read-only, access after open-claim-enable }
Remarks This capability indicates the types of biometrics data that can be captured by the attached sensor.

CapSensorType is a logical OR combination of any of the following values:
Value Meaning
BIO_CST_FACIAL_FEATURES Facial Features/Topography
BIO_CST_VOICE Voice
BIO_CST_FINGERPRINT Fingerprint
BIO_CST_IRIS Iris
BIO_CST_RETINA Retina
BIO_CST_HAND_GEOMETRY Hand Geometry
BIO_CST_SIGNATURE_DYNAMICS Signature
BIO_CST_KEYSTROKE_DYNAMICS Keystrokes
BIO_CST_LIP_MOVEMENT Lip Movement
BIO_CST_THERMAL_FACE_IMAGE Face Image
BIO_CST_THERMAL_HAND_IMAGE Hand Image
BIO_CST_GAIT Gait/Stride
BIO_CST_PASSWORD Password

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also SensorType Property.

6 - 18 Unified POS, V1.15.1 Beta1

6.4.10 CapTemplateAdaptation Property
Syntax CapTemplateAdaptation: boolean { read-only, access after open }
Remarks If true, the Service is able to return an adapted BIR that is the result of updating a reference BIR

with information taken from a sample BIR or capture BIR. The purpose of this adaptation is to keep
the reference BIR current as biometric data shifts over time.

This capability must be populated after open, claim, and enable because it is dependent on the
selected Algorithm.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

6.4.11 RawSensorData Property Updated in Release 1.12

Syntax RawSensorData: binary { read-only, access after open-claim-enable }4

Remarks Holds the biometrics image data as raw pixel data scan lines from the top, left to the bottom, right.
SensorHeight and SensorWidth define the number of pixels. SensorBPP defines the number of
bits per pixel. SensorColor defines the interpretation of the pixel data. If CapRawSensorData is
false, then this property contains no meaningful value.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapRawSensorData Property, CapRealTimeData Property, RealTimeDataEnabled Property,
SensorBPP Property, SensorColor Property, SensorHeight Property, SensorWidth Property.

6.4.12 RealTimeDataEnabled Property Updated in Release 1.12

Syntax RealTimeDataEnabled: boolean { read-write, access after open }

Remarks If true, then StatusUpdateEvents will be fired as updated partial biometric data is captured until
biometric capture is completed. Otherwise, the captured biometric data is enqueued as a single
DataEvent when biometric capture is completed.

Setting RealTimeDataEnabled will not cause any change in system behavior until a subsequent
beginEnrollCapture or beginVerifyCapture method is performed. This prevents confusion
regarding what would happen if it were modified between a beginEnrollCapture - endCapture or
beginVerifyCapture - endCapture pairing.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page1-16.

4. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6 - 19

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot set to true because CapRealTimeData is false.

See Also CapRealTimeData Property, RawSensorData Property, SensorBPP Property, SensorColor
Property, SensorHeight Property, SensorWidth Property, beginEnrollCapture Method,
beginVerifyCapture Method, endCapture Method.

6.4.13 SensorBPP Property

Syntax SensorBPP: int32 { read-only, access after open }

Remarks Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

6.4.14 SensorColor Property Updated in Release 1.11

Syntax SensorColor: int32 { read-write, access after open }
Remarks This property is used to select the image capture mode for subsequent biometric capture operations.

Certain SensorType devices may not work with all the “colors” or color image type may not make
sense. Changing the SensorColor property will not affect any previously stored data currently
residing in the RawSensorData property or BIR property.
It may contain one of the following values:

Value Meaning
BIO_SC_MONO Bi-tonal (B/W)
BIO_SC_GRAYSCALE Gray scale
BIO_SC_16 16 Colors
BIO_SC_256 256 Colors
BIO_SC_FULL Full color
This property can only be set to a value if the value is defined in CapSensorColor.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid sensor color specified. See CapSensorColor.

See Also CapSensorColor Property, RawSensorData Property, SensorBPP Property, SensorHeight
Property, SensorWidth Property.

6 - 20 Unified POS, V1.15.1 Beta1

6.4.15 SensorHeight Property

Syntax SensorHeight: int32 { read-only, access after open }

Remarks Holds the height of the RawSensorData in pixels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

6.4.16 SensorOrientation Property Updated in Release 1.11

Syntax SensorOrientation: int32 { read-write, access after open-claim }
Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR creation.

Value Meaning
BIO_SO_NORMAL 0°
BIO_SO_RIGHT 90°
BIO_SO_INVERTED 180°
BIO_SO_LEFT 270°

This property can only be updated when the device is opened and claimed, but not enabled.
This property can only be set to a value if the value is defined in CapSensorOrientation.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid sensor orientation specified. See

CapSensorOrientation.
See Also CapSensorOrientation Property.

Unified POS, v1.15.1 Beta1 6 - 21

6.4.17 SensorType Property Updated in Release 1.11

Syntax SensorType: int32 { read-write, access after open-claim-enable }

Remarks Holds the type of biometrics sensor being accessed.

Value Meaning
BIO_ST_FACIAL_FEATURES Facial Topography
BIO_ST_VOICE Voice
BIO_ST_FINGERPRINT Fingerprint
BIO_ST_IRIS Iris
BIO_ST_RETINA Retina
BIO_ST_HAND_GEOMETRY Hand Geometry
BIO_ST_SIGNATURE_DYNAMICS Signature
BIO_ST_KEYSTROKE_DYNAMICS Keystrokes
BIO_ST_LIP_MOVEMENT Lip Movement
BIO_ST_THERMAL_FACE_IMAGE Thermal Face Image
BIO_ST_THERMAL_HAND_IMAGE Thermal Hand Image
BIO_ST_GAIT Gait/Stride
BIO_ST_PASSWORD Password

This property can only be set to a value if the value is defined in CapSensorType.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid sensor type specified. See CapSensorType.

See Also CapSensorType Property.

6.4.18 SensorWidth Property

Syntax SensorWidth: int32 { read-only, access after open }

Remarks Holds the width of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RawSensorData Property.

6 - 22 Unified POS, V1.15.1 Beta1

6.5 Methods (UML operations)

6.5.1 beginEnrollCapture Method Updated in Release 1.11

Syntax beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
referenceBIR5 Optional BIR to be adapted (updated). This parameter is ignored, if

EMPTY.
payload5 Data that will be stored by the BSP. This parameter is ignored, if EMPTY.

Remarks Starts capturing biometrics data for purposes of enrollment. Although not required, enrollment
captures customarily result in a series of biometrics data captures whose aggregation form the final
BIR. Optionally if CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation
with the enrollment. If a payload is provided that data is added into the resulting BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_FAILURE referenceBIR could not be adapted.
E_ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, CapTemplateAdaptation Property, endCapture Method.

6.5.2 beginVerifyCapture Method Updated in Release 1.11

Syntax beginVerifyCapture ():
void { raises-exception, use after open-claim-enable }

Remarks Starts capturing biometrics data for the purposes of verification. The resulting processed data is
stored in the BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, endCapture Method.

5. In the OPOS environment, the format of referenceBIR and payload depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6 - 23

6.5.3 endCapture Method

Syntax endCapture():
void { raises-exception, use after open-claim-enable }

Remarks Stops (terminates) capturing biometrics data.
If RealTimeDataEnabled is false and biometrics data was captured, then it is placed in the
properties BIR and RawSensorData. If no biometrics data was captured, then BIR and
RawSensorData are EMPTY.
If RealTimeDataEnabled is true and there is biometric data remaining which have not been
delivered to the application by a StatusUpdateEvent, then the remaining biometric data is placed
into the properties BIR and RawSensorData. If no biometrics data was captured or all biometric
data has been delivered to the application, then BIR and RawSensorData are EMPTY.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Biometrics capture was not in progress.

See Also BIR Property, RawSensorData Property, RealTimeDataEnabled Property, beginEnrollCapture
Method, beginVerifyCapture Method, DataEvent.

6.5.4 identify Method Updated in Release 1.12

Syntax identify (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
referenceBIRPopulation: array of binary,

 inout candidateRanking: int32 array, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO_FAR_PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO_FRR_PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

referenceBIRPopulation6

An array of BIRs against which the Identify match is performed.
candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank

order. The indices are zero-based.
timeout Maximum number of milliseconds to attempt a successful biometric

capture before failing.

6. In the OPOS environment, the format of referenceBIRPopulation depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

6 - 24 Unified POS, V1.15.1 Beta1

Remarks This function captures biometric data from the attached device within the allotted timeout, and
compares it against a set of referenceBIRPopulation. It then returns a rank ordered array of
referenceBIRPopulation indices in candidateRanking. If nothing matches, an array with zero
elements is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation

was not valid or Biometrics capture is in progress.
E_TIMEOUT The specified timeout has elapsed before biometric data was captured.

6.5.5 identifyMatch Method Updated in Release 1.12

Syntax identifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence:
boolean, sampleBIR: binary, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array):

void { raises-exception, use after open-claim-enable }
Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO_FAR_PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO_FRR_PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

sampleBIR7 The BIR to be identified
referenceBIRPopulation 7

An array of BIRs against which the Identify match is performed.
candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank

order. The indices are zero-based.
Remarks This function accepts a sampleBIR, and compares it against a set of referenceBIRPopulation. It then

returns a rank ordered array of referenceBIRPopulation indices in candidateRanking. If nothing
matches, an array with zero elements is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation

was not valid or Biometrics capture is in progress.

7. In the OPOS environment, the format of sampleBIR and referenceBIRPopulation depends upon the
value of the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6 - 25

6.5.6 processPrematchData Method Updated in Release 1.11

Syntax processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout processedBIR:
binary)

void { raises-exception, use after open-claim-enable}

Parameter Description
sampleBIR8 BIR to be processed
prematchDataBIR 8 BIR containing prematch data previously emitted by the associated MOC

Library.
processedBIR 8 The newly constructed processed BIR

Remarks This function creates processed biometric samples suitable for Match-on-Card (MOC). It enables
MOC implementations that require the retrieval of “prematch” data from the card prior to the
subsequent matching operation. Since smart cards generally do not have the capability to capture
and process biometric samples, the on-card MOC functionality needs a host to perform off-card
operations such as sample acquisition and feature extraction. In this case, the card needs the host to
perform an operation based on prematch data that is retrieved from the card.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL sampleBIR was not valid, Biometrics capture is in progress, or

CapPrematchData is false.

See Also CapPrematchData Property.

8. In the OPOS environment, the format of sampleBIR, prematchDataBIR, and processedBIR depends
upon the value of the BinaryConversion property. See BinaryConversion property in Annex A.

6 - 26 Unified POS, V1.15.1 Beta1

6.5.7 verify Method Updated in Release 1.12

Syntax verify(maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
referenceBIR: binary, inout adaptedBIR: binary, inout result: boolean, inout FARAchieved:
int32, inout FRRAchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }
Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO_FAR_PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO_FRR_PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

referenceBIR9 The BIR to be verified against.
adaptedBIR 9 A pointer to the handle of the adapted BIR. This parameter can be

EMPTY (0x00) if an adapted BIR is not desired.
result A boolean value of true for a successful match or false for a failed match.
FARAchieved FAR Value indicating the closeness of the match.
FRRAchieved FRR Value indicating the closeness of the match.
payload 9 If a payload is associated with the referenceBIR, it is returned in an

allocated binary if a successful match was made.
timeout Maximum number of milliseconds to attempt a successful biometric

capture before failing.
Remarks This function captures biometric data from the attached device within the allotted timeout, and

compares it against the referenceBIR. If the match is successful as indicated by a positive result and
an adaptedBIR handle was provided, the Service will attempt to adapt the referenceBIR from
information take form the captured BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid

or Biometrics capture is in progress.
E_TIMEOUT The specified timeout has elapsed before biometric data was captured.

See Also BIR Property, CapTemplateAdaptation Property.

9. In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload depends upon the
value of the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6 - 27

6.5.8 verifyMatch Method Updated in Release 1.12

Syntax verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence:
boolean, sampleBIR: binary, referenceBIR: binary, inout adaptedBIR: binary, inout result:
boolean, inout FARAchieved: int32, inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO_FAR_PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO_FRR_PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

sampleBIR10 The BIR to be identified.
referenceBIR10 The BIR to be verified against.
adaptedBIR 10 A pointer to the handle of the adapted BIR. This parameter can be

EMPTY (0x00) if an adapted BIR is not desired.
result A boolean value of true for a successful match or false for a failed match.
FARAchieved FAR Value indicating the closeness of the match.
FRRAchieved FRR Value indicating the closeness of the match.
payload 10 If a payload is associated with the referenceBIR, it is returned in an

allocated binary if a successful match was made.

Remarks This function compares a sampleBIR against the referenceBIR. If the match is successful as
indicated by a positive result and an adaptedBIR handle was provided, the Service will attempt to
adapt the referenceBIR from information taken from the captured BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid

or Biometrics capture is in progress.

10.In the OPOS environment, the format of sampleBIR, referenceBIR, adaptedBIR, and payload
depends upon the value of the BinaryConversion property. See BinaryConversion property in Annex
A.

6 - 28 Unified POS, V1.15.1 Beta1

6.6 Events (UML Interfaces)

6.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 BIO_DATA_ENROLL if enroll capture is completed.

BIO_DATA_VERIFY if verify capture is completed.

Remarks The properties BIR and RawSensorData are set to appropriate values prior to a DataEvent being
delivered to the application.

See Also “Events” on page 1-15, BIR Property, RawSensorData Property, beginEnrollCapture Method,
beginVerifyCapture Method, endCapture Method.

6.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Biometrics Capture Service to provide events to the application that are not otherwise
supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendors’ Biometric devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1-15, directIO Method.

Unified POS, v1.15.1 Beta1 6 - 29

6.6.3 ErrorEvent Updated in Release 1.11

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Biometrics device error has been detected and a suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-17.
ErrorCodeExtended

int32 Extended Error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available. (Very unlikely - see
Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered input data. The error state is exited. Default when locus

is EL_INPUT.
ER_CONTINUEINPUT

Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Service to continue processing. The Service remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. Default when locus is
EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read biometric capture data. This event is not
delivered until DataEventEnabled is set to true and other event delivery requirements are met, so
that proper application sequencing occurs.

6 - 30 Unified POS, V1.15.1 Beta1

With proper programming, an ErrorEvent with locus EL_INPUT_DATA will not occur. This is
because each biometrics capture requires an explicit beginXxxxxxCapture method, which can
generate at most one DataEvent. The application would need to defer the DataEvent by setting
DataEventEnabled to false and request another capture before an EL_INPUT_DATA would be
possible.

See Also “Device Input Model” on page 1-18, “Device Information Reporting Model” on page 1-25,

6.6.4 StatusUpdateEvent Updated in Release 1.13

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of a Biometric Capture device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a Biometrics device or reports a

requested user interaction with the Biometrics sensor to complete the
capture. In the case of the latter, the following directives can be issued:

Value Meaning
BIO_SUE_RAW_DATA Raw image data is available.
BIO_SUE_MOVE_LEFT The position was too far to the right.
BIO_SUE_MOVE_RIGHT The position was too far to the left.
BIO_SUE_MOVE_DOWN The position was too high.
BIO_SUE_MOVE_UP The position was too low.
BIO_SUE_MOVE_CLOSER The position was too far away.
BIO_SUE_MOVE_AWAY The position was too near (close).
BIO_SUE_MOVE_BACKWARD The position was too far forward.
BIO_SUE_MOVE_FORWARD The position was too far backward.
BIO_SUE_MOVE_SLOWER The motion was too fast, move slower.
BIO_SUE_MOVE_FASTER The motion was too slow, move faster.
BIO_SUE_SENSOR_DIRTY The sensor is dirty and requires cleaning.
BIO_SUE_FAILED_READ Unable to capture data from the sensor, please retry the

operation.

BIO_SUE_SENSOR_READY (Added in Release 1.13)
The sensor is ready to scan a Biometric object

BIO_SUE_SENSOR_COMPLETE (Added in Release 1.13)
The sensor reports that the scan of a Biometric object is
complete.

Remarks Enqueued when the Biometric Capture device detects a power state change or user interaction.

See Also “Events” on page 1-15.

Unified POS, v1.15.1 Beta1 7 - 1

7 Bump Bar

7.1 General
This Chapter defines the Bump Bar device category.

7.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.3 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 open
DataEventEnabled: boolean { read-write } 1.3 open
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

7 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
AsyncMode: boolean { read-write } 1.3 open, claim, & enable
AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable
AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable
BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable
CapTone: boolean { read-only } 1.3 open, claim, & enable
CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable
ErrorString: string { read-only } 1.3 open
ErrorUnits: int32 { read-only } 1.3 open
EventString: string { read-only } 1.3 open & claim
EventUnitID: int32 { read-only } 1.3 open & claim
EventUnits: int32 { read-only } 1.3 open & claim
Keys: int32 { read-only } 1.3 open, claim, & enable
Timeout: int32 { read-write } 1.3 open
UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearInputProperties ():
void { raises-exception, use after open, claim }

Not supporteda

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

Unified POS, v1.15.1 Beta1 7 - 3

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
bumpBarSound (units: int32, frequency: int32, duration: int32,

numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open, claim, enable }

1.3

setKeyTranslation (units: int32, scanCodes: int32, logicalKey: int32):
void { raises-exception, use after open, claim, enable }

1.3

a. No sensitive information is generated or stored.

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.3
Status: int32 { read-only }

upos::events::DirectIOEvent 1.3
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

upos::events::ErrorEvent 1.3
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.3
OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3
Status: int32 { read-only }

7 - 4 Unified POS, V1.15.1 Beta1

7.3 General Information

7.3.1 Capabilities

The Bump Bar Control has the following minimal set of capabilities:

• Supports broadcast methods that can communicate with one, a range, or all bump bar units online.

• Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

• Supports bump bar enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a bump bar key is pressed.

Unified POS, v1.15.1 Beta1 7 - 5

7.3.2 Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

UposConst
(from upos)

<<utility>>
BumpBarConst

(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>
StatusUpdateEvent

(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>

BumpBarControl

<<capability>> CapTone : boolean
<<prop>> AsyncMode : boolean
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> CurrentUnitID : int32
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> BumpBarDataCount : int32
<<prop>> Keys : int32
<<prop>> ErrorUnits : int32
<<prop>> ErrorString : string
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> EventString : string

bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void
setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

(from upos)

<<Interface>>

fires

fires

fires fires

<<uses>>
<<uses>>

<<sends>>

fires

7 - 6 Unified POS, V1.15.1 Beta1

7.3.3 Model
The general model of a bump bar is:
• The bump bar device class is a subsystem of bump bar units. The initial targeted environment is food service, to
 control the display of order preparation and fulfillment information. Bump bars typically are used in conjunction
 with remote order displays.

The subsystem can support up to 32 bump bar units.
One application on one workstation or POS Terminal will typically manage and control the entire subsystem of bump
bars. If applications on the same or other workstations and POS Terminals will need to access the subsystem, then this
application must act as a subsystem server and expose interfaces to other applications.

• All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of units or
 all online units. The units parameter is an int32, with each bit identifying an individual bump bar unit. (One or more
 of the constants BB_UID_1 through BB_UID_32 are bitwise ORed to form the bitmask.) The Service will attempt
 to satisfy the method for all unit(s) indicated in the units parameter. If an error is received from one or more units,
 the ErrorUnits property is updated with the appropriate units in error. The ErrorString property is updated with a
 description of the error or errors received. The method will then notify the application of the error condition. In the
 case where two or more units encounter different errors, the Service should determine the most severe error to
 report.

• The common methods checkHealth, clearInput, and clearOutput are not broadcast methods and use the unit ID
 indicated in the CurrentUnitID property. (One of the constants BB_UID_1 through BB_UID_32 are selected.) See
 the description of these common methods to understand how the current unit ID property is used.

• When the current unit ID property is set by the application, all the corresponding properties are updated to reflect
 the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-
initialized values.
The CurrentUnitID uniquely represents a single bump bar unit. The definitions range from BB_UID_1 to
BB_UID_32. These definitions are also used to create the bitwise parameter, units, used in the broadcast
methods.

7.3.4 Input – Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input with some differences:

• When input is received, a DataEvent is enqueued.

• This device does not support the AutoDisable property, so the device will not automatically disable itself when a
 DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
 other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
 properties, and further data events are disabled by setting the DataEventEnabled property to false. This causes
 subsequent input data to be enqueued while the application processes the current input and associated properties.
 When the application has finished the current input and is ready for more data, it reenables events by setting
 DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while gathering or processing input, and are
 delivered to the application when the DataEventEnabled property is true and other event delivery requirements are

Unified POS, v1.15.1 Beta1 7 - 7

met.

• The BumpBarDataCount property may be read to obtain the number of bump bar DataEvents for a specific unit
 ID enqueued. The DataCount property can be read to obtain the total number of data events enqueued.

• Queued input may be deleted by calling the clearInput method. See clearInput method description for more
 details.

The Bump Bar Service provider must supply a mechanism for translating its internal key scan codes into user-
defined codes which are returned by the data event. Note that this translation must be end-user configurable. The
default translated key value is the scan code value.

7.3.5 Output – Tone Updated in Release 1.7
The bump bar follows the general “Device Output Model,” with some enhancements:

• The bumpBarSound method is performed either synchronously or asynchronously, depending on the value of the
 AsyncMode property.

• When AsyncMode is false, then this method operates synchronously and the Device returns to the application after
 completion. When operating synchronously, the application is notified of an error if the method could not complete
 successfully.

• When AsyncMode is true, then this method operates as follows:

• The Device buffers the request in program memory, for delivery to the Physical Device as soon as the Physical
 Device can receive and process it, sets the OutputID property to an identifier for this request, and returns as soon as
 possible. When the device completes the request successfully, the EventUnits property is updated and an
 OutputCompleteEvent is enqueued. A property of this event contains the output ID of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The EventUnits property
is set to the unit or units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a broadcast method, then
ErrorUnits and ErrorString are set instead.

The event handler may call synchronous bump bar methods (but not asynchronous methods), then can either retry
the outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by setting the CurrentUnitID property and calling the clearOutput method. An
 OutputCompleteEvent will not be enqueued for cleared output. This method also stops any output that may be in
 progress (when possible).

7.3.6 Device Sharing
The bump bar is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many bump bar specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• When a claim method is called again, settable device characteristics are restored to their condition at release.

7 - 8 Unified POS, V1.15.1 Beta1

• See the “Summary” table for precise usage prerequisites.

7.3.7 Bump Bar State Diagram

Closed
Opened

Claimed

/claim

Enabled

Normal Busy

Error

/close

/open

/release/close

/setDeviceEnabled(false)

/release
/close

Normal Busy

Error

/setDeviceEnabled(true)

[error event done and no async requests]

[async request I/O error or bump bar input error]

[AsyncMode == true]/bumpBarSound

[bump bar input error]

[async requests done]

[error event done and async requests]

Unified POS, v1.15.1 Beta1 7 - 9

7.4 Properties (UML attributes)

7.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also bumpBarSound Method, “Device Output Models” on page 1-21.

7.4.2 AutoToneDuration Property

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property.

7.4.3 AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property.

7 - 10 Unified POS, V1.15.1 Beta1

7.4.4 BumpBarDataCount Property

Syntax BumpBarDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the bump bar unit specified by the CurrentUnitID
property.

The application may read this property to determine whether additional input is enqueued from a
bump bar unit, but has not yet been delivered because of other application processing, freezing of
events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property, DataEvent.

7.4.5 CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the bump bar unit specified by the CurrentUnitID property supports an enunciator.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property.

7.4.6 CurrentUnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar device. The unit
ID definitions range from BB_UID_1 to BB_UID_32.

Setting this property will update other properties to the current values that apply to the specified
unit.The following properties and methods apply only to the selected bump bar unit ID:

• Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount, CapTone, and
Keys.

• Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID_1 when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 7 - 11

7.4.7 DataCount Property

Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in this value. The
number of enqueued events for a specific unit ID is stored in the BumpBarDataCount property.

The application may read this property to determine whether additional input is enqueued, but has
not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also BumpBarDataCount Property, DataEvent Event, “Device Input Model" on page 18.

7.4.8 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred on the unit(s) specified by the ErrorUnits property,
when an error occurs for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the
property EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also ErrorUnits Property.

7.4.9 ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs for any method
that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the
property EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also ErrorString Property.

7 - 12 Unified POS, V1.15.1 Beta1

7.4.10 EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the EventUnits property,
when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also EventUnits Property, ErrorEvent.

7.4.11 EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the bump bar unit ID causing a DataEvent. This property is set just before a DataEvent is
delivered. The unit ID definitions range from BB_UID_1 to BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DataEvent.

7.4.12 EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, ErrorEvent, or
StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

7.4.13 Keys Property

Syntax Keys: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of keys on the bump bar unit specified by the CurrentUnitID property.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property.

Unified POS, v1.15.1 Beta1 7 - 13

7.4.14 Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the bump bar device to complete all output methods
supported. If the device cannot successfully complete an output method within the timeout value,
then the method notifies the application of the error.

This property is initialized to a Service dependent timeout following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncMode Property, ErrorString Property, bumpBarSound Method.

7.4.15 UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Bitwise mask indicating the bump bar units online, where zero or more of the unit constants
BB_UID_1 (bit 0 on) through BB_UID_32 (bit 31 on) are bitwise ORed. 32 units are supported.

This property is initialized when the device is first enabled following the open method. This
property is updated as changes are detected, such as before a StatusUpdateEvent is enqueued and
during the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also checkHealth Method, StatusUpdateEvent.

7 - 14 Unified POS, V1.15.1 Beta1

7.5 Methods (UML operations)

7.5.1 bumpBarSound Method

Syntax bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which bump bar unit(s) to operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat continuously.
Else perform the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait
milliseconds before repeating the tone cycle (before playing the tone
again)

Remarks Sounds the bump bar enunciator for the bump bar(s) specified by the units parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be stopped by using the
clearOutput method. (When a numberOfCycles value of FOREVER was used to start the sound,
then the application must use clearOutput to stop the continuous sounding of tones.)

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is false.

A negative interSoundWait was specified.

units is zero or a non-existent unit was specified.

A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be updated before the
exception is thrown.

Unified POS, v1.15.1 Beta1 7 - 15

E_FAILURE An error occurred while communicating with one of the bump bar units
specified by the units parameter. The ErrorUnits and ErrorString
properties are updated before the exception is thrown. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone Property,
clearOutput Method.

7.5.2 checkHealth Method (Common)

Syntax checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
CH_INTERNAL Perform a health check that does not physically change the device. The
 device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device.

CH_INTERACTIVE Perform an interactive test of the device. The Service will typically
display a modal dialog box to present test options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method will check the health of
the bump bar unit specified by the CurrentUnitID property. When the current unit ID property is
set to a unit that is not currently online, the device will attempt to check the health of the bump bar
unit and report a communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with the bump bar unit specified
 by the CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.

7 - 16 Unified POS, V1.15.1 Beta1

7.5.3 clearInput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the CurrentUnitID property.

Any data events that are enqueued – usually waiting for DataEventEnabled to be set to true and
FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property, “Device Input Model” on page 1-18.

7.5.4 clearOutput Method (Common) Updated in Release 1.7

Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered, including all asynchronous output, for the unit
specified by the CurrentUnitID property.

Any output complete and output error events that are enqueued – usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property, “Device Output Models” on page 1-21.

Unified POS, v1.15.1 Beta1 7 - 17

7.5.5 setKeyTranslation Method

Syntax setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which bump bar unit(s) to set key translation for.

scanCode The bump bar generated key scan code. Valid values 0-255.

logicalKey The translated logical key value. Valid values 0-255.

Remarks Assigns a logical key value to a device-specific key scan code for the bump bar unit(s) specified by
the units parameter. The logical key value is used during translation during the DataEvent.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

scanCode or logicalKey are out of range.

units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated prior to
notifying the application of the error.

See Also ErrorUnits Property, ErrorString Property, DataEvent.

7 - 18 Unified POS, V1.15.1 Beta1

7.6 Events (UML interfaces)

7.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 {read-only }

Description Notifies the application when status from the bump bar is available.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type, located in the low
word, the remaining 2 bytes will contain additional data. The diagram below indicates how the
Status property is divided:

Remarks Enqueued to present input data from a bump bar unit to the application. The low word contains the
Event Type. The high word contains additional data depending on the Event Type. When the Event
Type is BB_DE_KEY, the low byte of the high word contains the LogicalKeyCode for the key
pressed on the bump bar unit. The LogicalKeyCode value is device independent. It has been
translated by the Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

See Also “Device Input Model” on page 1-18, EventUnitID Property, DataEventEnabled Property,
FreezeEvents Property.

High Word Low Word (Event Type)
High Byte Low Byte

Unused. Always zero. LogicalKeyCode BB_DE_KEY

Unified POS, v1.15.1 Beta1 7 - 19

7.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bump Bar Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Bump Bar devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1-15, directIO Method.

7.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 2.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

7 - 20 Unified POS, V1.15.1 Beta1

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

 EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

 EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error event listener may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Use only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 Default when locus is EL_OUTPUT.

 ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is EL_INPUT.

 ER_CONTINUEINPUT
Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while gathering data from or processing asynchronous output
for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

The EventUnits and EventString properties are updated before the event is delivered.

See Also “Device Output Models” on page 1-21, “Device Information Reporting Model” on page 1-25,
DataEventEnabled Property, EventUnits Property, EventString Property.

Unified POS, v1.15.1 Beta1 7 - 21

7.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.
 The EventUnits property is updated before delivering.

Remarks Enqueued when a previously started asynchronous output request completes successfully.
See Also EventUnits Property, “Device Output Models” on page 1-21.

7.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 1.

Remarks Enqueued when the bump bar device detects a power state change.
Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent” description in
Chapter 2)
• Before delivering the event, the EventUnits property is set to the units for which the new power

state applies.
• When the bump bar device is enabled, then a StatusUpdateEvent is enqueued to specify the

bitmask of online units.
• While the bump bar device is enabled, a StatusUpdateEvent is enqueued when the power state

of one or more units change. If more than one unit changes state at the same time, the Service
may choose to either enqueue multiple events or to coalesce the information into a minimal
number of events applying to EventUnits.

See Also EventUnits Property.

7 - 22 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 8 - 1

8 Cash Changer

8.1 General
This Chapter defines the Cash Changer device category.

8.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string {read-only} 1.2 open

Claimed: boolean {read-only} 1.2 open

DataCount: int32 {read-only} 1.5 open

DataEventEnabled: boolean {read-write} 1.5 open

DeviceEnabled: boolean {read-write} 1.2 open & claim

FreezeEvents: boolean {read-write} 1.2 open

OutputID: int32 {read-only} 1.2 Not Supported

PowerNotify: int32 {read-write} 1.3 open

PowerState: int32 {read-only} 1.3 open

State: int32 {read-only} 1.2 --

DeviceControlDescription: string {read-only} 1.2 --

DeviceControlVersion: int32 {read-only} 1.2 --

DeviceServiceDescription: string {read-only} 1.2 open

DeviceServiceVersion: int32 {read-only} 1.2 open

PhysicalDeviceDescription: string {read-only} 1.2 open

PhysicalDeviceName: string {read-only} 1.2 open

8 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After

CapDeposit: boolean {read-only} 1.5 open

CapDepositDataEvent: boolean {read-only} 1.5 open

CapDiscrepancy: boolean {read-only} 1.2 open

CapEmptySensor: boolean {read-only} 1.2 open

CapFullSensor: boolean {read-only} 1.2 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearEmptySensor: boolean {read-only} 1.2 open

CapNearFullSensor: boolean {read-only} 1.2 open

CapPauseDeposit: boolean {read-only} 1.5 open

CapRealTimeData: boolean {read-only} 1.11 open

CapRepayDeposit: boolean {read-only} 1.5 open

AsyncMode: boolean {read-write} 1.2 open

AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable

AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable

CurrencyCashList: string {read-only} 1.2 open

CurrencyCode: string {read-write} 1.2 open

CurrencyCodeList: string {read-only} 1.2 open

CurrentExit: int32 {read-write} 1.2 open

CurrentService: int32 {read-write} 1.11 open

DepositAmount: int32 {read-only} 1.5 open

DepositCashList: string {read-only} 1.5 open

DepositCodeList: string {read-only} 1.5 open

DepositCounts: string {read-only} 1.5 open

DepositStatus: int32 {read-only} 1.5 open, claim, & enable

DeviceExits: int32 {read-only} 1.2 open

DeviceStatus: int32 {read-only} 1.2 open, claim, & enable

ExitCashList: string {read-only} 1.2 open

FullStatus: int32 {read-only} 1.2 open, claim, & enable

RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

ServiceCount: int32 {read-only} 1.11 open

ServiceIndex: int32 {read-only} 1.11 open

Unified POS, v1.15.1 Beta1 8 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.2

close ():
void { raises-exception, use after open }

1.2

claim (timeout: int32):
void { raises-exception, use after open }

1.2

release ():
void { raises-exception, use after open, claim }

1.2

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.2

clearInput ():
void { raises-exception, use after open, claim }

1.5

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.2

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
adjustCashCounts (cashCounts: string):

void { raises-exception, use after open, claim, enable }
1.11

beginDeposit ():
void { raises-exception, use after open, claim, enable }

1.5

dispenseCash (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.2

dispenseChange (amount: int32):
void { raises-exception, use after open, claim, enable }

1.2

8 - 4 Unified POS, V1.15.1 Beta1

endDeposit (success: int32):
void { raises-exception, use after open, claim, enable }

1.5

fixDeposit ():
void { raises-exception, use after open, claim, enable }

1.5

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.5
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.2
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.2
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 8 - 5

8.3 General Information
The Cash Changer programmatic name is “CashChanger.”

8.3.1 Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Cash Changer.

• Dispenses a specified amount of cash from the device in either bills, coins, or both into a user-specified exit.

• Dispenses a specified number of cash units from the device in either bills, coins, or both into a user-specified exit.

• Reports jam conditions within the device.

• Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

• Reporting the fullness levels of the Cash Changer’s cash units. Conditions which may be indicated include empty,
 near empty, full, and near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

Release 1.5 and later – Support for the cash acceptance is added as an option.

• The money (bills and coins) which is deposited into the device between the start and end of cash acceptance is
 reported to the application. The contents of the report are cash units and cash counts.

Release 1.11 and later – Support for the use of cash device sub-services

• The service can use sub-services for other cash devices to create a full-function cash changer service. Properties are
 added for the extraction of information from the sub-services.

8 - 6 Unified POS, V1.15.1 Beta1

8.3.2 Cash Changer Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

CashChangerConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

CashChangerControl

<<capability>> CapDeposit : boolean
<<capability>> CapDepositDataEvent : boolean
<<capability>> CapDiscrepancy : boolean
<<capability>> CapEmptySensor : boolean
<<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearEmptySensor : boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRealTimeData : Boolean
<<capability>> CapRepayDeposit : boolean
<<prop>> AsyncMode : boolean
<<prop>> AsyncResultCode : int32
<<prop>> AsyncResultCodeExtended : int32
<<prop>> CurrencyCashList : string
<<prop>> CurrencyCode : string
<<prop>> CurrencyCodeList : string
<<prop>> CurrentExit : int32
<<prop>> CurrentService : int32
<<prop>> DepositAmount : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositStatus : int32
<<prop>> DeviceExits : int32
<<prop>> DeviceStatus : int32
<<prop>> ExitCashList : string
<<prop>> FullStatus : int32
<<prop>> RealTimeDataEnabled : boolean
<<prop>> ServiceCount : int32
<<prop>> ServiceIndex : int32

adjustCashCounts(cashCounts : string)
beginDeposit()
dispenseCash(cashCounts : string)
dispenseChange(amount : int32)
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>

fires

fires

fires

fires

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

Unified POS, v1.15.1 Beta1 8 - 7

8.3.3 Model Updated in Release 1.11

The general model of a Cash Changer is:

• Supports several cash types such as coins, bills, and combinations of coins and bills. The supported cash type for a
 particular currency is noted by the list of cash units in the CurrencyCashList property.

• Consists of any combination of features to aid in the cash processing functions such as a cash entry holding bin, a
 number of slots or bins which can hold the cash, and cash exits.

• Prior to Release 1.5 this specification provides programmatic control only for the dispensing of cash. The accepting
 or removing of cash by the device (for example, to replenish cash) is controlled by the adjustCashCounts method,
 unless the device can determine the amount of cash on its own. The application can call readCashCounts to retrieve
 the current unit count for each cash unit, but cannot control when or how cash is added to the device.

• May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses a
 dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current exit are
 indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary exit” which is
 typically used during normal processing for dispensing cash to a customer following a retail transaction. When
 CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit” typically is used for
 special purposes such as dispensing quantities or types of cash not targeted for the “primary exit.”

• Dispenses cash into the exit specified by CurrentExit when either dispenseChange or dispenseCash is called.
 With dispenseChange, the application specifies a total amount to be dispensed, and it is the responsibility of the
 Cash Changer device or the Control to dispense the proper amount of cash from the various slots or bins. With
 dispenseCash, the application specifies a count of each cash unit to be dispensed.

• Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
 When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense method
 returns the completion status to the application.

When AsyncMode is true and no exception is thrown by either dispenseChange or dispenseCash, then the method
is performed asynchronously and its completion is indicated by a StatusUpdateEvent with its Data property set to
CHAN_STATUS_ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.
The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode and
ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.
Nesting of asynchronous Cash Changer operations is illegal; only one asynchronous method can be processed at a
time.
The readCashCounts method may not be called while an asynchronous method is being performed since doing so
could likely report incorrect cash counts.

• May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
 currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
 readCashCounts all act upon the current currency only.

• Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status, and in
 the FullStatus property to show full and near full status. If there are one or more empty cash slots, then
 DeviceStatus is CHAN_STATUS_EMPTY, and if there are one or more full cash slots, then FullStatus is
 CHAN_STATUS_FULL.

• After Release 1.5 — Support for cash acceptance is added as an option.
The cash acceptance model is as follows:

8 - 8 Unified POS, V1.15.1 Beta1

• Note that the AsyncMode property has no affect on methods that have been added for cash acceptance, since these
 are treated as input methods.

• The dispensing of change function of this device is not dependent upon the availability of a “cash acceptance”
 function option. Dispensing of change and collection of money are two independent functions.

• Receipt of cash (cash acceptance function) is an option that may be provided by the Cash Changer device. Cash
 acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The previous
 values of the properties DepositCounts and DepositAmount are initialized to zero.

• The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method or
 the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of accumulated
 cash is stored in the DepositCounts and DepositAmount properties. If the CapDepositDataEvent capability was
 previously set to true, then a DataEvent is generated to inform the application that cash has been collected.
 If the pauseDeposit method is executed with a parameter value of CHAN_DEPOSIT_PAUSE, then the counting of
 the deposited cash is suspended and the current amount of accumulated cash is also updated to the DepositCounts
 and DepositAmount properties. When pauseDeposit method is executed with a parameter value of
 CHAN_DEPOSIT_RESTART, counting of deposited cash is resumed and added to the accumulated totals.
 When the fixDeposit method is executed, the current amount of accumulated cash is updated in the DepositCounts
 and DepositAmount properties, and the process remains static until an endDeposit method is executed. At this
 point the “cash acceptance” mechanism is notified to stop accepting cash. If endDeposit method receives a
 CHAN_DEPOSIT_CHANGE parameter, then the mechanism will dispense cash change back to the user. If
 endDeposit is invoked with a CHAN_DEPOSIT_NOCHANGE parameter, then the mechanism will not dispense
 cash change back to the user. Finally, if endDeposit is invoked with a CHAN_DEPOSIT_REPAY parameter, then
 all collected cash is returned back to the user by the mechanism.

• Two types of Cash Changer mechanisms are covered by this standard. In one case where CapRepayDeposit is true,
 the bins that are used for collecting the cash are the same bins that are used for dispensing the cash as change. In the
 other case where CapRepayDeposit is false, the bins that are used for collecting the cash are different from the bins
 that are used for dispensing the change. In the first case, if a transaction is aborted for any reason, the same cash the
 user input to the mechanism will be returned to the user. In the second case, it is up to the application to dispense an
 equivalent amount of cash (not the same physical cash collected) back to the user for an aborted transaction.

• The Cash Changer mechanisms can only be used in one mode at a time. While the mechanism is collecting
 deposited cash, it cannot dispense change at the same time. Therefore, while beginDeposit method is being
 executed, no payment of change can occur. Only after an endDeposit method call can the proper amount of change
 be determined (either by the application or by a “smart” Cash Changer) and dispensed to the user. Each Cash
 Changer manufacturer must determine the amount of time it takes to process the received cash and place in storage
 bins before it completes the endDeposit method.

• When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared. The
 DepositCounts and DepositAmount properties remain set and are not cleared.

• After Release 1.11 — Support for the use of cash device sub-services.
The cash device sub-service model is as follows:

• Cash Changer service can utilize other cash device sub-services, such as coin dispensers, coin acceptors, bill
 dispenser, bill acceptors and other cash changers to access device hardware, creating a full function cash changer
 service. Each call to the cash changer service will invoke the corresponding call to the sub-services. Therefore, an
 open call will call the open method of all of the sub-services, claim will call claim, and so forth. The same can be
 said for the cash changer properties. Some properties are available for dispensers, while others are available only for
 acceptors. It is up to the aggregating cash changer service to analyze and interpret the results of its communications
 to the sub-services and report to the application. For example, if the open call fails for one of the sub services, the

Unified POS, v1.15.1 Beta1 8 - 9

 exception should be passed up to the application. The mapping of the properties and methods from service to sub-
 service is as follows:

Cash
Changer

Coin
Dispenser

Bill
Dispenser

Coin
Acceptor

Bill
Acceptor

CapDeposit
CapDepositDataEvent
CapDiscrepancy X X X X

CapEmptySensor X X

CapJamSensor X X X X

CapFullSensor X X

CapNearEmptySensor X X

CapNearFullSensor X X

CapPauseDeposit X X

CapRealTimeData X X

CapRepayDeposit
AsyncMode X

AsyncResultCode X

Cash
Changer

Coin
Dispenser

Bill
Dispenser

Coin
Acceptor

Bill
Acceptor

AsyncResultCodeExtended X

CurrencyCashList X

CurrencyCode X X X

CurrencyCodeList X

CurrentExit X

CurrentService
DepositAmount X X

DepositCashList X X

DepositCodeList X X

DepositCounts X X

DepositStatus X X

DeviceExits X

DeviceStatus Dispenser
Status X

ExitCashList X

FullStatus X X

ServiceCount
ServiceIndex
RealTimeDataEnabled X X

beginDeposit() X X

8 - 10 Unified POS, V1.15.1 Beta1

• ServiceCount lists the number of sub-services used by the cash changer.

• ServiceIndex is a byte segmented property containing the index for each sub-service.

• If access to sub-service property and method information is desired, setting the CurrentService property to the
 desired index will allow the application to request property information of the specified sub-service.

dispenseCash() X

dispenseChange() X

endDeposit() X X

fixDeposit() X X

pauseDeposit() X X

readCashCounts() X X X X

CashChangerControl
(from upos)

<<Interface>>
POS

Application

CashChangerService

Coin Cash Changer Service

Bill Acceptor
Service

Bill Dispenser
Service Example of a Cash Changer Service using a coin cash changer

 service, a bill acceptor service and a bill dispenser service.

Unified POS, v1.15.1 Beta1 8 - 11

8.3.4 Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
CashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :Human Actor:CashChanger :CashChangerService

register to receive DataEvent with Control

setDataEventEnabled(true) setDataEventEnabled(true)

beginDeposit() beginDeposit() DepositCounts and DepositAmount
property values are initialized

accepting cash

DepositCounts and DepositAmount
property values are Updated

deliver DataEvent
deliver DataEvent

pauseDeposit(Pause) pauseDeposit(Pause)

while check amount accepted
is < amount of sale

setDataEventEnabled(true) setDataEventEnabled(true)

accepting cash

DepositCounts and DepositAmount
property values are Updated

deliver DataEventdeliver DataEvent

pauseDeposit(Restart) pauseDeposit(Restart)

end loop
fixDeposit() fixDeposit()

DepositCounts and DepositAmount
property values are finalized

endDeposit(Change/
Nochange/Repayment) endDeposit(Change/

Nochange/Repayment)

dispenseChange() or
dispenseCash() dispenseChange() or

dispenseCash()

if there is change

end if

change

8 - 12 Unified POS, V1.15.1 Beta1

8.3.5 Cash Changer State Diagram Updated in Release 1.8

8.3.6 Device Sharing

The Cash Changer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
 or receiving events.

• See the “Summary” table for precise usage prerequisites.

FixMode

entry/ sync DepositCounts and DepositAmount

Closed Opened Claimedopen()

close()

claim()

ClearInput Processing

entry/ empty data queue

Enabled

setDeviceEnabled(false)

release()
close()

clearInput()

PauseMode

Pay Money

Synchronous Pay Async

Fire Events

entry/ enqueue StatusUpdateEvents

ReceiptMoney
Wait

clearInput()

pauseDeposit(CHAN_DEPOSIT_PAUSE)

pauseDeposit(CHAN_DEPOSIT_RESTART)

dispenseChange(), dispenseCash()

beginDeposit()

DepositCount == 0
DepositAmount == 0

Synchronous Pay Async

release()

close()

clearInput()

setDeviceEnabled(true)

endDeposit()

clearInput()

done

done

endDeposit()

fire event

[asyncMode == false] [asyncMode == true]

Unified POS, v1.15.1 Beta1 8 - 13

8.4 Properties (UML attributes)

8.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the dispenseCash and dispenseChange methods will be performed asynchronously. If
false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseChange Method,
dispenseCash Method.

8.4.2 AsyncResultCode Property

Syntax AsyncResultCode: int32 { read-only, access after open-claim-enable }

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

8.4.3 AsyncResultCodeExtended Property

Syntax AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

8 - 14 Unified POS, V1.15.1 Beta1

8.4.4 CapDeposit Property Added in Release 1.5

Syntax CapDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer supports cash acceptance.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.5 CapDepositDataEvent Property Added in Release 1.5

Syntax CapDepositDataEvent: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a cash acceptance event.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.6 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page1-16.

See Also readCashCounts Method.

Unified POS, v1.15.1 Beta1 8 - 15

8.4.7 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.

8.4.8 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also FullStatus Property, StatusUpdateEvent.

8.4.9 CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.

8.4.10 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent

8 - 16 Unified POS, V1.15.1 Beta1

8.4.11 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also FullStatus Property, StatusUpdateEvent.

8.4.12 CapPauseDeposit Property

Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also pauseDeposit Method.

8.4.13 CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RealTimeDataEnabled property.

Unified POS, v1.15.1 Beta1 8 - 17

8.4.14 CapRepayDeposit Property Added in Release 1.5

Syntax CapRepayDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to return money that was deposited.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also endDeposit Method.

8.4.15 CurrencyCashList Property

Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash dispensing units supported in the Cash Changer for the currency represented by the
CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the units of coins,
then the ASCII semicolon character (“;”) followed by ASCII numeric comma delimited units of
bills that can be used with the Cash Changer. If a semicolon (“;”) is absent, then all units represent
coins.

Below are sample CurrencyCashList values in Japan.

• “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8 - 18 Unified POS, V1.15.1 Beta1

8.4.16 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This property is
initialized to an appropriate value by the open method. This value is guaranteed to be one of the set
of currencies specified by the CurrencyCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A value was specified that is not within

CurrencyCodeList.

See Also CurrencyCodeList Property.

8.4.17 CurrencyCodeList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example,
if the string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8.4.18 CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit),
while values greater then 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

Unified POS, v1.15.1 Beta1 8 - 19

• Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”
DeviceExits = 1
CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

• Cash Changer supports both coins and bills; an auxiliary exit is used for larger quantities
of bills:
CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

• Cash Changer supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

8 - 20 Unified POS, V1.15.1 Beta1

8.4.19 CurrentService Property Added in Release 1.11

Syntax CurrentService: int32 { read-write, access after open }

Remarks Holds the current service. The value 0 represents the primary service, while values greater than 0
and less than or equal to ServiceCount are used to request information from the integrated services.
Legal values range from 0 to ServiceCount. The readCashCounts method and all of the properties,
common and specific, are accessible when the CurrentService is greater than 0. CurrentService,
ServiceCount and ServiceIndex will always reflect the primary service.

Below are examples of a cash changer service using services for separate Coin Acceptor and
Dispenser and a bills only cash changer. A StatusUpdateEvent indicting a jam has been received
by the application. Only the bill changer and the coin dispenser can detect a jam.

• Checking the values of the primary service:
CurrentService = 0
ServiceCount = 3
ServiceIndex = 50528769 (X’03030201’)
DeviceStatus = CHAN_STATUS_JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

• Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount = 3
ServiceIndex = 50528769 (X’03030201’)
DeviceStatus = CHAN_STATUS_OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”

• The coin dispenser looks ok. Check the bill changer:
CurrentService = 3
ServiceCount = 3
ServiceIndex = 50528769 (X’03030201’)
DeviceStatus = CHAN_STATUS_JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid CurrentService value was specified.

See Also ServiceCount Property, ServiceIndex Property.

Unified POS, v1.15.1 Beta1 8 - 21

8.4.20 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.
For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash Changer.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8.4.21 DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented by the
CurrencyCode property. It is set to an empty string when the cash acceptance process is not
supported.

It consists of ASCII numeric comma delimited values which denote the units of coins, then the
ASCII semicolon character (“;”) followed by ASCII numeric comma delimited values for the bills
that can be used with the Cash Changer. If the semicolon (“;”) is absent, then all units represent
coins.

Below are sample DepositCashList values in Japan.
• “1,5,10,50,100,500” ---

1, 5, 10, 50, 100, 500 yen coin.
• “1,5,10,50,100,500;1000,5000,10000” ---

1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.
• “;1000,5000,10000” ---

1000, 5000, 10000 yen bill.
This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8 - 22 Unified POS, V1.15.1 Beta1

8.4.22 DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to an empty string when the cash
acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if
the string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8.4.23 DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is the same as
cashCounts in the dispenseCash method. Cash units inside the string are the same as the
DepositCashList property, and are in the same order. It is set to an empty string when the cash
acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts property is set to

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54
fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

Unified POS, v1.15.1 Beta1 8 - 23

8.4.24 DepositStatus Property Added in Release 1.5

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
CHAN_STATUS_DEPOSIT_START

Cash acceptance started.
CHAN_STATUS_DEPOSIT_END

Cash acceptance stopped.
CHAN_STATUS_DEPOSIT_NONE

Cash acceptance not supported.
CHAN_STATUS_DEPOSIT_COUNT

Counting or repaying the deposited money.
CHAN_STATUS_DEPOSIT_JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CHAN_STATUS_DEPOSIT_END after initialization, or to CHAN_STATUS_DEPOSIT_NONE
if the device does not support cash acceptance.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

8.4.25 DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }

Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentExit Property.

8.4.26 DeviceStatus Property

Syntax DeviceStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN_STATUS_OK The current condition of the Cash Changer is satisfactory.
CHAN_STATUS_EMPTY

Some cash slots are empty.
CHAN_STATUS_NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS_JAM A mechanical fault has occurred.

8 - 24 Unified POS, V1.15.1 Beta1

This property is initialized and kept current while the device is enabled. If more than one condition
is present, then the order of precedence starting at the highest is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

8.4.27 ExitCashList Property

Syntax ExitCashList: string { read-only, access after open }
Remarks Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property.

The supported cash units are either the same as CurrencyCashList, or a subset of it. The string
format is identical to that of CurrencyCashList.
This property is initialized by the open method, and is updated when CurrencyCode or
CurrentExit is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

8.4.28 FullStatus Property Updated in Release 1.14

Syntax FullStatus: int32 { read-only, access after open, claim, enable }

Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CHAN_STATUS_OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS_NEARFULL

 Some cash slots are nearly full.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 8 - 25

8.4.29 RealTimeDataEnabled Property Added in Release 1.11

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData property, DepositAmount property, DepositCounts property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

8.4.30 ServiceCount Property Updated in Release 1.14

Syntax ServiceIndex: int32 { read-only, access after open }

Remarks The value is divided into four bytes indicating the service index for each of the integrated service
types.The diagram below indicates how the property is divided:
A value of zero means that no integrated services are utilized.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also CurrentService Property, ServiceCount Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Bill Dispenser Bill Acceptor Coin Dispenser Coin Acceptor

8 - 26 Unified POS, V1.15.1 Beta1

8.5 Methods (UML operations)

8.5.1 adjustCashCounts Method Added in Release 1.11

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be

initialized.

Remarks This method is called to set the initial amounts in the cash changer after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there
would be eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one
hundred yen coins, and eighty-seven five-hundred yen coins in the Cash Changer.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be read because an asynchronous method is

in process.

See Also readCashCounts Method.

Unified POS, v1.15.1 Beta1 8 - 27

8.5.2 beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.
• The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is reported by
DataEvents until fixDeposit is called while the deposit process is not paused.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Either the Cash Changer does not support cash acceptance, or the call

sequence is not correct.

See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property, endDe-
posit Method, fixDeposit Method, pauseDeposit Method.

8.5.3 dispenseCash Method

Syntax dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format
of “cash unit:cash counts, ..;.., cash unit:cash counts”. Units before “;” represent coins, and units
after “;” represent bills. If “;” is absent, then all units represent coins.

Remarks Dispenses the cash from the Cash Changer into the exit specified by CurrentExit. The cash
dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

• “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five hundred yen
coins.

• “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand yen bills.

• “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

8 - 28 Unified POS, V1.15.1 Beta1

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash cannot be dispensed because an asynchronous method is in progress.

E_ILLEGAL One of the following errors occurred:
• The cashCounts parameter value was illegal for the current exit.
• Cash could not be dispensed because cash acceptance was in

progress.
E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:

The specified cash cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.

8.5.4 dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to the Cash Changer
to determine what combination of bills and coins will satisfy the tender requirements from its
available supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit represented by
CurrentExit.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY The specified change cannot be dispensed because an asynchronous

method is in progress.

E_ILLEGAL One of the following errors occurred:
• A negative or zero amount was specified.
• The amount could not be dispensed based on the values specified in

ExitCashList for the current exit.
• Change could not be dispensed because cash acceptance was in

progress.
E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:

The specified change cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.

Unified POS, v1.15.1 Beta1 8 - 29

8.5.5 endDeposit Method Added in Release 1.5

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one
of the following values:

Parameter Description
CHAN_DEPOSIT_CHANGE The deposit is accepted and the deposited amount is greater

than the amount required.
CHAN_DEPOSIT_NOCHANGE The deposit is accepted and the deposited amount is equal to or

less than the amount required.
CHAN_DEPOSIT_REPAY The deposit is to be repaid through the cash deposit exit or the

cash payment exit.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the amount required
then success is set to CHAN_DEPOSIT_NOCHANGE.

If success is set to CHAN_DEPOSIT_REPAY then the deposit is repaid through either the cash
deposit exit or the cash payment exit without storing the actual deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were deposited.
Depending on the actual device, the cash repaid may be the exact same bills and coins that were
deposited, or it may not.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit and fixDeposit must be

called in sequence before calling this method.
See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property,

beginDeposit Method, fixDeposit Method, pauseDeposit Method.

8 - 30 Unified POS, V1.15.1 Beta1

8.5.6 fixDeposit Method Added in Release 1.5

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Cash
Changer.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be called before

calling this method.
See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,

pauseDeposit Method.

8.5.7 pauseDeposit Method Added in Release 1.5

Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description
CHAN_DEPOSIT_PAUSE Cash acceptance is paused.
CHAN_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT_PAUSE, the cash acceptance operation is paused. The deposit
process will remain paused until this method is called with control set to
CHAN_DEPOSIT_RESTART. It is valid to call fixDeposit then endDeposit while the deposit
process is paused.

When the deposit process is paused, the depositCounts and depositAmount properties are updated
to reflect the current state of the Cash Changer. The property values are not changed again until the
deposit process is resumed.

If control is CHAN_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 8 - 31

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be called before

calling this method.
• The deposit process is already paused and control is set to

CHAN_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to CHAN_DEPOSIT_RESTART.

See Also CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount Property,
DepositCounts Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

8.5.8 readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which

was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each
unit in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five
yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Cash
Changer. There are some cases where a discrepancy may occur because of existing uncountable cash
in a Cash Changer. An example would be when a cash slot is “overflowing” such that the device has
lost its ability to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be read because an asynchronous method is

in process.

See Also CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

8 - 32 Unified POS, V1.15.1 Beta1

8.6 Events (UML interfaces)

8.6.1 DataEvent Updated in Release 1.11

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has accepted cash.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

8.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Changer Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Cash Changer devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directIO Method.

Unified POS, v1.15.1 Beta1 8 - 33

8.6.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash Changer device.

Attributes This event contains the following attribute:
Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Cash Changer status condition:

Value Meaning
CHAN_STATUS_EMPTY Some cash slots are empty.
CHAN_STATUS_NEAREMPTY Some cash slots are nearly empty.
CHAN_STATUS_EMPTYOK No cash slots are either empty or nearly empty.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS_NEARFULL Some cash slots are nearly full.
CHAN_STATUS_FULLOK No cash slots are either full or nearly full.
CHAN_STATUS_JAM A mechanical fault has occurred.
CHAN_STATUS_JAMOK A mechanical fault has recovered.
CHAN_STATUS_ASYNC Asynchronously performed method has completed.

Remarks Fired when the Cash Changer detects a status change.
For changes in the fullness levels, the Cash Changer is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full, near full, empty, and/or near empty states and
the corresponding capability properties for these states are set.
Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.
The completion statuses of asynchronously performed methods are placed in the AsyncResultCode
and AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on page 1-15.

8 - 34 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 9 - 1

9 Cash Drawer

9.1 General
This Chapter defines the Cash Drawer device category.

9.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

9 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapStatus: boolean { read-only } 1.0 open
CapStatusMultiDrawerDetect: boolean { read-only } 1.5 open
DrawerOpened: boolean { read-only } 1.0 open & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception } 1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open } 1.0

release ():
void { raises-exception, use after open, claim } 1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note 1.0

clearInput ():
void { } Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { } Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open } 1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Unified POS, v1.15.1 Beta1 9 - 3

Specific
Name
openDrawer ():

void { raises-exception, use after open, enable } Note 1.0

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
 beepDuration: int32, beepDelay: int32):
 void { raises-exception, use after open, enable } Note

1.0

Note: Also requires that no other application has claimed the cash

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.0
 Status: int32 { read-only }

9 - 4 Unified POS, V1.15.1 Beta1

9.3 General Information
The Cash Drawer programmatic name is “CashDrawer”.

9.3.1 Capabilities

The Cash Drawer Control has the following capability:

• Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

• Drawer status reporting of such a nature that the service can determine whether a particular drawer is open or
 closed in environments where the drawer is the only drawer accessible via a hardware port.

• Drawer unique status reporting of such a nature that the service can determine whether a particular drawer is
 open or closed in environments where more than one drawer is accessible via the same hardware port.

9.3.2 Cash Drawer Class Diagram Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

UposException

(from upos)

<<exception>>

CashDrawerConst

(from upos)

<<uti lity>>
UposConst

(from upos)

<<util ity>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

CashDrawerControl

<<capabili ty>> CapStatus : boolean
<<capabili ty>> CapStatusMultiDrawerDetect : boolean
<<prop>> DrawerOpened : boolean

openDrawer() : void
waitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires fires

BaseControl

(from upos)

<<Interface>> <<uses>>

<<sends>>

Unified POS, v1.15.1 Beta1 9 - 5

9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of a Cash Drawer open()  setDeviceEnabled(true) 
getDrawerOpened()  openDrawer(); as well as showing the unique sharing model of the Cash Drawer device
when used with multiple control instances open on the same physical device but by different applications.

:Cl ientApp0 :ClientApp1 cd0:CashDrawe
r

cd1:CashDrawer :StatusUpdateEvent :
StatusUpdateEvent

:CashDrawer
Service0

:CashDrawer
Service1

Physical CD
Device

7: setDeviceEnabled(true)

CashDrawer
device is
assumed open
successful ly and
DrawerOpened
property is now
true

10: openDrawer() CashDrawer is now
open by cal l to cd1.
Assume that some
human actor closes
after open

This call results in a
UposException since
the CashDrawer device
is claimed by the cd1
instance that is used by
:Cl ientApp1

This cal l is
successful and
CashDrawer device
is open since cd1
claimed the device
successfully

1: setDeviceEnabled(true) 2: setDeviceEnabled(true)
3: connect or somehow have access to the hardware

Service returns
current state of
cash drawer4: openDrawer() 5: openDrawer()

6: send command to open physical CD

NOTE: we are assuming that the :ClientApp(s) already successful ly opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

Assume the CashDrawer
is successfully claimed
at this point by
:ClientApp113: claim(timeout)

18: openDrawer()

15: openDrawer()

If the command to open the physical CD
is successful then this wi ll result in
StatusUpdateEvent delivered to any
registered listeners. This is not shown in
this diagram for simplici ty.

Assume that both
:Cl ientApp0 and :ClientApp1
registered to receive events
-- not shown.

StatusUpdateEvent is del ivered
to al l registered handlers, even
though, in the situation above,
only :ClientApp1 is allowed to
call openDrawer() - since it
successful ly claimed the CD.

16: openDrawer()

8: setDeviceEnabled(true)

11: openDrawer()

9: might communicate with
device (e.g. get current drawer

state)

12: send command to open drawer

14: claim(timeout)

19: openDrawer()

21: send command to open CD

20: new

22: deliver SUE to control

23: del iver event to all registered handlers

24: notify cl ient of new event

26: del iver SUE to control

28: noti fy client of new event

27: deliver event to all registered handlers

17: throw UposException

25: new

Service0 also detects the cash drawer is
opened, either via a message from
Service1, a StatusUpdateEvent from
Service 1, or from a lower level interface

9 - 6 Unified POS, V1.15.1 Beta1

9.3.4 Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive
 status update events.

• If more than one application has opened and enabled the device, each of these applications may access its
 properties and methods. Status update events are delivered to all of these applications.

• If one application claims the cash drawer, then only that application may call openDrawer and
 waitForDrawerClose. This feature provides a degree of security, such that these methods may effectively be
 restricted to the main application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 9 - 7

9.4 Properties (UML attributes)

9.4.1 CapStatus Property

Syntax CapStatus: boolean { read-only, access after open }

Remarks If true, the drawer can report status. If false, the Service is not able to determine whether the cash
drawer is open or closed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1-16.

9.4.2 CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax CapStatusMultiDrawerDetect: boolean { read-only, access after open }

Remarks If true, the status unique to each drawer in a multiple cash drawer configuration1 can be reported.

If false, the following possibilities exist:

DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it might be the
particular drawer in question. This case can occur in multiple cash drawer configurations where only
one status is reported indicating either a) all drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or printer supports
opening more than one cash drawer independently via the same channel or hardware port. A typical
example is a configuration where a “Y” cable, connected to a single hardware printer port, has
separate drawer open signal lines but the drawer open status from each of the drawers is “wired-or”
together. It is not possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapStatus Property, DrawerOpened Property.

1. Multiple cash drawer configuration -- A hardware configuration where a printer or terminal controls
more than one cash drawer independently via the same channel or hardware port. A typical example is
a configuration with a “Y” cable connected to a single hardware port that controls two cash drawers.

9 - 8 Unified POS, V1.15.1 Beta1

9.4.3 DrawerOpened Property Updated in Release 1.14

Syntax DrawerOpened: boolean { read-only, access after open-enable }

Remarks If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status reporting, and this
property is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a DrawerOpened value of true
indicates at least one drawer is open, and it might be the particular drawer in question in a multiple
cash drawer configuration. See CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.

Unified POS, v1.15.1 Beta1 9 - 9

9.5 Methods (UML operations)

9.5.1 openDrawer Method

Syntax openDrawer ():
void { raises-exception, use after open-enable }

Remarks Opens the drawer.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1-16.

9.5.2 waitForDrawerClose Method

Syntax waitForDrawerClose (beepTimeout: int32, beepFrequency: int32, beepDuration: int32,
beepDelay: int32):

void { raises-exception, use after open-enable }

Parameter Description
beepTimeout Number of milliseconds to wait before starting an alert beeper.
beepFrequency Audio frequency of the alert beeper in hertz.
beepDuration Number of milliseconds that the beep tone will be sounded.
beepDelay Number of milliseconds between the sounding of beeper tones.

Remarks Waits until the cash drawer is closed. If the drawer is still open after beepTimeout milliseconds, then
the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert beeper. However, by
setting these parameters the application will insure that the system alert beeper will be utilized if it
is present.

Unless a UposException is thrown, this method will not return to the application while the drawer
is open. In addition, in a multiple cash drawer configuration where the
CapStatusMultiDrawerDetect property is false, this method will not return to the application
while any of the drawers are open. When all drawers are closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this method will return
immediately.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.

9 - 10 Unified POS, V1.15.1 Beta1

9.6 Events (UML interfaces)

9.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Drawer Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber
 and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Cash Drawer devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directIO Method.

Unified POS, v1.15.1 Beta1 9 - 11

9.6.2 StatusUpdateEvent Updated in Release 1.13

<< event >> upos::events::StatusUpdateEvent
 Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes only while the device is
enabled. A StatusUpdateEvent may be enqueued when the device is enabled, to inform the
application of the initial or current state. However, this behavior is not required; the application must
not depend upon it.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The status reported from the Cash Drawer.

The Status property has one of the following values:

Value Meaning

CASH_SUE_DRAWERCLOSED

 The Cash Drawer has been closed.

CASH_SUE_DRAWEROPEN

 (Updated in Release 1.13) The Cash Drawer has been opened. Can only
be reported if the Cash Drawer is not locked (by Key or other locking
means).

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See description “StatusUpdateEvent" in Chapter 1.

Remarks If CapStatus is false, then the device does not support status reporting, and this event will never be
delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE_DRAWEROPEN value indicates
that at least one cash drawer is open and it might be the particular drawer in question for multiple
cash drawer configurations.

See Also “Events” on page 1-15, CapStatus Property, CapStatusMultiDrawerDetect Property.

9 - 12 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 10 - 1

10 CAT - Credit Authorization Terminal

10.1 General
This Chapter defines the Credit Authorization Terminal device category.

10.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.4 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.4 open
Claimed: boolean { read-only } 1.4 open
DataCount: int32 { read-only } 1.4 Not supported
DataEventEnabled: boolean { read-write } 1.4 Not supported
DeviceEnabled: boolean { read-write } 1.4 open & claim
FreezeEvents: boolean { read-write } 1.4 open
OutputID: int32 { read-only } 1.4 open
PowerNotify: int32 { read-write } 1.4 open
PowerState: int32 { read-only } 1.4 open
State: int32 { read-only } 1.4 --

DeviceControlDescription: string { read-only } 1.4 --
DeviceControlVersion: int32 { read-only } 1.4 --
DeviceServiceDescription: string { read-only } 1.4 open
DeviceServiceVersion: int32 { read-only } 1.4 open
PhysicalDeviceDescription: string { read-only } 1.4 open
PhysicalDeviceName: string { read-only } 1.4 open

10 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
AccountNumber: string { read-only } 1.4 open
AdditionalSecurityInformation: string { read-write } 1.4 open
ApprovalCode: string { read-only } 1.4 open
AsyncMode: boolean { read-write } 1.4 open
Balance: currency { read-only } 1.9 open
CapAdditionalSecurityInformation: boolean { read-only } 1.4 open
CapAuthorizeCompletion:
CapAuthorizePreSales:
CapAuthorizeRefund:
CapAuthorizeVoid:
CapAuthorizeVoidPreSales:
CapCashDeposit:
CapCenterResultCode:
CapCheckCard:
CapDailyLog:
CapInstallments:
CapLockTerminal:
CapLogStatus:
CapPaymentDetail:
CapTaxOthers:
CapTransactionNumber:
CapTrainingMode:
CapUnlockTerminal:
CardCompanyID:
CenterResultCode:
DailyLog:
LogStatus:
PaymentCondition:
PaymentDetail:
PaymentMedia:
SequenceNumber:
SettledAmount:
SlipNumber:
TrainingMode:
TransactionNumber:
TransactionType:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
string
string
string
int32
int32
string
int32
int32
currency
string
boolean
string
int32

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

1.4
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.4
1.9
1.9
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.9
1.4
1.4
1.5
1.4
1.9
1.4
1.4
1.4
1.4

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

Unified POS, v1.15.1 Beta1 10 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.4

close ():
void { raises-exception, use after open }

1.4

claim (timeout: int32):
void { raises-exception, use after open }

1.4

release ():
void { raises-exception, use after open, claim }

1.4

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.4

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

1.4

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.4

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):

void { raises-exception, use after open, claim, enable }
1.4

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):

void { raises-exception, use after open, claim, enable }

1.4

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.4

10 - 4 Unified POS, V1.15.1 Beta1

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.9

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

lockTerminal ():
void { raises-exception, use after open, claim, enable }

1.9

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

1.9

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.4
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.4
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.4
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.4
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 10 - 5

10.3 General Information
The CAT programmatic name is “CAT”.

10.3.1 Description of terms

• Authorization method
 Methods defined by this device class that have the Authorize prefix in their name. These methods require
 communication with an approval agency.

• Authorization operation
 The period from the invocation of an authorization method until the authorization is completed. This period differs
 depending upon whether operating in synchronous or asynchronous mode.

• Credit Authorization Terminal (CAT) Device
 A CAT device typically consists of a display, keyboard, magnetic stripe card reader, receipt printing device, and a
 communications device. CAT devices are predominantly used in Japan where they are required by law. Essentially a
 CAT device can be considered a device that shields the encryption, message formatting, and communication
 functions of an electronic funds transfer (EFT) operation from an application.

• Purchase
 The transaction that allows credit card or debit card payment at the POS. It is independent of payment methods (for
 example, lump-sum payment, payment in installments, revolving payment, etc.).

• Cancel Purchase
 The transaction to request voiding a purchase on the date of purchase.

• Refund Purchase
 The transaction to request voiding a purchase after the date of purchase. This differs from cancel purchase in that a
 cancel purchase operation can often be handled by updating the daily log at the CAT device, while the refund
 purchase operation typically requires interaction with the approval agency.

• Authorization Completion
 The state of a purchase when the response from the approval agency is “suspended”. The purchase is later completed
 after a voice approval is received from the card company.

• Pre-Authorization
 The transaction to reserve an estimated amount in advance of the actual purchase with customer's credit card
 presentation and card entry at CAT.

• Cancel Pre-Authorization
 The transaction to request canceling pre-authorization.

• Card Check
 The transaction to perform a negative card file validation of the card presented by the customer. Typically negative
 card files contain card numbers that are known to fail approval. Therefore the Card Check operation removes the
 need for communication to the approval agency in some instances.

• Daily log
 The daily log of card transactions that have been approved by the card companies.

• Payment condition
 Condition of payment such as lump-sum payment, payment by bonus, payment in installments, revolving payment,

10 - 6 Unified POS, V1.15.1 Beta1

 and the combination of those payments. Debit payment is also available. See the PaymentCondition,
 PaymentMedia, and PaymentDetail properties for details.

• Approval agency
 The agency to decide whether or not to approve the purchase based on the card information, the amount of purchase,
 and payment type. The approval agency is generally the card company.

10.3.2 Capabilities

The CAT control is capable of the following general mode of operation:

• This standard defines the application interface with the CAT control and does not depend on the CAT device
 hardware implementation. Therefore, the hardware implementation of a CAT device may be as follows:

• Separate type (POS interlock)
 The dedicated CAT device is externally connected to the POS (for instance, via an RS-232 connection).

• Built-in type
 The hardware structure is the same as the separate type but is installed within the POS housing.

• The CAT device receives each authorization request containing a purchase amount and tax from CAT control.

• The CAT device generally requests the user to swipe a magnetic card when it receives an authorization request from
 CAT control.

• Once a magnetic card is swiped at the CAT device, the device sends the purchase amount and tax to the approval
 agency using the communications device.

• The CAT device returns the result from the approval agency to the CAT control. The returned data will be stored in
 the authorization properties by the CAT control for access by applications.

Unified POS, v1.15.1 Beta1 10 - 7

 Electronic Money Device: Added in Release 1.9

The CAT Device Category is extended to support an Electronic Money Device that has the following attributes.

• A CAT device typically consists of a display, keyboard, magnetic stripe reader, receipt printing device, and a
 communications device. CAT devices are predominanly used in Japan where they are required by law. Essentially, a
 CAT device can be considered a device that shields the encryption message formatting and communications
 functions of an Electronic Funds Transfer (EFT) operation from an application.

• The Electronic Money Device receives the tendering information (amount of tender, tax, and other transaction based
 information) from CAT control, and then starts the authorization processing.

• When the Electronic Money Device is required, a Credit Card swipe on the CAT device is generally required for
 authorization.

• When a Card [Contact Type / Contactless Type] is input by the Electronic Money Device, it is formatted into the
 authorization format with the transaction information and then communicated for authorization.

• When the authorization is completed, the Electronic Money Device sends the settlement result to CAT control. The
 settlement result is stored by the CAT control and passed back to the calling application.

• The Electronic Money Device may save settlement result as DealingLog in the memory of the device. The device
 may also send DealingLog to the Center by settlement processing.

10 - 8 Unified POS, V1.15.1 Beta1

10.3.3 CAT Class Diagram Updated in Release 1.9

UposConst
(from upos)

<<utility>>

ErrorEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

CATControl

<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> ApprovalCode : string
<<prop>> AsyncMode : boolean
<<prop>> Balance : currency
<<capability>> CapAdditionalSecurityInformation : boolean
<<capability>> CapAuthorizeCompletion : boolean
<<capability>> CapAuthorizePreSales : boolean
<<capability>> CapAuthorizeRefund : boolean
<<capability>> CapAuthorizeVoid : boolean
<<capability>> CapAuthorizeVoidPreSales : boolean
<<capability>> CapCashDeposit : boolean
<<capability>> CapCenterResultCode : boolean
<<capability>> CapCheckCard : boolean
<<capability>> CapDailyLog : int32
<<capability>> CapInstallments : boolean
<<capability>> CapLockTerminal : boolean
<<capability>> CapLogStatus : boolean
<<capability>> CapPaymentDetail : boolean
<<capability>> CapTaxOthers : boolean
<<capability>> CapTransactionNumber : boolean
<<capability>> CapTrainingMode : boolean
<<capability>> CapUnlockTerminal : boolean
<<prop>> CardCompanyID : string
<<prop>> CenterResultCode : string
<<prop>> DailyLog : string
<<prop>> LogStatus : int32
<<prop>> PaymentCondition : int32
<<prop>> PaymentDetail : string
<<prop>> PaymentMedia : int32
<<prop>> SequenceNumber : int32
<<prop>> SettledAmount : currency
<<prop>> SlipNumber : string
<<prop>> TrainingMode : boolean
<<prop>> TransactionNumber : string
<<prop>> TransactionType : int32

accessdailyLog()
authorizeCompletion()
authorizePreSales()
authorizeRefund()
authorizeSales()
authorizeVoid()
authorizeVoidPreSales()
cashDeposit()
checkCard()
lockTerminal()
unlockTerminal()

(from upos)

<<Interface>>
<<uses>>

fires

fires

fires

fires

UposException
(from upos)

<<exception>>

<<sends>>

Unified POS, v1.15.1 Beta1 10 - 9

10.3.4 Model

The general models for the CAT control are shown below:

• The CAT control basically follows the output device model. However, multiple methods cannot be issued for
 asynchronous output; only one outstanding asynchronous request is allowed.

• The CAT control issues requests to the CAT device for different types of authorization by invoking the following
 methods.

• The CAT control issues requests to the CAT device for special processing local to the CAT device by invoking the
 following methods.

• The CAT control stores the authorization results in the following properties when an authorization operation
 successfully completes:

• The accessDailyLog method sets the following property

Function Method name Corresponding Cap property
Purchase authorizeSales None
Cancel Purchase authorizeVoid CapAuthorizeVoid
Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales
Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

Description Property Name Corresponding Cap Property
Credit Account number AccountNumber None
Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None
Card company ID CardCompanyID None
Code from the approval
agency CenterResultCode CapCenterResultCode

Payment condition PaymentCondition None
Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None
Slip number SlipNumber None
Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

Description Property Name Corresponding Cap Property
Daily log DailyLog CapDailyLog

10 - 10 Unified POS, V1.15.1 Beta1

 Electronic Money Device: Added in Release 1.9

• The CAT Control requires the Electronic Money Device to track each settlement and closing in the DealingLog.

• When the CAT Control receives the settlement results from the Electronic Money Device it stores these results in
 the following properties:

• The accessDailyLog method sets the following property

• Sequence numbers are used to validate that the properties set at completion of a method are indeed associated with
 the completed method. An incoming SequenceNumber argument for each method is compared with the resulting
 SequenceNumber property after the operation associated with the method has completed. If the numbers do not
 match, or if an application fails to identify the number, there is no guarantee that the values of the properties listed in
 the two tables correspond to the completed method.

• The AsyncMode property determines if methods are run synchronously or asynchronously.

• When AsyncMode is false, methods will be executed synchronously and their corresponding properties will contain
 data when the method returns.

• When AsyncMode is true, methods will return immediately to the application. When the operation associated with
 the method completes, each corresponding property will be updated by the CAT control prior to an
 OutputCompleteEvent. When AsyncMode is true, methods cannot be issued immediately after issuing a prior
 method; only one outstanding asynchronous method is allowed at a time. However, clearOutput is an exception
 because its purpose is to cancel an outstanding asynchronous method. The methods supported and their
 corresponding properties vary depending on the CAT control implementation. Applications should verify that

Function Method name Corresponding Cap property
Settlement authorizeSales None
Charge cashDeposit CapCashDeposit
Inquiry for the balances checkCard CapCheckCard
Closing DealingLog accessDailyLog CapDailyLog
Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

Description Property Name Corresponding Cap Property
Card ID AccountNumber None
Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None
Settled amount SettledAmount None
Balance Balance None
Sequence number SequenceNumber None
Transaction type TransactionType None

Description Property Name Corresponding Cap Property
DealingLog DailyLog CapDailyLog

Unified POS, v1.15.1 Beta1 10 - 11

 particular Cap properties are supported before utilizing the capability dependent methods and properties.

• Results of synchronous calls to methods and writable properties will be stored in ErrorCode. Results of
 asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Errorcode argument of
 an ErrorEvent. If ErrorCode or the ErrorCode argument is E_EXTENDED, detailed device specific information
 may be stored to ErrorCodeExtended in synchronous mode and stored to ErrorEvent argument
 ErrorCodeExtended in asynchronous mode. The error code from the approval agency will be stored in
 CenterResultCode in either mode.

• Training mode occurs continually when TrainingMode is true. To discontinue training mode, set TrainingMode to
false.

• An outstanding asynchronous method can be canceled via the clearOutput method.

• The Daily log can be collected by the accessDailyLog method. Collection will be run either synchronously or
 asynchronously according to the value of AsyncMode.

10 - 12 Unified POS, V1.15.1 Beta1

• Following is the general usage sequence of the CAT control.
Synchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the authorizeSales()
sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- close

Unified POS, v1.15.1 Beta1 10 - 13

10.3.5 Device Sharing

The CAT is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

10 - 14 Unified POS, V1.15.1 Beta1

10.3.6 CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the AuthorizeSales process of the CAT device.

:CAT:Client App :CAT Service

setPaymentMedia(mediaType)

setPaymentMedia()
 Definition of the argument
 SequenceNumber

:CAT Hardware

AuthorizeSales(sequenceNumber, amount, tax, timeout)

open(logicalName)

open(logicalName)

claim(timeout)

claim(timeout)

setDeviceEnabled(true)

setDeviceEnabled(true)

send commands to
physical CAT

 After human actor swipes the card,
 the device sends the purchase amount
 and tax to approval agency using the
 communications device.

Set properties on
return from successful
authorization.Check properties

on successful return.

AuthorizeSales(sequenceNumber, amount, tax, timeout)

Unified POS, v1.15.1 Beta1 10 - 15

10.3.7 CAT State Diagram

The following diagram depicts the CAT states.

open()

close()

claim()

release()

close()

clearOutput()/set DeviceEnabled (false)

/set DeviceEnabled (true)

accessDailyLog()

authorizeXyz(),
checkCard()Synchronous

Mode

authorizeXyz(),
checkCard()

release()

close()

Async Mode

Closed Opened Claimed

EnabledLogging
Processing

Clear Output
Processing

Done delivering event

Method processing

ErrorEvent
Processing

OutputCompleteEvent
Processing

10 - 16 Unified POS, V1.15.1 Beta1

10.4 Properties (UML attributes)

10.4.1 AccountNumber Property Updated in Release 1.9

Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.
Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.2 AdditionalSecurityInformation Property Updated in Release 1.7

Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before issuing an
authorization method. Also, data obtained from the CAT device and not stored in any other property
as the result of an authorization operation (for example, the account code for a loyalty program) can
be provided to an application by storing it in this property. Since the data stored here is device
specific, this should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAdditionalSecurityInformation Property.

10.4.3 ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }
Remarks This property is initialized to an empty string by the open method and is updated when an

authorization operation successfully completes.
Electronic Money Device: Approval Code for the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 10 - 17

10.4.4 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }
Remarks If true, the authorization methods will run asynchronously.

If false, the authorization methods will run synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also Authorization Methods.

10.4.5 Balance Property Added in Release 1.9

Syntax Balance: currency { read-only, access after open }
Remarks Electronic Money Device: The balance of Credit Card.
Errors A UposException may be thrown when this property is accessed. For further information, see “

Errors” on page 1- 16.

10.4.6 CapAdditionalSecurityInformation Property

Syntax CapAdditionalSecurityInformation: boolean { read-only, access after open }

Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise it is false.

This property is initialized by open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also AdditionalSecurityInformation Property.

10.4.7 CapAuthorizeCompletion Property

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also authorizeCompletion Method.

10 - 18 Unified POS, V1.15.1 Beta1

10.4.8 CapAuthorizePreSales Property

Syntax CapAuthorizePreSales: boolean { read-only, access after open }

Remarks If true, the authorizePreSales method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also authorizePreSales Method.

10.4.9 CapAuthorizeRefund Property

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page1-16.

See Also authorizeRefund Method.

10.4.10 CapAuthorizeVoid Property

Syntax CapAuthorizeVoid: boolean { read-only, access after open }
Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also authorizeVoid Method.

10.4.11 CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }
Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also authorizeVoidPreSales Method.

Unified POS, v1.15.1 Beta1 10 - 19

10.4.12 CapCashDeposit Property Added in Release 1.9

Syntax CapCashDeposit: boolean { read-only, access after open }
Remarks Electronic Money Device: Show the device has charged method by cashDeposit method or not. If

true, the cashDeposit method is implemented, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also cashDeposit Method.

10.4.13 CapCenterResultCode Property

Syntax CapCenterResultCode: boolean { read-only, access after open }
Remarks If true, the CenterResultCode property has been implemented; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also CenterResultCode Property.

10.4.14 CapCheckCard Property

Syntax CapCheckCard: boolean { read-only, access after open }
Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also checkCard Method.

10.4.15 CapDailyLog Property

Syntax CapDailyLog: int32 { read-only, access after open }
Remarks Shows the daily log ability of the device.

Value Meaning
CAT_DL_NONE The CAT device does not have the daily log functions.
CAT_DL_REPORTING The CAT device only has an intermediate total function which reads

 the daily log but does not erase the log.
CAT_DL_SETTLEMENT The CAT device only has the “final total” and “erase daily log”

functions.
CAT_DL_REPORTING_SETTLEMENT

 The CAT device has both the intermediate total function and the final
 total and erase daily log function.

This property is initialized by the open method.

10 - 20 Unified POS, V1.15.1 Beta1

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DailyLog Property, accessDailyLog Method.

10.4.16 CapInstallments Property

Syntax CapInstallments: boolean { read-only, access after open }
Remarks If true, the item “Installments” which is stored in the DailyLog property as the result of

accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DailyLog Property.

10.4.17 CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }
Remarks Electronic Money Device: If true, the device has a security lock and the device can set the lock

using the lockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also lockTerminal Method.

10.4.18 CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }
Remarks Electronic Money Device: If true, the device can notify the condition of the log by the LogStatus

property, otherwise false. This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also LogStatus Property.

10.4.19 CapPaymentDetail Property

Syntax CapPaymentDetail: boolean { read-only, access after open }
Remarks If true, the device can notify the condition of the log by the LogStatus property, otherwise false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also PaymentDetail Property.

Unified POS, v1.15.1 Beta1 10 - 21

10.4.20 CapTaxOthers Property

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result of access
DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the authorization
methods. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DailyLog Property.

10.4.21 CapTransactionNumber Property

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also TransactionNumber Property.

10.4.22 CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the TrainingMode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also TrainingMode Property.

10.4.23 CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: boolean { read-only, access after open }

Remarks Electoric Money Device: If true, the device has a security lock and the device can release the lock
using the unlockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also unlockTerminal Method.

10 - 22 Unified POS, V1.15.1 Beta1

10.4.24 CardCompanyID Property

Syntax CardCompanyID: string { read-only, access after open }

Remarks This property is updated when an authorization operation successfully completes. It shows credit
card company ID.

The length of the ID string varies depending upon the CAT device.

This property is initialized to an empty string by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.25 CenterResultCode Property

Syntax CenterResultCode: string { read-only, access after open }

Remarks Contains the code from the approval agency. Check the approval agency for the actual codes to be
stored.

This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 10 - 23

10.4.26 DailyLog Property Updated in Release 1.15.1

Syntax DailyLog: string { read-only, access after open }
Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13 decimal)+LF(10

decimal) for each transaction and is stored in ASCII code. The detailed data of each transaction is
comma separated [i.e., delimited by “,” (44)].
The details of one transaction are shown as follows:

 Notes from the previous table:
1) Format

Some CAT devices may not support seconds by the internal clock. In that case, the seconds field
of the transaction date is filled with “00.”

2) Additional data
The area where the CAT device stores the vendor specific data. This enables an application to
receive data other than that defined in this specification. The data stored here is vendor specific
and should not be used for development which places an importance on portability.

 No Item Property Corresponding Cap Property
1 Card company ID CardCompanyID None
2 Transaction type TransactionType None
3 Transaction date

Note 1)
None None

4 Transaction number
Note 3)

TransactionNumber CapTransactionNumber

5 Payment condition PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date

Note 5)
None None

9 Account number AccountNumber None
10 Amount

Note 4)
The argument Amount of the
authorization method or the amount
actually approved.

None

11 Tax/others
Note 3)

The argument TaxOthers of the
authorization method.

CapTaxOthers

12 Installments
Note 3)

None CapInstallments

13 Additional data
Note 2)

AdditionalSecurityInformation CapAdditionalSecurity
Information

Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

10 - 24 Unified POS, V1.15.1 Beta1

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data. In such instances,
the item cannot be displayed so the next comma delimiter immediately follows. For example,
if “Amount” is 1234 yen and “Tax/others” is missing and “Installments” is 2, the description
will be “1234,,2.” This makes the description independent of Cap property and makes the
position of each data item consistent.

4) Amount
Amount always includes “Tax/others” even if item 11 is present.

If the JPY is a currency and actual amount value is 12345 yen, then in case amount 64bit
integer value is “123450000” and its string values are “12345.00” or “12345.0000” or “12345”
or “123450000”.
If the USD is a currency and actual amount value is 1234.56 USD, then in case amount 64bit
integer value is “12345600” and its string values are “1234.56” or “1234.5600” or “12345600”.

5) Purchase date
The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

Item Description Meaning
Card company ID
Transaction type
Transaction date
Transaction number
Payment condition
Slip number
Approval code
Purchase date
Account number

102 JCB
CAT_TRANSACTION_SALES Purchase
19980116134530 1/16/199813:45:30
123456 123456
CAT_PAYMENT_INSTALLMENT_1 Installment 1
12345 12345
0123456 0123456
None None
1234123412341234 1234-1234-1234-1234

Amount
JPY

12345.00 or 12345.0000 or 12345
123450000

12345 JPY

USD 12345.00 or 12345.0000 or
123450000

12345.00 USD

Tax/others
Number of payments
Additional data

None None
2 2
12345678 Specific information

Unified POS, v1.15.1 Beta1 10 - 25

The actual data stored in DailyLog will be as follows:

Electronic Money Device: Setting DealingLog which is a result of the Electronic Money Device
which does not have the communication module for closing processing done closing processing. It
may be the device which is enciphered DealingLog to everything except for Center.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapDailyLog Property, accessDailyLog Method.

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

10 - 26 Unified POS, V1.15.1 Beta1

10.4.27 LogStatus Property Added in Release 1.9

Syntax LogStatus: int32 { read-only, access after open }
Remarks Electronic Money Device: This property shows the status of the DealingLog of the device.

Value Meaning
CAT_LOGSTATUS_OK DealingLog has enough capacity.
CAT_LOGSTATUS_NEARFULL DealingLog is nearly full.
CAT_LOGSTATUS_FULL DealingLog is full.
This property is initialized by the open method and kept current while the device is enabled.
If DealingLog becomes full, depending on the device, the settlement processing may not be able to
operate.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also StatusUpdateEvent Event.

10.4.28 PaymentCondition Property Updated in Release 1.9

Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization operation.

This property will be set to one of the following values. See PaymentDetail for the detailed
payment string that correlates to the following PaymentCondition values.
Value Meaning
CAT_PAYMENT_LUMP Lump-sum
CAT_PAYMENT_BONUS_1 Bonus 1
CAT_PAYMENT_BONUS_2 Bonus 2
CAT_PAYMENT_BONUS_3 Bonus 3
CAT_PAYMENT_BONUS_4 Bonus 4
CAT_PAYMENT_BONUS_5 Bonus 5
CAT_PAYMENT_INSTALLMENT_1 Installment 1
CAT_PAYMENT_INSTALLMENT_2 Installment 2
CAT_PAYMENT_INSTALLMENT_3 Installment 3
CAT_PAYMENT_BONUS_COMBINATION_1

Bonus combination payments 1
CAT_PAYMENT_BONUS_COMBINATION_2

Bonus combination payments 2
CAT_PAYMENT_BONUS_COMBINATION_3

Bonus combination payments 3
CAT_PAYMENT_BONUS_COMBINATION_4

Bonus combination payments 4
CAT_PAYMENT_ REVOLVING Revolving
CAT_PAYMENT_DEBIT Debit card
CAT_PAYMENT_ELECTRONIC_MONEY Electronic Money

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also PaymentDetail Property.

Unified POS, v1.15.1 Beta1 10 - 27

10.4.29 PaymentDetail Property Updated in Release 1.15.1

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation. Payment details vary
depending on the value of PaymentCondition. The data will be stored as comma separated ASCII
code. An empty string means that no data is stored and represents a string with zero length data.

*Maximum 6 installments

PaymentCondition PaymentDetail
CAT_PAYMENT_LUMP An empty string
CAT_PAYMENT_BONUS_1 An empty string
CAT_PAYMENT_BONUS_2 Number of bonus payments
CAT_PAYMENT_BONUS_3 1st bonus month
CAT_PAYMENT_BONUS_4* Number of bonus payments, 1st bonus month, 2nd bo-

nus month, 3rd bonus month, 4th bonus month, 5th bo-
nus month, 6th bonus month

CAT_PAYMENT_BONUS_5* Number of bonus payments, 1st bonus month, 1st bo-
nus amount, 2nd bonus month, 2nd bonus amount, 3rd
bonus month, 3rd bonus amount, 4th bonus month, 4th
bonus amount, 5th bonus month, 5th bonus amount, 6th
bonus month, 6th bonus amount

CAT_PAYMENT_INSTALLMENT_1 1st billing month, Number of payments
CAT_PAYMENT_INSTALLMENT_2* 1st billing month, Number of payments, 1st amount,

2nd amount, 3rd amount, 4th amount, 5th amount, 6th
amount

CAT_PAYMENT_INSTALLMENT_3 1st billing month, Number of payments, 1st amount
CAT_PAYMENT_BONUS_COMBINATION_1 1st billing month, Number of payments
CAT_PAYMENT_BONUS_COMBINATION_2 1st billing month, Number of payments, bonus amount
CAT_PAYMENT_BONUS_COMBINATION_3* 1st billing month, Number of payments, number of bo-

nus payments, 1st bonus month, 2nd bonus month, 3rd
bonus month, 4th bonus month, 5th bonus month, 6th
bonus month

CAT_PAYMENT_BONUS_COMBINATION_4* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 1st bonus amount, 2nd
bonus month, 2nd bonus amount, 3rd bonus month, 3rd
bonus amount, 4th bonus month, 4th bonus amount, 5th
bonus month, 5th bonus amount, 6th bonus month, 6th
bonus amount

CAT_PAYMENT_REVOLVING An empty string
CAT_PAYMENT_DEBIT An empty string
CAT_PAYMENT_ELECTRONIC_MONEY An empty string

10 - 28 Unified POS, V1.15.1 Beta1

The payment types and names vary depending on the CAT device. The following are the payment types and
terms available for CAT devices. Note that there are some differences between UnifiedPOS terms and those used
by the CAT devices. The goal of this table is to synchronize these terms.

G
en

er
al

 P
ay

m
en

t C
at

eg
or

y

En
try

 it
em

Pa
ym

en
tC

on
di

tio
n

V
al

ue
CAT
Name

CAT
(Old CAT)

G-CAT JET-S SG-CAT Master-T

Credit
Card

Not
specified

Not
specified

JCB VISA MASTER

UnifiedPOS
Term

Card Company Terms

Lump-
sum

(None) 10 Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum

Bonus (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1

Number of
bonus
payments

22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2

Bonus
month(s)

23 Bonus 3 Bonus 3 Does not ex-
ist.

Does not ex-
ist.

Bonus 3 Bonus 3

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4
(Up to two
entries for
bonus
month)

Bonus 4

Unified POS, v1.15.1 Beta1 10 - 29

Number of
bonus
payments

Bonus
month (1)

Bonus
amount
(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25 Bonus 5 Bonus 5 Does not
 exist.

Does not
 exist.

Does not
 exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1

10 - 30 Unified POS, V1.15.1 Beta1

Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62 Installment 2 Installment 2 Does not
 exist.

Does not
 exist.

Does not
 exist.

Does not
 exist.

Payment
start
month

Number of
payments

Initial
amount

63 Installment 3 Installment 3 Installment 2 Installment 2 Does not
 exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31 Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32 Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

Unified POS, v1.15.1 Beta1 10 - 31

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33 Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

10 - 32 Unified POS, V1.15.1 Beta1

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 1-16.

See Also CapPaymentDetail Property, DailyLog Property

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34 Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4
(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None) 80 Revolving Revolving Revolving Revolving Revolving Revolving

Debit (None) 110 Debit (Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

Unified POS, v1.15.1 Beta1 10 - 33

10.4.30 PaymentMedia Property Updated in Release 1.9

Syntax PaymentMedia: int32 { read-write, access after open }
Remarks Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an approval method
call. “None specified” means that payment media will be determined by the CAT device, not by the
POS application.
Value Meaning
CAT_MEDIA_UNSPECIFIED None specified.
CAT_MEDIA_CREDIT Credit card.
CAT_MEDIA_DEBIT Debit card.
CAT_MEDIA_ELECTRONIC_MONEY

Electronic Money.

This property is initialized to CAT_MEDIA_UNSPECIFIED by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

10.4.31 SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }
Remarks Stores a “sequence number” as the result of each method call. This number needs to be checked by

an application to see if it matches with the argument sequenceNumber of the originating method.
If the “sequence number” returned from the CAT device is not numeric, the CAT control set this
property to zero. This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.32 SettledAmount Property Added in Release 1.9

Syntax SettledAmount: currency { read-only, access after open }
Remarks Electronic Money Device: Setting real amount of the settlement.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
See Also authorizeSales Method, cashDeposit Method.

10 - 34 Unified POS, V1.15.1 Beta1

10.4.33 SlipNumber Property Updated in Release 1.7

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.
This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.34 TrainingMode Property

Syntax TrainingMode: boolean { read-write, access after open }

Remarks If true, each operation will be run in training mode; otherwise each operation will be run in normal
mode.

TrainingMode needs to be explicitly set to false by an application to exit from training mode,
because it will not automatically be set to false after the completion of an operation.

This property will be initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapTrainingMode is false.

10.4.35 TransactionNumber Property

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 10 - 35

10.4.36 TransactionType Property Updated in Release 1.10

Syntax TransactionType: int32 { read-only, access after open }

Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an authorization
operation successfully completes.

This property will be set to one of the following values.

Value Meaning
CAT_TRANSACTION_SALES Sales
CAT_TRANSACTION_VOID Cancellation
CAT_TRANSACTION_REFUND Refund purchase
CAT_TRANSACTION_COMPLETION Purchase after approval
CAT_TRANSACTION_PRESALES Pre-authorization
CAT_TRANSACTION_CHECKCARD Card Check
CAT_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
CAT_TRANSACTION_CASHDEPOSIT Charge

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

10 - 36 Unified POS, V1.15.1 Beta1

10.5 Methods (UML operations)

10.5.1 accessDailyLog Method Updated in Release 1.9

Syntax accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber The sequence number to get daily log.

type Specify whether the daily log is intermediate total or final total and erase.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Gets daily log from CAT.
Daily log will be retrieved and stored in DailyLog as specified by sequenceNumber.
When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.
Application must specify one of the following values for type for daily log type (either intermediate
total or adjustment). Legal values depend upon the CapDailyLog value.
Electronic Money Device: Gets the DealingLog from the Electronic Money Device to send to the
Center. If the Electronic Money Device has communication capabilities, the DealingLog will be
sent from the Electronic Money Device to the Center and nothing is stored in the DailyLog.
Otherwise, the DealingLog is stored in the DailyLog Property.
Value Meaning
CAT_DL_REPORTING Intermediate total.
CAT_DL_SETTLEMENT Final total and erase.

Electronic Money Device: Closing DealingLog of the Electronic
Money device.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported type or timeout parameter was specified, or

CapDailyLog is false.
E_TIMEOUT No response was received from CAT during the specified timeout time in

milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapDailyLog Property, DailyLog Property.

Unified POS, v1.15.1 Beta1 10 - 37

10.5.2 authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency, taxOthers: currency,
timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or
 CapAuthorizeCompletion is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.

10 - 38 Unified POS, V1.15.1 Beta1

10.5.3 authorizePreSales Method

Syntax authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizePreSales is
　　　　　 false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizePreSales Property.

　　　　　　

Unified POS, v1.15.1 Beta1 10 - 39

10.5.4 authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers: 　　　　
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　　　
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeRefund is

false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

10 - 40 Unified POS, V1.15.1 Beta1

10.5.5 authorizeSales Method

Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxOthers: 　　　　　　　　
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 　　
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

 Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL　 Invalid timeout parameter was specified.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

Unified POS, v1.15.1 Beta1 10 - 41

10.5.6 authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers: 　　　　　　　
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoid is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.

10 - 42 Unified POS, V1.15.1 Beta1

10.5.7 authorizeVoidPreSales Method

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency, 　　　　　　　　　　
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have not implemented
the pre-authorization approval cancellation. Refer to the documentation supplied with CAT device
and / or CAT control.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoidPreSales
 is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales Property.

Unified POS, v1.15.1 Beta1 10 - 43

10.5.8 cashDeposit Method Added in Release 1.9

Syntax cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for charge.
amount Amount of money for charge.
timeout The maximum waiting time (in milliseconds) until the response is

received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Chargings.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait forever until the
Electronic Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCashDeposit is false.
E_TIMEOUT No response was received from CAT during the specified timeout time in

milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapCashDeposit Property.

10 - 44 Unified POS, V1.15.1 Beta1

10.5.9 checkCard Method Updated in Release 1.9

Syntax checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Card Check is intended.

Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The Balance will be
stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCheckCard is false.
E_TIMEOUT No response was received from CAT during the specified timeout time in

milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also Balance Property, CapCheckCard Property.

Unified POS, v1.15.1 Beta1 10 - 45

10.5.10 lockTerminal Method Added in Release 1.9

Syntax lockTerminal ():
void { raises-exception, use after open-claim-enable }

Remarks Sets the security lock. When locked, the Electronic Money Device cannot accept any commands.

AdditionalSecurityInformation property is used when key information is required.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL The Electronic Money Device does not have a security lock function.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapLockTerminal Property.

10.5.11 unlockTerminal Method Added in Release 1.9

Syntax unlockTerminal ():
void { raises-exception, use after open-claim-enable }

Remarks Releases the security lock.

AdditionalSecurityInformation property is used when key information is required.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL The Electronic Money Device does not have a security lock function.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapUnlockTerminal Property.

10 - 46 Unified POS, V1.15.1 Beta1

10.6 Events (UML interfaces)

10.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific CAT Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber and the Service.

This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s CAT devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method

10.6.2 ErrorEvent Updated in Release 1.9

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a CAT error has been detected and suitable response by the application
is necessary to process the error condition.

Attributes This event contains the following attributes:
Attributes Type Description
ErrorCode int32 The code which caused the error event. See ErrorCode for the

values.
ErrorCodeExtended int32 The extended code which caused the error event. See

ErrorCodeExtended below for values.
ErrorLocus int32 EL_OUTPUT is specified. An error occurred during

asynchronous action.
ErrorResponse int32 Pointer to the error event response. See ErrorResponse below for

values.

Unified POS, v1.15.1 Beta1 10 - 47

If ErrorCode is E_EXTENDED, ErrorCodeExtended will be set to one of the following values:

Value Meaning
ECAT_CENTERERROR

An error was returned from the approval agency. The detail error code is
defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never returned so long
as CAT control is working correctly.

ECAT_RESET CAT was stopped during processing by CAT reset key (stop key) and so
on.

ECAT_COMMUNICATIONERROR
Communication error has occurred between the approval agency and
CAT.

ECAT_DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has been stopped and
the value of DailyLog property is uncertain.
Electronic Money Device:
A failure will occur if the DealingLog on the device is full and the device
is attempting to be closed.

ECAT_DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close settlement.

ECAT_OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted that is over the
chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default value of
ER_RETRY. An application may set one of the following values.

Value Meaning
ER_RETRY Retries the asynchronous processing. The error state is exited.

ER_CLEAR Clear the asynchronous processing. The error state is exited.

Remarks Fired when an error is detected while processing an asynchronous authorize group method or the
accessDailyLog method. The control's State transitions into the error state.

See Also “Device Output Models” on page 1- 21, “Device Information Reporting Model” on page 25.

10 - 48 Unified POS, V1.15.1 Beta1

10.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that is was processed by the device successfully.

See Also “Device Output Models” on page 21.

10.6.4 StatusUpdateEvent Updated in Release 1.9

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT device.

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the Electronic Money
Device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description In Chapter 2.

Electronic Money Device:
The Status parameter contains the DealingLog status condition.
Value Meaning
CAT_LOGSTATUS_OK DealingLog is enough capacity.
CAT_LOGSTATUS_NEARFULL

DealingLog is nearly full.
CAT_LOGSTATUS_FULL DealingLog is full.

Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page 15.

Unified POS, v1.15.1 Beta1 11 - 1

11 Check Scanner

11.1 General
This Chapter defines the Check Scanner device category.

11.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.7 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.7 open
Claimed: boolean { read-only } 1.7 open
DataCount: int32 { read-only } 1.7 open
DataEventEnabled: boolean { read-write } 1.7 open
DeviceEnabled: boolean { read-write } 1.7 open & claim
FreezeEvents: boolean { read-write } 1.7 open
OutputID: int32 { read-only } 1.7 Not supported
PowerNotify: int32 { read-write } 1.7 open
PowerState: int32 { read-only } 1.7 open
State: int32 { read-only } 1.7 --
DeviceControlDescription: string { read-only } 1.7 --
DeviceControlVersion: int32 { read-only } 1.7 --
DeviceServiceDescription: string { read-only } 1.7 open
DeviceServiceVersion: int32 { read-only } 1.7 open
PhysicalDeviceDescription: string { read-only } 1.7 open
PhysicalDeviceName: string { read-only } 1.7 open

11 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After

CapAutoContrast: boolean { read-only } 1.9 open
CapAutoGenerateFileID: boolean { read-only } 1.7 open
CapAutoGenerateImageTagData: boolean { read-only } 1.7 open
CapAutoSize: boolean { read-only } 1.7 open
CapColor: int32 { read-only } 1.7 open
CapConcurrentMICR: boolean { read-only } 1.7 open
CapContrast: boolean { read-only } 1.9 open
CapDefineCropArea: boolean { read-only } 1.7 open
CapImageFormat: int32 { read-only } 1.7 open
CapImageTagData: boolean { read-only } 1.7 open
CapMICRDevice: boolean { read-only } 1.7 open
CapStoreImageFiles: boolean { read-only } 1.7 open
CapValidationDevice: boolean { read-only } 1.7 open
Color: int32 { read-write } 1.7 open
ConcurrentMICR: boolean { read-write } 1.7 open
Contrast: int32 { read-write } 1.9 open & enable
CropAreaCount: int32 { read-only } 1.7 open
DocumentHeight: int32 { read-write } 1.7 open
DocumentWidth: int32 { read-write } 1.7 open
FileID: string { read-write } 1.7 open
FileIndex: int32 { read-write } 1.7 open
ImageData: binary { read-only } 1.7 open
ImageFormat: int32 { read-write } 1.7 open
ImageMemoryStatus: int32 { read-only } 1.7 open & claim
ImageTagData string { read-write } 1.7 open
MapMode: int32 { read-write } 1.7 open
MaxCropAreas: int32 { read-only } 1.7 open
Quality: int32 { read-write } 1.7 open
QualityList: string { read-only } 1.7 open
RemainingImagesEstimate: int32 { read-only } 1.7 open

Unified POS, v1.15.1 Beta1 11 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.7

close ():
void { raises-exception, use after open }

1.7

claim (timeout: int32):
void { raises-exception, use after open }

1.7

release ():
void { raises-exception, use after open, claim }

1.7

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.7

clearInput ():
void { raises-exception, use after open, claim, enable }

1.7

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.7

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
beginInsertion (timeout: int32):
 void { raises-exception, use after open, claim, enable }

1.7

beginRemoval (timeout: int32):
 void { raises-exception, use after open, claim, enable }

1.7

clearImage (by: int32):
 void { raises-exception, use after open, claim, enable }

1.7

defineCropArea (cropAreaID: int32, x: int32, y: int32, cx: int32, cy: int32):
 void { raises-exception, use after open, claim, enable }

1.7

endInsertion ():
 void { raises-exception, use after open, claim, enable }

1.7

endRemoval ():
 void { raises-exception, use after open, claim, enable }

1.7

11 - 4 Unified POS, V1.15.1 Beta1

retrieveImage (cropAreaID: int32):
 void { raises-exception, use after open, claim, enable }

1.7

retrieveMemory(by: int32):
 void { raises-exception, use after open, claim, enable }

1.7

storeImage (cropAreaID: int32):
 void { raises-exception, use after open, claim, enable }

1.7

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent
 Status: int32 { read-only }

1.7

upos::events::DirectIOEvent
 EventNumber:
 Data:
 Obj:

int32
int32
object

{ read-only }
{ read-write }
{ read-write }

1.7

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{ read-only }
{ read-only }
{ read-only }
{ read-write }

1.7

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent
 Status: int32 { read-only }

1.7

Unified POS, v1.15.1 Beta1 11 - 5

11.3 General Information
The Check Scanner programmatic name is “CheckScanner”.

11.3.1 Capabilities

The primary purpose of this device is to capture the image of a personal or business check for Electronic Check
Conversion. However, other documents (vouchers, signature receipts, etc.) may be scanned if they fall within the
capture size parameters of the Check Scanner. Therefore, in the description used in this standard the overall term
“document” may be used to indicate the multiplicity of uses of which the device may be capable. When the term
“check” is used, it should be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:

• Reads image data from a Check Scanner device.

• Has programmatic control of check insertion, reading, and removal. For some Check Scanner devices, this will
 require no processing in the Control since the device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:

• The Check Scanner may store successive check images in its hardware memory.

• Cropping of areas of interest within the check image may be supported by the Check Scanner to aid in the
 reduction of the memory needed to transmit or store the check image data.

• The retrieveImage data is deposited in the ImageData property in binary form.

• The Check Scanner may allow for retrieval of images stored in its hardware memory.

• The Check Scanner may support Image tag data information to identify the check image.

• The application reads the contents of ImageData property when it wants to further process the check image.

• The Check Scanner device may be physically attached to or incorporated into a check validation print device
 and/or a MICR device. If this is the case, once a check is inserted via Check Scanner Control methods, the
 check can still be used by the Printer and MICR Control prior to check removal.

11 - 6 Unified POS, V1.15.1 Beta1

11.3.2 Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner classes.

UposConst
(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>> <<uses>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

UposException
(from upos)

<<exception>>
<<sends>>

CheckScannerConst
(from upos)

<<utility>>

CheckScannerControl

<<capability>> CapAutoContrast : boolean
<<capability>> CapAutoGenerateFileID : boolean
<<capability>> CapAutoGenerateImageTagData : boolean
<<capability>> CapAutoSize : boolean
<<capability>> CapColor : int32
<<capability>> CapConcurrentMICR : boolean
<<capability>> CapContrast : boolean
<<capability>> CapDefineCropArea : boolean
<<capability>> CapImageFormat : int32
<<capability>> CapImageTagData : boolean
<<capability>> CapMICRDevice : boolean
<<capability>> CapStoreImageFiles : boolean
<<capability>> CapValidationDevice : boolean
<<prop>> Color : int32
<<prop>> ConcurrentMICR : boolean
<<prop>> Contrast : int32
<<prop>> CropAreaCount : int32
<<prop>> DocumentHeight : int32
<<prop>> DocumentWidth : int32
<<prop>> FileID : string
<<prop>> FileIndex : int32
<<prop>> ImageData : binary
<<prop>> ImageFormat : int32
<<prop>> ImageMemoryStatus : int32
<<prop>> ImageTagData : string
<<prop>> MapMode : int32
<<prop>> MaxCropAreas : int32
<<prop>> Quality : int32
<<prop>> QualityList : string
<<prop>> Remaining ImagesEstimate : int32

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
clearImage(by : int32) : void
defineCropArea(cropAreaID : int32, x : int32, y : int32, cx : int32, cy : int32) : void
endInsertion() : void
endRemoval() : void
retrieveImage(cropAreaID : int32) : void
retrieveMemory(by : int32) : void
storeImage(cropAreaID : int32) : void

(from upos)

<<Interface>>

<<fires>>

<<fires>>

<<fires>>

<<fires>>

<<sends>>

<<uses>>

Unified POS, v1.15.1 Beta1 11 - 7

11.3.3 Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model.” One point of difference is that the Check Scanner
Control requires the execution of methods to insert and remove the check for processing. Therefore, this Control
requires more than simply setting the DataEventEnabled property to true in order to receive data. The basic
model is as follows:

• The Check Scanner Control is opened, claimed, and enabled.

• Starting with Version 1.9, the application has the ability to adjust the darkness of the scanned image for
 devices that have the ability to adjust the scan mechanism so that it can darken or lighten the image. The
 CapContrast property controls whether the device supports this feature.

• When the beginInsertion method is called, the Check Scanner is ready to read the check within the specified
 time as indicated by the time-out value. If the check is not inserted before the time-out value expires, a
 UposException is raised.

• In the event of a time-out, the Check Scanner device will remain in a state that allows a check to be inserted.
 The application may provide an operator prompt which requests that a check be inserted. Following this
 prompt, the application would then reissue the beginInsertion method and wait for the check to be inserted.

• Once a check is inserted, the beginInsertion method returns and the application calls the endInsertion
 method, which results in the Check Scanner device exiting the check insertion mode and causes the check
 image to be captured.

• Following the endInsertion method, the scan image data is stored in a working buffer memory area and a
 StatusUpdateEvent will occur to indicate that a successful scan image process has taken place. No

 DataEvent is enqueued since data has not been transferred to the ImageData property at this point.

• The application must use the retrieveImage method to retrieve the current scan image data. However, if
 the check image was not successfully captured by the device, the Control enqueues a ErrorEvent to 　
　indicate the capture was not successful.

• If the AutoDisable property is true, then the device is automatically disabled when the image is
 successfully captured.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is
 true and other event delivery requirements are met. Just before delivering this event, the Control copies
 data into specific properties, and disables further data events by setting the DataEventEnabled property

 to false. This causes subsequent input data to be enqueued by the Control while the application processes
 the current input and associated properties. When the application has finished the current input and is

 ready for more data, it reenables events by setting DataEventEnabled to true.

• If the CapAutoSize property is true, when the DataEvent is delivered, the height and width of the of
 entire captured image are automatically stored in the corresponding DocumentHeight and

 DocumentWidth properties. If the CapAutoSize property is false, the application must manually set the
 DocumentHeight and the DocumentWidth property values prior to the beginInsertion method being
 invoked.

• If the application needs to retrieve the entire or a cropped portion of the captured image, the
 retrieveImage method is called. The image data is sent from the device to the service and stored in the
 ImageData property. When the corresponding DataEvent is delivered, the current image or cropped
 image may be accessed by the application reading the image file contained in the ImageData property.

• If the CapStoreImageFiles property is true, then the current image, or cropped image, can be stored in
 the memory by using the storeImage method.

11 - 8 Unified POS, V1.15.1 Beta1

• Any previously stored image may be retrieved by using the retrieveMemory method. The stored image
 may be identified using the “by” parameter and requesting that the image be located by FileID, FileIndex,

or ImageTagData.

• If CapDefineCropArea is true, then the application can use the defineCropArea method to define crop
 areas in the captured image.

• An ErrorEvent (or events) is (are) enqueued if the Control encounters an error while reading the check,
 and is delivered to the application when the DataEventEnabled property is true and other event delivery

 requirements are met.

• All input data enqueued by the Control may be deleted by calling the clearInput method.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to
 their default values by calling the clearInputProperties method.

• After processing the endInsertion DataEvent, the application may query the CapMICRDevice property to
 determine if the device supports Magnetic Ink Character Recognition. If CapMICRDevice property is true,
 then a MICR read function may be performed in a “single pass” or “multiple pass” cycle but prior to the check
 being removed from the device. If CapConcurrentMICR property is true, then the device is capable of
 supporting a “single pass” MICR read during an image scan. If CapConcurrentMICR property is true and
 ConcurrentMICR property is true, then the MICR data would be read and calling the MICR's
 beginInsertion and endInsertion methods would not be needed to reposition the check for MICR reading.

• Additionally, after processing a DataEvent, the application should query the CapValidationDevice property
 to determine if validation printing can be performed on the check prior to check removal. If this property is
 true, the application may call the Printer Control's beginInsertion and endInsertion methods. This positions
 the check for validation printing. The Printer Control's validation printing methods can then be used to perform
 validation printing.

• If the CapImageTagData property is true, then an identifying name, for example the transaction number, date
 and time, or some other naming element, could be used to identify the image data. The format of the data must
 be conformant to ARTS XML and reside in ImageTagData property.

• Once the check is no longer needed in the device, the application must call beginRemoval of the Check
 Scanner, the MICR (if CapMICRDevice is true), or the POS Printer (if CapValidationDevice is true), also
 specifying a timeout value. This method will raise a UposException if the check is not removed within the
 timeout period. In this case, the application may perform any additional prompting prior to calling the method
 again. Once the check is removed, the application should call the same device’s endRemoval method to take
 the device out of removal mode.

• In order to accommodate many different Check Scanning devices, the application should follow the above
 sequence of method calls even though the device may not physically require one or more of the methods. An
 example may be a Check Scanner that is “auto armed” and is capable of detecting a check present and
 initiating a Check Scan and MICR read cycle automatically. In this case the beginInsertion, endInsertion,
 beginRemoval, and endRemoval method calls may actually do no more than return from the Service.

• The model assumes that the device has a work area that can be used in the following ways:

• When a document is scanned its image will be loaded as raw data into this work area. When the
 retrieveImage method is invoked the data from the work area may be modified by a previously defined
 crop area, as specified by the cropAreaID parameter, and loaded into the ImageData property. The work

 area will still contain the original scanned image data. Additional retrieveImage method calls using
 different crop area criteria can then be accomplished to load the ImageData property.

Unified POS, v1.15.1 Beta1 11 - 9

• The work area contains image data either from a recently scanned image or as a result of a
 retrieveMemory method. Prior to invoking the storeImage method, the FileIndex property is set to the

 correct index number (as maintained by the service) and if used, the FileID and/or ImageTagData
 properties are set. When the storeImage method is invoked the data from the work area may be modified
 by a previously defined crop area, as specified by the cropAreaID parameter, and stored in the device
 memory. The work area will still contain the original scanned image data. Additional storeImage method
 calls using different crop area criteria can then be accomplished to store the image data in the device’s
 memory. The RemainingImagesEstimate property is adjusted to reflect the approximate number
 additional images that may be stored in the device memory based upon the file size history of previously
 stored images.

• When the retrieveMemory method is invoked, the work area is loaded with an image data file that was
 previously stored in the device memory. Either the FileIndex, FileID, or ImageTagData may be used to
 locate the previously stored image. The ImageData property is also loaded with the retrieved image data.

• In order to accommodate the various storage and retrieval architectures that are in use for the Check Scanner
 device class, the model has been designed to allow for three different addressing ways to locate previously
 stored image data: FileIndex, FileID, and ImageTagData.

• The FileIndex is an addressing scheme that is automatically provided by the service to physically store
 and retrieve the file data. The definition of file data in this case includes any and/or all of the following:
 image data, tag data information (that is appended and included with the image data file), and a file
 identification (a file name associated with the image data file). The FileIndex is only used by the service
 to save and retrieve the scan data and its associated data elements.

• The FileID is a “file name” that may be provided automatically by the hardware device or the service. It
 also may be populated by the application prior to a storeImage method being called. Once created it
 remains with the ImageData and can be used to randomly locate a specific file for uploading to the POS
 system and post processing applications.

• The ImageTagData property contains a set of information about the image that has been scanned. It is
 required that the format of the data be XML and compliant to the ARTS Data Dictionary and ARTS
 XML standards to ensure interoperability. Typically, it contains information about when the image was
 captured, e.g., Date and Time, Store number, Lane Number, Clerk identification, etc. This data may be
 pre- or post- appended to the ImageData and remains a part of the combined data file as a record of the
 origin of the data.

11.3.4 Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following constraints:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling
 methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

11 - 10 Unified POS, V1.15.1 Beta1

11.3.5 Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner device.

:CheckScanner :DataEvent StatusUpdateEvent CheckScanner
Service

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. This
means that the platform specific loading/configuration/creation code executed successfully. We also assume
that the application already registered some event handlers with the controls.

Detect check
insertion and
scan check

:ClientApp

1: setDataEventEnabled(true)
2: setDataEventEnabled(true)

12: endInsertion()
13: new

14: set status update event status

15: enqueue StatusUpdateEvent to service's internal queue

3: setMapMode(CHK_MM_ENGLISH) 4: setMapMode(CHK_MM_ENGLISH)

5: defineCropArea(1,0,0,1500,1000) 6: defineCropArea(1,0,0,1500,1000)

7: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

8: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

9: beginInsertion(timeout) 10: beginInsertion(timeout)

11: endInsertion()

16: deliver StatusUpdateEvent [FreezeEvents == false]

17: deliver event to all registered handlers

18: notify client of new event

19: retrieveImage(2) 20: retrieveImage(2)

retrieve the
image within the
second crop
area defined

21: new

22: copy data to new DataEvent

23: enqueue DataEvent to service's internal queue

24: set Check Scanner properties and deliver DataEvent
 [DataEventEnabled == true && FreezeEvents == false]

25: deliver event to all registered handlers
26: notify client of new event

27: storeImage(1) 28: storeImage(1)

29: beginRemoval(timeout) 30: beginRemoval(timeout)

31: indicate user to start removing check

32: endRemoval() 33: endRemoval()

Unified POS, v1.15.1 Beta1 11 - 11

11.3.6 Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.

Idle

[Opened &&
Claimed &&
Enabled]

Begin
Removal

Removal

End
Removal

Begin
Insertion

Insertion

End
Insertion

[Success]
/endInsertion

[Failed]

/endInsertion
/endRemoval

[Success]
/endRemoval

[Failed]

Retrieve
Image Clear ImageStore Image

Define
CropArea

/beginRemoval

[Closed ||
Released ||
Disabled]

/beginInsertion

/retrieveImage
 /clearImage

 /storeImage

/defineCropArea

Retrieve
Image Retrieve Memory

/retrieveMemory

11 - 12 Unified POS, V1.15.1 Beta1

11.4 Properties (UML attributes)

11.4.1 CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the darkness of the
image to provide the best contrast for the image.

If true, then when Contrast is set to CHK_AUTOMATIC_CONTRAST, the device attempts to auto-
matically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapContrast Property, Contrast Property.

11.4.2 CapAutoGenerateFileID Property

Syntax CapAutoGenerateFileID: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to automatically generate a file name that can be used
to reference the file containing the captured image.

If CapAutoGenerateFileID is true, then the device can automatically create a file name for the
captured image file.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also FileID Property.

11.4.3 CapAutoGenerateImageTagData Property

Syntax CapAutoGenerateImageTagData: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to automatically generate tag data used in reference to
the image file for the captured image.

If CapAutoGenerateImageTagData is true, then the device can automatically create image tag
data which can be appended to the image file to provide information about the captured image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ImageTagData Property.

Unified POS, v1.15.1 Beta1 11 - 13

11.4.4 CapAutoSize Property

Syntax CapAutoSize: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to determine the height and width of the document
automatically.

If CapAutoSize is true, then the height and width of the scanned document will be automatically
placed in the DocumentHeight and DocumentWidth properties when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set in the
DocumentHeight and DocumentWidth properties by the application prior to scanning an image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DocumentHeight Property, DocumentWidth Property.

11.4.5 CapColor Property

Syntax CapColor: int32 { read-only, access after open }

Remarks This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning
CHK_CCL_MONO Bi-tonal (B/W)

CHK_CCL_GRAYSCALE Gray scale

CHK_CCL_16 16 Colors

CHK_CCL_256 256 Colors

CHK_CCL_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

See Also Color Property.

11 - 14 Unified POS, V1.15.1 Beta1

11.4.6 CapConcurrentMICR Property

Syntax CapConcurrentMICR: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a Magnetic Ink Character Recognition read during
the image scanning process.
If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning
cycle (single pass scanning). For devices that are both a Check Scanner device and a MICR reader
device, following a check scan the device will automatically pass the MICR data to the MICR
Service. The check will not need to be re-read during the MICR beginInsertion and endInsertion
methods.
If CapConcurrentMICR is false, then it would be necessary to read the MICR data (if the device
supports MICR reading) by using the MICR beginInsertion and endInsertion methods. Usually
the MICR read is performed prior to the Check Scanning process.
This property has no meaning if the CapMICRDevice property is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapMICRDevice Property, ConcurrentMICR Property.

Unified POS, v1.15.1 Beta1 11 - 15

11.4.7 CapContrast Property Added in Release 1.9

Syntax CapContrast: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to lighten or darken the scanned image. This
affects the image regardless of the value of the CapColor property. If true then the darkness of the
image can be adjusted using the Contrast property. If false then the application cannot adjust the
darkness of the image.

Errors A UposException may be thrown when this property is accessed. For further information see
“Errors” on page 1- 16.

See Also CapAutoContrast Property, Contrast Property.

11.4.8 CapDefineCropArea Property

Syntax CapDefineCropArea: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a feature that allows cropping of areas of interest
within the scan image area defined by the DocumentHeight and DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed; otherwise it is set to be
false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.

11.4.9 CapImageFormat Property

Syntax CapImageFormat: int32 { read-only, access after open }

Remarks This capability indicates the image file formats that this device supports. The image data is stored
in the ImageData property using one of the following formats supported by the CapImageFormat
Property:

CapImageFormat is a logical OR combination of any of the following values:

Value Meaning
CHK_CIF_NATIVE Hardware native format
CHK_CIF_TIFF TIFF format
CHK_CIF_BMP BMP format
CHK_CIF_JPEG JPEG format
CHK_CIF_GIF GIF format

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ImageFormat Property

11 - 16 Unified POS, V1.15.1 Beta1

11.4.10 CapImageTagData Property Updated in Release 1.11

Syntax CapImageTagData: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to utilize ARTS XML compliant tag names to
identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the ImageTagData
property, to the image data file stored in the ImageData property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ImageTagData Property, retrieveImage Method, storeImage Method.

11.4.11 CapMICRDevice Property

Syntax CapMICRDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in addition to check
scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning
cycle (single pass scanning). For devices that are both a Check Scanner device and a MICR reader
device, following a check scan the device will automatically pass the MICR data to the MICR
service. The check will not need to be re-read during the MICR beginInsertion and endInsertion
methods.

If CapConcurrentMICR property is false, then it would be necessary to read the MICR data by
using the MICR beginInsertion and endInsertion methods. In this case the MICR read is usually
performed prior to the Check Scanning process. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapConcurrentMICR Property, ConcurrentMICR Property.

11.4.12 CapStoreImageFiles Property

Syntax CapStoreImageFiles: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to store check images in its hardware memory.

If CapStoreImageFiles is true, one or more images can be stored in the memory provided by the
device by using the storeImage method. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also retrieveImage Method, storeImage Method.

Unified POS, v1.15.1 Beta1 11 - 17

11.4.13 CapValidationDevice Property

Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to perform a validation print function on the
check using a print station.

If CapValidationDevice is true, a check does not have to be removed from the Check Scanner
device prior to performing validation printing. For devices that are both a Check Scanner device as
well as a POS Printer, the device will automatically position the check for validation printing after
successfully performing a Check Scanner read. Either the Check Scanner Control’s or the POS
Printer Control’s beginRemoval and endRemoval methods may be called to remove the check
once the process is complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

11.4.14 Color Property

Syntax Color: int32 { read-write, access after open }

Remarks This property is used to select the image scan mode for subsequent document scan operations. The
available options may be affected by the current file type as specified by the ImageFormat
property. Certain file types may not work with all the “colors” that the device may support. It is up
to the application to insure that the proper Color and ImageFormat properties are compatible.
Changing the Color property will not affect any previously stored data currently residing in the
ImageData property.

It may contain one of the following values:

Value Meaning
CHK_CL_MONO Bi-tonal (B/W)
CHK_CL_GRAYSCALE Gray scale
CHK_CL_16 16 Colors
CHK_CL_256 256 Colors
CHK_CL_FULL Full color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapColor Property, ImageFormat Property.

11 - 18 Unified POS, V1.15.1 Beta1

11.4.15 ConcurrentMICR Property

Syntax ConcurrentMICR: boolean { read-write, access after open }

Remarks This property indicates whether a MICR read should be performed at the same time the check image
is captured (single pass operation).
This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check scanning cycle (single
pass scanning). For devices that are both a Check Scanner device and a MICR reader device,
following a check scan the device will automatically pass the MICR data to the MICR Service. The
check will not need to be re-read during the MICR beginInsertion and endInsertion methods.
If ConcurrentMICR is false and MICR data is required, then it is necessary to read MICR data by
using the MICR beginInsertion and endInsertion method calls. In this case the MICR read is
usually performed prior to the Check Scanning process.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapConcurrentMICR Property, CapMICRDevice Property.

11.4.16 Contrast Property Added in Release 1.9

Syntax Contrast: int32 { read-write, access after enable }

Remarks This property allows the application to adjust the darkness of the image. The property is valid only
if the CapContrast property is true.
A value of 0 sets or indicates that the device will generate the lightest image possible. A value of 100
sets or indicates that the device will generate the darkest image possible. All values between 0 and 100
produce images with varying degrees of darkness. A value of 50 should produce an image that is the
optimal brightness for the best image under normal circumstances.
If the CapAutoContrast property is true then this property can be set to CHK_AUTOMATIC_CON-
TRAST to allow the device to automatically adjust the darkness of the image based on sensing of the
paper to produce the optimal brightness for the best image under normal circumstances.
If CapAutoContrast is false, then attempting to set this property to CHK_AUTOMATIC_CONTRAST
is illegal.
If CapAutoContrast is true, then this property is initialized to CHK_AUTOMATIC_CONTRAST
when the device is enabled. If CapAutoContrast is false, this property is initialized either to 50 or to a
user configured value when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information see
“Errors” on page 1- 16.

See Also CapAutoContrast Property, CapContrast Property.

Unified POS, v1.15.1 Beta1 11 - 19

11.4.17 CropAreaCount Property

Syntax CropAreaCount: int32 { read-only, access after open }

Remarks This property indicates the number of Crop areas that have been defined which may be applied to
the captured image.
If CapDefineCropArea is false, then this property is always zero.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDefineCropArea Property, MaxCropAreas Property, defineCropArea Method.

11.4.18 DocumentHeight Property

Syntax DocumentHeight: int32 { read-write, access after open}

Remarks This property is used to define the height of the document scanned or the height of a document to
scan. It is expressed in the unit of measure as defined by the MapMode property.
If CapAutoSize is true, then the height of the scanned document will be automatically placed in the
DocumentHeight property when the image is captured.
If CapAutoSize is false, the height of the document can be manually set in the DocumentHeight
property by the application prior to scanning a document.
This property is initialized to the maximum height supported by the device by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapAutoSize Property, MapMode Property.

11.4.19 DocumentWidth Property

Syntax DocumentWidth: int32 { read-write, access after open}

Remarks This property is used to define the width of the document scanned or the width of a document to
scan. It is expressed in the unit of measure as defined by the MapMode property.
If CapAutoSize is true, then the width of the scanned document will be automatically placed in the
DocumentWidth property when the image is captured.
If CapAutoSize is false, the width of the document can be manually set in the DocumentWidth
property by the application prior to scanning an image.
This property is initialized to the maximum width supported by the device by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapAutoSize Property, MapMode Property.

11 - 20 Unified POS, V1.15.1 Beta1

11.4.20 FileID Property

Syntax FileID: string { read-write, access after open }

Remarks This property is used to store a “file name” associated with the image data file. If the application
chooses to create the data for this property, it must set the FileID property prior to calling the
storeImage method.

After a retrieveMemory method call the FileID property will be set to the image data file name if
available, otherwise it will be set to an empty string. Its value is set prior to a DataEvent being
delivered to the application.

If the CapAutoGenerateFileID property is true then the FileID will automatically be generated by
the hardware device or the service when the image is scanned.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapAutoGenerateFileID Property, retrieveImage Method, retrieveMemory Method, storeImage
Method.

11.4.21 FileIndex Property Updated in Release 1.13

Syntax FileIndex: int32 { read-write, access after open }

Remarks This property is used to store a file location reference to the image data file when either the
storeImage or retrieveMemory methods are called. Its value is set prior to a DataEvent being
delivered to the application.

The FileIndex property is used only by the service in conjunction with the device to manage the
storage and retrieval of an image data file. The application may write a value into the FileIndex
property. However, it is normally the responsibility of the service to ensure that a unique integer
value is used to store or retrieve the image file.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also clearImage Method, retrieveImage Method, retrieveMemory Method storeImage Method.

Unified POS, v1.15.1 Beta1 11 - 21

11.4.22 ImageData Property

Syntax ImageData: binary { read-only, access after open }1

Remarks This property is used to store the image data after the retrieveImage or retrieveMemory methods
are called. If no image data was available, the ImageData property will be set to zero length (or
empty). Its value is set prior to a DataEvent being delivered to the application.

This property is initialized to zero length by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also retrieveImage Method, DataEvent.

11.4.23 ImageFormat Property

Syntax ImageFormat: int32 { read-write, access after open }

Remarks This property is used to define the data format of the image file that the device will use when it
captures an image. The availability of acceptable file types is specified in the CapImageFormat
property.

The ImageFormat property must be set before a document is scanned. Any previously stored data
in the ImageData property will not be affected by changing the value of the ImageFormat
property.

If the device provides support, it may be one of the following values:

Value Meaning
CHK_IF_NATIVE Hardware native format
CHK_IF_TIFF TIFF format
CHK_IF_BMP BMP format
CHK_IF_JPEG JPEG format
CHK_IF_GIF GIF format

The default value of this property is CHK_IF_TIFF.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapImageFormat Property, Color Property, DataEvent.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

11 - 22 Unified POS, V1.15.1 Beta1

11.4.24 ImageMemoryStatus Property

Syntax ImageMemoryStatus: int32 { read-only, access after open-claim }

Remarks This property is used to indicate the current memory availability status if the device has the ability
to store multiple image files. The ImageMemoryStatus value is only valid if the
CapStoreImageFiles is true.

The following values are supported.

Value Meaning
CHK_IMS_EMPTY The image memory is empty.
CHK_IMS_OK The image memory is has storage available.
CHK_IMS_FULL The image memory is full.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapStoreImageFiles Property, storeImage Method.

11.4.25 ImageTagData Property Updated in Release 1.13

Syntax ImageTagData: string { read-write, access after open }

Remarks This property is used to define a string that specifies the ARTS XML compliant tag name for the
captured image data. The recommended way is to use XML CDATA to transfer this data to the
application to prevent inadvertent parsing of the data.

An example of one possible data set would be:

<![CDATA[
 <Transaction>192345782</Transaction>
 <Operator>35467</Operator>
 <SellingLocation>Store Number 762</SellingLocation>
 <DateTime>2008-11-21T12:21:30.5Z</DateTime>
 <CheckAccountNumber>0089543219</CheckAccountNumber>
 <ImageData>12546a92b7c5........45d3</ImageData>
]]>

Note: The example shown would pass the XML data for the image intact to the application. When
the CDATA constructs were removed, the resultant XML data could then be parsed by another
application process.

The tag name may be specified by the application or auto-generated by the Check Scanner device.
Information contained in the data may refer to the date, time, lane number, location, clerk, or other
information of interest associated with the image at the time of capture.

If the application chooses to create the data for this property, it must set the ImageTagData property
prior to calling the storeImage method. After a retrieveMemory method call, the ImageTagData
property will be set if available, otherwise it will be set to an empty string. Its value is set prior to a
DataEvent being delivered to the application.

Unified POS, v1.15.1 Beta1 11 - 23

If the CapAutoGenerateImageTagData property is true, the ImageTagData will automatically be
generated by the hardware device or the service when the image is scanned.

All ImageTagData information must be formatted using XML that is conformant to the ARTS Data
Model and XML Dictionary. It is the responsibility of the Application and/or Service to encode or
parse the XML data.

Some possible entries from the ARTS XML Dictionary are:
DateTime, SellingLocation, Operator, CheckAccountNumber and Transaction.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapAutoGenerateImageTagData Property, retrieveImage Method, retrieveMemory Method,
storeImage Method.

11.4.26 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }

Remarks This property is used to specify the units of measure that are currently valid for the Check Scanner.

The mapping mode defines the unit of measure used by other properties, such as the
DocumentHeight and DocumentWidth properties.

The following units of measure may be selected for storing the image:

Value Meaning
CHK_MM_DOTS The scanner’s dot width.
CHK_MM_TWIPS 1/1440 of an inch.
CHK_MM_ENGLISH 0.001 inch.
CHK_MM_METRIC 0.01 millimeter.

Note: The value of MapMode for the Check Scanner is initialized to CHK_MM_ENGLISH when
the device is first enabled following the open method. This default value may be different from
other device categories in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DocumentHeight Property, DocumentWidth Property, defineCropArea Method.

11 - 24 Unified POS, V1.15.1 Beta1

11.4.27 MaxCropAreas Property

Syntax MaxCropAreas: int32 { read-only, access after open }

Remarks This property is used to specify the maximum number of crop areas that the device can support.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDefineCropArea Property, CropAreaCount Property, defineCropArea Method.

11.4.28 Quality Property

Syntax Quality: int32 { read-write, access after open }

Remarks This property is used to set the resolution of the device when a scan image is to take place. It is
defined as a dpi (dots per inch) value.

Any previously stored data in ImageData property will not be affected when the Quality property
value is changed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also QualityList Property.

11.4.29 QualityList Property

Syntax QualityList: string { read-only, access after open }

Remarks This property is used to define the resolutions that the Check Scanner is capable of supporting.

The string data consists of comma separated values that indicate the available scanning resolutions
that the device supports measured in dots per inch (dpi). An empty string indicates that resolution
is not selectable.

An example might be “160,320”, which indicates that the device supports 160 dpi and 320 dpi.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Quality Property.

Unified POS, v1.15.1 Beta1 11 - 25

11.4.30 RemainingImagesEstimate Property

Syntax RemainingImagesEstimate: int32 { read-only, access after open }

Remarks This property is used to provide a “best guess” estimate of the remaining number of images that can
be stored. It is updated after every new image is stored or cleared from the device’s available
memory. The RemainingImagesEstimate along with the ImageMemoryStatus properties are
intended to be used by the application to monitor the amount of available image storage.

This property is initialized to a “best guess” estimate of the total number of image files that can be
stored in the device’s memory by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ImageMemoryStatus Property.

11 - 26 Unified POS, V1.15.1 Beta1

11.5 Methods (UML operations)

11.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if successful. otherwise
a UposException is raised. If FOREVER (-1), the method tries to begin insertion mode, then waits
as long as needed until either the check is inserted or an error occurs.

Remarks Called to initiate the document insertion process.

When called, the Check Scanner is made ready to receive a check by opening the Check Scanner’s
check handling “jaws” or activating a Check Scanner’s check insertion mode. This method is paired
with the endInsertion method for controlling the check insertion. Although some Check Scanner
devices do not require this sort of processing, the application should still use these methods to ensure
application portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into insertion mode, a UposException is raised.
Otherwise, check insertion is monitored until either:
• The check is successfully inserted.
• The check is not inserted before timeout milliseconds have elapsed, or an error is reported by

the Check Scanner device. In this case, a UposException is raised, The Check Scanner device
remains in check insertion mode. This allows an application to perform some user interaction
and reissue the beginInsertion method without altering the Check Scanner check handling
mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the CheckScanner is a combination device, the peer device may be

busy.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also beginRemoval Method, endInsertion Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 11 - 27

11.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if successful. otherwise
a UposException is raised. If FOREVER (-1), the method tries to begin removal mode, then waits
as long as needed until either the check is removed or an error occurs.

Remarks Called to initiate the check removal processing.

When called, the Check Scanner is made ready to remove a check by opening the Check Scanner’s
check handling “jaws” or activating a Check Scanner’s check ejection mode. This method is paired
with the endRemoval method for controlling check removal. Although some Check Scanner
devices do not require this sort of processing, the application should still use these methods to ensure
application portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into removal or ejection mode, a UposException is
raised. Otherwise, check removal is monitored until either:
• The check is successfully removed.
• The check is not removed before timeout milliseconds have elapsed, or an error is reported by

the Check Scanner device. In this case, a UposException is raised, The Check Scanner device
remains in check removal mode. This allows an application to perform some user interaction
and reissue the beginRemoval method without altering the Check Scanner check handling
mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the CheckScanner is a combination device, the peer device may be

busy.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.

11 - 28 Unified POS, V1.15.1 Beta1

11.5.3 clearImage Method

Syntax clearImage (by : int32):
void { raises exception, use after open-claim-enable }

Parameter Description
by Indicates how the image file is to be located so that it can be removed from

the storage.

Remarks Called to clear a specific image or all the images in the device memory.

The following values may be selected for by to initiate clearing of the memory:

Value Meaning
CHK_CLR_ALL All images in the device are cleared

CHK_CLR_BY_FILEID
Locate file to be cleared using the FileID property.

CHK_CLR_BY_FILEINDEX
Locate file to be cleared using the FileIndex property.

CHK_CLR_BY_IMAGETAGDATA
Locate file to be cleared using the ImageTagData
property.

Return A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• Device does not support stored images
• Device does not support clearing one image

E_NOEXIST Image was not found.

See Also CapStoreImageFiles Property, FileID Property, FileIndex Property, ImageTagData Property.

Unified POS, v1.15.1 Beta1 11 - 29

11.5.4 defineCropArea Method

Syntax defineCropArea (cropAreaID: int32, x: int32, y: int32, cx: int32, cy: int32):
void { raises exception, use after open-claim-enable }

Parameter Description
cropAreaID The numeric identifier for the defined crop area.

x The starting X-coordinate of the cropping area.

y The starting Y-coordinate of the cropping area.

cx The value added to the “X-coordinate” in order to determine the “X”
endpoint for the cropping area.

cy The value added to the “Y-coordinate” in order to determine the “Y”
endpoint for the cropping area.

If the cropAreaID parameter is set to CHK_CROP_AREA_RESET_ALL, then all the crop area
definitions allowed (as specified by the MaxCropAreas property) will reset their (x,y) and (cx,cy)
values to (0,0) and (DocumentWidth, DocumentHeight) respectively.

If the cropAreaID parameter is set to CHK_CROP_AREA_ENTIRE_IMAGE, then the crop area is
equal to the entire area of the scanned image.

If cx is set to the parameter CHK_CROP_AREA_RIGHT, then the “X” endpoint value will be set
to the value of the DocumentWidth property.

If cy is set to the parameter CHK_CROP_AREA_BOTTOM, then the “Y” endpoint value will be
set to the value of the DocumentHeight property.

Remarks This method is used to establish one or more cropping areas that may be applied to a scanned image.
The values are in MapMode units and use the top left corner of the scanned document as the origin
(0,0). All values are positive.

The defineCropArea method specifies an area of interest that is contained within a crop box and
given an index number for reference. Only the data defined by defineCropArea index number will
be sent when the retrieveImage method is called.

The crop areas should be set before the retrieveImage method is called and will be in effect until
changed.

A crop box cannot contain an area larger than that defined by the current DocumentHeight and
DocumentWidth properties. If the resultant value for the endpoint (x+cx) is greater than the
DocumentWidth value, then the “X” endpoint value will be set to DocumentWidth. If the
resultant value for endpoint (y+cy) is greater than the DocumentHeight value, then the “Y”
endpoint value will be set to DocumentHeight.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also CapDefineCropArea Property, CropAreaCount Property, DocumentHeight Property,
DocumentWidth Property, MapMode Property, MaxCropAreas Property.

11 - 30 Unified POS, V1.15.1 Beta1

11.5.5 endInsertion Method

Syntax endInsertion ():
void { raises exception, use after open-claim-enable }

Remarks Ends the document insertion processing. If this method call is successful, the device will place the
captured image in a working buffer memory area. A StatusUpdateEvent will occur to indicate that
a successful scan image process has taken place. No DataEvent is enqueued since data has not been
transferred to the ImageData property at this point. The application must invoke retrieveImage in
order to populate the ImageData property with the scan image data.

When called, the Check Scanner is taken out of the check insertion mode. If a check is not detected
in the device, a UposException is raised with an extended error code of ECHK_NOCHECK. This
allows an application to prompt the user prior to calling this method to ensure that the form is
correctly positioned.

This method is paired with the beginInsertion method for controlling check insertion. Although
some Check Scanner devices do not require this sort of processing, the application should still use
these methods to ensure application portability across different Check Scanner devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device is not in check insertion mode.
E_EXTENDED ErrorCodeExtended = ECHK_NOCHECK:

The device was taken out of insertion mode without a check being
inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method, retrieveImage Method.

Unified POS, v1.15.1 Beta1 11 - 31

11.5.6 endRemoval Method

Syntax endRemoval ():
void { raises exception, use after open-claim-enable }

Remarks Ends the document removal processing.
When called, the Check Scanner is taken out of check removal or ejection mode. If a check is
detected in the device, a UposException is raised with an extended error code of ECHK_CHECK .
This method is paired with the beginRemoval method for controlling check removal. Although
some Check Scanner devices do not require this sort of processing, the application should still use
these methods to ensure application portability across different Check Scanner devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device is not in check removal mode.
E_EXTENDED ErrorCodeExtended = ECHK_CHECK:

The device was taken out of removal mode while a check is still present.

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

11 - 32 Unified POS, V1.15.1 Beta1

11.5.7 retrieveImage Method Updated in Release 1.11

Syntax retrieveImage (cropAreaID: int32):
void { raises exception, use after open-claim-enable }

Parameter Description
cropAreaID Identifier to specify the storage location of the crop area parameters to be

applied to the most recently scanned image held in the working area
memory of the device. If the value is
CHK_CROP_AREA_ENTIRE_IMAGE then the entire area of the most
recently scanned image is retrieved.

 Remarks Called to retrieve the most recently scanned image which is resident in the work area memory to the
ImageData property. If this method call is successful, the device will deliver either a DataEvent or
an ErrorEvent at a later time.

If the CapImageTagData property is true, then the ImageTagData property is set to the ARTS
XML compliant tag data associated with the image data file.

If a file name has been created for the image data by the device, then the FileID property will be set
to the file name; if none is available then the FileID property will be set to an empty string.

Many models of Check Scanner devices do not require any check handling processing from the
application. Such devices may always be capable of receiving a check, scanning the image into their
working memory area, and require no commands to actually read and eject the check. For these type
of Check Scanner devices, the beginInsertion, endInsertion, beginRemoval and endRemoval
methods simply return, and the Control will enqueue the data until the DataEventEnabled property
is set to true. However, applications should still use these methods to ensure application portability
across different Check Scanner devices.

The retrieveImage method cannot be called after a retrieveMemory method has been called until
a new document has been scanned.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The following error has occurred:

• Cropped area that is specified by cropAreaID parameter is invalid.

See Also CapImageTagData Property, FileID Property, ImageData Property, ImageTagData Property,
beginInsertion Method, beginRemoval Method, endInsertion Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 11 - 33

11.5.8 retrieveMemory Method Updated in Release 1.11

Syntax retrieveMemory (by: int32):
void { raises exception, use after open-claim-enable }

Parameter Description
by Indicates how the image file is to be located so that it can be retrieved

from the device memory storage.

Remarks Called to retrieve an image that was previously stored in memory to the work area and the
ImageData property. If this method call is successful, the device will deliver either a DataEvent or
an ErrorEvent at a later time.

The following values may be selected for by:

Value Meaning
CHK_LOCATE_BY_FILEID

Locate image file using the FileID property.

CHK_LOCATE_BY_FILEINDEX
Locate image file using the FileIndex property.

CHK_LOCATE_BY_IMAGETAGDATA
Locate image file using the ARTS XML compliant ImageTagData
property.

The FileID, FileIndex, and ImageTagData properties will all be updated to reflect their respective
values associated with the image data file after this method is called. A value for FileIndex will
always be available. The FileID and ImageTagData properties will be set to empty strings if the
image file does not have respective data to be retrieved for these properties.

The retrieveImage method cannot be called after a retrieveMemory method has been called until
a new document has been scanned.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• by parameter is invalid.
• The image data file could not be located due to an invalid value stored

in either the FileID, FileIndex, or ImageTagData properties that
was being used with the by value.

See Also FileID Property, FileIndex Property, ImageData Property, ImageTagData Property.

11 - 34 Unified POS, V1.15.1 Beta1

11.5.9 storeImage Method Updated in Release 1.13

Syntax storeImage (cropAreaID: int32):
void { raises exception, use after open-claim-enable }

Parameter Description
cropAreaID Identifier to specify the storage location of the crop area parameters to be

applied to image data file currently in the buffer memory area of the
device. If the value is CHK_CROP_AREA_ENTIRE_IMAGE, then an
exact image of the buffer memory is stored in the device memory (no
cropping is applied).

Remarks Called to store an image or a cropped area of the image in the memory of the device.

The RemainingImagesEstimate property is adjusted to reflect the approximate number additional
images that may be stored in the device memory based upon the file size history of previously stored
images.

The ImageMemoryStatus property indicates whether or not the device memory is full and is
adjusted as a result of this method.

The FileID, FileIndex, and ImageTagData properties must all be updated to reflect their respective
values associated with the image data file before this method is called. A value for FileIndex will
always be available and is supplied by the service. The FileID and/or ImageTagData properties
will be set to empty strings if the device does not support the respective property.

Return A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXIST Image already exists in the store location specified by the FileIndex

property.

E_ILLEGAL One of the following errors occurred:
• Device does not support storing images
• Cropped area that is specified by cropAreaID parameter is invalid.

E_FAILURE Internal error storing image.

E_EXTENDED ErrorCodeExtended = ECHK_NOROOM:
There is no more room for the image in memory.

See Also CapStoreImageFiles Property, FileID Property, FileIndex Property, ImageMemoryStatus
Property, ImageTagData Property, RemainingImagesEstimate Property.

Unified POS, v1.15.1 Beta1 11 - 35

11.6 Events (UML interfaces)

11.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when data from the Check Scanner device is available to be read.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Set to 0.

Remarks Before this event is delivered, the scanned check image is placed into ImageData.

See Also ImageData Property, endInsertion Method, retrieveImage Method, storeImage Method.

11.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Check Scanner Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Check Scanner devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

11 - 36 Unified POS, V1.15.1 Beta1

11.6.3 ErrorEvent

<< event > upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the Check Scanner device and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-21.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks This event is not delivered until DataEventEnabled is true and other event delivery requirements
are met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 1- 18, “Device States” on page 1- 27.

Unified POS, v1.15.1 Beta1 11 - 37

11.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Check Scanner device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the Check Scanner device.

The Status parameter has one of the following values:

Value Meaning
CHK_SUE_SCANCOMPLETE

The process of scanning a document image has been successfully
completed.
Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued after the endInsertion method has been called and the Check Scanner device has
successfully completed the process of scanning a new image into a working buffer memory area.
Also enqueued when the Check Scanner device detects a power state change.

See Also “Events” on page 1- 15.

11 - 38 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 12 - 1

12 Coin Acceptor

12.1 General
This Chapter defines the Coin Acceptor device category.

12.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.11 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string {read-only} 1.11 open

Claimed: boolean {read-only} 1.11 open

DataCount: int32 {read-only} 1.11 open

DataEventEnabled: boolean {read-write} 1.11 open

DeviceEnabled: boolean {read-write} 1.11 open & claim

FreezeEvents: boolean {read-write} 1.11 open

OutputID: int32 {read-only} 1.11 Not supported

PowerNotify: int32 {read-write} 1.11 open

PowerState: int32 {read-only} 1.11 open

State: int32 {read-only} 1.11 --

DeviceControlDescription: string {read-only} 1.11 --

DeviceControlVersion: int32 {read-only} 1.11 --

DeviceServiceDescription: string {read-only} 1.11 open

DeviceServiceVersion: int32 {read-only} 1.11 open

PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open

12 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After

CapDiscrepancy: boolean {read-only} 1.11 open

CapFullSensor: boolean {read-only} 1.11 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearFullSensor: boolean {read-only} 1.11 open

CapPauseDeposit: boolean {read-only} 1.11 open

CapRealTimeData: boolean {read-only} 1.11 open

CurrencyCode: string {read-write} 1.11 open

DepositAmount: int32 {read-only} 1.11 open

DepositCashList: string {read-only} 1.11 open

DepositCodeList: string {read-only} 1.11 open

DepositCounts: string {read-only} 1.11 open

DepositStatus: int32 {read-only} 1.11 open, claim, & enable

FullStatus: int32 {read-only} 1.11 open, claim, & enable

RealTimeDataEnabled: boolean {read-only} 1.11 open, claim & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

1.11

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

Unified POS, v1.15.1 Beta1 12 - 3

Methods (Continued)
Common
Name Version
directIO (command: int32, inout data: int32, inout obj: object):

void { raises-exception, use after open }
1.11

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.11

Specific
Name
adjustCashCounts (cashCounts: string):

void { raises-exception, use after open, claim, enable }
1.11

beginDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

endDeposit (success: int32):
void { raises-exception, use after open, claim, enable }

1.11

fixDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

pauseDeposit (control: int32):
void { raises-exception, use after open, claim, enable }

1.11

readCashCounts (inout cashCounts: string, inout discrepancy:
boolean):
void { raises-exception, use after open, claim, enable }

1.11

12 - 4 Unified POS, V1.15.1 Beta1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.11
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.11
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 12 - 5

12.3 General Information
The Coin Acceptor programmatic name is “CoinAcceptor”.

This device category was added to Version 1.11 of the specification.

12.3.1 Capabilities

The Coin Acceptor has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Coin Acceptor.

• The coins which are deposited into the device between the start and end of cash acceptance are reported to the
 application. The contents of the report are cash units and cash counts.

• Reports jam conditions within the device.

• Supports more than one currency.

The Coin Acceptor may also have the following additional capabilities:

• Reporting the fullness levels of the Coin Acceptor’s cash units. Conditions which may be indicated include full, and
 near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

12 - 6 Unified POS, V1.15.1 Beta1

12.3.2 Coin Acceptor Class Diagram

The following diagram shows the relationships between the Coin Acceptor classes.

UposConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

UposException
(from upos)

<<exception>>

CoinAcceptorControl

<<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRealTimeData : Boolean
<<prop>> CurrencyCode : string
<<prop>> DepositAmount : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositStatus : int32
<<prop>> FullStatus : int32
<<prop>> RealTimeDataEnabled : boolean

adjustCashCounts(cashCounts : string)
beginDeposit()
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>

CoinAcceptorConst
(from upos)

<<utility>>

<<uses>>

<<sends>>

<<fires>>

<<fires>>

<<fires>>

Unified POS, v1.15.1 Beta1 12 - 7

12.3.3 Model

The general model of a Coin Acceptor is:

• Supports several coin denominations. The supported cash type for a particular currency is noted by the list of cash
 units in the DepositCashList property.

• This specification provides programmatic control only for the accepting of cash. The removal of cash from the
 device (for example, to remove deposited cash) is controlled by the adjustCashCounts method, unless the device
 can determine the amount of cash on its own. The application can call readCashCounts to retrieve the current unit
 count for each cash unit, but cannot control when or how cash is removed from the device.

• May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
 currency in the list DepositCodeList. DepositCashList and readCashCounts all act upon the current currency
 only.

• Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there are one
 or more full cash slots, then FullStatus is CACC_STATUS_FULL.

• Coin acceptance into the “coin acceptance mechanism” is started by invoking the beginDeposit method. The
 previous values of the properties DepositCounts and DepositAmount are initialized to zero.

• The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method or
 the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of accumulated
 cash is stored in the DepositCounts and DepositAmount properties.
 If the pauseDeposit method is executed with a parameter value of CACC_DEPOSIT_PAUSE, then the counting of
 the deposited cash is suspended and the current amount of accumulated cash is also updated to the DepositCounts
 and DepositAmount properties. When pauseDeposit method is executed with a parameter value of
 CACC_DEPOSIT_RESTART, counting of deposited cash is resumed and added to the accumulated totals.
 When the fixDeposit method is executed, the current amount of accumulated cash is updated in the DepositCounts
 and DepositAmount properties, and the process remains static until the endDeposit method is invoked with a
 CACC_DEPOSIT_COMPLETE parameter to complete the deposit.

• When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared.
 The DepositCounts and DepositAmount properties remain set and are not cleared.

12 - 8 Unified POS, V1.15.1 Beta1

12.3.4 Coin Acceptor Sequence Diagram

:ClientApp : CoinAcceptorControl CoinAcceptorService : DataEvent Human Actor

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Coin Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

Set so DepositAmount and
DepositCounts are updated for
each Data Event

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

1: setRealTimeDataEvents(true)

2: setRealTimeDataEvents(true)

3: beginDeposit()

4: beginDeposit()

5: initial ize DepositAmount and DepositCounts

6: accept Cash

7: create Data Event

8: enqueue Data Event for delivery

9: update DepositAmount and DepositCounts

10: deliver Data Event

11: notify ClientApp of event

12: fixDeposit()

13: fixDeposit

14: updateDepositAmount and DepositCounts

15: endDeposit(int32)

16: endDeposit(int32)

Unified POS, v1.15.1 Beta1 12 - 9

12.3.5 Coin Acceptor State Diagram

12.3.6 Device Sharing

The Coin Acceptor is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
 or receiving events.

• See the “Summary” table for precise usage prerequisites.

Closed Opened Claimed

Enabled

open

close

claim

setDeviceEnabled(false)

release

setDeviceEnabled(true)release
close

ClearInputProcessing

entry/ empty data queue

clearInput
readCashCounts

Fix Mode

entry/ sync DepositAmount and DepositCounts

Pause Mode

entry/ sync DepositAmount and DepositCounts

clearInputCoin Acceptance

entry/ DepositAmount = 0
entry/ DepositCounts = 0

has room
for coins

near full

full

jammed

fixDeposit

pauseDeposit(CACC_DEPOSIT_PAUSE)

fixDeposi t

pauseDeposit(CACC_DEPOSIT_RESTART)

has room
for coins

near full

full

jammed

fi re Events

adustCashCounts / remove coins

adjustCashCounts / remove coins

beginDeposit

endDeposit

12 - 10 Unified POS, V1.15.1 Beta1

12.4 Properties (UML attributes)

12.4.1 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also readCashCounts Method.

12.4.2 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also FullStatus Property, StatusUpdateEvent.

12.4.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin acceptor can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

12.4.4 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also FullStatus Property, StatusUpdateEvent.

Unified POS, v1.15.1 Beta1 12 - 11

12.4.5 CapPauseDeposit Property

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor has the capability to suspend cash acceptance processing temporarily.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also pauseDeposit Method.

12.4.6 CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RealTimeDataEnabled property.

12.4.7 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Coin Acceptor operations.
This property is initialized to an appropriate value by the open method.
This value is guaranteed to be one of the set of currencies specified by the DepositCodeList
property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A value was specified that is not within

DepositCodeList.

See Also DepositCodeList Property.

12 - 12 Unified POS, V1.15.1 Beta1

12.4.8 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.
For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Coin Acceptor.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrencyCode Property.

12.4.9 DepositCashList Property

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Coin Acceptor for the currency represented by the
CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the units of the coins.

Below are sample DepositCashList values in Japanese yen.

• “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, and 500 yen coin.

This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrencyCode Property.

12.4.10 DepositCodeList Property

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if
the string is “JPY,USD”, then the Coin Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrencyCode Property.

Unified POS, v1.15.1 Beta1 12 - 13

12.4.11 DepositCounts Property

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. Cash units inside the string are the same as
the DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54
fifty yen coins, and 87 five hundred yen coins in the Coin Acceptor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrencyCode Property.

12.4.12 DepositStatus Property

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the coin acceptance operation. It may be one of the following values:

Value Meaning
CACC_STATUS_DEPOSIT_START

Cash acceptance started.
CACC_STATUS_DEPOSIT_END

Cash acceptance stopped.
CACC_STATUS_DEPOSIT_COUNT

Counting or repaying the deposited money.
CACC_STATUS_DEPOSIT_JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CACC_STATUS_DEPOSIT_END after initialization.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

12 - 14 Unified POS, V1.15.1 Beta1

12.4.13 FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }

Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CACC_STATUS_OK All cash slots are neither nearly full nor full.
CACC_STATUS_FULL

Some cash slots are full.
CACC_STATUS_NEARFULL

Some cash slots are nearly full.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

12.4.14 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true, each data event fired will update the DepositAmount and DepositCounts properties. Otherwise,
DepositAmount and DepositCounts are updated with the value of the money collected when fixDeposit
is called. Setting RealTimeDataEnabled will not cause any change in system behavior until a
subsequent beginDeposit method is performed. This prevents confusion regarding what would happen
if it were modified between a beginDeposit - endDeposit pairing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

Unified POS, v1.15.1 Beta1 12 - 15

12.5 Methods (UML operations)

12.5.1 adjustCashCounts Method

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be

initialized.

Remarks This method is called to set the initial amounts in the Coin Acceptor after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there
would be eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one
hundred yen coins, and eighty-seven five-hundred yen coins in the Coin Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also readCashCounts Method.

12 - 16 Unified POS, V1.15.1 Beta1

12.5.2 beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.
• The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called
while the deposit process is not paused.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The call sequence is not correct.

See Also DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method,
pauseDeposit Method.

12.5.3 endDeposit Method

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one
of the following values:
Parameter Description
CACC_DEPOSIT_COMPLETE The deposit is accepted and the deposited amount is equal to or

less than the amount required.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

Unified POS, v1.15.1 Beta1 12 - 17

12.5.4 fixDeposit Method

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Coin
Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before
calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

12.5.5 pauseDeposit Method

Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:
Parameter Description
CACC_DEPOSIT_PAUSE Cash acceptance is paused.
CACC_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.
If control is CACC_DEPOSIT_PAUSE, the cash acceptance operation is paused. The deposit
process will remain paused until this method is called with control set to
CACC_DEPOSIT_RESTART. It is valid to call fixDeposit then endDeposit while the deposit
process is paused.
When the deposit process is paused, the DepositCounts and DepositAmount properties are
updated to reflect the current state of the Coin Acceptor. The property values are not changed again
until the deposit process is resumed.
If control is CACC_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before
calling this method.

• The deposit process is already paused and control is set to
CACC_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to CACC_DEPOSIT_RESTART.

See Also CapPauseDeposit Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

12 - 18 Unified POS, V1.15.1 Beta1

12.5.6 readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which
was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five
yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Coin Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Coin
Acceptor. There are some cases where a discrepancy may occur because of existing uncountable
cash in a Coin Acceptor. An example would be when a cash slot is “overflowing” such that the
device has lost its ability to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also DepositCashList Property.

Unified POS, v1.15.1 Beta1 12 - 19

12.6 Events (UML interfaces)

12.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when one or more coins have been accepted.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

12.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Coin Acceptor Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Coin Acceptor devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

12 - 20 Unified POS, V1.15.1 Beta1

12.6.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Coin Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Coin Acceptor status condition:

Value Meaning
CACC_STATUS_FULL Some cash slots are full.
CACC_STATUS_NEARFULL Some cash slots are nearly full.
CACC_STATUS_FULLOK No cash slots are either full or nearly full.
CACC_STATUS_JAM A mechanical fault has occurred.
CACC_STATUS_JAMOK A mechanical fault has recovered.

Remarks Fired when the Coin Acceptor detects a status change.

For changes in the fullness levels, the Coin Acceptor is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full or near full states and the corresponding
capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 13 - 1

13 Coin Dispenser

13.1 General
This Chapter defines the Coin Dispenser device category.

13.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

13 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapEmptySensor: boolean { read-only } 1.0 open
CapJamSensor: boolean { read-only } 1.0 open
CapNearEmptySensor: boolean { read-only } 1.0 open
DispenserStatus: int32 { read-only } 1.0 open, claim, & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32
):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Unified POS, v1.15.1 Beta1 13 - 3

Methods (UML operations) - continued
Specific
Name Version
adjustCashCounts (cashCounts: string):

void { raises-exception, use after open, claim, enable }
1.11

dispenseChange (amount: int32):
void { raises-exception, use after open, claim, enable }

1.0

readCashCounts (inout cashCounts: string, inout discrepancy: boolean
):
void { raises-exception, use after open, claim, enable }

1.11

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent
 Status: int32 { read-only } 1.0

13 - 4 Unified POS, V1.15.1 Beta1

13.3 General Information
The Coin Dispenser programmatic name is “CoinDispenser”.

13.3.1 Capabilities Updated in Release 1.11

The coin dispenser has the following capability:

• Supports a method that allows a specified amount of change to be dispensed from the device.

The coin dispenser may have the following additional capabilities:

• Status reporting, which indicates empty coin slot conditions, near empty coin slot conditions, and coin slot jamming
 conditions.

• Starting with Release 1.11, reporting of a possible (or probable) cash count discrepancy in the data reported by the
 readCashCounts method.

Unified POS, v1.15.1 Beta1 13 - 5

13.3.2 Coin Dispenser Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Coin Dispenser classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

CoinDispenserConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

CoinDispenserControl

<<capability>> CapEmptySensor : boolean
<<capability>> CapJamSensor : boolean
<<capability>> CapNearEmptySensor : boolean
<<capability>> DispenserStatus : int32

adjustCashCounts(cashCounts : string) : void
dispenseChange(amount : int32) : void
readCashCounts(cashCounts : string, discrepancy : boolean) : void

(from upos)

<<Interface>>

fires

fires

BaseControl

open()
close()
claim()
compareFirmwareVersion()
release()
resetStatistics()
checkHealth()
clearInput()
clearInputProperties()
clearOutput()
directIO()
retrieveStatistics()
updateFirmware()
updateStatistics()

(from upos)

<<Interface>>

<<uses>>

<<sends>>

<<sends>>
<<uses>>

13 - 6 Unified POS, V1.15.1 Beta1

13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Coin Dispenser device, showing coin dispensing
and the firing of a StatusUpdateEvent due to coin status getting low.

NOTE: we are assuming that the :ClientApp already successfully registered handlers for events and opened, claimed
and enabled the CoinDispenser device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :CoinDispenser :CoinDispenserService:StatusUpdateEvent

1: dispenseChange(amount1) 2: dispenseChange(amount1)

3: dispenseChange(amount2)

4: dispenseChange(amount2)

Assume that after this
point the CoinDispenser
change is getting low

5: update DispenserStatus to COIN_STATUS_NEAR_EMPTY [CapNearEmptyStatus == true]

6: create new SUE event

7: deliver SUE event to control

At this point the
:ClientApp event
handling code executes
and takes appropriate
action (like informing
user)

8: deliver StatusUpdateEvent to all registered handlers
9: notify client of new event

Unified POS, v1.15.1 Beta1 13 - 7

13.3.4 Coin Dispenser State Diagram Updated in Release 1.11

The following diagram illustrates the various state transitions within the Coin Dispenser device category.

Closed Opened Claimed

Enabled

Has Coins

Fire Events

Near
Empty

Empty

Jammed

open

close

claim

release

setDeviceEnabled(true)

readCashCounts

Has Coins

Fire Events

Near
Empty

Empty

Jammed

setDeviceEnabled(false)

release
close

dispenseChange
dispenseChange

jams

fire event

fire eventjams

adjustCashCounts / add coins

done done

done

fire event

adjustCashCounts / coins added

13 - 8 Unified POS, V1.15.1 Beta1

13.3.5 Model Updated in Release 1.11

The general model of a coin dispenser is:

• Consists of a number of coin slots which hold the coinage to be dispensed. The application using the Coin Dispenser
 Service is not concerned with controlling the individual slots of coinage, but rather calls a method with the amount
 of change to be dispensed. It is the responsibility of the coin dispenser device or the Service to dispense the proper
 amount of change from the various slots.

Starting with Release 1.11:

• Sets cash in the device programatically by adding amount to counts when cash is added.

• Reads cash counts from device, either directly from the hardware, or from the service, by tracking what is dispensed
 and what has been added to the device.

13.3.6 Device Sharing

The coin dispenser is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing change, or
 receiving status update events.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 13 - 9

13.4 Properties (UML attributes)

13.4.1 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report an out-of-coinage condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

13.4.2 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

13.4.3 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report when it is almost out of coinage.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

13 - 10 Unified POS, V1.15.1 Beta1

13.4.4 DispenserStatus Property

Syntax DispenserStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the dispenser. It has one of the following values:

Value Meaning
COIN_STATUS_OK Ready to dispense coinage. This value is also set when the dispenser is

unable to detect an error condition.
COIN_STATUS_EMPTY

Cannot dispense coinage because the dispenser is empty.
COIN_STATUS_NEAREMPTY

Can still dispense coinage, but the dispenser is nearly empty.
COIN_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is
synonymous to the DeviceStatus in the Cash Changer.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 13 - 11

13.5 Methods (UML operations)

13.5.1 adjustCashCounts Method Added in Release 1.11

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be

initialized.

Remarks This method is called to set the initial amounts in the Coin Dispenser after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the dispenser.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there
would be eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one
hundred yen coins, and eighty-seven five-hundred yen coins in the Coin Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also readCashCounts Method.

13.5.2 dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Remarks Dispenses change. The value represented by the amount parameter is a count of the currency units
to dispense (such as cents or yen).

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An amount parameter value of zero was specified, or the amount

parameter contained a negative value or a value greater than the device
can dispense.

13 - 12 Unified POS, V1.15.1 Beta1

13.5.3 readCashCounts Method Added in Release 1.11

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which
was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks The format of the string cashCounts is an ASCII string. The string has a set of comma separated
units. Each unit in cashCounts indicates a denomination of a unit as well as a count of those units,
separated by a colon (“:”).

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five
yen coins, and 54 fifty yen coins in the Coin Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 13 - 13

13.6 Events (UML interfaces)

13.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Coin Dispenser Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Coin Dispenser devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

13 - 14 Unified POS, V1.15.1 Beta1

13.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application of a sensor status change.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Coin Dispenser.

The Status attribute has one of the following values:

Value Meaning
COIN_STATUS_OK Ready to dispense coinage. This value is also set when the dispenser is

unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is empty.

COIN_STATUS_NEAREMPTY
Can still dispense coinage, but the dispenser is nearly empty.

COIN_STATUS_JAM A mechanical fault has occurred.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the sensor types supported, as indicated by the capability
properties. It also applies if Power State Reporting is enabled.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 14 - 1

14 Electronic Journal

14.1 General
This Chapter defines the Electronic Journal device category.

14.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.10 open
CapCompareFirmwareVersion: boolean { read-only } 1.10 open
CapPowerReporting: int32 { read-only } 1.10 open
CapStatisticsReporting: boolean { read-only } 1.10 open
CapUpdateFirmware: boolean { read-only } 1.10 open
CapUpdateStatistics: boolean { read-only } 1.10 open
CheckHealthText: string { read-only } 1.10 open
Claimed: boolean { read-only } 1.10 open
DataCount: int32 { read-only } 1.10 open
DataEventEnabled: boolean { read-write } 1.10 open
DeviceEnabled: boolean { read-write } 1.10 open & claim
FreezeEvents: boolean { read-write } 1.10 open
OutputID: int32 { read-only } 1.10 open
PowerNotify: int32 { read-write } 1.10 open
PowerState: int32 { read-only } 1.10 open
State: int32 { read-only } 1.10 --
DeviceControlDescription: string { read-only } 1.10 --
DeviceControlVersion: int32 { read-only } 1.10 --
DeviceServiceDescription: string { read-only } 1.10 open
DeviceServiceVersion: int32 { read-only } 1.10 open
PhysicalDeviceDescription: string { read-only } 1.10 open
PhysicalDeviceName: string { read-only } 1.10 open

14 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific: Type Mutability Version May Use After

AsyncMode: boolean {read-write} 1.10 open

CapAddMarker: boolean {read-only} 1.10 open

CapErasableMedium: boolean {read-only} 1.10 open

CapInitializeMedium: boolean {read-only} 1.10 open

CapMediumIsAvailable: boolean {read-only} 1.10 open

CapPrintContent: boolean {read-only} 1.10 open

CapPrintContentFile: boolean {read-only} 1.10 open

CapRetrieveCurrentMarker: boolean {read-only} 1.10 open

CapRetrieveMarker: boolean {read-only} 1.10 open

CapRetrieveMarkerByDateTime: boolean {read-only} 1.10 open

CapRetrieveMarkersDateTime: boolean {read-only} 1.10 open

CapStation: int32 {read-only} 1.10 open

CapStorageEnabled: boolean {read-only} 1.10 open

CapSuspendPrintContent: boolean {read-only} 1.10 open

CapSuspendQueryContent: boolean {read-only} 1.10 open

CapWaterMark: boolean {read-only} 1.10 open

FlagWhenIdle: boolean {read-write} 1.10 open

MediumFreeSpace: currency {read-only} 1.10 open, claim & enable

MediumID: string {read-only} 1.10 open, claim & enable

MediumIsAvailable: boolean {read-only} 1.10 open, claim & enable

MediumSize: currency {read-only} 1.10 open, claim & enable

Station: int32 {read-write} 1.10 open

StorageEnabled: boolean {read-write} 1.10 open, claim & enable

Suspended: boolean {read-only} 1.10 open

WaterMark: boolean {read-write} 1.10 open

Unified POS, v1.15.1 Beta1 14 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.10

close ():
void { raises-exception, use after open }

1.10

claim (timeout: int32):
void { raises-exception, use after open }

1.10

release ():
void { raises-exception, use after open, claim }

1.10

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.10

clearInput ():
void { raises-exception, use after open, claim }

1.10

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

1.10

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.10

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.10

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.10

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.10

Specific
Name
addMarker (marker: string):

 void { raises-exception, use after open, claim, enable }
1.10

cancelPrintContent ():
 void { raises-exception, use after open, claim, enable }

1.10

cancelQueryContent ():
 void { raises-exception, use after open, claim, enable }

1.10

eraseMedium ():
 void { raises-exception, use after open, claim, enable }

1.10

initializeMedium (mediumID: string):
 void { raises-exception, use after open, claim, enable }

1.10

printContent (fromMarker: string, toMarker: string):
 void { raises-exception, use after open, claim, enable }

1.10

14 - 4 Unified POS, V1.15.1 Beta1

printContentFile (fileName: string):
 void { raises-exception, use after open, claim, enable }

1.10

queryContent (fileName: string, fromMarker: string, toMarker: string):
 void { raises-exception, use after open, claim, enable }

1.10

resumePrintContent ():
 void { raises-exception, use after open, claim, enable }

1.10

resumeQueryContent ():
 void { raises-exception, use after open, claim, enable }

1.10

retrieveCurrentMarker (markerType: int32, out marker: string):
 void { raises-exception, use after open, claim, enable }

1.10

retrieveMarker (markerType: int32, sessionNumber: int32, document-
Number: int32, out marker: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveMarkerByDateTime (markerType: int32, dateTime: string,
markerNumber: string, out marker: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveMarkersDateTime (marker: string, out dateTime: string):
 void { raises-exception, use after open, claim, enable }

1.10

suspendPrintContent ():
 void { raises-exception, use after open, claim, enable }

1.10

suspendQueryContent ():
 void { raises-exception, use after open, claim, enable }

1.10

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.10
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.10
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.10
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.10
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.10
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 14 - 5

14.3 General Information
The Electronic Journal programmatic name is “ElectronicJournal”.

This device was introduced in Version 1.10 of this specification.

14.3.1 Capabilities

The Electronic Journal device stores records of transactions into digital media as electronic data. If the recording
function of the Electronic Journal device is enabled, then it starts storing all print data that is output to the
POSPrinter or FiscalPrinter device. In the case of the FiscalPrinter device, the Fiscal Printing output is stored at
all times.

The Electronic Journal has the following capabilities.

• Stores transaction data.

• Transfers stored data.

The Electronic Journal may also have the following additional capabilities.

• Prints stored data on the attached POSPrinter or FiscalPrinter.

• Erases stored data.

• Initializes recording medium.

The Electronic Journal may also have the following special capabilities in fiscal environments.

• Provides the ability to re-print entire fiscal documents and tickets specifying a range of ticket numbers or ticket
 dates and times.

14 - 6 Unified POS, V1.15.1 Beta1

14.3.2 Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal device classes.

UposException
(from upos)

<<exception>>

BaseControl
(from upos)

<<Interface>> UposConst
(from upos)

<<utility>>

ElectronicJournalConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32
(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

ElectronicJournalControl

<<prop>> AsyncMode : boolean
<<capability>> CapInitializeMedium : boolean
<<capability>> CapErasableMedium : boolean
<<capability>> CapPrintContent : boolean
<<capability>> CapPrintContentFile : boolean
<<capability>> CapStation : int32
<<capability>> CapSuspendPrintContent : boolean
<<capability>> CapSuspendQueryContent : boolean
<<capability>> CapWaterMark : boolean
<<capability>> CapMediumIsAvailable : boolean
<<capability>> CapRetrieveMarker : boolean
<<capability>> CapRetrieveMarkerByDateTime : boolean
<<capability>> CapRetrieveCurrentMarker : boolean
<<capability>> CapRetrieveMarkersDateTime : boolean
<<capability>> CapAddMarker : boolean
<<capability>> CapStorageEnabled : boolean
<<prop>> FlagWhenIdle : boolean
<<prop>> MediumID : string
<<prop>> MediumSize : currency
<<prop>> MediumFreeSpace : currency
<<prop>> MediumIsAvailable : boolean
<<prop>> StorageEnabled : boolean
<<prop>> Station : int32
<<prop>> Suspended : boolean
<<prop>> WaterMark : boolean

addMarker(marker : string) : void
cancelPrintContent () : void
cancelQueryContent () : void
initializeMedium (mediumID : string) : void
eraseMedium () : void
printContent (fromMarker : string, toMarker : string) : void
printContentFile (fileName : string) : void
queryContent (fileName : string, fromMarker : string, toMarker : string) : void
resumePrintContent () : void
resumeQueryContent () : void
suspendPrintContent () : void
suspendQueryContent () : void
retrieveMarker(markerType : int32, sessionNumber : int32, documentNumber : int32, out marker : string) : void
retrieveMarkerByDateTime(markerType : int32, dateTime : string, markerNumber : string, out marker : string) : void
retrieveCurrentMarker(markerType : int32, out marker : string) : void
retrieveMarkersDateTime(marker : string, out dateTime : string) : void

(from upos)

<<Interface>>

fires

fires

fires

fires

<<sends>>

<<sends>> <<uses>>

<<uses>>

Unified POS, v1.15.1 Beta1 14 - 7

14.3.3 Model

The Electronic Journal writing process is started implicitly when a printing method for the POSPrinter or
FiscalPrinter is performed. All output is performed on a first-in first-out basis. Therefore, an ErrorEvent is
delivered if the writing process fails.

The writing process of the POSPrinter or FiscalPrinter may result in a failure, in this case an ErrorEvent is
delivered.

• The following methods are always performed synchronously: addMarker, retrieveCurrentMarker,
 retrieveMarker, retrieveMarkerByDateTime, retrieveMarkersDateTime, and checkHealth. These methods
 will fail if output to the POSPrinter or FiscalPrinter is outstanding.

• The suspendPrintContent and suspendQueryContent methods are also always performed synchronously.
 These methods attempt to stop printing (that is, at the very next printer operation). They may be called when
 asynchronous output is outstanding. These methods are primarily intended for use in exception conditions when
 asynchronous output is outstanding.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
 AsyncMode property: eraseMedium, initializeMedium, printContent, printContentFile, and queryContent.
 When AsyncMode is false, then these methods are performed synchronously.

A marker can be placed where to store data and it can be used as an index. It can be added at the beginning and
end of data to indicate the data range when getting or printing stored data.

During asynchronous data printing or transfer process, it can be suspended by interrupt methods.

In fiscal environments the markers are set implicitly by the FiscalPrinter device. The stored data is organized in
sessions that correspond to the fiscal days. These sessions contain documents that correspond to fiscal tickets.
Sessions and documents can be queried by the application indirectly using the retrieveMarker,
retrieveMarkerByDateTime, and retrieveCurrentMarker methods. The returned markers are intended to be
used with the printContent and queryContent methods. The content and format of the markers are
implementation specific and need not be known or analyzed by the application.

An Electronic Journal device combines both the properties of an input device (query) and an output device (store
and print).

The data stored on the electronic journal medium are the printing lines that have been issued to the attached
POSPrinter or FiscalPrinter device. The data format of the stored information depends upon the physical device
model. The data should be stored in nonvolatile storage; e.g., flash cards, memory cards, CD-RW, and HDD can
be used as the physical media. There is no need to distinguish the differences between the physical media.

If the recording medium can be removed from or inserted into the device, a StatusUpdateEvent is delivered
when the medium status is changed. Additionally, the medium status can be checked and it can be initialized if
necessary.

The primary responsibility is storing transaction data as it is, so there are no functions to convert or reprocess the
data.

14 - 8 Unified POS, V1.15.1 Beta1

14.3.4 Device Sharing

The Electronic Journal is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the Electronic Journal specific
 properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 14 - 9

14.3.5 Electronic Journal Sequence Diagrams

Various sequence diagrams are used to illustrate how the Electronic Journal API can be used. These scenarios
are designed to show the rationale and key concepts behind the structure of the API.

 : Application : ElectronicJournalControl : POSPrinterControl

open()

claim()

setDeviceEnabled(true)

setDataEventEnabled(true)

setStorageEnabled(true)

addMarker(1)

printNormal(PTR_S_RECEIPT, "Receipt #1")

write data

addMarker(2)

printNormal(PTR_S_RECEIPT, "Receipt #2")

write data

queryContent("data.bin", 1, 2)

notify of DataEvent

close()

14 - 10 Unified POS, V1.15.1 Beta1

The following sequence diagram shows how markers are intended to be used in the fiscal environment. The
querying of the FiscalPrinter device for the needed markers is processed implicitly and therefore not shown
below.

 : Application : ElectronicJournalConst

retrieveMarker(EJ_MT_SESSION_BEG, 1, 0, marker1)

maker1

retrieveMarker(EJ_MT_SESSION_END, 1, 0, marker2)

marker2

printContent(marker1, marker2)

queryContent("data.bin", marker1, marker2)

Unified POS, v1.15.1 Beta1 14 - 11

14.3.6 Electronic Journal State Diagram

The following diagram illustrates the various state transitions within the Electronic Journal device.

NormalMode SuspendMode
suspendPrintContent(),
suspendQueryContent()

printContent(), printContentFile(), queryContent()

resumePrintContent(), cancelPrintContent(),
resumeQueryContent(), cancelQueryContent()

14 - 12 Unified POS, V1.15.1 Beta1

14.4 Properties (UML Attributes)

14.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods will be performed asynchronously.
If false, they will be performed synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

14.4.2 CapAddMarker Property

Syntax CapAddMarker: boolean {read-only, access after open}

Remarks If true, the application can use the addMarker method. Usually this property is false for fiscal EJ
devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also addMarker Method.

14.4.3 CapErasableMedium Property

Syntax CapErasableMedium: boolean {read-only, access after open}

Remarks If true, the storage medium can be erased. If false, it is impossible.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

14.4.4 CapInitializeMedium Property

Syntax CapInitializeMedium: boolean { read-only, access after open }

Remarks If true, the application can initialize the medium. This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

14.4.5 CapMediumIsAvailable Property Updated in Release 1.11

Syntax CapMediumIsAvailable: boolean { read-only, access after open }

Remarks If true, the application can check whether a recording medium is available or not.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also MediumIsAvailable Property.

Unified POS, v1.15.1 Beta1 14 - 13

14.4.6 CapPrintContent Property Updated in Release 1.11

Syntax CapPrintContent: boolean { read-only, access after open }

Remarks If true, the device is able to reprint stored journal documents directly on a connected printing device.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also printContent Method.

14.4.7 CapPrintContentFile Property Updated in Release 1.11

Syntax CapPrintContentFile: boolean { read-only, access after open }

Remarks If true, the device is able to print journal documents extracted from the storage medium on a
connected printing device.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also printContentFile Method.

14.4.8 CapRetrieveCurrentMarker Property

Syntax CapRetrieveCurrentMarker: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveCurrentMarker method. Usually this property is true
for fiscal EJ devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also retrieveCurrentMarker Method.

14.4.9 CapRetrieveMarker Property

Syntax CapRetrieveMarker: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarker method. Usually this property is true for fiscal
EJ devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also retrieveMarker Method.

14 - 14 Unified POS, V1.15.1 Beta1

14.4.10 CapRetrieveMarkerByDateTime Property

Syntax CapRetrieveMarkerByDateTime: boolean {read-only, access after open}
Remarks If true, the application can use the retrieveMarkerByDateTime method. Usually this property is

true for fiscal EJ devices. This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also retrieveMarkerByDateTime Method.

14.4.11 CapRetrieveMarkersDateTime Property

Syntax CapRetrieveMarkersDateTime: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarkersDateTime method. Usually this property is true
for fiscal EJ devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also retrieveMarkersDateTime Method.

14.4.12 CapStation Property

Syntax CapStation: int32 { read-only, access after open }

Remarks This capability indicates the availability of data capturing.
CapStation property is a logical OR combination of any of the following values:
Value Meaning
EJ_S_RECEIPT Captures data output into receipt station and stores it into the medium.
EJ_S_SLIP Captures data output into slip station and stores it into the medium.
EJ_S_JOURNAL Captures data output into journal station and stores it into the medium.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

14.4.13 CapStorageEnabled Property

Syntax CapStorageEnabled: boolean { read-only, access after open }
Remarks This property indicates whether the recording of print data can be controlled by the

StorageEnabled property, i.e., can be changed. If false, StorageEnabled is always set to true.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also StorageEnabled Property.

Unified POS, v1.15.1 Beta1 14 - 15

14.4.14 CapSuspendPrintContent Property

Syntax CapSuspendPrintContent: boolean { read-only, access after open }

Remarks If true, the printing process can be suspended.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also Suspended Property.

14.4.15 CapSuspendQueryContent Property

Syntax CapSuspendQueryContent: boolean { read-only, access after open }

Remarks If true, the data acquiring process can be suspended.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also Suspended Property.

14.4.16 CapWaterMark Property

Syntax CapWaterMark: boolean { read-only, access after open }

Remarks If true, the device is able to print specific predefined background when reprinting journal
documents.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

14.4.17 FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.
This property is automatically reset to false when the status event is delivered.
The main use of idle status event that is controlled by this property is to give the application control
when all outstanding asynchronous outputs have been processed. The event will be enqueued if the
outputs were completed successfully or if they were cleared by the clearOutput method or by an
ErrorEvent handler.
If the State is already set to S_IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also State Property, clearOutput Method.

14 - 16 Unified POS, V1.15.1 Beta1

14.4.18 MediumFreeSpace Property Updated in Releae 1.15.1

Syntax MediumFreeSpace: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the remained free space on the storage medium in bytes. After each storing process
caused by printing with POSPrinter or FiscalPrinter device, this value is decreased. It notifies
StatusUpdateEvent when free space is near empty or empty.
Currency type data is used 64bit long type integer and if its value is “12340000”, and its string data
conversion will be “1234” or “1234.0000” or “12340000”.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

14.4.19 MediumID Property

Syntax MediumID: string { read-only, access after open-claim-enable }

Remarks This property indicates identification of the currently plugged medium. It holds a value from the
physical medium, so is initialized when enabled.
If it is not possible to obtain any information from the physical medium, then this property is
initialized to an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

14.4.20 MediumIsAvailable Property Updated in Release 1.11

Syntax MediumIsAvailable: boolean { read-only, access after open-claim-enable }

Remarks Indicates whether a recording medium is attached or not. This information is only available if
CapMediumIsAvailable is true.
If true, a recording medium is attached. If false, it is not attached.
If the storage medium is not exchangeable, this property is always set true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapMediumIsAvailable Property.

14.4.21 MediumSize Property Updated in Release 1.15.1

Syntax MediumSize: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the storage medium in bytes.
Currency type data is used 64bit long type integer and if its value is “12340000”, and its string data
conversion will be “1234” or “1234.0000” or “12340000”.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 14 - 17

14.4.22 Station Property

Syntax Station: int32 { read-write, access after open }

Remarks Set the station for subsequent data storing into the medium. Station is a logical OR combination of
any of the following values.
Value Meaning
EJ_S_RECEIPT Captures data output into receipt station of POSPrinter or FiscalPrinter

and stores it into the medium.
EJ_S_SLIP Captures data output into slip station of POSPrinter or FiscalPrinter and

stores it into the medium.
EJ_S_JOURNAL Captures data output into journal station of POSPrinter or FiscalPrinter

and stores it into the medium.
This property is initialized to EJ_S_RECEIPT by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

14.4.23 StorageEnabled Property Updated in Release 1.11

Syntax StorageEnabled: boolean { read-write, access after open-claim-enable }
Remarks If true, the device is in a recordable state. Data output to the POSPrinter or FiscalPrinter is stored on

the medium as electronic information sequentially. The Station property must be specified in
advance to specify what station is available to record.
If false, the device has been disabled to record data.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_FAILURE The device cannot move to the recordable state.

See Also Station Property.

14.4.24 Suspended Property

Syntax Suspended: boolean { read-only, access after open }
Remarks If true, the printing or data acquiring process is being suspended.

When both CapSuspendPrintContent and CapSuspendQueryContent are false, there is no
application to suspend a process. Then this property is always set to false.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapSuspendPrintContent Property, CapSuspendQueryContent Property.

14 - 18 Unified POS, V1.15.1 Beta1

14.4.25 WaterMark Property

Syntax WaterMark: boolean { read-write, access after open }
Remarks This property specifies whether a specific predefined background should be printed or not with

journal documents. If true, the background is printed and it is clear that the output is a reprint of the
stored data.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 14 - 19

14.5 Methods (UML operations)

14.5.1 addMarker Method

Syntax addMarker (marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
marker Marker identifier.

Remarks Adds a marker at the end of the data stored on the recording medium.

Specifies index numbers as arguments to specify the data range when acquiring data as a file or
printing data on the connected POSPrinter or FiscalPrinter system.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Characters that cannot be used as marker are included, or the character

string is too long to be used as the marker.
E_BUSY Request cannot be performed while output is in progress. (This includes

when the POSPrinter or FiscalPrinter is busy printing.)
E_EXTENDED ErrorCodeExtended = EEJ_EXISTING:

The marker name is already specified in current medium.
ErrorCodeExtended = EEJ_MEDIUM_FULL:
There is not enough free space to add a marker in current medium.

14.5.2 cancelPrintContent Method

Syntax cancelPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancels the suspended data printing process.

If this method is performed successfully, remaining data is not printed.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

14.5.3 cancelQueryContent Method

Syntax cancelQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancel the suspended data transfer process.

If this method is performed, no file to store data is created.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

14 - 20 Unified POS, V1.15.1 Beta1

14.5.4 eraseMedium Method

Syntax eraseMedium ():
void { raises-exception, use after open-claim-enable }

Remarks All the data in this medium is erased. Marker information is erased too.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE Failed to erase data.

See Also AsyncMode Property.

14.5.5 initializeMedium Method

Syntax initializeMedium (mediumID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
mediumID medium identifier.

Remarks Initializes the recording medium. At this time the application can give the medium a name expressed
as character string.
If the medium is not namable, the MediumID property is set to an empty string.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot perform while output is in progress. (This includes when the

POSPrinter or FiscalPrinter is busy printing.)
See Also AsyncMode Property, MediumID Property.

Unified POS, v1.15.1 Beta1 14 - 21

14.5.6 printContent Method Updated in Release 1.11

Syntax printContent (fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fromMarker Marker identifier that indicates start position of the data. Specifying an

empty string means specifying the data at the beginning of the recording
medium.

toMarker Marker identifier that indicates end position of the data. Specifying an
empty string means specifying the data at the end of the recording
medium.

Remarks Prints the current journal document stored in the recording medium onto the connected printer. This
method is only supported if CapPrintContent is true.
Specifying an empty string for the fromMarker means specifying the data at the beginning of the
recording medium. Specifying an empty string for the toMarker means specifying the data at the
end of the recording medium.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also AsyncMode Property, CapPrintContent Property.

14.5.7 printContentFile Method Updated in Release 1.11

Syntax printContentFile (fileName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fileName Name of the file that contains printing data.

Remarks Prints the journal document included in the file acquired from the recording medium onto the
connected printer system. The whole data included in the file is printed. This method is only
supported if CapPrintContentFile is true.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL fileName contains invalid characters.
E_NOEXIST fileName was not found.

See Also AsyncMode Property, CapPrintContentFile Property.

14 - 22 Unified POS, V1.15.1 Beta1

14.5.8 queryContent Method Updated in Release 1.11

Syntax queryContent (fileName: string, fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fileName Name of the file that stores acquired data.
fromMarker Marker identifier that indicates start position of the data. Specifying an

empty string means specifying the data at the beginning of the recording
medium.

toMarker Marker identifier that indicates end position of the data. Specifying an
empty string means specifying the data at the end of the recording
medium.

Remarks Retrieves the data that has been stored on the electronic journal medium and transfers it to the file
fileName.
If AsyncMode is false, then queryContent operates synchronously.
If AsyncMode is true, the content querying process is performed asynchronously. The method will
initiate the querying and then return immediately. Once the storing of the queried content data is
successfully completed, a DataEvent is delivered to the application. If the method fails, an
ErrorEvent is delivered.
Specifying an empty string for the fromMarker means specifying the data at the beginning of the
recording medium. Specifying an empty string for the toMarker means specifying the data at the
end of the recording medium.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Value Meaning
E_BUSY Cannot perform while output is in progress. (This includes when the

POSPrinter or FiscalPrinter is busy printing.)
E_EXISTS The file defined in fileName already exists.
E_ILLEGAL fileName contains invalid characters.

See Also AsyncMode Property.

14.5.9 resumePrintContent Method

Syntax resumePrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks Resumes the suspended data printing process.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 14 - 23

14.5.10 resumeQueryContent Method

Syntax resumeQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Resume the suspended data transfer process.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.

14.5.11 retrieveCurrentMarker Method

Syntax retrieveCurrentMarker (markerType: int32, out marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried current marker, see values below.
marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning
EJ_MT_SESSION_BEG The marker for the last completed begin of a session is returned.
EJ_MT_SESSION_END The marker for the last completed end of a session is returned.
EJ_MT_DOCUMENT The marker for the last completed document or ticket is returned.
EJ_MT_HEAD The first implicitly stored marker on the EJ medium is returned.
EJ_MT_TAIL The last implicitly stored marker on the EJ medium is returned.

Remarks Returns the last implicitly stored marker. The queried marker is specified by the parameter
markerType. The marker is returned in the parameter marker. The format and content of the string
representing a marker is implementation specific and has not to be known or analyzed by the
application. The returned marker can be used as an input parameter for the printContent and
queryContent methods.

The values EJ_MT_HEAD and EJ_MT_TAIL are intended to address the entire contents of the EJ
medium.

This method is only supported if CapRetrieveCurrentMarker is true.

This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The parameter markerType contains an invalid value.
E_NOEXIST A marker does not exist for the specified marker type.

See Also CapRetrieveCurrentMarker Property, printContent Method, queryContent Method.

14 - 24 Unified POS, V1.15.1 Beta1

14.5.12 retrieveMarker Method

Syntax retrieveMarker (markerType: int32, sessionNumber: int32, documentNumber: int32, out
marker: string):

void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried marker, see values below.
sessionNumber contains the number of the session the marker is queried for. If a session

concept is not supported by the device then this parameter has to be set to
an invalid value less than zero.

documentNumber contains the number of the document the marker is queried for. If
markerType is EJ_MT_SESSION_BEG or EJ_MT_SESSION_END,
then this parameter is ignored.

marker contains the return value, the implementation specific marker.
The parameter markerType controls which type of stored marker is returned:
Value Meaning
EJ_MT_SESSION_BEG A marker for begin of a session is queried.
EJ_MT_SESSION_END A marker for end of a session is queried.
EJ_MT_DOCUMENT A marker for a document or ticket is queried.

Remarks Returns a marker implicitly stored on the record medium. The queried marker is specified by the
parameters markerType, sessionNumber, and documentNumber. The marker is returned in the
parameter marker. The format and content of the string representing a marker is implementation
specific and has not to be known or analyzed by the application. The returned marker is intended to
be used as an input parameter for the printContent and queryContent methods.
In case of a fiscal EJ device, the sessionNumber corresponds to a fiscal day counter number returned
by the FiscalPrinter device (see the getData parameter value FPTR_GD_Z_REPORT). In the
same way the documentNumber corresponds to a fiscal ticket number.
This method is only supported if CapRetrieveMarker is true.
This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the parameters is invalid. Either the value in markerType does not

exist.
E_NOEXIST A marker does not exist for the specified parameter values.

See Also CapRetrieveMarker Property, printContent Method, queryContent Method, and the getData
Method of the FiscalPrinter device category.

Unified POS, v1.15.1 Beta1 14 - 25

14.5.13 retrieveMarkerByDateTime Method

Syntax retrieveMarkerByDateTime (markerType: int32, dateTime: string, markerNumber: string,
out marker: string):

void { raises-exception, use after open-claim-enable }
Parameter Description
markerType specifies the type of the queried marker, see values below.
dateTime The date-time period the marker is queried for. The format of dateTime is

‘YYYYMMDDhhmmss’. If the application is not able to specify the
hours, minutes, and/or seconds, then these fields can be omitted.

markerNumber If more than one marker exists of the requested type for the time period
given by the dateTime parameter, then this parameter specifies the
number of the marker which has to be queried. Starts at 1 and is
continuously incremented by one for each marker.

marker contains the return value, the implementation specific marker.
The parameter markerType controls which type of stored marker is returned:
Value Meaning
EJ_MT_SESSION_BEG The marker for the begin of a session is queried.
EJ_MT_SESSION_END The marker for the end of a session is queried.
EJ_MT_DOCUMENT The marker for a document is queried.

Remarks Returns a marker implicitly stored on the record medium. The queried marker is specified by the
parameters markerType, dateTime, and markerNumber. The marker is returned in the parameter
marker. The format and content of the string representing a marker is implementation specific and
has not to be known or analyzed by the application. The returned marker can be used as an input
parameter for the printContent and queryContent methods.
This method is only supported if CapRetrieveMarkerByDateTime is true.
This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the parameters is invalid. The value in markerType does not exist,

dateTime is invalid, or the markerNumber does not exist for the specified
time period.

E_NOEXIST A marker does not exist for the specified time period.
E_EXTENDED ErrorCodeExtended = EEJ_MULTIPLE_MARKER:

More than one marker exists for the specified time period.

See Also CapRetrieveMarkerByDateTime Property, printContent Method, queryContent Method.

14 - 26 Unified POS, V1.15.1 Beta1

14.5.14 retrieveMarkersDateTime Method

Syntax retrieveMarkersDateTime (marker: string, out dateTime: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
marker specifies the marker for which the time has to be determined.
dateTime contains the return value, the date and time string of the given marker.

Remarks Returns the date and time of the given marker. The marker has either to be instantiated by the
application using addMarker, or it has to be queried by the application using retrieveMarker or
retrieveCurrentMarker. The determined date-time is returned as a string in the marker parameter
with the format YYYYMMDDhhmmss. If the hours, minutes, and/or seconds can not be determined
then they are filled with question marks (?).

This method is only supported if CapRetrieveMarkersByDateTime is true.

This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The parameter marker contains an invalid marker.

See Also CapRetrieveMarkersByDateTime Property, addMarker Method, retrieveCurrentMarker
Method, retrieveMarker Method.

14.5.15 suspendPrintContent Method

Syntax suspendPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks This suspends data transfer from the device, then move to suspended state. It must be called when
asynchronous output is outstanding. This method is primarily intended for use in exception
conditions when asynchronous output is outstanding, such as within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL It’s not in the printing cycle.

See Also Suspended Property.

Unified POS, v1.15.1 Beta1 14 - 27

14.5.16 suspendQueryContent Method

Remarks This method suspends data transfer from the device, then move to suspended state. This method is
primarily intended for use in exception conditions when asynchronous output is outstanding, such
as within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is notified.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also Suspended Property.

14 - 28 Unified POS, V1.15.1 Beta1

14.6 Events (UML interfaces)

14.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that the storing of the queried Electronic Journal content to a host file is
completed.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks This event is delivered after an asynchronous queryContent method call, when
DataEventEnabled is set true.

14.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Electronic Journal Service to provide events to the application that are not otherwise
supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendors’ Electronic Journal devices which may not have any knowledge of the Service’s need for
this event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 14 - 29

14.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an Electronic Journal device error has been detected and that a suitable
response by the application is necessary to process the error condition.
Concrete ErrorEvent notifications are delivered under the following conditions:
• When the POSPrinter or FiscalPrinter device asynchronously performs printing jobs which

include writing to the Electronic Journal media and this writing fails.
• When the queryContent method fails in asynchronous mode
• When one of the methods - initializeMedium, eraseMedium, printContent,

printContentFile - is performed in asynchronous mode and fails.
Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-21.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.
EL_OUTPUT Error occurred while processing asynchronous output.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EEJ_UNINITIALIZED_MEDIUM The medium is not initialized
EEJ_CORRUPTED_MEDIUM The medium or data on the media is corrupted and can not be

used.
EEJ_UNKNOWN_DATAFORMAT The medium has an unknown or unsupported format.
EEJ_NOT_ENOUGH_SPACE There is not enough free space in the medium to store data.
EEJ_MULTIPLE_MARKERS More than one marker has been requested, but only one can

be returned.

14 - 30 Unified POS, V1.15.1 Beta1

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered output data including all asynchronous output. (The

effect is the same as calling clearInput.) The error state is exited. Default
when locus is EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus isEL_INPUT_DATA.

ER_RETRY Typically valid only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

Remarks Input error events are generated when errors occur while reading the data from the Electronic
Journal device. Such events are not delivered until the DataEventEnabled property is set to true
so as to allow proper application sequencing. All error information is placed into the applicable
properties before the event is delivered.

Output error events are generated and delivered when an error occurs during asynchronous output
processing. All error information is placed into the applicable properties before the event is
delivered.

See Also “Events” on page 1- 15.

14.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.
Concrete OutputCompleteEvent notifications are delivered under the following conditions:

• When one of the methods - initializeMedium, eraseMedium, printContent,
printContentFile - is performed in asynchronous mode and succeeds.

Attributes This event contains the following attribute:
Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that it was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

Unified POS, v1.15.1 Beta1 14 - 31

14.6.5 StatusUpdateEvent Updated in Release 1.12

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Electronic Journal device.
Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the Electronic Journal device.
The Status attribute may be one of the following values:
Value Meaning
EJ_SUE_MEDIUM_NEAR_FULL The medium is nearly full (that is, its free space is low.
EJ_SUE_MEDIUM_FULL Storage medium is full.
EJ_SUE_MEDIUM_REMOVED Medium was removed from the device.
EJ_SUE_MEDIUM_INSERTED Medium was inserted into the device.
EJ_SUE_SUSPENDED Data printing or transfer was suspended.
EJ_SUE_IDLE All asynchronous output has finished, either successfully or

because output has been cleared. The Electric Journal State
is now S_IDLE. The FlagWhenIdle property must be true
for this event to be delivered, and is automatically reset to
false just before the event is delivered.

Remarks Fired when the status of an Electronic Journal changes.
See Also “Events” on page 1- 15.

14 - 32 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 15 - 1

15 Electronic Value Reader/Writer

15.1 General
This Chapter defines the Electronic Value Reader / Writer device category.

15.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 open
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 open
DataEventEnabled: boolean { read-write } 1.12 open
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 open
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

15 - 2 Unified POS, V1.15.1 Beta1

Specific Type Mutability Version May Use After
CapActivateService: boolean { read-only } 1.12 open
CapAdditionalSecurityInformation: boolean { read-only } 1.15 open
CapAddValue: boolean { read-only } 1.12 open
CapAuthorizeCompletion: boolean { read-only } 1.15 open
CapAuthorizePreSales: boolean { read-only } 1.15 open
CapAuthorizeRefund: boolean { read-only } 1.15 open
CapAuthorizeVoid: boolean { read-only } 1.15 open
CapAuthorizeVoidPreSales: boolean { read-only } 1.15 open
CapCancelValue: boolean { read-only } 1.12 open
CapCardSensor: int32 { read-only } 1.12 open
CapCashDeposit: boolean { read-only } 1.15 open
CapCenterResultCode: boolean { read-only } 1.15 open
CapCheckCard: boolean { read-only } 1.15 open
CapDailyLog: int32 { read-only } 1.14 open
CapDetectionControl: int32 { read-only } 1.12 open
CapElectronicMoney: boolean { read-only } 1.12 open
CapEnumerateCardServices: boolean { read-only } 1.12 open
CapIndirectTransactionLog: boolean { read-only } 1.12 open
CapInstallments: boolean { read-only } 1.15 open
CapLockTerminal: boolean { read-only } 1.12 open
CapLogStatus: boolean { read-only } 1.12 open
CapMediumID: boolean { read-only } 1.12 open
CapMembershipCertificate boolean { read-only } 1.14.1 open
CapPaymentDetail: boolean { read-only } 1.15 open
CapPINDevice: boolean { read-only } 1.14 open
CapPoint: boolean { read-only } 1.12 open
CapSubtractValue: boolean { read-only } 1.12 open
CapTaxOthers: boolean { read-only } 1.15 open
CapTrainingMode: boolean { read-only } 1.14 open
CapTransaction: boolean { read-only } 1.12 open
CapTransactionLog: boolean { read-only } 1.12 open
CapTransactionNumber: boolean { read-only } 1.15 open
CapUnlockTerminal: boolean { read-only } 1.12 open
CapUpdateKey: boolean { read-only } 1.12 open
CapVoucher: boolean { read-only } 1.12 open
CapWriteValue: boolean { read-only } 1.12 open

Unified POS, v1.15.1 Beta1 15 - 3

AccountNumber: string { read-only } 1.12 open
AdditionalSecurityInformation: string { read-write } 1.12 open
Amount: currency { read-write } 1.12 open
ApprovalCode: string { read-write } 1.12 open
AsyncMode: boolean { read-write } 1.12 open
Balance: currency { read-only } 1.12 open
BalanceOfPoint: currency { read-only } 1.12 open
CardCompanyID: string { read-only } 1.15 open
CardServiceList: string { read-only } 1.12 open
CenterResultCode: string { read-only } 1.15 open
CurrentService: string { read-write } 1.12 open
DailyLog: string { read-write } 1.15 open
DetectionControl: boolean { read-write } 1.12 open
DetectionStatus: int32 { read-only } 1.12 open
ExpirationDate: string { read-only } 1.12 open
LastUsedDate: string { read-only } 1.12 open
LogStatus: int32 { read-only } 1.12 open
MediumID: string { read-write } 1.12 open
PaymentCondition: int32 { read-only } 1.15 open
PaymentDetail: string { read-only } 1.15 open
PaymentMedia: int32 { read-write } 1.15 open
PINEntry: int32 { read-write } 1.14 open
Point: currency { read-write } 1.12 open
ReaderWriterServiceList: string { read-only } 1.12 open
ServiceType int32 { read-only } 1.14.1 open
SequenceNumber: int32 { read-only } 1.12 open
SettledAmount: currency { read-only } 1.12 open
SettledPoint: currency { read-only } 1.12 open
SlipNumber: string { read-only } 1.15 open
TrainingModeState int32 { read-write } 1.14 open
TransactionLog: string { read-only } 1.12 open
TransactionNumber: string { read-only } 1.15 open
TransactionType: int32 { read-only } 1.15 open
VoucherID: string { read-write } 1.12 open
VoucherIDList: string { read-write } 1.12 open

15 - 4 Unified POS, V1.15.1 Beta1

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

1.12

clearInputProperties ():
void { }

1.12

clearOutput ():
void { }

1.12

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.12

Specific
Name
accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):

void { raises-exception, use after open, claim, enable }
1.15

accessData (dataType: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

accessLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

activateEVService (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

activateService (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.12

Unified POS, v1.15.1 Beta1 15 - 5

addValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.15

authorizePreSales (sequenceNumber: int32, amount: currency, taxO-
thers: currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.15

authorizeRefund (sequenceNumber: int32, amount: currency, taxOth-
ers: currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.15

authorizeSales (sequenceNumber: int32, amount: currency, taxOth-
ers: currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.15

authorizeVoid (sequenceNumber: int32, amount: currency, taxOth-
ers: currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.15

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.15

beginDetection (type: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

beginRemoval (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

cancelValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

captureCard ():
void { raises-exception, use after open, claim, enable }

1.12

cashDeposit (sequenceNumber: int32, amount: currency, timeout:
int32):

 void { raises-exception, use after open, claim, enable }

1.15

checkCard (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open, claim, enable }

1.15

checkServiceRegistrationToMedium(sequenceNumber: int32,
timeout: int32):
void { raises-exception, use after open, claim, enable }

1.14.1

clearParameterInformation ():
void { raises-exception, use after open, claim, enable }

1.14

closeDailyEVService (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

deactivateEVService (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

endDetection ():
void { raises-exception, use after open, claim, enable }

1.12

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.12

enumerateCardServices ():
void { raises-exception, use after open, claim, enable }

1.12

15 - 6 Unified POS, V1.15.1 Beta1

lockTerminal ():
void { raises-exception, use after open, claim, enable }

1.12

openDailyEVService (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

queryLastSuccessfulTransactionResult ():
void { raises-exception, use after open, claim, enable }

1.14

readValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

registerServiceToMedium (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.14.1

retrieveResultInformation (name: string, inout value: string):
void { raises-exception, use after open, claim }

1.14

setParameterInformation (name: string, value: string):
void { raises-exception, use after open, claim }

1.14

subtractValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

transactionAccess (control: int32):
void { raises-exception, use after open, claim, enable }

1.12

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

1.12

unregisterServiceToMedium (sequenceNumber: int32, timeout: int32
):
void { raises-exception, use after open, claim, enable }

1.14.1

updateData (dataType: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

updateKey (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.12

writeValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.12

openDailyEVService (inout data: int32, inout obj: object):
void { raises-exception, use after open, claim, enable }

1.14.1

Unified POS, v1.15.1 Beta1 15 - 7

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.12
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.12
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.12
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.12
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.12
 Status: int32 { read-only }
upos::events::TransitionEvent 1.14
 EventNumber: int32 { read-only }
 pData: int32 { read-write }
 pString: string { read-write }

15 - 8 Unified POS, V1.15.1 Beta1

15.3 General Information
The Electronic Value Reader / Writer programmatic name is “ElectronicValueRW.”

This device was introduced in Version 1.12 of the specification.

Electronic value is defined as a collection of services such as electronic money, points, and voucher/ticket,
maintained on a contact-less or contact IC card (this is referred to as ‘card’ in the following sections). The
Electronic Value Reader / Writer device is a device that offers the capability to hold the settlement addition,
subtraction, setting, and reading electronically.

The electronic money service supports the post-paid type electronic money settlement, pre-paid type electronic
money settlement, the credit card settlement, and the debit card settlement.

The point service maintains (can add or subtract) points directly on the card. Alternatively, the points may be
stored in another location and only a reference is maintained on the card.

The voucher/ticket service maintains two or more identifiers that validate the card holder. The card holder can
receive and exchange the value at any time. The service provider can provide value to the card holder at its
discretion.

15.3.1 Capabilities

The Electronic Value Reader / Writer (EVR/W) has the following set of capabilities:

• Access the card for the settlement.

• Read/write the content of electronic value that can be used for the settlement from the card.

• Execute the settlement service using electronic value.

• Accumulate the result of the settlement in the device as a log.

Unified POS, v1.15.1 Beta1 15 - 9

15.3.2 Added in Release 1.14

The following functionality was added for Release 1.14.

The EVR/W specification up to release 1.13 did not define the syntax and semantics of the settlement
information specified as a device or service. Each device has the ability to define the syntax of the settlement
information in the AdditionalSecurityInformation property. Release 1.14 adds the syntax and semantics
necessary to convey the settlement information which previously was available only through the DirectIO
method and event structures. This hindered compatibility and with the following properties, methods, and events
serves to rectify this shortcoming.

In addition to updates to the device category, the following Properties, Methods, and Events are added:

• A CapPINDevice property to indicated if the EVR/W is equipped with a PIN pad entry device.

• A CapTrainingMode property to indicated if the EVR/W supports an operator training function mode.

• A PINEntry property which defines the PIN functionality supported by the EVR/W device.

• A TrainingModeState property which provides information if the device is in training mode or run mode.

• A clearParameterInformation method to clear all device tag values.

• A queryLastSuccessfulTransactionResult method that is used to refresh the property values from the last device
function operation.

• A retrieveResultInformation method that associates a tag name with a data value that is read.

• A setParameterInformation method that is used to associate a tag name with additional data value parameters for
a card.

• A TransitionEvent which is a new event only for the EVR/W device in order to support communicating
asynchronous I/O operation status between the application and the EVR/W device.

In addition to updates to the device category, the following Properties were updated:

• The MediumID property which is used to specify unique information about the card.

• The SettledAmount property which contains the real amount of the settlement by the electronic money service.

15 - 10 Unified POS, V1.15.1 Beta1

15.3.3 Added in Release 1.14.1

After the release of 1.14, additional changes were required based upon extensive testing of the updated
specification. These include the following:

• Updated the Model to include new services: Point, Voucher/Ticket, Membership Certificate, and Common along
with their service capabilities and corresponding methods dependability.

• Addition of a description of the Life cycle of a Sub-Service.

• Addition of description of the variations of the service dependent upon behavior of a store or a location.

• Addition of description of how the EVR/W device interacts with a payment center.

• Added an updated Error model that more completely describes the EVR/W error conditions and reporting structure.

• Added the CapMembershipCertificate capability property.

• Updated the CardServiceList property variations description.

• Updated the CurrentService property variations description.

• Added the ServiceType property.

• Updated the ReaderWriterServiceList property variations description.

• Added the accessData method.

• Updated the accessLog method consistency information.

• Added the activateEVService method.

• Added the checkServiceRegistrationToMedium method.

• Added the closeDailyEVService method.

• Added the deactivateEVService method.

• Updated the lockTerminal method.

• Added the openDailyEVService method.

• Added the registerServiceToMedium method.

• Updated the retrieveResultInformation method by additional tags and values and enumeration tag values.

• Updated the unlockTerminal method with changes to the Remarks section.

• Added the unregisterServiceToMedium method.

• Added the updateData method.

• Updated the updateKey method.

• Updated the TransitionEvent by adding two new event type identifiers.

• Corrected formatting issues throughout the chapter.

Unified POS, v1.15.1 Beta1 15 - 11

15.3.4 Added in Release 1.15

In order to support devices supporting credit payment function, version 1.15 included the CAT specification in
the electronic value reader / writer specification.

The following added properties and methods conform to the CAT specification, so please refer to the description
of the CAT device specification.

• Added the CapAdditionalSecurityInformation capability property.

• Added the CapAuthorizeCompletion capability property.

• Added the CapAuthorizePreSales capability property.

• Added the CapAuthorizeRefund capability property.

• Added the CapAuthorizeVoid capability property.

• Added the CapAuthorizeVoidPreSales capability property.

• Added the CapCashDeposit capability property.

• Added the CapCenterResultCode capability property.

• Added the CapCheckCard capability property.

• Added the CapDailyLog capability property.

• Added the CapInstallments capability property.

• Added the CapPaymentDetail capability property.

• Added the CapTaxOthers capability property.

• Added the CapTransactionNumber capability property.

• Added the CardCompanyID property.

• Added the CenterResultCode property.

• Added the DailyLog property.

• Added the LogStatus property.

• Added the PaymentCondition property.

• Added the PaymentDetail property.

• Added the PaymentMedia property.

• Added the SlipNumber property.

• Added the TransactionNumber property.

• Added the TransactionType property.

• Added the accessDailyLog method.

• Added the authorizeCompletion method.

15 - 12 Unified POS, V1.15.1 Beta1

• Added the authorizePreSales method.

• Added the authorizeRefund method.

• Added the authorizeSales method.

• Added the authorizeVoid method.

• Added the authorizeVoidPreSales method.

• Added the cashDeposit method.

• Added the checkCard method.

The TrainingMode property of the CAT specification corresponds to the TrainingModeState property defined in
the electronic value reader / writer specification. To deal with credit processing, the following tag definitions and
TransitionEvent event definitions have been added.

• Updated the retrieveResultInformation method by adding additional tags,
 values and enumeration tag values.

• Updated the TransitionEvent by adding five new event type values.

Unified POS, v1.15.1 Beta1 15 - 13

15.3.5 EVRW Class Diagram

The following diagram shows the relationships between the EVR/W classes. Updated in Release 1.15

15 - 14 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 15 - 15

15.3.6 Model

The EVR/W supports the following services and methods.

Services Service
Capabilities

Corresponding Methods

Common Deploy activateEVService method

Open openDailyEVService method

Maintenance accessData method
updateData method
accessLog method
updateKey method

Close closeDailyEVService method

Remove deactivateEVService method

Electronic Money Balance Inquiry readValue method
Balance property

Payment subtractValue method
Amount property
SettledAmount property

Deposit addValue method
Amount property
SettledAmount property

Cancel cancelValue method
ApprovalCode property

Membership
certificate

Registering service to
medium

registerServiceToMedium method
checkServiceRegistrationToMedium
method

Unregistering service
to medium

unregisterServiceToMedium method

Inquiry readValue method

Updating writeValue method

15 - 16 Unified POS, V1.15.1 Beta1

Services Service
Capabilities

Corresponding Methods

Point Registering
service to medium

registerServiceToMedium method
checkServiceRegistrationToMedium
method
Point property

Unregistering
service to medium

unregisterServiceToMedium method

Inquiry readValue method
BalanceOfPoint property

Deposit addValue method
Point property
SettledPoint property

Redeem subtractValue method
Point property
SettledPoint property

Updating writeValue method
Point property

Cancel cancelValue method
ApprovalCode property

Voucher/Ticket Registering
service to medium

registerServiceToMedium method
checkServiceRegistrationToMedium
method

Unregistering
service to medium

unregisterServiceToMedium method

Inquiry/
Enumeration

readValue method
VoucherIDList property

Issue addValue method
VoucherID property

Redeem subtractValue method
VoucherID property

Unified POS, v1.15.1 Beta1 15 - 17

The general model of the EVR/W is as follows:

Input Model

The readValue method follows the UnifiedPOS Input model.

When the application is ready to receive the data from the EVR/W, the readValue method is called. Then, when
input data is received, a DataEvent event is enqueued. When the application sets the DataEventEnabled
property to true, the DataEvent event will be delivered to the application.

If an error occurs while reading the data, an ErrorEvent is enqueued instead of the DataEvent. When the
application sets the DataEventEnabled property to true, the ErrorEvent event will be delivered to the
application.

The application can obtain the number of enqueued data events by reading the DataCount property.

If AutoDisable is true, then the device is automatically disabled when a DataEvent is enqueued.

All input data that is queued can be cleared by executing the clearInput method.

Output Model

The accessLog, addValue, cancelValue, subtractValue, transactionAccess, and writeValue methods can be
executed asynchronously or synchronously depending on the value of the AsyncMode property as defined by the
UnifiedPOS output model.

When AsyncMode is true, methods cannot be issued immediately after issuing a prior method; only one
outstanding asynchronous method is allowed at a time. However, clearOutput is an exception because its
purpose is to cancel an outstanding asynchronous method.

When asynchronous processing completes, an OutputCompleteEvent is delivered to the application.

Support of Sub-Service Use

When one EVR/W provides two or more electronic value services, and an
EVR/W Service corresponding to each service provider exists, then they can be used as sub-service.

If the open method is executed, the open method of all sub-services is called, and the sub-service is enumerated
by the ReaderWriterServiceList property. The close, claim, and release methods operate in the same manner
on all the sub-services.

The application selects the sub-service to be used by setting the CurrentService property. All method and
property operations thereafter effect that sub-service.

CAT Device used for the EVR/W device: Added in Release 1.15

• The general model for the CAT control used for the EVR/W device is shown below:

• The CAT control used for the EVR/W device basically follows the output device model. However, multiple methods
cannot be issued for asynchronous output; only one outstanding asynchronous request is allowed.

• The CAT control used for the EVR/W device issues requests to the EVR/W device for different types of
authorization by invoking the following methods.

15 - 18 Unified POS, V1.15.1 Beta1

• The CAT control used for the EVR/W device issues requests to the EVR/W device for special processing local to
the EVR/W device by invoking the following methods.

• The CAT control used for the EVR/W device stores the authorization results in the following properties when an
authorization operation successfully completes:

• The accessDailyLog method sets the following property

Function Method name Corresponding Cap property

Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund

Authorization Completion authorizeCompletion CapAuthorizeCompletion

Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

Function Method name Corresponding Cap property

Card Check checkCard CapCheckCard

Daily log accessDailyLog CapDailyLog

Description Property Name Corresponding Cap Property

Credit Account number AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanyID None

Cod from the approval agency CenterResultCode CapCenterResultCode

Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail

Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber

Transaction type TransactionType None

Description Property Name Corresponding Cap Property

Daily log DailyLog CapDailyLog

Unified POS, v1.15.1 Beta1 15 - 19

Electronic Money Device: Added in Release 1.9

• The CAT Control used for the EVR/W device requires the Electronic Money Device to track each settlement and
closing in the DealingLog.

• When the CAT Control used for the EVR/W device receives the settlement results from the Electronic Money
Device it stores these results in the following properties:

• The accessDailyLog method sets the following property.

• Sequence numbers are used to validate that the properties set at completion of a method are indeed associated with
the completed method. An incoming SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method has completed. If the numbers do not
match, or if an application fails to identify the number, there is no guarantee that the values of the properties listed in
the two tables correspond to the completed method.

• The AsyncMode property determines if methods are run synchronously or asynchronously.

• When AsyncMode is false, methods will be executed synchronously and their corresponding properties will contain
data when the method returns.

• When AsyncMode is true, methods will return immediately to the application. When the operation associated with
the method completes, each corresponding property will be updated by the CAT control used for the EVR/W device
prior to an OutputCompleteEvent. When AsyncMode is true, methods cannot be issued immediately after issuing a
prior method; only one outstanding asynchronous method is allowed at a time. However, clearOutput is an

Function Method name Corresponding Cap property

Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal

Releasing security lock unlockTerminal CapUnlockTerminal

Description Property Name Corresponding Cap Property

Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None

Settled amount SettledAmount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

Description Property Name Corresponding Cap Property

DealingLog DailyLog CapDailyLog

15 - 20 Unified POS, V1.15.1 Beta1

exception because its purpose is to cancel an outstanding asynchronous method.

The methods supported and their corresponding properties vary depending on the CAT control used for the EVR/W
device implementation. Applications should verify that particular Cap properties are supported before utilizing the
capability dependent methods and properties.

• Results of synchronous calls to methods and writable properties will be stored in ErrorCode. Results of
asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Errorcode argument of
an ErrorEvent. If ErrorCode or the ErrorCode argument is E_EXTENDED, detailed device specific information
may be stored to
ErrorCodeExtended in synchronous mode and stored to ErrorEvent argument ErrorCodeExtended in
asynchronous mode. The error code from the approval agency will be stored in CenterResultCode in either mode.

• An outstanding asynchronous method can be canceled via the clearOutput method.

• The Daily log can be collected by the accessDailyLog method. Collection will be run either synchronously or
asynchronously according to the value of AsyncMode.

Unified POS, v1.15.1 Beta1 15 - 21

• Following is the general usage sequence of the CAT control.
Synchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the

 authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the

 authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

15 - 22 Unified POS, V1.15.1 Beta1

- setDeviceEnabled (false)

- release

- close

Unified POS, v1.15.1 Beta1 15 - 23

15.3.7 Life Cycle of Sub-Service Added in Release 1.14.1

The life cycle of a Sub-Service is illustrated below.

• Installed-deactivated state:
It is in the state which is invoked by the updateFirmware method and is not activated by activateEVService
method.

• Activated-closed-unlocked state:
It is in the state where Sub-Service was activated by the activateEVService method. In order to use Sub-Service, it is
necessary to open by the openDailyEVService method.

• Activated-opened-unlocked state:
It is in the state where the Sub-Service was opened by the openDailyEVService method.

• Activated-closed-locked/activated-opened-locked state:
It is in the state where Sub-Service was locked by the lockTerminal method. In order to unlock Sub-Service, it is
necessary to use the unlockTerminal method.

 EVRW service state chart

installed-deactivated

activated-closed-unlocked activated-closed-locked

activated-opened-unlocked activated-opened-locked

updateFirmware

activateEVService deactivateEVService

openDailyEVService closeDailyEVService

lockTerminal

unlockTerminal

lockTerminal

unlockTerminal

Calling payment methods.

subtractValue

addValue

readValue

writeValue

15 - 24 Unified POS, V1.15.1 Beta1

15.3.8 The Service with Variations Added in Release 1.14.1

The service can have variations depending upon the store or location which can alter the services required
behavior.

EVRW Device

Service-AMoney

Service-BPoint

 Variation-ABC Store

 Variation-DEF Shop

 Variation-XYZ Cafe

Service-CMoney

Service is chosen with

CurrentService property.

Unified POS, v1.15.1 Beta1 15 - 25

15.3.9 The Connection Model of EVR/W Devices and Payment Center
 Added in Release 1.14.1

There are two ways of connecting an EVR/W device to a payment center.
Method Definition
Direct Connection The EVR/W device is directly connected to the Payment Center.

Indirect Connection The EVR/W device is connected through a POS system to the Payment
Center.

POS

EVRW device

Payment Center

Direct connection

POS

EVRW device

Payment Center

Indirect connection

15 - 26 Unified POS, V1.15.1 Beta1

15.3.10 Transaction Mode Support

Transaction mode is comprised of multiple method calls and property accesses. Operations that can be included
in the batch processing is a invocation of the writeValue, addValue, subtractValue, and cancelValue methods and
all properties. When these methods are executed in transaction mode, their validation is confirmed first. If it is
valid, the operation is added to the transaction mode buffer prior to execution. No update has yet been performed
to the card.

Executing the transactionAccess method with a control value of EVRW_TA_NORMAL will cause all buffered
commands to be processed.

The AsyncMode property also influences the execution of the transaction mode.

If the transaction is processed synchronously and an exception is not raised, then the entire transaction process
was successful. If the transaction is processed asynchronously, then the asynchronous process rules listed above
are followed. If an error occurs and the Error Event handler causes a retry, the entire transaction is retried.

15.3.11 Device Sharing

The EVR/W is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 15 - 27

15.3.12 EVRW Sequence Diagram

The following sequence diagram shows the typical usage of the EVR/W device. Updated in Release 1.14.1

15 - 28 Unified POS, V1.15.1 Beta1

The following sequence diagram shows the continuation of the typical usage of the EVR/W device.
 　　　　　Updated in Release 1.14.1

Unified POS, v1.15.1 Beta1 15 - 29

The following sequence diagram shows the continuation of the typical usage of the EVR/W device.
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　Updated in Release 1.14.1

15 - 30 Unified POS, V1.15.1 Beta1

The following sequence diagram shows the CAT(EMV) usage that is used as EVR/W device. 　　　　
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　Updated in Release 1.15

Unified POS, v1.15.1 Beta1 15 - 31

15.3.13 EVRW State Diagram

The following state diagram depicts the EVR/W device model. Updated in Release 1.15

15 - 32 Unified POS, V1.15.1 Beta1

15.3.14 Error Model　　　　　　　　　　　　　　　　　　Updated in Release 1.14.1　

The EVR/W error reporting model is as follows:

Most of the EVR/W device error conditions are reported by setting the UposException’s (or ErrorEvent’s)
ErrorCode to E_EXTENDED and then setting ErrorCodeExtended as indicated in the following tables.　　
　　　　　　　　　　　　　　　　　　　　　　　　

Severity code indicates the severity condition and operation recovered from the error condition.

+3 +2 +1 +0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Severity code Unified error code Vendor oriented error code

Bit assign Size Item Description

31 – 27 5 Undefined

26 – 24 3 Severity Code Severity of the error
condition.

23 – 16 8 Unified error code Error code which
defined by UPOS
specification

15-0 16 Vendor oriented
error code

Error code which
oriented by vendor

No. Value Description Remarks

0 NORMAL No need to recover

1 BLOCKED Need to recover by maintenance
engineer

May need to replace the
device

2 RECOVERABLE Recoverable state which can be
recovered by retrying with changing
condition.

Ex) Operation timeout

3 RECOVERABLE_ASK_CARDHOLDE
R

Recoverable state which can be
recovered by retrying with changing
condition which the card holder
determines.

Deficiency

Transaction incomplete

Over deposit

4 RECOVERABLE_ASK_OPERATOR Recoverable state which can be
recovered by retrying with changing
condition which the POS operator
determines.

Log full

Mode mismatch

Unified POS, v1.15.1 Beta1 15 - 33

Unified error code indicates the type of error condition.

Value Item Description

EEVRW_ABORTED Canceling from POS. Transaction was aborted by the request
from POS.

EEVRW_DEFICIENT Amount is deficient. Transaction cannot perform because the
balance is insufficient.

EEVRW_DETECTION_
TIMEOUT

Medium detection timeout. Medium could not be detected within the
specified time.

EEVRW_HOST_
CANNOT_CLOSE

Payment center cannot
close.

Transaction cannot perform because the
payment center cannot close.

EEVRW_HOST_
CANNOT_OPEN

Payment center cannot
open.

Transaction cannot perform because the
payment center cannot open.

EEVRW_HOST_
CANNOT_OPERATE

The error occurred in
payment center.

Transaction cannot perform because the
error occurred in the payment center.

EEVRW_HOST_
REFUSAL

Transaction is refused by
the payment center.

Transaction cannot perform because the
request from transaction is refused by the
payment center.

EEVRW_IN_PROGRESS Transaction is in progress. Transaction was already progressing and
it was not able to perform the request.

EEVRW_INVALID_
MEDIUM

Invalid medium is
detected.

Transaction cannot perform because
invalid medium is detected.

EEVRW_INVALID_
MEDIUM_ABORTED

The error occurred in
medium.

Transaction cannot perform because the
error occurred in medium.

EEVRW_INVALID_
MEDIUM_ABORTED_
EXISTS

The error occurred in
medium.

Transaction cannot perform because the
service is already existing in medium.

EEVRW_INVALID_
MEDIUM_ABORTED_
NOSERVICE

The error occurred in
medium.

Transaction cannot perform because the
service is not present in medium.

EEVRW_INVALID_
MEDIUM_ABORTED_
NOSPACE

The error occurred in
medium.

Transaction cannot perform because there
is not enough memory space in medium.

EEVRW_INVALID_
MEDIUM_EXPIRED

Medium has expired. Transaction cannot perform because
medium has expired.

EEVRW_LOG_
OVERFLOW

Transaction log
overflowed.

Transaction cannot perform because
transaction log overflowed.

EEVRW_MEDIUM_
CANNOT_AUTHORIZE

Medium cannot authorize. Medium detected by EVR/W cannot
authorize.

EEVRW_MESSAGE_
FORMAT

Message format is invalid. Transaction cannot perform because the
message format is invalid.

15 - 34 Unified POS, V1.15.1 Beta1

A vendor oriented error code is a code from which a definition differs by the device or a service and which
shows a detailed error condition.

The contents of a vendor oriented error code are dependent on vendors.

EEVRW_OVERDEPOSIT The balance after charging
is exceeding a amount
limit.

Transaction cannot perform because the
balance after charging is exceeding a
amount limit.

EEVRW_OVERDEPOSIT_T
O_POINT

The point balance after
adding is exceeding a
amount limit.

Transaction cannot perform because the
point balance after adding is exceeding a
amount limit.

EEVRW_PAYMENT_
RESTRICTION

Transaction is restricted. Transaction cannot perform because
transaction includes restricted item.

EEVRW_RW_LOCKED EVR/W device is locked. Transaction cannot perform because
EVR/W device is locked.

EEVRW_RW_OUT Permanent error on a
device.

Transaction cannot perform because of a
permanent error on a device.

EEVRW_RW_OUT_
TEMPORARY_OUT

Temporary recoverable
error on a device.

Transaction cannot perform because of a
temporary recoverable error on a device.

EEVRW_RW_OUT_
TEMPORARY_OUT_
NEED_TO_RESET

Reset request from EVR/
W.

EVR/W needs to be reset.

EEVRW_TRANSACTION_I
NCOMPLETE

Transaction incomplete. The problem occurred during
transaction and transaction was aborted
in the unknown state.

EEVRW_
UNREACHABLE_HOST

Payment center cannot be
reached.

Transaction cannot perform because the
payment center cannot be reached.

EEVRW_UPOS114_
COMPATIBLE

For compatibility with the
error code defined by
UPOS older version.

The error code defined by the
ResultCodeExtended property of
UPOS1.14 is set to a Vendor oriented
error code.

Unified POS, v1.15.1 Beta1 15 - 35

15.4 Properties (UML attributes)

15.4.1 AccountNumber Property　　　　　　　　　　　　　　Updated in Release 1.14
Syntax　　AccountNumber: string { read-only, access after open }

Remarks Information for the service provider such as card number, member number, etc.; specifies the user
(owner) of the card from data set information on the card.

Note as of Release 1.14: The AccountNumber property may contain some of the same information
found in the tag values used by the setParameterInformation and retrieveResultInformation
methods. The tag values should be used instead of the AccountNumber property wherever
possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.2 AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the EVR/W device by setting this property before issuing an
authorization method. Also, data obtained from the EVR/W device and not stored in any other
property as the result of an authorization operation can be provided to an application by storing it in
this property. Since the data stored here is device specific, this should not be used for any
development that requires portability.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.3 Amount Property　　　　　　　　　　　　　　　　　Updated in Release 1.14
Syntax　　Amount: currency { read-write, access after open }

Remarks Holds the payment amount on the electronic money service.

Note as of Release 1.14: The Amount property may contain some of the same information found in
the tag values used by the setParameterInformation and retrieveResultInformation methods.
The tag values should be used instead of the Amount property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

15 - 36 Unified POS, V1.15.1 Beta1

15.4.4 ApprovalCode Property

Syntax ApprovalCode: string { read-write, access after open }

Remarks Holds the payment approval code.

The content of the approval code depends on implementation the device. When a unique number is
issued to the processing done with the device, the information is set.

This property is set to specify the cancellation of the payment when the device supports cancellation
of the payment and the cancelValue method is executed.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.5 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the writeValue, addValue, subtractValue, cancelValue, accessLog, and
transactionAccess methods will be performed asynchronously.

If false, these methods will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.6 Balance Property　　　　　　　　　　　　　　　　　Updated in Release 1.14
Syntax　　Balance: currency { read-only, access after open }

Remarks Holds the balance on the electronic money service.

Note as of Release 1.14: The Balance property may contain some of the same information found in
the tag values used by the setParameterInformation and retrieveResultInformation methods.
The tag values should be used instead of the Balance property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 15 - 37

15.4.7 BalanceOfPoint Property　　　　　　　　　　　　　　Updated in Release 1.14

Syntax BalanceOfPoint: currency { read-only, access after open }

Remarks Holds the point balance on the point service.

Note as of Release 1.14: The BalanceOfPoint property may contain some of the same information
found in the tag values used by the setParameterInformation and retrieveResultInformation
methods. The tag values should be used instead of the BalanceOfPoint property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.8 CapActivateService Property

Syntax CapActivateService: boolean { read-only, access after open }

Remarks If true, the activation processing is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.9 CapAdditionalSecurityInformation Property　　　　　　Added in Release 1.15

Syntax CapAdditionalSecurityInformation: boolean { read-only, access after open }

Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also AdditionalSecurityInformation property.

15.4.10 CapAddValue Property

Syntax CapAddValue: boolean { read-only, access after open }

Remarks If true, the addition of electronic value is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15 - 38 Unified POS, V1.15.1 Beta1

15.4.11 CapAuthorizeCompletion Property　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also authorizeCompletion method.

15.4.12 CapAuthorizePreSales Property　　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizePreSales: boolean { read-only, access after open }

Remarks If true, the authorizePreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also authorizePreSales method.

15.4.13 CapAuthorizeRefund Property　　　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also authorizeRefund method.

15.4.14 CapAuthorizeVoid Property　　　　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeVoid: boolean { read-only, access after open }

Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also authorizeVoid Method.

Unified POS, v1.15.1 Beta1 15 - 39

15.4.15 CapAuthorizeVoidPreSales Property　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also authorizeVoidPreSales Method.

15.4.16 CapCancelValue Property

Syntax CapCancelValue: boolean { read-only, access after open }

Remarks If true, the cancellation of the operation to the electronic value is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.17 CapCrdSensor Property

Syntax CapCardSensor: int32 { read-only, access after open }

Remarks Contains a bit mask indicating the types of card detection supported. When the sensor exists, the
detection is set to the DetectionStatus property and a StatusUpdateEvent is delivered.

This property is set to the logical OR of one or more of the following values:

Value Meaning
EVRW_CCS_ENTRY There is an insertion slot sensor.
EVRW_CCS_DETECT There is a card detection sensor.
EVRW_CCS_CAPTURE There is a stock space sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DetectionStatus Property, StatusUpdateEvent.

15 - 40 Unified POS, V1.15.1 Beta1

15.4.18 CapCashDeposit Property Added in Release 1.15

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Show the device has charged method by cashDeposit method or not. If true, the cashDeposit
method is implemented, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also cashDeposit method.

15.4.19 CapCenterResultCode Property Added in Release 1.15

Syntax CapCenterResultCode: boolean { read-only, access after open }

Remarks If true, the CenterResultCode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CenterResultCode property.

15.4.20 CapCheckCard Property Added in Release 1.15

Syntax CapCheckCard: boolean { read-only, access after open }

Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also checkCard method.

Unified POS, v1.15.1 Beta1 15 - 41

15.4.21 CapDailyLog Property Added in Release 1.14

Syntax CapDailyLog: int32 { read-only, access after open }
Remarks Shows the daily log ability of the device.

Value Meaning
EVRW_DL_NONE The EVRW device does not have the daily log functions.
EVRW_DL_REPORTING The EVRW device only has an intermediate total function

 which reads the daily log but does not erase the log.
EVRW_DL_SETTLEMENT The EVRW device only has the “final total” and “erase daily

 log” functions.
EVRW_DL_REPORTING_SETTLEMENT

 The EVRW device has both the intermediate total function and
 the final total and erase daily log function.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DailyLog property, accessDailyLog method.

15.4.22 CapDetectionControl Property

Syntax CapDetectionControl: int32 { read-only, access after open }

Remarks It is shown whether the detection processing of the card, the ejection processing of the card, the
storing processing of the card and these processing can be controlled from the application or the
EVR/W.

This property is set to the logical OR of one or more of the following values:

Value Meaning
EVRW_CDC_RWCONTROL Control is possible by the EVR/W device.
EVRW_CDC_APPLICATIONCONTROL

Control is possible by the application.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See AlsoDetectionControl Property, DetectionStatus Property.

15.4.23 CapElectronicMoney Property

Syntax CapElectronicMoney: boolean { read-only, access after open }

Remarks If true, the electronic money service is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 1- 16.

15 - 42 Unified POS, V1.15.1 Beta1

15.4.24 CapEnumerateCardServices Property

Syntax CapEnumerateCardServices: boolean { read-only, access after open }

Remarks If true, the enumeration of service in the card is supported; otherwise it is false. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 1- 16.

15.4.25 CapIndirectTransactionLog Property

Syntax CapIndirectTransactionLog: boolean { read-only, access after open }

Remarks If true, the transaction log is accessed as a file; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

15.4.26 CapInstallments Property Added in Release 1.15

Syntax CapInstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the result of
accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DailyLog property.

15.4.27 CapLockTerminal Property

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks If true, the security lock setting is supported; otherwise it is false.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also lockTerminal Method.

Unified POS, v1.15.1 Beta1 15 - 43

15.4.28 CapLogStatus Property

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks If true, the reporting of the status of the transaction log is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also StatusUpdateEvent.

15.4.29 CapMediumID Property

Syntax CapMediumID: boolean { read-only, access after open }

Remarks If true, the specification of the medium identifier is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.30 CapMembershipCertificate Property Added in Release 1.14.1

Syntax CapMembershipCertificate: boolean { read-only, access after open }

Remarks If true, the membership certificate service is supported otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.31 CapPaymentDetail Property Added in Release 1.15

Syntax CapPaymentDetail: boolean { read-only, access after open }

Remarks If true, the PaymentDetail property has been implemented; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PaymentDetail property.

15 - 44 Unified POS, V1.15.1 Beta1

15.4.32 CapPINDevice Property Added in Release 1.15

Syntax CapPINDevice: boolean { read-only, access after open }

Remarks If true, the EVR/W is equipped with a PIN device.
If false, the EVR/W is not equipped with a PIN device. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.33 CapPoint Property

Syntax CapPoint: boolean { read-only, access after open }

Remarks If true, the point service is supported otherwise it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.34 CapSubtractValue Property

Syntax CapSubtractValue: boolean { read-only, access after open }

Remarks If true, the subtraction of electronic value is supported; otherwise it is false. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.35 CapTaxOthers Property Added in Release 1.15

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result of access
DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the authorization
methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DailyLog property.

Unified POS, v1.15.1 Beta1 15 - 45

15.4.36 CapTrainingMode Property Added in Release 1.14

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the EVR/W supports a training mode.
If false, the EVR/W does not support a training mode. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.37 CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, the transaction mode is supported; otherwise it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.38 CapTransactionLog Property

Syntax CapTransactionLog: boolean { read-only, access after open }

Remarks If true, the transaction log is supported; otherwise it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.39 CapTransactionNumber Property Added in Release 1.15

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TransactionNumber property.

15 - 46 Unified POS, V1.15.1 Beta1

15.4.40 CapUnlockTerminal Property

Syntax CapUnlockTerminal: boolean { read-only, access after open }

Remarks If true, releasing of the security lock is supported; otherwise it is false. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also unlockTerminal Method.

15.4.41 CapUpdateKey Property

Syntax CapUpdateKey: boolean { read-only, access after open }

Remarks If true, the update of key information is supported; otherwise it is false. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.42 CapVoucher Property

Syntax CapVoucher: boolean { read-only, access after open }

Remarks If true, the voucher/ticket service is supported; otherwise it is false. This property is initialized by
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 1- 16.

15.4.43 CapWriteValue Property

Syntax CapWriteValue: boolean { read-only, access after open }

Remarks If true, the writing of electronic value is supported; otherwise it is false. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 15 - 47

15.4.44 CardCompanyID Property Added in Release 1.15

Syntax CardCompanyID: string { read-only, access after open }

Remarks This property is updated when an authorization operation successfully completes. It shows credit
card company ID.

The length of the ID string varies depending upon the EVRW device.

This property is initialized to an empty string by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.45 CardServiceList Property Updated in Release 1.14.1

Syntax CardServiceList: string { read-only, access after open }

Remarks Holds the comma-separated (CSV) list of services supported by the card. This list is populated by
the enumerateCardServices method.

For example, when the character string that identifies A electronic money service is “MoneyA” and
the character string that identifies B electronic point service is “PointB,” the CardServiceList
property becomes “MoneyA,PointB.”

Note as of Release 1.14.1: In case service has variation

When a service has some variations, a string value of this property can be specified with the
following rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:” are optional.
Separator characters such as “,”, and “:” cannot be used for a Service, Variation, and Additional
identifier.

Example:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and “DEFShop”, as a variation.
In this case, it will be set to a ReaderWriterServiceList property as
“XYZCustomerPoint:ABCStore, XYZCustomerPoint:DEFShop.”

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also enumerateCardServices Method.

15 - 48 Unified POS, V1.15.1 Beta1

15.4.46 CenterResultCode Property Added in Release 1.15

Syntax CenterResultCode: string { read-only, access after open }

Remarks Contains the code from the approval agency. Check the approval agency for the actual codes to be
stored.

This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.47 CurrentService Property Updated in Release 1.14.1

Syntax CurrentService: string { read-write, access after open }

Remarks Holds the character string that identifies the currently selected service.
This value is guaranteed to be one of the set of services specified by the ReaderWriterServiceList
property.

The character string being enumerated by the ReaderWriterServiceList property can be set.
If an empty string (“”) is set, it enters the state that no service has been selected.
In this state, depending on the device, an application can operate directly to the device.
When a valid string is set, the service is selected and started.

If the service supports the sub-service, the execution of the method and the setting of property are
done to the sub-service of the service that property shows. And only the event fires from the sub-
service which is selected by this property.

Note as of Release 1.14.1: In case service has variation

When a service has some variations, a string value of this property can be specified with the
following rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:” are optional.
Separator characters such as “,”, and “:” cannot be used for a Service, Variation, and Additional
identifier.

Example:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and “DEFShop”, as a variation.
In this case, it will be set to a ReaderWriterServiceList property as
“XYZCustomerPoint:ABCStore, XYZCustomerPoint:DEFShop”.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ReaderWriterServiceList Property.

Unified POS, v1.15.1 Beta1 15 - 49

15.4.48 DailyLog Property Updated in Release 1.15.1

Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13 decimal)+LF(10
decimal) for each transaction and is stored in ASCII code. The detailed data of each transaction is
comma separated [i.e., delimited by “,” (44)].
The details of one transaction are shown as follows:

Notes from the previous table:

1) Format

No Item Property Corresponding Cap Property

1 Card company ID CardCompanyID None

2 Transaction type TransactionType None

3 Transaction date
Note 1)

None None

4 Transaction number
Note 3)

TransactionNumber CapTransactionNumber

5 Payment condition PaymentCondition None

6 Slip number SlipNumber None

7 Approval code ApprovalCode None

8 Purchase date
Note 5)

None None

9 Account number AccountNumber None

10 Amount
Note 4)

The argument Amount of the
authorization method or the amount
actually approved.

None

11 Tax/others
Note 3)

The argument TaxOthers of the
authorization method.

CapTaxOthers

12 Installments
Note 3)

None CapInstallments

13 Additional data
Note 2)

AdditionalSecurityInformation CapAdditionalSecurity
Information

Item Format

Transaction date YYYYMMDDHHMMSS

Purchase date MMDD

15 - 50 Unified POS, V1.15.1 Beta1

Some EVRW devices may not support seconds by the internal clock. In that case, the second field of the
transaction date is filled with "00"

2) Additional data

The area where the EVRW device stores the vendor specific data. This enables an application to receive data
other than that defined in this specification. The data stored here is vendor specific and should not be used for
development which places an importance on portability.

3) If the corresponding Cap property is false

Cap property is set to false if the EVRW device provides no corresponding data. In such instances, the item
cannot be displayed so the next comma delimiter immediately follows. For example, if "Amount" is 1234 yen
and "Tax/others" is missing and "Installments" is 2, the description will be "1234,,2". This makes the description
independent of Cap property and makes the position of each data item consistent.

4) Amount
Amount always includes "Tax/others" even if item 11 is present.
If the JPY is a currency and actual amount value is 12345 yen, then in case amount 64bit integer value is
“123450000” and its string values are “12345.00” or “12345.00” or “1234” or “123450000”.
If the USD is a currency and actual amount value is 1234.56 USD, then in case amount 64bit integer value is
“12345600” and its string values are “1234.56” or “1234.5600” or “12345600”.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Example: An example of daily log content is shown below.

Item Description Meaning

Card company ID 102 JCB

Transaction type EVRW_TRANSACTION_SALES Purchase

Transaction date 19980116134530 1/16/199813:45:30

Transaction number 123456 123456

Payment condition EVRW_PAYMENT_INSTALLMENT_1 Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234

Amount

JPN 12345.00 or 12345.0000 or 12345 or
123450000

12345 JPY

USD 12345.0000 or 12345.00 or
123450000

12345.00 USD

Tax/others None None

Unified POS, v1.15.1 Beta1 15 - 51

 The acutal data stored in DailyLog will be as follows:

 Electronic Money Device: Setting DealingLog which is a result of the Electronic Money Device
 which does not have the communication module for closing processing done closing processing. It
 may be the device which is enciphered DealingLog to everything except for Center.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also CapDailyLog Property, accessDailyLog Method.

15.4.49 DetectionControl Property

Syntax DetectionControl: boolean { read-write, access after open }

Remarks If true, the detection processing of the card by the beginDetection/endDetection methods and the
card ejection processing by the beginRemoval/endRemoval methods are controlled by the
application.

This property can only be set true by the application when CapDetectionControl is set to
EVRW_CDC_APPLICATIONCONTROL.

If false, neither detection nor the ejection processing of the card are controlled from the application.
Invocation of the beginDetection/endDetection methods and the beginRemoval/endRemoval
methods from the application is invalid. When EVRW_CDC_RWCONTROL is specified for the
CapDetectionControl property, it is possible to set it.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDetectionControl Property, beginDetection Method, beginRemoval Method, endDetection
Method, endRemoval Method.

Number of payments 2 2

Additional data 12345678 Specific information

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

15 - 52 Unified POS, V1.15.1 Beta1

15.4.50 DetectionStatus Property

Syntax DetectionStatus: int32 { read-only, access after open }

Remarks Holds the state of card detection.

Value Meaning
EVRW_DS_NOCARD No card. The card detection sensor does not detect a card.
EVRW_DS_DETECTED There is a card in the device. The card detection sensor

detects the card.
EVRW_DS_ENTERED Card remaining at the insertion slot. The insertion slot sensor

detects the card.
EVRW_DS_CAPTURED The card is in the stock space. The stock space sensor detects

the card.

This property is initialized to EVRW_DS_NOCARD by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 1- 16.

15.4.51 ExpirationDate Property Updated in Release 1.14

Syntax ExpirationDate: string { read-only, access after open }

Remarks Holds the expiration date in the format “YYYYMMDD”.

Note as of Release 1.14: The ExpirationDate property may contain some of the same information
found in the tag values used by the setParameterInformation and retrieveResultInformation
methods. The tag values should be used instead of the ExpirationDate property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.52 LastUsedDate Property Updated in Release 1.14

Syntax LastUsedDate: string { read-only, access after open }

Remarks Holds the last used date in the format “YYYYMMDDHHMMSS”.

Note as of Release 1.14: The LastUsedDate property may contain some of the same information
found in the tag values used by the setParameterInformation and retrieveResultInformation
methods. The tag values should be used instead of the LastUsedDate property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 15 - 53

15.4.53 LogStatus Property

Syntax LogStatus: int32 { read-only, access after open }

Remarks Holds the state of transaction log.

Value Meaning
EVRW_LS_OK Transaction Log has enough capacity.
EVRW_LS_NEARFULL Transaction Log is nearly full.
EVRW_LS_FULL Transaction Log is full.

If transaction log becomes full, depending on the device, the settlement processing may not be able
to operate.

After this property is initialized, it is kept current as long as the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.54 MediumID Property Updated in Release 1.14

Syntax MediumID: string { read-write, access after open }

Remarks Holds the medium identifier of the card.

The medium identifier is information (manufacturer’s serial number, etc.) to specify the card
uniquely, and its content depends on implementation for the card.
The following methods are processed to the card with the medium identifier specified by this
property:

• addValue
• beginDetection
• cancelValue
• readValue
• subtractValue
• writeValue

The application can specify the card to be operated on by setting the medium identifier to this
property before the method call is issued. Setting an empty string (“”) for this property means the
operation can be performed with any card.
The medium identifier of the card is set when the method that have relation to the card succeeds.
Note as of Release 1.14: The MediumID property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods.
The tag values should be used instead of the MediumID property wherever possible.

This property is initialized to an empty string (“”) by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also addValue Method, beginDetection Method, cancelValue Method, readValue Method,
subtractValue Method, writeValue Method.

15 - 54 Unified POS, V1.15.1 Beta1

15.4.55 PaymentCondition Property Updated in Release 1.15

Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization operation.

This property will be set to one of the following values. See PaymentDetail for the detailed
payment string that correlates to the following PaymentCondition values.

Value Meaning
EVRW_PAYMENT_LUMP Lump-sum
EVRW_PAYMENT_BONUS_1 Bonus 1
EVRW_PAYMENT_BONUS_2 Bonus 2
EVRW_PAYMENT_BONUS_3 Bonus 3
EVRW_PAYMENT_BONUS_4 Bonus 4
EVRW_PAYMENT_BONUS_5 Bonus 5
EVRW_PAYMENT_INSTALLMENT_1 Installment 1
EVRW_PAYMENT_INSTALLMENT_2 Installment 2
EVRW_PAYMENT_INSTALLMENT_3 Installment 3
EVRW_PAYMENT_BONUS_COMBINATION_1
 Bonus combination payments 1
EVRW_PAYMENT_BONUS_COMBINATION_2
 Bonus combination payments 2
EVRW_PAYMENT_BONUS_COMBINATION_3
 Bonus combination payments 3
EVRW_PAYMENT_BONUS_COMBINATION_4
 　 Bonus combination payments 4
EVRW_PAYMENT_ REVOLVING Revolving
EVRW_PAYMENT_DEBIT Debit card
EVRW_PAYMENT_ELECTRONIC_MONEY
 Electronic Money

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PaymentDetail property

Unified POS, v1.15.1 Beta1 15 - 55

15.4.56 PaymentDetail Property Updated in Release 1.15.1

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation. Payment details vary
depending on the value of PaymentCondition. The data will be stored as comma separated ASCII
code. An empty string means that no data is stored and represents a string with zero length data.

PaymentCondition PaymentDetail

EVRW_PAYMENT_LUMP An empty string
EVRW_PAYMENT_BONUS_1 An empty string
EVRW_PAYMENT_BONUS_2 Number of bonus payments

EVRW_PAYMENT_BONUS_3 1st bonus month

EVRW_PAYMENT_BONUS_4* Number of bonus payments, 1st bonus month, 2nd
bonus month, 3rd bonus month, 4th bonus month, 5th
bonus month, 6th bonus month

EVRW_PAYMENT_BONUS_5* Number of bonus payments, 1st bonus month, 1st

bonus amount, 2nd bonus month, 2nd bonus amount,
3rd bonus month, 3rd bonus amount, 4th bonus month,
4th bonus amount, 5th bonus month, 5th bonus
amount, 6th bonus month, 6th bonus amount

EVRW_PAYMENT_INSTALLMENT_1 1st billing month, Number of payments

EVRW_PAYMENT_INSTALLMENT_2* 1st billing month, Number of payments, 1st amount,
2nd amount, 3rd amount, 4th amount, 5th amount, 6th
amount

EVRW_PAYMENT_INSTALLMENT_3 1st billing month, Number of payments, 1st amount

EVRW_PAYMENT_BONUS_COMBINATION_1 1st billing month, Number of payments

EVRWT_PAYMENT_BONUS_COMBINATION_2 1st billing month, Number of payments, bonus
amount

EVRW_PAYMENT_BONUS_COMBINATION_3* 1st billing month, Number of payments, number of
bonus payments, 1st bonus month, 2nd bonus month,
3rd bonus month, 4th bonus month, 5th bonus month,
6th bonus month

15 - 56 Unified POS, V1.15.1 Beta1

*Maximum 6 installments

The payment types and names vary depending on the EVRW device. The following are the payment types and
terms available for EVRW devices. Note that there are some differences between UnifiedPOS terms and those
used by the EVRW devices. The goal of this table is to synchronize these terms.

EVRW_PAYMENT_BONUS_COMBINATION_4* 1st billing month, Number of payments, number of
bonus payments, 1st bonus month, 1st bonus amount,
2nd bonus month, 2nd bonus amount, 3rd bonus
month, 3rd bonus amount, 4th bonus month, 4th bonus
amount, 5th bonus month, 5th bonus amount, 6th
bonus month, 6th bonus amount

EVRW_PAYMENT_REVOLVING An empty string
EVRW_PAYMENT_DEBIT An empty string
EVRW_PAYMENT_ELECTRONIC_MONEY An empty string

G
en

er
al

 P
ay

m
en

t C
at

eg
or

y

En
try

 it
em

Pa
ym

en
tC

on
di

tio
n

V
al

ue

CAT
Name

CAT
(Old CAT)

G-CAT JET-S SG-CAT Master-T

Credit
Card

Not
specified

Not
specified

JCB VISA MASTER

UnifiedPOS
Term

Card Company Terms

Lump-sum (None) 10 Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum

Bonus (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1

Number of bonus
payments

22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2

Bonus month(s) 23 Bonus 3 Bonus 3 Does not
exist.

Does not
exist.

Bonus 3 Bonus 3

Unified POS, v1.15.1 Beta1 15 - 57

Number of bonus
payments

Bonus month (1)

Bonus month (2)

Bonus month (3)

Bonus month (4)

Bonus month (5)

Bonus month (6)

24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4
(Up to two
entries for
bonus
month)

Bonus 4

Number of bonus
payments

Bonus month (1)

Bonus amount (1)

Bonus month (2)

Bonus amount (2)

Bonus month (3)

Bonus amount (3)

Bonus month (4)

Bonus amount (4)

Bonus month (5)

Bonus amount (5)

Bonus month (6)

Bonus amount (6)

25 Bonus 5 Bonus 5 Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installment Payment start month

Number of payments

61 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1

15 - 58 Unified POS, V1.15.1 Beta1

Payment start
month

Number of
payments

Installment
amount(1)

Installment
amount(2)

Installment
amount(3)

Installment
amount(4)

Installment
amount(5)

Installment
amount(6)

62 Installment 2 Installment 2 Does not
 exist.

Does not
 exist.

Does not
 exist.

Does not
 exist.

Payment start
month

Number of
payments

Initial amount

63 Installment 3 Installment 3 Installment 2 Installment 2 Does not
 exist.

Installment 2

Combination Payment start
month

Number of
payments

31 Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Unified POS, v1.15.1 Beta1 15 - 59

Payment
start
month

Number of
payments

Bonus
amount

32 Bonus
Combination
2

Bonus
Combination
2

Does not
 exist.

Does not
 exist.

Bonus
Combination
2

Bonus
Combination
2

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33 Bonus
Combination
3

Bonus
Combination
3

Does not
 exist.

Does not
 exist.

Bonus
Combination
3
(Up to two
entries for
bonus
month)

Bonus
Combination
3

15 - 60 Unified POS, V1.15.1 Beta1

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34 Bonus
Combination
4

Bonus
Combination
4

Bonus
Combination
2

Bonus
Combination
2

Bonus
Combination
4
(Up to two
entries for
bonus month
and amount)

Bonus
Combination
4

Unified POS, v1.15.1 Beta1 15 - 61

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapPaymentDetail Property, DailyLog Property

15.4.57 PaymentMedia Property Added in Release 1.15

Syntax PaymentMedia: int32 { read-write, access after open }

Remarks Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an approval method
call. “None specified” means that payment media will be determined by the EVRW device, not by
the POS application.
Value Meaning
EVRW_MEDIA_UNSPECIFIED None specified.
EVRW_MEDIA_CREDIT Credit card.
EVRW_MEDIA_DEBIT Debit card.
EVRW_MEDIA_ELECTRONIC_MONEY
 Electronic Money.

This property is initialized to EVRW_MEDIA_UNSPECIFIED by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Revolving (None) 80 Revolving Revolving Revolving Revolving Revolving Revolving

Debit (None) 110 Debit (Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

15 - 62 Unified POS, V1.15.1 Beta1

15.4.58 PINEntry Property Added in Release 1.14

Syntax PINEntry: int32 { read-write, access after open }

Remarks The PIN entry functionality that is supported by the EVR/W.

Value Meaning
EVRW_PIN_ENTRY_NONE

PIN input is not supported.

EVRW_PIN_ENTRY_EXTERNAL
The EVR/W is not equipped with the PIN input device. When PIN input
is required, it is necessary to use an external PIN pad device.

EVRW_PIN_ENTRY_INTERNAL
The EVR/W is equipped with an internal PIN input device for PIN
number entry.

EVRW_PIN_ENTRY_UNKNOWN
The PIN entry may be supported by the EVR/W device but the
CurrentService property is set to empty string (““) and the it is not clear
where the PIN entry is to occur.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.59 Point Property Updated in Release 1.14

Syntax Point: currency { read-write, access after open }
Remarks Holds the settlement point on the point service.

Note as of Release 1.14: The Point property may contain some of the same information found in the
tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the Point property wherever possible.

This property is initialized to zero by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 15 - 63

15.4.60 ReaderWriterServiceList Property Updated in Release 1.14.1

Syntax ReaderWriterServiceList: string { read-only, access after open }
Remarks Holds the comma-separated list of services that are supported by the EVR/W device.

For example, when the character string that identifies ‘A’ electronic money service is “MoneyA”
and the character string that identifies ‘B’ electronic point service is “PointB,” the
ReaderWriterServiceList property becomes “MoneyA,PointB.”
If the service supports the sub-service, the open method succeeds, the service that all the sub-
services provides is enumerated.
If the EVR/W service does not support the sub-service and an EVR/W service supports many
services, those services are enumerated by this property.
This property is initialized by the open method. The initialization value depends on what services
are supported; e.g., if the EVR/W device supports “MoneyA” and “PointB” services, this property
is initialized to “MoneyA, PointB.”
Note as of Release 1.14.1:

When a service has some variations, a string value of this property can be specified using the
following rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:” are optional.
Separator characters such as “,”, and “:” cannot be used for a Service, Variation, and Additional
identifier.

Expamle:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and “DEFShop” as a variation. In
this case, it will be set to a ReaderWriterServiceList property as “XYZCustomerPoint:ABCStore,
XYZCustomerPoint:DEFShop.”

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.61 SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Holds a “sequence number” as the result of each method call. This number needs to be checked by
an application to see if it matches with the argument sequenceNumber of the originating method.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15 - 64 Unified POS, V1.15.1 Beta1

15.4.62 ServiceType Property Updated in Release 1.15

Syntax ServiceType: int32 { read-only, access after open }

Remarks This property is initialized by the open method and updated when the CurrentService property is
updated.

Value Meaning
EVRW_ST_ELECTRONIC_MONEY

Electronic money service
EVRW_ST_POINT Point service
EVRW_ST_VOUCHER Voucher/Ticket service
EVRW_ST_MEMBERSHIP

Membership certificate service
EVRW_ST_UNSPECIFIED

Nothing is set to CurrentService
EVRW_ST_CAT Credit Authorization Terminal service

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also CurrentService Property.

15.4.63 SettledAmount Property Updated in Release 1.14

Syntax SettledAmount: currency { read-only, access after open }

Remarks Sets the real amount of the settlement on the electronic money service.

Note as of Release 1.14: The SettledAmount property may contain some of the same information
found in the tag values used by the setParameterInformation and retrieveResultInformation
methods. The tag values should be used instead of the SettledAmount property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 1- 16.

15.4.64 SettledPoint Property

Syntax SettledPoint: currency { read-only, access after open }

Remarks Sets the settlement point on the point service.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 15 - 65

15.4.65 SlipNumber Property Added in Release 1.15

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.
This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 1- 16.

15.4.66 TrainingModeState Property Added in Release 1.14

Syntax TrainingModeState: int32 { read-write, access after open }

Remarks The current state of the EVR/W device to indicate if the device is in training mode or not.

Value Meaning
EVRW_TM_FALSE The training mode is not selected, therefore normal operation is the

current state.
EVRW_TM_TRUE The training mode is selected.

EVRW_TM_UNKNOWN
The training mode may be supported by the EVR/W device but the
CurrentService property is set to empty string (““) and the it is not clear
what is the current state of the training mode.

This property is initialized to one of the these values by the open method.

Errors If TrainingModeState is set to EVRW_TM_TRUE but the device does not support training mode,
a UposException with E_ILLEGALmay be thrown.
A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapTrainingMode Property.

15 - 66 Unified POS, V1.15.1 Beta1

15.4.67 TransactionLog Property

Syntax TransactionLog: string { read-only, access after open }

Remarks Stores the result of the accessLog method.

If the CapIndirectTransactionLog property is true, the TransactionLog property shows URL that
shows the position such as files where the transaction log is stored. The content of the transaction
log depends on the device and service. This property is initialized to an empty string (“”) by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapIndirectTransactionLog Property, TransactionLog Property, accessLog Method.

15.4.68 TransactionNumber Property Added in Release 1.15

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation. This property is
initialized to an empty string by the open method and is updated when an authorization operation
successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.69 TransactionType Property Added in Release 1.15

Syntax TransactionType: int32 { read-only, access after open }

Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an authorization
operation successfully completes.This property will be set to one of the following values.

Value Meaning
EVRW_TRANSACTION_SALES Sales
EVRW_TRANSACTION_VOID　　　　 Cancellation
EVRW_TRANSACTION_REFUND Refund purchase
EVRW_TRANSACTION_COMPLETION Purchase after approval
EVRW_TRANSACTION_PRESALES Pre-authorization
EVRW_TRANSACTION_CHECKCARD Card Check
EVRW_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
EVRW_TRANSACTION_CASHDEPOSIT Charge

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 15 - 67

15.4.70 VoucherID Property Updated in Release 1.14

Syntax VoucherID: string { read-write, access after open }

Remarks Sets the ID of voucher/ticket on the voucher/ticket service.

It consists of pairs of the identifier and the number which validate the card holder.

For example, six tickets of identifier “001” are shown by the character string “001:6”. The “:” is a
separator between the identifier and the number of sheets.

Note as of Release 1.14: The VoucherID property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods.
The tag values should be used instead of the VoucherID property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15.4.71 VoucherIDList Property Updated in Release 1.14

Syntax VoucherIDList: string { read-write, access after open }

Remarks Sets the IDs of voucher/ticket are enumerated on the voucher/ticket service.

If six tickets of identifier “001”, one ticket of identifier “002”, two tickets of identifier “034” are
maintained, this is expressed by the CSV character string in the format “001:6,002:1,034:2”. The
“,” is a separator when two or more rights are maintained.

Note as of Release 1.14: The VoucherIDList property may contain some of the same information
found in the tag values used by the setParameterInformation and retrieveResultInformation
methods. The tag values should be used instead of the VoucherIDList property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

15 - 68 Unified POS, V1.15.1 Beta1

15.5 Methods (UML operations)

15.5.1 accessDailyLog Method Added in Release 1.15

SyntaxaccessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get daily log.
type Specify whether the daily log is intermediate total or final total and erase.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Gets daily log from EVRW.
Daily log will be retrieved and stored in DailyLog as specified by sequenceNumber.
When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.
Application must specify one of the following values for type for daily log type (either
intermediate total or adjustment). Legal values depend upon the CapDailyLog value.
Electronic Money Device: Gets the DealingLog from the Electronic Money Device to send to the
Center. If the Electronic Money Device has communication capabilities, the DealingLog will be
sent from the Electronic Money Device to the Center and nothing is stored in the DailyLog.
Otherwise, the DealingLog is stored in the DailyLog Property.

Value Meaning
EVRW_DL_REPORTING Intermediate total.
EVRW_DL_SETTLEMENT Final total and erase.
 Electronic Money Device: Closing DealingLog of the
 Electronic Money device.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

 Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported type or timeout parameter was specified, or
 CapDailyLog is false.
E_TIMEOUT No response was received from EVRW during the specified
 timeout time in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCode Extended.
E_BUSY The EVRE device canot accept any commands now.

 See Also CapDailyLog property, DailyLog property.

Unified POS, v1.15.1 Beta1 15 - 69

15.5.2 accessData Method Added in Release 1.14.1

Syntax accessData (dataType:int32, inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Parameter Description
dataType Type of the data which accesses

Value Meaning
EVRW_AD_KEY Key information.
EVRW_AD_NEGATIVE_LIST Negative list.
EVRW_AD_OTHERS Other information.
data An array of one mutable integers whose specific values or

 usage vary by service.
obj Additional data whose usage varies by service.

Remarks Data other than a transaction log is accessed from an EVR/W. It is supported when an EVR/W has
accessible data besides a transaction log accessible by AccessLog method.

The contents of data are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete
progress completion percentage (i.e., a percentage between 1 and 99), even if the device cannot
physically report the progress of the process. If the process completes successfully, the Service must
fire a TransitionEvent with a progress of 100. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also accessLog Method, updateData Method, TransitionEvent.

15 - 70 Unified POS, V1.15.1 Beta1

15.5.3 accessLog Method Updated in Release 1.14.1

Syntax accessLog (sequenceNumber: int32, type: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get transaction log.
type Specifies whether the transaction log is intermediate total or the last total.

(see values below)
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Gets transaction log from device. Gets transaction log on demand by sequenceNumber, and it is
stored in the TransactionLog property.

When timeout is FOREVER(-1), a timeout never occurs and it waits indefinitely until it receives a
response from the device. If EVR/W device needs the last total processing of a transaction, it
performs this method. The last total processing might be cleared in the transaction log, this depends
on the implementation. However, the intermediate total must not be cleared in the transaction log.

It depends on the implementation if the transaction log will be passed to the service center directly
and not to the application. The application must specify one of the following values for type of
transaction (either intermediate total or the last total).

Value Meaning
EVRW_AL_REPORTING

Gets transaction log as an intermediate total.
EVRW_AL_SETTLEMENT

The transaction log for the device is fixed and erased. (Whether it is
erased or not depends on the implementation.)

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Added in Release 1.14.1: For consistency, a Service must always fire at least one
TransitionEvent with an incomplete progress completion percentage (i.e. a percentage between 1
and 99), even if the device cannot physically report the progress of the process. If the process
completes successfully, the Service must fire a TransitionEvent with a progress of 100. These
Service requirements allow applications using this method to be designed to always expect some
level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid type or timeout parameter was specified. Or transaction log

function is unsupported.
E_TIMEOUT No response was received from device during the specified timeout (in

milliseconds).
E_BUSY The device cannot accept any commands while asynchronously

processing.

See Also TransactionLog Property, accessData Method, TransitionEvent.

Unified POS, v1.15.1 Beta1 15 - 71

15.5.4 activateEVService Method Added in Release 1.14.1

Syntax activateEVService (inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Parameter Description
data An array of one mutable integer whose specific values or usage vary by

service.
obj Additional data whose usage varies by service.

Remarks Executes the device activation process.

If the device has the activation process function, it is supported.

The activation process is the initial process performed when newly installing a device or service, or
when enabling the function disabled at the time of factory shipment.

The contents of processing and the contents of the parameter are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete
progress completion percentage (i.e. a percentage between 1 and 99), even if the device cannot
physically report the progress of the process. If the process completes successfully, the Service must
fire a TransitionEvent with a progress of 100. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also deactivateEVService Method, TransitionEvent.

15 - 72 Unified POS, V1.15.1 Beta1

15.5.5 activateService Method

Syntax activateService (inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Remarks Executes the device activation process.
If the device has the activation process function, it is supported.

The activation process is initialization or installation of device. The details of process contents and
parameters depend on implementation.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also CapActivateService Property.

15.5.6 addValue Method

Syntax addValue (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Electronic value is added to the card as specified by sequenceNumber on demand.
When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified Timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also CapAddValue Property, cancelValue Method, readValue Method, subtractValue Method,
writeValue Method.

Unified POS, v1.15.1 Beta1 15 - 73

15.5.7 authorizeCompletion Method Added in Release 1.15

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency, taxOthers: currency,
timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers are intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeCompletion
 is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeCompletion property.

15 - 74 Unified POS, V1.15.1 Beta1

15.5.8 authorizePreSales Method Added in Release 1.15

Syntax authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers: currency,
 timeout: int32):
 void { raises-exception, use after open-claim-enable }

Value Meaning
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
can be specified.

Remarks Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizePreSales is
 false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizePreSales property.

Unified POS, v1.15.1 Beta1 15 - 75

15.5.9 authorizeRefund Method Added in Release 1.15

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeRefund is

false.
E_TIMEOUT No response was received from EVRW during the specified timeout time

in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeRefund property.

15 - 76 Unified POS, V1.15.1 Beta1

15.5.10 authorizeSales Method Added in Release 1.15

Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the
 response is received from the EVRW device.
 FOREVER (-1), 0 and positive values can be specified.

Remarks Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid timeout parameter was specified.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

Unified POS, v1.15.1 Beta1 15 - 77

15.5.11 authorizeVoid Method Added in Release 1.15

Syntax authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:
int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

 received from the EVRW device. FOREVER (-1), 0 and positive values can
 be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoid is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeVoid property.

15 - 78 Unified POS, V1.15.1 Beta1

15.5.12 authorizeVoidPreSales Method Added in Release 1.15

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency, taxOthers: currency,
timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is
 received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Normal cancellation could be used for EVRW control and EVRW devices which have not
implemented the pre-authorization approval cancellation. Refer to the documentation supplied
with EVRW device and / or EVRW control.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or

 CapAuthorizeVoidPreSales is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales property.

Unified POS, v1.15.1 Beta1 15 - 79

15.5.13 beginDetection Method

Syntax beginDetection (type: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Executes the card detection process.

If the timeout parameter value is zero, the method initiates the detection mode immediately. If a
value is set (in milliseconds), the card detection process will wait for this time period if necessary.
If a value of FOREVER(-1) is specified, the method initiates the card detection process and then
waits as long as necessary until either the card is detected or an error occurs.

The type parameter specifies the type of the detected card. The value that can be specified is as
follows:
Value Meaning
EVRW_BD_ANY The content of the detected card can be anything.
EVRW_BD_SPECIFIC When this method is called, only the card that corresponds to the identifier

in the MediumID property can be detected.

Remarks Starts the card detection process in the device slot.
Supports the both contactless and contact IC card devices.

When called, the device starts a card detection process, and initiates the card detection in the device.
This method is called together with the endDetection method that ends the card detection process.

If the device cannot be set to the detection process, an error exception will be fired such as
E_TIMEOUT. However, the device stays in the detection mode until the endDetection method is
called.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot execute while asynchronous processing.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified timeout has elapsed without the card being properly

detected.

See Also MediumID Property, endDetection Method.

15 - 80 Unified POS, V1.15.1 Beta1

15.5.14 beginRemoval Method

Syntax beginRemoval (timeout: int32):
 void { raises-exception, use after open-claim-enable }

Executes the removal process

If the timeout parameter value is zero, the method initiated the detection mode immediately. If its
value is set (milliseconds), the card detection process will be wait until time is due. If its value is
FOREVER(-1), the method initiates the card removal process and then waits as long as necessary
until either the card is removed or an error occurs.

Remarks Starts the card ejection process.
If the device is a contactless IC card device, when this method is called, device starts the card
ejection process and ejects the card and this method ends successfully at any time.

If the device is a contact IC card device with card detection sensor, this method completes when
card ejection was detected.

If the device is a contact IC card device without card detection sensor, this method completes when
this method is executed.

This method is called together with the endRemoval method that ends the card ejection process.

If the device cannot be set to the card ejection mode, an error exception will be fired, e.g.,
E_TIMEOUT. However, the device will remain in card ejection mode until endRemoval method
is called.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY cannot execute while asynchronous processing.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified timeout has elapsed without the card being properly

removed.
See Also endRemoval Method.

Unified POS, v1.15.1 Beta1 15 - 81

15.5.15 cancelValue Method

Syntax cancelValue (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Cancels the Electronic value related operation specified by sequenceNumber on demand. The
targeted cancellation operation is identified by the settlement number that is contained in the
ApprovalCode property.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also ApprovalCode Property, CapCancelValue Property, addValue Method, readValue Method,
 subtractValue Method, writeValue Method.

15.5.16 captureCard Method

Syntax captureCard ():
 void { raises-exception, use after open-claim-enable }

Remarks The card left in the slot is removed.
This method is effective, if the device is equipped with a card detection sensor. When the card
insertion slot sensor detects the card, since the card ejection process was executed, application may
call this method to keep and maintain the card.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_FAILURE The device cannot capture the card.

See Also DetectionStatus Property.

15 - 82 Unified POS, V1.15.1 Beta1

15.5.17 cashDeposit Method Added in Release 1.15

Syntax cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for charge.
amount Amount of money for charge.
timeout The maximum waiting time (in milliseconds) until the response is
 received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Charging amounts.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait forever until the
Electronic Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCashDeposit is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time in
 milliseconds.
E_EXTENDED 　 The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapCashDeposit property.

Unified POS, v1.15.1 Beta1 15 - 83

15.5.18 checkCard Method Added in Release 1.15

Syntax checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the response is
 received from the EVRW device. FOREVER (-1), 0 and positive
 values can be specified.

Remarks Card Check is intended.

Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The Balance will be
stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCheckCard is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also Balance property, CapCheckCard property.

15 - 84 Unified POS, V1.15.1 Beta1

15.5.19 checkServiceRegistrationToMedium Method Added in Release 1.14.1

Syntax checkServiceRegistrationToMedium
 (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks To a medium, it is checked whether electronic value service can be registered.

An UposException with E_EXTENDED is thrown when service cannot register to medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also registerServiceToMedium Method.

15.5.20 clearParameterInformation Method Added in Release 1.14

Syntax clearParameterInformation ():
 void { raises-exception, use after open-claim-enable }

Remarks Used to clear the all the tag values for the control set previously stored by the
setParameterInformation method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also setParameterInformation Method.

Unified POS, v1.15.1 Beta1 15 - 85

15.5.21 closeDailyEVService Method Added in Release 1.14.1

Syntax closeDailyEVService (inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Parameter Description
data An array of one mutable integer whose specific values or usage vary

by service.
obj Additional data whose usage varies by service.

Remarks Executes the closing process of the service selected by CurrentService property..
If the device has the closing process function, it is supported.

The contents of processing are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete
progress completion percentage (i.e. a percentage between 1 and 99), even if the device cannot
physically report the progress of the process. If the process completes successfully, the Service must
fire a TransitionEvent with a progress of 100. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The service does not have the closing process.
E_BUSY The device cannot accept any commands now.

See Also openDailyEVService Method, TransitionEvent .

15 - 86 Unified POS, V1.15.1 Beta1

15.5.22 deactivateEVService Method　　　　　　　　　　　Added in Release 1.14.1

Syntax deactivateEVService (inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Parameter Description
data An array of one mutable integer whose specific values or usage vary by

service.
obj Additional data whose usage varies by service.

Remarks Executes the device deactivation process.
If the device has the deactivation process function, it is supported.

The deactivation process is the terminate process performed when uninstalling a service or
removing a device.

The contents of processing and the contents of the parameter are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an incomplete
progress completion percentage (i.e. a percentage between 1 and 99), even if the device cannot
physically report the progress of the process. If the process completes successfully, the Service must
fire a TransitionEvent with a progress of 100. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

These Service requirements allow applications using this method to be designed to always expect
some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning 　　　　　　　
E_ILLEGAL The device does not have the deactivation.
E_BUSY The device cannot accept any commands now.

See Also activateEVService Method, TransitionEvent.

Unified POS, v1.15.1 Beta1 15 - 87

15.5.23 endDetection Method

Syntax endDetection ():
 void { raises-exception, use after open-claim-enable }

Remarks Ends the card detection process.
When called, the device ends card detection mode. If the card is correctly detected in the device
control is returned to the application. If the card cannot be detected an exception is delivered with
its ErrorCodeExtended property set to EVRW_NOCARD.
This method is called together with the beginDetection method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device is not in card detection mode.
E_EXTENDED ErrorCodeExtended=EVRW_NOCARD:

No card has been detected.

See Also beginDetection Method.

15.5.24 endRemoval Method

Syntax endRemoval ():
 void { raises-exception, use after open-claim-enable }

Remarks Ends the card removal process.
When called, the device ends the card removal mode. If the card is not detected in the device, control
is returned to the application. If the card remains in the device, an exception is delivered with its
ErrorCodeExtended property set to EVRW_RELEASE. If the device is contactless IC card, it is not
necessary to implement this and control is always returned to the application without any
exceptions.

This method is called together with the beginRemoval method for the card removal processing.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device is not in card removal mode.
E_EXTENDED ErrorCodeExtended=EVRW_RELEASE:

The card remains in the device.

See AlsobeginRemoval Method.

15 - 88 Unified POS, V1.15.1 Beta1

15.5.25 enumerateCardServices Method

Syntax enumerateCardServices ():
 void { raises-exception, use after open-claim-enable }

Remarks Enumerates the services which are used in the card and sets the CardServiceList property.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.
See Also CardServiceList Property.

15.5.26 lockTerminal Method　　　　　　　　　　　　　Updated in Release 1.14.1

Syntax lockTerminal ():
 void { raises-exception, use after open-claim-enable }

Remarks Sets the security lock on the device or the service. If the device or the service is locked, the device
or the service cannot accept any commands except for unlockTerminal method.
AdditionalSecurityInformation property is set if key information is required to lock for the
authentication.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have a security lock function. CapLockTerminal is

false.
E_BUSY The device cannot accept any commands now.

See Also AdditionalSecurityInformation Property, CapLockTerminal Property,
unlockTerminal Method.

Unified POS, v1.15.1 Beta1 15 - 89

15.5.27 openDailyEVService Method　　　　　　　　　　　Added in Release 1.14.1

Syntax openDailyEVService (inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　　
data An array of one mutable integer whose specific values or usage vary 　
　　　　　　　　　 by service.
obj Additional data whose usage varies by service.

Remarks Executes the opening process of the service selected by CurrentService property. If the device has
the opening process function, it is supported. The contents of processing are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete
progress completion percentage (i.e. a percentage between 1 and 99), even if the device cannot
physically report the progress of the process. If the process completes successfully, the Service must
fire a TransitionEvent with a progress of 100. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning 　　　　　　　　　　
E_ILLEGAL The service does not have the opening process.
E_BUSY The device cannot accept any commands now

See Also closeDailyEVService Method, TransitionEvent.

15.5.28 queryLastSuccessfulTransactionResult Method　　　　Added in Release 1.14

Syntax queryLastSuccessfulTransactionResult ():
 void { raises-exception, use after open-claim-enable }

Remarks This method is used to refresh the property values that resulted from last successful readValue,
writeValue, addValue, subtractValue, cancelValue, and accessLog methods calls.

When the readValue method was last successfully executed, the property values will indicate the
status at the time the DataEvent event or ErrorEvent event was sent. The tag name
“TransactionType” will be set to the value of last successful transaction method call.

The queryLast SuccessfulTransactionResult method is necessary because there may be situations
where a transaction result is unknown. This could be due to power failure or network
communication interruptions occurring just before the transaction result updated. Some EVR/W
devices support a function to provide the last transaction results from the device and this method
utilizes this functionality.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

15 - 90 Unified POS, V1.15.1 Beta1

15.5.29 readValue Method Updated in Release 1.15.1

Syntax readValue (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified. The Timeout setting depends on the device implementation. It
is either the writing completion maximum time or the device response
maximum time.

Remarks Reads the electronic value from the card.
Electronic value is read from the card specified by sequenceNumber on demand.

When timeout is FOREVER(-1), a timeout never occurs and the Service waits indefinitely until it
receives a response from the device.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT Writing to the device did not end successfully within the set Timeout

period.
Note : After the readValue method execution successfully completed,
when waiting for a response from the device, if there is no response from
the device beyond the specified Timeout an ErrorEvent is provided
instead of E_TIMEOUT.

E_BUSY The device cannot accept any commands now.

See Also addValue Method, cancelValue Method, subtractValue Method, writeValue Method.

Unified POS, v1.15.1 Beta1 15 - 91

15.5.30 registerServiceToMedium Method　　　　　　　　　Added in Release 1.14

Syntax registerServiceToMedium
 (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }
Parameter Description 　　　　　　　
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Electronic value service is registered to a medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning 　　　　　　　
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also checkServiceRegistrationToMedium Method,
unregisterServiceToMedium Method.

15 - 92 Unified POS, V1.15.1 Beta1

15.5.31 retrieveResultInformation Method　　　　　　　　　Updated in Release 1.15.1

Syntax retrieveResultInformation (name: string, inout value: string):
 void { raises-exception, use after open, claim }

Parameter Description 　　　　　　
name The tag name whose value is to be retrieved.
value The string value for the tag specified by the name parameter.

If the name parameter is not recognized or not supported for the current
card type, the value returned will be an empty string (““).

Remarks The retrieveResultInformation method is used to associate a tag name with the data value that
comes from the card that is being read.

The following table defines the tag name and associated information on its value and usage.

Tag name Type** of String and Description
AccessLogLastDateTime The Datetime of obtaining the last

transaction log.
AccountNumber Account ID String for electronic value service. Although it has the same

information in a property, it is recommended to use this tag name/value.
Amount Settlement Currency amount

requested to the EVR/W.
Although it has the same information in a property, it is recommended to use
this tag name/value.

AmountForPoint The Currency amount targeted for
calculating points. The amount will be specified when the EVR/W device cal-
culates the point values to be added at the same time as settlement, but there are
some products not targeted for points.

AuthenticationStatus The Enumerated number for the status of authentication.
AutoCharge Boolean for request to conduct an automatic charge at the time of issuing a

method, or the result of automatic charge at the time of completing the process.
Balance The Currency balance of electronic value service. Although it has the same in-

formation in a property, it is recommended to use this tag name/value.
BalanceOfPoint The Currency balance of point service.Although it has the same information in

a property, it is recommended to use this tag name/value.
BusinessUnitID ID String for a store.
CancelTransactionType The Enumerated value of the transaction cancel type, when it is to be canceled.

1. Canceling the transaction
2. Canceling the charge
3. Canceling the return
4. Canceling the sales

CardCompanyName The String name of a company issuing
electronic value media (card or mobile phone).

CardTransactionLogID The ID String for transaction details stored in electronic value service
media (card or mobile phone). The The

Unified POS, v1.15.1 Beta1 15 - 93

CardTransactionNumber The transaction Number assigned and controlled by electronic value
service media (card or mobile phone).

ChargeableAmount The Currency amount for which charging is possible
ChargeableCount The Number of times in which charging is possible.
ChargeMethod The Enumerated value for the method to charge an electronic value service:

1. Cash
2. Credit
3. Exchanging points

DateTime The Datetime of issuing a method,
notifying an event, or completing a process.

EffectiveDaysOfKey The Number of days the Key value is effective.
EndAccountID The ending point specified by an account ID String when requesting closing or

summary to the EVR/W.
EndDateTime The ending point specified by the Datetime when requesting closing or summa-

ry to the EVR/W.
EndEVRWTransactionNumber The ending point Number specified by the EVR/W transaction

sequential number when requesting closing or summary to the EVR/W.
EndPOSTransactionNumber The ending point Number specified by a POS transaction number when

requesting closing or summary to the EVR/W.
EVRWApprovalCode The approval code String for processing assigned and controlled by the

EVR/W.
EVRWDataUpdateDateTime The Datetime when the internal data of the EVR/W was updated.
EVRWDateTime The Datetime managed by the EVR/W.
EVRWID The ID Number of the EVR/W
EVRWTransactionLogID The ID String for transaction details stored in the EVR/W
EVRWTransactionNumber The transaction Number assigned and controlled by the EVR/W.
ExpirationDate The expiration DateTime of the medium. Although it has the same information

in a property, it is recommended to use this tag name/value.
ExpiredAccountID The String description provided when information is held for an account

already expired in the electronic value service media (card or mobile phone).
ForceOnlineCheck Boolean

Specifies request to force the center to check online/offline status at the time
of settlement.

InsufficientAmount Insufficient Currency amount when the balance is found insufficient by the
EVR/W.

ItemCode The item code String for the product handled in the settled transaction.
KeyExpirationDateTime The DateTime when the key expires.
KeyUpdateDateTime The DateTime when the key of the EVR/W was last updated.
LastTimeBalance Currency Balance before settlement
LastTimeCardTransaction-
LogID

The ID String for last time transaction details stored in electronic value service
media (card or mobile phone).

15 - 94 Unified POS, V1.15.1 Beta1

LastTimeEVRWTransaction-
LogID

The ID String for last time transaction details stored in the EVR/W.

LastUsedDateTime The most recent used DateTime of the medium. Although it has the same infor-
mation in a property, it is recommended to use this tag name/value.

LogCheck Boolean
The flag to specify whether to check the transaction log when voiding the set-
tlement.

MediaData Information String data for electronic value media (card or mobile phone) that
is not related to POS. The content can be freely set by service providers or ven-
dors.

MediumID The ID Number for electronic value service media (card or mobile phone).
Although it has the same information in a property, it is recommended to use
this tag name/value.

MediumIssuerInformation The String containing the information on the issuer of the medium.
MemberInformation The String containing the information of the membership certificate.
MerchantID The String containing the merchant identification information.
ModuleID The ID Number for individual settlement modules or applications that exist in

the EVR/W that provides multiple services.
NegativeInformationType The Enumerated value indicating the type of negative transaction

information.
NegativeInformationUpdate-
DateTime

The DateTime when the negative information of the EVR/W was updated.

NumberOfAddition The Number of charge settlement transactions
NumberOfEVRWTransaction-
Log

The Number of transaction details stored in the EVR/W.

NumberOfFreeEVRWTransac-
tionLog

The Number value of free space for transaction details stored in the EVR/W

NumberOfRecord The Number of records
NumberOfSentEVRWTransac-
tionLog

The Number of transaction details that are stored in the EVR/W and have been
sent to the settlement center.

NumberOfSubtraction The Number of settlement transactions.
NumberOfTransaction The total Number of transactions
NumberOfUncompletedAddi-
tion

The Number of transactions uncompleted due to communication error between
the EVR/W and electronic value media (card or mobile phone) during the
charge settlement transaction.

NumberOfUncompletedSub-
traction

The Number of transactions uncompleted due to communication error between
the EVR/W and electronic value media (card or mobile phone) during the set-
tlement transaction.

NumberOfUncompletedVoid The Number of transactions uncompleted due to communication error between
the EVR/W and electronic value media (card or mobile phone) during voiding
transaction.

NumberOfVoid The Number of voiding transactions

Unified POS, v1.15.1 Beta1 15 - 95

OtherAmount The Currency amount for extra payment when it is used for the transaction to-
gether with a regular settlement.

PaymentCondition The Enumerated number for the type of payment for the settlement amount in
case of post-pay type electronic value services.

PaymentDetail The String data of the type of payment for the settlement amount in case of
post-pay type electronic value services.

PaymentMethod The Enumerated number for the amount required by the EVR/W, it specifies
the type of settlement of transaction amount:
1. Full settlement
2. Settlement combined with another payment method.

PaymentMethodForPoint The Enumerated value that represents the settlement method that is targeted
for calculating points.

Point The point value Number requested to the EVR/W from POS. Although it has
the same information in a property, it is recommended to use this tag
name/value.

POSDateTime The Datetime of accounting managed by POS.
POSTransactionNumber The sequential Number that identifies the POS transaction.
RegistrableServiceCapacity The Number indicating the quantity of services that can be registered.
RequestedAutoChargeAmount The Currency amount requested for automatic charge.
ResponseCode1 The primary result code Number for processing.The content can be freely set

by service providers or vendors.
ResponseCode2 The secondary result code Number for detailed processing.The content can be

freely set by service providers or vendors.
ResultOnSettlement The Enumerated number for the result status of the settlement

transaction between the EVR/W and electronic value media
(card or mobile phone)

RetryTimeout Timeout Number (in milliseconds) until the EVR/W is touched by electronic
value media (card or mobile phone) when it is necessary to retry processing be-
tween the EVR/W and electronic value media (card or mobile phone)

SettledAmount The Currency amount actually settled with the EVR/W. Although it has the
same information in a property, it is recommended to use this tag name/value.

SettledAutoChargeAmount The automatic charge Currency value actually settled by the EVR/W
SettledMemberInformation The String which contains the member information in the

membership certificate after it has been updated.
SettledOther-Amount The actual Currency amount of extra payment when an electronic value

service is used with other settlement methods.
SettledPoint The point value Number actually settled by the EVR/W.
SetttledVoucherID The String which contains the updated voucher ID.
SettlementNumber The sequential Number for the clearing process.
SignatureFlag Boolean

The flag to specify whether or not it is necessary to sign after settlement.
SoundAssistFlag Boolean

The flag specifying whether or not to activate voice navigation.

15 - 96 Unified POS, V1.15.1 Beta1

StartAccountID The starting point specified by a String account ID when requesting closing or
summary to the EVR/W.

StartDateTime The starting point specified by the Datetime when requesting closing or
summary to the EVR/W.

StartEVRWTransactionNum-
ber

The starting point Number specified by the EVR/W transaction
sequential number when requesting closing or summary to the EVR/W.

StartPOSTransactionNumber The starting point Number specified by a POS transaction number when
requesting closing or summary to the EVR/W.

SummaryTermType The Enumerated number that specifies the term for the summary process.
TargetService The String which contains the information about the target service.
TaxOthers Tax and other Currency amounts included in the settlement amount

required by the EVR/W.
TotalAmountOfAddition The total Currency amount of charge settlement transactions
TotalAmountOfSubtraction Total Currency amount of settlement transactions.
TotalAmountOfTransaction The total Currency amount of the transactions.
TotalAmountOfUncomplete-
dAddition

The total Currency amount of transactions not completed due to
communication errors between the EVR/W and electronic value media
(card or mobile phone) during the charge settlement transaction.

TotalAmountOfUncompleted-
Subtraction

The total Currency amount of transactions not completed due to
communication errors between the EVR/W and electronic value media
(card or mobile phone) during the transaction settlement.

TotalAmountOfUncompleted-
Void

The total Currency amount of transactions not completed due to
communication errors between the EVR/W and electronic value media
(card or mobile phone) during voiding transactions.

TotalAmountOfVoid The total Currency amount of voided transactions.
TouchTimeout Timeout Number (in milliseconds) until the EVR/W is touched by

electronic value media (card or mobile phone).
TransactionType The Enumerated number for the type of transaction for the electronic value

service.
UILCDControl Boolean

Specifies whether or not a LCD is controlled if the EVR/W has a LCD.
UILEDControl Boolean

Specifies whether or not a LED iscontrolled if the EVR/W has a LCD.
UISOUNDControl Boolean

Specifies whether or not sound is controlled if EVR/W has sounds.
VOIDorRETURN The Enumerated value for how a transaction is voided:

1. Void
2. Return

VoidTransactionType The Enumerated value of the transaction voided type when it is to be voided:
1. Sales
2. Charge
3. Cancel
4. Return

Unified POS, v1.15.1 Beta1 15 - 97

All the values for the tags are typed as character strings. The following table shows the format for the string
values.

VoucherID The ID String of the voucher/ticket.
VoucherIDList The enumerated IDs String of the voucher/ticket.
WorkstationID ID String for POS.
WorkstationMaker The String which identifies the manufacturer’s code of the workstation

manufacturer.
WorkstationSerialNumber The String which contains the manufacturer’s serial number or the

identification code of the POS workstation.

Type** Format
String Text character string.
Number 32 bit Integer value represented by text characters.
Currency 64 bit Integer value represented by text characters.The 4 fixed

numbers of digits define below a decimal point.
For example, if the integer is “1234567,” then the currency value is “123.4567.”

Datetime Datetime format is: yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss '.' sss zzzzzz where '-' is the
character separator between the date elements.
yyyy is a 4-digits numeral representing the year.
mm is a 2-digits numeral representing the month (from 01 to 12) .
dd is a 2-digits numeral representing the day of the month
(from 01 to 31).
'T' is the character separator between the date and the time.
':' is the character separator between the time elements.
hh is a 2-digits numeral representing the hours (from 00 to 23).
mm (the second one) is a 2-digits numeral representing the minute (from 00 to 59).
ss is a 2-digits numeral representing the integer part of the seconds (from 00 to 59).
'.' is the character separator between the time and the fractional
seconds.
sss is a 1-digit to 3-digits numeral representing the fractional
seconds.
zzzzzz represent the time zone which is the character 'Z' for a GMT time, or the del-
ta from the GMT time, with a string of the form
(('+' | '-') hh ':' mm) where '+' represent a positive delta from the GMT time '-'
represent a negative delta from the GMT time hh is a 2-digits numeral representing
the delta hours (from 00 to 14) mm is a 2-digits numeral representing the delta min-
ute (from 00 to 59)
Requesting a mandatory time zone resolves the problem of Daylight Saving Time
or Summer Time, because the time is absolute.
Examples 2008-04-12T23:20:50.275 represents the date of 12 April 2008 on the
local time of 20 minutes, 50 seconds and 275 milliseconds past 23 hours. 2008-04-
12T22:20:50.275+01:00 represents the same date and time in Geneva. 2008-04-
12T17:20:50.275-05:00 represents the same date and time in New-York.

15 - 98 Unified POS, V1.15.1 Beta1

The following values are used for the Enumerated tags.

Boolean A logical type of string value “True” or “False.”
Enumerated One of the text character strings defined by each tag.

For example, the value "1" defined in EVRW_TAG_AS_AUTHENTICATED con-
verted to a string is set.

Tag Definition Remarks
Authentication
Status

EVRW_TAG_AS_AUTHENTICATED Authenticated
EVRW_TAG_AS_UNAUTHENTICATED Unauthenticated

Cancel
Transaction
Type

EVRW_TAG_CTT_CANCEL Canceling
EVRW_TAG_CTT_CHARGE Canceling charge
EVRW_TAG_CTT_RETURN Canceling return
EVRW_TAG_CTT_SALES Canceling sales

Charge
Method

EVRW_TAG_CM_CASH Charge by cash
EVRW_TAG_CM_CREDIT Charge by credit
EVRW_TAG_CM_POINT Charge by points

Negative
Information
Type

EVRW_TAG_NIT_ALL Full list of negative settle-
ment
information.

EVRW_TAG_NIT_UPDATED Updated list of negative
settlement
information

Unified POS, v1.15.1 Beta1 15 - 99

Payment
Condition

EVRW_TAG_PC_ INSTALLMENT_2 Installment 2
EVRW_TAG_PC_ INSTALLMENT_3 Installment 3
EVRW_TAG_PC_BONUS_1 Bonus 1
EVRW_TAG_PC_BONUS_2 Bonus 2
EVRW_TAG_PC_BONUS_3 Bonus 3
EVRW_TAG_PC_BONUS_4 Bonus 4
EVRW_TAG_PC_BONUS_5 Bonus 5
EVRW_TAG_PC_BONUS_COMBINATION_1 With extra

payment by
bonus 1

EVRW_TAG_PC_BONUS_COMBINATION_2 With extra
payment by
bonus 2

EVRW_TAG_PC_BONUS_COMBINATION_3 With extra
payment by
bonus 3

EVRW_TAG_PC_BONUS_COMBINATION_4 With extra
payment by
bonus 4

EVRW_TAG_PC_INSTALLMENT_1 Installment 1
EVRW_TAG_PC_LUMP Lump-sum
EVRW_TAG_PC_REVOLVING Revolving

Payment
Method

EVRW_TAG_PM_COMBINED Settlement
combined with other pay-
ment

EVRW_TAG_PM_FULL_SETTLEMENT Full settlement
Payment
Method
ForPoint

EVRW_TAG_PMFP_CASH Cash
EVRW_TAG_PMFP_CREDIT Credit card
EVRW_TAG_PMFP_EM Electronic money
EVRW_TAG_PMFP_OTHER Other

ResultOnSettlement EVRW_TAG_ROS_NG Abnormal
termination

EVRW_TAG_ROS_OK Normal
termination

EVRW_TAG_ROS_UNKNOWN Unidentified

15 - 100 Unified POS, V1.15.1 Beta1

Errors A UposException may be thrown when this method is invoked. For further information, see
 “Errors” on page 1- 16.

Summary
TermType

EVRW_TAG_STT_1 From the previous type of
summary result to cur-
rent.

EVRW_TAG_STT_2 From the summary result
before the previous type
of result to the
previous summary result.

EVRW_TAG_STT_3 From the summary result
two times before the pre-
vious type of summary
result to the
summary result
before the previous result.

TransactionType EVRW_TAG_TT_ADD Adding (Charge)
EVRW_TAG_TT_CANCEL_CHARGE Canceling charge
EVRW_TAG_TT_CANCEL_RETURN Canceling/Return
EVRW_TAG_TT_CANCEL_SALES Canceling sales
EVRW_TAG_TT_COMPLETION Authorizing completion
EVRW_TAG_TT_GET_LOG Acquiring a

transaction log
EVRW_TAG_TT_PRE_SALES Authorizing pre-sales
EVRW_TAG_TT_READ Reading

(Reference)
EVRW_TAG_TT_RETURN Return
EVRW_TAG_TT_SUBTRACT Subtracting (Sales)
EVRW_TAG_TT_WRITE Writing

VOIDorReturn EVRW_TAG_VR_VOID Canceling
(VOID)

EVRW_TAG_VR_RETURN Return

Void
Transaction
Type

EVRW_TAG_VTT_SALES Voiding the Sales
EVRW_TAG_VTT_CHARGE Voiding the Charge
EVRW_TAG_VTT_CANCEL Voiding the Cancel
EVRW_TAG_VTT_RETURN Voiding the RETURN

Unified POS, v1.15.1 Beta1 15 - 101

15.5.32 setParameterInformation Method　　　　　　　　　Updated in Release 1.15.1

Syntax setParameterInformation (name: string, value: string):void
{ raises-exception, use after open, claim }

Parameter Description 　　　　
name The tag used to identify the specific card data item.
value The string value associated with the tag name.

If the name parameter is not recognized or not supported for the current
card type, nothing get changed.

Remarks The setParameterInformation method is used to associate a tag name with additional the data
value parameters that are associated with the card that is being read. Refer to explanation of a
retrieveResultInformation method for the tags and values that can be used.

The application can call a clearParameterInformation method which will set the value to the
empty string (““).

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode Property are

Value Meaning

E_ILLEGAL Invalid or unsupported parameter was specified.

See Also clearParameterInformation Method, retrieveResultInformation Method.

15 - 102 Unified POS, V1.15.1 Beta1

15.5.33 subtractValue Method

Syntax subtractValue (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Subtracts the electronic value from the card.
Electronic value is subtracted from the card specified by sequenceNumber on demand.

When timeout is FOREVER(-1), timeout never occurs and the Service waits indefinitely until it
receives a response from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also CapSubtractValue Property, addValue Method, cancelValue Method, readValue Method,
writeValue Method.

Unified POS, v1.15.1 Beta1 15 - 103

15.5.34 transactionAccess Method Updated in Release 1.15.1

Syntax transactionAccess (control: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
control The transaction control, can be set to one of the following values:

Value Meaning 　　　　　　　　
EVRW_TA_TRANSACTION　 Begin a transaction
EVRW_TA_NORMAL End the transaction mode by executing the buffer operation.

Remarks Enters or exits transaction mode.
If control is EVRW_TA_TRANSACTION, then transaction mode is entered. Subsequent calls to
writeValue, addValue, subtractValue, and cancelValue will buffer the data until
transactionAccess is called with the control parameter set to EVRW_TA_NORMAL. It depends
on the implementation if buffering is done in the EVR/W device or buffering is done within the
Service.

If control is EVRW_TA_NORMAL, then transaction mode is exited. If some requests were
buffered by calls to the methods writeValue, addValue, subtractValue, and cancelValue, then the
buffered requests will be executed.

The entire transaction requests are treated as one message. This method is performed synchronously
if AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print lines are also
cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also AsyncMode Property, CapTransaction Property, addValue Method, cancelValue Method,
subtractValue Method, writeValue Method.

15 - 104 Unified POS, V1.15.1 Beta1

15.5.35 unlockTerminal Method Updated in Release 1.14.1

Syntax unlockTerminal ():
 void { raises-exception, use after open-claim-enable }

Remarks Releases the security lock on the device or the service. When the device has a security lock function,
it is supported. AdditionalSecurityInformation property is set when key information is required
to release the lock.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device does not have a security lock function. CapUnlockTerminal

is false.
E_BUSY The device cannot accept any commands now.

See Also AdditionalSecurityInformation Property, CapUnlockTerminal Property
lockTerminal Method.

15.5.36 unregisterServiceToMedium Method Added in Release 1.14.1

Syntax unregisterServiceToMedium
 (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Electronic value service is deleted from a medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device. This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also registerService Method.

Unified POS, v1.15.1 Beta1 15 - 105

15.5.37 updateData Method Added in Release 1.14.1

Syntax updateData (dataType:int32, inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Parameter Description
dataType Type of the data which accesses

Value Meaning
EVRW_AD_KEY Key information.
EVRW_AD_NEGATIVE_LIST Negative list.
EVRW_AD_OTHERS Other information.
data An array of one mutable integer whose specific values or

 usage vary by service.
obj Additional data whose usage varies by service.

Remarks The data of an EVR/W is updated.
The contents of data are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete
progress completion percentage (i.e., a percentage between 1 and 99), even if the device cannot
physically report the progress of the process. If the process completes successfully, the Service must
fire a TransitionEvent with a progress of 100. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also accessData Method, TransitionEvent.

15 - 106 Unified POS, V1.15.1 Beta1

15.5.38 updateKey Method Updated in Version 1.14.1

Syntax updateKey (inout data: int32, inout obj: object):
 void { raises-exception, use after open-claim-enable }

Remarks Updates the key information in the device. If the device has the function to the key information, it
is supported.
The content of processing and the content of the parameter depend on the implementation.

Added in Release 1.14.1:For consistency, a Service must always fire at least one TransitionEvent
with an incomplete progress completion percentage (i.e., a percentage between 1 and 99), even if
the device cannot physically report the progress of the process. If the process completes
successfully, the Service must fire a TransitionEvent with a progress of 100. These Service

Unified POS, v1.15.1 Beta1 15 - 107

requirements allow applications using this method to be designed to always expect some level of
progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the update function of key information.
E_BUSY The device cannot accept any commands now.

See Also TransitionEvent

15.5.39 writeValue Method

Syntax writeValue (sequenceNumber: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Writes the electronic value in the card. Electronic value is written in the card specified by
sequenceNumber on demand. When timeout is FOREVER(-1), timeout never occurs and it waits
indefinitely until it receives a response from the device. This method is performed synchronously
if AsyncMode is false, and asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also CapWriteValue Property, addValue Method, cancelValue Method, readValue Method,
 subtractValue Method.

15 - 108 Unified POS, V1.15.1 Beta1

15.6 Events (UML interfaces)

15.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application about the available input data from the device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks Before this event is delivered, the data is set into the appropriate property.

See Also “Events” on page 1- 15.

15.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific EVR/W Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and
 the Service. This property is settable.
Obj Object Additional data whose usage varies by the EventNumber and Service.

 This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s EVR/W devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 15 - 109

15.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an EVR/W error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
　 E_EXTENDED, then see values below. Otherwise, it may contain a 　　

　 　　　 Service-specific value.
ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EVRW_CENTERERROR

An error was returned from the approval agency.
EVRW_COMMANDERROR

The command sent to the device is wrong. This error is never returned so
long as device control is working correctly.

EVRW_RESET The device was stopped during processing by device reset key (stop key)
and so on.

EVRW_COMMUNICATIONERROR
Communication error has occurred between the approval agency (center)
and device.

EVRW_LOGOVERFLOW
Transaction log was too big to be stored. Getting transaction log has been
stopped and the value of TransactionLog is uncertain.

EVRW_DAILYLOGOVERFLOW
Try to processing, a failure will occur if the transaction log on the device
is full and cannot be settle.

EVRW_DEFICIENT Because the balance is insufficient, it cannot be subtracted.
EVRW_OVERDEPOSIT

Because the amount that was able to be charged was exceeded, it cannot
be added.

15 - 110 Unified POS, V1.15.1 Beta1

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Typically valid only when locus is EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus isEL_INPUT_DATA.

Remarks Notifies when the error is detected when a method is asynchronously executed, and the state of the
control moves to the error state.

Input error events are generated when errors occur while reading the data from a card, directed by
readValue method. These error events are not delivered until the DataEventEnabled property is
set to true so as to allow proper application sequencing. All error information is placed into the
applicable properties before this event is delivered.

Output error events are generated and delivered when errors occur during asynchronous output
processing. The errors are placed into the applicable properties before the events are delivered.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 15 - 111

15.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued asynchronous output request associated with the OutputID
attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that it was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

15 - 112 Unified POS, V1.15.1 Beta1

15.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the device detects a status change.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status condition of the EVR/W.

The Status attribute has one of the following values:

Value Description
EVRW_SUE_LS_OK The transaction log has enough capacity.
EVRW_SUE_LS_NEARFULL

The transaction log is nearly full.
EVRW_SUE_LS_FULL The transaction log is full.
EVRW_SUE_DS_NOCARD

The card detection sensor does not detect the card.
EVRW_SUE_DS_DETECTED

The card detection sensor detected the card.
EVRW_SUE_DS_ENTERED

The insertion slot sensor detected the card.
EVRW_SUE_DS_CAPTURED

The stock space sensor detected the card.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See description “StatusUpdateEvent" in Chapter 1.

Remarks This event is enqueued when a EVR/W detection undergoes a change or if Power State Reporting
is enabled and a change in the power state is detected.

The state of the transaction log is reported only if CapLogStatus is true.

See Also CapLogStatus Property, LogStatus Property, “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 15 - 113

15.6.6 TransitionEvent Updated in Release 1.15

<< event >> upos::events::TransitionEvent
EventNumber: int32 { read-only }
pData:int32{ read-write }
pString:string{ read-write }

Description Notifies the application that an important device process condition has occurred during an asynchronous
I/O operation and a suitable response is necessary by the application.

Note: In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Attributes This event contains the following attribute:

Attribute Type Description
EventNumber int32 The ID number of the asynchronous I/O device process condition that is

the cause for the event.

pData int32 Additional information about appropriate response which is dependent
upon the specific process condition.

pString string Information about the specific event that has occurred.

The EventNumber attribute has one of the following values:

Value Description
EVRW_TE_NOTIFY_TOUCH_RETRY

Update retry notification
Notification of retouching request (Retouching cannot be canceled until
a certain period of time passes)

EVRW_TE_NOTIFY_TOUCH_RETRY_CANCELABLE
Update retry notification (can be canceled)
Notification of retouching request (Retouching can be canceled at any
time)

EVRW_TE_CONFIRM_TOUCH_RETRY
Confirmation of update retry (continued or canceled)
At the time of completing the event, it specifies in pData whether to
continue waiting for retouching (1), or to cancel (0).

EVRW_TE_CONFIRM_CANCEL
Confirmation of process cancellation
At the time of completing the event, it specifies in pData whether to
cancel the process (1), or to continue (0).

EVRW_TE_NOTIFY_INVALID_OPERATION
Notification of issuing an invalid operation
The event code is set in pData

15 - 114 Unified POS, V1.15.1 Beta1

EVRW_TE_CONFIRM_INVALID_OPERATION
Confirmation of invalid operation
The event code is set in pData. Specifies whether to continue the
process (1), or to terminate the process abnormally (0).

EVRW_TE_CONFIRM_REMAINDER_SUBTRACTION
Confirmation of insufficient funds and the deductible amount from the
balance.
The balance is set in Balance property during notification. After
completing the event, specify in pData whether to deduct all the
balance (1), or to cancel (0).

EVRW_TE_CONFIRM_CENTER_CHECK
Confirmation of a center check
At the time of completing the event, specify in pData whether to
conduct a center check (1), or not (0).

EVRW_TE_CONFIRM_TOUCH_TIMEOUT
Confirmations of timeout to wait for touching
At the time of completing the event, specify in pData whether to
continue touching (1) or not (0).

EVRW_TE_CONFIRM_AUTO_CHARGE
Confirmation of automatic charge
At the time of completing the event, specify in pData whether to
continue touching (1) or not (0).

EVRW_TE_NOTIFY_CAPTURE_CARD
Notification of card detection

EVRW_TE_NOTIFY_CENTER_CHECK
Notification of center checkis being conducted.

EVRW_TE_NOTIFY_COMPLETE
Notification of process completion.
Used when it is necessary to provide this information before same
information is available through an OutputCompleteEvent event.

EVRW_TE_NOTIFY_PIN Notification that PIN input data is available in the PIN input status

EVRW_TE_NOTIFY_TOUCH
Status Notification of waiting for touching.

EVRW_TE_NOTIFY_BUSY
Status Notification that a processis underway requires some time
before it is completed.

EVRW_TE_CONFIRM_CENTER_CHECK_COMPLETE
The confirmation that a center check has been completed.
After the check is completed, specify in pData whether to continue the
process after the completion (1) or cancel the process (0).

Unified POS, v1.15.1 Beta1 15 - 115

EVRW_TE_CONFIRM_SELECT
Confirmation of settlement option when there are options available for
settlement. Options are set in pString in CSV format.
After completing the event, specify in pData the selected element
number, starting with number 1).

EVRW_TE_NOTIFY_LOCK
Notification that unlocking card or device is required.
Notifies that a user must unlock the card (mobile phone) which is
currently in a locked state.

EVRW_TE_NOTIFY_CENTER_CHECK_COMPLETE
Notifies that a center check has finished.

EVRW_TE_NOTIFY_PROGRESS_1_TO_100
Notification of process progress The process has successfully
completed 1 to 100 percent of the total operation.

EVRW_TE_CONFIRM_DEVICE_DATA
The required confirmation of a data event.
The confirmation of a data event occurs when an EVR/W device
requires the delivery of data during processing of a method call. The
data is delivered by using the AddditionalSecurityInformation
property.

EVRW_TE_CONFIRM_PIN_ENTRY_BY_OUTER_PINPAD
Requesting PIN input from an external device.Confirmation of PIN
input request from an external PIN input device. The pData is used to
specify whether to cancel the process at the time of event completion
(0), or to continue the process (1).
To continue the process, specify in pString the PIN data acquired from
the PIN pad device. When the effective PIN is not obtained from a PIN
pad, (2) it is returned in pData.

EVRW_TE_CONFIRM_SEARCH_TABLE
Confirmation of table search request.
The encrypted information block is passed through the
AdditionalSecurityInformation property. The content of the
information block and the method of encryption are implementation
dependent.

15 - 116 Unified POS, V1.15.1 Beta1

EVRW_TE_CONFIRM_PAYMENT_CONDITION
Confirmation of payment method selection request.
At event notification, pString lists selectable payment method strings
in CSV format. The character string indicating the payment method is
the value of the enumerator that can be specified in the
PaymentCondition tag. At the end of the event, specify both the
PaymentCondition tag enumerator that indicates the payment method
in the pData argument and the payment type details in the CSV format
as the pString argument. The CSV format that defines the details of the
payment type follows the specification of the PaymentCondition
property.

EVRW_TE_CONFIRM_AUTHORIZE
Confirmation of authorization communication request.
The encrypted information block is passed through the
AdditionalSecurityInformation property. The content of the
information block and the method of encryption are implementation
dependent.

EVRW_TE_NOTIFY_CHECK_CARD
Notification of card check.

EVRW_TE_NOTIFY_SELECT_PAYMENT_CONDITION
Notification of payment method selection.

The event codes specified in pData during the EventNumber(s)
EVRW_TE_NOTIFY_INVALID_OPERATION and
EVRW_TE_CONFIRM_INVALID_OPERATION have the following meanings.

PData Parameter Description
 1 Mismatch of a retouched card
 2 Card authentication error
 3 An uncompleted process occurs again when requesting re-touching.
 4 Failure of PIN input
 5 Requests processing after a detailed check.
 6 Mismatch of cards
 7 Detects multiple cards
 8 Detects a card with the balance at 0.

Remarks This event is enqueued when the EVR/W process requires notification of application or device
service of impending activity that requires immediate action or response.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 16 - 1

16 Fiscal Printer

16.1 General
This chapter defines the Fiscal Printer device category.

16.2 Summary

Properties (UML attributes)
Common Type Mutability Versio

n
May Use After

AutoDisable: boolean { read-write } 1.3 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 Not supported
DataEventEnabled: boolean { read-write } 1.3 Not supported
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

16 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapAdditionalHeader:
CapAdditionalLines:
CapAdditionalTrailer:
CapAmountAdjustment:
CapAmountNotPaid:
CapChangeDue:
CapCheckTotal:
CapCoverSensor: (1)
CapDoubleWidth:
CapDuplicateReceipt:
CapEmptyReceiptIsVoidable:
CapFiscalReceiptStation:
CapFiscalReceiptType:
CapFixedOutput:
CapHasVatTable:
CapIndependentHeader:
CapItemList:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.6
1.3
1.6
1.3
1.3
1.6
1.3
1.3
1.3
1.3
1.6
1.6
1.6
1.3
1.3
1.3
1.3

open
open
open
open

Deprecated v1.11
open
open
open
open
open
open
open
open
open
open
open
open

CapJrnEmptySensor: (1)
CapJrnNearEndSensor: (1)
CapJrnPresent: (1)

boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }

1.3
1.3
1.3

open
open
open

CapMultiContractor:
CapNonFiscalMode:
CapOnlyVoidLastItem:
CapOrderAdjustmentFirst:
CapPackageAdjustment:
CapPercentAdjustment:
CapPositiveAdjustment:
CapPositiveSubtotalAdjustment
CapPostPreLine:
CapPowerLossReport:
CapPredefinedPaymentLines:
CapReceiptNotPaid:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.6
1.3
1.6
1.3
1.6
1.3
1.3
1.11
1.6
1.3
1.3
1.3

open
open
open
open
open
open
open
open
open
open
open
open

CapRecEmptySensor: (1)
CapRecNearEndSensor: (1)
CapRecPresent: (1)

boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }

1.3
1.3
1.3

open
open
open

Unified POS, v1.15.1 Beta1 16 - 3

Properties (Continued)
Specific (continued) Type Mutability Version May Use After
CapRemainingFiscalMemory:
CapReservedWord:
CapSetCurrency:
CapSetHeader:
CapSetPOSID:
CapSetStoreFiscalID:
CapSetTrailer:
CapSetVatTable:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.3
1.3
1.6
1.3
1.3
1.3
1.3
1.3

open
open
open
open
open
open
open
open

CapSlpEmptySensor: (1)
CapSlpFiscalDocument:
 CapSlpFullSlip: (1)
CapSlpNearEndSensor: (1)
CapSlpPresent: (1)
CapSlpValidation:
CapSubAmountAdjustment:
CapSubPercentAdjustment:
CapSubtotal:
CapTotalizerType:
CapTrainingMode:
CapValidateJournal:
CapXReport:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.6
1.3
1.3
1.3

open
open
open
open
open
open
open
open
open
open
open
open
open

ActualCurrency: int32 { read-only } 1.6 open, claim, & enable
AdditionalHeader: string { read-write } 1.6 open, claim, & enable
AdditionalTrailer: string { read-write } 1.6 open, claim, & enable
AmountDecimalPlaces: int32 { read-only } 1.3 open, claim, & enable
AsyncMode: boolean { read-write } 1.3 open
ChangeDue: string { read-write } 1.6 open
CheckTotal: boolean { read-write } 1.3 open
ContractorId: int32 { read-write } 1.6 open, claim, & enable
CountryCode: int32 { read-only } 1.3 open, claim, & enable
CoverOpen: (1) boolean { read-only } 1.3 open, claim, & enable
DateType: int32 { read-write } 1.6 open, claim, & enable
DayOpened: boolean { read-only } 1.3 open, claim, & enable
DescriptionLength: int32 { read-only } 1.3 open
DuplicateReceipt: boolean { read-write } 1.3 open
ErrorLevel: int32 { read-only } 1.3 open

16 - 4 Unified POS, V1.15.1 Beta1

NOTE: Properties and methods marked with (1) are adapted from the POS Printer device.

Properties (Continued)
Specific (continued) Type Mutability Version May Use After
ErrorOutID: int32 { read-only } 1.3 open, claim, & enable
ErrorState: int32 { read-only } 1.3 open
ErrorStation: int32 { read-only } 1.3 open
ErrorString: string { read-only } 1.3 open
FiscalReceiptStation: int32 { read-write } 1.6 open, claim, & enable
FiscalReceiptType: int32 { read-write } 1.6 open, claim, & enable
FlagWhenIdle: (1) boolean { read-write } 1.3 open

JrnEmpty: boolean { read-only } 1.3 open, claim, & enable
JrnNearEnd: boolean { read-only } 1.3 open, claim, & enable

MessageLength:
MessageType:

int32
int32

{ read-only }
{ read-write }

1.3
1.6

open
open

NumHeaderLines: int32 { read-only } 1.3 open
NumTrailerLines: int32 { read-only } 1.3 open
NumVatRates: int32 { read-only } 1.3 open
PostLine: string { read-write } 1.6 open, claim, & enable
PredefinedPaymentLines: string { read-only } 1.3 open
PreLine: string { read-write } 1.6 open, claim, & enable
PrinterState: int32 { read-only } 1.3 open, claim, & enable

QuantityDecimalPlaces: int32 { read-only } 1.3 open, claim, & enable
QuantityLength: int32 { read-only } 1.3 open, claim, & enable

RecEmpty: (1) boolean { read-only } 1.3 open, claim, & enable
RecNearEnd: (1) boolean { read-only } 1.3 open, claim, & enable

RemainingFiscalMemory: int32 { read-only } 1.3 open, claim, & enable
ReservedWord: string { read-only } 1.3 open

SlpEmpty: (1) boolean { read-only } 1.3 open, claim, & enable
SlpNearEnd: (1) boolean { read-only } 1.3 open, claim, & enable
SlipSelection: int32 { read-write } 1.3 open, claim, & enable
TotalizerType: int32 { read-write } 1.6 open, claim, & enable
TrainingModeActive: boolean { read-only } 1.3 open, claim, & enable

Unified POS, v1.15.1 Beta1 16 - 5

16.3 General Information Updated in Release 1.15
The Fiscal Printer programmatic name is “FiscalPrinter.” The Fiscal Printer Control does not attempt to
encapsulate a generic graphics printer. Rather, for performance and ease of use considerations, the interfaces are
defined to directly control the normal printer functions.

Since fiscal rules differ between countries, this interface tries to generalize the common requirements at the
maximum extent specifications. This interface is based upon the fiscal requirements of the following countries, but
it may fit the needs of other countries as well:

• Brazil

• Bulgaria

• Germany

• Greece

• Hungary

• Italy

• Poland

• Romania

• Russia

• Turkey

• Czech Republic

• Ukraine

• Sweden

The Fiscal Printer model defines three stations with the following general uses:

• Journal Used for simple text to log transaction and activity information. Kept by the store for audit and other
 purposes.

• Receipt Used to print transaction information. It is mandatory to give a printed fiscal receipt to the customer. Also
 often used for store reports. Contains either a knife to cut the paper between transactions, or a tear bar to manually
 cut the paper.

• Slip Used to print information on a form. Usually given to the customer.
 The Slip station is also used to print “validation” information on a form. The form type is typically a check or credit
 card slip.
 It may also be used to print complete transaction information instead of printing it on the receipt station.

Sometimes, limited forms-handling capability is integrated with the receipt or journal station to permit validation
printing. Often this limits the number of print lines, due to the station’s forms-handling throat depth. The Fiscal
Printer Control nevertheless addresses this printer functionality as a slip station.

Configuration and initialization of the fiscal memory of the Fiscal Printer are not covered in this specification.
These low-level operations must be performed by authorized technical assistance personnel.

16 - 6 Unified POS, V1.15.1 Beta1

16.3.1 Fiscal Printer Class Diagram

The following diagram shows the relationships between the Fiscal Printer classes.

<< uses>>

UposExcepti on

(from upos)

<<exception>>
UposConst

(from upos)

<<utility>>

Fisca lPrinte rConst

(from upos)

<<utility>>

DataEvent

<<prop>> Sta tus : in t32

(from events)

<<event>>

Di rectIO Event

<<prop>> EventNum ber : int32
<<prop>> Data : int32
<<prop>> Obj : obje ct

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExte nded : i nt32
<<prop>> ErrorLocus : in t32
<<prop>> ErrorResponse : i nt32

(from events)

<<event>>

O utputComp le teEvent

<< prop>> OutputID : int32

(from events)

<<event>>
Sta tusUpdateEvent

<<prop>> Sta tus : int32

(from events)

<<event>>

Fisca lPri nte rControl

(from upos)

<<Inte r face>>

<<sends>>
<<uses>>

fires

fires

fires

fires fires

BaseControl

(from upos)

<<Inte rface>>

<<sends>>

Unified POS, v1.15.1 Beta1 16 - 7

16.3.2 General Requirements

Fiscal Printers do not simply print text similar to standard printers. They are used to monitor and memorize all
fiscal information about a sale transaction. A Fiscal Printer has to accumulate totals, discounts, number of
canceled receipts, taxes, etc. and has to store this information in different totalizers, counters and the fiscal
memory. In order to perform these functions, it is not sufficient to send unformatted strings of text to the Fiscal
Printer; there is a need to separate each individual field in a receipt line item, thus differentiating between
descriptions, prices and discounts. Moreover, it is necessary to define different printing commands for each
different sale functionality (such as refund, item or void).

Fiscal rules are different among countries. This interface tries to generalize these requirements by summarizing
the common requirements. Fiscal law requires that:

• Fiscal receipts must be printed and given to the customer.

• Fiscal Printers must be equipped with memory to store daily totals. Each receipt line item must increment totals
 registers and, in most countries (Greece, Poland, Brazil, Hungary, Romania, Bulgaria, Russia and Turkey) tax
 registers as well.

• Discounts, canceled items and canceled receipts must increment their associated registers on the Fiscal Printer.

• Fiscal Printer must include a clock to store date and time information relative to each single receipt.

• Each fiscal receipt line item is normally printed both on the receipt and on the journal (Italy, Greece, Poland), but as
 an extension it can also be printed on the slip and journal.

• After a power failure (or a power off) the Fiscal Printer must be in the same state as it was before this event
 occurred. This implies that care must be taken in managing the Fiscal Printer status and that power failure events
 must be managed by the application. In some countries, a power failure must be logged and a report must be printed.

16.3.3 Fiscal Printer Modes

According to fiscal rules, it is possible for a Fiscal Printer to also offer functionality beyond the required fiscal
printing mode. These additional modes are optional and may or may not be present on any particular Fiscal
Printer.

There are three possible Fiscal Printer modes:

• Fiscal: This is the only required mode for a Fiscal Printer. In this mode the application has access to all the methods
 needed to manage a sale transaction and to print a fiscal receipt. It is assumed that any lines printed to the receipt
 station while in fiscal mode are also printed on the journal station.

• Training: In this mode, the Fiscal Printer is used for training purposes (such as cashier training). In this mode, the
 Fiscal Printer will accept fiscal commands but the Fiscal Printer will indicate on each receipt or document that the
 transaction is not an actual fiscal transaction. The Fiscal Printer will not update any of its internal fiscal registers
 while in training mode. Such printed receipts are usually marked as “training” receipts by Fiscal Printers.
 CapTrainingMode will be true if the Fiscal Printer supports training mode, otherwise it is false.

• Non-Fiscal: In this mode the Fiscal Printer can be used to print simple text on the receipt station (echoed on the
 journal station) or the slip station. The Fiscal Printer will print some additional lines along with the application
 requested output to indicate that this output is not of a fiscal nature. Such printed receipts are usually marked as
 “non-fiscal” receipts by Fiscal Printers. CapNonFiscalMode will be true if the Fiscal Printer supports non-fiscal
 printing, otherwise it is false.

16 - 8 Unified POS, V1.15.1 Beta1

16.3.4 Model Updated in Release 1.12

The Fiscal Printer follows the output model for devices, with some enhancements:

• Most methods are always performed synchronously. Synchronous methods will throw a UposException if
 asynchronous output is outstanding.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
 AsyncMode property:

printFiscalDocumentLine
printFixedOutput
printNormal
printRecCash
printRecItem
printRecItemVoid
printRecItemAdjustment
printRecItemAdjustmentVoid
printRecItemFuel
printRecItemFuelVoid
printRecItemRefund
printRecItemRefundVoid
printRecMessage
printRecNotPaid
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTaxID
printRecTotal
printRecVoid

When AsyncMode is false, then these methods print synchronously.

When AsyncMode is true, then these methods operate as follows:

• The Device buffers the request in program memory, for delivery to the Physical Device as soon as the Physical
 Device can receive and process it, sets the OutputID property to an identifier for this request, and returns as soon as
 possible. When the device completes the request successfully, the OutputCompleteEvent is enqueued. A
 parameter of this event contains the OutputID of the completed request.

Asynchronous Fiscal Printer methods will not throw a UposException due to a printing problem, such as out of
paper or Fiscal Printer fault. These errors will only be reported by an ErrorEvent. A UposException is thrown
only if the Fiscal Printer is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued.
The first two error cases are due to an application error, while the last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The ErrorStation
 property is set to the station or stations that were printing when the error occurred. The ErrorLevel, ErrorString
 and ErrorState and ErrorOutID properties are also set.

Unified POS, v1.15.1 Beta1 16 - 9

The event handler may call synchronous print methods (but not asynchronous methods), then can either retry the
outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput.
 OutputCompleteEvents will not be delivered for cleared output. This method also stops any output that may be in
 progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent to be enqueued when all outstanding
 outputs have finished, whether successfully or because they were cleared.

16.3.5 Error Model Updated in Release 1.13

The Fiscal Printer error reporting model is as follows:

• Most of the Fiscal Printer error conditions are reported by setting the UposException’s (or ErrorEvent’s) ErrorCode
 to E_EXTENDED and then setting ErrorCodeExtended to one of the following:

EFPTR_COVER_OPEN
The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY
The journal station has run out of paper.
EFPTR_REC_EMPTY
The receipt station has run out of paper.
EFPTR_SLP_EMPTY
The slip station has run out of paper.
EFPTR_SLP_FORM
A form is still present in the document station even though it should have been removed by
the last action.
EFPTR_MISSING_DEVICES
Some of the other devices that according to the local fiscal legislation are to be connected
are missing. In some countries in order to use a Fiscal Printer a full set of peripheral devices
are to be connected to the POS (such as cash drawer and customer display). In case one of
these devices is not present, sales are not allowed.
EFPTR_WRONG_STATE
The requested method could not be executed in the Fiscal Printer’s current state.
EFPTR_TECHNICAL_ASSISTANCE
The Fiscal Printer has encountered a severe error condition. Calling for Fiscal Printer
technical assistance is required.
EFPTR_CLOCK_ERROR
The Fiscal Printer’s internal clock has failed.
EFPTR_FISCAL_MEMORY_FULL
The Fiscal Printer’s fiscal memory has been exhausted.
EFPTR_FISCAL_MEMORY_DISCONNECTED
The Fiscal Printer’s fiscal memory has been disconnected.
EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the one in the EPROM.

16 - 10 Unified POS, V1.15.1 Beta1

EFPTR_BAD_ITEM_QUANTITY
The quantity parameter is invalid.
EFPTR_BAD_ITEM_AMOUNT
The amount parameter is invalid.
EFPTR_BAD_ITEM_DESCRIPTION
The description parameter is either too long, contains illegal characters or contains a
reserved word.
EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.
EFPTR_BAD_VAT
The vat parameter is invalid.
EFPTR_BAD_PRICE
The price parameter is invalid.
EFPTR_BAD_DATE
The date parameter is invalid.
EFPTR_NEGATIVE_TOTAL
The Fiscal Printer’s computed total or subtotal is less than zero.
EFPTR_WORD_NOT_ALLOWED
The description contains the reserved word.
EFPTR_BAD_LENGTH
The length of the string to be printed as post or pre line is too long.
EFPTR_MISSING_SET_CURRENCY
The Fiscal Printer is expecting the activation of a new currency.
EFPTR_DAY_END_REQUIRED
The completion of the fiscal day is required.

Other Fiscal Printer errors are reported by setting the exception’s (or ErrorEvent’s) ErrorCode to E_FAILURE
or another error status. These failures are typically due to a Fiscal Printer fault or jam, or to a more serious error.

Unified POS, v1.15.1 Beta1 16 - 11

16.3.6 Release 1.8 Additional Model Clarifications

While the Fiscal Printer is enabled, the printer state is monitored, and changes are reported to the application.
Most Fiscal Printer statuses are reported by both firing a StatusUpdateEvent and by updating a printer property.
Statuses, as defined in the later properties and events sections, are:

Prior to Release 1.8
StatusUpdateEvent Property
FPTR_SUE_COVER_OPEN CoverOpen = true
FPTR_SUE_COVER_OK CoverOpen = false
FPTR_SUE_JRN_EMPTY JrnEmpty = true
FPTR_SUE_JRN_NEAREMPTY JrnNearEnd = true
FPTR_SUE_JRN_PAPEROK JrnEmpty = JrnNearEnd = false
FPTR_SUE_REC_EMPTY RecEmpty = true
FPTR_SUE_REC_NEAREMPTY RecNearEnd = true
FPTR_SUE_REC_PAPEROK RecEmpty = RecNearEnd = false
FPTR_SUE_SLP_EMPTY SlpEmpty = true
FPTR_SUE_SLP_NEAREMPTY SlpNearEnd = true
FPTR_SUE_SLP_PAPEROK SlpEmpty = SlpNearEnd = false
Release 1.8 and later
FPTR_SUE_JRN_COVER_OPEN CoverOpen = true
FPTR_SUE_JRN_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
FPTR_SUE_REC_COVER_OPEN CoverOpen = true
FPTR_SUE_REC_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
FPTR_SUE_SLP_COVER_OPEN CoverOpen = true
FPTR_SUE_SLP_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open

Release 1.8 – Clarification

The Fiscal Printer’s slip station statuses must be reported independently from the slip insertion and removal
methods – beginInsertion / endInsertion and beginRemoval / endRemoval. This is important because some
applications base logic decisions upon Fiscal Printer state changes. That is, the application will only perform slip
insertion after knowing that a slip has been placed at the entrance to the slip station. An example: After the Total
key is pressed, the application enters tendering mode. It begins to monitor peripherals and the keyboard to
determine the type of tender to perform. If a credit or debit card is swiped at an MSR, then its DataEvent causes
the application to begin credit/debit tender. But if a form is placed at the slip station, then its StatusUpdateEvent
or SlpEmpty property change causes the application to begin a check MICR read.

When a form is placed at the entrance to the slip station, the Fiscal Printer must fire a
PTR_SUE_SLP_PAPEROK StatusUpdateEvent and set the SlpEmpty and SlpNearEnd properties to false. The
application may then call the beginInsertion and endInsertion methods with reasonable confidence that they
will succeed. Note that it must not be assumed that the form is ready for printing after the
PTR_SUE_SLP_PAPEROK is received. Only after successful beginInsertion and endInsertion calls is the form
ready for printing.

16 - 12 Unified POS, V1.15.1 Beta1

When a form is removed from the slip station, the Fiscal Printer must fire a PTR_SUE_SLP_EMPTY
StatusUpdateEvent and set the SlpEmpty property to true. If the beginInsertion and endInsertion method
sequence has not been called, then removing the form from the slip station entrance will cause this to occur. If
this method sequence has successfully completed, then the event and property change will typically occur after a
beginRemoval and endRemoval method sequence. But they would also occur if the slip prints beyond the end
of the form or if the form is forcibly removed.

Exception: The design of some Fiscal Printers makes it impossible for a service to determine the presence of a
form until the printer “jaws” are opened, which occurs when beginInsertion is called. This exception is largely
limited to cases where the CapSlpFullslip property is false, indicating a “validation” type of slip station.
Validation stations typically use the same Fiscal Printer mechanism as the receipt and/or journal stations. In these
cases, the slip status events must be fired as soon as possible, given the constraints of the device.

16.3.7 Fiscal Printer States Updated in Release 1.8

As previously described, a Fiscal Printer is characterized by different printing modes. Moreover, the set of
commands that can be executed at a particular
moment depends upon the current state of the Fiscal Printer.

The current state of the Fiscal Printer is kept in the PrinterState property.

The Fiscal Printer has the following states:

• Monitor:
 This is a neutral state. From this state, it is possible to move to most of the other Fiscal Printer states. After a
 successful call to the claim method and successful setting of the DeviceEnabled property to true the Fiscal Printer
 should be in this state unless there is a Fiscal Printer error.

• Fiscal Receipt:
 The Fiscal Printer is processing a fiscal receipt. All printRec… methods except printRecNotPaid and
 printRecTaxID are available for use while in this state. This state is entered from the Monitor state using the
 beginFiscalReceipt method.

• Fiscal Receipt Total:
 The Fiscal Printer has already accepted at least one payment method, but the receipt’s total amount has not yet been
 tendered. This state is entered from the Fiscal Receipt state by use of the printRecTotal method. The Fiscal Printer
 remains in this state while the total remains unpaid. This state can be left by using the printRecTotal,
 printRecNotPaid or printRecVoid methods.

• Fiscal Receipt Ending:
 The Fiscal Printer has completed the receipt up to the Total line. In this state, it may be possible to print tax
 information using the printRecTaxID method if this is supported by the Fiscal Printer. This state is entered from the
 Fiscal Receipt state via the printRecVoid method or from the Fiscal Receipt Total state using either the
 printRecTotal, printRecNotPaid, or printRecVoid methods. This state is exited using the endFiscalReceipt
method at which time the Fiscal Printer returns to the Monitor state.

• Fiscal Document:
 The Fiscal Printer is processing a fiscal document. The Fiscal Printer will accept the printFiscalDocumentLine
 method while in this state.
 This state is entered from the Monitor state using the beginFiscalDocument method. This state is exited using the
 endFiscalDocument method at which time the Fiscal Printer returns to the Monitor state.

Unified POS, v1.15.1 Beta1 16 - 13

• Monitor and TrainingModeActive are true:
 The Fiscal Printer is being used for training purposes. All fiscal receipt and document commands are available. This
 state is entered from the Monitor state using the beginTraining method. This state is exited using the endTraining
 method at which time the Fiscal Printer returns to the Monitor state.

• Fiscal Receipt and TrainingModeActive are true:
 The Fiscal Printer is being used for training purposes and a receipt is currently opened. To each line of the receipt,
 special text will be added in order to differentiate it from a fiscal receipt.

• Fiscal Total and TrainingModeActive are true:
 The Fiscal Printer is in training mode and receipt total is being handled.

• Fiscal ReceiptEnding and TrainingModeActive are true:
 The Fiscal Printer is being used for training is in the receipt ending phase.

• NonFiscal:
 The Fiscal Printer is printing non-fiscal output on either the receipt (echoed on the journal) or the slip. In this state
 the Fiscal Printer will accept the printNormal method. The Fiscal Printer prints a message that indicates that this is
 non-fiscal output with all application text. This state is entered from the Monitor state using the beginNonFiscal
 method. This state is exited using the endNonFiscal method at which time the Fiscal Printer returns to the Monitor
 state.

• Fixed:
 The Fiscal Printer is being used to print fixed, non-fiscal output to one of the Fiscal Printer’s stations. In this state
 the Fiscal Printer will accept the printFixedOutput method. This state is entered from the Monitor state using the
 beginFixedOutput method. This state is exited using the endFixedOutput method at which time the Fiscal Printer
 returns to the Monitor state.

• ItemList:
 The Fiscal Printer is currently printing a line item report. In this state the Fiscal Printer will accept the verifyItem
 method. This state is entered from the Monitor state using the beginItemList method. This state is exited using the
 endItemList method at which time the Fiscal Printer returns to the Monitor state.

• Report:
 The Fiscal Printer is currently printing one of the supported types of reports. This state is entered from the Monitor
 state using one of the printReport, printPeriodicTotalsReport, printPowerLossReport, printXReport or
 printZReport methods. When the report print completes, the Fiscal Printer automatically returns to Monitor state.

• FiscalSystemBlocked:
 The Fiscal Printer is no longer operational due to one of the following reasons:

• The Fiscal Printer has been disconnected or has lost power.

• The Fiscal Printer’s fiscal memory has been exhausted.

• The Fiscal Printer’s internal data has become inconsistent.

In this state the Fiscal Printer will only accept methods to print reports and retrieve data. The Fiscal Printer
cannot exit this state without the assistance of an authorized technician.

When the application sets the property DeviceEnabled to true it also monitors its current state. In a standard
situation, the PrinterState property is set to FPTR_PS_MONITOR after a successfully setting DeviceEnabled to
true. This indicates that there was no interrupted operation remaining in the Fiscal Printer.

16 - 14 Unified POS, V1.15.1 Beta1

If the Fiscal Printer is not in the FPTR_PS_MONITOR state, the state reflects the Fiscal Printer's interrupted
operation and the PowerState property is set to PS_OFF. In this situation, it is necessary to force the Fiscal
Printer to a normal state by calling the resetPrinter method.

 This means that a power failure occurred or the last application that accessed the device left it in a not clear
state.

Notice that even in this case the method returns successfully after setting DeviceEnabled to true. It is required
that the application checks the PowerState property and checks for a received StatusUpdateEvent with the
value SUE_POWER_OFF in the Status property after successfully setting the DeviceEnabled property.

Unified POS, v1.15.1 Beta1 16 - 15

16.3.8 Fiscal Printer State Diagram Added in Release 1.12

16 - 16 Unified POS, V1.15.1 Beta1

16.3.9 Document Printing

Using a Fiscal Printer’s slip station it may be possible (depending upon the Fiscal Printer’s capabilities and on
special fiscal rules) to print the following kinds of documents:

• Fiscal Documents:
 In order to print fiscal documents an amount value must be sent to the Fiscal Printer and recorded by it.
 CapSlpFiscalDocument will be true if the Fiscal Printer supports printing fiscal documents. If fiscal documents are
 supported they may be either full length (if CapSlpFullSlip is true) or validation (if CapSlpValidation is true). The
 actual selection is made using the SlipSelection property but only one totalizer is assigned to all the fiscal
 documents.
 A fiscal document is started using the beginFiscalDocument method and terminated by using the
 endFiscalDocument method. A line is printed using the printFiscalDocumentLine method.

• Non-Fiscal Full Length Documents:
 Full-length slip documents may be printed if CapSlpFullSlip is true and SlipSelection is set to
 FPTR_SS_FULL_LENGTH.
 This document is started using the beginNonFiscal method and terminated by using the endNonFiscal method. A
 line is printed using the printNormal method.

• Non-Fiscal Validation Documents:
 Validation documents may be printed if CapSlpValidation is true and SlipSelection is set to
 FPTR_SS_VALIDATION. This document is started using the beginNonFiscal method and terminated by using the
 endNonFiscal method. A line is printed using the printNormal method.

• Fixed Text Documents:
 Fixed text documents may be printed if CapFixedOutput is true. If fixed text documents are supported they may be
 either full length (if CapSlpFullSlip is true) or validation (if CapSlpValidation is true). The actual selection is
 made using the SlipSelection property.

16.3.10 Ordering of Fiscal Receipt Print Requests Updated in Release 1.13

A fiscal receipt is started using the beginFiscalReceipt method.

Each fiscal receipt consists of a mandatory receipt header and a mandatory receipt trailer, normally with the
country specific logotype. If CapFiscalReceiptType is true the type of a fiscal receipt may be specified by the
FiscalReceiptType property.

The following receipt types are defined:

• Retail Sales Receipt:
 The daily totalizers are updated, the printRec... methods must be used.

• Simplified Invoice Receipt:
 The daily totalizers are updated, a special title is printed, the printRec... methods can be used, except the
 printRecRefund, printRecRefundVoid printRecItemRefund, and printRecItemRefundVoid methods.

• Service Sales Receipt:
 The daily totalizers are updated, but a special header line is printed to identify this type of receipt. The printRec...
 methods must be used.

• Generic Receipt:
 Free text can be printed using printNormal method, no totalizer is updated. A special header line is printed to

Unified POS, v1.15.1 Beta1 16 - 17

identify this type of receipt.

• Cash-In Receipt:
 This type of receipt helps to reconcile the cash amount. The cash-in amount is incremented by the amount given as
 an argument to the printRecCash method. Free text can be printed using printNormal method, the receipt can be
 cancelled.

• Cash-Out Receipt:
 This type of receipt helps to reconcile the cash amount. The cash-in amount is decremented by the amount given as
 an argument to the printRecCash method. Free text can be printed using printNormal method, the receipt can be
 cancelled.

If CapIndependentHeader is true, then it is up to the application to decide if the fiscal receipt header lines are
to be printed at this time or not. Otherwise, the header lines are printed immediately prior to the first line item
inside a fiscal receipt. Printing the header lines at this time will decrease the amount of time required to process
the first fiscal receipt print method, but it may result in more receipt voids as well. The beginFiscalReceipt
method may only be called if the Fiscal Printer is currently in the Monitor state and this call will change the
Fiscal Printer’s current state to Fiscal Receipt.

Before selling the first line item, it is possible to exit from the Fiscal Receipt state by calling the
endFiscalReceipt method. If header lines have already been printed, this method will cause also receipt voiding.

Once when a Retail Sales Receipt is selected and the first line item has been printed, the Fiscal Printer remains
in the Fiscal Receipt state and the following fiscal print methods are available:

printRecItem
printRecItemVoid
printRecItemAdjustment
printRecItemAdjustmentVoid
printRecItemFuel
printRecItemFuelVoid
printRecItemRefund
printRecItemRefundVoid
printRecMessage
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTotal
printRecVoid

The printRecItem, printRecItemVoid, printRecItemAdjustment, printRecItemAdjustmentVoid,
printRecItemFuel, printRecItemFuelVoid, printRecItemRefund, printRecItemRefundVoid,
printRecPackageAdjustment, printRecPackageAdjustVoid, printRecRefund,
printRecRefundVoid, printRecSubtotal, printRecSubtotalAdjustment, printRecMessage (only
available if CapAdditionalLines is true), and printRecSubtotalAdjustVoid will leave the Fiscal
Printer in the Fiscal Receipt state. The printRecTotal methods will change the Fiscal Printer’s state

16 - 18 Unified POS, V1.15.1 Beta1

to either Fiscal Receipt Total or Fiscal Receipt Ending, depending upon whether the entire receipt
total has been met. The printRecVoid method will change the Fiscal Printer’s state to Fiscal Receipt
Ending.

While in the Fiscal Receipt Total state the following fiscal print methods are available:
printRecMessage
printRecNotPaid
printRecTotal
printRecVoid

The printRecMessage (only available if CapAdditionalLines is true) method will leave the Fiscal
Printer in the Fiscal Receipt Total state. The printRecNotPaid (only available if
CapReceiptNotPaid is true) and printRecTotal methods will either leave the Fiscal Printer in the
Fiscal Receipt Total state or change the Fiscal Printer’s state to Fiscal Receipt Ending, depending
upon whether the entire receipt total has been met. The printRecVoid method will change the Fiscal
Printer’s state to Fiscal Receipt Ending.
While in the Fiscal Receipt Ending state the following fiscal methods are available:

printRecMessage
printRecTaxID
endFiscalReceipt

The printRecMessage (only available if CapAdditionalLines is true) and printRecTaxID
methods will leave the Fiscal Printer in the Fiscal Receipt Ending state. The endFiscalReceipt will
cause receipt closing and will then change the Fiscal Printer’s state to Monitor.
At no time can the Fiscal Printer’s total for the receipt be negative. If this occurs the Fiscal Printer
will generate an ErrorEvent or throw an exception.

Unified POS, v1.15.1 Beta1 16 - 19

16.3.11 Fiscal Receipt Layouts Updated in Release 1.8

The following is an example of a typical fiscal receipt layout:

• Header Lines:
 Header lines contain all of the information about the store, such as telephone number, address and name of the store.
 All of these lines are fixed and are defined before selling the first item (using the setHeaderLine method).
 If CapMultiContractor property is true, two sets of header lines can be defined, assigned to the value of the
 ContractorId property. These lines may either be printed when the beginFiscalReceipt method is called or when
 the first fiscal receipt method is called.

• Additional Header Lines:
 Header lines defined by the AdditionalHeader property to be printed after the fixed header lines when the
 beginFiscalReceipt method is called.

• Transaction Lines:
 All of the lines of a fiscal transaction, such as line items, discounts and surcharges. Optionally they may be assigned
 to a specific contractor.

• Total Line:
 The line containing the transaction total, tender amounts and possibly change due.

• Message Lines:
 These are lines printed using the printRecMessage method.

• Trailer Lines:
 These are fixed promotional messages stored on the Fiscal Printer (using the setTrailerLine method). They are
 automatically printed when the endFiscalReceipt method is called. In fact, depending upon fiscal legislation and
 upon the Fiscal Printer vendor, the relative position of the trailer and the fiscal logotype lines can vary.

• Fiscal Lines:
These are lines containing information to be inserted in the receipt due to fiscal legislations such
as the fiscal logotype, date, time and serial number. They are also printed automatically when
the endFiscalReceipt method is called.

• Additional Trailer Lines:
These are receipt specific information defined in the AdditionalTrailer property to be printed
after the Fiscal Lines on the receipt before cutting it, when the endFiscalReceipt method is
called.

16 - 20 Unified POS, V1.15.1 Beta1

16.3.12 Example of a Fiscal Receipt

Fiscal receipt Definition of the
line

UPOS methods and
properties

name of the store fixed header lines beginFiscalReceipt
address data stored with

 ZIP code and place setHeaderLine and
fiscal identification of the store tax number line setFIscalID

Good Morning add. header line AdditionalHeader property

Milk 1.000 A transaction line printRecItem
Special offer pre item line PreLine property
Beer 4.000 B transaction line printRecItem
Discount Beer -500 B transaction line printRecItemAdjustment
Bread 3.500 A transaction line printRecItem
Storno Bread -3.500 A transaction line printRecItemVoid
Apples 2.000 A transaction line printRecItem

SUBTOTAL 6.500 subtotal line printRecSubtotal

Lamp 12.000 C transaction line printRecItem

VAT category A 3.000 VAT summary printRecTotal
VAT 7.50% 225 (… , 10000, “Check”)
VAT category B 3.500
VAT 12.00% 420
VAT category C 12.000
VAT 10.00% 1.200
sum of VAT 1.845

TOTALE 18.500 total line

Check 10.000 payment line
Cash 10.000 payment line printRecTotal

(… , 10000, “Cash”)
Return - 1.500 change line

Advertising messages a.s.o. message line printRecMessage
THANK YOU FOR BUYING AT trailer line endFiscalReceipt

SABERTINI trailer line data stored with
 setTrailerLine and

24/05/99 14:25 No 225 logo line at initialisation time
MF B5 012345678 logo line of the fiscal printer

Good Bye
CONGRATULATION Mrs. Smith!

You have won: 150 points of fidelity

additional trailer
lines

AdditionalTrailer property

Unified POS, v1.15.1 Beta1 16 - 21

16.3.13 Totalizers and Fiscal Memory

The Fiscal Printer is able to select the fiscal relevant data and to accumulate and store them in following types of
totalizers:

• Receipt Totalizers:
 The different kind of amounts of the current receipt are accumulated in receipt totalizers.

• Day Totalizers:
 At the end of a fiscal receipt, when calling the endFiscalReceipt method, the receipt totalizers are added to the day
 totalizers where the totals of a fiscal period (day) are summarized. The contents of the current day totalizers are
 printed when calling the printXReport method. At the end of a fiscal day or period totalizers are printed when
 calling the printZReport method.

• Document Totalizers:
 The different kind of amounts of the current document are accumulated in document totalizers.

• Grand Totalizers:
 Some of the totalizers are stored in the fiscal memory at the end of a fiscal period when calling the printZReport
 method. These are the grand totalizers. The application may print the contents of the fiscal memory by calling
 printReport method.

The application may fetch the different totalizers using the getData method or the getTotalizer method, whereas
the type of totalizer can be specified by setting the TotalizerType property and the assignment to a contractor by
setting the ContractorId property.

16.3.14 Counters

The Fiscal Printer is able to count some features of fiscal receipt and documents. The application may fetch the
different counters using the getData method.

16.3.15 VAT Tables

Some Fiscal Printers support storing VAT (Value Added Tax) tables in the Fiscal Printer’s memory. Some of
these Fiscal Printers will allow the application to set and modify any of the table entries. Others allow only
adding new table entries but do not allow existing entries to be modified. Some Fiscal Printers allow the VAT
table to bet set only once.

If the Fiscal Printer supports VAT tables, CapHasVatTable is true. If the Fiscal Printer allows the VAT table
entries to be set or modified CapSetVatTable is true. The maximum number of different vat rate entries in the
VAT table is given by the NumVatRates property. VAT tables are set through a two step process. First the
application uses the setVatValue method to set each table entry to be sent to the Fiscal Printer.

Next, the setVatTable method is called to send the entire VAT table to the Fiscal Printer at one time.

16.3.16 Receipt Duplication

In some countries, fiscal legislation can allow printing more than one copy of the same receipt.
CapDuplicateReceipt will be true if the Fiscal Printer is capable of printing duplicate receipts. Then, setting
DuplicateReceipt true causes the buffering of all receipt printing commands. DuplicateReceipt is set false after
receipt closing. In order to print the receipt again the printDuplicateReceipt method has to be called.

16 - 22 Unified POS, V1.15.1 Beta1

16.3.17 Currency Amounts, Percentage Amounts, VAT Rates, and Quantity Amounts
 Updated in Release 1.15.1

• Currency amounts (and also prices) are passed as values with the data type long. This is a 64 bit signed integer value
 that implicitly assumes four digits as the fractional part. For example, an actual value of 12345 represents 1.2345.
 So, the range supported is from
 -922,337,203,685,477.5808
 to
 +922,337,203,685,477.5807

• For example, if currency is USD and actual USD currency amount value is 1234.56 USD, for the currency data
conversion case of 64bit long type integer data is “12345600” and its string data conversion will be “1234.56” or
“1234.5600” or “12345600”.

• The fractional part used in the calculation unit of a Fiscal Printer may differ from the long data type. The number of
 digits in the fractional part is stored in the AmountDecimalPlaces property and determined by the Fiscal Printer.
 The application has to take care that calculations in the application use the same fractional part for amounts.

• If CapHasVatTable is true, VAT rates are passed using the indexes that were sent to the setVatValue method.

• If CapHasVatTable is false, VAT rates are passed as amounts with the data type int32. The number of digits in the
 fractional part is implicitly assumed to be four.

• Percentage amounts are used in methods which allow also surcharge and/or discount amounts. If the amounts are
 specified to be a percentage value the value is also passed in a parameter of type long.

• The percentage value has (as given by the long data type) four digits in the fractional part. It is the percentage
 (0.0001% to 99.9999%) multiplied by 10000.

• Quantity amounts are passed as values with the data type int32. The number of digits in the fractional part is stored
 in the QuantityDecimalPlaces property and determined by the Fiscal Printer.

16.3.18 Currency Change

If CapSetCurrency is true the Fiscal Printer is able to change the currency, the application may set a new
currency (e.g., EURO) using the setCurrency method.

16.3.19 Device Sharing

The Fiscal Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many Fiscal Printer-specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 16 - 23

16.4 Properties (UML attributes)

16.4.1 ActualCurrency Property Updated in Release 1.12

Syntax ActualCurrency: int32 { read-only, access after open-claim-enable }

Remarks Holds a value identifying which actual currency is used by the Fiscal Printer.

 This property is only valid if CapSetCurrency is true.

Values are:

Value Meaning
FPTR_AC_BRC The actual currency is Brazilian cruceiro.
FPTR_AC_BGL The actual currency is Bulgarian lev.
FPTR_AC_EUR The actual currency is EURO.
FPTR_AC_GRD The actual currency is Greek drachma.　　　　　　　　　
FPTR_AC_HUF The actual currency is Hungarian forint.　　　　　　　　　　　　　
FPTR_AC_ITL The actual currency is Italian lira.　　　　　　　　　　　　　　　
FPTR_AC_PLZ The actual currency is Polish zloty.　　　　　　　　　
FPTR_AC_ROL The actual currency is Romanian leu.　　　　　　　　　　　　　
FPTR_AC_RUR The actual currency is Russian rouble.　　　　　　　　　　　　　　
FPTR_AC_TRL The actual currency is Turkish lira.　　　　　　　　　　　
FPTR_AC_CZK The actual currency is Czechian Koruna.　　　　　　　　　
FPTR_AC_UAH The actual currency is Ukrainian Hryvnia.　　　　　　　　　　
FPTR_AC_SEK The actual currency is Swedish Krona.　　　　　　　　　　
FPTR_AC_OTHER The actual currency is unknown. (May be used for a country that recently
fiscalized.)

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also setCurrency Method, CapSetCurrency Property.

16 - 24 Unified POS, V1.15.1 Beta1

16.4.2 AdditionalHeader Property　　　　　　　　　　　　Added in Release 1.6

Syntax AdditionalHeader: string { read-write, access after open-claim-enable }

Remarks Specifies a user specific text which will be printed on the receipt after the fixed header lines when calling
the beginFiscalReceipt method. This property is only valid if CapAdditionalHeader is true.

This property is initialized to an empty string and kept current while the device is enabled.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support printing text after the fixed header

lines.

See Also beginFiscalReceipt Method, CapAdditionalHeader Property.

16.4.3 AdditionalTrailer Property Added in Release 1.6

Syntax AdditionalTrailer: string { read-write, access after open-claim-enable }

Remarks Specifies a user specific text which will be printed on the receipt after the fiscal trailer lines when calling
the endFiscalReceipt method.

This property is only valid if CapAdditionalTrailer is true.

This property is initialized to an empty string and kept current while the device is enabled.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support printing text after the fiscal trailer
lines.

See Also endFiscalReceipt Method, CapAdditionalTrailer Property.

Unified POS, v1.15.1 Beta1 16 - 25

16.4.4 AmountDecimalPlaces Property

Syntax AmountDecimalPlaces: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of decimal digits that the fiscal device uses for calculations.

This property is initialized when the device is enabled.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.5 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then some print methods such as printRecItemAdjustment, printRecItem, printNormal, etc. will
be performed asynchronously.
If false, they will be performed synchronously.

This property is initialized to false by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also “Model” on page 1- 22 for the output model description.

16.4.6 CapAdditionalHeader Property Added in Release 1.6

Syntax CapAdditionalHeader: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to print application specific text defined in the AdditionalHeader
property after printing the fixed header lines.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.7 CapAdditionalLines Property Updated in Release 1.13

Syntax CapAdditionalLines: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports the printing of application defined lines on a fiscal receipt.

If true, then after all totals lines are printed it is possible to print application-defined strings, such as the
ones used for fidelity cards.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 26 Unified POS, V1.15.1 Beta1

16.4.8 CapAdditionalTrailer Property Added in Release 1.6

Syntax CapAdditionalTrailer: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to print application specific text defined in the AdditionalTrailer
property after printing the fiscal trailer lines.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.9 CapAmountAdjustment Property

Syntax CapAmountAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles fixed amount discounts or fixed amount surcharges on items.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.10 CapAmountNotPaid Property Deprecated in Release 1.11

Syntax CapAmountNotPaid: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows the recording of not paid amounts.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.11 CapChangeDue Property Added in Release 1.6

Syntax CapChangeDue: boolean { read-only, access after open }

Remarks If true, the text to be printed as the cash return description when using printRecTotal method can be
defined in the ChangeDue property.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 27

16.4.12 CapCheckTotal Property Updated in Release 1.11

Syntax CapCheckTotal: boolean { read-only, access after open }

Remarks If true, then automatic comparison of the Fiscal Printer’s total and the application’s total can be enabled
and disabled. If false, then the automatic comparison cannot be enabled or disabled, meaning that the
property CheckTotal can not be changed and is read-only.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also CheckTotal Property.

16.4.13 CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a “cover open” sensor.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.14 CapDoubleWidth Property

Syntax CapDoubleWidth: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print double width characters.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

16.4.15 CapDuplicateReceipt Property

Syntax CapDuplicateReceipt: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows printing more than one copy of the same fiscal receipt.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 28 Unified POS, V1.15.1 Beta1

16.4.16 CapEmptyReceiptIsVoidable Property Added in Release 1.6

Syntax CapEmptyReceiptIsVoidable: boolean { read-only, access after open }

Remarks If true, then it is allowed to void an opened receipe without any items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.17 CapFiscalReceiptStation Property Added in Release 1.6

Syntax CapFiscalReceiptStation: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing transactions on the station defined by the
FiscalReceiptStation property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.18 CapFiscalReceiptType Property Added in Release 1.6

Syntax CapFiscalReceiptType: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing different types of fiscal receipts defined by the
FiscalReceiptType property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.19 CapFixedOutput Property

Syntax CapFixedOutput: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports fixed format text printing through the beginFixedOutput,
printFixedOutput, and endFixedOutput methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.20 CapHasVatTable Property

Syntax CapHasVatTable: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a tax table.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 29

16.4.21 CapIndependentHeader Property

Syntax CapIndependentHeader: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing the fiscal receipt header lines before the first fiscal receipt
command is processed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.22 CapItemList Property

Syntax CapItemList: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print a report of items of a specified VAT class.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.23 CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.24 CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 30 Unified POS, V1.15.1 Beta1

16.4.25 CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present. Unlike POS printers, on Fiscal Printers the application is
not able to directly access the journal. The Fiscal Printer itself prints on the journal if present.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.26 CapMultiContractor Property Added in Release 1.6

Syntax CapMultiContractor: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports more than one contractor assigned to the fiscal receipt and items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.27 CapNonFiscalMode Property

Syntax CapNonFiscalMode: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows printing in non-fiscal mode.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.28 CapOnlyVoidLastItem Property Added in Release 1.6

Syntax CapOnlyVoidLastItem: boolean { read-only, access after open }

Remarks If true, then only the last printed item can be voided.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.29 CapOrderAdjustmentFirst Property

Syntax CapOrderAdjustmentFirst: boolean { read-only, access after open }

Remarks If false, the application has to call printRecItem first and then call printRecItemAdjustment to give a
discount of a surcharge for a single article.
If true, then the application has to call printRecItemAdjustment first and then call printRecItem.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 31

16.4.30 CapPackageAdjustment Property Added in Release 1.6

Syntax CapPackageAdjustment: boolean { read-only, access after open }

Remarks If true, an adjustment may be given to a package of booked items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.31 CapPercentAdjustment Property

Syntax CapPercentAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles percentage discounts or percentage surcharges on items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.32 CapPositiveAdjustment Property

Syntax CapPositiveAdjustment: boolean { read-only, access after open }

Remarks If true, then it is possible to apply surcharges via the printRecItemAdjustment method.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.33 CapPositiveSubtotalAdjustment Property Added in Release 1.11

Syntax CapPositiveSubtotalAdjustment: boolean { read-only, access after open }

Remarks If true, then it is possible to apply surcharges via the printRecSubtoalAdjustment method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 32 Unified POS, V1.15.1 Beta1

16.4.34 CapPostPreLine Property Added in Release 1.6

Syntax CapPostPreLine: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing additional lines defined by the PostLine and/or the
PreLine properties when calling some printRec... methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.35 CapPowerLossReport Property

Syntax CapPowerLossReport: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print a power loss report using the printPowerLossReport
method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.36 CapPredefinedPaymentLines Property

Syntax CapPredefinedPaymentLines: boolean { read-only, access after open }

Remarks If true, the Fiscal Printer can store and print predefined payment descriptions.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.37 CapReceiptNotPaid Property

Syntax CapReceiptNotPaid: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports using the printRecNotPaid method to specify a part of the
receipt total that is not paid.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 33

16.4.38 CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.39 CapRecNearEndSensor Property Updated in Release 1.15.1

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.40 CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.41 CapRemainingFiscalMemory Property

Syntax CapRemainingFiscalMemory: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports using the RemainingFiscalMemory property to show the
amount of Fiscal Memory remaining. If false, the Fiscal Printer does not support reporting the Fiscal
Memory status of the Fiscal Printer. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.42 CapReservedWord Property

Syntax CapReservedWord: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer prints a reserved word (for example, “TOTALE”) before printing the
total amount.

If true, the reserved word is stored in the ReservedWord property. This reserved word may not be
printed using any fiscal print method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 34 Unified POS, V1.15.1 Beta1

16.4.43 CapSetCurrency Property Added in Release 1.6

Syntax CapSetCurrency: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to change the currency to a new one by calling the setCurrency
method. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.44 CapSetHeader Property

Syntax CapSetHeader: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setHeaderLine method to initialize the contents of a particular
line of the receipt header. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.45 CapSetPOSID Property

Syntax CapSetPOSID: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setPOSID method to initialize the values of POSID and
CashierID. These values are printed on each fiscal receipt. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.46 CapSetStoreFiscalID Property

Syntax CapSetStoreFiscalID: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setStoreFiscalID method to set up the Fiscal ID number which
will be printed on each fiscal receipt. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 35

16.4.47 CapSetTrailer Property

Syntax CapSetTrailer: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setTrailerLine method to initialize the contents of a particular
line of the receipt trailer. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.48 CapSetVatTable Property

Syntax CapSetVatTable: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setVatValue and setVatTable methods to modify the contents
of the Fiscal Printer’s VAT table. Some Fiscal Printers may not allow existing VAT table entries to
be modified. Only new entries may be set on these Fiscal Printers. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.49 CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.50 CapSlpFiscalDocument Property

Syntax CapSlpFiscalDocument: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows fiscal printing to the slip station. This property is initialized by
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.51 CapSlpFullSlip Property

Syntax CapSlpFullSlip: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing full length forms on the slip station.
It is possible to choose between full slip and validation documents by setting the SlipSelection
property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 36 Unified POS, V1.15.1 Beta1

16.4.52 CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.53 CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a slip station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.54 CapSlpValidation Property

Syntax CapSlpValidation: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing validation information on the slip station.

It is possible to choose between full slip and validation documents by setting the SlipSelection
property. In some countries, when printing non fiscal validations using the slip station a limited
number of lines could be printed. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.55 CapSubAmountAdjustment Property

Syntax CapSubAmountAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles fixed amount discounts on the subtotal.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.56 CapSubPercentAdjustment Property

Syntax CapSubPercentAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles percentage discounts on the subtotal. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 37

16.4.57 CapSubtotal Property

Syntax CapSubtotal: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printRecSubtotal method to print the current subtotal.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.58 CapTotalizerType Property Added in Release 1.6

Syntax CapTotalizerType: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports reading different types of totalizers by calling the
getTotalizer method. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.59 CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports a training mode. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.60 CapValidateJournal Property

Syntax CapValidateJournal: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printNormal method to print a validation string on the journal
station. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

16.4.61 CapXReport Property

Syntax CapXReport: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printXReport method to print an X report.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 38 Unified POS, V1.15.1 Beta1

16.4.62 ChangeDue Property Added in Release 1.6

Syntax ChangeDue: string { read-write, access after open }

Remarks This property holds the text to be printed as a description for the cash return when using the
printRecTotal method.

This property is only valid if CapChangeDue is true.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Setting this property is not valid for this service
 (see CapChangeDue property).

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string to be printed is too long.

See Also printRecTotal Method, CapChangeDue Property.

16.4.63 CheckTotal Property Updated in Release 1.11

Syntax CheckTotal: boolean { read-write, access after open }

Remarks If true, automatic comparison between the Fiscal Printer’s total and the application’s total is
enabled. If false, automatic comparison is disabled.
This property can be changed if CapCheckTotal is true. Otherwise, it is read-only.

This property is initialized to true by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Setting this property is not valid for this Service (see CapCheckTotal).

See Also CapCheckTotal Property.

Unified POS, v1.15.1 Beta1 16 - 39

16.4.64 ContractorId Property Added in Release 1.6

Syntax ContractorId: int32 { read-write, access after open-claim-enable }

Remarks The identification of the contractor to whom the receipt and/or some items of the receipt are
assigned.

It is used to define different header lines to be printed on the fiscal receipt, in order to assign any
item to a specific contractor and to modify the counters and totalizers to be read using getData and
getTotalizer methods.

Values are:

Value Meaning
FPTR_CID_FIRST First contractor is defined.

FPTR_CID_SECOND Second contractor is defined.

FPTR_CID_SINGLE Single contractor.

This property is initialized to FPTR_CID_SINGLE and kept current while the device is enabled,
which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Setting this property is not valid for this service
(see CapMultiContractor property).

See Also beginFiscalReceipt Method, getData Method, getTotalizer Method,
printRec... Methods, CapMultiContractor Property.

16 - 40 Unified POS, V1.15.1 Beta1

16.4.65 CountryCode Property Updated in Release 1.15

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds a value identifying which countries are supported by the Fiscal Printer. It can contain any of
the following values logically ORed together:

Value Meaning
FPTR_CC_BRAZIL The Fiscal Printer supports Brazil’s fiscal rules.
FPTR_CC_GREECE The Fiscal Printer supports Greece’s fiscal rules.
FPTR_CC_HUNGARY The Fiscal Printer supports Hungary’s fiscal rules.
FPTR_CC_ITALY The Fiscal Printer supports Italy’s fiscal rules.
FPTR_CC_POLAND The Fiscal Printer supports Poland’s fiscal rules.
FPTR_CC_TURKEY The Fiscal Printer supports Turkey’s fiscal rules.
FPTR_CC_RUSSIA The Fiscal Printer supports Russia’s fiscal rules.
FPTR_CC_BULGARIA The Fiscal Printer supports Bulgaria’s fiscal rules.
FPTR_CC_ROMANIA The Fiscal Printer supports Romania’s fiscal rules.
FPTR_CC_CZECH_REPUBLIC

The Fiscal Printer supports the Czech Republic’s fiscal rules.
FPTR_CC_UKRAINE The Fiscal Printer supports Ukraine’s fiscal rules.
FPTR_CC_SWEDEN The Fiscal Printer supports Sweden’s fiscal rules.
FPTR_CC_GERMANY The Fiscal Printer supports German fiscal rules, but
 may not print fiscal receipts, only business transaction
 data is registered.
FPTR_CC_OTHER This is an unknown or new fiscal country.

This property is initialized when the device is first enabled following the open method. (In releases
prior to 1.5, this description stated that initialization took place by the open method. In Release 1.5,
it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.66 CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the Fiscal Printer’s cover is open.

If CapCoverSensor is false, then the Fiscal Printer does not have a cover open sensor and this
property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 41

16.4.67 DateType Property Updated in Release 1.15

Syntax DateType: int32 { read-write, access after open-claim-enable }

Remarks Specifies the type of date to be requested when calling the getDate method.

Values are:

Value Meaning
FPTR_DT_CONF Date of configuration.

FPTR_DT_EOD Date of last end of day.

FPTR_DT_RESET Date of last reset.

FPTR_DT_RTC Real time clock of the Fiscal Printer.

FPTR_DT_VAT Date of last VAT change.

FPTR_DT_START The date and time that the fiscal day started or of the first fiscal receipt or
first fiscal document.

FPTR_DT_TICKET_START:
The date and time when the current fiscal receipt was started. If no fiscal
receipt is opened currently, the date and time when the last receipt was
opened.

FPTR_DT_TICKET_END:
The date and time when the last fiscal receipt was closed.

Starting with Release 1.11 support is added for countries (e.g., Greece, Russia, Italy) where it is
required by law to make a Z report and therefore end the fiscal day within a 24 hour period. If the
24 hour period after the first fiscal ticket or after the fiscal day opening is exceeded, then no new
fiscal ticket can be started and printing of a Z report is required. Setting DateType to
FPTR_DT_START and calling getDate provides the information necessary to detect this situation.

This property is initialized to FPTR_DT_RTC and kept current while the device is enabled, which
is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support the specified type.

See Also getDate Method.

16 - 42 Unified POS, V1.15.1 Beta1

16.4.68 DayOpened Property Updated in Release 1.6

Syntax DayOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, then the fiscal day has been started on the Fiscal Printer by a first call to the
beginFiscalReceipt or beginFiscalDocument method at a fiscal period (day).
The Fiscal Day of the Fiscal Printer can be either opened or not opened. The DayOpened property
reflects whether or not the Fiscal Printer considers its Fiscal Day to be opened or not.
Some methods may only be called while the Fiscal Day is not yet opened (DayOpened is false).
Methods that can be called after the Fiscal Day is opened change from country to country. Usually
all the configuration methods are to be called only before the Fiscal Day is opened.

This property changes to false after calling printZReport.

Depending on fiscal legislation, the following methods may be allowed only if the Fiscal Printer is
in the Monitor State and has not yet begun its Fiscal Day:

 setCurrency
 setDate
 setHeaderLine
 setPOSID
 setStoreFiscalID
 setTrailerLine
 setVatTable
 setVatValue

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.69 DescriptionLength Property Updated in Release 1.6

Syntax DescriptionLength: int32 { read-only, access after open }

Remarks Holds the maximum number of characters that may be passed as a description parameter.

The exact maximum number for a description parameter of a specific method can be obtained by
calling getData method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also getData Method.

Unified POS, v1.15.1 Beta1 16 - 43

16.4.70 DuplicateReceipt Property

Syntax DuplicateReceipt: boolean { read-write, access after open }

Remarks If true, all the printing commands inside a fiscal receipt will be buffered and they can be printed
again via the printDuplicateReceipt method.

This property is only valid if CapDuplicateReceipt is true.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.71 ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition.

This property has one of the following values:

Value Meaning
FPTR_EL_NONE No error condition is present.
FPTR_EL_RECOVERABLE
 A recoverable error has occurred.
 (Example: Out of paper.)
FPTR_EL_FATAL A non-recoverable error has occurred.

(Example: Internal printer failure.)
FPTR_EL_BLOCKED A severe hardware failure which can be resolved only by
 authorized technicians.
 (Example: Fiscal memory failure.).

This error cannot be recovered.

This property is set just before delivering an ErrorEvent. When the error is cleared, then the
property is changed to FPTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 44 Unified POS, V1.15.1 Beta1

16.4.72 ErrorOutID Property Updated in Release 1.6

Syntax ErrorOutID: int32 { read-only, access after open }

Remarks Holds the identifier of the output in the queue which caused an ErrorEvent, when using
asynchronous printing.

This property is initialized when the device is first enabled following the open method. (In releases
prior to 1.5, this description stated that initialization took place by the open method. In Release 1.5,
it was updated for consistency with other devices.)

This property is set just before an ErrorEvent is delivered.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.73 ErrorState Property

Syntax ErrorState: int32 { read-only, access after open }

Remarks Holds the current state of the Fiscal Printer when an ErrorEvent is delivered for an asynchronous
output.

This property is set just before an ErrorEvent is delivered.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PrinterState Property.

16.4.74 ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values: FPTR_S_JOURNAL, FPTR_S_RECEIPT,
FPTR_S_SLIP, FPTR_S_JOURNAL_RECEIPT, FPTR_S_JOURNAL_SLIP,
FPTR_S_RECEIPT_SLIP.

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is set just before
delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 45

16.4.75 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is available, the property
is set to an empty string. When the error is cleared, then the property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.76 FiscalReceiptStation Property Added in Release 1.6

Syntax FiscalReceiptStation: int32 { read-write, access after open-claim-enable }

Remarks Selects the station where the transaction of the fiscal receipt started with beginFiscalReceipt
method will be printed. Setting this property is only allowed in the Monitor State.

Values are:

Value Meaning
FPTR_RS_RECEIPT The following transactions will be printed on the receipt station.

FPTR_RS_SLIP The following transactions will be printed on the slip station.

This property is only valid if CapFiscalReceiptStation is true.

This property is initialized to FPTR_RS_RECEIPT and kept current while the device is enabled,
which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support the specified station.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Monitor State.

See Also beginFiscalReceipt Method, CapFiscalReceiptStation Property.

16 - 46 Unified POS, V1.15.1 Beta1

16.4.77 FiscalReceiptType Property Updated in Release 1.11

Syntax FiscalReceiptType: int32 { read-write, access after open-claim-enable }

Remarks Selects the type of the fiscal receipt. Setting this property is only allowed in the Monitor State.

Values are:

Value Meaning
FPTR_RT_CASH_IN Cash-in receipt

FPTR_RT_CASH_OUT Cash-out receipt

FPTR_RT_GENERIC Generic receipt

FPTR_RT_SALES Retail sales receipt

FPTR_RT_SERVICE Service sales receipt

FPTR_RT_SIMPLE_INVOICE Simplified invoice receipt

FPTR_RT_REFUND Refund sales receipt

This property is only valid if CapFiscalReceiptType is true.

Starting with Release 1.11, due to the need for negative receipts (e.g., in Italy), such as refund
receipts, the receipt type FPTR_RT_REFUND is added.

This property is initialized to FPTR_RT_SALES and kept current while the device is enabled,
which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support the specified receipt type.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor State.

See Also beginFiscalReceipt Method, CapFiscalReceiptType Property.

Unified POS, v1.15.1 Beta1 16 - 47

16.4.78 FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control
when all outstanding asynchronous outputs have been processed. The event will be enqueued if the
outputs were completed successfully or if they were cleared by the clearOutput method or by an
ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.79 JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

 See Also JrnNearEnd Property.

16.4.80 JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnEmpty Property.

16 - 48 Unified POS, V1.15.1 Beta1

16.4.81 MessageLength Property

Syntax MessageLength: int32 { read-only, access after open }

Remarks Holds the maximum number of characters that may be passed as a message line in the method
printRecMessage. The value may change in different modes of the Fiscal Printer. For example in
the mode “Fiscal Receipt” the number of characters may be bigger than in the mode “Fiscal Receipt
Total.”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.82 MessageType Property Added in Release 1.6

Syntax MessageType: int32 { read-write, access after open-claim-enable }

Remarks Selects the kind of message to be printed when using the printRecMessage method. Values are:

Value
FPTR_MT_ADVANCE
FPTR_MT_ADVANCE_PAID
FPTR_MT_AMOUNT_TO_BE_PAID
FPTR_MT_AMOUNT_TO_BE_PAID_BACK
FPTR_MT_CARD
FPTR_MT_CARD_NUMBER
FPTR_MT_CARD_TYPE
FPTR_MT_CASH
FPTR_MT_CASHIER
FPTR_MT_CASH_REGISTER_NUMBER
FPTR_MT_CHANGE
FPTR_MT_CHEQUE
FPTR_MT_CLIENT_NUMBER
FPTR_MT_CLIENT_SIGNATURE
FPTR_MT_COUNTER_STATE
FPTR_MT_CREDIT_CARD
FPTR_MT_CURRENCY
FPTR_MT_CURRENCY_VALUE
FPTR_MT_DEPOSIT
FPTR_MT_DEPOSIT_RETURNED
FPTR_MT_DOT_LINE
FPTR_MT_DRIVER_NUMB
FPTR_MT_EMPTY_LINE
FPTR_MT_FREE_TEXT
FPTR_MT_FREE_TEXT_WITH_DAY_LIMIT
FPTR_MT_GIVEN_DISCOUNT
FPTR_MT_LOCAL_CREDIT
FPTR_MT_MILEAGE_KM
FPTR_MT_NOTE
FPTR_MT_PAID
FPTR_MT_PAY_INFPTR_MT_POINT_GRANTED

Unified POS, v1.15.1 Beta1 16 - 49

FPTR_MT_POINTS_BONUS
FPTR_MT_POINTS_RECEIPT
FPTR_MT_POINTS_TOTAL
FPTR_MT_PROFITED
FPTR_MT_RATE
FPTR_MT_REGISTER_NUMB
FPTR_MT_SHIFT_NUMBER
FPTR_MT_STATE_OF_AN_ACCOUNT
FPTR_MT_SUBSCRIPTION
FPTR_MT_TABLE
FPTR_MT_THANK_YOU_FOR_LOYALTY
FPTR_MT_TRANSACTION_NUMB
FPTR_MT_VALID_TO
FPTR_MT_VOUCHER
FPTR_MT_VOUCHER_PAID
FPTR_MT_VOUCHER_VALUE
FPTR_MT_WITH_DISCOUNT
FPTR_MT_WITHOUT_UPLIFT

This property is initialized to FPTR_MT_FREE_TEXT by the open method, which is the
functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support this value.

See Also printRecMessage Method.

16 - 50 Unified POS, V1.15.1 Beta1

16.4.83 NumHeaderLines Property

Syntax NumHeaderLines: int32 { read-only, access after open }

Remarks Holds the maximum number of header lines that can be printed for each fiscal receipt. Header lines
usually contain information such as store address, store name, store Fiscal ID. Each header line is
set using the setHeaderLine method and remains set even after the Fiscal Printer is switched off.
Header lines are automatically printed when a fiscal receipt is initiated using the
beginFiscalReceipt method or when the first line item inside a receipt is sold.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.84 NumTrailerLines Property

Syntax NumTrailerLines: int32 { read-only, access after open }

Remarks Holds the maximum number of trailer lines that can be printed for each fiscal receipt. Trailer lines
are usually promotional messages. Each trailer line is set using the setTrailerLine method and
remains set even after the Fiscal Printer is switched off. Trailer lines are automatically printed either
after the last printRecTotal or when a fiscal receipt is closed using the endFiscalReceipt method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.85 NumVatRates Property

Syntax NumVatRates: int32 { read-only, access after open }

Remarks Holds the maximum number of vat rates that can be entered into the Fiscal Printer’s Vat table.

 This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 51

16.4.86 PostLine Property Added in Release 1.6

Syntax PostLine: string { read-write, access after open-claim-enable }

Remarks An application specific text to be printed on the fiscal receipt after a line item invoked by some
printRec... methods. The property can be written in the Fiscal Receipt State. The length of the text
is reduced to a country specific value

This property is only valid if CapPostPreLine is true.

This property is initialized to an empty string and will be reset to an empty string after being used.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support printing post item lines or the text
 contains invalid characters.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string is too long.

See Also printRecSubtotal Method, printRecTotal Method, CapPostPreLine Property.

16.4.87 PredefinedPaymentLines Property

Syntax PredefinedPaymentLines: string { read-only, access after open }

Remarks Holds the list of all possible words to be used as indexes of the predefined payment lines (for
example, “a, b, c, d, z”). Those indexes are used in the printRecTotal method for the description
parameter.

If CapPredefinedPaymentLines is true, only predefined payment lines are allowed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16 - 52 Unified POS, V1.15.1 Beta1

16.4.88 PreLine Property Added in Release 1.6

Syntax PreLine: string { read-write, access after open-claim-enable }

Remarks An application specific text to be printed on the fiscal receipt before a line item invoked by some
printRec... methods. The property can be written in the Fiscal Receipt State. The length of the text
is reduced to a country specific value.

This property is only valid if CapPostPreLine is true.

This property is initialized to an empty string and will be reset to an empty string after being used.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGALThe Fiscal Printer does not support printing pre item lines or the text
 contains invalid characters.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
 The length of the string is too long.

See Also printRecItem Method, printRecItemAdjustment Method, printRecItemRefund Method,
printRecRefund Method, printRecSubtotalAdjustment Method, CapPostPreLine Property.

Unified POS, v1.15.1 Beta1 16 - 53

16.4.89 PrinterState Property Updated in Release 1.13

Syntax PrinterState: int32 { read-only, access after open }

Remarks Holds the Fiscal Printer’s current operational state. This property controls which methods are
currently legal.

Values are:

Value Meaning
FPTR_PS_MONITOR If TrainingModeActive is false:
 The Fiscal Printer is currently not in a specific operational mode. In
 this state the Fiscal Printer will accept any of the begin… methods as
 well as the set… methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes. In this
state the Fiscal Printer will accept any of the printRec… methods or the
endTraining method.

FPTR_PS_FISCAL_RECEIPT
If TrainingModeActive is false:
The Fiscal Printer is currently processing a fiscal receipt. In this state the
Fiscal Printer will accept any of the printRec… methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes and a fiscal
receipt is currently opened.

FPTR_PS_FISCAL_RECEIPT_TOTAL
If TrainingModeActive is false:
The Fiscal Printer has already accepted at least one payment, but the total
has not been completely paid. In this state the Fiscal Printer will accept
either the printRecTotal, printRecNotPaid, or printRecMessage
methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes and the
Fiscal Printer has already accepted at least one payment, but the total has
not been completely paid.

FPTR_PS_FISCAL_RECEIPT_ENDING
If TrainingModeActive is false:
The Fiscal Printer has completed the receipt up to the total line. In this
state the Fiscal Printer will accept either the printRecMessage or
endFiscalReceipt methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes and a fiscal
receipt is going to be closed.

FPTR_PS_FISCAL_DOCUMENT
The Fiscal Printer is currently processing a fiscal slip. In this state the
Fiscal Printer will accept either the printFiscalDocumentLine or
endFiscalDocument methods.

16 - 54 Unified POS, V1.15.1 Beta1

FPTR_PS_FIXED_OUTPUT
The Fiscal Printer is currently processing fixed text output to one or more
stations. In this state the Fiscal Printer will accept either the
printFixedOutput or endFixedOutput methods.

FPTR_PS_ITEM_LIST The Fiscal Printer is currently processing an item list report. In this state
the Fiscal Printer will accept either the verifyItem or endItemList
methods.

FPTR_PS_NONFISCAL The Fiscal Printer is currently processing non-fiscal output to one or more
stations. In this state the Fiscal Printer will accept either the printNormal
or endNonFiscal methods.

FPTR_PS_LOCKED The Fiscal Printer has encountered a non-recoverable hardware problem.
An authorized Fiscal Printer technician must be contacted to exit this
state.

FPTR_PS_REPORT The Fiscal Printer is currently processing a fiscal report. In this state the
Fiscal Printer will not accept any methods until the report has completed.

There are a few methods that are accepted in any state except FPTR_PS_LOCKED. These are
beginInsertion, endInsertion, beginRemoval, endRemoval, getDate, getData, getTotalizer,
getVatEntry, resetPrinter and clearOutput.

This property is initialized when the device is first enabled following the open method. (In releases
prior to 1.5, this description stated that initialization took place by the open method. In Release 1.5,
it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.90 QuantityDecimalPlaces Property Updated in Release 1.6

Syntax QuantityDecimalPlaces: int32 { read-only, access after open }

Remarks Holds the number of decimal digits in the fractional part that should be assumed to be in any
quantity parameter. This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took place by the open
method. In Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.91 QuantityLength Property Updated in Release 1.6

Syntax QuantityLength: int32 { read-only, access after open }

Remarks Holds the maximum number of digits that may be passed as a quantity parameter, including both
the whole and fractional parts.This property is initialized when the device is first enabled following
the open method. (In releases prior to 1.5, this description stated that initialization took place by the
open method. In Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 55

16.4.92 RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.
If CapRecEmptySensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecNearEnd Property.

16.4.93 RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low.
If CapRecNearEndSensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecEmpty Property.

16.4.94 RemainingFiscalMemory Property

Syntax RemainingFiscalMemory: int32 { read-only, access after open-claim-enable }

Remarks Holds the remaining counter of Fiscal Memory. This property is initialized and kept current while
the device is enabled and may be updated by printZReport method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapRemainingFiscalMemory Property.

.

16 - 56 Unified POS, V1.15.1 Beta1

16.4.95 ReservedWord Property

Syntax ReservedWord: string { read-only, access after open }

Remarks Holds the string that is automatically printed with the total when the printRecTotal method is
called. This word may not occur in any string that is passed into any fiscal output methods.
This property is only valid if CapReservedWord is true.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

16.4.96 SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.
If CapSlpEmptySensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.
Note:
The “slip empty” sensor should be used primarily to determine whether a form has been inserted
before printing. It can also be monitored to determine whether a form is still in place. This sensor
is usually placed one or more print lines above the slip print head.
However, the “slip near end” sensor (when present) should be used to determine when nearing the
end of the slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpNearEnd Property.

16.4.97 SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end. The “near end” sensor
is also sometimes called the “trailing edge” sensor, referring to the bottom edge of the slip.
If CapSlpNearEndSensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Note:
However, the “slip near end” sensor (when present) should be used to determine when nearing the
end of the slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpEmpty Property.

Unified POS, v1.15.1 Beta1 16 - 57

16.4.98 SlipSelection Property

Syntax SlipSelection: int32 { read-write, access after open-claim-enable }

Remarks Selects the kind of document to be printed on the slip station.
This property has one of the following values:

Value Meaning
FPTR_SS_FULL_LENGTH Print full length documents.
FPTR_SS_VALIDATION Print validation documents.

This property is initialized to FPTR_SS_FULL_LENGTH by the claim method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid slip type was specified.

16.4.99 TotalizerType Property Added in Release 1.6

Syntax TotalizerType: int32 { read-write, access after open-claim-enable }

Remarks Specifies the type of totalizer to be requested when calling the getTotalizer method.

Values are:

Value Meaning
FPTR_TT_DOCUMENT Document totalizer
FPTR_TT_DAY Day totalizer
FPTR_TT_RECEIPT Receipt totalizer
FPTR_TT_GRAND Grand totalizer

This property is only valid if CapTotalizerType is true.

This property is initialized to FPTR_TT_DAY and kept current while the device is enabled, which
is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support defining totalizer types or an invalid
 type was specified.

See Also getTotalizer Method, CapTotalizerType Property.

16 - 58 Unified POS, V1.15.1 Beta1

16.4.100 TrainingModeActive Property

Syntax TrainingModeActive: boolean { read-only, access after open-claim-enable }

Remarks Holds the current Fiscal Printer's operational state concerning the training mode. Training mode
allows all fiscal commands, but each receipt is marked as non-fiscal and no internal Fiscal Printer
registers are updated with any data while in training mode. Some countries' fiscal rules require that
all blank characters on a training mode receipt be printed as some other character. Italy, for example,
requires that all training mode receipts print a “?” instead of a blank.

This property has one of the following values:

Value Meaning
true The Fiscal Printer is currently in training mode. That means no data
 are written into the EPROM of the Fiscal Printer.
false The Fiscal Printer is currently in normal mode. All printed receipts
 will also update the fiscal memory.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 59

16.5 Methods (UML operations)

16.5.1 beginFiscalDocument Method Updated in Release 1.11

Syntax beginFiscalDocument (documentAmount: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
documentAmount Amount of document to be stored by the Fiscal Printer.

Remarks Initiates fiscal printing to the slip station.
This method is only supported if CapSlpFiscalDocument is true.
If this is the first call to the beginFiscalDocument method, the Fiscal Day will be started and the
DayOpened property will be set to true.
Each fiscal line will be printed using the printFiscalDocumentLine method. The fiscal document
handling would be as follows:

beginFiscalDocument()
beginInsertion(); endInsertion()
// print fist page
printFiscalDocumentLine()*
beginRemoval(); endRemoval()
beginInsertion(); endInsertion()
// print second page
printFiscalDocumentLine()*
beginRemoval(); endRemoval()

endFiscalDocument()

16 - 60 Unified POS, V1.15.1 Beta1

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_DOCUMENT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or the
 printer does not support fiscal output to the slip station (see the CapSlp
 FiscalDocument property).
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
There is no paper in the slip station.

 ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The documentAmount parameter is invalid.

 ErrorCodeExtended = EFPTR_MISSING_SET_CURRENCY:
The new receipt cannot be opened, the Fiscal Printer is expecting the
current currency to be changed by calling setCurrency method.

 ErrorCodeExtended = EFPTR_DAY_END_REQUIRED:
The completion of the fiscal day is required by calling printZReport.
No further fiscal receipts or documents can be started before this is done.

See Also CapSlpFiscalDocument Property, CapSlpPresent Property, AmountDecimalPlaces Property,
DayOpened Property, PrinterState Property, beginInsertion Method, endFiscalDocument
Method, endInsertion Method, printFiscalDocumentLine Method, printZReport Method.

Unified POS, v1.15.1 Beta1 16 - 61

16.5.2 beginFiscalReceipt Method Updated in Release 1.11

Syntax beginFiscalReceipt (printHeader: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
printHeader Indicates if the header lines are to be printed at this time.

Remarks Initiates fiscal printing to the receipt station.

If CapFiscalReceiptStation is true the FiscalReceiptStation property defines the station where the
receipt will be printed. If CapFiscalReceiptStation is false the receipt will be printed on the receipt
station. If CapFiscalReceiptType is true the receipt type must be defined in FiscalReceiptType
and a header line according to the specified receipt type will be printed.
If this is the first call to the beginFiscalReceipt method, the Fiscal Day will be started and the
DayOpened property will be set to true.
If printHeader and CapIndependentHeader are both true all defined header lines will be printed
before control is returned. Otherwise, header lines will be printed when the first item is sold in the
case they are not printed at the end of the preceding receipt. If CapAdditionalHeader is true,
application specific header lines defined by the AdditionalHeader property will be printed after the
fixed header lines.
If CapMultiContractor is true, the current receipt is assigned to the contractor specified by the
ContractorId property.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid receipt type was specified.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

 ErrorCodeExtended = EFPTR_MISSING_SET_CURRENCY:
The new receipt cannot be opened, the Fiscal Printer is expecting the
current currency to be changed by calling setCurrency method.

 ErrorCodeExtended = EFPTR_DAY_END_REQUIRED:
The completion of the fiscal day is required by calling printZReport.
No further fiscal receipts or documents can be started before this is done.

See Also CapAdditionalHeader Property, CapFiscalReceiptStation Property, CapFiscalReceiptType
Property, CapIndependentHeader Property, CapMultiContractor Property, AdditionalHeader
Property, ContractorId Property, DayOpened Property, FiscalReceiptStation Property,
FiscalReceiptType Property, PrinterState Property, endFiscalReceipt Method, printRec…
Methods.

16 - 62 Unified POS, V1.15.1 Beta1

16.5.3 beginFixedOutput Method

Syntax beginFixedOutput (station: int32, documentType: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　
station　　　 The Fiscal Printer station to be used. May be either FPTR_S_RE　　　
　　　　　　 CEIPT or FPTR_S_SLIP.　　　　　　　　　　　　　　　　　　
documentType Identifier of a document stored in the Fiscal Printer.

Remarks Initiates non-fiscal fixed text printing on a Fiscal Printer station.
This method is only supported if CapFixedOutput is true.

If the station parameter is FPTR_S_SLIP, the slip paper must be inserted into the slip station using
begin/endInsertion before calling this method.

Each fixed output will be printed using the printFixedOutput method. If this method is successful,
the PrinterState property will be changed to FPTR_PS_FIXED_OUTPUT. The endFixedOutput
method ends fixed output modality and resets PrinterState.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Station does not exist (see the CapSlpPresent property).
• Fiscal Printer does not support fixed output (see the CapFixedOutput

property).
• station parameter is invalid.
• documentType is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
There is no paper in the slip station.

See Also CapFixedOutput Property, CapSlpPresent Property, PrinterState Property, beginInsertion
Method, endFixedOutput Method, endInsertion Method, printFixedOutput Method.

Unified POS, v1.15.1 Beta1 16 - 63

16.5.4 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The timeout parameter gives the number of milliseconds before failing the
 method.

If zero, the method tries to begin insertion mode, then returns the appropriate status immediately. If
FOREVER (-1), the method tries to begin insertion mode, then waits as long as needed until either
the form is inserted or an error occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s handling “jaws”
or activating a form insertion mode. This method is paired with the endInsertion method for
controlling form insertion.

If the Fiscal Printer device cannot be placed into insertion mode, a UposException is thrown.
Otherwise, the device continues to monitor form insertion until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error is reported by the
Fiscal Printer device. In this case, a UposException is thrown with an ErrorCode of E_TIME-
OUT or another value. The Fiscal Printer device remains in form insertion mode. This allows
an application to perform some user interaction and reissue the beginInsertion method without
altering the form handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
 E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or an in
 valid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly inserted.

See Also CapSlpPresent Property, endInsertion Method, beginRemoval Method, endRemoval Method.

16 - 64 Unified POS, V1.15.1 Beta1

16.5.5 beginItemList Method

Syntax beginItemList (vatID: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID Vat identifier for reporting.

Remarks Initiates a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is true.

If this method is successful, PrinterState will be changed to FPTR_PS_ITEM_LIST.
After this method, only verifyItem and endItemList methods may be called.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support an item list report (see the
 CapItemList property) or the Fiscal Printer does not support VAT tables
 (see the CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_BAD_VAT:
The vatID parameter is invalid.

See Also CapHasVatTable Property, CapItemList Property, PrinterState Property, endItemList Method,
verifyItem Method.

Unified POS, v1.15.1 Beta1 16 - 65

16.5.6 beginNonFiscal Method

Syntax beginNonFiscal ():
void { raises-exception, use after open-claim-enable }

Remarks Initiates non-fiscal operations on the Fiscal Printer.

This method is only supported if CapNonFiscalMode is true. Output in this mode is accomplished
using the printNormal method. This method can be successfully called only if the current value of
the PrinterState property is FPTR_PS_MONITOR. If this method is successful, the PrinterState
property will be changed to FPTR_PS_NONFISCAL. In order to stop non fiscal modality
endNonFiscal method should be called.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support non-fiscal output (see the
 CapNonFiscalMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

See Also CapNonFiscalMode Property, PrinterState Property, endNonFiscal Method, printNormal
Method.

16 - 66 Unified POS, V1.15.1 Beta1

16.5.7 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The timeout parameter gives the number of milliseconds before failing the
 method.

If zero, the method tries to begin removal mode, then returns the appropriate status immediately. If
FOREVER (-1), the method tries to begin removal mode, then waits as long as needed until either
the form is removed or an error occurs.

Remarks Initiates form removal processing.

When called, the Fiscal Printer is made ready to remove a form by opening the form handling “jaws”
or activating a form ejection mode. This method is paired with the endRemoval method for
controlling form removal.

If the Fiscal Printer device cannot be placed into removal or ejection mode, a UposException is
thrown. Otherwise, the device continues to monitor form removal until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error is reported by
the Fiscal Printer device. In this case, a UposException is thrown with an ErrorCode of E_TIM-
EOUT or another value. The Fiscal Printer device remains in form removal mode. This allows
an application to perform some user interaction and reissue the beginRemoval method without
altering the form handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not have a slip station (see the CapSlpPresent
 property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly removed.

See Also CapSlpPresent Property, beginInsertion Method, endInsertion Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 16 - 67

16.5.8 beginTraining Method

Syntax beginTraining ():
void { raises-exception, use after open-claim-enable }

Remarks Initiates training operations.

This method is only supported if CapTrainingMode is true. Output in this mode is accomplished
using the printRec… methods in order to print a receipt or other methods to print reports. This
method can be successfully called only if the current value of the PrinterState property is
FPTR_PS_MONITOR. If this method is successful, the TrainingModeActive property will be
changed to true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support training mode (see the
 CapTrainingMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

See Also CapTrainingMode Property, PrinterState Property, TrainingModeActive Property,
endTraining Method, printRec… Methods.

16.5.9 clearError Method

Syntax clearError ():
void { raises-exception, use after open-claim-enable }

Remarks Clears all Fiscal Printer error conditions.
This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE Error recovery failed.

16 - 68 Unified POS, V1.15.1 Beta1

16.5.10 endFiscalDocument Method

Syntax endFiscalDocument ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is true.
If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support fiscal output to the slip station (see the
 CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Document state.

See Also CapSlpFiscalDocument Property, PrinterState property, beginFiscalDocument Method,
printFiscalDocumentLine Method.

Unified POS, v1.15.1 Beta1 16 - 69

16.5.11 endFiscalReceipt Method Updated in Release 1.6

Syntax endFiscalReceipt (printHeader: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
printHeader Indicates if the header lines of the following receipt are to be printed at
 this time.

Remarks Terminates fiscal printing to the receipt station.

If printHeader is false, this method will close the current fiscal receipt, print the trailer lines, if they
were not already printed after the total lines, and cut it.
If printHeader is true additionally the header of the next receipt will be printed before cutting the
receipt, otherwise the header will be printed when beginning the next receipt.
All functions carried out by this method will be completed before this call returns.

If CapAdditionalTrailer is true application specific trailer lines defined by the AdditionalTrailer
property will be printed after the fiscal trailer lines.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Receipt Ending state.

See Also beginFiscalReceipt Method, printRec… Methods, CapAdditionalTrailer Property,
AdditionalTrailer Property.

16 - 70 Unified POS, V1.15.1 Beta1

16.5.12 endFixedOutput Method

Syntax endFixedOutput ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates non-fiscal fixed text printing on a Fiscal Printer station.

This method is only supported if CapFixedOutput is true. If this method is successful, the
PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support fixed output (see the
 CapFixedOutput property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fixed Output state.

See Also beginFixedOutput Method, printFixedOutput Method.

16.5.13 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the Fiscal Printer is taken out of form insertion mode. If the slip device has forms
“jaws,” they are closed by this method. If no form is present, a UposException is thrown with its
ErrorCodeExtended property set to EFPTR_SLP_EMPTY.
This method is paired with the beginInsertion method for controlling form insertion. The
application may choose to call this method immediately after a successful beginInsertion if it wants
to use the Fiscal Printer sensors to determine when a form is positioned within the slip printer.
Alternatively, the application may prompt the user and wait for a key press before calling this
method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The Fiscal Printer is not in slip insertion mode.

E_EXTENDED ErrorCodeExtended = EFPTR_COVER_OPEN:
The device was taken out of insertion mode while the Fiscal Printer cover
was open.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The device was taken out of insertion mode without a form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 16 - 71

16.5.14 endItemList Method Updated in Release 1.13

Syntax endItemList ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates a validation report of items belonging to a particular VAT class.
This method is only supported if CapItemList is true and CapHasVatTable is true.
This method is paired with the beginItemList method.
This method can be successfully called only if current value of PrinterState property is equal to
FPTR_PS_ITEM_LIST.
If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support item list report (see the CapItemList
 property) or the Fiscal Printer does not support VAT tables (see the
 CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

See Also CapItemList Property, CapHasVatTable Property, beginItemList Method, verifyItem Method.

16.5.15 endNonFiscal Method

Syntax endNonFiscal ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates non-fiscal operations on one Fiscal Printer station.
This method is only supported if CapNonFiscalMode is true. If this method is successful, the
PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support non-fiscal output (see the
 CapNonFiscalMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Non-Fiscal state.

See Also beginNonFiscal Method, printNormal Method.

16 - 72 Unified POS, V1.15.1 Beta1

16.5.16 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the Fiscal Printer is taken out of form removal or ejection mode. If a form is present,
a UposException is thrown with the ErrorCodeExtended property set to EFPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form removal. The
application may choose to call this method immediately after a successful beginRemoval if it wants
to use the Fiscal Printer sensors to determine when the form has been removed. Alternatively, the
application may prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EFPTR_SLP_FORM:
The device was taken out of removal mode while a form was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

16.5.17 endTraining Method

Syntax endTraining ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates training operations on either the receipt or the slip station.

This method is only supported if CapTrainingMode is true. If this method is successful, the
TrainingModeActive property will be changed to false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support training mode (see the
 CapTrainingMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Training state.

See Also CapTrainingMode property, beginTraining Method, printRec… Methods.

Unified POS, v1.15.1 Beta1 16 - 73

16.5.18 getData Method Updated in Release 1.12

Syntax getData (dataItem: int32, inout optArgs: int32, inout data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
dataItem The specific data item to retrieve.

optArgs For some dataItem this additional argument is needed. Consult the
Service vendor's documentation for further use of this argument.

data Character string to hold the data retrieved.

The dataItem parameter has one of the following values:

ValueMeaning

Identification data
FPTR_GD_FIRMWARE Get the Fiscal Printer’s firmware release number.
FPTR_GD_PRINTER_ID Get the Fiscal Printer’s fiscal ID.
FPTR_GD_VAT_ID_LIST Get the valid ID List

 If dataItem is FPTR_GD_VAT_ID_LIST, getData returns the data output parameter with the
following format: a semicolon separated list of triples (vatID:optArgs:VATname;).
Triple elements are separated by colon and have the following content.

Parameter Values Description
vatID (integer) Valid vatID parameter of getVatEntry Method.

optArgs (integer list) Valid optArgs parameters of getVatEntry Method.
 This is indicated as comma separated list.
 If related data is not available, it is empty.

VAT name (string) Human readable name of VAT.
 It may be empty if a VAT name does not exist or is unknown.

For example,
“[vatID1 (integer)]:[optArgs1(integer)]:[VAT name1(string)];
 [vatID2 (integer)]:[optArgs2-1(integer),optArgs2-2(integer)]:[VAT name2(string)]”
is indicating the vatID1 and vatID2 information returned as VAT ID list.

Totals
FPTR_GD_CURRENT_TOTAL Get the current receipt total.
FPTR_GD_DAILY_TOTAL Get the daily total.
FPTR_GD_GRAND_TOTAL Get the Fiscal Printer’s grand total.
FPTR_GD_MID_VOID Get the total number of voided receipts.
FPTR_GD_NOT_PAID Get the current total of not paid receipts.
FPTR_GD_RECEIPT_NUMBER

Get the number of fiscal receipts printed.
FPTR_GD_REFUND Get the current total of refunds.
FPTR_GD_REFUND_VOID Get the current total of voided refunds.

Fiscal memory counts
FPTR_GD_NUMB_CONFIG_BLOCK

Get the grand number of configuration blocks.

16 - 74 Unified POS, V1.15.1 Beta1

FPTR_GD_NUMB_CURRENCY_BLOCK
Get the grand number of currency blocks.

FPTR_GD_NUMB_HDR_BLOCK
Get the grand number of header blocks.

FPTR_GD_NUMB_RESET_BLOCK
Get the grand number of reset blocks.

FPTR_GD_NUMB_VAT_BLOCK
Get the grand number of VAT blocks.

Counter
FPTR_GD_FISCAL_DOC Get the number of daily fiscal documents.
FPTR_GD_FISCAL_DOC_VOID

 Get the number of daily voided fiscal documents.
FPTR_GD_FISCAL_REC Get the number of daily fiscal sales receipts.
FPTR_GD_FISCAL_REC_VOID
 Get the number of daily voided fiscal sales receipts.
FPTR_GD_NONFISCAL_DOC Get the number of daily non fiscal documents.
FPTR_GD_NONFISCAL_DOC_VOID

 Get the number of daily voided non fiscal documents.
FPTR_GD_NONFISCAL_REC Get the number of daily non fiscal receipts.
FPTR_GD_RESTART Get the Fiscal Printer’s restart count
FPTR_GD_SIMP_INVOICE Get the number of daily simplified invoices.
FPTR_GD_Z_REPORT Get the Z report number.

Fixed fiscal printer text
FPTR_GD_TENDER Get the payment description used in the printRecTotal method,

defined by the given identifier in the optArgs argument.Valid
only, if the CapPredefinedPaymentLines property is true.

Linecounter
FPTR_GD_LINECOUNT Get the number of printed lines, defined by the given identifier in

the optArgs argument. If the CapMultiContractor property is
true, line counters depend on the contractor defined by the
ContractorId property.

Description length　 　　　　　　　　　　　　　　　　　　
FPTR_GD_DESCRIPTION_LENGTH

Get the maximum number of characters that may be passed as a
　 description parameter for a specific method, defined by the given
　 identifier in the optArgs argument.

If dataItem is FPTR_GD_TENDER the optArgs parameter has to be set to one of the following
values:
Value Meaning
FPTR_PDL_CASH　 　　　　　　　Cash.
FPTR_PDL_CHEQUE Cheque.
FPTR_PDL_CHITTY Chitty.
FPTR_PDL_COUPON Coupon.
FPTR_PDL_CURRENCY Currency.
FPTR_PDL_DRIVEN_OFF
FPTR_PDL_EFT_IMPRINTER Printer EFT.
FPTR_PDL_EFT_TERMINAL　　　　 Terminal EFT.
FPTR_PDL_TERMINAL_IMPRINTER
FPTR_PDL_FREE_GIFT Gift.
FPTR_PDL_GIRO Giro.

Unified POS, v1.15.1 Beta1 16 - 75

FPTR_PDL_HOME Home.
FPTR_PDL_IMPRINTER_WITH_ISSUER
FPTR_PDL_LOCAL_ACCOUNT Local account.
FPTR_PDL_LOCAL_ACCOUNT_CARD
 Local card account.
FPTR_PDL_PAY_CARD Pay card.
FPTR_PDL_PAY_CARD_MANUAL Manual pay card.
FPTR_PDL_PREPAY Prepay.
FPTR_PDL_PUMP_TEST Pump test.
FPTR_PDL_SHORT_CREDIT Credit.
FPTR_PDL_STAFF Staff.
FPTR_PDL_VOUCHER Voucher.

If dataItem is FPTR_GD_LINECOUNT the optArgs parameter has to be set to one of the following
values:

Value Meaning
FPTR_LC_ITEM Number of item lines.
FPTR_LC_ITEM_VOID Number of voided item lines.
FPTR_LC_DISCOUNT Number of discount lines.
FPTR_LC_DISCOUNT_VOID Number of voided discount lines.
FPTR_LC_SURCHARGE Number of surcharge lines.
FPTR_LC_SURCHARGE_VOID Number of voided surcharge lines.
FPTR_LC_REFUND Number of refund lines.
FPTR_LC_REFUND_VOID Number of voided refund lines.
FPTR_LC_SUBTOTAL_DISCOUNT Number of subtotal discount lines.
FPTR_LC_SUBTOTAL_DISCOUNT_VOID
 Number of voided subtotal discount lines.
FPTR_LC_SUBTOTAL_SURCHARGE
 Number of subtotal surcharge lines.
FPTR_LC_SUBTOTAL_SURCHARGE_VOID
 Number of voided subtotal surcharge lines.
FPTR_LC_COMMENT Number of comment lines.
FPTR_LC_SUBTOTAL Number of subtotal lines.
FPTR_LC_TOTAL Number of total lines.

If dataItem is FPTR_GD_DESCRIPTION_LENGTH the optArgs parameter has to be set to one of
the following values:

Value Meaning
FPTR_DL_ITEM printRecItem method.
FPTR_DL_ITEM_ADJUSTMENT printRecItemAdjustment method.
FPTR_DL_ITEM_FUEL printRecItemFuel method.
FPTR_DL_ITEM_FUEL_VOID printRecItemFuelVoid method.
FPTR_DL_NOT_PAID printRecNotPaid method.
FPTR_DL_PACKAGE_ADJUSTMENT printRecPackageAdjustment method.
FPTR_DL_REFUND printRecRefund method,
 printRecItemRefund method.
FPTR_DL_REFUND_VOID printRecRefundVoid method,
 printRecItemRefundVoid method.
FPTR_DL_SUBTOTAL_ADJUSTMENT
 printRecSubtotalAdjustment method.
FPTR_DL_TOTAL printRecTotal method.
FPTR_DL_VOID printRecVoid method.

16 - 76 Unified POS, V1.15.1 Beta1

FPTR_DL_VOID_ITEM printRecItemVoid and
 printRecItemAdjustmentVoid methods.

Remarks Retrieves data and counters from the printer’s fiscal module.

If CapMultiContractor is true, line counters depend on the contractor defined by the
ContractorId property.

The data is returned in a string because some of the fields, such as the grand total, might overflow
a 4-byte integer.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Only applies if
 AsyncMode is false.)

E_ILLEGAL The dataItem, optArgs or ContractorId specified is invalid.

See Also printRecTotal Method, CapPredefinedPaymentLines Property,
ContractorId Property, PredefinedPaymentLines Property.

16.5.19 getDate Method Updated in Release 1.6

Syntax getDate (inout date: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
date Date and time returned as a string.

Remarks Gets the Fiscal Printer’s date and time specified by the DateType property.

The date and time are returned as a string in the format “ddmmyyyyhhmm”:

dd day of the month (1 - 31)
mm month (1 - 12)
yyyy year (1997-)
hh hour (0-23)
mm minutes (0-59)

The fiscal controller may not support hours and minutes depending on the date type. In such cases
the corresponding fields in the returned string are filled with “0”.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Retrieval of the date and time is not valid at this time.

See Also DateType Property.

Unified POS, v1.15.1 Beta1 16 - 77

16.5.20 getTotalizer Method Updated in Release 1.6

Syntax getTotalizer (vatID: int32, optArgs: int32, inout data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID VAT identifier of the required totalizer.
optArgs Specifies the required totalizer.
data Totalizer returned as a string.

The optArgs parameter has one of the following values:
Value Meaning
FPTR_GT_GROSS Gross totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_NET Net totalizer specified by the TotalizerType and ContractorId
 properties.
FPTR_GT_DISCOUNT Discount totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_DISCOUNT_VOID
 Voided discount totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_ITEM Item totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_ITEM_VOID Voided item totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_NOT_PAID Not paid totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_REFUND Refund totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_REFUND_VOID Voided refund totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_SUBTOTAL_DISCOUNT
 Subtotal discount totalizer specified by the
 TotalizerType and ContractorId properties.
FPTR_GT_SUBTOTAL_DISCOUNT_VOID
 Voided discount totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_SUBTOTAL_SURCHARGES
 Subtotal surcharges totalizer specified by the
 TotalizerType and ContractorId properties.
FPTR_GT_SUBTOTAL_SURCHARGES_VOID
 Voided surcharges totalizer specified by the TotalizerType
 and ContractorId properties.
FPTR_GT_SURCHARGE Surcharge totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_SURCHARGE_VOID
 Voided surcharge totalizer specified by the
 TotalizerType and ContractorId properties.
FPTR_GT_VAT AT totalizer specified by the TotalizerType and ContractorId
 properties.
FPTR_GT_VAT_CATEGORY
 VAT totalizer per VAT category specified by the TotalizerType
 and ContractorId properties associated to the given vatID.

16 - 78 Unified POS, V1.15.1 Beta1

Remarks Gets the totalizer specified by the optArgs argument Some of the totalizers such as item or VAT
totalizers may be associated with the given vatID.

If CapTotalizerType is true the type of totalizer (grand, day, receipt specific) depends on the
TotalizerType property.

If CapMultiContractor is true the type depends on the ContractorId property.

If CapSetVatTable is false, then only one totalizer is present.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
 E_ILLEGAL One of the following errors occurred:

• The vatID parameter is invalid, or
• The ContractorId property is invalid, or
• The specified totalizer is not available.

See Also CapTotalizerType Property, TotalizerType Property,
CapMultiContractor Property, ContractorId Property.

16.5.21 getVatEntry Method Updated in Release 1.11

Syntax getVatEntry (vatID: int32, optArgs: int32, inout vatRate: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID VAT identifier of the required rate.

optArgs For some countries, this additional argument may be needed.
Consult the Fiscal Printer Service vendor's documentation for details.

vatRate The rate associated with the VAT identifier.

Remarks Gets the rate associated with a given VAT identifier.

This method is only supported if CapHasVatTable is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The vatID parameter is invalid, or CapHasVatTable is false.

See Also CapHasVatTable Property.

Unified POS, v1.15.1 Beta1 16 - 79

16.5.22 printDuplicateReceipt Method

Syntax printDuplicateReceipt ():
void { raises-exception, use after open-claim-enable }

Remarks Prints a duplicate of a buffered transaction.

This method is only supported if CapDuplicateReceipt is true. This method will succeed if both
the CapDuplicateReceipt and DuplicateReceipt properties are true.

This method resets the DuplicateReceipt property to false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Only applies if AsyncMode
 is false.)

E_ILLEGAL The Fiscal Printer does not support duplicate receipts (see the
CapDuplicateReceipt property) or there is no buffered transaction to
print (see DuplicateReceipt property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor state.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapDuplicateReceipt Property, DuplicateReceipt Property.

16 - 80 Unified POS, V1.15.1 Beta1

16.5.23 printFiscalDocumentLine Method

Syntax printFiscalDocumentLine (documentLine: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
documentLine String to be printed on the fiscal slip.

Remarks Prints a line of fiscal text to the slip station.

This method is only supported if CapSlpFiscalDocument is true.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Only applies if
 AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support fiscal documents (see the
CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Document state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFiscalDocument Method, endFiscalDocument Method.

Unified POS, v1.15.1 Beta1 16 - 81

16.5.24 printFixedOutput Method

Syntax printFixedOutput (documentType: int32, lineNumber: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
documentType Identifier of a document stored in the Fiscal Printer

lineNumber Number of the line in the document to print.

data String parameter for placement in printed line.

Remarks Prints a line of a fixed document to the print station specified in the beginFixedOutput method.
Each call prints a single line from a document by merging the stored text with the parameter data.
Within a document lines must be printed sequentially. First and last lines are required; others may
be optional.

This method is only supported if CapFixedOutput is true. The Fiscal Printer state is set to
FPTR_PS_FIXED_OUTPUT. This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support fixed output (see the
CapFixedOutput property) or the lineNumber is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not in the Fixed Output state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFixedOutput Method, endFixedOutput Method.

16 - 82 Unified POS, V1.15.1 Beta1

16.5.25 printNormal Method Updated in Release 1.7

Syntax printNormal (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The Fiscal Printer station to be used. May be FPTR_S_RECEIPT,
 FPTR_S_JOURNAL, or FPTR_S_SLIP.

data1 The characters to be printed. May consist mostly of printable characters,
escape sequences, carriage returns (13 decimal), and line feeds (10

decimal) but in many cases these are not supported.

Remarks Performs non-fiscal printing. Prints data on the Fiscal Printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Special character values within data are:

Value Meaning
Line Feed (10 decimal)
 Print any data in the line buffer, and feed to the next print line. (A Carriage
 Return is not required in order to cause the line to be printed.)

Carriage Return (13 decimal)

If a Carriage Return immediately precedes a Line Feed, or if the line
buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the Fiscal Printer does not feed to
the next print line. On some Fiscal Printers, print without feed may be
directly supported. On others, a print may always feed to the next line, in
which case the Device will print the line buffer and perform a reverse line
feed if supported. If the Fiscal Printer does not support either of these
features, then Carriage Return acts like a Line Feed.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

1. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 16 - 83

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist. (See the CapJrnPresent, CapRecPre
 sent and CapSlpPresent properties.)

E_BUSY Cannot perform while output is in progress. (Only applies if AsyncMode
is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Non-Fiscal state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginNonFiscal Method, endNonFiscal Method, AsyncMode Property.

16 - 84 Unified POS, V1.15.1 Beta1

16.5.26 printPeriodicTotalsReport Method

Syntax printPeriodicTotalsReport (date1: string, date2: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
date1 Starting date of report to print.
date2 Ending date of report to print.

Remarks Prints a report of totals for a range of dates on the receipt.
This method is always performed synchronously.

The dates are strings in the format “ddmmyyyyhhmm”, where:

dd day of the month (1 - 31)

mm month (1 - 12)

yyyy year (1997-)

hh hour (0-23)

mm minutes (0-59)

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer’s current state does not allow this state transition.

 ErrorCodeExtended = EFPTR_JRN_EMPTY:
 The journal station is out of paper.

 ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.

 ErrorCodeExtended = EFPTR_BAD_DATE:
 One of the date parameters is invalid.

Unified POS, v1.15.1 Beta1 16 - 85

16.5.27 printPowerLossReport Method

Syntax printPowerLossReport ():
void { raises-exception, use after open-claim-enable }

Remarks Prints on the receipt a report of a power failure that resulted in a loss of data stored in the CMOS of
the Fiscal Printer.

This method is only supported if CapPowerLossReport is true.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support power loss reports (see the
 CapPowerLossReport property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapPowerLossReport Property.

16 - 86 Unified POS, V1.15.1 Beta1

16.5.28 printRecCash Method Added in Release 1.6

Syntax printRecCash (amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
amount Amount to be incremented or decremented.

Remarks Prints a cash-in or cash-out receipt amount on the station defined by the FiscalReceiptStation
property.

This method is only allowed if CapFiscalReceiptType is true and the FiscalReceiptType property
is set to FPTR_RT_CASH_IN or FPTR_RT_CASH_OUT and the fiscal Fiscal Printer is in the
Fiscal Receipt state.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support this method.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, FiscalReceiptStation Property,
FiscalReceiptType Property.

Unified POS, v1.15.1 Beta1 16 - 87

16.5.29 printRecItem Method Updated in Release 1.6

Syntax printRecItem (description: string, price: currency, quantity: int32, vatInfo: int32, unitPrice:
currency, unitName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the item sold.

price Price of the line item.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitPrice Price of each item. If not used a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs”. If not used an empty string
(“”) must be transferred

Remarks Prints a receipt item for a sold item on the station specified by the FiscalReceiptStation property.
If the quantity parameter is zero, then a single item quantity will be assumed.

Minimum parameters are description and price or description, price, quantity, and unitPrice. Most
countries require quantity and vatInfo and some countries also require unitPrice and unitName.

VatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it
contains a VAT amount.

If CapPostPreLine is true additional application specific lines defined by the PostLine and
PreLine properties will be printed. After printing these lines PostLine and PreLine will be reset to
an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

16 - 88 Unified POS, V1.15.1 Beta1

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PostLine Property, PreLine Property.

Unified POS, v1.15.1 Beta1 16 - 89

16.5.30 printRecItemAdjustment Method Updated in Release 1.11

Syntax printRecItemAdjustment (adjustmentType: int32, description: string, amount: currency,
vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

description Text describing the adjustment.

amount Amount of the adjustment.

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT

Fixed amount discount. The amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
 Fixed amount surcharge. The amount parameter contains a
 currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a percentage value.

FPTR_AT_COUPON_AMOUNT_DISCOUNT
 Fixed amount discount for an advertising coupon.
 The amount parameter contains a currency value.
 The coupon is registered by the fiscal memory.
 If coupons are not registered at fiscal memory separately from
 ordinary discounts in the actual country then it is
 recommend to use FPTR_AT_AMOUNT_DISCOUNT instead.

FPTR_AT_COUPON_PERCENTAGE_DISCOUNT
Percentage discount for an advertising coupon. The amount parameter
contains a percentage value. The coupon is registered by the fiscal
memory. If coupons are not registered at fiscal memory separately from
ordinary discounts in the actual country then it is recommend to use

FPTR_AT_PERCENTAGE_DISCOUNT instead.

Remarks Applies and prints a discount or a surcharge to the last receipt item sold on the station specified by
the FiscalReceiptStation property. This discount may be either a fixed currency amount or a
percentage amount relating to the last item.
If CapOrderAdjustmentFirst is true, the method must be called before the corresponding
printRecItem method. If CapOrderAdjustmentFirst is false, the method must be called after the
printRecItem.

16 - 90 Unified POS, V1.15.1 Beta1

This discount/surcharge may be either a fixed currency amount or a percentage amount relating to
the last item. If the discount amount is greater than the receipt subtotal, an error occurs since the
subtotal can never be negative. In many countries discount operations cause the printing of a fixed
line of text expressing the kind of operation that has been performed.

The VatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it
contains a VAT amount.
Fixed amount discounts/surcharges are only supported if the property CapAmountAdjustment is
true. Percentage discounts are only supported if CapPercentAdjustment is true.
If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line PreLine will be reset to an empty string.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support fixed amount adjustments (see the
CapAmountAdjustment property).

• The Fiscal Printer does not support percentage discounts (see the
CapPercentAdjustment property).

• The adjustmentType parameter is invalid.
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:

The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = FPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 16 - 91

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word. (Only
applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property, PreLine Property.

16 - 92 Unified POS, V1.15.1 Beta1

16.5.31 printRecItemAdjustmentVoid Method Added in Release 1.11

Syntax printRecItemAdjustmentVoid (adjustmentType: int32, description: string, amount:
currency, vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment to be voided. See below for values.

description Text describing the adjustment to be voided.

amount Amount of the adjustment to be voided.

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):
Value Meaning
FPTR_AT_AMOUNT_DISCOUNT
 Fixed amount discount to be voided. The amount parameter contains a
 currency value.

FPTR_AT_AMOUNT_SURCHARGE
 Fixed amount surcharge to be voided. The amount parameter
 contains a currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount to be voided. The amount parameter contains a
percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge to be voided. The amount parameter contains a
percentage value.

FPTR_AT_COUPON_AMOUNT_DISCOUNT
 Fixed amount discount for an advertising coupon to be voided.
 The amount parameter contains a currency value. The coupon

 is registered by the fiscal memory. If coupons are not registered at
 fiscal memory separately from ordinary discounts in the actual
 country then it is recommend to use
 FPTR_AT_AMOUNT_DISCOUNT instead.

FPTR_AT_COUPON_PERCENTAGE_DISCOUNT
Percentage discount for an advertising coupon to be voided. The amount

 parameter contains a percentage value. The coupon is registered by the
fiscal memory. If coupons are not registered at fiscal memory separately
from ordinary discounts in the actual country then it is recommend to use
FPTR_AT_PERCENTAGE_DISCOUNT instead.

Remarks Cancels an adjustment that has been added to fiscal receipt before and prints a cancellation line with
a negative amount on the station specified by the FiscalReceiptStation property. This adjustment
cancellation amount may be either a fixed currency amount or a percentage amount.

Unified POS, v1.15.1 Beta1 16 - 93

The VatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it
contains a VAT amount.

Fixed amount adjustment cancellations are only supported if the property CapAmountAdjustment
is true. Percentage adjustment cancellations are only supported if CapPercentAdjustment is true.

If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line PreLine will be reset to an empty string.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support fixed amount adjustments (see the
CapAmountAdjustment property).

• The Fiscal Printer does not support percentage discounts (see the
CapPercentAdjustment property).

• The adjustmentType parameter is invalid.
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:

The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = FPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word. (Only
applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

16 - 94 Unified POS, V1.15.1 Beta1

See Also AmountDecimalPlaces Property, FiscalReceiptStation Property, PreLine Property,
beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
printRecItemAdjustment Method.

Unified POS, v1.15.1 Beta1 16 - 95

16.5.32 printRecItemFuel Method Added in Release 1.6

Syntax printRecItemFuel (description: string, price: currency, quantity: int32, vatInfo: int32,
unitPrice: currency, unitName: string, specialTax: currency, specialTaxName: string
):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the fuel product.

price Price of the fuel item.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitPrice Price of the fuel item per volume.

unitName Name of the volume unit, i.e., “ltr”. If not used an empty string (“”) must
be transferred

specialTax Special tax amount, e.g., road tax. If not used a zero must be transferred.

specialTaxName Name of the special tax.

Remarks Prints a receipt fuel item on the station specified by the FiscalReceiptStation property. vatInfo
parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it contains a VAT
amount.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

(Only applies if AsyncMode is false.)

E_ILLEGAL This method is not supported.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

16 - 96 Unified POS, V1.15.1 Beta1

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, FiscalReceiptStation Property.

Unified POS, v1.15.1 Beta1 16 - 97

16.5.33 printRecItemFuelVoid Method Added in Release 1.6

Syntax printRecItemFuelVoid (description: string, price: currency, vatInfo: int32,
specialTax: currency):
 void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the fuel product.

price Price of the fuel item. If not used a zero must be transferred.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

specialTax Special tax amount, e.g., road tax. If not used a zero must be transferred.

Remarks Called to void a fuel item on the station specified by the FiscalReceiptStation property.

If CapOnlyVoidLastItem is true, only the last fuel item transferred to the Fiscal Printer can be
voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

(Only applies if AsyncMode is false.)

E_ILLEGAL This method is not supported.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

16 - 98 Unified POS, V1.15.1 Beta1

ErrorCodeExtended = EFPTR_BAD_PRICE:
The price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method,
printRecItemFuel Method, CapOnlyVoidLastItem Property, FiscalReceiptStation Property.

Unified POS, v1.15.1 Beta1 16 - 99

16.5.34 printRecItemRefund Method Added in Release 1.12

Syntax printRecItemRefund (description: string, amount: currency, quantity: int32, vatInfo: int32,
unitAmount: currency, unitName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the refund.

amount The amount of the refund line.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitAmount Amount of each refund item. If not used a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs”. If not used an empty string
(“”) must be transferred

Remarks Processes one or more item refunds. The amount is positive, but it is printed as a negative number
and the totals registers are decremented.

If unitAmount and quantity are non zero then the amount parameter corresponds to the product of
quantity and unitAmount. Otherwise this method has the same functionality as the method
printRecRefund.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it,
contains a VAT amount.

If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line, PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

16 - 100 Unified POS, V1.15.1 Beta1

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The refund amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also CapHasVatTable Property, CapPostPreLine Property, FiscalReceiptStation Property, PreLine
Property, printRecItemRefundVoid Method, printRecRefund Method.

Unified POS, v1.15.1 Beta1 16 - 101

16.5.35 printRecItemRefundVoid Method Added in Release 1.12

Syntax printRecItemRefundVoid (description: string, amount: currency, quantity: int32, vatInfo:
int32, unitAmount: currency, unitName: string):
 void { raises-exception, use after open-claim-enable }+

Parameter Description
description Text describing the refund.

amount The amount of the refund line.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitAmount Amount of each refund item. If not used a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs”. If not used an empty string
(“”) must be transferred

Remarks Processes a void of one or more item refunds. The amount is positive and the totals registers are
incremented.

If unitAmount and quantity are non zero then the amount parameter corresponds to the product of
quantity and unitAmount. Otherwise this method has the same functionality as the method
printRecRefundVoid.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a void of a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it,
contains a VAT amount.

If CapOnlyVoidLastItem is true, only the last refund item transferred to the Fiscal Printer can be
voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 　　　　
E_BUSY Cannot perform while output is in progress.

(Only applies if AsyncMode is false.)

E_ILLEGAL Cancelling is not allowed at this ticket state. May be because no item has
been sold previously.
(See CapOnlyVoidLastItem.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

16 - 102 Unified POS, V1.15.1 Beta1

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The refund amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also CapHasVatTable Property, CapPostPreLine Property, FiscalReceiptStation Property, PreLine
Property, printRecItemRefund Method, printRecRefundVoid Method.

Unified POS, v1.15.1 Beta1 16 - 103

16.5.36 printRecItemVoid Method　　　　　　　　　　Added in Release 1.11

Syntax printRecItemVoid (description: string, price: currency, quantity: int32, vatInfo: int32,
unitPrice: currency, unitName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the item to be voided.

price Price of the item to be voided.

quantity Quantity of item to be voided. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitPrice Price of each item. If not used a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs”. If not used an empty string
(“”) must be transferred

Remarks Cancels one or more items that has been added to the receipt and prints a void description on the
station defined by the FiscalReceiptStation property.

Minimum parameters are description and price or description, quantity, and unitPrice. Most
countries require quantity and vatInfo and some countries also require unitPrice and unitName.

price is a positive number, it will be printed as a negative and will be decremented from the totals
registers. In some countries price will be ignored, instead the computation from quantity and
unitPrice will be printed as a negative amount. The vatInfo parameter contains a VAT table
identifier if CapHasVatTable is true. Otherwise, it contains a VAT amount.

If CapOnlyVoidLastItem is true, only the last item transferred to the Fiscal Printer can be voided
exclusive an adjustment line for this item.

If CapPostPreLine is true, additional application specific lines defined by the PostLine and
PreLine properties will be printed. After printing these lines PostLine and PreLine will be reset to
an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL Cancelling is not allowed at this ticket state. May be because no item has
been sold previously.
(See CapOnlyVoidLastItem.)

16 - 104 Unified POS, V1.15.1 Beta1

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

See Also AmountDecimalPlaces Property, CapOnlyVoidLastItem Property, FiscalReceiptStation
Property, beginFiscalReceipt Method, endFiscalReceipt Method, printRecItem Method,
printRec… Methods.

Unified POS, v1.15.1 Beta1 16 - 105

16.5.37 printRecMessage Method Updated in Release 1.13

Syntax printRecMessage (message: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
message Text message to print.

Remarks Prints a message on the fiscal receipt on the station specified by the FiscalReceiptStation property.
The length of an individual message is limited to the number of characters given in the
MessageLength property. The kind of message to be printed is defined by the MessageType
property.

This method is only supported if CapAdditionalLines is true. This method is only supported when
the Fiscal Printer is in one of the Fiscal Receipt states.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not in the Fiscal Receipt, Fiscal Receipt total, or
Fiscal Receipt Ending state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
CapAdditionalLines Property, FiscalReceiptStation Property,
MessageLength Property, MessageType Property.

16 - 106 Unified POS, V1.15.1 Beta1

16.5.38 printRecNotPaid Method Updated in Release 1.11

Syntax printRecNotPaid (description: string, amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the not paid amount.

amount Amount not paid.

Remarks Indicates a part of the receipt’s total to not be paid. Some fixed text, along with the description, will
be printed on the station defined by the FiscalReceiptStation property to indicate that part of the
receipt total has not been paid. This method is only supported if CapReceiptNotPaid is true. If this
method is successful, the PrinterState property will remain in
FPTR_PS_FISCAL_RECEIPT_TOTAL state or change to the value
FPTR_PS_FISCAL_RECEIPT_ENDING depending upon whether the entire receipt total is now
accounted for or not. This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot perform while output is in progress.

 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in either the Fiscal Receipt or Fiscal
Receipt Total state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 16 - 107

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

See Also AmountDecimalPlaces Property, CapReceiptNotPaid Property, FiscalReceiptStation Property,
beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods.

16 - 108 Unified POS, V1.15.1 Beta1

16.5.39 printRecPackageAdjustment Method Updated in Release 1.15.1

Syntax printRecPackageAdjustment (adjustmentType: int32,
description: string, vatAdjustment: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

description Text describing the adjustment.

vatAdjustment String containing a list of adjustment(s) for different Vat(s).

The adjustmentType parameter has one of the following values:
Value Meaning
FPTR_AT_DISCOUNT Discount.

FPTR_AT_SURCHARGE Surcharge.

The vatAdjustment parameter consists of ASCII numeric semicolon delimited pairs of values which
denote each the VAT identifier of the package item to be adjusted and adjustment amount, separated
by a comma.

 In case of a percentage amount passed as part of the list for parameter vatAdjustment, it should
have a trailing percent sign '%' to mark a percentage adjustment. Additionally, it may contain a dot
to separate the whole-numbered part from the decimal part:

The number of pairs is delimited by the NumVatRates property.

Remarks Called to give an adjustment for a package of some items booked before. This adjustment (discount/
surcharge) may be either a fixed currency amount or a percentage amount relating to items
combined to an adjustment package.

 Each item of the package must be transferred before.

 Fixed amount adjustments are only supported if CapPackageAdjustment is true.

 This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode
is true.

Adjustment Value Adjustment Type Description

5.5
Percentage 5.5％

Actual 5.5

Unified POS, v1.15.1 Beta1 16 - 109

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support package adjustments (see the
CapPackageAdjustment property), or the adjustmentType parameter is
invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also printRecPackageAdjustVoid Method, CapPackageAdjustment Property.

16 - 110 Unified POS, V1.15.1 Beta1

16.5.40 printRecPackageAdjustVoid Method Updated in Release 1.15.1

Syntax printRecPackageAdjustVoid (adjustmentType: int32,
vatAdjustment: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

vatAdjustment String containing a list of adjustment(s) to be voided for different VAT(s).

The adjustmentType parameter has one of the following values:

Value Meaning
FPTR_AT_DISCOUNT Discount.

FPTR_AT_SURCHARGE Surcharge.

The vatAdjustment parameter consists of ASCII numeric semicolon delimited pairs of values which
denote each the VAT identifier of the package item to be adjusted and adjustment amount, separated
by a comma.　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　
In case of a percentage amount passed as part of the list for parameter vatAdjustment, it should have
a trailing percent sign '%' to mark a percentage adjustment. Additionally, it may contain a dot to
separate the whole-numbered part from the decimal part：

The number of pairs is delimited by the NumVatRates property.
Remarks Called to void the adjustment for a package of some items. This adjustment (discount/surcharge)

may be either a fixed currency amount or a percentage amount relating to the current receipt
subtotal.

Adjustment Value Adjustment Type Description

5.5
Percentage 5.5％

Actual 5.5

Unified POS, v1.15.1 Beta1 16 - 111

Fixed amount void adjustments are only supported if CapPackageAdjustment is true.

If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support package adjustments (see the
CapPackageAdjustment property), or the adjustmentType parameter is

 invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Receipt state.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
 The Fiscal Printer cover is open.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_JRN_EMPTY:
 The journal station is out of paper.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_SLP_EMPTY:
 The slip station was specified, but a form is not inserted.(Only applies
 if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
 The description is too long or contains a reserved word.
 (Only applies if AsyncMode is false.)

See Also printRecPackageAdjustment Method, CapPackageAdjustment Property,
PreLine Property.

16 - 112 Unified POS, V1.15.1 Beta1

16.5.41 printRecRefund Method Updated in Release 1.12

Syntax printRecRefund (description: string, amount: currency, vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the refund.

amount Amount of the refund.

vatInfo VAT rate identifier or amount.

Remarks Processes a refund. The amount is positive, but it is printed as a negative number and the totals
registers are decremented.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it,
contains a VAT amount.

If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

If several items of the same item type are to be refunded, then it is recommended to use
printRecItemRefund.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
　 　　　　　　　　　(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Receipt state.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
 The Fiscal Printer cover is open.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_JRN_EMPTY:
 The journal station is out of paper.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.
 (Only applies if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 16 - 113

　　　　　　　　　　　　　　　ErrorCodeExtended = EFPTR_SLP_EMPTY:
　　　　　　　　　　The slip station was specified, but a form is not inserted.(Only applies if
　　　　　　　　　　AsyncMode is false.)

　　　　　　　　　　ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
　　　　　　　　　　The description is too long or contains a reserved word.
　　　　　　　　　　(Only applies if AsyncMode is false.)

　　　　　　　　　　ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
　　　　　　　　　　The amount is invalid.
　　　　　　　　　　(Only applies if AsyncMode is false.)

　　　　　　　　　　ErrorCodeExtended = EFPTR_BAD_VAT:
　　　　　　　　　　The VAT information is invalid.
　　　　　　　　　　(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PreLine Property, printRecItemRefund Method.

16 - 114 Unified POS, V1.15.1 Beta1

16.5.42 printRecRefundVoid Method　　　　　　　　　　Updated in Release 1.12

Syntax printRecRefundVoid (description: string, amount: currency,
vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the refund.

amount Amount of the voided refund.

vatInfo VAT rate identifier or amount.

Remarks Called to process a void of a refund.

The amount is positive and the totals registers are incremented.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a void of a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it,
contains a VAT amount.

If CapOnlyVoidLastItem is true, only the last refund item transferred to the Fiscal Printer can be
voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

If the refund of several items of the same item type is to be voided, then it is recommended to use
printRecItemRefundVoid.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 16 - 115

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

See Also printRecRefund Method, printRecItemRefundVoid Method, FiscalReceiptStation Property.

16 - 116 Unified POS, V1.15.1 Beta1

16.5.43 printRecSubtotal Method Updated in Release 1.6

Syntax printRecSubtotal (amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
amount Amount of the subtotal.

Remarks Checks and prints the current receipt subtotal on the station defined by the FiscalReceiptStation
property.

If CapCheckTotal is true, the amount is compared to the subtotal calculated by the Fiscal Printer.
If the subtotals match, the subtotal is printed on the station defined by the FiscalReceiptStation
property. If the results do not match, the receipt is automatically canceled. If CapCheckTotal is
false, then the subtotal is printed on the station defined by the FiscalReceiptStation property and
the parameter is never compared to the subtotal computed by the Fiscal Printer.

If CapPostPreLine is true an additional application specific line defined by the PostLine property
will be printed. After printing this line PostLine will be reset to an empty string.

If this method compares the application’s subtotal with the Fiscal Printer’s subtotal and they do not
match, the PrinterState property will be changed to FPTR_PS_FISCAL_RECEIPT_ENDING.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 16 - 117

 ErrorCodeExtended = EFPTR_SLP_EMPTY:
 The slip station was specified, but a form is not inserted.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
 The subtotal from the application does not match the subtotal
　　　　　　　　　　 computed by the Fiscal Printer.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The total computed by the Fiscal Printer is less than zero.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PostLine Property.

16 - 118 Unified POS, V1.15.1 Beta1

16.5.44 printRecSubtotalAdjustment Method Updated in Release 1.11

Syntax printRecSubtotalAdjustment (adjustmentType: int32,
description: string, amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

description Text describing the discount or surcharge.

amount Amount of the adjustment (discount or surcharge).

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT

Fixed amount discount. The amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter contains a currency
value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a percentage value.

FPTR_AT_COUPON_AMOUNT_DISCOUNT
 Fixed amount discount for an advertising coupon. The amount
 parameter contains a currency value. The coupon is registered by the
 fiscal memory. If coupons are not registered at fiscal memory separately
 from ordinary discounts in the actual country then it is recommend
 to use FPTR_AT_AMOUNT_DISCOUNT instead.

FPTR_AT_COUPON_PERCENTAGE_DISCOUNT
Percentage discount for an advertising coupon. The amount parameter
contains a percentage value. The coupon is registered by the fiscal
memory. If coupons are not registered at fiscal memory separately from
ordinary discounts in the actual country then it is recommend to use
FPTR_AT_PERCENTAGE_DISCOUNT instead.

Remarks Applies and prints a discount/surcharge to the current receipt subtotal on the station defined by the
FiscalReceiptStation property. This discount/surcharge may be either a fixed currency amount or
a percentage amount relating to the current receipt subtotal.
If the discount/surcharge amount is greater than the receipt subtotal, an error occurs since the
subtotal can never be negative.
In many countries discount/surcharge operations cause the printing of a fixed line of text expressing
the kind of operation that has been performed.

Fixed amount discounts are only supported if CapSubAmountAdjustment is true. Percentage
discounts are only supported if CapSubPercentAdjustment is true. Surcharges are only supported
if CapPositiveSubtotalAdjustment is true.

Unified POS, v1.15.1 Beta1 16 - 119

If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• Fixed amount discounts are not supported
 (see the CapSubAmountAdjustment property).

• Percentage discounts are not supported
(see the CapSubPercentAdjustment property).

• Surcharges are not supported
(see the CapPositiveSubtotalAdjustment property).

• The adjustmentType parameter is invalid.
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:

The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.

 (Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word. (Only
applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, CapPositiveSubtotalAdjustment Property,
FiscalReceiptStation Property, PreLine Property.

16 - 120 Unified POS, V1.15.1 Beta1

16.5.45 printRecSubtotalAdjustVoid Method Added in Release 1.6

Syntax printRecSubtotalAdjustVoid (adjustmentType: int32,
amount: currency):
 void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

amount Amount of the adjustment (discount or surcharge).

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT

Fixed amount discount. The amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter contains a currency
value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a percentage value.

Remarks Called to void a preceding subtotal adjustment on the station defined by the FiscalReceiptStation
property. This discount/surcharge may be either a fixed currency amount or a percentage amount
relating to the current receipt subtotal.

Fixed amount void discounts are only supported if CapSubAmountAdjustment is true. Percentage
void discounts are only supported if the property CapSubPercentAdjustment is true.

If CapPostPreLine is true an additional application specific line defined by the PreLine property
will be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• Fixed amount discounts are not supported
 (see the CapSubAmountAdjustment property).

• Percentage discounts are not supported
(see the CapSubPercentAdjustment property).

Unified POS, v1.15.1 Beta1 16 - 121

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PreLine Property.

16 - 122 Unified POS, V1.15.1 Beta1

16.5.46 printRecTaxID Method Added in Release 1.6

Syntax printRecTaxID (taxId: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
taxId Customer identification with identification characters and tax number.

Remarks Called to print the customers tax identification on the station defined by the FiscalReceiptStation
property.

This method is only supported when the Fiscal Printer is in the Fiscal Receipt Ending state.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support printing tax identifications.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt Ending state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

See Also FiscalReceiptStation Property.

Unified POS, v1.15.1 Beta1 16 - 123

16.5.47 printRecTotal Method Updated in Release 1.14

Syntax printRecTotal (total: currency, payment: currency, description: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
total Application computed receipt total.

payment Amount of payment tendered.

description Text description of the payment or the index of a predefined payment
description.

Remarks Checks and prints the current receipt total on the station defined by the FiscalReceiptStation
property and to tender a payment.

If CapCheckTotal is true, the total is compared to the total calculated by the Fiscal Printer. If the
totals match, the total is printed on both the receipt and journal along with some fixed text. If the
results do not match, the receipt is automatically canceled. If CapCheckTotal is false, then the total
is printed on the receipt and journal and the parameter is never compared to the total computed by
the Fiscal Printer.

If CapPredefinedPaymentLines is true, then the description parameter contains the index of one
of the Fiscal Printer’s predefined payment descriptions. The index is typically a single character of
the alphabet. The set of allowed values for this index is to be described in the description of the
service and stored in the PredefinedPaymentLines property.

If payment = total, a line containing the description and payment is printed. The PrinterState
property will be set to FPTR_PS_FISCAL_RECEIPT_ENDING.

If payment > total, a line containing the description and payment is printed followed by a second
line containing the change due. If CapChangeDue property is true, a description for the change due
defined by the ChangeDue property is printed as the second line. The PrinterState property will
be set to FPTR_PS_FISCAL_RECEIPT_ENDING.

If payment < total, a line containing the description and payment is printed. Since the entire receipt
total has not yet been tendered, the PrinterState property will be set to
FPTR_PS_FISCAL_RECEIPT_TOTAL.

If payment = 0, no line containing the description and payment is printed. The PrinterState property
will be set to FPTR_PS_FISCAL_RECEIPT_TOTAL.

If CapAdditionalLines is false, then receipt trailer lines, fiscal logotype and receipt cut are
executed after the last total line, whenever receipt’s total became equal to the payment from the
application. Otherwise these lines are printed calling the endFiscalReceipt method.

If CapPostPreLine is true an additional application specific line defined by the PostLine property
will be printed. After printing this line PostLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

16 - 124 Unified POS, V1.15.1 Beta1

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:

• The application computed total does not match the Fiscal Printer
computed total, or

• the total parameter is invalid, or
• the payment parameter is invalid
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_WORD_NOT_ALLOWED:
The description contains the reserved word.

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
PredefinedPaymentLines Property, AmountDecimalPlaces Property,
ChangeDue Property, FiscalReceiptStation Property, PostLine Property.

Unified POS, v1.15.1 Beta1 16 - 125

16.5.48 printRecVoid Method Updated in Release 1.6

Syntax printRecVoid (description: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the void.

Remarks Cancels the current receipt.

The receipt is annulled but it is not physically canceled from the Fiscal Printer’s fiscal memory since
fiscal receipts are printed with an increasing serial number and totals are accumulated in registers.
When a receipt is canceled, its subtotal is subtracted from the totals registers, but it is added to the
canceled receipt register.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that the receipt has been canceled.

Normally only a receipt with at least one transaction can be voided. If
CapEmptyReceiptIsVoidable is true also an empty receipt (only the beginFiscalReceipt method
was called) can be voided.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT_ENDING.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.

(Only applies if AsyncMode is false.)

16 - 126 Unified POS, V1.15.1 Beta1

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods
CapEmptyReceiptIsVoidable Property, FiscalReceiptStation Property.

Unified POS, v1.15.1 Beta1 16 - 127

16.5.49 printRecVoidItem Method Deprecated in Release 1.11

Syntax printRecVoidItem (description: string, amount: currency,
quantity: int32, adjustmentType: int32,
adjustment: currency, vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text description of the item void.

amount Amount of item to be voided.

quantity Quantity of item to be voided.

adjustmentType Type of adjustment. See below for values.

adjustment Amount of the adjustment (discount or surcharge).

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT
 Fixed amount discount. The adjustment parameter contains a currency
 value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The adjustment parameter contains a currency

 value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The adjustment parameter contains a percentage

 value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The adjustment parameter contains a percentage
value.

Remarks Cancels an item that has been added to the receipt and prints a void description on the station defined
by the FiscalReceiptStation property.

amount is a positive number, it will be printed as a negative and will be decremented from the totals
registers.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it
contains a VAT amount. Fixed amount discounts/surcharges are only supported if
CapAmountAdjustment is true. Percentage discounts are only supported if
CapPercentAdjustment is true.

16 - 128 Unified POS, V1.15.1 Beta1

If CapOnlyVoidLastItem is true, only the last item transferred to the Fiscal Printer can be voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY　　　　　 Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• Fixed amount adjustments are not supported
(see the CapAmountAdjustment property), or

• Percentage discounts are not supported
(see the CapPercentAdjustment property), or

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 16 - 129

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.

ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
CapOnlyVoidLastItem Property, AmountDecimalPlaces Property, FiscalReceiptStation
Property.

16 - 130 Unified POS, V1.15.1 Beta1

16.5.50 printReport Method Updated in Release 1.11

Syntax printReport (reportType: int32, startNum: string, endNum: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
reportType The kind of report to print.

startNum ASCII string identifying the starting record in Fiscal Printer memory from
which to begin printing

endNum ASCII string identifying the final record in Fiscal Printer memory at
which printing is to end. See reportType table below to find out the exact
meaning of this parameter.

The reportType parameter has one of the following values:

Value Meaning
FPTR_RT_ORDINAL Prints a report between two fiscal memory record numbers. If both start
 Num and endNum are valid and endNum > startNum, then a report of
 the period between startNum and endNum will be printed.
 If startNum is valid and endNum is zero, then a report relating only
 to startNum will be printed.

FPTR_RT_DATE Prints a report between two dates. The dates are strings in the format
“ddmmyyyyhhmm”, where:

 dd day of the month (01 - 31)

 mm month (01 - 12)

 yyyy year (1997- ...)

 hh hour (00-23)

 mm minutes (00-59)

FPTR_RT_EOD_ORDINAL

Prints a report between two Z reports where startNum and endNum
represent a Z report number. If both startNum and endNum are
valid and endNum > startNum, then a report of the period between
startNum and endNum will be printed. If startNum is valid and
endNum is zero, then a report relating only to startNum
will be printed.

Remarks Prints a report of the fiscal EPROM contents on the receipt that occurred between two end points.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 16 - 131

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

E_ILLEGAL One of the following errors occurred:

• The reportType parameter is invalid, or
• One or both of startNum and endNum are invalid, or
• startNum > endNum.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer's current state does not allow this state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

16.5.51 printXReport Method

Syntax printXReport ():
void { raises-exception, use after open-claim-enable }

Remarks Prints a report of all the daily fiscal activities on the receipt. No data will be written to the fiscal
EPROM as a result of this method invocation.

This method is only supported if CapXReport is true. This method is always performed
synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support X reports
 (see the CapXReport property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapXReport Property.

16 - 132 Unified POS, V1.15.1 Beta1

16.5.52 printZReport Method Updated in Release 1.6

Syntax printZReport ():
void { raises-exception, use after open-claim-enable }

Remarks Prints a report of all the daily fiscal activities on the receipt. Data will be written to the fiscal
EPROM as a result of this method invocation.

Since running printZReport is implicitly a fiscal end of day function, the DayOpened property
will be set to false. This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer’s current state does not allow this state transition.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
 The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also beginFiscalDocument Method, beginFiscalReceipt Method,
DayOpened Property.

Unified POS, v1.15.1 Beta1 16 - 133

16.5.53 resetPrinter Method

Syntax resetPrinter ():
void { raises-exception, use after open-claim-enable }

Remarks Forces the Fiscal Printer to return to Monitor state. This forces any interrupted operations to be
canceled and closed. This method must be invoked when the Fiscal Printer is not in a Monitor state
after a successful call to the claim method and successful setting of the DeviceEnabled property to
true. This typically happens if a power failures occurs during a fiscal operation.
Calling this method does not close the Fiscal Printer, i.e., does not force a Z report to be printed.

The Device will handle this command as follows:

• If the Fiscal Printer was in either Fiscal Receipt, Fiscal Receipt Total or Fiscal Receipt Ending
state, the receipt will be ended without updating any registers.

• If the Fiscal Printer was in a non-fiscal state, the Fiscal Printer will exit that state.

• If the Fiscal Printer was in the training state, the Fiscal Printer will exit the training state.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

16 - 134 Unified POS, V1.15.1 Beta1

16.5.54 setCurrency Method Added in Release 1.6

Syntax setCurrency (newCurrency: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
newCurrency The new currency.

The newCurrency parameter has one of the following values:

Value Meaning

FPTR_SC_EURO Change to the EURO currency.

Remarks Called to change to a new currency, e.g., EURO.

This method is only supported if CapSetCurrency is true and can only be called while DayOpened
is false.

The actual currency is kept in the ActualCurrency property.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support this method (see the
CapSetCurrency property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property), or

• the specified newCurrency value is not valid.

See Also ActualCurrency Property, CapSetCurrency Property, DayOpened Property.

Unified POS, v1.15.1 Beta1 16 - 135

16.5.55 setDate Method

Syntax setDate (date: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
date Date and time as a string.

Remarks Sets the Fiscal Printer’s date and time.

The date and time is passed as a string in the format “ddmmyyyyhhmm”, where:

dd day of the month (1 - 31)

mm month (1 - 12)

yyyy year (1997-)

hh hour (0-23)

mm minutes (0-59)

This method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer has already begun the fiscal day
 (see the DayOpened property).

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_DATE:
One of the entries of the date parameters is invalid.

See Also DayOpened Property.

16 - 136 Unified POS, V1.15.1 Beta1

16.5.56 setHeaderLine Method Updated in Release 1.6

Syntax setHeaderLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
lineNumber Line number of the header line to set.

text Text to which to set the header line.

doubleWidth Print this line in double wide characters.

Remarks Sets one of the fiscal receipt header lines. The text set by this method will be stored by the Fiscal
Printer and retained across power losses.

If CapMultiContractor property is true, header lines can be defined for different contractors
specified by the ContractorId property.

The lineNumber parameter must be between 1 and the value of the NumHeaderLines property. If
text is an empty string (“”), then the header line is unset and will not be printed. The doubleWidth
characters will be printed if the Fiscal Printer supports them. See the CapDoubleWidth property to
determine if they are supported. This method is only supported if CapSetHeader is true. This
method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting header lines (see the
CapSetHeader property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• the lineNumber parameter was invalid.
E_EXTENDED ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:

The text parameter is too long or contains a reserved word.

See Also CapDoubleWidth Property, CapMultiContractor Property, CapSetHeader Property,
ContractorId Property, DayOpened Property, NumHeaderLines Property.

Unified POS, v1.15.1 Beta1 16 - 137

16.5.57 setPOSID Method

Syntax setPOSID (POSID: string, cashierID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
POSID Identifier for the POS system.

cashierID Identifier of the current cashier.

Remarks Sets the POS and cashier identifiers. These values will be printed when each fiscal receipt is closed.

This method is only supported if CapSetPOSID is true. This method can only be called while
DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the POS identifier (see the
CapSetPOSID property), or

• The printer has already begun the fiscal day (see the DayOpened
property), or

• Either the POSID or cashierID parameter is invalid.

See Also CapSetPOSID Property, DayOpened Property.

16 - 138 Unified POS, V1.15.1 Beta1

16.5.58 setStoreFiscalID Method

Syntax setStoreFiscalID (ID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
ID Fiscal identifier.

Remarks Sets the store fiscal ID. This value is retained by the Fiscal Printer even after power failures. This
ID is automatically printed by the Fiscal Printer after the fiscal receipt header lines.

This method is only supported if CapSetStoreFiscalID is true. This method can only be called
while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the store fiscal identifier (see
the CapSetStoreFiscalID property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• The ID parameter was invalid.

See Also CapSetStoreFiscalID Property, DayOpened Property.

Unified POS, v1.15.1 Beta1 16 - 139

16.5.59 setTrailerLine Method

Syntax setTrailerLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
lineNumber Line number of the trailer line to set.

text Text to which to set the trailer line.

doubleWidth Print this line in double wide characters.

Remarks Sets one of the fiscal receipt trailer lines. The text set by this method will be stored by the Fiscal
Printer and retained across power losses.

The lineNumber parameter must be between 1 and the value of the NumTrailerLines property. If
text is an empty string (“”), then the trailer line is unset and will not be printed. The doubleWidth
characters will be printed if the Fiscal Printer supports them. See the CapDoubleWidth property to
determine if they are supported. This method is only supported if CapSetTrailer is true. This
method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the receipt trailer lines (see
the CapSetTrailer property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• the lineNumber parameter was invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The text parameter is too long or contains a reserved word.

See Also CapDoubleWidth Property, CapSetTrailer Property, DayOpened Property, NumTrailerLines
Property.

16 - 140 Unified POS, V1.15.1 Beta1

16.5.60 setVatTable Method

Syntax setVatTable ():
void { raises-exception, use after open-claim-enable }

Remarks Sends the VAT table built inside the Service to the Fiscal Printer. The VAT table is built one entry
at a time using the setVatValue method.

This method is only supported if CapHasVatTable and CapSetVatTable are true. This method can
only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support VAT tables or their setting (see the
CapHasVatTable or CapSetVatTable property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property).

See Also CapHasVatTable Property, CapSetVatTable Property, DayOpened Property, setVatValue
Method.

Unified POS, v1.15.1 Beta1 16 - 141

16.5.61 setVatValue Method Updated in Release 1.11

Syntax setVatValue (vatID: int32, vatValue: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID Index of the VAT table entry to set.

vatValue Tax value as a percentage.

Remarks Sets the value of a specific VAT class in the VAT table. The VAT table is built one entry at a time
in the Service using this method. The entire table is then sent to the Fiscal Printer at one time using
the setVatTable method.

This method is only supported if CapHasVatTable and CapSetVatTable are true. This method can
only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support VAT tables (see the
CapHasVatTable or CapSetVatTable property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• The Fiscal Printer does not support changing an existing VAT value
(see the CapSetVatTable property).

See Also CapHasVatTable Property, CapSetVatTable Property, DayOpened Property, setVatTable
Method.

16 - 142 Unified POS, V1.15.1 Beta1

16.5.62 verifyItem Method Updated in Release 1.13

Syntax verifyItem (itemName: string, vatID: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
itemName Item to be verified.

vatID VAT identifier of the item.

Remarks Compares itemName and its vatID with the values stored in the Fiscal Printer.

This method is only supported if CapHasVatTable and CapItemList are true. This method can
only be called while the Fiscal Printer is in the Item List state.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support an item list report
 (see the CapItemList property) or the Fiscal Printer does not
 support VAT tables (see the CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Item List state.

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The item name is too long or contains a reserved word.

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.

See Also CapHasVatTable Property, CapItemList Property.

Unified POS, v1.15.1 Beta1 16 - 143

16.6 Events (UML interfaces)

16.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Fiscal Printer Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber
and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Fiscal Printer devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

16 - 144 Unified POS, V1.15.1 Beta1

16.6.2 ErrorEvent Updated in Release 1.13

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Fiscal Printer error has been detected and that a suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes
 on page 1-21.

ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a

 Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT indicating that
the error occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden by the
 application (i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EFPTR_COVER_OPEN The Fiscal Printer cover is open.

EFPTR_JRN_EMPTY The journal station is out of paper.

EFPTR_REC_EMPTY The receipt station is out of paper.

EFPTR_SLP_EMPTY A form is not inserted in the slip station.

EFPTR_SLP_FORM A form is still present in the slip station even though it should
 have been removed by the last action.

EFPTR_WRONG_STATE The requested method could not be executed in the Fiscal
Printer’s current state.

EFPTR_TECHNICAL_ASSISTANCE
The Fiscal Printer has encountered a severe error condition.
Calling for Fiscal Printer technical assistance is required.

EFPTR_CLOCK_ERROR The Fiscal Printer’s internal clock has failed.

EFPTR_FISCAL_MEMORY_FULL
The Fiscal Printer’s fiscal memory has been exhausted.

EFPTR_FISCAL_MEMORY_DISCONNECTED

 The Fiscal Printer’s fiscal memory has been disconnected

Unified POS, v1.15.1 Beta1 16 - 145

EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the
one in the EPROM.

EFPTR_BAD_ITEM_QUANTITY

The Quantity parameter is invalid.

EFPTR_BAD_ITEM_AMOUNT The Amount parameter is invalid.

EFPTR_BAD_ITEM_DESCRIPTION
The Description parameters is either to long, contains illegal
characters or contains the reserved word.

EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.

EFPTR_BAD_VAT The Vat parameter is invalid.

EFPTR_BAD_PRICE The Price parameter is invalid.

EFPTR_BAD_DATE The date parameter is invalid.

EFPTR_WORD_NOT_ALLOWED

The description contains a reserved word.

EFPTR_NEGATIVE_TOTAL The Fiscal Printer’s computed total or subtotal is less than zero.

EFPTR_MISSING_DEVICES Some of the other devices which according to the local fiscal
legislation are to be connected has been disconnected.
In some countries in order to use a fiscal Fiscal Printer a
full set of peripheral devices are to be connected to the
POS (such as cash drawer and customer display).
In case one of these devices is not present sales

 are not allowed.

EFPTR_BAD_LENGTH The length of the string to be printed as post or pre line is
too long.

EFPTR_MISSING_SET_CURRENCY
The Fiscal Printer is expecting the activation of a new currency.

EFPTR_DAY_END_REQUIRED
The completion of the fiscal day is required by calling
printZReport. No further fiscal receipts or documents can be
started before this is done.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered output data, including all asynchronous
 output. The error state is exited.

ER_RETRY Retry the asynchronous output. The error state is exited. The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the error state.

See Also “Device Output Models” on page 1- 21, “Device Information Reporting Model” on page 1- 25.

16 - 146 Unified POS, V1.15.1 Beta1

16.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that is was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

16.6.4 StatusUpdateEvent Updated in Release 1.8

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a Fiscal Printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates the status change, and has one of the

following values:

Value Meaning
FPTR_SUE_COVER_OPEN Fiscal Printer cover is open.

FPTR_SUE_COVER_OK Fiscal Printer cover is closed.

FPTR_SUE_JRN_EMPTY No journal paper.

FPTR_SUE_JRN_NEAREMPTYJournal paper is low.

FPTR_SUE_JRN_PAPEROK Journal paper is ready.

FPTR_SUE_REC_EMPTY No receipt paper.

FPTR_SUE_REC_NEAREMPTY
 Receipt paper is low.

FPTR_SUE_REC_PAPEROK Receipt paper is ready.

FPTR_SUE_SLP_EMPTY No slip form is inserted, and no slip form has been detected
at the entrance to the slip station.
(See “Model Updated in Release 1.12” on page 8

for further details on slip properties and events.)

FPTR_SUE_SLP_NEAREMPTY
Almost at the bottom of the slip form.

Unified POS, v1.15.1 Beta1 16 - 147

FPTR_SUE_SLP_PAPEROK Slip form is inserted.

FPTR_SUE_IDLE All asynchronous output has finished, either successfully
or because output has been cleared. The Fiscal Printer
State is now S_IDLE. The FlagWhenIdle property must
be true for this event to be delivered, and the property
is automatically reset to false just before the event is
delivered.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional Status values for
communicating the status/progress of an asynchronous update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

 Release 1.8 and later – Specific Cover State Reporting

Starting with Release 1.8, StatusUpdateEvents for specific stations’ covers are supported. If a
Fiscal Printer has only one cover or if it cannot determine/report which covers are open, then only
the original FPTR_SUE_COVER_OPEN and FPTR_SUE_COVER_OK events should be fired.

For Fiscal Printers supporting multiple covers, the original events should also be fired for
compatibility with current applications. In these cases, the station-specific event should be fired
first, followed by the original event.

If more than one cover is open, the original FPTR_SUE_COVER_OPEN event should only be fired
once after a cover is opened. A FPTR_SUE_COVER_OK event should only be fired after all the
covers are closed.

The event’s Status attribute can contain one of the following additional values to indicate a status
change.

Value Meaning
FPTR_SUE_JRN_COVER_OPEN Journal station cover is open.

FPTR_SUE_JRN_COVER_OK Journal station cover is closed.

FPTR_SUE_REC_COVER_OPEN Receipt station cover is open.

FPTR_SUE_REC_COVER_OK Receipt station cover is closed.

FPTR_SUE_SLP_COVER_OPEN Slip station cover is open.

FPTR_SUE_SLP_COVER_OK Slip station cover is closed.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 1- 15.

16 - 148 Unified POS, V1.15.1 Beta1

Unified POS, v1.15.1 Beta1 17 - 1

17 Gate

17.1 General
This Chapter defines the Gate device category.

17.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 Not supported
DataEventEnabled: boolean { read-write } 1.12 Not supported
DeviceEnabled: boolean { read-write } 1.12 open
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 Not supported
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

17 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapGateStatus: boolean { read-only } 1.12 open
GateStatus: int32 { read-only } 1.12 open & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12

Specific
Name
openGate ():

void { raises-exception, use after open, enable }
1.12

waitForGateClose (timeout: int32):
void { raises-exception, use after open, enable }

1.12

Unified POS, v1.15.1 Beta1 17 - 3

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12
 Status: int32 { read-only }

17 - 4 Unified POS, v1.15.1 Beta1

17.3 General Information
The Gate programmatic name is “Gate.”

This device category was added to Version 1.12 of the specification.

Various doors and gates can be controlled by the Gate device category, examples are:

• Kiosk front door which can be opened by an application for servicing.

• Self Checkout door which can be opened by an application for servicing.

• Exit gate in kiosk or self checkout environments where a customer scans a barcode printed on the receipt in order to
 open the gate.

17.3.1 Capabilities

The Gate Control has the following capability:

• Supports a command to “open” the gate.

The Gate Control may have the following additional capability:

• Gate status reporting of such a nature that the service can determine whether the gate is opened or closed in
 environments where the gate is accessible via a hardware port.

Unified POS, v1.15.1 Beta1 17 - 5

17.3.2 Gate Class Diagram

The following diagram shows the relationships between the Gate classes.

+openGate() : void
+waitForGateClose(timeout : int32) : void

+CapGateStatus : boolean
+GateStatus : int32

«interface»
GateControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

GateConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl

17 - 6 Unified POS, v1.15.1 Beta1

17.3.3 Gate Sequence Diagram

The following sequence diagram show the typical usage of the Gate device illustrating the device sharing model.

:ClientApp0 :Gate Service1 Gate
Device

NOTE: We are assuming that the :ClientApp(s) already successfully opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully

1: setDeviceEnabled(true)

:ClientApp1 gate0:Gate gate1:Gate :Gate Service0
:StatusUpdate

Event

2: setDeviceEnabled(true)
3: connect or somehow have access

to the hardware

Service returns
current status of
the gate

4: openGate()
5: openGate() 6: send command to open gate

Gate device is assumed
open successfully and
GateStatus property is
now GATE_GS_OPEN

If the command to open the physical Gate
is successful then this will result in
StatusUpdateEvent delivered to any
registered listeners. This is not shown in
this diagram for simplicity.

7: setDeviceEnabled(true)
8: setDeviceEnabled(true)

10: openGate()
11: openGate()

12: send command to open
gate

9: might communicate with
device

Assume the Gate is
successfully claimed
at this point by
:ClientApp1

13: claim(timeout)
14: claim(timeout)

15: openGate()
16: openGate()

17: throw UposException
This call results in a UposException
since the Gate device is claimed by
the gate1 instance that is used by
:ClientApp1

18: openGate()
19: openGate()

21: send command
 to open gate

20: new

22: deliver SUE to control

23: notify client of new event

Assume that both
:ClientApp0 and :ClientApp1
registered to receive events

26: notify client of new event

This call is successful
and Gate device is
open since gate1
claimed the device
sucessfully.

StatusUpdateEvent is delivered
to all registered handlers, even
though, in the situation above,
only :ClientApp1 is allowed to
call openGate() – since it
sucessfully claimed the device.

25: deliver SUE to control

24: new

Service0 also detects the gate is opened,
either via a message from Service1, a SUE
from Service1 or a lower level interface

Unified POS, v1.15.1 Beta1 17 - 7

17.3.4 Device Sharing

The gate is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive status
 update events.

• If more than one application has opened and enabled the device, each of these applications may access its properties
 and methods. Status update events are fired to all of these applications.

• If one application claims the gate, then only that application may call openGate and waitForGateClose. This
 feature provides a degree of security, such that these methods may effectively be restricted to the main application if
 that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

17 - 8 Unified POS, v1.15.1 Beta1

17.4 Properties (UML attributes)

17.4.1 CapGateStatus Property

Syntax CapGateStatus: boolean { read-only, access after open }

Remarks If true, the gate can report status. If false, the Service is not able to determine whether the gate is
open or closed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

17.4.2 GateStatus Property

Syntax GateStatus: int32 { read-only, access after open-enable }

Remarks Holds the current status of the device. It has one of the following values:

Value Meaning
GATE_GS_CLOSED The gate is closed.
GATE_GS_OPEN The gate is open.
GATE_GS_BLOCKED The gate is blocked.
GATE_GS_MALFUNCTION The gate has a hardware problem. Technical assistance is needed.
If the capability CapGateStatus is false, then the device does not support status reporting, and this
property has no meaning.

This property is initialized and kept current while the device is enabled.

An appropriate StatusUpdateEvent indicating a status change will be enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapGateStatus Property.

Unified POS, v1.15.1 Beta1 17 - 9

17.5 Methods (UML operations)

17.5.1 openGate Method

Syntax openGate ():
 void { raises-exception, use after open-enable }

Remarks Opens the gate.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.

17.5.2 waitForGateClose Method

Syntax waitForGateClose (timeout: int32):
 void { raises-exception, use after open-enable }

Parameter Description
timeout Maximum number of milliseconds to wait until the gate is closed before

returning control back to the application. If FOREVER (-1), the method
waits as long as needed until the gate is closed or an error occurs.

Remarks Waits until the gate is closed.
Unless a UposException is thrown, this method will not return to the application while the gate is
open.

If CapGateStatus is false, then the device does not support status reporting, and this method will
return immediately.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_TIMEOUT The timeout period expired before the gate was closed.

See Also CapGateStatus Property.

17 - 10 Unified POS, v1.15.1 Beta1

17.6 Events (UML interfaces)

17.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Gate Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Gate devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 17 - 11

17.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Gate changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Gate.

The Status attribute has one of the following values:

Value Description
GATE_SUE_CLOSED The gate is closed.

GATE_SUE_OPEN The gate is open.

GATE_SUE_BLOCKEDThe gate is blocked.

GATE_SUE_MALFUNCTION
The gate has a hardware problem. Technical assistance is needed.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 1.

Remarks If CapGateStatus is false, then the device does not support status reporting, and this event will
never be delivered to report status changes.

See Also CapGateStatus Property, “Events” on page 1- 15.

17 - 12 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 18 - 1

18 Hard Totals

18.1 General
This Chapter defines the Hard Totals device category.

18.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

18 - 2 Unified POS, v1.15.1 Bata1

Properties (Continued)
Specific Type Mutability Version May Use After
CapErrorDetection: boolean { read-only } 1.0 open
CapSingleFile: boolean { read-only } 1.0 open
CapTransactions: boolean { read-only } 1.0 open
FreeData: int32 { read-only } 1.0 open & enable
NumberOfFiles: int32 { read-only } 1.0 open & enable
TotalsSize: int32 { read-only } 1.0 open & enable
TransactionInProgress: boolean { read-only } 1.0 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable }a

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Unified POS, v1.15.1 Beta1 18 - 3

beginTrans ():
void { raises-exception, use after open, enable }

1.0

claimFile (hTotalsFile: int32, timeout: int32):
void { raises-exception, use after open, enable } b

1.0

commitTrans ():
void { raises-exception, use after open, enable }

1.0

create (fileName: string, inout hTotalsFile: int32, size: int32,
errorDetection: boolean):
void { raises-exception, use after open, enable } a

1.0

delete (fileName: string):
void { raises-exception, use after open, enable } b

1.0

find (fileName: string, inout hTotalsFile: int32, inout size: int32):
void { raises-exception, use after open, enable } a

1.0

findByIndex (index: int32, inout fileName: string):
void { raises-exception, use after open, enable } a

1.0

read (hTotalsFile: int32, inout data: binary, offset: int32, count: int32):
void { raises-exception, use after open, enable } b

1.0

recalculateValidationData (hTotalsFile: int32):
void { raises-exception, use after open, enable } b

1.0

releaseFile (hTotalsFile: int32):
void { raises-exception, use after open, enable }

1.0

rename (hTotalsFile: int32, fileName: string):
void { raises-exception, use after open, enable } b

1.0

rollback ():
void { raises-exception, use after open, enable }

1.0

setAll (hTotalsFile: int32, value: byte):
void { raises-exception, use after open, enable } b

1.0

validateData (hTotalsFile: int32):
void { raises-exception, use after open, enable } b

1.0

write (hTotalsFile: int32, data: binary, offset: int32, count: int32):
void { raises-exception, use after open, enable } b

1.0

a. Also requires that no other application has claimed the hard totals device.
b. Also requires that no other application has claimed the hard totals device or the file

on which this method acts.

18 - 4 Unified POS, v1.15.1 Bata1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 18 - 5

18.3 General Information
The Hard Totals programmatic name is “HardTotals”.

18.3.1 Capabilities

The Hard Totals device has the following minimal set of capabilities:

• Supports at least one totals file with the name “” (the empty string) in an area of totals memory. Each totals file is
 read and written as if it were a sequence of byte data.

• Creates each totals file with a fixed size and may be deleted, initialized, and claimed for exclusive use.

The Hard Totals device may have the following additional capabilities:

• Supporting additional named totals files. They share some characteristics of a file system with only a root directory
 level. In addition to the minimal capabilities listed above, each totals file may also be renamed.

• Supporting transactions, with begin and commit operations, plus rollback.

• Supporting advanced error detection. This detection may be implemented through hardware or software.

18 - 6 Unified POS, v1.15.1 Bata1

18.3.2 Hard Totals Class Diagram

The following diagram shows the relationships between the Hard Totals classes.

UposException
(from upos)

<<exception>>

HardTotalsConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

HardTotalsControl

<<capability>> CapErrorDetection : boolean
<<capability>> CapSingleFile : boolean
<<capability>> CapTransactions : boolean
<<prop>> FreeData : int32
<<prop>> NumberOfFiles : int32
<<prop>> TotalsSize : int32
<<prop>> TransactionInProgress : boolean

beginTrans() : void
claimFile(hTotalsSize : int32, timeout : int32) : void
commitTrans() : void
create(fileName : string, inout hTotalsFile : int32, size : int32, errorDetection : boolean) : void
delete(fileName : string) : void
find(fileName : string, inout hTotalsFile : int32, inout size : int32) : void
findByIndex(index : int32, inout fileName : string) : void
read(hTotalsSize : int32, inout data : binary, offset : int32, count : int32) : void
recalculateValidationData(hTotalsSize : int32) : void
releaseFile(hTotalsFile : int32) : void
rename(hTotalsFile : int32, fileName : string) : void
rollback() : void
setAll(hTotalsFile : int32, value : byte) : void
validateData(hTotalsFile : int32) : void
write(hTotalsFile : int32, data : binary, offset : int32, count : int32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

Unified POS, v1.15.1 Beta1 18 - 7

18.3.3 Hard Totals Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Hard Totals device, and assumes that a file
already exists on the device containing data. It also demonstrates the transactional capabilities of the Hard Totals
device.

:ClientApp :HardTotals :HardTotalsService

1: getTotalSize()
2: getTotalSize()

3: getFreeData() 4: getFreeData()

5: gather data to write to totals

6: find(fileName,hTotalsFile, size) 7: find(fileName,hTotalsFile, size)

8: hTotalsFile and size9: hTotalsFile and size

10: claimFile(hTotalsFile, timeout)
11: claimFile(hTotalsFile, timeout)

12: write(hTotalsFile, data, offset, count) 13: write(hTotalsFile, data, offset, count)

Assumes that the
claimFile succeeded (also
implies that no other
controls or application is
using this file). Note also
that claimFile(...) is not
required to write to the
totals file.

The following section tries to demonstrate the
transactional capabilities of the HardTotals
device.

14: beginTrans() 15: beginTrans()

16: write(hTotalsFile, data1, offset1, count1) 17: write(hTotalsFile, data1, offset1, count1)

Assume user
decided to undo
previous data write.

18: read(hTotalsFile, data2, offset1, count1) 19: read(hTotalsFile, data2, offset1, count1)

After this call succeeds
the data2 contains the
last value written data1.

20: rollback()
21: rollback()

22: read(hTotalsFile, data2, offset1, count1) 23: read(hTotalsFile, data2, offset1, count1)

At this point the started
transaction ended and
TransactionInProgress
property is now false. If
instead commitTrans()
was called then all writes
would be saved to the
totals area and
transaction would end.

The return values in data2
now matches the data
values since the values
last written are discarded
by the rollback() call. This
is due to the fact that the
file was claimed thus
guaranteeing that no other
writes could have occurred.

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the HardTotals device. This
means that the DeviceEnabled property is == true. Also assumes that file by name fileName is already created

18 - 8 Unified POS, v1.15.1 Bata1

18.3.4 Model

Totals memory is frequently a limited but secure resource - perhaps of only several thousand bytes of storage.
The following is the general model of the Hard Totals:

• A Hard Totals device is logically treated as a sequence of byte data, which the application subdivides into “totals
 files.” This is done by the create method, which assigns a name, size, and error detection level to the totals file.
 Totals files have a fixed-length that is set at create time.

 At a minimum, a single totals file with the name “” (the empty string) can be created and manipulated.
 Optionally, additional totals files with arbitrary names may be created.

 Totals files model many of the characteristics of a traditional file system. The intent, however, is not to provide
 a robust file system. Rather, totals files allow partitioning and ease of access into what is frequently a limited
 but secure resource. In order to reduce unnecessary overhead usage of this resource, directory hierarchies are
 not supported, file attributes are minimized, and files may not be dynamically resized.

• The following operations may be performed on a totals file:

• read: Read a series of data bytes.

• write: Write a series of data bytes.

• setAll: Set all the data in a totals file to a value.

• find: Locate an existing totals file by name, and return a file handle and size.

• findByIndex: Enumerate all of the files in the Hard Totals area.

• delete: Delete a totals file by name.

• rename: Rename an existing totals file.

• claimFile: Gain exclusive access to a specific file for use by the claiming application. A timeout value may be
 specified in case another application maintains access for a period a time.

• The common claim method may also be used to claim the entire Hard Totals device.

• releaseFile: Release exclusive access to the file.

• The FreeData property holds the current number of unassigned data bytes.

• The TotalsSize property holds the totals memory size.

• The NumberOfFiles property holds the number of totals files that exist in the hard totals device.

• Transaction operations are optionally supported. A transaction is defined as a series of data writes to be applied as
an atomic operation to one or more Hard Totals files. During a transaction, data writes will typically be maintained in
memory until a commit or rollback. Also FreeData will typically be reduced during a transaction to ensure that the
commit has temporary totals space to perform the commit as an atomic operation.

• beginTrans: Marks the beginning of a transaction.

• commitTrans: Ends the current transaction, and saves the updated data. Software and/or hardware methods are
 used to ensure that either the entire transaction is saved, or that none of the updates are applied. This will

typically require writing the transaction to temporary totals space, setting state information within the device
 indicating that a commit is in progress, writing the data to the totals files, and freeing the temporary totals space.

If the commit is interrupted, perhaps due to a system power loss or reset, then when the Hard Totals Service is
 reloaded and initialized, it can complete the commit by copying data from the temporary space into the totals

Unified POS, v1.15.1 Beta1 18 - 9

 files. This ensures the integrity of related totals data.

• rollback: Ends the current transaction, and discards the updates. This may be useful in case of user intervention
 to cancel an update. Also, if advanced error detection shows that some totals data cannot be read properly in
 preparation for an update, then the transaction may need to be aborted.

• TransactionInProgress: Holds the current state of transactions.

The application should claim the files used during a transaction so that no other Hard Totals Control claims a file
before commitTrans, causing the commit to fail, with the exception’s ErrorCode reflecting an already claimed
status.

• Advanced error detection is optionally supported by the following:

• A read or a write may report a validation error. Data is usually divided into validation blocks, over which
 sumchecks or CRCs are maintained. The size of validation data blocks is determined by the Service.
 A validation error informs the application that one or more of the validation blocks containing the data to be read

 or written may be invalid due to a hardware error. (An error on a write can occur when only a portion of a
 validation block must be changed. The validation block must be read and the block validated before the portion
 is changed.)
 When a validation error is reported, it is recommended that the application read all of the data in the totals file.

 The application will want to determine which portions of data are invalid, and take action based on the results of
 the reads.

• recalculateValidationData may be called to cause recalculation of all validation data within a totals file. This
 may be called after recovery has been performed as in the previous paragraph.

• validateData may be called to verify that all data within a totals file passes validation.

• Data writes automatically cause recalculation of validation data for the validation block or blocks in which the
 written data resides.

• Since advanced error detection usually imposes a performance penalty, the application may choose to select this
 feature when each totals file is created.

18.3.5 Device Sharing

The hard totals device is sharable. Its device sharing rules are:

• After opening the device, most properties are readable.

• After opening and enabling the device, the application may access all properties and methods.

• If more than one application has opened and enabled the device, each of these applications may access its properties
 and methods.

• One application may claim the hard totals device. This restricts all other applications from reading, changing, or
 claiming any files on the device.

• One application may claim a hard totals file. This restricts all other applications from reading, changing, or claiming
 the file, and from claiming the hard totals device.

18 - 10 Unified POS, v1.15.1 Bata1

18.4 Properties (UML attributes)

18.4.1 CapErrorDetection Property

Syntax CapErrorDetection: boolean { read-only, access after open }

Remarks If true, then advanced error detection is supported.This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

18.4.2 CapSingleFile Property

Syntax CapSingleFile: boolean { read-only, access after open }

Remarks If true, then only a single file, identified by the empty string (“”), is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

18.4.3 CapTransactions Property

Syntax CapTransactions: boolean { read-only, access after open }

Remarks If true, then transactions are supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

18.4.4 FreeData Property

Syntax FreeData: int32 { read-only, access after open-enable }

Remarks Holds the number of bytes of unallocated data in the Hard Totals device.

It is initialized to an appropriate value when the device is enabled and is updated as files are created
and deleted. If creating a file requires some overhead to support the file information, then this
overhead is not included in what is reported by this property. This guarantees that a new file of size
FreeData may be created.

Data writes within a transaction may temporarily reduce what’s reported by this property, since
some Hard Totals space may need to be allocated to prepare for the transaction commit. Therefore,
the application should ensure that sufficient FreeData is maintained to allow its maximally sized
transactions to be performed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also create Method, write Method.

Unified POS, v1.15.1 Beta1 18 - 11

18.4.5 NumberOfFiles Property

Syntax NumberOfFiles: int32 { read-only, access after open-enable }

Remarks Holds the number of totals file currently in the Hard Totals device.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also FreeData Property.

18.4.6 TotalsSize Property

Syntax TotalsSize: int32 { read-only, access after open-enable }

Remarks Holds the size of the Hard Totals area. This size is equal to the largest totals file that can be created
if no other files exist.

This property is initialized when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also FreeData Property.

18.4.7 TransactionInProgress Property

Syntax TransactionInProgress: boolean { read-only, access after open }

Remarks If true, then the application is within a transaction.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also beginTrans Method.

18 - 12 Unified POS, v1.15.1 Bata1

18.5 Methods (UML operations)

18.5.1 beginTrans Method

Syntax beginTrans ():
 void { raises-exception, use after open-enable }

Remarks Marks the beginning of a series of Hard Totals writes that must either be applied as a group or not
at all.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Transactions are not supported by this device.

See Also commitTrans Method, rollback Method.

18.5.2 claim Method (Common)

Syntax claim (timeout: int32):
 void { raises-exception, use after open }

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to
be satisfied. If zero, the method attempts to claim the device, then returns the appropriate status
immediately. If FOREVER (-1), the method waits as long as needed until exclusive access is
satisfied.

Remarks Requests exclusive access to the device.

If any other application has claimed exclusive access to any of the hard totals files by using
claimFile, then this claim cannot be satisfied until those files are released by releaseFile.

When successful, the Claimed property is changed to true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT Another application has exclusive access to the device or one or
more of its files and did not relinquish control before timeout
milliseconds expired.

See Also “Device Sharing Model” on page 1- 14, release Method, claimFile Method, releaseFile Method.

Unified POS, v1.15.1 Beta1 18 - 13

18.5.3 claimFile Method Updated in Release 1.8

Syntax claimFile (hTotalsFile: int32, timeout: int32):
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Handle to the totals file that is to be claimed.

timeout The time in milliseconds to wait for the file to become available. If zero,
the method attempts to claim the file, then returns the appropriate status
immediately.
If FOREVER (-1), the method waits as long as needed until exclusive
access is satisfied.

Remarks Attempts to gain exclusive access to a specific file for use by the claiming application. Once
granted, the application maintains exclusive access until it explicitly releases access or until the
device is closed.
If another application has claimed exclusive access to this file by using this method, or if another
application has claimed exclusive access to the entire totals area by using claim, then this request
cannot be satisfied until such claims have been released.
All claims are released when the application calls the close method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The handle is invalid, or an invalid timeout parameter was specified.
E_TIMEOUT The timeout value expired before another application released exclusive

access of either the requested totals file or the entire totals area.
See Also claim Method, releaseFile Method.

18.5.4 commitTrans Method

Syntax commitTrans ():
 void { raises-exception, use after open-enable }

Remarks Ends the current transaction. All writes between the previous beginTrans method and this method
are saved to the Hard Totals areas.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Transactions are not supported by this device, or no transaction

is in progress.
See Also beginTrans Method, rollback Method.

18 - 14 Unified POS, v1.15.1 Bata1

18.5.5 create Method

Syntax create (fileName: string, inout hTotalsFile: int32, size: int32, errorDetection: boolean):
void { raises-exception, use after open-enable }

Parameter Description

fileName The name to be assigned to the file. Must be no longer than 10 characters. All
displayable ASCII characters (0x20 through 0x7F) are valid.

hTotalsFile Handle of the newly created totals file. Set by the method.

size The byte array size for the data. Once created, the array size and therefore the
file size used to store the array cannot be changed – totals files are fixed-length
files.

errorDetection The level of error detection desired for this file: If true, then the Service will
enable advanced error detection if supported. If false, then higher performance
access is required, so advanced error detection need not be enabled for this file.

Remarks Creates a totals file with the specified name, size, and error detection level. The data area is
initialized to binary zeros.

If CapSingleFile is true, then only one file may be created, and its name must be the empty string
(“”). Otherwise, the number of totals files that may be created is limited only by the free space
available in the Hard Totals area.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot create because the entire totals file area is
 claimed by another application.

E_ILLEGAL The fileName is too long or contains invalid characters.

E_EXISTS fileName already exists.

E_EXTENDED ErrorCodeExtended = ETOT_NOROOM:
There is insufficient room in the totals area to create the file.

See Also find Method, delete Method, rename Method.

Unified POS, v1.15.1 Beta1 18 - 15

18.5.6 delete Method

Syntax delete (fileName: string):
 void { raises-exception, use after open-enable }

The fileName parameter specifies the totals file to be deleted.

Remarks Deletes the named file.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot delete because either the totals file or the entire totals area

is claimed by another application.

E_ILLEGAL The fileName is too long or contains invalid characters.

E_NOEXIST fileName was not found.

See Also create Method, find Method, rename Method.

18.5.7 find Method

Syntax find (fileName: string, inout hTotalsFile: int32, inout size: int32):
 void { raises-exception, use after open-enable }

Parameter Description
fileName The totals file name to be located.

hTotalsFile Handle of the totals file. Set by the method.

size The length of the file in bytes. Set by the method.

Remarks Locates an existing totals file.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot find because the entire totals file area is claimed by

another application.

E_ILLEGAL The fileName contains invalid characters.

E_NOEXIST fileName was not found.

See Also create Method, delete Method, rename Method.

18 - 16 Unified POS, v1.15.1 Bata1

18.5.8 findByIndex Method

Syntax findByIndex (index: int32, inout fileName: string):
 void { raises-exception, use after open-enable }

Parameter Description
index The index of the totals file name to be found.

fileName The file name associated with index. Set by the method.

Remarks Determines the totals file name currently associated with the given index.

This method provides a means for enumerating all of the totals files currently defined. An index of
zero will return the file name at the first file position, with subsequent indices returning additional
file names. The largest valid index value is one less than NumberOfFiles.

The creation and deletion of files may change the relationship between indices and the file names;
the data areas used to manage file names and attributes may be compacted or rearranged as a result.
Therefore, the application may need to claim the device to ensure that all file names are retrieved
successfully.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot find because the entire totals file area is claimed by

another application.

E_ILLEGAL The index is greater than the largest file index that is currently defined.

See Also create Method, find Method.

Unified POS, v1.15.1 Beta1 18 - 17

18.5.9 read Method Updated in Release 1.7

Syntax read (hTotalsFile: int32, inout data: binary, offset: int32, count: int32):
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Totals file handle returned from a create or find method.

data1 The data buffer in which the totals data will be placed. Array length must
be at least count.

offset Starting offset for the data to be read.

count Number of bytes of data to read.

Remarks Reads data from a totals file.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot read because either the totals file or the entire totals

area is claimed by another application.

E_ILLEGAL The handle is invalid, part of the data range is outside the bounds of the
totals file, or data array length is less than count.

E_EXTENDED ErrorCodeExtended = ETOT_VALIDATION:
A validation error has occurred while reading data.

See Also write Method

1. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

18 - 18 Unified POS, v1.15.1 Bata1

18.5.10 recalculateValidationData Method

Syntax recalculateValidationData (hTotalsFile: int32):
 void { raises-exception, use after open-enable }

The hTotalsFile parameter contains the handle of a totals file.

Remarks Recalculates validation data for the specified totals file.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot recalculate because either the totals file or the entire totals

area is claimed by another application.

E_ILLEGAL The handle is invalid, or advanced error detection is either not supported
by the Service or by this file.

18.5.11 release Method (Common)

Syntax release ():
 void { raises-exception, use after open-claim }

Remarks Releases exclusive access to the device.

An application may own claims on both the Hard Totals device through claim as well as individual
files through claimFile. Calling release only releases the claim on the Hard Totals device.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The application does not have exclusive access to the device.

See Also “Device Sharing Model” on page 1- 14, claim Method, claimFile Method.

Unified POS, v1.15.1 Beta1 18 - 19

18.5.12 releaseFile Method

Syntax releaseFile (hTotalsFile: int32):
 void { raises-exception, use after open-enable }

The hTotalsFile parameter contains the handle of the totals file to be released.

Remarks Releases exclusive access to a specific file.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The handle is invalid, or the specified file is not claimed by this

application.

See Also claim Method, claimFile Method.

18.5.13 rename Method

Syntax rename (hTotalsFile: int32, fileName: string):
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile The handle of the totals file to be renamed.

fileName The new name to be assigned to the file. Must be no longer than 10
characters. All displayable ASCII characters (0x20 through 0x7F) are
valid.

Remarks Renames a totals file.

If CapSingleFile is true, then this method will fail.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot rename because either the totals file or the entire

totals area is claimed by another application.

E_ILLEGAL The handle is invalid, the fileName contains invalid characters, or the
CapSingleFile property is true.

E_EXISTS fileName already exists.

See Also CapSingleFile Property.

18 - 20 Unified POS, v1.15.1 Bata1

18.5.14 rollback Method

Syntax rollback ():
 void { raises-exception, use after open-enable }

Remarks Ends the current transaction. All writes between the previous beginTrans and this method are
discarded; they are not saved to the Hard Totals areas.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Transactions are not supported by this device, or no transaction

is in progress.

See Also beginTrans Method, commitTrans Method.

18.5.15 setAll Method Updated in Release 1.7

Syntax setAll (hTotalsFile: int32, value: byte):
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Handle of a totals file.

value Value to set all locations to in totals file.

Remarks Sets all the data in a totals file to the specified value.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot set because either the totals file or the entire totals area is

claimed by another application.

E_ILLEGAL The handle is invalid.

Unified POS, v1.15.1 Beta1 18 - 21

18.5.16 validateData Method

Syntax validateData (hTotalsFile: int32):
 void { raises-exception, use after open-enable }
The hTotalsFile parameter contains the handle of a totals file.

Remarks Verifies that all data in the specified totals file passes validation checks.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_CLAIMED Cannot validate because either the totals file or the entire totals area is

claimed by another application.
E_ILLEGAL The handle is invalid, or advanced error detection is either not supported

by the Service or by this file.

18.5.17 write Method Updated in Release 1.7

Syntax write (hTotalsFile: int32, data: binary, offset: int32, count: int32):
 void { raises-exception, use after open-enable }
Parameter Description
hTotalsFile Totals file handle returned from a create or find method.
data2 Data buffer containing the totals data to be written.
offset Starting offset for the data to be written.
count Number of bytes of data to write.

Remarks Writes data to a totals file. If a transaction is in progress, then the write will be buffered until a
commitTrans or rollback method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_CLAIMED Cannot write because either the totals file or the entire totals area is

claimed by another application.
E_ILLEGAL The handle is invalid, or part of or all of the data range is outside the

bounds of the totals file.
E_EXTENDED ErrorCodeExtended = ETOT_NOROOM:

Cannot write because a transaction is in progress, and there is not enough
free space to prepare for the transaction commit.
ErrorCodeExtended = ETOT_VALIDATION:
A validation error has occurred while reading data.

See Also read Method, beginTrans Method, commitTrans Method, rollback Method, FreeData Property.

2. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

18 - 22 Unified POS, v1.15.1 Bata1

18.6 Events (UML interfaces)

18.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Hard Totals Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.
 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise

described. Use of this event may restrict the application program from being used with other
vendor’s Hard Totals devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 18 - 23

18.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Hard Totals device.

Attributes This event contains the following attribute:
Attribute Type Description
Status int32 Reports a change in the power state of a Hard Totals device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Hard Totals device detects a power state change.
See Also “Events” on page 1- 15.

18 - 24 Unified POS, v1.15.1 Bata1

Unified POS, v1.15.1 Beta1 19 - 1

19 Image Scanner

19.1 General
This Chapter defines the Image Scanner device category.

19.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.11 open
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string { read-only } 1.11 open
Claimed: boolean { read-only } 1.11 open
DataCount: int32 { read-only } 1.11 open
DataEventEnabled: boolean { read-write } 1.11 open
DeviceEnabled: boolean { read-write } 1.11 open & claim
FreezeEvents: boolean { read-write } 1.11 open
OutputID: int32 { read-only } 1.11 Not supported
PowerNotify: int32 { read-write } 1.11 open
PowerState: int32 { read-only } 1.11 open
State: int32 { read-only } 1.11 --
DeviceControlDescription: string { read-only } 1.11 --
DeviceControlVersion: int32 { read-only } 1.11 --
DeviceServiceDescription: string { read-only } 1.11 open
DeviceServiceVersion: int32 { read-only } 1.11 open
PhysicalDeviceDescription: string { read-only } 1.11 open
PhysicalDeviceName: string { read-only } 1.11 open

19 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapAim: boolean { read-only } 1.11 open
CapDecodeData: boolean { read-only } 1.11 open
CapHostTriggered: boolean { read-only } 1.11 open
CapIlluminate: boolean { read-only } 1.11 open
CapImageData: boolean { read-only } 1.11 open
CapImageQuality: boolean { read-only } 1.11 open
CapVideoData: boolean { read-only } 1.11 open

AimMode: boolean { read-write } 1.11 open
BitsPerPixel: int32 { read-only } 1.11 open
FrameData: binary { read-only } 1.11 open
FrameType: int32 { read-only} 1.11 open
IlluminateMode: boolean { read-write } 1.11 open
ImageHeight: int32 { read-only } 1.11 open
ImageLength: int32 { read-only } 1.11 open
ImageMode: int32 { read-write } 1.11 open
ImageQuality: int32 { read-write } 1.11 open
ImageType: int32 { read-only } 1.11 open
ImageWidth: int32 { read-only } 1.11 open
VideoCount: int32 { read-write } 1.11 open
VideoRate: int32 { read-write } 1.11 open

Unified POS, v1.15.1 Beta1 19 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

1.11

clearInputProperties ():
void { raises-exception, use after open, claim }

1.11

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

Specific
startSession ():

void { raises-exception, use after open, claim, enable }
1.11

stopSession ():
void { raises-exception, use after open, claim, enable }

1.11

19 - 4 Unified POS, v1.15.1 Beta1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.11
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.11
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.11
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 19 - 5

19.3 General Information
The Image Scanner programmatic name is “ImageScanner”.

This device category was added to Version 1.11 of the specification.

19.3.1 Capabilities

The Image Scanner has the capability of reading a single frame of image data in scanning sessions initiated by its
own triggering source. It may also have one or more of the following capabilities (see the capabilities properties
for specific information):

• Reads encoded data from a label

• Reads low-resolution video streams for aiming purposes

• Host is able to control the image scanner’s Illumination feature

• Host is able to control the image scanner’s Aiming feature

• Host is able to start and stop a scanning session.

19 - 6 Unified POS, v1.15.1 Beta1

19.3.2 Image Scanner Class Diagram

The following diagram shows the relationships between the Image Scanner and Scanner classes.

BaseControl
(from upos)

<<Interface>>

UposConst
(from upos)

<<utility>>
ScannerConst

(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

ImageScannerConst
(from upos)

<<utility>>

ScannerControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

ErrorEvent
(from events)

<<event>>

fires

DataEvent
(from events)

<<event>>

fires

DirectIOEvent
(from events)

<<event>>

fires

StatusUpdateEvent
(from events)

<<event>>

fires

ImageScannerControl

<<capability>> CapAim : boolean
<<capability>> CapDecodeData : boolean
<<capability>> CapHostTriggered : boolean
<<capability>> CapIlluminate : boolean
<<capability>> CapImageData : boolean
<<capability>> CapImageQuality : boolean
<<capability>> CapVideoData : boolean
<<property>> AimMode : boolean
<<property>> BitsPerPixel : int32
<<property>> FrameData : binary
<<property>> FrameType : int32
<<property>> IlluminateMode : boolean
<<property>> ImageHeight : int32
<<property>> ImageLength : int32
<<property>> ImageMode : int32
<<property>> ImageQuality : int32
<<property>> ImageType : int32
<<property>> ImageWidth : int32
<<property>> VideoCount : int32
<<property>> VideoRate : int32

startSession() : void
stopSession() : void

(from upos)

<<Interface>>

<<uses>>

<<fires>>

<<fires>>
<<fires>>

<<fires>>

Unified POS, v1.15.1 Beta1 19 - 7

19.3.3 Image Scanner Sequence Diagram 1

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_STILL_ONLY.” In this instance there is no interaction with the Scanner class.

 : POS
Application :

ImageScannerControl
 :

ScannerControl
Hardware

1: setImageMode("IMG_STILL_ONLY")

2: setAutoDisable(true)

3: setDeviceEnabled(true)

4: acquire image frame

5: create/enqueue data event and increment data count

6: setDeviceEnabled(false)

7: notify client of new event

8: getFrameData()

9: getImageHeight()

10: getImageWidth()

11: getImageType()

12: setDeviceEnabledTrue()

13: setDataEventEnabled(true)

19 - 8 Unified POS, v1.15.1 Beta1

19.3.4 Image Scanner Sequence Diagram 2

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_DECODE_ONLY.” The scanner decodes bar codes, is triggered by the host, but does not
send image frame data. This device could be implemented as a hydra device that supports both the Image
Scanner and the Scanner classes.

 : POS
Application :

ImageScan...
 :

ScannerControl
Hardware

1: setImageMode("IMG_DECODE_ONLY")

2: setDecodeData(true)

3: setAutoDisable(true)

4: setDataEventEnabled(true)

5: startSession()

6: Scanner Specific Command to start Session

7: scan successful label

8: create/enqueue Data event and increment DataCount

9: setDeviceEnabled(false)

10: notify client of new event

11: getScanData()

12: getScanDataLabel()

13: setDeviceEnabled(true)

14: setDataEventEnabled(true)

15: stopSession()

It's a formality to end
the session because a
barcode was acquired

Unified POS, v1.15.1 Beta1 19 - 9

19.3.5 Image Scanner Sequence Diagram 3

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_STILL_DECODE.” The scanner decodes bar codes, is triggered by the host, and sends
the image frame that was decoded. This device could be implemented as a hydra device that supports both the
Image Scanner and the Scanner classes.

 : POS
Application

 :
ImageScannerControl

 :
ScannerControl

Hardware

1: setImageMode("IMG_STILL_DECODE")

7: startSession()

4: setDecodeData(true)

5: setAutoDisable(true)

6: setDataEventEnabled(true)

8: Scanner Specific Command to start Session

13: scan successful label

14: create/enqueue Data event and increment DataCount

15: setDeviceEnabled(false)

16: notify client of new event

17: getScanData()

18: getScanDataLabel()

25: setDeviceEnabled(true)

26: setDataEventEnabled(true)

2: setAutoDisable(true)

3: setDataEventEnabled(true)

9: Acquire Image Frame

10: create/enqueu Data event and increment DataCount

11: setDeviceEnabled(false)

12: notify client of new event

19: getFrameData()

20: getImageHeight()

21: getImageWidth()

22: getImageType()

23: setDeviceEnabled(true)

24: setDataEventEnabled(true)

19 - 10 Unified POS, v1.15.1 Beta1

19.3.6 Image Scanner Sequence Diagram 4

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_VIDEO_DECODE.” The scanner sends a low-res video stream for use as a viewfinder, is
triggered by the host and decodes bar codes. In this mode, there is no tie between the image frame that was
decoded and the decoded data. This device could be implemented as a hydra device that supports both the Image
Scanner and the Scanner classes.

 : POS
Application

 :
ImageScannerControl

 :
ScannerControl

Hardware

1: setImageMode("IMG_VIDEO_DECODE")

3: setDecodeData(true)

4: setAutoDisable(true)

5: setDataEventEnabled(true)

6: startSession()

7: Scanner Specific Command to start Session

21: scan successful label

22: create/enqueue Data event and increment DataCount

23: setDeviceEnabled(false)

24: notify client of new event

25: getScanData()

26: getScanDataLabel()

27: setDeviceEnabled(true)

28: setDataEventEnabled(true)

14: getFrameData()

11: getImageHeight()

12: getImageWidth()

13: getImageType()

15: setDataEventEnabled(true)

8: Acquire 15 frames of Image Data

9: create/enqueu Data event and increment DataCount

2: setDataEventEnabled(true)

10: notify client of new event

No decode of
these frames

16: Acquire 15 frames of Image Data

17: create/enqueu Data event and increment DataCount

Decode of one of
these frames is
sucessful

18: notify client of new event

19: getFrameData()

20: setDataEventEnabled(true)

Unified POS, v1.15.1 Beta1 19 - 11

19.3.7 Model

The Image Scanner follows the general “Device Input Model” for event-driven input:

• When a frame of image data is received from the image scanner, a DataEvent is enqueued by a Image Scanner
 service.

• If the AutoDisable property is true and the image scanner is in Decode or Still Image mode, then the device
 automatically disables itself when a DataEvent is enqueued. The AutoDisable property does not apply in the Low-
 Res Video mode.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
 other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
 properties, and further DataEvents are disabled by setting DataEventEnabled to false. This causes subsequent
 input data to be enqueued while the application processes the current input and associated properties. When the
 application has finished processing the current input and is ready for more data, it reenables events by setting
 DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered to
 the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the total number of enqueued DataEvents.
• All enqueued input may be deleted by calling clearInput. See the clearInput method

description for more details.
• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be

set back to their default values by calling the clearInputProperties method.

 Image Scanners that also decode labels are implemented as a “hydra device.” Services are supported for both
 a Scanner device and an Image Scanner device.

• When a frame of image data yields decode data, a DataEvent is enqueued by the Scanner service object scanned
 data is placed into the property ScanData. If the application sets the property DecodeData to true, then the data is
 decoded into the ScanDataLabel and ScanDataType properties.

19.3.8 Device Sharing

The image scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.

19 - 12 Unified POS, v1.15.1 Beta1

19.3.9 Image Scanner State Diagram

The following diagram illustrates the various state transitions within the Image Scanner device category.

[Open && Claim && Enable]
[Closed || Released || Disabled]

Idle
 / setAimMode

 / setIlluminateMode

Receive Video
Stream

Receive
Still Image

Receive
Decode Data

[ImageMode == IMG_ALL ||
ImageMode == IMG_VIDEO_STILL ||

ImageMode == IMG_VIDEO_DECODE
] / startSession()

[ImageMode = IMG_STILL_ONLY ||
ImageMode= IMG_STILL_DECODE] /

startSession()

 / stopSession() || timeout
[ImageMode == IMG_DECODE_ONLY] /

startSession()

 / stopSession() || timeout

[(ImageMode == IMG_ALL ||
ImageMode ==

IMG_STILL_DECODE) &&
Decode Data Received]

 / stopSession() || timeout

[(ImageMode == IMG_ALL ||
ImageMoe == IMG_VIDEO_STILL)

&& Still Image Data Received]

[(ImageMode == IMG_ALL || ImageMode == IMG_VIDEO_DECODE) &&
Decode Data Received]

Unified POS, v1.15.1 Beta1 19 - 13

19.4 Properties (UML attributes)

19.4.1 AimMode Property

Syntax AimMode: boolean { read-write, access after open }

Remarks If true, then the image scanner will turn on an aiming spot or aiming grid during a scan session. If
false, then the image scanner will turn off the aiming spot during a scan session. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to change AimMode property when the CapAim

property is false.
See Also CapAim Property.

19.4.2 BitsPerPixel Property

Syntax BitsPerPixel: int32 { read-only, access after open }

Remarks Holds a value identifying the number of bits that are used to encode a single pixel of image data.
Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model" on page 1- 18.

19.4.3 CapAim Property

Syntax CapAim: boolean { read-only, access after open }

Remarks If true, then the image scanner supports the property to enable or disable the display of an aiming
spot or grid by the image scanner. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

19.4.4 CapDecodeData Property

Syntax CapDecodeData: boolean { read-only, access after open }

Remarks If true, then the image scanner is able to read encoded data from a label. Any label data that is read
is sent by a Scanner service.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

19 - 14 Unified POS, v1.15.1 Beta1

19.4.5 CapHostTriggered Property

Syntax CapHostTriggered: boolean { read-only, access after open }

Remarks If true, then the image scanner is able to support the startSession and stopSession method calls.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

19.4.6 CapIlluminate Property

Syntax CapIlluminate: boolean { read-only, access after open }

Remarks If true, then the image scanner supports the property to enable or disable the use of an illumination
source by the image scanner.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

19.4.7 CapImageData Property

Syntax CapImageData: boolean { read-only, access after open }

Remarks If true, then the image scanner supports a still image capture mode.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

19.4.8 CapImageQuality Property

Syntax CapImageQuality: boolean { read-only, access after open }

Remarks If true, then the image scanner supports the ImageQuality property that the application can use to
control image compression or capture that effects the quality of the image in exchange for smaller
image sizes.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ImageQuality Property.

Unified POS, v1.15.1 Beta1 19 - 15

19.4.9 CapVideoData Property

Syntax CapVideoData: boolean { read-only, access after open }

Remarks If true, then the image scanner supports a low-resolution video stream mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

19.4.10 FrameData Property

Syntax FrameData: binary { read-only, access after open } 1

Remarks Holds a frame of image data or one or more frames of video data read from the image scanner.

Image data is, in general, in the format as delivered from the image scanner. The attributes of the
image sent are placed in the BitsPerPixel, ImageHeight, ImageWidth, ImageType, and
ImageLength properties.

Video data is, in general, one or more still images that are concatenated together in one frame with
no data compression. This video data is typically used to project a “view finder” that the operator
can use to aim the image scanner (without an aiming pattern). Each block contains at most the
number of frames specified in the VideoCount property. A DataEvent is fired for each block of
video data sent. Multiple blocks of image data are periodically sent by the service object to up to
the maximum frames per second rate set by the VideoRate property. The attributes of every still
image that makes up a block of video data are placed in the BitsPerPixel, ImageHeight,
ImageWidth, ImageType, and ImageLength properties.

Image data, whether for still images or video streams may be acquired in a scan session started by
the startSession method, or by a scan session started asynchronously by the image scanner. The
FrameType property indicates whether the FrameData property contains a single still image, or a
block of video data.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also BitsPerPixel Property, FrameType Property, ImageHeight Property, ImageLength Property,
ImageType Property, ImageWidth Property, VideoCount Property, VideoRate Property,
“Device Input Model” on page 1- 18.

1. In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

19 - 16 Unified POS, v1.15.1 Beta1

19.4.11 FrameType Property

Syntax FrameType: int32 { read-only, access after open }

Remarks Holds a value identifying the contents of the FrameData property.

Value Meaning
IMG_FRAME_STILL The FrameData property contains a single still image.
IMG_FRAME_VIDEO The FrameData property contains a block of video stream frames (one or

more still images concatenated without data compression).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also FrameData Property.

19.4.12 IlluminateMode Property

Syntax IlluminateMode: boolean { read-write, access after open }

Remarks If true, then the image scanner will enable the illumination source during a scan session. If false,
then the image scanner will not turn on the illumination source during a scan session

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to change IlluminateMode property

when the CapIlluminate property is false.
See Also CapIlluminate Property.

19.4.13 ImageHeight Property

Syntax ImageHeight: int32 { read-only, access after open }

Remarks Holds a value identifying the height of the acquired image in pixels.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18.

Unified POS, v1.15.1 Beta1 19 - 17

19.4.14 ImageLength Property

Syntax ImageLength: int32 { read-only, access after open }

Remarks Holds a value identifying the length of the acquired image in bytes.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18.

19 - 18 Unified POS, v1.15.1 Beta1

19.4.15 ImageMode Property

Syntax ImageMode: int32 { read-write, access after open }

Remarks Holds a value identifying the image scanner’s mode of operation.

The value of this property indicates the type of data that is placed into the FrameData property
upon a DataEvent.

This property is initialized by the open method. The default value of this property is
IMG_STILL_ONLY.

Value Meaning
IMG_DECODE_ONLY The image scanner will not transmit still images or video to the

application, but it will transmit bar code data decoded from
acquired images via a Scanner service. A hydra implementation
of Image Scanner and Scanner is required for this mode.

IMG_STILL_ONLY The image scanner will transmit still images, but it will not attempt to read
bar code data, nor will it transmit video.

IMG_STILL_DECODE The image scanner will transmit still images, and it will attempt to read
bar code data, but it will not transmit video streams. A hydra
implementation of Image Scanner and Scanner is required for this mode.

IMG_VIDEO_DECODE The image scanner will transmit video streams, and it will attempt to read
bar code data. A hydra implementation of Image Scanner and Scanner is
required for this mode.

IMG_VIDEO_STILL The image scanner will transmit video streams, and it will transmit still
images, but it will not attempt to read bar code data. The image resolution
of video data could be different from the resolution of still image data.

IMG_ALL The image scanner will transmit video streams, and it will attempt to read
bar code data. When a bar code is read, the bar code data is transmitted as
well as a still image. The image resolution of video data could be different
from the resolution of still image data. A hydra implementation of Image
Scanner and Scanner is required for this mode.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to change the ImageMode property to a

value that is not in agreement with the capabilities of the image
scanner as indicated in the CapImageData, CapVideoData

and CapDecodeData properties.

See Also CapDecodeData Property, CapImageData Property, CapVideoData Property, FrameData
Property, startSession Method, “Device Input Model” on page 1- 18.

Unified POS, v1.15.1 Beta1 19 - 19

19.4.16 ImageQuality Property

Syntax ImageQuality: int32 { read-write, access after open }

Remarks Defines the quality of the image that the application requires.

Value Meaning
IMG_QUAL_LOW The quality of the image data is to be low.
IMG_QUAL_MED The quality of the image data is to be medium.
IMG_QUAL_HIGH The quality of the image data is to be high.

This property is initialized to IMG_QUAL_HIGH by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapImageQuality Property.

19.4.17 ImageType Property

Syntax ImageType: int32 { read-only, access after open }

Remarks Holds a value identifying the format of the image data that is contained in the FrameData property.

Value Meaning
IMG_TYP_BMP The acquired image data is in the Bit Mapped (BMP) format.
IMG_TYP_JPEG The acquired image data is in the Joint Photographic Experts Group

(JPEG) format.
IMG_TYP_GIF The acquired image data is in the Graphic Interchange Format (GIF)

format.
IMG_TYP_PNG The acquired image data is in the Portable Network Graphics (PNG)

format.
IMG_TYP_TIFF The acquired image data is in the Tagged Image File Format (TIFF)

format.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also FrameData Property.

19 - 20 Unified POS, v1.15.1 Beta1

19.4.18 ImageWidth Property

Syntax ImageWidth: int32 { read-only, access after open }

Remarks Holds a value identifying the width of the acquired image in pixels.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18.

19.4.19 VideoCount Property

Syntax VideoCount: int32 { read-write, access after open }

Remarks Holds a value identifying the number of frames of video data that are sent with each DataEvent.
The default value of this property is 15. When the VideoRate property is set to 30 frames per
second, this value yields a DataEvent twice a second.

Should the value of this property be larger than the image scanner’s memory storage capabilities,
the value of this property will be coerced by the Service to the image scanner’s maximum supported
count.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to change the VideoCount property to a value that

exceeds the image scanner’s memory storage capabilities.

See Also “Device Input Model” on page 1- 18, VideoRate Property.

Unified POS, v1.15.1 Beta1 19 - 21

19.4.20 VideoRate Property

Syntax VideoRate: int32 { read-write, access after open }

Remarks Holds a value identifying the number of video frames per second that the application can receive.
The default value of this property is 30 frames per second.

The application can set this property and the VideoCount property to throttle the number of
DataEvents that are fired. For example, with the default values of the VideoCount and VideoRate
properties, the application would get a DataEvent two times a second.

Should the value of this property be larger than the image scanner’s maximum supported rate, the
value of this property will be coerced by the Service to the image scanner’s maximum supported
rate.

The image scanner may discard frames of image data that exceed the specified VideoRate property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to change the VideoRate property to a

value that exceeds the image scanner’s maximum supported rate.
See Also “Device Input Model” on page 1- 18, VideoCount Property.

19 - 22 Unified POS, v1.15.1 Beta1

19.5 Methods (UML operations)

19.5.1 startSession Method

Syntax startSession ():
void { raises-exception, use after open-enable }

Remarks This method is used to trigger the image scanner to acquire decode data, still images and video
stream data in the mode selected by the ImageMode property. A session is active until the
stopSession method is invoked, or until the image scanner ends the session on its own. A session
may terminate early when an image or decode data is acquired, or when a session timeout has
expired. The criteria for ending a session is implementation dependant.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to call the startSession method when the
 CapHostTriggered property is false.

See Also CapHostTriggered Property, ImageMode Property, stopSession Method.

19.5.2 stopSession Method

Syntax stopSession ():
void { raises-exception, use after open-enable }

Remarks This method is used to stop a session that was started with a startSession method. If this method is
invoked and the session is no longer active, then no exception is raised (see startSession method
details)

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Value Meaning
E_ILLEGAL An attempt was made to call the stopSession method when

the CapHostTriggered property is false.

See Also CapHostTriggered Property, startSession Method

Unified POS, v1.15.1 Beta1 19 - 23

19.6 Events (UML interfaces)

19.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data from the Image Scanner is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Always zero.

Remarks The image scanner data is placed in the BitsPerPixel, FrameData, FrameType, ImageHeight,
ImageLength, ImageType, and ImageWidth properties prior to a DataEvent being delivered to
the application.

See Also BitsPerPixel Property, FrameData Property, FrameType Property, ImageHeight Property,
ImageLength Property, ImageType Property, ImageWidth Property, “Events” on page 1- 15.

19.6.2 DirectIO Event

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Image Scanner Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Image Scanner devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

19 - 24 Unified POS, v1.15.1 Beta1

19.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an image scanner device error has been detected and a suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following attributes:
Attribute Type Description
ErrorCode int32 Error code causing the error event. See list of ErrorCodes on page 1-21.
ErrorCodeExtended

int32 Extended error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven

input. No previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:
Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. Default when locus is
EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read image scanner data. This event is not
delivered until DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 19 - 25

19.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of an Image Scanner device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a Image Scanner device.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional Status
values for communicating the status/progress of an asynchronous update firmware
process.
See “StatusUpdateEvent” description in Chapter 1.

Remarks Enqueued when the Image Scanner device detects a power state change.

See Also “Events” on page 1- 15.

19 - 26 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 20 - 1

20 Item Dispenser

20.1 General
This Chapter defines the Item Dispenser device category.

20.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 Not supported
DataEventEnabled: boolean { read-write } 1.12 Not supported
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 Not supported
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

20 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapEmptySensor: boolean { read-only } 1.12 open
CapIndividualSlotStatus: boolean { read-only } 1.12 open
CapJamSensor: boolean { read-only } 1.12 open
CapNearEmptySensor: boolean { read-only } 1.12 open
DispenserStatus: int32 { read-only } 1.12 open, claim, & enable
MaxSlots: int32 { read-only } 1.12 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12

Unified POS, v1.15.1 Beta1 20 - 3

Specific
Name
adjustItemCount (itemCount: int32, slotNumber: int32):

void { raises-exception, use after open, claim, enable }
1.12

dispenseItem (inout numItem: int32, slotNumber: int32):
void { raises-exception, use after open, claim, enable }

1.12

readItemCount (inout itemCount: int32, slotNumber: int32):
void { raises-exception, use after open, claim, enable }

1.12

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12
 Status: int32 { read-only }

20 - 4 Unified POS, v1.15.1 Beta1

20.3 General Information
The Item Dispenser programmatic name is “ItemDispenser”.

This device category was added to Version 1.12 of the specification.

20.3.1 Capabilities

The Item Dispenser has the following capability:

• Supports a method that allows a specified number of items to be dispensed from the device.

The Item Dispenser may have the following additional capabilities:

• Status reporting which indicates empty item slot conditions, near empty item slot conditions and item slot jamming
 conditions.

• Supports multiple items dispensed from different slots.

• Status reporting in individual item type.

Unified POS, v1.15.1 Beta1 20 - 5

20.3.2 Item Dispenser Class Diagram

The following diagram shows the relationships between the Item Dispenser classes.

+adjustItemCount(itemCount : int32, slotNumber : int32) : void
+dispenseItem(inout numItemt : int32, slotNumber : int32) : void
+readItemCount(inout itemCount : int32, slotNumber : int32) : void

+CapEmptySensor : boolean
+CapIndividualSlotStatus : boolean
+CapJamSensor : boolean
+CapNearEmptySensor : boolean
+DispenserStatus : int32
+MaxSlots : int32

«interface»
ItemDispenserControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

ItemDispenserConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl

20 - 6 Unified POS, v1.15.1 Beta1

20.3.3 Item Dispenser Sequence Diagram

The following sequence diagram show the typical usage of the Item Dispenser device illustrating dispensing and
the near-empty condition.

Application ItemDispenser Control ItemDispenser Service ItemDispenser

NOTE: We are assuming that the Application has already successfully opened and claimed the ItemDispenser Device
and is registered to receive events from the control.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: dispenseItem(numItem1,slotNumber1)

5: dispenseItem(numItem1,slotNumber1) 6: dispense Items from slotNumber1

10: update DispenserStatus and deliver SUE

11: notify client of new event

3: connect or somehow have
access to the hardware

7: dispenseItem(numItem2,slotNumber2)

8: dispenseItem(numItem2,slotNumber2) 9: dispense Items from slotNumber2

Assume that after this
point the ItemDispenser
slot2 is getting low

Application event handling code takes appropriate
action (like informing user), after refilling slot2 the
ItemCount has to be adjusted

12: adjustItemCount(itemCount,slotNumber2)

13: adjustItemCount(itemCount,slotNumber2)

Unified POS, v1.15.1 Beta1 20 - 7

20.3.4 Model

The general model of an Item Dispenser is:

An Item Dispenser consists of slots holding items (e.g. CD’s, prepaid telephone card, etc.) to be dispensed. An
application using the Item Dispenser Service is not concerned with controlling the individual slots of items to be
dispensed, but rather calls a method with the number of items to be dispensed. It is the responsibility of the Item
Dispenser Device or the Service to dispense the correct number of items from the various slots.

20.3.5 Device Sharing

The Item Dispenser is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
 or receiving events.

• See the “Summary” table for precise usage prerequisites.

20.3.6 Item Dispenser State Diagram

The following diagram illustrates the various state transitions within the Item Dispenser device category.

Closed Opened Claimed

open claim

close release

Enabled

readItemCount

Has Items Near Empty Empty

Jammed Fire Events

close release

se
tD

ev
ice

En
ab

led
(fa

lse
)

se
tD

ev
ice

En
ab

led
(tr

ue
)

dispenseItem
dispenseItem

adjustItemCount
add items

adjustItemCount / items added

jams jams

fire event

done

fire event
done

done fire event

20 - 8 Unified POS, v1.15.1 Beta1

20.4 Properties (UML attributes)

20.4.1 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the item dispenser can report an out-of-item condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

20.4.2 CapIndividualSlotStatus Property

Syntax CapIndividualSlotStatus: boolean { read-only, access after open }

Remarks If true, the item dispenser can report an individual status for each slot.

An individual status can be only reported if the device supports multiple slots. Therefore, if
CapIndividualSlotStatus is true, then it is implied that MaxSlots is greater than one (1).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also MaxSlots Property.

20.4.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the item dispenser can report the occurrence of a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

20.4.4 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the item dispenser can report that it is nearly out of items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 20 - 9

20.4.5 DispenserStatus Property

Syntax DispenserStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the item dispenser. It may be one of the following:

Value Meaning
ITEM_DS_OK Ready to dispense items. This value is also set when the dispenser

is unable to detect error conditions.
ITEM_DS_EMPTY Cannot dispense items, because the dispenser is empty. If

MaxSlots is greater than one (1), some of the slots are empty.
ITEM_DS_NEAREMPTY Can still dispense items, but the dispenser is nearly empty. If

MaxSlots is greater than one (1), some of the slots are near
empty.

ITEM_DS_JAM Cannot dispense items, because a mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition
is present, then the order of precedence starting at the highest is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapEmptySensor Property, CapJamSensor Property, CapNearEmptySensor Property,
MaxSlots Property.

20.4.6 MaxSlots Property

Syntax MaxSlots: int32 { read-only, access after open }

Remarks MaxSlots specifies the maximum number of slots that the device can support.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

20 - 10 Unified POS, v1.15.1 Beta1

20.5 Methods (UML operations)

20.5.1 adjustItemCount Method

Syntax adjustItemCount (itemCount: int32, slotNumber: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
itemCount The itemCount parameter contains the number of items to be initialized.
slotNumber The slotNumber parameter contains the slot number to be initialized.

Valid slot numbers are 1 through MaxSlots.

Remarks This method is called to set the initial number of items in the Item Dispenser after initial setup, or
to adjust the item count after replenishment or removal. This method is called when needed for
devices which cannot determine the exact number of items in them automatically. If the device can
determine the exact number of items, then this method call is ignored. The application would first
call readItemCount to get the current item count, and adjust it to the amount being replenished.
Then the application will call this method to set the number of items currently in the dispenser.
To reset the item count simply set it to zero

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL The slotNumber parameter exceeds MaxSlots.

See Also MaxSlots Property, readItemCount Method.

20.5.2 dispenseItem Method

Syntax dispenseItem (inout numItem: int32, slotNumber: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
numItem The numItem parameter contains the number of items to be dispensed. On
return, it contains the actual number of items dispensed.
slotNumber The slotNumber parameter contains the slot number used for dispensing

items. Valid slot numbers are 1 through MaxSlots.

Remarks Dispenses items. The actual number of dispensed items is returned in numItem.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE The number of items could not be dispensed due to a hardware problem.
E_ILLEGAL The numItem parameter value was illegal or contains a value greater than

the device can dispense, or the slotNumber parameter exceeds MaxSlots.

See Also MaxSlots Property.

Unified POS, v1.15.1 Beta1 20 - 11

20.5.3 readItemCount Method

Syntax readItemCount (inout itemCount: int32, slotNumber: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
itemCount The item count data is placed into itemCount.
slotNumber The slotNumber parameter contains the slot number used for reading the

item count. Valid slot numbers are 1 through MaxSlots.

Remarks Reads the number of items currently in the item dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL The slotNumber parameter exceeds MaxSlots.

See Also MaxSlots Property.

20 - 12 Unified POS, v1.15.1 Beta1

20.6 Events (UML interfaces)

20.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Item Dispenser Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Item Dispenser devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 20 - 13

20.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Item Dispenser changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Item Dispenser.

The low word of the Status attribute has one of the following values:

Value Description
ITEM_SUE_OK Ready to dispense items from all slots. This value is also set when the

dispenser is unable to detect error conditions.

ITEM_SUE_EMPTY Cannot dispense items, because the dispenser is empty. If MaxSlots
is greater than one (1), some of the slots are empty.

ITEM_SUE_NEAREMPTY Can still dispense items, but the dispenser is nearly empty. If
MaxSlots is greater than one (1), some of the slots are nearly empty.

ITEM_SUE_JAM Cannot dispense items, because a mechanical fault has occurred.

 Note that Release 1.3 added Power State Reporting with additional
 Power reporting StatusUpdateEvent values.
 The Update Firmware capability, added in Release 1.9, added
 additional Status values for communicating the status/progress
 of an asynchronous update firmware process.
 See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the sensor types supported as indicated by
CapEmptySensor, CapNearEmptySensor and CapJamSensor properties.

If MaxSlots is greater than one (1) but the device can not report status changes on individual slots,
the application will be notified when some of the slots are empty or nearly empty.

If in addition CapIndividualSlotStatus is true, the high word of the Status attribute contains the
corresponding number of the slot having a status change.

See Also CapEmptySensor Property, CapIndividualSlotStatus Property, CapJamSensor Property,
CapNearEmptySensor Property, MaxSlots Property, “Events” on page 1- 15.

20 - 14 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 21 - 1

21 Keylock

21.1 General
This Chapter defines the Keylock device category.

21.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

21 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapKeylockType: int32 { read-only } 1.11 open
ElectronicKeyValue: binary { read-only } 1.11 open & enable
KeyPosition: int32 { read-only } 1.0 open & enable
PositionCount: int32 { read-only } 1.0 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.8

Unified POS, v1.15.1 Beta1 21 - 3

Methods (UML operations)-continued
Specific
Name
waitForKeylockChange (keyPosition: int32, timeout: int32):

void { raises-exception, use after open, enable }
1.0

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.0
 Status: int32 { read-only }

21 - 4 Unified POS, v1.15.1 Beta1

21.3 General Information
The Keylock programmatic name is “Keylock”.

21.3.1 Capabilities Updated in Release 1.11

The keylock has the following minimal set of capabilities:

• Supports at least three keylock positions.

• Supports reporting of keylock position changes, either by hardware or software detection.

The keylock may have the following additional capability:

• Supports an electronic keylock.

21.3.2 Keylock Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Keylock classes.

UposException
(from upos)

<<exception>>

KeylockConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

KeylockControl

<<capability>> CapKeylockType : int32
<<prop>> ElectronicKeyValue : binary
<<prop>> KeyPosition : int32
<<prop>> PositionCount : int32

waitForKeylockChange(keyPosition : int32, timeout : int32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fires

fires

Unified POS, v1.15.1 Beta1 21 - 5

21.3.3 Keylock Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of the Keylock; as well as showing the unique sharing
model of the Keylock.

:ClientApp0 k0:Keylock k1:Keylock :Keylock
Service0

:Operator

:StatusUpdate
Event

:Keylock
Hardware

:Keylock
Service1

:ClientApp1

1: setDeviceEnabled(true)

4: getKeyPosition()
5: getKeyPosition()

Current Keylock position
is returned to the control

NOTE: we are assuming that the :ClientApp0 already successful ly opened the controls. This means that the plat form specific loading/configuration/creation
code executed successfully. We are also assuming that the :ClientApp has registered event handlers with the control ins tance.

16: change Keylock position
17: notify service of change

18: deliver SUE to control [FreezeEvents == false]

19: deliver event to all regis tered listeners

21: notify service of change

22: deliver SUE to control [FreezeEvents == false]

23: deliver event to all registered listeners

20: notify client of new event

Actual order of
delivery from
hardware to
service might vary

25: claim(timeout) 26: claim(timeout)

27: throws UposException to :ClientApp since Keylock cannot be claimed

2: setDeviceEnabled(true)
3: service will need to update itself of current Keylock position

12: open(logicalName) 13: open(logicalName)

14: setDeviceEnabled(true)
15: setDeviceEnabled(true)

The details of the
Config/Loader are
not shown

SUE == StatusUpdateEvent

11: create and register an event handler with cont rol

24: notify client of new event

6: change Keylock position

7: notify KeylockService of change

8: deliver SUE to control [FreezeEvents == false]

9: deliver event to all registered handlers
10: notify c lient of new event

21 - 6 Unified POS, v1.15.1 Beta1

21.3.4 Model Updated in Release 1.11

The keylock defines three keylock positions as constants. It is assumed that the keylock supports locked, normal,
and supervisor positions. The constants for these keylock positions and their values are as follows:

• LOCK_KP_LOCK 1

• LOCK_KP_NORM 2

• LOCK_KP_SUPR 3

The KeyPosition property holds the value of the keylock position where the values range from one (1) to the
total number of keylock positions contained in the PositionCount property.

For electronic keylocks the ElectronicKeyValue property holds the value of the keylock. It is a unique value
provided as binary string. The range depends on the device.

21.3.5 Device Sharing

The keylock is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive status
 update events.

• If more than one application has opened and enabled the device, each of these applications may access its properties
 and methods. Status update events are fired to all of these applications.

• The keylock may not be claimed for exclusive access. Therefore, if an application calls claim or release, these
 methods will always raise a UposException.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 21 - 7

21.4 Properties (UML attributes)

21.4.1 CapKeylockType Property Added in Release 1.11

Syntax CapKeylockType: int32 { read-only, access after open }

Remarks Holds a value that indicates the type of the keylock.

This property has one of the following values:

Value Meaning
LOCK_KT_STANDARD Standard Keylock. Value is one (1). This is equivalent

to Services compatible with prior versions of the specification.
LOCK_KT_ELECTRONIC Electronic Keylock. Value is two (2).

If CapKeylockType is LOCK_KT_ELECTRONIC an Electronic Keylock is used and its status
will be provided by the ElectronicKeyValue property. In this case the PositionCount and
KeyPosition properties have no meaning.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ElectronicKeyValue Property, KeyPosition Property, PositionCount Property,
StatusUpdateEvent.

21.4.2 ElectronicKeyValue Property Added in Release 1.11

Syntax ElectronicKeyValue: binary { read-only, access after open-enable }1

Remarks Holds the value read from the electronic keylock.

This property is only valid if CapKeylockType is LOCK_KT_ELECTRONIC. Usually electronic
keylocks send unique key numbers in “raw” format when an electronic key is plugged in. Therefore,
a typical value could be e.g., “0x00, 0x00, 0x01, 0x52, 0x27, 0xaf”, if an electronic key is plugged
in and “0x00, 0x00, 0x00, 0x00, 0x00, 0x00”, if it is removed.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapKeylockType Property, StatusUpdateEvent.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

21 - 8 Unified POS, v1.15.1 Beta1

21.4.3 KeyPosition Property Updated in Release 1.11

Syntax KeyPosition: int32 { read-only, access after open-enable }

Remarks Holds a value that indicates the keylock position.

This value is set whenever the keylock position is changed. In addition to the application receiving
the StatusUpdateEvent, this value is changed to reflect the new keylock position.

This property has one of the following values:

Value Meaning
LOCK_KP_LOCK Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR Keylock is in the “supervisor” position. Value is three (3).

Other Values Keylock is in one of the auxiliary positions. This value may range from
four (4) up to the total number of keylock positions indicated by the
PositionCount property.

If CapKeylockType is LOCK_KT_ELECTRONIC this property has no meaning and is always 0.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapKeylockType Property, PositionCount Property, StatusUpdateEvent.

21.4.4 PositionCount Property Updated in Release 1.11

Syntax PositionCount: int32 { read-only, access after open }

Remarks Holds the total number of keylock positions that are present on the keylock device.

If CapKeylockType is LOCK_KT_ELECTRONIC this property has no meaning and is initialized
to 0.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapKeylockType Property

Unified POS, v1.15.1 Beta1 21 - 9

21.5 Methods (UML operations)

21.5.1 waitForKeylockChange Method Updated in Release 1.11

Syntax waitForKeylockChange (keyPosition: int32, timeout: int32):
 void { raises-exception, use after open-enable }

Parameter Description
keyPosition Requested keylock position. See values below.

timeout Maximum number of milliseconds to wait for the keylock before
returning control back to the application.
If zero, the method then returns immediately. If FOREVER (-1), the
method waits as long as needed until the requested key position is
satisfied or an error occurs.

The keyPosition parameter has one of the following values:

Value Meaning
LOCK_KP_ANY Wait for any keylock position change. Value is zero (0).
LOCK_KP_LOCK Wait for keylock position to be set to the “locked” position. Value is one

(1).
LOCK_KP_NORM Wait for keylock position to be set to the “normal” position. Value is two

(2).
LOCK_KP_SUPR Wait for keylock position to be set to the “supervisor” position. Value is

three (3).
Other Values Wait for keylock position to be set to one of the auxiliary positions. This

value may range from four (4) up to the total number of keylock positions
indicated by the PositionCount property.

Remarks Waits for a specified keylock position to be set.
If the keylock position specified by the keyPosition parameter is the same as the current keylock
position, then the method returns immediately.

If CapKeylockType is LOCK_KT_ELECTRONIC only LOCK_KP_ANY is allowed as value of
the keyPosition parameter.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid parameter value was specified.
E_TIMEOUT The timeout period expired before the requested keylock positioning

occurred.

See Also CapKeylockType Property, PositionCount Property.

21 - 10 Unified POS, v1.15.1 Beta1

21.6 Events (UML interfaces)

21.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Keylock Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Keylock devices which may not have any knowledge of the Service’s need for this event.

See Also “Events" on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 21 - 11

21.6.2 StatusUpdateEvent Updated in Release 1.11

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the keylock position changes.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The key position in the Keylock.

The Status attribute has one of the following values:

Value Description
LOCK_KP_ELECTRONIC

Electronic Keylock value. Value is zero (0).

LOCK_KP_LOCK Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR Keylock is in the “supervisor” position. Value is three (3).

Other Values Keylock is in one of the auxiliary positions. This value may range from
four (4) to the total number of keylock positions indicated by the
PositionCount property.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks This event is enqueued when a keylock switch position undergoes a change or if Power State
Reporting is enabled and a change in the power state is detected.

If CapKeylockType is LOCK_KT_ELECTRONIC the electronic key value is placed in the
ElectronicKeyValue property prior to a StatusUpdateEvent being delivered to the application and
Status is set to LOCK_KP_ELECTRONIC.

See Also CapKeylockType Property, ElectronicKeyValue Property, PositionCount Property, “Events”
on page 1- 15.

21 - 12 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 22 - 1

22 Lights

22.1 General
This Chapter defines the Lights device category.

22.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 Not supported
DataEventEnabled: boolean { read-write } 1.12 Not supported
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 Not supported
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

22 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapAlarm: int32 { read-only } 1.12 open
CapBlink: boolean { read-only } 1.12 open
CapColor: int32 { read-only } 1.12 open

MaxLights: int32 { read-only } 1.12 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12

Unified POS, v1.15.1 Beta1 22 - 3

Specific
Name
switchOff (lightNumber: int32):

void { raises-exception, use after open, claim, enable }
1.12

switchOn (lightNumber: int32, blinkOnCycle: int32,
 blinkOffCycle: int32, color: int32, alarm: int32):
void { raises-exception, use after open, claim, enable }

1.12

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12
 Status: int32 { read-only }

22 - 4 Unified POS, v1.15.1 Beta1

22.3 General Information
The Lights programmatic name is “Lights”.

This device category was added to Version 1.12 of the specification.

22.3.1 Capabilities

The Lights Control has the following capability:

• Supports commands to “switch on” and “switch off” a light.

The Lights Control may have the following additional capabilities:

• Supports device-level blinking at adjustable blink cycles.

• Supports multiple lights.

• Supports different colors of a light.

• Supports different alarms

22.3.2 Lights Class Diagram

The following diagram shows the relationships between the Lights classes.

+switchOff(lightNumber : int32) : void
+switchOn(lightNumber : int32, blinkOnCycle : int32, blinkOffCycle : int32, color : int32, alarm : int32) : void

+CapAlarm : int32
+CapBlink : boolean
+CapColor : int32
+MaxLights : int32

«interface»
LightsControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

LightsConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl

Unified POS, v1.15.1 Beta1 22 - 5

22.3.3 Lights Sequence Diagram

The following sequence diagram show the typical usage of the Lights device illustrating the handling of the
media entry indicator lights.

Application Lights Control Lights Service MEI Lights

NOTE: We are assuming that the Application has already successfully opened and claimed the Lights Device, MaxLights is 4
defining the SelfCheckout Media Entry Indicators (light1 is BillAcceptor, light2 is BillDispenser, light3 is CoinAcceptor,
light4 is CoinDispenser) and that CapBlink is true.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: switchOn(light1,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

3: connect or somehow have
access to the hardware

5: switchOn(light1,0.0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

6: Service switches on the MEI
light for BillAcceptor

Assume transaction is finished
and the customer pays cash

10: switchOff(light1)

11: switchOff(light1)

7: switchOn(light3,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM) 8: switchOn(light3,0.0,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

9: Service switches on the MEI
light for CoinAcceptorAssume customer has paid

and needs to get back change

16: switchOn(light2,250,250,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM) 17: switchOn(light2,250.250,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

18: Service switches on the MEI
light for BillDispenser and let it blink19: switchOn(light4,250,250,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM) 20: switchOn(light4,250.250,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

21: Service switches on the MEI
light for CoinDispenser and let it blink

12: Service switches off the MEI
light for BillAcceptor

13: switchOff(light3)

14: switchOff(light3)
15: Service switches off the MEI

light for CoinAcceptor

Assume customer has taken
the change

22: switchOff(light2)

23: switchOff(light2)
24: Service switches off the MEI

light for BillDispenser

25: switchOff(light4)

26: switchOff(light4)
27: Service switches off the MEI

light for CoinDispenser

22 - 6 Unified POS, v1.15.1 Beta1

The following sequence diagram show the typical usage of the Lights device illustrating the handling of the pole
lights.

22.3.4 Device Sharing

Lights is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties and methods, or receiving
 events.

• See the “Summary” table for precise usage prerequisites.

Application Lights Control Lights Service Pole Light

NOTE: We are assuming that the Application has already successfully opened and claimed the Lights Device, MaxLights is 3
defining a SelfCheckout Pole Light (light1 is green, light2 is yellow, light3 is red) and that the device supports alarms.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: switchOn(light1,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

3: connect or somehow have
access to the hardware

5: switchOn(light1,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

6: Service switches on the green
light with no alarmAssume there is a problem and

the customer needs assitance

10: switchOn(light3,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_MEDIUM)

7: switchOff(light1)

8: switchOff(light1)
9: Service switches off the

green light

11: switchOn(light3,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_MEDIUM)

12: Service switches on the
red light with medium alarm

Unified POS, v1.15.1 Beta1 22 - 7

22.4 Properties (UML attributes)

22.4.1 CapAlarm Property

Syntax CapAlarm: int32 { read-only, access after open }

Remarks This capability indicates if the device supports different alarms.

CapAlarm is a logical OR combination of any of the following values:
Value Meaning
LGT_ALARM_NOALARM Alarms are not supported.
LGT_ALARM_SLOW Supports a slow beep.
LGT_ALARM_MEDIUM Supports a medium beep.
LGT_ALARM_FAST Supports a fast beep.
LGT_ALARM_CUSTOM1 Supports 1st custom alarm.
LGT_ALARM_CUSTOM2 Supports 2nd custom alarm.

This property is initialized by the open method. If the device does not support alarms, it is initialized
to LGT_ALARM_NOALARM.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

22.4.2 CapBlink Property

Syntax CapBlink: boolean { read-only, access after open }

Remarks If true, a blinking capability is supported. It may be either a physical capability of the device or
emulated by the service. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

22.4.3 CapColor Property

Syntax CapColor: int32 { read-only, access after open }

Remarks This capability indicates if the device supports different colors.

CapColor is a logical OR combination of any of the following values:
Value Meaning
LGT_COLOR_PRIMARY Supports Primary Color (Usually Green).
LGT_COLOR_CUSTOM1 Supports 1st Custom Color (Usually Red).
LGT_COLOR_CUSTOM2 Supports 2nd Custom Color (Usually Yellow).
LGT_COLOR_CUSTOM3 Supports 3rd Custom Color.
LGT_COLOR_CUSTOM4 Supports 4th Custom Color.
LGT_COLOR_CUSTOM5 Supports 5th Custom Color.

This property is initialized by the open method. If the device supports only one color, it is initialized
to LGT_COLOR_PRIMARY.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

22 - 8 Unified POS, v1.15.1 Beta1

22.4.4 MaxLights Property

Syntax MaxLights: int32 { read-only, access after open }

Remarks MaxLights specifies the maximum number of lights that the device can support.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 22 - 9

22.5 Methods (UML operations)

22.5.1 switchOff Method

Syntax switchOff (lightNumber: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
lightNumber Specifies the light number. Valid light numbers are 1 through

MaxLights.

Remarks Switches off the light specified by lightNumber.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL The lightNumber parameter exceeds MaxLights.

See Also MaxLights Property.

22 - 10 Unified POS, v1.15.1 Beta1

22.5.2 switchOn Method

Syntax switchOn (lightNumber: int32, blinkOnCycle: int32,
 blinkOffCycle: int32, color: int32, alarm: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
lightNumber Specifies the light number. Valid light numbers are 1 through

MaxLights.

blinkOnCycle A zero (0) value indicates no blink cycle. A positive value indicates the
blink on cycle time in milliseconds. Negative values are not allowed.

blinkOffCycle A zero (0) value indicates no blink cycle. A positive value indicates the
blink off cycle time in milliseconds. Negative values are not allowed.

color Specifies the color of the light, must be one of the colors defined by
CapColor.

alarm Specifies the used alarm type, must be one of the alarms defined by
CapAlarm.

Remarks Switches on the light specified by lightNumber or let it blink.
If blinkOnCycle and blinkOffCycle are zero (0) or CapBlink is false, then the parameters
blinkOnCycle and blinkOffCycle will be ignored and the light will only be switched on.

If CapBlink is true and blinkOnCycle and blinkOffCycle are positive then the light will blink.

If CapColor is LGT_COLOR_PRIMARY the light does not support different colors and color is
ignored, otherwise switchOn will use the color specified by color.

If CapAlarm is LGT_ALARM_NOALARM the light does not support different alarms and alarm
is ignored, otherwise switchOn will use the alarm specified by alarm.

Subsequent calls to switchOn will change the blink cycles, the color or the alarm type of the light.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

A possible value of the exception’s ErrorCode property is:
Value Meaning
E_ILLEGAL The lightNumber parameter exceeds MaxLights, an invalid color or

alarm was specified.

See Also CapAlarm Property, CapBlink Property, CapColor Property, MaxLights Property.

Unified POS, v1.15.1 Beta1 22 - 11

22.6 Events (UML interfaces)

22.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Lights Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Lights devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

22.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a light.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power status of a light.

Note that Release 1.3 added Power State Reporting with additional Power reporting
 StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional Status values for
communicating the status/progress of an asynchronous update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the light detects a power state change.

See Also “Events” on page 1- 15.

22 - 12 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 23 - 1

23 Line Display

23.1 General
This Chapter defines the Line Display device category.

23.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

23 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapBlink: int32 { read-only } 1.0 open
CapBitmap: boolean { read-only } 1.7 open
CapBlinkRate: boolean { read-only } 1.6 open
CapBrightness: boolean { read-only } 1.0 open
CapCharacterSet: int32 { read-only } 1.0 open
CapCursorType: int32 { read-only } 1.6 open
CapCustomGlyph: boolean { read-only } 1.6 open
CapDescriptors: boolean { read-only } 1.0 open
CapHMarquee: boolean { read-only } 1.0 open
CapICharWait: boolean { read-only } 1.0 open
CapMapCharacterSet: boolean { read-only } 1.7 open
CapReadBack: int32 { read-only } 1.6 open
CapReverse: int32 { read-only } 1.6 open
CapScreenMode: boolean { read-only } 1.7 open
CapVMarquee: boolean { read-only } 1.0 open
BlinkRate: int32 { read-write } 1.6 open
CharacterSet: int32 { read-write } 1.0 open, claim, & enable
CharacterSetList: string { read-only } 1.0 open
Columns: int32 { read-only } 1.0 open
CurrentWindow: int32 { read-write } 1.0 open
CursorColumn: int32 { read-write } 1.0 open
CursorRow: int32 { read-write } 1.0 open
CursorType: int32 { read-write } 1.6 open
CursorUpdate: boolean { read-write } 1.0 open
CustomGlyphList: string { read-only } 1.6 open
DeviceBrightness: int32 { read-write } 1.0 open, claim, & enable
DeviceColumns: int32 { read-only } 1.0 open
DeviceDescriptors: int32 { read-only } 1.0 open
DeviceRows: int32 { read-only } 1.0 open
DeviceWindows: int32 { read-only } 1.0 open
GlyphHeight: int32 { read-only } 1.6 open
GlyphWidth: int32 { read-only } 1.6 open
InterCharacterWait: int32 { read-write } 1.0 open
MapCharacterSet: boolean { read-write } 1.7 open

Unified POS, v1.15.1 Beta1 23 - 3

Properties (Continued)
Specific Type Mutability Version May Use After
MarqueeFormat: int32 { read-write } 1.0 open
MarqueeRepeatWait: int32 { read-write } 1.0 open
MarqueeType: int32 { read-write } 1.0 open
MarqueeUnitWait: int32 { read-write } 1.0 open
MaximumX: int32 { read-only } 1.7 open
MaximumY: int32 { read-only } 1.7 open
Rows: int32 { read-only } 1.0 open
ScreenMode: int32 { read-write } 1.7 open & claim
ScreenModeList: string { read-only } 1.7 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

23 - 4 Unified POS, v1.15.1 Beta1

Common(Continued)
Name Version
retrieveStatistics (inout statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
clearText ():

void { raises-exception, use after open, claim, enable }
1.0

displayText (data: string, attribute: int32):
void { raises-exception, use after open, claim, enable }

1.0

displayTextAt (row: int32, column: int32, data: string, attribute: int32):
void { raises-exception, use after open, claim, enable }

1.0

scrollText (direction: int32, units: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearDescriptors ():
void { raises-exception, use after open, claim, enable }

1.0

setDescriptor (descriptor: int32, attribute: int32):
void { raises-exception, use after open, claim, enable }

1.0

createWindow (viewportRow: int32, viewportColumn: int32,
viewportHeight: int32, viewportWidth: int32, windowHeight:
int32, windowWidth: int32):
void { raises-exception, use after open, claim, enable }

1.0

destroyWindow ():
void { raises-exception, use after open, claim, enable }

1.0

refreshWindow (window: int32):
void { raises-exception, use after open, claim, enable }

1.0

defineGlyph (glyphCode: int32, glyph: binary):
void { raises-exception, use after open, claim, enable }

1.6

readCharacterAtCursor (inout cursorData: int32):
void { raises-exception, use after open, claim, enable }

1.6

displayBitmap (fileName: string, width: int32, alignmentX: int32, align-
mentY: int32):
void { raises-exception, use after open, claim, enable }

1.7

setBitmap (bitmapNumber: int32, fileName: string, width: int32,
alignmentX: int32, alignmentY: int32):
void { raises-exception, use after open, claim, enable }

1.7

Unified POS, v1.15.1 Beta1 23 - 5

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

23 - 6 Unified POS, v1.15.1 Beta1

23.3 General Information
The Line Display programmatic name is “LineDisplay.”

23.3.1 Capabilities Updated in Version 1.7

The Line Display has the following capability:

• Supports text character display. The default mode (or perhaps only mode) of the display is character display output.

The line display may also have the following additional capabilities:

• Supports windowing with marquee-like scrolling of the window. The display may support vertical or horizontal
 marquees, or both.

• Supports a waiting period between displaying characters, for a teletype effect.

• Supports character-level or device-level blinking at adjustable blink rates.

• Supports character-level or device-level reverse video.

• Supports one or more descriptors. Descriptors are small indicators with a fixed label, and are typically used to
 indicate transaction states such as item, total, and change.

• Supports device brightness control, with one or more levels of device dimming. All devices support brightness
 levels of “normal” and “blank” (at least through software support), but some devices also support one or more levels
 of dimming.

• Supports various cursor attributes including underline, block, and reverse video.

• Supports “glyphs” which represent pixel level user definition of character cells.

• Supports changing screen modes - the number of rows and columns supported by the device.

• Supports setting and displaying bitmaps. Can also support the addressing of individual pixels or dots using this
 functionality.

Unified POS, v1.15.1 Beta1 23 - 7

23.3.2 Line Display Class Diagram Updated in Release 1.7

The following diagram shows the relationships between the Line Display classes.

UposException
(from upos)

<<exception>>
UposConst
(from upos)

<<uti l i ty>>

Lin eDispla yConst
(from upos)

<<uti li ty>>

DirectIOEvent

<<prop>> EventNumber : int3...
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

Sta tusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

LineDisplayControl

<<capabi l i ty>> Cap Bit map : boolean
<<capabi l i ty>> Cap Bli nk : i nt32
<<capabi l i ty>> Cap Bli nkRa te : boole an
<<capabi l i ty>> Cap Bri gh tn ess : bool ea n
<<capabi l i ty>> Cap Ch arac terSe t : in t32
<<capabi l i ty>> Cap Cu rsorT yp e : int3 2
<<capabi l i ty>> Cap Cu stom Gl yp h : b oo lean
<<capabi l i ty>> Cap De sc rip tors : bool ea n
<<capabi l i ty>> Cap HMa rquee : bool ea n
<<capabi l i ty>> Cap ICha rWait : boolean
<<capabi l i ty>> Cap MapCh aract erSe t : bo ol ea n
<<capabi l i ty>> Cap Re ad Back : int32
<<capabi l i ty>> Cap Re ve rse : int 32

<<capabi l i ty>> Cap Screen Mode : bo ol ea n
<<capabi l i ty>> Cap VMa rquee : bool ea n
<<pro p> > Bl inkRate : i nt 32
<<pro p> > Ch arac terSe t : in t32
<<pro p> > Ch arac terSe tL ist : string
<<pro p> > Co lumns : int3 2
<<pro p> > Cu rrent Wi nd ow : in t32
<<pro p> > Cu rsorCol umn : i nt32
<<pro p> > Cu rsorRow : in t32
<<pro p> > Cu rsorTyp e : int3 2
<<pro p> > Cu rsorUpdat e : b oo lean
<<pro p> > Cu stom Gl yp hL ist : stri ng
<<pro p> > De vi ceBri gh tn ess : int 32
<<pro p> > De vi ceCo lumn s : in t3 2
<<pro p> > De vi ceDe scrip tors : in t32
<<pro p> > De vi ceRo ws : i nt 32
<<pro p> > De vi ceWi nd ows : in t3 2
<<pro p> > Gl yphHei gh t : in t32
<<pro p> > Gl yphWid th : i nt32
<<pro p> > Int erCh aract erWait : int32

<<pro p> > Map Ch aract erSe t : bo ol ea n
<<pro p> > MarqueeFormat : int3 2
<<pro p> > MarqueeRe pe atWa it : int3 2
<<pro p> > MarqueeType : i nt32
<<pro p> > MarqueeUn itWai t : in t32
<<pro p> > Maxi mum X : i nt32
<<pro p> > Maxi mum Y : i nt32
<<pro p> > Ro ws : int 32
<<pro p> > Sc re en Mode : in t32
<<pro p> > Sc re en ModeL ist : string

c le arTe xt() : vo id
displayText(da ta : st rin g, at tribu te : int3 2) : voi d
displayTextA t(row : int 32 , colum n : int3 2, data : stri ng , a ttr ibute : int 32) : vo id
scrol lTe xt(directio n : int3 2, units : int 32) : vo id
c le arDe script ors() : void
set De scrip tor(desc rip to r : in t32, attrib ute : int 32) : void
c re ateWin do w(vRow : int 32 , vCo l : in t3 2, vHeigh t : int32 , vWidt h : in t3 2, wHei gh t : in t32, wWid th : i nt32) : vo id
destroyWindow() : void
refreshWin do w(wi nd ow : int 32) : vo id

def ineG lyph (gl yp hCod e : int3 2, gl yp h : bi na ry) : vo id
rea dChara cterAtCursor(in out cursorData : int 32) : vo id
displayBitma p(fi leName : string, widt h : int3 2, al ignm en tX : i nt 32 , a lig nme ntY : in t32) : void
set Bit map (bi tm ap Num be r : in t32, fileName : string, widt h : in t3 2, al i gn men tX : i nt32 , a lig nme ntY : in t32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fi res

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

23 - 8 Unified POS, v1.15.1 Beta1

23.3.3 Line Display Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Line Display device.

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the
LineDisplay device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :LineDisplay :LineDisplayService

1: claim(timeout) 2: claim(timeout)

3: clearText() 4: clearText()

5: displayText(data)
6: displayText(data)

At this point the data
is showing on the
LineDisplay device.

7: setDescriptor(dValue, DISP_SD_BLINK)
8: setDescriptor(dValue, DISP_SD_BLINK)

The descriptor
number = dValue is
now blinking.

Assuming the display supports descriptors
that is CapDescriptors == true.

:ClientApp will perform
similar processing with
the display as needed.

9: clearText() 10: clearText()

11: release()
12: release()

At this point other
controls can
claim(...) the device
and use it.

14: close()
15: close()

16: perform necessary cleanup

13: releases exclusive access to this device

Unified POS, v1.15.1 Beta1 23 - 9

23.3.4 Model Updated in Release 1.7

The general model of a line display consists of:

• One or more rows containing one or more columns of characters. The rows and columns are numbered
 beginning with (0, 0) at the upper-left corner of the window. The characters in the default character set will
 include at least one of the following, with a capability defining the character set:

• The digits ‘0’ through ‘9’ plus space, minus (‘-’), and period (‘.’).

• The above set plus uppercase ‘A’ through ‘Z.’

• All ASCII characters from 0x20 through 0x7F, which includes space, digits, uppercase, lowercase, and
some special characters.

• Window 0, which is always defined as follows:

• Its “viewport” — the portion of the display that is updated by the window — covers the entire display.

• The size of the window matches the entire display.

• Therefore, window 0, which is also called the “device window,” maps directly onto the display.

• Option to create additional windows. A created window has the following characteristics:

• Its viewport covers part or all of the display.

• The window may either match the size of the viewport, or it may be larger than the viewport in either the
 horizontal or vertical direction. In the second case, marquee scrolling of the window can be set.

• The window maintains its own values for rows and columns, current cursor row and column, cursor
 update flag, cursor type, scroll type and format, and timers.

• All viewports behave transparently. If two viewports overlap, then the last data displayed by either of the
 windows will be visible.

23 - 10 Unified POS, v1.15.1 Beta1

23.3.5 Display Modes

• Immediate Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait is zero.
If the window is bigger than the viewport, then only those characters which map into the viewport will be seen.

• Teletype Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait is not zero.
Calls to displayText and displayTextAt are enqueued and processed in the order they are received.
InterCharacterWait specifies the time to wait between outputting each character. InterCharacterWait only applies
to those characters within the viewport.

• Marquee Mode
In effect when MarqueeType is not DISP_MT_NONE.
The window must be bigger than the viewport.
A marquee is typically initialized after entering Marquee Init Mode by setting MarqueeType to DISP_MT_INIT,
then calling clearText, displayText and displayTextAt. Then, when MarqueeType is changed to an “on” value,
Marquee On Mode is entered, and the marquee begins to be displayed in the viewport beginning at the start of the
window (or end if the type is right or down).
When the mode is changed from Marquee On Mode to Marquee Off Mode, the marquee stops in place. A
subsequent transition from back to Marquee On Mode continues from the current position.
When the mode is changed from Marquee On Mode to Marquee Init Mode, the marquee stops. Changes may be
made to the window, then the window may be returned to Marquee On Mode to restart the marquee with the new
data.
It is illegal to use displayText, displayTextAt, clearText, refreshWindow, and scrollText unless in Marquee Init
Mode or Marquee Off Mode.

Unified POS, v1.15.1 Beta1 23 - 11

23.3.6 Data Characters and Escape Sequences Added in Release 1.7

The default character set of all line displays is assumed to support at least the ASCII characters 0x20 through
0x7F, which include spaces, digits, uppercase, lowercase, and some special characters. If the line display does not
support lowercase characters, then the Service may translate them to uppercase.

Starting with Release 1.7, escape sequences are supported.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical
bar ('|'). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is
terminated by an uppercase alphabetic character.

The following escape sequences are recognized within the string data of the displayText and displayTextAt
methods. If an escape sequence specifies an operation that is not supported by the line display, then it is ignored.

CommandsPerform the indicated action.

CharacteristicsThese are reset at the end of each display method or by a “Normal” sequence.

23.3.7 Device Sharing

The line display is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
 update the device.

• See the “Summary” table for precise usage prerequisites.

Name Data Remarks

Display bitmap ESC |#B
Displays the pre-stored bitmap. The character '#' is replaced by
the bitmap number. See setBitmap method. (If this bitmap is not
defined, or if the bitmap cannot be properly displayed, then the
escape sequence is ignored.)

Name Data Remarks
Reverse video ESC |rvC Displays in reverse video format.
Blink ESC |kC Displays as blinking characters.
Normal ESC |N Restores line display characteristics to normal condition.

23 - 12 Unified POS, v1.15.1 Beta1

23.4 Properties (UML attributes)

23.4.1 BlinkRate Property Added in Release 1.6

Syntax BlinkRate: int32 { read-write, access after open }

Remarks Contains the blink cycle time in milliseconds. A blink cycle is the period of time when text
completes an on-off-on cycle during blinking. After this property is set, the service will set the blink
rate to the closest supported rate and change this property to reflect the actual rate. Performing this
approximation is necessary because blink cycles are hardware dependent and probably not
controllable at precise millisecond granularity.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapBlinkRate is false.

See Also CapBlinkRate Property.

23.4.2 CapBitmap Property Added in Release 1.7

Syntax CapBitmap: boolean { read-only, access after open }

Remarks If true, then the display of bitmaps is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.3 CapBlink Property

Syntax CapBlink: int32 { read-only, access after open }

Remarks Holds the character blink capability of the device. It has one of the following values:

Value Meaning
DISP_CB_NOBLINK Blinking is not supported. Value is 0.
DISP_CB_BLINKALL Blinking is supported. The entire contents of the display are either

blinking or in a steady state.
DISP_CB_BLINKEACH

Blinking is supported. Each character may be individually set to blink or
to be in a steady state.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 23 - 13

23.4.4 CapBlinkRate Property Added in Release 1.6

Syntax CapBlinkRate: boolean { read-only, access after open }

Remarks If true, then the device’s blink rate can be controlled and the BlinkRate property is used to indicate
the rate at which the display blinks.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also BlinkRate Property.

23.4.5 CapBrightness Property

Syntax CapBrightness: boolean { read-only, access after open }

Remarks If true, then the brightness control is supported. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.6 CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning
DISP_CCS_NUMERIC The default character set supports numeric data, plus space, minus, and

period.
DISP_CCS_ALPHA The default character set supports uppercase alphabetic plus numeric,

space, minus, and period.
DISP_CCS_ASCII The default character set supports all ASCII characters 0x20 through

0x7F.
DISP_CCS_KANA The default character set supports partial code page 932, including ASCII

characters 0x20 through 0x7F and the Japanese Kana characters 0xA1
through 0xDF, but excluding the Japanese Kanji characters.

DISP_CCS_KANJI The default character set supports code page 932, including the Shift-JIS
Kanji characters, Levels 1 and 2.

DISP_CCS_UNICODE The default character set supports Unicode.

The default character set may contain a superset of these ranges. The initial CharacterSet property
may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property.

23 - 14 Unified POS, v1.15.1 Beta1

23.4.7 CapCursorType Property Updated in Release 1.8

Syntax CapCursorType: int32 { read-only, access after open }
Remarks Holds a bitwise indication of the cursor types supported by the device and selectable via the

CursorType property. The following are the values:

Value Meaning
DISP_CCT_NONE Cursor is not displayable.
DISP_CCT_FIXED Cursor is always displayed.
DISP_CCT_BLOCK Cursor is displayable as a block.
DISP_CCT_HALFBLOCK Cursor is displayable as a halfblock.
DISP_CCT_UNDERLINE Cursor is displayable as an underline.
DISP_CCT_REVERSE Cursor is displayable in reverse video.
DISP_CCT_BLINK A blinking cursor is supported.
DISP_CCT_OTHER Cursor is displayable but form is unknown.
If DISP_CCT_NONE is set, then none of the other values will be set. This is because the cursor is
not displayable.

If DISP_CCT_FIXED is set, DISP_CCT_BLINK may be set, and one and only one of the other
values will also be set. This other value will indicate the cursor type that is always displayed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.8 CapCustomGlyph Property Added in Release 1.6

Syntax CapCustomGlyph: boolean { read-only, access after open }

Remarks Holds the glyph definition capability of the device. If true, then the device allows custom glyphs to
be defined.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.9 CapDescriptions Property

Syntax CapDescriptors: boolean { read-only, access after open }

Remarks If true, then the display supports descriptors.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 23 - 15

23.4.10 CapHMarquee Property

Syntax CapHMarquee: boolean { read-only, access after open }

Remarks If true, the display supports horizontal marquee windows.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.11 CapICharWait Property

Syntax CapICharWait: boolean { read-only, access after open }

Remarks If true, the display supports intercharacter wait.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.12 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character
set when displaying data.

If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

23.4.13 CapReadBack Property Added in Release 1.6

Syntax CapReadBack: int32 { read-only, access after open }

Remarks Holds the capability of the video device to read back the data displayed upon it. It may be one of the
following:

Value Meaning
DISP_CRB_NONE Read back is not supported.
DISP_CRB_SINGLE Read back of a single character at a time is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23 - 16 Unified POS, v1.15.1 Beta1

23.4.14 CapReverse Property Added in Release 1.6

Syntax CapReverse: int32 { read-only, access after open }

Remarks Holds the reverse video capability of the device. It may be one of the following:

Value Meaning
DISP_CR_NONE Reverse video is not supported. Value is 0.
DISP_CR_REVERSEALL Reverse video is supported. The entire contents of the display are

either in reverse video or normal.
DISP_CR_REVERSEEACH Reverse video is supported. Each character may be individually set to

reverse video or normal.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

23.4.15 CapScreenMode Property Added in Release 1.7

Syntax CapScreenMode: boolean { read-only, access after open }

Remarks If true, then the display supports changing the screen mode (i.e., the number of text rows and
columns on the device).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ScreenMode Property, ScreenModeList Property.

23.4.16 CapVMarquee Property

Syntax CapVMarquee: boolean { read-only, access after open }

Remarks If true, the display supports vertical marquee windows.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 23 - 17

23.4.17 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for displaying characters. It has one of the following values:

Value Meaning
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII

or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
DISP_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
DISP_CS_ASCII The ASCII character set, supporting the ASCII characters 0x20 through

0x7F. The value of this constant is 998.
DISP_CS_ANSI The ANSI character set. The value of this constant is 999.

Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the
“Mapping of CharacterSet” section in the Annexes. For OPOS, see Annex A, for JavaPOS, see
Annex B.

This property is initialized to an appropriate value when the device is first enabled following the
open method. This value is guaranteed to support at least the set of characters specified by
CapCharacterSet.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSetList Property, CapCharacterSet Property.

23.4.18 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers supported. It consists of ASCII numeric set numbers separated by
commas.

For example, if the string is “101,850,999”, then the device supports a device-specific character set,
code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property.

23 - 18 Unified POS, v1.15.1 Beta1

23.4.19 Columns Property

Syntax Columns: int32 { read-only, access after open }

Remarks Holds the number of columns for this window.

For window 0, this property is the same as DeviceColumns.
For other windows, it may be less or greater than DeviceColumns.

This property is initialized to DeviceColumns by the open method, and is updated when
CurrentWindow is set and when createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Rows Property.

23.4.20 CurrentWindow Property Updated in Release 1.6

Syntax CurrentWindow: int32 { read-write, access after open }

Remarks Holds the current window to which text is displayed.

Several properties are associated with each window: Rows, Columns, CursorRow,
CursorColumn, CursorUpdate, CursorType, MarqueeFormat, MarqueeType,
MarqueeUnitWait, MarqueeRepeatWait, and InterCharacterWait.

When set, this property changes the current window and sets the associated properties to their values
for this window.

Setting a window does not refresh its viewport. If this window and another window’s viewports
overlap, and the other window has changed the viewport, then refreshWindow may be called to
restore this window’s viewport contents.

This property is initialized to zero – the device window – by the open method, and is updated when
createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The new current window value is invalid.

Unified POS, v1.15.1 Beta1 23 - 19

23.4.21 CursorColumn Property

Syntax CursorColumn: int32 { read-write, access after open }

Remarks Holds the column in the current window to which the next displayed character will be output.

Legal values range from zero through Columns. (See displayText for a note on the interpretation
of CursorColumn = Columns.)

This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or clearText, displayTextAt, or destroyWindow is called. It is also
updated when displayText is called if CursorUpdate is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid cursor column value was specified.

See Also CursorRow Property, displayText Method.

23.4.22 CursorRow Property

Syntax CursorRow: int32 { read-write, access after open }
Remarks Holds the row in the current window to which the next displayed character will be output.

Legal values range from zero through one less than Rows.
This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or clearText, displayTextAt, or destroyWindow is called. It is also
updated when displayText is called if CursorUpdate is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid cursor row value was specified.

See Also CursorColumn Property, displayText Method.

23 - 20 Unified POS, v1.15.1 Beta1

23.4.23 CursorType Property Updated in Release 1.8

Syntax CursorType: int32 { read-write, access after open }
Remarks Holds the cursor type for the current window. The following are the possible values:

Value Meaning
DISP_CT_NONE Cursor is not displayed.
DISP_CT_BLOCK Cursor is displayed as a block.
DISP_CT_HALFBLOCK Cursor is displayed as a halfblock.
DISP_CT_UNDERLINE Cursor is displayed as an underline.
DISP_CT_REVERSE Cursor is displayed in reverse video.
DISP_CT_BLINK A blinking cursor is supported. This value is to be logically ORed

with one of the other values defined for this property.
DISP_CT_OTHER Cursor is displayed but form is unknown.
This property cannot be written if CapCursorType has either DISP_CCT_NONE or
DISP_CCT_FIXED set. Otherwise it can be set to one of the cursor types specified by
CapCursorType, and if supported, DISP_CT_BLINK can be logically ORed with that cursor type
to display a blinking cursor.
This property is maintained for each window. Setting this property affects only the current window
since only the current window has a displayable cursor.
This property is initialized to DISP_CT_NONE (or the appropriate cursor type if CapCursorType
has DISP_CCT_FIXED set) by the open and createWindow methods, and is updated when
CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapCursorType is either DISP_CCT_NONE or DISP_CCT_FIXED is

set, or an invalid cursor type value was specified.
See Also CapCursorType Property.

23.4.24 CusorUpdate Property

Syntax CursorUpdate: boolean { read-write, access after open }

Remarks When true, CursorRow and CursorColumn will be updated to point to the character beyond the
last character output when characters are displayed using the displayText or displayTextAt
method. When false, the cursor properties will not be updated when characters are displayed.

This property is maintained for each window. It initialized to true by the open and createWindow
methods, and is updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CursorRow Property, CursorColumn Property.

Unified POS, v1.15.1 Beta1 23 - 21

23.4.25 CustomGlyphList Property Added in Release 1.6

Syntax CustomGlyphList: string { read-only, access after open }

Remarks Contains character codes that are available for definition as glyphs. Character codes are represented
as two-digit (ASCII) or four-digit (Unicode) hexadecimal values. These values are comma
separated and each value may actually represent a range of values specified by using the ‘-’
character.

For example, if the string is “2D,4D”, then the device supports glyph definitions for the characters
“-” and “M” respectively. If the string is “002D-004D”, then the device supports glyph definitions
for the Unicode characters between 002D and 004D inclusive. Also, if the string is “2D-2F,3D-3F”,
then the device supports glyph definitions for the ranges of hex characters 2D through 2F and 3D
through 3F.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapCustomGlyph Property, GlyphHeight Property, GlyphWidth Property, defineGlyph
Method.

23.4.26 DeviceBrightness Property

Syntax DeviceBrightness: int32 { read-write, access after open-claim-enable }

Remarks Holds the device brightness value, expressed as a percentage between 0 and 100.

Any device can support 0% (blank) and 100% (full intensity). Blanking can, at a minimum, be
supported by sending spaces to the device. If CapBrightness is true, then the device also supports
one or more levels of dimming.

If a device does not support the specified brightness value, then the Service will choose an
appropriate substitute.

This property is initialized to 100 when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was used: Not in the range 0 - 100.

See Also CapBrightness Property.

23 - 22 Unified POS, v1.15.1 Beta1

23.4.27 DeviceColumns Property Updated in Release 1.7

Syntax DeviceColumns: int32 { read-only, access after open }

Remarks Holds the number of columns on this device.
This property is initialized by the open method. It is updated when the ScreenMode property is
changed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DeviceRows Property, ScreenMode Property.

23.4.28 DeviceDescriptors Property

Syntax DeviceDescriptors: int32 { read-only, access after open }

Remarks Holds the number of descriptors on this device. If CapDescriptors is true, then this property is non-
zero. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also setDescriptor Method, clearDescriptors Method.

23.4.29 DeviceRows Property Updated in Release 1.7

Syntax DeviceRows: int32 { read-only, access after open }

Remarks Holds the number of rows on this device. This property is initialized by the open method. It is
updated when the ScreenMode property is changed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DeviceColumns Property, ScreenMode Property.

23.4.30 DeviceWindows Property

Syntax DeviceWindows: int32 { read-only, access after open }

Remarks Holds the maximum window number supported by this device. A value of zero indicates that only
the device window is supported and that no windows may be created.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentWindow Property.

Unified POS, v1.15.1 Beta1 23 - 23

23.4.31 GlyphHeight Property Added in Release 1.6

Syntax GlyphHeight: int32 { read-only, access after open }
Remarks Indicates the glyph height based on the number of pixels for a character cell.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also CapCustomGlyph Property, CustomGlyphList Property, defineGlyph Method.

23.4.32 GlyphWidth Property Added in Release 1.6

Syntax GlyphWidth: int32 { read-only, access after open }
Remarks Indicates the glyph width based on the number of pixels for a character cell.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also CapCustomGlyph Property, CustomGlyphList Property, defineGlyph Method.

23.4.33 InterCharacterWait Property

Syntax InterCharacterWait: int32 { read-write, access after open }
Remarks Holds the wait time between displaying each character with the displayText and displayTextAt

methods. This provides a “teletype” appearance when displaying text.
This property is only used if the window is not in Marquee Mode — that is, MarqueeType must
be DISP_MT_NONE.
When non-zero and the window is not in Marquee Mode, the window is in Teletype Mode:
displayText and displayTextAt requests are enqueued and processed in the order they are received.
This property specifies the time to wait between outputting each character into the viewport. The
wait time is the specified number of milliseconds. (Note that the system timer resolution may reduce
the precision of the wait time.) If CursorUpdate is true, CursorRow and CursorColumn are
updated to their final values before displayText or displayTextAt returns, even though all of its
data may not yet be displayed.
When this property is zero and the window is not in Marquee Mode, Immediate Mode is in effect,
so that characters are processed as quickly as possible. If some display requests are enqueued at the
time this property is set to zero, the requests are completed as quickly as possible.
If CapICharWait is false, then intercharacter waiting is not supported, and the value of this
property is not used. This property is initialized to zero by the open and createWindow methods,
and is updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16. Some possible values of the exception’s Error Code Property are:
Value Meaning
E_ILLEGAL An illegal value was specified.

See Also displaText Method.

23 - 24 Unified POS, v1.15.1 Beta1

23.4.34 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}
Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred

by the application to the character set selected in the CharacterSet property for displaying data.

If MapCharacterSet is false, then no mapping is supported. In such a case the application has to
ensure the mapping of the character set used in the application to the character set selected in the
CharacterSet property.

If CapMapCharacterSet is false, then this property is always false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, CapMapCharacterSet Property.

Unified POS, v1.15.1 Beta1 23 - 25

23.4.35 MarqueeFormat Property

Syntax MarqueeFormat: int32 { read-write, access after open }

Remarks Holds the marquee format for the current window.

Value Meaning
DISP_MF_WALK Begin the marquee by walking data from the opposite side. For example,

if the marquee type is “left,” then the viewport is filled by bringing
characters into the right side and scrolling them to the left.

DISP_MF_PLACE Begin the marquee by placing data. For example, if the marquee type is
“left,” then the viewport is filled by placing characters starting at the left
side, and beginning scrolling only after the viewport is full.

This property is initialized to DISP_MF_WALK by the open and createWindow methods, and is
updated when CurrentWindow is set or destroyWindow is called.

This property is read when a transition is made to Marquee On Mode. It is not used when not in
Marquee Mode.

When this property is DISP_MF_WALK, and a transition is made from Marquee Init Mode to
Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:
Marquee TypeWindow Viewport
LeftFirst Column = Last Column
UpFirst Row = Last Row
RightLast Column = First Column
DownLast Row = First Row

Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display the mapped portion of the window into the viewport, then wait MarqueeUnitWait
 milliseconds. Move the window mapping onto the viewport by one row or column in the marquee
 direction. Repeat until the viewport is full.

3. Refresh the viewport, then wait MarqueeUnitWait milliseconds. Move the window mapping by one
 row or column. Repeat until the last row or column is scrolled into the viewport (in which case, omit
 the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

When this property is DISP_MF_PLACE, and a transition is made from Marquee Init Mode to
Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:

23 - 26 Unified POS, v1.15.1 Beta1

Marquee TypeWindow Viewport
LeftFirst Column = First Column
UpFirst Row = First Row
RightLast Column = Last Column
DownLast Row = Last Row

Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display a row or column into viewport, then wait MarqueeUnitWait milliseconds. Repeat until the
 viewport is full.

3. Move the window mapping onto the viewport by one row or column in the marquee direction, and
 refresh the viewport, then wait MarqueeUnitWait milliseconds. Repeat until the last row or column
 is scrolled into the viewport (in which case, omit the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid value was used, or attempted to change window 0.

See Also MarqueeType Property, MarqueeUnitWait Property, MarqueeRepeatWait Property.

Example 1

Marquee Walk format.
 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
 myLD.createWindow(0, 3, 2, 3, 2, 5); // 2x3 viewport of 2x5 window
 myLD.displayText(“0123456789”, DISP_DT_NORMAL);

The window contains:

and the display contains (assuming the other windows are all blank):

If the application performs the sequence:
 myLD.setMarqueeType(DISP_MT_INIT);
 myLD.setMarqueeFormat(DISP_MF_WALK);
 myLD.displayTextAt(0, 4, “AB”, DISP_DT_NORMAL);

the viewport is not changed (since we are in Marquee Init Mode), and the window becomes:

0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1 2
1 5 6 7

0 1 2 3 4

Unified POS, v1.15.1 Beta1 23 - 27

If the application performs:
 myLD.setMarqueeType(DISP_MT_LEFT);

the window is not changed, and the viewport becomes:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the viewport changing
to:

Example 2

Marquee Place format.
 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:

 myLD.createWindow(0, 3, 2, 3, 2, 5); // 2x3 viewport of 2x5 window
 myLD.displayText(“0123456789”, DISP_DT_NORMAL);

0 0 1 2 3 A
1 B 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0
1 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1
1 B 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1 2
1 B 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3
1 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 2 3 A
1 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0
1 B

23 - 28 Unified POS, v1.15.1 Beta1

The window contains:

and display contains (assuming the other windows are all blank):

If the application performs the sequence:
 myLD.setMarqueeType(DISP_MT_INIT);
 myLD.setMarqueeFormat(DISP_MF_PLACE);
 myLD.displayTextAt(0, 4, “AB”, DISP_DT_NORMAL);
the viewport is not changed (since we are in Marquee Init Mode),
and the window becomes:

If the application performs:

 myLD.setMarqueeType(DISP_MT_LEFT);

the window is not changed, and the viewport becomes:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

From this point to the end of the window, the marquee action is the same as with marquee
walking…
After MarqueeUnitWait milliseconds, the viewport is changed to:

0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1 2
1 5 6 7

0 1 2 3 4
0 0 1 2 3 A
1 B 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0
1 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1
1 B 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1 2
1 B 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3
1 6 7 8

Unified POS, v1.15.1 Beta1 23 - 29

After MarqueeUnitWait milliseconds, the viewport is changed to:

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the viewport changing
to:

23.4.36 MarqueeRepeatWait Property

Syntax MarqueeRepeatWait: int32 { read-write, access after open }

Remarks Holds the wait time between scrolling the final character or row of the window into its viewport and
restarting the marquee with the first or last character or row.
The wait time is the specified number of milliseconds. (Note that the timer resolution may reduce
the precision of the wait time.)
This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or destroyWindow is called.
This property is not used if not in Marquee Mode.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An illegal value was specified.

See Also MarqueeType Property, MarqueeFormat Property, MarqueeUnitWait Property.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 2 3 A
1 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0
1 B

23 - 30 Unified POS, v1.15.1 Beta1

23.4.37 MarqueeType Property

Syntax MarqueeType: int32 { read-write, access after open }

Remarks Holds the marquee type for the current window. When not DISP_MT_NONE, the window is in
Marquee Mode. This property has one of the following values:

Value Meaning
DISP_MT_NONE Marquees are disabled for this window.

DISP_MT_INIT Marquee Init Mode. Changes to the window are not reflected in the
viewport until this property is changed to another value.

DISP_MT_UP Scroll the window up. Illegal unless Rows is greater than the
viewportHeight parameter used for the window’s createWindow call,
and CapVMarquee is true.

DISP_MT_DOWN Scroll the window down. Illegal unless Rows is greater than the
viewportHeight parameter used for the window’s createWindow call,
and CapVMarquee is true.

DISP_MT_LEFT Scroll the window left. Illegal unless Columns is greater than the
viewportWidth parameter used for the window’s createWindow call, and
CapHMarquee is true.

DISP_MT_RIGHT Scroll the window right. Illegal unless Columns is greater than the
viewportWidth parameter used for the window’s createWindow call, and
CapHMarquee is true.

A marquee is typically initialized after entering Marquee Init Mode by setting this property to
DISP_MT_INIT, then calling clearText and displayText(At) methods. Then, when this property
is changed to an “on” value, Marquee On Mode is entered, and the marquee begins to be displayed
in the viewport beginning at the start of the window (or end if the type is right or down).

When the mode is changed from Marquee On Mode to Marquee Off Mode, the marquee stops in
place. A subsequent transition back to Marquee On Mode continues from the current position.

When the mode is changed from Marquee On Mode to Marquee Init Mode, the marquee stops.
Changes may be made to the window, then the window may be returned to Marquee On Mode to
restart the marquee with the new data.

This property is always DISP_MT_NONE for window 0 – the device window.

This property is initialized to DISP_MT_NONE by the open and createWindow methods, and is
updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was used, or attempted to change window 0.

See Also MarqueeFormat Property, MarqueeUnitWait Property, MarqueeRepeatWait Property.

Unified POS, v1.15.1 Beta1 23 - 31

23.4.38 MarqueeUnitWait Property

Syntax MarqueeUnitWait: int32 { read-write, access after open }

Remarks Holds the wait time between marquee scrolling of each column or row in the window.

The wait time is the specified number of milliseconds. (Note that the timer resolution may reduce
the precision of the wait time.)

This property is not used if MarqueeType is DISP_MT_NONE.

This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal value was specified.

See Also MarqueeType Property, MarqueeFormat Property, MarqueeRepeatWait Property.

23.4.39 MaximumX Property Added in Release 1.7

Syntax MaximumX: int32 { read-only, access after open }

Remarks A value of zero indicates that bitmaps are not supported. Otherwise, contains the maximum number
of horizontal pixels supported by the device. It must be less than 65,536. Dividing MaximumX by
DeviceColumns gives the number of pixels required for each character. This property is initialized
by the open method. It may be updated when the ScreenMode property is changed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DeviceColumns Property, ScreenMode Property.MaximumY Property.

23.4.40 MaximumY Property Added in Release 1.7

Syntax MaximumY: int32 { read-only, access after open }

Remarks A value of zero indicates that bitmaps are not supported. Otherwise, contains the maximum number
of vertical pixels supported by the device. It must be less than 65,536. Dividing MaximumY by
DeviceRows gives the number of pixels required for each character

This property is initialized by the open method. It may be updated when the ScreenMode property
is changed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DeviceRows Property, MaximumX Property, ScreenMode Property.

23 - 32 Unified POS, v1.15.1 Beta1

23.4.41 Rows Property

Syntax Rows: int32 { read-only, access after open }

Remarks Holds the number of rows for this window. For window 0, this property is the same as DeviceRows.
For other windows, it may be less or greater than DeviceRows.

This property is initialized to DeviceRows by the open method, and is updated when
CurrentWindow is set or createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Columns Property.

23.4.42 ScreenMode Property Added in Release 1.7

Syntax ScreenMode: int32 { read-write, access after open-claim }

Remarks Contains the screen mode value of the device. If CapScreenMode is false, then only a value of zero
is allowed. If CapScreenMode is true, then the values can be set to index the values contained in
ScreenModeList. For example:

0 = Default value
1 = First setting in ScreenModeList
2 = Second setting in ScreenModeList, etc.

Note: This property can only be updated when the device is opened and claimed, but not enabled.

 Changing the ScreenMode property also changes the DeviceColumns and DeviceRows properties
 to the new screen size. Also, for some devices, the MaximumX and MaximumY properties may

 be changed due to the columns and/or rows requiring a different number of physical pixels.
 For example, if the display physically contains 48x256 pixels and supports 2x20, 4x32, and 5x32,

 then the Service layout may be:

 This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapScreenMode Property, DeviceColumns Property, DeviceRows Property, MaximumX
Property, MaximumY Property, ScreenModeList Property.

Mode
Pixels

per
Row

Pixels
per

Column
MaximumY MaximumX

Unused
Vertical
Pixels

Unused
Horizontal

Pixels
2x20 24 12 48 240 0 16
4x32 12 8 48 256 0 0
5x32 8 8 40 256 8 0

Unified POS, v1.15.1 Beta1 23 - 33

23.4.43 ScreenModeList Property Added in Release 1.7

Syntax ScreenModeList: string { read-only, access after open }

Remarks Contains the comma-delimited list of row-column pairs that are supported by the device.
If CapScreenMode is false, only one pair will be listed. For example, if the device only supports 2
rows and 20 columns, then this property should be set to “2x20”.

If the device can operate in 2 by 20, 4 by 32, or 5 by 32 modes, then this property should be set to
“2x20,4x32,5x32”.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapScreenMode Property, ScreenMode Property.

23 - 34 Unified POS, v1.15.1 Beta1

23.5 Methods (UML operations)

23.5.1 clearDescriptors Method

Syntax clearDescriptors ():
 void { raises-exception, use after open-claim-enable }

Remarks Turns off all descriptors.

This function is illegal if CapDescriptors is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device does not support descriptors.

See Also setDescriptor Method, DeviceDescriptors Property, CapDescriptors Property.

23.5.2 clearText Method Updated in Release 1.7

Syntax clearText ():
 void { raises-exception, use after open-claim-enable }

Remarks Clears the current window to blanks, sets CursorRow and CursorColumn to zero, and
resynchronizes the beginning of the window with the start of the viewport. All clears all bitmaps
displayed in the window.

If in Immediate Mode or Teletype Mode, the viewport is also cleared immediately.

If in Marquee Init Mode, the viewport is not changed.

If in Marquee On Mode, this method is illegal.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL In Marquee On Mode.

See Also displayText Method.

Unified POS, v1.15.1 Beta1 23 - 35

23.5.3 createWindow Method Updated in Release 1.6

Syntax createWindow (viewportRow: int32, viewportColumn: int32, viewportHeight: int32,
viewportWidth: int32, windowHeight: int32, windowWidth: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
viewportRow The viewport’s start device row.
viewportColumn The viewport’s start device column.
viewportHeight The number of device rows in the viewport.
viewportWidth The number of device columns in the viewport.
windowHeight The number of rows in the window.
windowWidth The number of columns in the window.

Remarks Creates a viewport over the portion of the display given by the first four parameters. The window
size is given by the last two parameters. Valid window row values range from zero to one less than
windowHeight and column values range from zero to one less than windowWidth.
The window size must be at least as large as the viewport size.
The window size may be larger than the viewport size in one direction. Using the window marquee
properties MarqueeType, MarqueeFormat, MarqueeUnitWait, and MarqueeRepeatWait,
such a window may be continuously scrolled in a marquee fashion.
When successful, createWindow sets the CurrentWindow property to the window number
assigned to this window. The following properties are maintained for each window, and are
initialized as given:
Property Value
Rows Set to windowHeight.
Columns Set to windowWidth.
CursorRow Set to 0.
CursorColumn Set to 0.
CursorType Set to DISP_CT_NONE (or the appropriate cursor type if

CapCursorType has DISP_CCT_FIXED set).
CursorUpdate Set to true.
MarqueeType Set to DISP_MT_NONE.
MarqueeFormat Set to DISP_MF_WALK.
MarqueeUnitWait Set to 0.
MarqueeRepeatWait Set to 0.
InterCharacterWait Set to 0.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One or more parameters are out of their valid ranges, or all available

windows are already in use.

See Also CapCursorType Property, CurrentWindow Property, destroyWindow Method.

23 - 36 Unified POS, v1.15.1 Beta1

23.5.4 defineGlyph Method Updated in Release 1.7

Syntax defineGlyph (glyphCode: int32, glyph: binary):
 void { raises-exception, use after open-claim-enable }

Parameter Description
glyphCode The character code to be defined.

glyph Data bytes that define the glyph.1

Remarks Defines a glyph character.

 The glyph is defined as bits representing each pixel packed into bytes using whole bytes to represent
 each row.

 The minimum number of bytes are sent for each row, based on GlyphWidth and using 8 bits per
 byte. Bytes are sent left-to-right across each row; if more than one byte is required per row, the
 leftmost byte is sent first. The lowest-order bit within a byte represents the rightmost pixel. Bits that

 do not represent pixels are the highest order bits and their value is ignored. Rows are sent from the
 top down.

 A 10 pixel wide glyph would have the two leftmost pixels represented in bits 1 and 0 of the first
 byte, respectively. The remaining 8 pixels would be represented in the second byte.

 Enough rows must be sent to define the entire character. Whether changing the definition of a glyph
 causes currently displayed characters to change, or the change appears only when next drawn, is

 hardware-defined.

 Example: A 5 column 7 row character cell –

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Bit Position
 76543210 Byte Hex Value

 .*... 0 08

 ..*.. 1 04

 ... 2 12

 .*..* 3 09

 ..*.. 4 04

 ...*. 5 02

 * 6 01

Unified POS, v1.15.1 Beta1 23 - 37

 Example: A 12 column by 16 row character cell –

This function is illegal if CapCustomGlyph is false.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapCustomGlyph is false, or glyphCode is an unsupported character

code for glyph definition.

See Also CapCustomGlyph Property, CustomGlyphList Property, GlyphHeight Property, GlyphWidth
Property.

Bit Position
111111
5432109876543210

Bytes Hex Values

 0,1 00 00

 *...... 2,3 00 40

 ***..... 4,5 00 E0

 ...**.**.... 6,7 01 B0

 ..**...**... 8,9 03 18

 ..**...**... 10,11 03 18

 ..*******... 12,13 03 F8

 ..*******... 14,15 03 F8

 ..**...**... 16,17 03 18

 ..**...**... 18,19 03 18

 ..**...**... 20,21 03 18

 22,23 00 00

 24,25 00 00

 26,27 00 00

 28,29 00 00

 30,31 00 00

23 - 38 Unified POS, v1.15.1 Beta1

23.5.5 destroyWindow Method

Syntax destroyWindow ():
 void { raises-exception, use after open-claim-enable }

Remarks Destroys the current window. The characters displayed in its viewport are not changed.

CurrentWindow is set to window 0. The device window and the associated window properties are
updated.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current window is 0. This window may not be destroyed.

See Also createWindow Method, CurrentWindow Property.

Unified POS, v1.15.1 Beta1 23 - 39

23.5.6 displayBitmap Method Added in Release 1.7

Syntax displayBitmap (fileName:string,width:int32,alignmentX:int32,alignmentY:int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
fileName File name or URL of bitmap file. Various file formats may be supported,

such as bmp, gif, or jpeg files.2
width Width of the bitmap to be displayed. See values below.
alignmentX Horizontal placement of the bitmap. See values below.
alignmentY Vertical placement of the bitmap. See values below.
The width parameter has one of the following values:

Value Meaning
DISP_BM_ASIS Display the bitmap with one bitmap pixel per dot.
Other values Bitmap width expressed in number of pixels.
The alignmentX parameter has one of the following values:

Value Meaning
DISP_BM_LEFT Align the bitmap's left edge with the leftmost pixel of the current character

position, as specified by CursorColumn.
DISP_BM_CENTER Align the bitmap in the horizontal center of the current character position,

as specified by CursorColumn.
DISP_BM_RIGHT Align the bitmap's right edge with the rightmost pixel of the current

character position, as specified by CursorColumn.
Other values Distance from the window’s leftmost pixel column to the left edge of the

bitmap, expressed in number of pixels.

The alignmentY parameter has one of the following values:
Value Meaning
DISP_BM_TOP Align the bitmap's top edge with the topmost pixel of the current character

position, as specified by CursorRow.
DISP_BM_CENTER Align the bitmap in the vertical center of the current character position, as

specified by CursorRow.
DISP_BM_BOTTOM Align the bitmap's bottom edge with the bottommost pixel of the current

character position, as specified by CursorRow.
Other values Distance from the window’s topmost pixel row to the start of the bitmap,

expressed in number of pixels.
Remarks Called to display a bitmap on the LineDisplay. The bitmap is displayed within the current window’s

viewport.

 If DISP_BM_... constants are specified for alignmentX and alignmentY, then it is displayed in
 relation to the character position specified by CursorRow and CursorColumn. If, in addition,
 CursorUpdate is true, then CursorRow and CursorColumn are updated to point to the first

 character position following the bitmap.

2. In the OPOS environment, the Service Object must support two-color (black and white)
uncompressed Windows bitmaps. Black pixels are displayed with the foreground color, while
white pixels are displayed with the background color. Additional formats may be supported.

23 - 40 Unified POS, v1.15.1 Beta1

If the bitmap does not exactly occupy a multiple of rows and columns, then the unoccupied pixels
 of those character positions which are partially occupied are displayed with the background color. In

 other words, the Service will effectively fill all character positions partially or completely occupied
 by the bitmap with the background color before drawing the bitmap.

Bitmap display has the following restrictions:

• Bitmap display is only legal in Immediate Mode.

• The window size must match the window's viewport size.

• The bitmap must be displayable within the window, after consideration of the function parameters. For
 example, if alignmentX specifies a pixel near the bottom of the window, and the bitmap height

 (after bitmap transformation, if required) exceeds the distance from alignmentX to the window
 bottom, then the bitmap is not displayed.

The width parameter controls transformation of the bitmap. If width is DISP_BM_ASIS, then no
 transformation is performed. The bitmap is displayed with one bitmap pixel per line display pixel.
 The advantages of this option are that it:

• Provides the highest performance bitmap display.

• Works well for bitmaps tuned for a specific LineDisplay's aspect ratio between horizontal and vertical
 dots.

If width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap
 such that its width is the specified width and the aspect ratio is unchanged. The advantages of this

 option are that it:

• Sizes a bitmap to fit a variety of LineDisplays.

• Maintains the bitmap's aspect ratio.

The disadvantages of this option are:

• Lower performance than untransformed data.

• Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• The LineDisplay does not support bitmap display (CapBitmap is false).
• The width parameter is invalid or too big.
• The alignmentX / alignmentY parameter is invalid or too big.
• The window is not in Immediate Mode.
• The window size does not match its viewport size.
• The bitmap is too large to display at the requested location.

Unified POS, v1.15.1 Beta1 23 - 41

E_NOEXIST The fileName was not found.
E_EXTENDED ErrorCodeExtended = EDISP_TOOBIG:

The bitmap is either too wide to display without transformation, or it is
too big to transform.

ErrorCodeExtended = EDISP_BADFORMAT:
The specified file is either not a bitmap file or it is an unsupported format.

See Also CapBitmap Property, CursorColumn Property, CursorRow Property, CursorUpdate Property.

23 - 42 Unified POS, v1.15.1 Beta1

23.5.7 displayText Method Updated in Release 1.7

Syntax displayText (data: string, attribute: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
data The string of characters to display.3

attribute The display attribute for the text. Must be either DISP_DT_NORMAL,
DISP_DT_BLINK, DISP_DT_REVERSE, or
DISP_DT_BLINK_REVERSE.

Remarks The characters in data are processed beginning at the location specified by CursorRow and
CursorColumn, and continue in succeeding character positions. Any previous data in a character
position is overwritten, including character and bitmap data.
Character processing continues to the next row when the end of a window row is reached. If the end
of the window is reached with additional characters to be processed, then the window is scrolled
upward by one row and the bottom row is set to blanks. If CursorUpdate is true, then CursorRow
and CursorColumn are updated to point to the character position following the last character of
data.

Note
Scrolling will not occur when the last character of data is placed at the end of a row. In this case, when
CursorUpdate is true, then CursorRow is set to the row containing the last character, and CursorColumn is
set to Columns (that is, to one more than the final character of the row).

This stipulation ensures that the display does not scroll when a character is written into its last position. Instead,
the Service will wait until another character is written before scrolling the window.

The operation of displayText (and displayTextAt) varies for each mode:
• Immediate Mode (MarqueeType = DISP_MT_NONE and InterCharacterWait = 0):

Updates the window and viewport immediately.
• Teletype Mode (MarqueeType = DISP_MT_NONE and InterCharacterWait not = 0): data

is enqueued. Enqueued data requests are processed in order (typically by another thread within
the Service), updating the window and viewport using a wait of InterCharacterWait
milliseconds after each character is sent to the viewport.

• Marquee Init Mode (MarqueeType = DISP_MT_INIT): Updates the window, but doesn’t
change the viewport.

• Marquee On Mode (MarqueeType not = DISP_MT_INIT): Illegal.

If CapBlink is DISP_CB_NOBLINK, then attribute value DISP_DT_BLINK is ignored, and attri-
bute DISP_DT_BLINK_REVERSE is treated as DISP_DT_RESERVE. If CapBlink is DISP_C-
B_BLINKALL, then the entire display will blink when one or more characters have been set to
blink. If CapBlink is DISP_CB_BLINKEACH, then only those characters have beense to blink. If
CapBlink is DISP_CB_BLINKEACH, then only those characters displayed with the blink attribute
will blink.

3. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 23 - 43

If CapReverse is DISP_CR_NONE, then attribute value DISP_DT_REVERSE is ignored, and
attribute DISP_DT_BLINK_REVERSE is treated as DISP_DT_BLINK. If CapReverse is
DISP_CR_REVERSEALL, then the entire display will be displayed in reverse video when one or
more characters have been set to reverse. If CapReverse is DISP_CR_REVERSEEACH, then only
those characters displayed with the reverse attribute will be displayed in reverse video.

The attribute parameter value establishes the initial blink and reverse video attributes. Beginning
with Release 1.7, escape sequences within data may be used to set or reset these attributes.
Special character values within data are:

Value Meaning
Carriage Return (13 decimal) Change the next character’s output position to the beginning of

the current row.
Line Feed (10 decimal) Change the next character’s output position to the beginning of

the next row. Scroll the window if the current row is the last row
of the window.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL attribute is illegal, or the display is in Marquee On Mode.

See Also CapBlink Property, CapReverse Property, CursorColumn Property, CursorRow Property,
CursorUpdate Property, InterCharacterWait Property, clearText Method, displayTextAt
Method.

23 - 44 Unified POS, v1.15.1 Beta1

23.5.8 displayTextAt Method Updated in Release 1.7

Syntax displayTextAt (row: int32, column: int32, data: string, attribute: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
row The start row for the text.
column The start column for the text.
data The string of characters to display.4

attribute The display attribute for the text. Must be either DISP_DT_NORMAL,
DISP_DT_BLINK, DISP_DT_REVERSE, or
DISP_DT_BLINK_REVERSE.

Remarks The characters in data are processed beginning at the window location specified by the row and
column parameters, and continuing in succeeding columns.
The operational characteristics of the displayTextAt method are the same as the displayText
method.
This method has the same effect as setting the CursorRow to row, setting CursorColumn to
column, and calling the displayText method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL row or column are out or range, attribute is illegal, or in Marquee On

Mode.
See Also CapBlink Property, CapReverse Property, CursorColumn Property, CursorRow Property,

InterCharacterWait Property, displayText Method, clearText Method.

4. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 23 - 45

23.5.9 readCharacterAtCursor Method Added in Release 1.6

Syntax readCharacterAtCursor (inout cursorData: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
cursorData The character read from the display.

Remarks Reads the currently displayed character at the cursor position.

This function is illegal if CapReadBack is DISP_CRB_NONE.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapReadBack is DISP_CRB_NONE.

See Also CapReadBack Property.

23.5.10 refreshWindow Method

Syntax refreshWindow (window: int32):
 void { raises-exception, use after open-claim-enable }

The window parameter specifies which window must be refreshed.

Remarks Changes the current window to window, then redisplays its viewport. Neither the mapping of the
window to its viewport nor the window’s cursor position is changed.

This function may be used to restore a window after another window has overwritten some of its
viewport.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL window is larger than DeviceWindows or has not been created, or in

Marquee On Mode.

See Also DeviceWindows Property.

23 - 46 Unified POS, v1.15.1 Beta1

23.5.11 scrollText Method Updated in Release 1.7

Syntax scrollText (direction: int32, units: int32):
 void { raises-exception, use after open-claim-enable }

The direction parameter indicates the scrolling direction, and is one of the following values:

Value Meaning
DISP_ST_UP Scroll the window up.
DISP_ST_DOWN Scroll the window down.
DISP_ST_LEFT Scroll the window left.
DISP_ST_RIGHT Scroll the window right.
The units parameter indicates the number of columns or rows to scroll.

Remarks Scrolls the current window.

This function is only legal in Immediate Mode.

If the window size for the scroll direction matches its viewport size, then the window data is
scrolled, the last units rows or columns are set to spaces, and the viewport is updated. If the window
contains bitmap data, it is also scrolled.

If the window size for the scroll direction is larger than its viewport, then the window data is not
changed. Instead, the mapping of the window into the viewport is moved in the specified direction.
The window data is not altered, but the viewport is updated. If scrolling by units would go beyond
the beginning of the window data, then the window is scrolled so that the first viewport row or
column contains the first window row or column. If scrolling by units would go beyond the end of
the window data, then the window is scrolled so that the last viewport row or column contains the
last window row or column.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL direction is illegal, or in Teletype Mode or Marquee Mode.

See Also displayText Method.

Example 1

 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
myLD.createWindow(0, 3, 2, 4, 2, 4); // 2x4 viewport of 2x4 window
myLD.displayText(“abcdABCD”, DISP_DT_NORMAL);
The window contains:

0 1 2 3
0 a b c d
1 A B C D

Unified POS, v1.15.1 Beta1 23 - 47

and the viewport on the display is:

If the application next performs:
myLD.scrollText (DISP_ST_LEFT, 2);

the window data becomes:

and the viewport becomes:

Example 2

- Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
 myLD.createWindow(0, 3, 2, 4, 2, 8); // 2x4 viewport of 2x8 window
 myLD.displayText(“abcdefghABCDEFGH”, DISP_DT_NORMAL);
The window contains:

and the viewport on the display is:

If the application next performs:
myLD.scrollText (DISP_ST_LEFT, 2);

the window data is unchanged, and the viewport becomes:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 a b c d
1 A B C D

0 1 2 3
0 c d
1 C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 c d
1 C D

0 1 2 3 4 5 6 7
0 a b c d e f g h
1 A B C D E F G H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 a b c d
1 A B C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 c d e f
1 C D E F

23 - 48 Unified POS, v1.15.1 Beta1

If the application next performs:
myLD.scrollText (DISP_ST_UP, 1);

the window data becomes:

and the viewport becomes:

0 1 2 3 4 5 6 7
0 A B C D E F G H
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 C D E F
1

Unified POS, v1.15.1 Beta1 23 - 49

23.5.12 setBitmap Method Added in Release 1.7

Syntax setBitmap (bitmapNumber: int32, fileName: string, width: int32, alignmentX: int32,
alignmentY: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
bitmapNumber The number to be assigned to this bitmap. Valid bitmap numbers are 1

through 100.
fileName File name or URL of bitmap file. Various file formats may be supported,

such as bmp, gif, or jpeg files.5
If set to the empty string (“”), then the bitmap is unset.

width Width of the bitmap to be displayed. See values below.
alignmentX Horizontal placement of the bitmap. See values below.
alignmentY Vertical placement of the bitmap. See values below.

The width parameter has one of the following values:
Value Meaning
DISP_BM_ASIS Display the bitmap with one bitmap pixel per dot.
Other values Bitmap width expressed in number of pixels.

The alignmentX parameter has one of the following values:
Value Meaning
DISP_BM_LEFT Align the bitmap’s left edge with the leftmost pixel of the current

character position.
DISP_BM_CENTER Align the bitmap in the horizontal center of the current character position.
DISP_BM_RIGHT Align the bitmap’s right edge with the rightmost pixel of the current

character position.
Other values Distance from the window’s leftmost pixel column to the left edge of the

bitmap, expressed in number of pixels.

The alignmentY parameter has one of the following values:
Value Meaning
DISP_BM_TOP Align the bitmap’s top edge with the topmost pixel of the current

character position.
DISP_BM_CENTER Align the bitmap in the vertical center of the current character position.
DISP_BM_BOTTOM Align the bitmap’s bottom edge with the bottommost pixel of the current

character position.
Other values Distance from the window’s topmost pixel row to the start of the bitmap,

expressed in number of pixels.

5. In the OPOS environment, the Service Object must support two-color (black and white)
uncompressed Windows bitmaps. Black pixels are displayed with the foreground color, while
white pixels are displayed with the background color. Additional formats may be supported.

23 - 50 Unified POS, v1.15.1 Beta1

Remarks Called to save information about a bitmap for later display.

The bitmap may then be displayed by calling the displayText or displayTextAt method with the
display bitmap escape sequence in the display data. The display bitmap escape sequence will
typically be included in a string for displaying advertisements, store logos, or icons. See the
Remarks section of displayBitmap for restrictions on displaying the saved bitmap. If one or more
restrictions are not fulfilled, then the bitmap is not displayed, and the method continues on with the
next character of display data.

A Service may choose to cache the bitmap for later use to provide better performance. Regardless,
the bitmap file and parameters are validated for correctness by this method.

The most frequently used bitmaps should be assigned a small bitmapNumber (close to 1), while
occasionally used bitmaps should be assigned the larger bitmapNumbers. The Service will use this
information to determine how best to store the bitmaps. It may download them to the device when
possible, or cache them in Service memory, or simply remember the fileName and associated
properties for use when it is displayed.

An application must ensure that the LineDisplay window metrics, such as viewport width and
height, are set before calling this method. A Service may perform transformations on the bitmap in
preparation for later displaying based on the current values of these metrics.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• The bitmapNumber parameter is invalid.
• The LineDisplay does not support bitmap display (CapBitmap is false).
• The width parameter is invalid or too big.
• The alignmentX or alignmentY parameter is invalid or too big.

E_NOEXIST The fileName was not found.
E_EXTENDED ErrorCodeExtended = EDISP_TOOBIG:

The bitmap is either too wide to display without transformation, or it is
too big to transform.
ErrorCodeExtended = EDISP_BADFORMAT:
The specified file is either not a bitmap file or it is an unsupported format.

See Also CapBitmap Property, displayBitmap Method, displayText Method, displayTextAt Method.

Unified POS, v1.15.1 Beta1 23 - 51

23.5.13 setDescriptor Method

Syntax setDescriptor (descriptor: int32, attribute: int32):
 void { raises-exception, use after open-claim-enable }
The descriptor parameter indicates which descriptor to change. The value may range between zero
and one less than DeviceDescriptors.
The attribute parameter indicates the attribute for the descriptor. It has one of the following values:
Value Meaning
DISP_SD_ON Turns the descriptor on.
DISP_SD_BLINK Sets the descriptor to blinking.
DISP_SD_OFF Turns the descriptor off.

Remarks Sets the state of one of the descriptors, which are small indicators with a fixed label.
This function is illegal if CapDescriptors is false.
The device and its Service determine the mapping of descriptor to its descriptors.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not support descriptors, or one of the parameters con
tained an illegal value.

See Also clearDescriptors Method, DeviceDescriptors Property, CapDescriptors Property.

23 - 52 Unified POS, v1.15.1 Beta1

23.6 Events (UML interfaces)

23.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Line Display Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Line Display devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

23.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Line Display.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a display.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Line Display detects a power state change.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 24 - 1

24 MICR - Magnetic Ink Character Recognition Reader

24.1 General
This Chapter defines the MICR - Magnetic Ink Character Recognition Reader device category.

24.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 open
DataEventEnabled: boolean { read-write } 1.0 open
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

24 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
AccountNumber: string { read-only } 1.0 open
Amount: string { read-only } 1.0 open
BankNumber: string { read-only } 1.0 open
CapValidationDevice: boolean { read-only } 1.0 open
CheckType: int32 { read-only } 1.0 open
CountryCode: int32 { read-only } 1.0 open
EPC: string { read-only } 1.0 open
RawData: string { read-only } 1.0 open
SerialNumber: string { read-only } 1.0 open
TransitNumber: string { read-only } 1.0 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

Unified POS, v1.15.1 Beta1 24 - 3

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
1.0

beginRemoval (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.0

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.0

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.0

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.0
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.0
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

24 - 4 Unified POS, v1.15.1 Beta1

24.3 General Information
The MICR - Magnetic Ink Character Recognition Reader programmatic name is “MICR.”

24.3.1 Capabilities

The MICR Control has the following minimal set of capabilities:

• Reads magnetic ink characters from a check.

• Provides programmatic control of check insertion, reading and removal. For some MICR devices, this will require
 no processing in the Service since the device may automate many of these functions.

• Parses the MICR data into output properties. This version of the specification defines the parsing of fields as
 specified in the ANSI MICR standard used in North America. For other countries, the application may need to parse
 the MICR data from the data in RawData.

The MICR device may be physically attached to or incorporated into a check validation print device. If this is the
case, once a check is inserted via MICR Control methods, the check can still be used by the Printer Control prior
to check removal.

Some MICR devices support exception tables, which cause non-standard parsing of the serial number for specific
check routing numbers. Exception tables are not directly supported by this specification release. However, a
Service may choose to support them, and could assign entries under its device name to define the exception
entries.

This release of the specification does not define any parsing of partial MICR check data if an error occurs while
reading a check. This is done intentionally since any Service that implements such functionality cannot guarantee
that fields parsed from partial data are correct. For example, it is possible to get MICR data that contains no ‘?’
characters, but fails its checksum. This would indicate that one or more characters in the data are incorrect, but
there is no way to determine which characters they are. If an application wishes to try and parse the partial data
itself, the RawData property is filled in with whatever was read even in error cases.

Unified POS, v1.15.1 Beta1 24 - 5

24.3.2 MICR Class Diagram

The following diagram shows the relationships between the MICR classes.

UposException

(from upos)

<<exception>> UposConst
(from upos)

<<utili ty>>

MICRConst

(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

MICRControl

<<capability>> CapValidationDevice : boolean
<<prop>> AccountNumber : string
<<prop>> Amount : string
<<prop>> BankNumber : string
<<prop>> CheckType : int32
<<prop>> CountryCode : int32
<<prop>> EPC : string
<<prop>> RawData : string
<<prop>> SerialNumber : string
<<prop>> TransitNumber : string

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
endInsertion() : void
endRemoval() : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

f ires

BaseControl
(from upos)

<<Interface>> <<uses>>

<<sends>>

24 - 6 Unified POS, v1.15.1 Beta1

24.3.3 MICR Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of the MICR device. This also demonstrate the usage
of the “Device Input Model” and how that works with DataEventEnabled; also shows the steps in the check
removal process.

:ClientApp :MICR :MICRService:DataEvent

1: claim(timeout)

2: claim(timeout)

5: setDeviceEnabled(true)
6: setDeviceEnabled(true)

7: setDataEventEnabled(true)
8: setDataEventEnabled(true)

NOTE: we are assuming that the :Cl ientApp(s) al ready successful ly opened the controls. This means that the platform specific
loading/configuration/creation code executed successfully. We also assume that the appl ication al ready registered some event handlers wi th the controls.

Further initialization of the
service should be done at
this point

9: beginInsertion(timeout)
10: beginInsertion(timeout)

11: endInsertion() 12: endInsertion()

13: new

14: copy data to new DataEvent

15: enqueue DataEvent to
service's internal queue

16: parse and set MICR properties, DataCount++ and del iver
DataEvent [DataEventEnabled == true && FreezeEvents == false]

19: beginRemoval(timeout)

20: beginRemoval(timeout)

21: indicate user to start removing check

22: endRemoval()

23: endRemoval()

3: setDataEventEnabled(false)
4: setDataEventEnabled(false)

Detect check
insertion and
gather check data

17: del iver event to all registered handlers18: notify client of new event

Right before the DataEvent is
delivered set DataEventEnabled to
false and DataCount--.

Unified POS, v1.15.1 Beta1 24 - 7

24.3.4 Model

The MICR Device follows the general “Device Input Model” for input devices. One point of difference is that
the MICR Device requires the invocation of methods to insert and remove the check for processing. Therefore,
this Device requires more than simply setting the DataEventEnabled property to true in order to receive data.
The basic model is as follows:

• The MICR Control is opened, claimed, and enabled.

• When an application wishes to perform a MICR read, the application calls beginInsertion, specifying a timeout
 value. This results in the device being made ready to have a check inserted. If the check is not inserted before the
 timeout limit expires, a UposException is raised.

In the event of a timeout, the MICR device will remain in a state allowing a check to be inserted while the
application provides any additional prompting required and then reissues the beginInsertion method.

• Once a check is inserted, the method returns and the application calls endInsertion, which results in the MICR
 device being taken out of check insertion mode and the check, if present, actually being read.

• If the check is successfully read, a DataEvent is enqueued.

• If the AutoDisable property is true, then the Device automatically disables itself when a DataEvent is enqueued.

• A queued DataEvent can be delivered to the application when DataEventEnabled is true and other event delivery
 requirements are met. Just before delivering this event, data is copied into properties, and further data events are
 disabled by setting DataEventEnabled to false. This causes subsequent input data to be enqueued while the
 application processes the current input and associated properties. When the application has finished processing the
 current input and is ready for more data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while reading the check, and is delivered to the
 application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of enqueued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
 default values by calling the clearInputProperties method.

• After processing a DataEvent, the application should query the CapValidationDevice property to determine if
 validation printing can be performed on the check prior to check removal. If this property is true, the application
 may call the Printer Service’s beginInsertion and endInsertion methods. This positions the check for validation
 printing. The POS Printer’s validation printing methods can then be used to perform validation printing. When
 validation printing is complete, the application should call the Printer Service’s removal methods to remove the
check.

• Once the check is no longer needed in the device, the application must call the beginRemoval method of the MICR,
 or the Check Scanner (if the device can also scan checks), or the POS Printer (if CapValidationDevice is true),
 specifying a timeout value. This method will raise a UposException if the check is not removed within the timeout
 period. In this case, the application may perform any additional prompting prior to calling the method again. Once
 the check is removed, the application should call the same device’s endRemoval method to take the device out of
 removal mode.

24 - 8 Unified POS, v1.15.1 Beta1

Many models of MICR devices do not require any check handling processing from the application. Such MICR
devices may always be capable of processing a check and require no commands to actually read and eject the
check. For these types of MICR devices, the beginInsertion, endInsertion, beginRemoval, and endRemoval
methods simply return, and input data will be enqueued until the DataEventEnabled property is set to true.
However, applications should still use these methods to ensure application portability across different MICR
devices.

24.3.5 Device Sharing

The MICR is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling methods
 that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 24 - 9

24.3.6 MICR - Character Substitution Updated in Release 1.13

The E-13B MICR format defined by the ANSI MICR standard contains 15 possible characters. Ten of these are
the numbers 0 through 9. A space character may also be returned. The other four characters are special to MICR
data and are known as the Transit, Amount, On-Us, and Dash characters. These character are used to mark the
boundaries of certain special fields in MICR data. Since these four characters are not in the ASCII character set,
the following lower-case characters will be used to represent them in properties and in parameters to methods:

The CMC-7 MICR format defined by the ISO (1004) standard contains 16 possible characters. Ten of these
characters are the numbers 0 through 9. A space character may also be returned. The other five characters are
special to MICR data and are known as the Internal, Terminator, Amount, Routing, and Unused characters. These
character are used to mark the boundaries of certain special fields in MICR data. Since these five characters are
not defined in the ASCII character set, the following lower-case characters will be used to represent them in
Properties and as Parameters used with methods:

MICR Character Name Substitute Character

Transit t

Amount a

On-Us o

 Dash -

M IC R C ha ra cte r N am e S ubstitu te C ha ra cter

A Inte rn al i

B T e rm inato r t

C A m o unt a

D U nu sed u

E
Ro uting r

24 - 10 Unified POS, v1.15.1 Beta1

CMC-7 support was formally added to Release 1.13 of this specification. Previously it was not clearly stated
which substitute characters a service should use for the RawData property. Prior to Release 1.13, different
vendors’ services may use different sets of substitue characters. In order to maintain application backward
compatibility with previous versions, service vendors are required to provide a configuration mechanism for the
substitute character set.

Unified POS, v1.15.1 Beta1 24 - 11

24.4 Properties (UML attributes)

24.4.1 AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number parsed from the most recently read MICR data.

This account number will not include a check serial number if a check serial number is able to be
separately parsed, even if the check serial number is embedded in the account number portion of the
‘On Us’ field. If the account number cannot be identified, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

24.4.2 Amount Property

Syntax Amount: string { read-only, access after open }

Remarks Holds the amount field parsed from the most recently read MICR data.

The amount field on a check consists of ten digits bordered by Amount symbols. All non space digits
will be represented in the test string including leading 0’s. If the amount is not present, the string
will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

24.4.3 BankNumber Property

Syntax BankNumber: string { read-only, access after open }

Remarks Holds the bank number portion of the transit field parsed from the most recently read MICR data.

The bank number is contained in digits 5 through 8 of the transit field. If the bank number or transit
field is not present or successfully identified, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, TransitNumber Property, DataEvent.

24 - 12 Unified POS, v1.15.1 Beta1

24.4.4 CapValidationDevice Property

Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks If true, the device also performs validation printing via the POS Printer’s slip station, and a check
does not have to be removed from the MICR device prior to performing validation printing.

For devices that are both a MICR device as well as a POS Printer, the device will automatically
position the check for validation printing after successfully performing a MICR read. Either the
MICR’s or the POS Printer’s beginRemoval and endRemoval methods may be called to remove
the check once processing is complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

24.4.5 CheckType Property

Syntax CheckType: int32 { read-only, access after open }

Remarks Holds the type of check parsed from the most recently read MICR data. It has one of the following
values:

Value Meaning
MICR_CT_PERSONAL The check is a personal check.

MICR_CT_BUSINESS The check is a business or commercial check.

MICR_CT_UNKNOWN Unknown type of check.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

Unified POS, v1.15.1 Beta1 24 - 13

24.4.6 CountryCode Property Updated in Release 1.13

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds the country of origin of the check parsed from the most recently read MICR data. Or, if the
country cannot be determined, indicates the check font. It has one of the following values:

Value Meaning
MICR_CC_USA The check is from America.

MICR_CC_CANADA The check is from Canada.

MICR_CC_MEXICO The check is from Mexico.

MICR_CC_UNKNOWN Check origination is unknown. The check font
is E-13B.

MICR_CC_CMC7 Check origination is unknown. The check font
is CMC-7.

MICR_CC_OTHER Check origination is unknown. The check font
is either OCR-A or OCR-B.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

24.4.7 EPC Property

Syntax EPC: string { read-only, access after open }

Remarks Holds the Extended Processing Code (“EPC”) field parsed from the most recently read MICR data.
It will contain a single character 0 though 9 if the field is present. If not, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

24 - 14 Unified POS, v1.15.1 Beta1

24.4.8 RawData Property Updated in Release 1.13

Syntax RawData: string { read-only, access after open }

Remarks Holds the MICR data from the most recent MICR read. It contains any of the MICR characters with
appropriate substitution to represent non-ASCII characters (see “MICR Character Substitution”,
page 23-9). No parsing or special processing is done to the data returned in this property.

A sample value for E-13B may look like the following:

“2t123456789t123 4 567890o 123 a0000001957a”

A sample value for CMC-7 may look like the following:

“a0123456 a012345678901r 012345678901i 0000001957t”

Note that spaces are used to represent spaces in the MICR data. Its value is set prior to a DataEvent
being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also AccountNumber Property, Amount Property, BankNumber Property, CheckType Property,
CountryCode Property, EPC Property, SerialNumber Property, TransitNumber Property,
DataEvent.

24.4.9 SerialNumber Property

Syntax SerialNumber: string { read-only, access after open }

Remarks Holds the serial number of the check parsed from the most recently read MICR data.

If the serial number cannot be successfully parsed, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

24.4.10 TransitNumber Property

Syntax TransitNumber: string { read-only, access after open }

Remarks Holds the transit field of the check parsed from the most recently read MICR data. It consists of all
the characters read between the ‘Transit’ symbols on the check. It is a nine character string.
Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property, DataEvent.

Unified POS, v1.15.1 Beta1 24 - 15

24.5 Methods (UML operations)

24.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
 void { raises-exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if successful. Otherwise
a UposException is raised. If FOREVER (-1), the method initiates the begin insertion mode, then
waits as long as needed until either the check is inserted or an error occurs.

Remarks Initiates check insertion processing.

When called, the MICR is made ready to receive a check by opening the MICR’s check handling
“jaws” or activating a MICR’s check insertion mode. This method is paired with the endInsertion
method for controlling check insertion. Although some MICR devices do not require this sort of
processing, the application should still use these methods to ensure application portability across
different MICR devices.

If the MICR device cannot be placed into insertion mode, a UposException is raised. Otherwise,
check insertion is monitored until either:

• The check is successfully inserted.

• The check is not inserted before timeout milliseconds have elapsed, or an error is reported by
the MICR device. In this case, a UposException is raised. The MICR device remains in check
insertion mode. This allows an application to perform some user interaction and reissue the be-
ginInsertion method without altering the MICR check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the MICR is a combination device, the peer device may be busy.

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

24 - 16 Unified POS, v1.15.1 Beta1

24.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
 void { raises-exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if successful. Otherwise
a UposException is raised. If FOREVER (-1), the method initiates the begin removal mode, then
waits as long as needed until either the check is removed or an error occurs.

Remarks Initiates check removal processing.

When called, the MICR is made ready to remove a check, by opening the MICR’s check handling
“jaws” or activating a MICR’s check ejection mode. This method is paired with the endRemoval
method for controlling check removal. Although some MICR devices do not require this sort of
processing, the application should still use these methods to ensure application portability across
different MICR devices.

If the MICR device cannot be placed into removal or ejection mode, a UposException is raised.
Otherwise, check removal is monitored until either:

• The check is successfully removed.

• The check is not removed before timeout milliseconds have elapsed, or an error is reported by
the MICR device. In this case, a UposException is raised. The MICR device remains in check
removal mode. This allows an application to perform some user interaction and reissue the
beginRemoval method without altering the MICR check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the MICR is a combination device, the peer device may be busy.

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the check being properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 24 - 17

24.5.3 endInsertion Method

Syntax endInsertion ():
 void { raises-exception, use after open-claim-enable }

Remarks Ends check insertion processing.

When called, the MICR is taken out of check insertion mode. If a check is not detected in the device,
a UposException is raised with an extended error code of EMICR_NOCHECK. After a successful
endInsertion, if a check is detected, the check will be read by the MICR device and either a
DataEvent or ErrorEvent will be delivered. Data will be available as soon as the
DataEventEnabled property is set to true. This allows an application to prompt the user prior to
calling this method to ensure that the form is correctly positioned.

This method is paired with the beginInsertion method for controlling check insertion. Although
some MICR devices do not require this sort of processing, the application should still use these
methods to ensure application portability across different MICR devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in check insertion mode.

E_EXTENDED ErrorCodeExtended = EMICR_NOCHECK:
The device was taken out of insertion mode without a check being
inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

24 - 18 Unified POS, v1.15.1 Beta1

24.5.4 endRemoval Method

Syntax endRemoval ():
 void { raises-exception, use after open-claim-enable }

Remarks Ends check removal processing.

When called, the MICR is taken out of check removal or ejection mode. If a check is detected in the
device, a UposException is raised with an extended error code of EMICR_CHECK.

This method is paired with the beginRemoval method for controlling check removal. Although
some MICR devices do not require this sort of processing, the application should still use these
methods to ensure application portability across different MICR devices.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in check removal mode.

E_EXTENDED ErrorCodeExtended = EMICR_CHECK:
The device was taken out of removal mode while a check is still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

Unified POS, v1.15.1 Beta1 24 - 19

24.6 Events (UML interfaces)

24.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when MICR data is read from a check and is available to be read.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Set to zero.

Before delivering this event, the RawData property is updated and the data is parsed (if possible)
into the MICR data fields.

See Also “Device Input Model” on page 1- 18, “Events” on page 1- 15, RawData Property,
AccountNumber Property, Amount Property, BankNumber Property, CheckType Property,
CountryCode Property, EPC Property, SerialNumber Property, TransitNumber Property.

24.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific MICR Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.
 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise

described as part of the JavaPOS standard. Use of this event may restrict the application program
from being used with other vendor’s MICR devices which may not have any knowledge of the
Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

24 - 20 Unified POS, v1.15.1 Beta1

24.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected when reading MICR data.
Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes on page

1-21.
ErrorCodeExtended

int32 Extended Error Code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED then ErrorCodeExtended contains one of the following values:
Value Meaning
EMICR_BADDATA An unreadable character was detected during input processing. The

RawData property will contain partial data if available, otherwise it will
be an empty string.

EMICR_NODATA The entire input data stream was unreadable. No data is available.
EMICR_BADSIZE The length of the check was beyond the expected readable range. The

RawData property will contain partial data if available, otherwise it will
be an empty string.

EMICR_JAM The check insertion process has caused a paper jam. No data is available.
EMICR_CHECKDIGIT The check digit verification has failed even though there was no error

during input processing. The RawData property will contain partial data
if available, otherwise it will be an empty string.

EMICR_COVEROPEN The check insertion process failed due to the POSPrinter cover being
open. No data is available.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

Unified POS, v1.15.1 Beta1 24 - 21

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT

Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks This event is not delivered until DataEventEnabled is true and other event delivery requirements
are met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 1- 18, “Device Information Reporting Model” on page 1- 25.

24.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a MICR device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a MICR device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 1.

Remarks Enqueued when the MICR device detects a power state change.

See Also “Events” on page 1- 15.

24 - 22 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 25 - 1

25 Motion Sensor

25.1 General
This Chapter defines the Motion Sensor device category.

25.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.7 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.7 open
Claimed: boolean { read-only } 1.7 open
DataCount: int32 { read-only } 1.7 Not supported
DataEventEnabled: boolean { read-write } 1.7 Not supported
DeviceEnabled: boolean { read-write } 1.7 open
FreezeEvents: boolean { read-write } 1.7 open
OutputID: int32 { read-only } 1.7 Not supported
PowerNotify: int32 { read-write } 1.7 open
PowerState: int32 { read-only } 1.7 open
State: int32 { read-only } 1.7 --

DeviceControlDescription: string { read-only } 1.7 --
DeviceControlVersion: int32 { read-only } 1.7 --
DeviceServiceDescription: string { read-only } 1.7 open
DeviceServiceVersion: int32 { read-only } 1.7 open
PhysicalDeviceDescription: string { read-only } 1.7 open
PhysicalDeviceName: string { read-only } 1.7 open

Timeout: int32 { read-write } 1.7 open & enable
Motion: boolean { read-only } 1.7 open & enable

25 - 2 Unified POS, v1.15.1 Beta1

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.7

close ():
void { raises-exception, use after open }

1.7

claim (timeout: int32):
void { raises-exception, use after open }

1.7

release ():
void { raises-exception, use after open, claim }

1.7

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.7

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.7

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
waitForMotion(timeout: int32):

void { raises-exception, use after open, enable }
1.7

Unified POS, v1.15.1 Beta1 25 - 3

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.7
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.7
 Status: int32 { read-only }

25 - 4 Unified POS, v1.15.1 Beta1

25.3 General Information
The Motion Sensor programmatic name is “MotionSensor”.

25.3.1 Capabilities

The Motion Sensor has the following minimal set of capabilities:

• Supports detection of person present at POS device

• Supports reporting of motion detection changes, either by hardware or software detection.

25.3.2 Motion Sensor Class Diagram

The following diagram shows the relationships between the Motion Sensor classes.

UposException
(from upos)

<<exception>> UposConst
(from upos)

<<utility>>

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>

MotionSensorConst
<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>> MotionSensorControl
<<prop>> Mot ion : boolean
<<prop>> Timeout : int32

waitForMotion(timeout : int32) : void

<<Interface>>
<<uses>>

f ires

<<sends>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

Unified POS, v1.15.1 Beta1 25 - 5

25.3.3 Model

The Motion Sensor defines two Motion Sensor indications as constants. It is assumed that the Motion Sensor
supports present and absent indications. The constants for these Motion Sensor positions and their values are as
follows:

• MOTION_M_PRESENT1

• MOTION_M_ABSENT2

StatusUpdateEvents are fired using the above values. The Timeout value is used to set the number of
milliseconds between the last time someone was present and a MOTION_M_ABSENT StatusUpdateEvent
being fired.

25.3.4 Device Sharing

The Motion Sensor is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive status
 update events.

• If more than one application has opened and enabled the device, each of these applications may access its properties
 and methods. Status update events are fired to all of these applications.

• The Motion Sensor may not be claimed for exclusive access. Therefore, if an application calls claim or release,
 these methods will always raise a UposException.

• See the “Summary” table for precise usage prerequisites.

25 - 6 Unified POS, v1.15.1 Beta1

25.3.5 Motion Sensor Sequence Diagram

The following sequence diagram shows the typical usage of the Motion Sensor device.

:ClientApp1:ClientApp0 ms0:MotionSensor ms1:MotionSensor :StatusUpdate
Event

:MotionSensor
Service0

:MotionSensor
Service1

:MotionSensor
Hardware

:Operator

Note: we are assuming that the :ClientApp0 already successfully opened the controls. This means that the platform specific loading/config/creation
code executed successfully. We are also assuming that the :ClientApp has registered event handlers with the control instance.

1: setDeviceEnabled(true) 2: setDeviceEnabled(true)

3: service will need to update itself of current Keylock position

4: getMotion() 5: getMotion()

Current "Motion" position
is returned to the control

6: Operator steps within Motion Detection range
7: notify MotionSensor Service of change

8: deliver SUE to control [FreezeEvents == false]

9: deliver event to all registered handlers
10: notify client of new event

11: create and register an event handler with control

12: open(logicalName) 13: open(logical Name)

14: setDeviceEnabled(true) 15: setDeviceEnabled(true)

16: Operator steps within Motion Detection rang
17: notify service of change

18: deliver SUE to control [FreezeEvents == false]

19: deliver event to all registered handlers

21: notify service of change

Actual order of
delivery from
hardware to service
might vary

22: deliver SUE to control [FreezeEvents == false]

23: deliver events to all registered listeners

20: notify client of new event

24: notify client of new event

25: claim(timeout)
26: claim(t imeout)

27: throws UposException to :ClientApp since Motion Sensor cannot be claimed

Unified POS, v1.15.1 Beta1 25 - 7

25.3.6 Motion Sensor State Diagram

The following state diagram depicts the Motion Sensor Control device model.

Closed Openedopen()

close()

Enabled

close()

Motion Detection

Operator Absent

Enqueue Status
Update Event

Motion Detected

Operator in
Range

Timer
Running

enqueue Status
Update Event

setDeviceEnabled(true)
setDeviceEnabled(false)

Operator Absent

Enqueue Status
Update Event

Motion Detected

Operator in
Range

Timer
Running

enqueue Status
Update Event

Operator in
Range

Timer
Running

enqueue Status
Update Event

Operator Detected

Start Timer

Reset Timer
Keep checking

Operator out of range

Timer Expired

Enqueue Status
Update Event

Timer expired

25 - 8 Unified POS, v1.15.1 Beta1

25.4 Properties (UML attributes)

25.4.1 Motion Property

Syntax Motion: boolean { read-only, access after open-enable }

Remarks Holds a boolean value that indicates whether motion has been detected. This property is initialized
and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

25.4.2 Timeout Property

Syntax Timeout: int32 { read-write, access after open-enable }

Remarks Holds a value that indicates the number of milliseconds from the last time motion was detected until
the StatusUpdateEvent of MOTION_M_ABSENT is fired.

This property needs to be application specific for a shared device. If several applications are sharing
the device, each application may set an independent timeout value, and each application will receive
StatusUpdateEvents according to its supplied timeout.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also StatusUpdateEvent.

Unified POS, v1.15.1 Beta1 25 - 9

25.5 Methods (UML operations)

25.5.1 waitForMotion Method

Syntax waitForMotion (timeout: int32):
 void { raises-exception, use after open-enable }

Parameter Description
timeout Maximum number of milliseconds for the Motion Sensor to wait for a

person to be present before returning control back to the application.
If zero, the method returns immediately.

If FOREVER (-1), the method waits as long as needed until motion is
detected or an error occurs.

Remarks Waits for a presence detection from the Motion Sensor.
If the Motion Sensor detects someone is present, then the method returns immediately.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_TIMEOUT The timeout period expired before motion was detected.

25 - 10 Unified POS, v1.15.1 Beta1

25.6 Events (UML interfaces)

25.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Motion Sensor Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Motion Sensor devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 25 - 11

25.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the Motion Sensor detects a change.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status of the Motion Sensor.

The Status attribute has one of the following values:

Value Description
MOTION_M_PRESENT Motion Sensor has detected someone is present. Value is one (1).

MOTION_M_ABSENT Motion Sensor has detected no one has been present for the number of
milliseconds specified in Timeout. Value is two (2).

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks This event is enqueued when a Motion Sensor detection undergoes a change or if Power State
Reporting is enabled and a change in the power state is detected.

See Also Timeout Property, “Events” on page 1- 15.

25 - 12 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 26 - 1

26 MSR - Magnetic Stripe Reader

26.1 General
This Chapter defines the Magnetic Stripe Reader device category.

26.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 open
DataEventEnabled: boolean { read-write } 1.0 open
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

26 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapCardAuthentication: string { read-only } 1.12 open
CapDataEncryption: int32 { read-only } 1.12 open
CapDeviceAuthentication: int32 { read-only } 1.12 open
CapISO: boolean { read-only } 1.0 open
CapJISOne: boolean { read-only } 1.0 open
CapJISTwo: boolean { read-only } 1.0 open
CapTrackDataMasking: boolean { read-only } 1.12 open
CapTransmitSentinels: boolean { read-only } 1.5 open
CapWritableTracks: int32 { read-only } 1.10 open
AccountNumber: string { read-only } 1.0 open
AdditionalSecurityInformation: binary { read-only } 1.12 open
CardAuthenticationData: binary { read-only } 1.12 open
CardAuthenticationDataLength: int32 { read-only } 1.12 open
CardPropertyList: string { read-only } 1.12 open
CardType: string { read-only } 1.12 open
CardTypeList: string { read-only } 1.12 open
DataEncryptionAlgorithm: int32 { read-write } 1.12 open & claim
DecodeData: boolean { read-write } 1.0 open
DeviceAuthenticated: boolean { read-only } 1.12 open, claim, & enable
DeviceAuthenticationProtocol: int32 { read-only } 1.12 open
EncodingMaxLength: int32 { read-only } 1.10 open, claim, & enable
ErrorReportingType: int32 { read-write } 1.2 open
ExpirationDate: string { read-only } 1.0 open
FirstName: string { read-only } 1.0 open
MiddleInitial: string { read-only } 1.0 open
ParseDecodeData: boolean { read-write } 1.0 open
ServiceCode: string { read-only } 1.0 open
Suffix: string { read-only } 1.0 open
Surname: string { read-only } 1.0 open
Title: string { read-only } 1.0 open
Track1Data: binary { read-only } 1.0 open
Track1DiscretionaryData: binary { read-only } 1.0 open
Track1EncryptedData: binary { read-only } 1.12 open
Track1EncryptedDataLength: int32 { read-only } 1.12 open
Track2Data: binary { read-only } 1.0 open
Track2DiscretionaryData: binary { read-only } 1.0 open

Unified POS, v1.15.1 Beta1 26 - 3

Track2EncryptedData: binary { read-only } 1.12 open
Track2EncryptedDataLength: int32 { read-only } 1.12 open
Track3Data: binary { read-only } 1.0 open
Track3EncryptedData: binary { read-only } 1.12 open
Track3EncryptedDataLength: int32 { read-only } 1.12 open
Track4Data: binary { read-only } 1.5 open
Track4EncryptedData: binary { read-only } 1.12 open
Track4EncryptedDataLength: int32 { read-only } 1.12 open
TracksToRead: int32 { read-write } 1.0 open
TracksToWrite: int32 { read-write } 1.10 open, claim, & enable
TransmitSentinels: boolean { read-write } 1.5 open
WriteCardType: string { read-write } 1.12 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

26 - 4 Unified POS, v1.15.1 Beta1

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

Specific
authenticateDevice (response: binary):

void { raises-exception, use after open, claim, enable }
1.12

deauthenticateDevice (response: binary):
void { raises-exception, use after open, claim, enable }

1.12

retrieveCardProperty (name: string, out value: string):
void { raises-exception, use after open, claim }

1.12

retrieveDeviceAuthenticationData (inout challenge: binary):
void { raises-exception, use after open, claim, enable }

1.12

updateKey (key: string, keyName: string):
void { raises-exception, use after open, claim, enable }

1.12

writeTracks (data: array of binary, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.10

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.0
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.0
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 26 - 5

26.3 General Information
The Magnetic Stripe Reader programmatic name is “MSR.”

26.3.1 Capabilities Updated in Release 1.12

The MSR device class supports attachment of a card reader to provide input to the application from a card
inserted (swiped) through the reader. The targeted environment is electronic funds data such as an account
number, customer name, etc. from a magnetically encoded credit and/or debit card.

The MSR Control has the following minimal set of capabilities:

• Reads encoded data from a magnetic stripe. Data is obtainable from any combination of ISO or JIS-I tracks 1,2, 3,
 and JIS-II.

• Supports decoding of the alphanumeric data bytes into their corresponding alphanumeric codes. Furthermore, this
 decoded alphanumeric data may be divided into specific fields accessed as device properties.

The MSR Control may have the following additional capabilities:

• Support for specific card types: ISO, JIS Type I and/or JIS Type II. Note: for the purpose of this standard, the
 following convention is assumed:

• Track 1 is ISO or JIS-I Track 1

• Track 2 is ISO or JIS-I Track 2

• Track 3 is ISO or JIS-I Track 3

• Track 4 is JIS-II data

• Determination of the type of card is based on the type of content the card tracks are expected to hold.

• Support for optionally returning the track sentinels with track data.

• Support for writing data to the MSR track(s).

• Supports the reading of driver licenses and other cards formatted according to the AAMVA specification. This
 specification can be downloaded from the following web site: http://www.aamva.org/.

• Support for returning track data in an encrypted format to prevent the loss of potentially sensitive card holder
 information.

• Support for returning masked track data to the application when the track data is encrypted.

• Support for returning a card authentication data for the purpose of determining if the swiped card is the original or a
 duplicate.

• Support for device/host based mutual authentication for the purpose of detecting and preventing phishing/man-in-
 the-middle attacks.

http://www.aamva.org/
http://www.aamva.org/

26 - 6 Unified POS, v1.15.1 Beta1

26.3.1.1 Clarifications for JIS-II Data Handling

Prior to Version 1.5 of this specification, it was not clearly stated how the Control should treat JIS-II data and
into which of the TracknData properties the data should be stored. This version of the specification defines
Track4Data, which the Control should use to store JIS-II data. However, in order to maintain application
backward compatibility with previous versions, the Control may also store the JIS-II data into the previously
used TracknData property. In such cases, the DataEvent Status and the ErrorEvent ErrorCodeExtended
attributes should be set to reflect both Track4Data and TracknData. Note that applications that use this
particular method of accessing JIS-II data may not be portable across Controls.

Unified POS, v1.15.1 Beta1 26 - 7

26.3.2 MSR Class Diagram Updated in Release 1.12

The following diagram shows the relationships between the MSR classes.

MSRConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

MSRControl

<<capability>> CapCardAuthentication : string
<<capability>> CapDataEncryption : int32
<<capability>> CapDeviceAuthentication : int32
<<capability>> CapISO : boolean
<<capability>> CapJISOne : boolean
<<capability>> CapJISTwo : boolean
<<capability>> CapTrackDataMasking : boolean
<<capability>> CapTransmitSentinels : boolean
<<capability>> CapWritableTracks : int32
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : binary
<<prop>> CardAuthenticationData : binary
<<prop>> CardAuthenticationDataLength : int32
<<prop>> CardPropertyList : string
<<prop>> CardType : string
<<prop>> CardTypeList : string
<<prop>> DataEncryptionAlgorithm : int32
<<prop>> DecodeData : boolean
<<prop>> DeviceAuthenticated : boolean
<<prop>> DeviceAuthenticationProtocol : int32
<<prop>> EncodingMaxLength : int32
<<prop>> ErrorReportingType : int32
<<prop>> ExpirationDate : string
<<prop>> FirstName : string
<<prop>> MiddleInitial : string
<<prop>> ParseDecodeData : boolean
<<prop>> ServiceCode : string
<<prop>> Suffix : string
<<prop>> Surname : string
<<prop>> Title : string
<<prop>> Track1Data : binary
<<prop>> Track1DiscretionaryData : binary
<<prop>> Track1EncryptedData : binary
<<prop>> Track1EncryptedDataLength : int32
<<prop>> Track2Data : binary
<<prop>> Track2DiscretionaryData : binary
<<prop>> Track2EncryptedData : binary
<<prop>> Track2EncryptedDataLength : int32
<<prop>> Track3Data : binary
<<prop>> Track3EncryptedData : binary
<<prop>> Track3EncryptedDataLength : int32
<<prop>> Track4Data : binary
<<prop>> Track4EncryptedData : binary
<<prop>> Track4EncryptedDataLength : int32
<<prop>> TracksToRead : int32
<<prop>> TracksToWrite : int32
<<prop>> TransmitSentinels : boolean
<<prop>> WriteCardType : string

authenticateDevice(response : binary) : void
deauthenticateDevice(response : binary) : void
retrieveCardProperty(name : string, inout value : string) : void
retrieveDeviceAuthenticationData(inout challenge : binary) : void
updateKey(key : string, keyName : string) : void
writeTracks(data : array of binary, timeout : int32) : void

(from upos)

<<Interface>>

fires

fires

fires

fires

<<uses>>

UposConst
(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>><<uses>>

UposException
(from upos)

<<exception>>

<<sends>>

<<sends>>

26 - 8 Unified POS, v1.15.1 Beta1

26.3.3 Device Behavior Model Updated in Release 1.12

The general device behavior model of the MSR is:

• Five unique writable properties control MSR data handling:

• The TracksToRead property controls which combination of the tracks should be read. It is not an error to swipe a
 card containing less than this set of tracks. Rather, this property should be set to the set of tracks that the application
 may need to process.

• The DecodeData property controls decoding of track data from raw into displayable data.

• The ParseDecodeData property controls parsing of decoded data into fields, based on common MSR standards.

• The ErrorReportingType property controls the type of handling that occurs when a track containing invalid data is
 read.

• The DataEncryptionAlgorithm property controls the type of encryption (if any) that the device should use.

26.3.3.1 Input MSR Updated in Release 1.12

The MSR follows the general “Device Input Model” for event-driven input:

• When input is received from the card reader generated by the card swipe, a DataEvent is enqueued.

• If the AutoDisable property is true, the device will automatically disable itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
 other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
 properties, and further data events are disabled by setting the DataEventEnabled property to false. This causes
 subsequent input data to be enqueued while the application processes the current input and associated properties.
 When the application has finished the current input and is ready for more data, it re-enables events by setting
 DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while gathering or processing input, and are
 delivered to the application when the DataEventEnabled property is true and other event delivery requirements are
 met.

• The DataCount property can be read to obtain the total number of data events enqueued.

• Queued input may be deleted by calling the clearInput method. See the clearInput method description for more
 details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
 default values by calling the clearInputProperties method.

• If the CapDeviceAuthentication property is set to MSR_DA_REQUIRED, the device will only enqueue input data
 from a card swipe when the device is in the authenticated state (DeviceAuthenticated is true). The device can be
 put in the authenticated state by calling the authenticateDevice method.

Unified POS, v1.15.1 Beta1 26 - 9

26.3.3.2 Output - MSR Added in Release 1.10

• To write data to a track, the application calls the writeTracks method. The ability to write data depends upon the
capabilities of the device.

• The writeTracks method is always performed synchronously.

26 - 10 Unified POS, v1.15.1 Beta1

26.3.4 MSR Encryption and Authentication Updated in Release 1.14

Encryption - MSR

In response to increased fraudulent activity and to protect their customers (cardholders), card issuers have placed
requirements (e.g., the Payment Card Industry Data Security Standards, PCI DSS) upon merchants, acquirers,
processors, vendors, and others who handle cardholders data.

To better assist retailers to meet these requirements and help prevent fraud, MSR card readers may have the
capability to encrypt the card data and authenticate the card being read. Encrypting the card data before it leaves
the card reader removes any opportunity to obtain the card data for fraudulent use. The encrypted sensitive
account data is never usable unless the viewer of the data has the necessary key to decrypt the data.

Device authentication provides the ability for the application to validate that it is interfacing with a legitimate
MSR card reader and for the MSR to validate a legitimate application interface.

This standard provides for implementation of different usage scenarios related to interfacing with devices that
support encryption of the MSR data read from a card. At a basic level the options are:

• Only Encrypted data returned

• Encrypted and Unencrypted (masked) data returned

• Encrypted and Unencrypted (parsed, masked data) returned

To support encryption of card data, these additional capabilities, properties, and methods have been added in the
MSR device category:

Capabilities Properties Methods
CapDataEncryption AdditionalSecurityInformation UpdateKey

CapTrackDataMasking DataEncryptionAlgorithm
Track1EncryptedData

Track1EncryptedDataLength
Track2EncryptedData

Track2EncryptedDataLength
Track3EncryptedData

Track3EncryptedDataLength

Unified POS, v1.15.1 Beta1 26 - 11

Encryption Usage Model

Encryption can be supported at either the service (software) or device (hardware) level. Where the encryption will
take place is transparent to the application.

• Data Encryption -- The MSR device is in the encrypted mode if the CapDataEncryption property is not set to
MSR_DE_NONE and the DataEncryptionAlgorithm property is set to a device supported encryption algorithm
when the application opens and claims the device. This standard specifically requires that account masking must be
supported if any unencrypted track data is available for return to the application. This requirement applies to
hardware or software based encryption methods.

Note: The standard does not require hardware encryption devices to provide unencrypted data.

• Parsed Track Data (in the clear) -- Unencrypted data can be provided for use by the application. The standard
 provides for the application to request parsed information. When the ParseDecodeData property is true, the
 decoded data contained within the Track1Data and Track2Data properties is further separated into fields for
 access via various other properties.

• Masking supported -- The property CapTrackDataMasking is set to true if the device supports returning
 unencrypted data. The unencrypted, masked track data will be returned in the TrackXData properties. The exact
 fields and level of masking applied is manufacturer specific. This allows existing applications to integrate with
 encrypting devices with minimal changes.

The updateKey method is used to provide a new encryption key to the device. It is used only for those
encryption algorithms in which new key values are sent to the terminal as a field in standard messages from
the host.

26 - 12 Unified POS, v1.15.1 Beta1

Authentication - MSR

The threat of device and/or application spoofing facilitates the need for mutual authentication between devices
and applications. By authenticating a device, both the application and the device can be sure they are connected
to the authentic entity and not one that may have been replaced by a malicious user.

To facilitate the authentication feature, these additional capabilities, properties, and methods have been added in
the MSR device category:

Authentication Usage Model

The retrieveDeviceAuthenticationData method is used by the application to retrieve a token from the device
that is to be used to authenticate the device. This token represents a challenge token that is typically passed to a
third entity that has knowledge of a shared secret and is able to create a properly formed response token. The
application then calls the authenticateDevice method and passes the response token, at which time the device
validates the response and either enters the activated state or returns an error if the response token is invalid.
Devices that require authentication (see CapDeviceAuthentication) will not be functional until they enter the
authenticated state.

In the MSR case, this means that the device will only return card data to the application when it is in the
authenticated state. Swiping a card on a device that is not in the authenticated state will not enqueue a DataEvent.

26.3.5 Device Sharing

The MSR is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling methods
 that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Capabilities Properties Methods
CapDeviceAuthentication DeviceAuthenticated authenticateDevice

DeviceAuthenticationProtocol deauthenticateDevice
retrieveDeviceAuthenticationData

Unified POS, v1.15.1 Beta1 26 - 13

26.3.6 MSR Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of an MSR device.

:ClientApp :MSRControl :MSRService

 : Operator

:DataEvent

5: claim(timeoutValue)

1: setAutoDisable(true)

2: setAutoDisable(true)

6: claim(timeoutValue)
7: try to claim for exclusive use

If timeoutValue expires then
raise a UposException with
E_TIMEOUT error code

8: setDeviceEnabled(true)
9: setDeviceEnabled(true)

10: be ready for input from device

3: setDataEventEnabled(true) 4: setDataEventEnabled(true)

NOTE: we are assuming that the :ClientApp(s) already successfully registered to receive events and opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

11: successful card swiped

Right before the DataEvent is
delivered set DataEventEnabled
to false and DataCount-- .

12: input received [DataEventEnabled == true]

13: data decoding and parse data [DecodeData == true && ParseDecodeData == true]

14: create DataEvent

15: set DeviceEnabled property to false [AutoDisable == true]

16: DataCount++ and enqueue event for delivery

17: set parsed data properties and deliver DataEvent [DataEventEnabled == true && FreezeEvents == false]

18: deliver event to all registered handlers
19: notify client of new event

26 - 14 Unified POS, v1.15.1 Beta1

26.3.7 MSR Device Authentication Sequence Diagram Added in Release 1.12

The following sequence diagram shows the typical usage of an MSR device during the device authentication
process.

:ClientApp :MSRControl :MSRService :MSRDevice

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

3: retrieveDeviceAuthenticationData()

4: retrieveDeviceAuthenticationData()

5:

Service retrieves a challenge token from
the device and returns it to the
application. The challenge token is
typically encrypted with an encryption
key stored in the hardware.

6:

7:

8:

9:
A response token is generated
from the challenge token. This is
typically performed by an external
security module with knowledge of
the encryption key

10: authenticateDevice(responseToken)

11: authenticateDevice(responseToken)

12:

13:

The response token is validated by the
device and the device enters the
authenticated state. At this time, the
device is active and will report card
swipes to the service until it exits the
authenticated state.

Service sets DeviceAuthenticated property to
true and enqueues a Status Update Event with
status = SUE_DEVICE_AUTHENTICATED

14: deAuthenticateDevice(responseToken)

15: deAuthenticateDevice(responseToken)

16:

17:

The response token is validated by the device and the
device exits the authenticated state. At this time, the
device will no longer report card swipes to the service.

Service sets DeviceAuthenticated property to false
and enqueues a Status Update Event with status =
SUE_DEVICE_DEAUTHENTICATED

Unified POS, v1.15.1 Beta1 26 - 15

26.3.8 MSR State Diagrams

The following state diagrams depict the MSR Control device model.

Error Occurred

entry/ { DataEventEnabled = false, enqueue ErrorEvent, State = UPOS_S_ERROR }

open, claim &
enable

ClearInput Processing

entry/ { DataCount = 0, empty data queue }

done clearing input

Event Processing

done delivering error event

user input[DeviceEnabled == true]

user input[DeviceEnabled == false]

clearInput()

error

The details of
the "Event
Processing"
state are
describe in a
separate
diagram below

26 - 16 Unified POS, v1.15.1 Beta1

Event Processing

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Parse Data

[DataEventEnabled == false and DataCount > 0]

[DataCount > 0 and DataEventEnabled == true]

[AutoDisable == true]

[DecodeData == true]

done processing

[DecodeData == false]

[ParseDecodeData == true]

Unified POS, v1.15.1 Beta1 26 - 17

26.4 Properties (UML attributes)

26.4.1 AccountNumber Property Updated in Release 1.13

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number obtained from the most recently swiped card.

This property is initialized to the empty string if:
• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true. When the AccountNumber property is masked, it may be
partially or fully masked as determined by the device. It is often useful to keep the last four digits
unmasked as this allows applications to include these digits on receipts and transactions to help
identify the card that was used. Additionally, it is sometimes useful to keep the first four digits
unmasked for use by routing and processing software. The remaining digits would usually be
masked to help prevent fraudulent usage.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, ParseDecodeData Property, CapTrackDataMasking
Property.

26.4.2 AdditionalSecurityInformation Property Added in Release 1.12

Syntax AdditionalSecurityInformation: binary { read-only, access after open }

Remarks Holds additional security/encryption information when a DataEvent is delivered.
The information content and internal format of this property will vary among encryption algorithms.
For example, if the encryption algorithm is DUKPT, then this property will contain the “DUKPT
sequence number.” If the selected encryption algorithm does not require this property, its value will
be set to empty.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDataEncryption Property, DataEncryptionAlgorithm Property.

26 - 18 Unified POS, v1.15.1 Beta1

26.4.3 CapCardAuthentication Property Added in Release 1.12

Syntax CapCardAuthentication: string { read-only, access after open }

Remarks Holds the type, if any, of card authentication data that is supported by the device. If it contains an
empty string, the device does not support authentication data and the CardAuthenticationData
property will be empty. Otherwise, the service supports card authentication data via the
CardAuthenticationData property when a DataEvent is delivered.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CardAuthenticationData Property.

26.4.4 CapDataEncryption Property Added in Release 1.12

Syntax CapDataEncryption: int32 { read-only, access after open }

Remarks Holds a bitwise indication of the encryption algorithms supported by the device and selectable via
the DataEncryptionAlgorithm property.
Value Meaning
MSR_DE_NONE Data encryption is not enabled. If the DataEncryptionAlgorithm

property is also set to this value, then the TrackXData and parsed
properties will contain unencrypted data.

MSR_DE_3DEA_DUKPT
 Derived Unique Key Per Transaction (USA, Latin America) using Triple

DEA encryption (commonly called Triple DES) based on ANS X9.24-
2004.

Other Values Values 0x01000000 and above are reserved for additional encryption
algorithms supported by the Service.

The inclusion of the setting MSR_DE_NONE does not necessarily mean that data encryption is not
supported, but rather that the Service supports returning unencrypted data.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, TrackXEncryptedData Property, updateKey Method.

Unified POS, v1.15.1 Beta1 26 - 19

26.4.5 CapDeviceAuthentication Property Added in Release 1.12

Syntax CapDeviceAuthentication: int32 { read-only, access after open }

Remarks Holds the level of device authentication supported by the service. If device authentication is
supported the service must keep the value of DeviceAuthenticated current when the device is
enabled. The service should also enqueue a StatusUpdateEvent with status value set to
MSR_SUE_DEVICE_AUTHENTICATED or MSR_SUE_DEVICE_DEAUTHENTICATED
when the authentication status changes.
Value Meaning
MSR_DA_NOT_SUPPORTED

The service does not support device authentication.
MSR_DA_OPTIONAL The service supports device authentication but does not require it.
MSR_DA_REQUIRED The service requires device authentication.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also DeviceAuthenticationProtocol Property, DeviceAuthenticated Property, authenticateDevice
Method, deauthenticateDevice Method, retrieveDeviceAuthenticationData Method.

26.4.6 CapISO Property

Syntax CapISO: boolean { read-only, access after open }

Remarks If true, the MSR device supports ISO cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

26.4.7 CapJISOne Property

Syntax CapJISOne: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS Type-I cards.

JIS-I cards are a superset of ISO cards. Therefore, if CapJISOne is true, then it is implied that
CapISO is also true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

26 - 20 Unified POS, v1.15.1 Beta1

26.4.8 CapJISTwo Property

Syntax CapJISTwo: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS type-II cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

26.4.9 CapTrackDataMasking Property Updated in Release 1.13

Syntax CapTrackDataMasking: boolean { read-only, access after open }

Remarks This value will be true if the Service is capable of masking track data. When true and encryption is
enabled (via DataEncryptionAlgorithm), the Service will mask the track data, so that the
TrackXData properties and the parsed track data properties will contain masked data.

The exact fields and level of masking applied is manufacturer device specific. Devices may provide
the ability to control the level of masking by using the directIO method; however, it is
recommended that the minimal masking applied be sufficient to prevent the reconstruction of the
track data and the account number. A device may provide certain data fields, such as FirstName,
MiddleInitial, Title, Surname, and ExpirationDate in the “clear” in order to provide sufficient
data to the application for processing. Additionally, a device may only partially mask the
AccountNumber (see AccountNumber property for more information.)

CapTrackDataMasking can only be true if the device supports data encryption, that is, if
CapDataEncryption is not equal to MSR_DE_NONE.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDataEncryption Property, DataEncryptionAlgorithm Property, TrackXData Properties,
ParseDecodeData Property, directIO Method.

26.4.10 CapTransmitSentinels Property Added in Release 1.5

Syntax CapTransmitSentinels: boolean { read-only, access after open }

Remarks If true, the device is able to transmit the start and end sentinels.
If false, these characters cannot be returned to the application.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TransmitSentinels Property.

Unified POS, v1.15.1 Beta1 26 - 21

26.4.11 CapWritableTracks Property Added in Release 1.10

Syntax CapWritableTracks: int32 { read-only, access after open }

Remarks This capability indicates if the MSR device supports the writing of track data - and which tracks are
supported - or if this functionality is not supported. For example, if set to MSR_TR_1_2_3 then the
MSR device supports writing to tracks 1, 2, and 3; if set to MSR_TR_NONE then writing to MSR
tracks is not supported.

Value Meaning
MSR_TR_NONE The MSR does not support writing track data.
MSR_TR_1 Track 1 is writable.
MSR_TR_2 Track 2 is writable.
MSR_TR_3 Track 3 is writable.
MSR_TR_1_2 Tracks 1 and 2 are writable.
MSR_TR_1_3 Tracks 1 and 3 are writable.
MSR_TR_2_3 Tracks 2 and 3 are writable.
MSR_TR_1_2_3 Tracks 1, 2, and 3 are writable.
MSR_TR_4 Track 4 is writable.
MSR_TR_1_4 Tracks 1 and 4 are writable.
MSR_TR_2_4 Tracks 2 and 4 are writable.
MSR_TR_3_4 Tracks 3 and 4 are writable.
MSR_TR_1_2_4 Tracks 1, 2, and 4 are writable.
MSR_TR_1_3_4 Tracks 1, 3, and 4 are writable.
MSR_TR_2_3_4 Tracks 2, 3, and 4 are writable.
MSR_TR_1_2_3_4 Tracks 1, 2, 3, and 4 are writable.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TracksToWrite Property.

26.4.12 CardAuthenticationData Property Added in Release 1.12

Syntax CardAuthenticationData: binary { read-only, access after open }

Remarks Holds card authentication information when a DataEvent is delivered.

The information content and internal format of this property will vary among services and depends
on the value of the CapCardAuthentication property. This property will be empty if
CapCardAuthentication is an empty string. Otherwise, the value of this property will be encrypted
via the encryption algorithm contained in the DataEncryptionAlgorithm property. The length of
the raw (unencrypted) value of this property is contained in the CardAuthenticationDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapCardAuthentication Property, CardAuthenticationDataLength Property,
DataEncryptionAlgorithm Property.

26 - 22 Unified POS, v1.15.1 Beta1

26.4.13 CardAuthenticationDataLength Property Updated in Release 1.13

Syntax CardAuthenticationDataLength: int32 { read-only, access after open }

Remarks This property will be zero if CapCardAuthentication is an empty string. Otherwise, holds the
length of the raw CardAuthenticationData before it was encrypted. Many encryption algorithms
require padding of the input data before it can be encrypted. This property contains the length of the
original unpadded data before it is encrypted. It may be needed to restore the original data after
decryption

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapCardAuthentication Property, CardAuthenticationData Property.

26.4.14 CardPropertyList Property Added in Release 1.12

Syntax CardPropertyList: string { read-only, access after open }

Remarks Holds a comma separated list of the names of the properties parsed from the most recently swiped
card. The values of these properties are allowed to be empty.

This property is initialized to an empty string if:
• The type of card swiped was not recognized, or,
• ParseDecodeData is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property.

26.4.15 CardType Property Added in Release 1.12

Syntax CardType: string { read-only, access after open }

Remarks Holds the card type identifier for the most recently swiped card. If the card's format is not
recognized, this property will be empty. If this property's value begins with an underscore ('_') the
card type is vendor specific. If this property does not begin with an underscore the card type is one
of the standard card types. The following list shows all currently defined standard card types:
• “BANK” Bank credit/debit card
• “AAMVA” American & Canadian Driver's License or ID Card

This property is initialized to empty by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 26 - 23

26.4.16 CardTypeList Property Added in Release 1.12

Syntax CardTypeList: string { read-only, access after open }

Remarks Holds a comma separated list of string names of card types supported by the Service. The vendor is
allowed to support non-standard card type by specifying names beginning with an underscore ('_').
All names not beginning with an underscore are considered to be standard card types. The following
list shows all currently defined standard card types:
• “BANK” Bank credit/debit card
• “AAMVA” American & Canadian Driver's License or ID Card

For bank cards, the following properties are parsed and can be accessed through the
retrieveCardProperty method:
• “AccountNumber”
• “ExpirationDate”
• “FirstName”
• “MiddleInitial”
• “ServiceCode”
• “Suffix”
• “Surname”
• “Title”

For AAMVA driver's licenses and ID cards, the following properties are parsed and can be accessed
through the retrieveCardProperty method:
• “Address”
• “BirthDate”
• “City”
• “Class”
• “Endorsements”
• “ExpirationDate”
• “EyeColor”
• “FirstName”
• “Gender”
• “HairColor”
• “Height”
• “LicenseNumber”
• “PostalCode”
• “Restrictions”
• “State”
• “Suffix”
• “Surname”
• “Weight”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData property.

26 - 24 Unified POS, v1.15.1 Beta1

26.4.17 DataEncryptionAlgorithm Property Added in Release 1.12

Syntax DataEncryptionAlgorithm: int32 {read-write, access after open-claim}

Remarks Holds the encryption algorithm that will be used to encrypt the track data. This property may be set
to one of the supported encryption algorithms as defined in the CapDataEncryption property.
However, for security reasons, a Service (or the device itself) may restrict the set of values that an
application may select.

Note: This property can only be updated when the device is opened and claimed,but not enabled.

This property is initialized by the open method. For devices that support encryption, this property
may be initialized to any value given by CapDataEncryption.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The service does not support the specified encryption algorithm or the

device is currently enabled.

See Also CapDataEncryption Property, TrackXEncryptedData Property, updateKey Method.

Unified POS, v1.15.1 Beta1 26 - 25

26.4.18 DecodeData Property Updated in Release 1.13

Syntax DecodeData: boolean { read-write, access after open }

Remarks If false, the Track1Data, Track2Data, Track3Data, and Track4Data properties contain the
original encoded bit sequences, known as “raw data format.”

If true, each byte of track data contained within the Track1Data, Track2Data, Track3Data, and
Track4Data, properties is mapped from its original encoded bit sequence (as it exists on the
magnetic card) to its corresponding decoded ASCII bit sequence. This conversion is mainly of
relevance for data that is NOT of the 7-bit format, since 7-bit data needs no decoding to decipher its
corresponding alphanumeric and/or Katakana characters.

The decoding that takes place is as follows for each card type, track, and track data format:

This property is initialized to true by the open method.

Setting this property to false automatically sets ParseDecodeData to false.

Note: If DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is true,
the Service will populate the TrackXData properties with masked track data.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property.

Card Type Track Data
Property

Raw Data
Format Raw Bytes Decoded Values

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

ISO Track2Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

Track1Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-I Track2Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-II Track4Data 7-Bit 0x00 - 0x7F Data Unaltered

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

AAMVA Track2Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track3Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

26 - 26 Unified POS, v1.15.1 Beta1

26.4.19 DeviceAuthenticated Property Added in Release 1.12

Syntax DeviceAuthenticated: boolean { read-only, access after open-claim-enable }

Remarks If the device supports authentication (CapDeviceAuthentication not equal to
MSR_DA_NOT_SUPPORTED) the service must keep the value of this property up to date when
the device is enabled. When the authentication state of the device changes the service should update
the value of DeviceAuthenticated and enqueue a StatusUpdateEvent with status value set to
MSR_SUE_DEVICE_AUTHENTICATED or MSR_SUE_DEVICE_DEAUTHENTICATED.
The primary reason for this is to notify the application in the event of an authentication timeout or
other action that may not have been initiated by the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDeviceAuthentication Property, authenticateDevice Method, deauthenticateDevice
Method, retrieveDeviceAuthenticationData Method.

26.4.20 DeviceAuthenticationProtocol Property Added in Release 1.12

Syntax DeviceAuthenticationProtocol: int32 { read-only, access after open }

Remarks Holds the device authentication protocol supported by the device.
Value Meaning
MSR_AP_NONE The service does not support device authentication.
MSR_AP_CHALLENGERESPONSE

The service supports the challenge response protocol.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also CapDeviceAuthentication Property, DeviceAuthenticated Property, authenticateDevice
Method, deauthenticateDevice Method, retrieveDeviceAuthenticationData Method.

26.4.21 EncodingMaxLength Property Updated in Release 1.10

Syntax EncodingMaxLength: int32 { read-only, access after open-claim-enable }
Remarks The maximum length of data that can be written by the MSR to the track(s) defined by the

TracksToWrite property. If multiple tracks are selected in the TracksToWrite property, the length
of the shortest track should be reflected by this property.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TracksToWrite Property, writeTracks Method.

Unified POS, v1.15.1 Beta1 26 - 27

26.4.22 ErrorReportingType Property Updated in Release 1.13

Syntax ErrorReportingType: int32 { read-write, access after open }

Remarks Holds the type of errors to report via ErrorEvents. This property has one of the following values:

Value Meaning
MSR_ERT_CARD Report errors at a card level.
MSR_ERT_TRACK Report errors at the track level

An error is reported by an ErrorEvent when a card is swiped, and one or more of the tracks
specified by the TracksToRead property contains data with errors. When the ErrorEvent is
delivered to the application, two types of error reporting are supported:

• Card level: A general error status is given, with no data returned. This level should be used when
 a simple pass/fail of the card data is sufficient.

• Track level: When the ErrorLocus is EL_INPUT and the ErrorCode value is E_EXTENDED,
 then the ErrorCodeExtended value contains a status for each of the tracks and the track’s
 properties are updated as with a DataEvent. For those tracks that contain invalid data, the track’s
 properties are set to empty. This level should be used when the application may be able to utilize a
 successfully read track or tracks when another of the tracks contains errors. For example, suppose
 TracksToRead is MSR_TR_1_2_3, and a swiped card contains good track 1 and 2 data, but track
 3 contains “random noise” that is flagged as an error by the MSR. With track level error reporting,
 the ErrorEvent sets the track 1 and 2 properties with the valid data, sets the track 3 properties to
 empty, and sets an error code indicating the status of each track.

The processing flow for handling track level error reporting would be as follows:

• *When the card read occurs and track error(s) are detected, then:
•-If any DataEvents are enqueued for delivery, then create and enqueue an ErrorEvent with
 ErrorLocus EL_INPUT_DATA before the oldest DataEvent.
•-Always create and enqueue an ErrorEvent with ErrorLocus EL_INPUT at the end of the
 event queue. Associate the card's retrieved data with this event.

• *When the ErrorEvent with ErrorLocus EL_INPUT_DATA is delivered, no other properties are
 changed.

• *When the ErrorEvent with ErrorLocus EL_INPUT is delivered, set theTrackXData or the
 TrackXEncryptedData properties to the card read data. For those track(s) on which a read error
 occurred, the property is empty.

• An example of an unlikely error conditon case illustrates how handling track errors are queued.

Suppose that the application has set DataEventEnabled = false, and has enabled track level error
reporting. Then suppose that the MSR is swiped 2 times successfully, then on the 3rd swipe a CRC
error occurs on Track 1 but Track 2 is OK. At this point, the event queue must look like this, and its
delivery will be gated by the application’s setting of the DataEventEnabled property to true:

ErrorEvent with locus EL_INPUT_DATA. When delivered, it tells the application that an error
occurred, but that one or more good swipes occurred before the error. If the application sets the
error response to ER_CLEAR, then the remaining events are cleared. But if
ER_CONTINUEINPUT is set, then the following events will be delivered as the application sets the

26 - 28 Unified POS, v1.15.1 Beta1

DataEventEnabled property.
 DataEvent (#1) result... When delivered, the track properties will be populated with its data.
 DataEvent (#2) result... When delivered, the track properties will be populated with its data.
 ErrorEvent with locus EL_INPUT result... When delivered, the error code is E_EXTENDED
and the 　　ErrorCodeExtended shows that track 1 had an error but track 2 has data. The
Track2 data properties are 　　　　populated.

This property is initialized to MSR_ERT_CARD by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also TracksToRead Property, TrackXData Properties, TrackXEncryptedData Properties,
DataEvent, ErrorEvent.

26.4.23 ExpirationDate Property　　　　　　　　　　　　Updated in Release 1.12

Syntax ExpirationDate: string { read-only, access after open }

Remarks Holds the expiration date obtained from the most recently swiped card, as four ASCII decimal
characters in the form YYMM. For example, February 1998 is “9802” and August 2018 is “1808”.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

Unified POS, v1.15.1 Beta1 26 - 29

26.4.24 FirstName Property Updated in Release 1.12

Syntax FirstName: string { read-only, access after open }

Remarks Holds the first name obtained from the most recently swiped card.

This property is initialized to an empty string if:
• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26.4.25 MiddleInitial Property Updated in Release 1.12

Syntax MiddleInitial: string { read-only, access after open }

Remarks Holds the middle initial obtained from the most recently swiped card. This property is initialized to
the empty string if:

• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26 - 30 Unified POS, v1.15.1 Beta1

26.4.26 ParseDecodeData Property Updated in Release 1.12

Syntax ParseDecodeData: boolean { read-write, access after open }

Remarks When true, the decoded data contained within the Track1Data and Track2Data properties is
further separated into fields for access via various other properties. Track3Data is not parsed
because its data content is of an open format defined by the card issuer. JIS-I Track 1 Format C and
ISO Track 1 Format C data are not parsed for similar reasons. Track4Data is also not parsed.
The parsed data properties are the defined possible fields for cards with data consisting of the
following formats:
• JIS-I / ISO Track 1 Format A
• JIS-I / ISO Track 1 Format B
• JIS-I / ISO Track 1 VISA Format (a defacto standard)
• JIS-I / ISO Track 2 Format

This property is initialized to true by the open method.

Setting this property to true automatically sets DecodeData to true.

Note: If DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is true,
the Service will populate the TrackXData properties with masked track data and this masked track
data will be parsed and used to populate the various other properties. The resulting parsed properties
will contain the same masked values that exist in the TrackXData properties.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL This property can only be set to true when DataEncryptionAlgorithm is

MSR_DE_NONE or CapTrackDataMasking is true.

See Also DecodeData Property, Surname Property, Suffix Property, AccountNumber Property,
FirstName Property, MiddleInitial Property, Title Property, ExpirationDate Property,
ServiceCode Property, Track1DiscretionaryData Property, Track2DiscretionaryData Property.

Unified POS, v1.15.1 Beta1 26 - 31

26.4.27 ServiceCode Property Updated in Release 1.12

Syntax ServiceCode: string { read-only, access after open }

Remarks Holds the service code obtained from the most recently swiped card.

This property is initialized to the empty string if:
• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,

ParseDecodData is false.
This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26.4.28 Suffix Property Updated in Release 1.12

Syntax Suffix: string { read-only, access after open }

Remarks Holds the suffix obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26 - 32 Unified POS, v1.15.1 Beta1

26.4.29 Surname Property Updated in Release 1.12

Syntax Surname: string { read-only, access after open }

Remarks Holds the surname obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26.4.30 Title Property Updated in Release 1.12

Syntax Title: string { read-only, access after open }

Remarks Holds the title obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

Unified POS, v1.15.1 Beta1 26 - 33

26.4.31 Track1Data Property Updated in Release 1.12

Syntax Track1Data: binary { read-only, access after open }

Remarks Holds the track 1 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start
and end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw”
format. The data may also be parsed into other properties when the ParseDecodeData property is
set.

If DataEncryptionAlgorithm is not MSR_DE_NONE the following additional rules apply:
• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any

potentially sensitive information contained in the track data. Examples include but are not
limited to account numbers and/or discretionary data. When possible the Service will replace
specific characters with masked characters while attempting to maintain the original format of
the track data so it can be parsed normally,

• If CapTrackDataMasking is false this property will be empty.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData Property,
CapTrackDataMasking Property.

26.4.32 Track1DiscretionaryData Property Updated in Release 1.12

Syntax Track1DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 1 discretionary data obtained from the most recently swiped card.

The array will be zero length if:
• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.
The amount of data contained in this property varies widely depending upon the format of the track
1 data.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26 - 34 Unified POS, v1.15.1 Beta1

26.4.33 Track1EncryptedData Property Added in Release 1.12

Syntax Track1EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 1 data obtained from the most recently swiped card. This property is
empty if DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track1EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track1EncryptedDataLength Property.

26.4.34 Track1EncryptedDataLenght Property Updated in Release 1.13

Syntax Track1EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 1 data before it was encrypted. Many encryption algorithms
require padding of the input data before it can be encrypted. This property contains the length of the
original unpadded track data before it is encrypted. It may be needed to restore the original track
data after decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track1EncryptedData Property.

Unified POS, v1.15.1 Beta1 26 - 35

26.4.35 Track2Data Property Updated in Release 1.12

Syntax Track2Data: binary { read-only, access after open }

Remarks Holds the track 2 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start
and end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw”
format. The data may also be parsed into other properties when the ParseDecodeData property is
set.

If DataEncryptionAlgorithm is not MSR_DE_NONE the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include but are not
limited to account numbers and/or discretionary data. When possible the Service will replace
specific characters with masked characters while attempting to maintain the original format of
the track data so it can be parsed normally,

• If CapTrackDataMasking is false this property will be empty.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData Property,
CapTrackDataMasking Property.

26.4.36 Track2DiscretionaryData Property Added in Release 1.12

Syntax Track2DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 2 discretionary data obtained from the most recently swiped card.

The array will be zero length if:
• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.
The amount of data contained in this property varies widely depending upon the format of the track
2 data.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26 - 36 Unified POS, v1.15.1 Beta1

26.4.37 Track2EncryptedData Property Added in Release 1.12

Syntax Track2EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 2 data obtained from the most recently swiped card. This property is
empty if DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track2EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track2EncryptedDataLength Property.

26.4.38 Track2EncryptedDataLength Property Updated in Release 1.13

Syntax Track2EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 2 data before it was encrypted. Many encryption algorithms
require padding of the input data before it can be encrypted. This property contains the length of the
original unpadded track data before it is encrypted. It may be needed to restore the original track
data after decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track2EncryptedData Property.

Unified POS, v1.15.1 Beta1 26 - 37

26.4.39 Track3Data Property Updated in Release 1.12

Syntax Track3Data: binary { read-only, access after open }

Remarks Holds the track 3 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start
and end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw”
format. The data may also be parsed into other properties when the ParseDecodeData property is
set.

If DataEncryptionAlgorithm is not MSR_DE_NONE the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include but are not
limited to account numbers and/or discretionary data. When possible the Service will replace
specific characters with masked characters while attempting to maintain the original format of
the track data so it can be parsed normally,

• If CapTrackDataMasking is false this property will be empty.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData Property,
CapTrackDataMasking Property.

26.4.40 Track3EncryptedData Property Added in Release 1.12

Syntax Track3EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 3 data obtained from the most recently swiped card. This property is
empty if DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track3EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track3EncryptedDataLength Property.

26 - 38 Unified POS, v1.15.1 Beta1

26.4.41 Track3EncryptedDataLength Property Updated in Release 1.13

Syntax Track3EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 3 data before it was encrypted. Many encryption algorithms
require padding of the input data before it can be encrypted. This property contains the length of the
original unpadded track data before it is encrypted. It may be needed to restore the original track
data after decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track3EncryptedData Property.

26.4.42 Track4Data Property Updated in Release 1.12

Syntax Track4Data: binary { read-only, access after open }

Remarks Holds the track 4 data (JIS-II) obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start
and end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw”
format.

If DataEncryptionAlgorithm is not MSR_DE_NONE the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include but are not
limited to account numbers and/or discretionary data. When possible the Service will replace
specific characters with masked characters while attempting to maintain the original format of
the track data so it can be parsed normally,

• If CapTrackDataMasking is false this property will be empty.

A zero length array indicates that the track was not accessible.

To maintain compatibility with previous versions, the Control may also continue to store the JIS-II
data in another TracknData property. However, it should be noted that to ensure application
portability, Track4Data should be used to access JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Track1Data Property, Track2Data Property, Track3Data Property, TransmitSentinels
Property, CapTrackDataMasking Property.

Unified POS, v1.15.1 Beta1 26 - 39

26.4.43 Track4EncryptedData Property Added in Release 1.12

Syntax Track4EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 4 data obtained from the most recently swiped card. This property is
empty if DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track4EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track4EncryptedDataLength Property.

26.4.44 Track4EncryptedDataLength Property Updated in Release 1.13

Syntax Track4EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 4 data before it was encrypted. Many encryption algorithms
require padding of the input data before it can be encrypted. This property contains the length of the
original unpadded track data before it is encrypted. It may be needed to restore the original track
data after decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEncryptionAlgorithm Property, Track4EncryptedData Property.

26 - 40 Unified POS, v1.15.1 Beta1

26.4.45 TracksToRead Property Updated in Release 1.5

Syntax TracksToRead: int32 { read-write, access after open }

Remarks Holds the track data that the application wishes to have placed into Track1Data, Track2Data,
Track3Data, and Track4Data properties following a card swipe. This property has one of the
following values:
Value Meaning
MSR_TR_1 Obtain track 1.
MSR_TR_2 Obtain track 2.
MSR_TR_3 Obtain track 3.
MSR_TR_1_2 Obtain tracks 1 and 2.
MSR_TR_1_3 Obtain tracks 1 and 3.
MSR_TR_2_3 Obtain tracks 2 and 3.
MSR_TR_1_2_3 Obtain tracks 1, 2, and 3.
MSR_TR_4 Obtain track 4.
MSR_TR_1_4 Obtain tracks 1 and 4.
MSR_TR_2_4 Obtain tracks 2 and 4.
MSR_TR_3_4 Obtain tracks 3 and 4.
MSR_TR_1_2_4 Obtain tracks 1, 2, and 4.
MSR_TR_1_3_4 Obtain tracks 1, 3, and 4.
MSR_TR_2_3_4 Obtain tracks 2, 3, and 4.
MSR_TR_1_2_3_4 Obtain tracks 1, 2, 3, and 4.

Decreasing the required number of tracks may provide a greater swipe success rate and somewhat
greater responsiveness by removing the processing for unaccessed data.

TracksToRead does not indicate a capability of the MSR hardware unit but instead is an
application configurable property representing which track(s) will have their data obtained,
potentially decoded, and returned if possible. Cases such as an ISO card being swiped through a JIS-
II read head, cards simply not having data for particular tracks, and other factors may preclude the
desired data from being obtained.
This property is initialized to MSR_TR_1_2_3 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Track1Data Property, Track2Data Property, Track3Data Property, Track4Data Property.

Unified POS, v1.15.1 Beta1 26 - 41

26.4.46 TracksToWrite Property Added in Release 1.10

Syntax TracksToWrite: int32 { read-write, access after open-claim-enable }

Remarks Holds the MSR track(s) that will be written to when the writeTracks method is invoked and an
MSR card is swiped. Valid values can be equal to or a subset of those defined under
CapWritableTracks. If CapWritableTracks contains MSR_TR_NONE then writing to MSR
tracks is not supported and an E_ILLEGAL exception will be thrown on any attempt to update this
property.
If an attempt is made to set a track that is not defined as writable in CapWritableTracks the
property will be left unchanged and an E_ILLEGAL exception will be thrown.

Setting this property may also update EncodingMaxLength since each track may have a different
encoding limit.

This property is initialized to MSR_TR_NONE by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapWritableTracks Property, EncodingMaxLength Property, writeTracks Method.

26.4.47 TransmitSentinels Property Added in Release 1.5

Syntax TransmitSentinels: boolean { read-write, access after open }

Remarks If true, the Track1Data, Track2Data, Track3Data, and Track4Data properties contain start and
end sentinel values.

If false, then these properties contain only the track data between these sentinels.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The CapTransmitSentinels property is false.

See Also CapTransmitSentinels Property, Track1Data Property, Track2Data Property, Track3Data
Property, Track4Data Property.

26 - 42 Unified POS, v1.15.1 Beta1

26.4.48 WriteCardType Property Added in Release 1.12

Syntax WriteCardType: string { read-write, access after open }

Remarks Holds the card type to be used the next time the writeTracks method is called. If this property's
value begins with an underscore ('_') the card type is vendor specific. If this property does not begin
with an underscore the card type is one of the standard card types. The following list shows all
currently defined standard card types:

• “BANK” Bank credit/debit card
• “AAMVA” American & Canadian Driver's License or ID Card

This property is initialized to “BANK” by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also writeTracks Method.

Unified POS, v1.15.1 Beta1 26 - 43

26.5 Methods (UML operations)

26.5.1 authenticateDevice Method Added in Release 1.12

Syntax authenticateDevice (response: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
response A response token generated from the challenge token retrieved from a

previous call to the retrieveDeviceAuthenticationData method.

Remarks To authenticate a device, the application first calls the retrieveDeviceAuthenticationData method
to retrieve a challenge token from the device. The application then typically passes this token to
another entity that has special knowledge of a shared secret and is able to create a proper response
token. This response token is then passed as the response parameter to this method and the service
uses it to validate the authentication request. If this method succeeds, the device enters the
authenticated state and the service sets the DeviceAuthenticated property to true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following conditions occurred:

• The service does not support device authentication
(CapDeviceAuthentication = MSR_DA_NOT_SUPPORTED)

• The device is already in the authenticated state
E_EXTENDED ErrorCodeExtended =

EMSR_DEVICE_AUTHENTICATION_FAILED
The authentication request failed because the response parameter was
invalid.

See Also CapDeviceAuthentication Property, DeviceAuthenticated Property,
retrieveDeviceAuthenticationData Method.

26 - 44 Unified POS, v1.15.1 Beta1

26.5.2 deauthenticateDevice Method Added in Release 1.12

Syntax deauthenticateDevice (response: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
response A response token generated from the challenge token retrieved from a

previous call to the retrieveDeviceAuthenticationData method.

Remarks This method is used to deauthenticate a device that is currently in the authenticated state
(DeviceAuthenticated = true). The token is typically generated by passing the challenge retrieved
from the retrieveDeviceAuthenticationData method to an entity that has special knowledge of a
shared secret. If this method succeeds the service sets DeviceAuthenticated to false and enqueues
a StatusUpdateEvent with status value set to MSR_SUE_DEVICE_DEAUTHENTICATED.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following conditions occurred:

• The service does not support device authentication
(CapDeviceAuthentication = MSR_DA_NOT_SUPPORTED)

• The device is not in the authenticated state
E_EXTENDED ErrorCodeExtended =

EMSR_DEVICE_DEAUTHENTICATION_FAILED
The deauthentication request failed because the response parameter was
invalid.

See Also CapDeviceAuthentication Property, DeviceAuthenticated Property,
retrieveDeviceAuthenticationData Method.

Unified POS, v1.15.1 Beta1 26 - 45

26.5.3 retrieveCardProperty Method Updated in Release 1.13

Syntax retrieveCardProperty (name: string, out value: string):
void { raises-exception, use after open, claim }

Parameter Description
name Name of the property whose value is to be retrieved. The

CardPropertyList property can be parsed to determine the set of valid
properties for the most recently swiped card.

value Contains the returned data for the property specified by the name
parameter. If the name parameter is not recognized or not supported for
the current card type, the data returned will be the empty string.

Remarks Retrieves the value of specific parsed properties from the last card swiped. Until a card is swiped,
all defined properties will return an empty string.
Note: If DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is true
the returned value may contain masked information.

For bank cards, the following properties are parsed and can be accessed through the
retrieveCardProperty method:

• “AccountNumber”
• “ExpirationDate”
• “FirstName”
• “MiddleInitial”
• “ServiceCode”
• “Suffix”
• “Surname”
• “Title”

For AAMVA driver’s licenses and ID cards, the following properties are parsed and can be accessed
through the retrieveCardProperty method:

• “Address”
• “BirthDate”
• “City”
• “Class”
• “Endorsements”
• “ExpirationDate”
• “EyeColor”
• “FirstName”
• “Gender”
• “HairColor”
• “Height”
• “LicenseNumber”
• “PostalCode”
• “Restrictions”
• “State”
• “Suffix”

26 - 46 Unified POS, v1.15.1 Beta1

• “Surname”
• “Weight”

This property is initialized to empty by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The name parameter is not a valid value for the most recently swiped card,

or the ParseDecodeData property is set to false.
See Also CardTypeList Property, ParseDecodeData Property

26.5.4 retrieveDeviceAuthenticationData Method Added in Release 1.12

Syntax retrieveDeviceAuthenticationData (inout challenge: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
challenge A challenge generated by the device that will be used to generate the

authentication and deauthentication tokens.

Remarks Applications call this method to retrieve a challenge token that will subsequently be used to generate
response tokens that will be passed to the authenticateDevice and deauthenticateDevice methods.
The challenge token is typically sent to another entity that has special knowledge of a shared secret
that is required to generate the proper response token(s).

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The service does not support device authentication

(CapDeviceAuthentication = MSR_DA_NOT_SUPPORTED)
See Also CapDeviceAuthentication Property, authenticateDevice Method, deauthenticateDevice

Method.

Unified POS, v1.15.1 Beta1 26 - 47

26.5.5 updateKey Method Added in Release 1.12

Syntax updateKey (key: string, keyName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
key A Hex-ASCII value for a new key.
keyName A name used to identify the key.

Remarks Provides a new encryption key to the device. It is used only for those encryption algorithms in which
new key values are sent to the terminal as a field in standard messages from the host.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following conditions occurred:

• The selected DataEncryptionAlgorithm does not support this func-
tion.

• The keyName specifies an unacceptable key name.
• The key contains a bad key (not Hex-ASCII or wrong length or bad

parity).

See Also CapDataEncryption Property, DataEncryptionAlgorithm Property.

26 - 48 Unified POS, v1.15.1 Beta1

26.5.6 writeTracks Method Updated in Release 1.12

Syntax writeTracks (data: array of binary, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
data1 Array containing the binary track data for all tracks to be written during

this method call. For simplicity, this array should always be 4 elements
long, with the first array element being Track 1. Any tracks that are not
going to be written should be provided as a valid binary object of length
zero (0). The TracksToWrite property controls which tracks are to be
written, so to get a track written correctly requires both a valid binary data
object provided in the array and the corresponding track bit set in the
TracksToWrite property.

timeout The number of milliseconds before failing the method.
If FOREVER (-1), the method initiates encoding the data, then waits as
long as needed until a card is swiped.

Remarks Initiates the encoding of data to the MSR track(s) selected in the TracksToWrite property.
When called, data is prepared to be written on to the next card that is swiped within the allotted
timeout period. If no card is swiped within the timeout period then a UposException is thrown. The
next card swiped will be written in the format specified by the WriteCardType property.
Data that is written to the card is read back from the card in the exact same format, the Service must
not decode/encode the data in any fashion.
This method is always performed synchronously, so that the write will be attempted to the next card
that is swiped.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The data to be written exceeds the EncodingMaxLength property for the

selected TracksToWrite, or CapWritableTracks is set to
MSR_TR_NONE.

E_FAILURE A card was swiped within the allotted timeout, but that card or track
specified by TracksToWrite is not writable

E_TIMEOUT A card was not swiped within the allotted timeout period.
See Also TracksToWrite Property, WriteCardType Property, EncodingMaxLength Property.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 26 - 49

26.6 Events (UML interfaces)

26.6.1 DataEvent Updated in Release 1.12

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when input data from the MSR device is available.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 See below.

The Status property is divided into four bytes representing information on up to four tracks of data.
The diagram below indicates how the Status property is divided:

A value of zero for a track byte means that no data was obtained from the swipe for that particular
track. This might be due to the hardware device simply not having a read head for the track, or
perhaps the application intentionally precluded incoming data from the track via the TracksToRead
property.

A value greater than zero indicates the length in bytes of the corresponding TrackxData Property or
TrackxEncryptedData Property if encryption is enabled.

Remarks Before this event is delivered, the swiped data is placed into the TrackxData and/or
TrackxEncryptedData properties. If DecodeData is true, then this track data is decoded. If
ParseDecodeData is true, then the data is parsed into several additional properties.

See Also DecodeData Property, ParseDecodeData Property, TrackxData Properties,
TrackxEncryptedData Properties, TracksToRead Property.

High Word Low Word
High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1

26 - 50 Unified POS, v1.15.1 Beta1

26.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific MSR Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s MSR devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 26 - 51

26.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the MSR device and a suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1- 21.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

If the ErrorReportingType property is MSR_ERT_TRACK and ErrorLocus is EL_INPUT and
ErrorCode is E_EXTENDED, then ErrorCodeExtended contains track-level statuses, broken down
as follows:

Where each of the track status bytes has one of the following values:
Value Meaning
SUCCESS No error occurred.
EMSR_START Start sentinel error.
EMSR_END End sentinel error.
EMSR_PARITY Parity error.
EMSR_LRC LRC error.
E_FAILURE Other or general error.

The ErrorLocus property may be one of the following:
Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

High Word Low Word
High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1

26 - 52 Unified POS, v1.15.1 Beta1

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read MSR data. This error event is not delivered
until the DataEventEnabled property is true, so that proper application sequencing occurs.

If the ErrorReportingType property is MSR_ERT_CARD, then the track that caused the fault
cannot be determined. The track data properties are not changed.

If the ErrorReportingType property is MSR_ERT_TRACK then the ErrorCode and the
ErrorCodeExtended properties may indicate the track-level status. Also, the track data properties
are updated as with a DataEvent, with the properties for the track or tracks in error set to empty
strings.

Unlike DataEvent, individual track lengths are not reported. However, the application can
determine their lengths by getting the length of each of the TrackxData properties.

Also, since this is an ErrorEvent (even though it is reporting partial data), the DataCount property
is not incremented and the Control remains enabled, regardless of the AutoDisable property value.

See Also “Device Behavior Models" on page 1- 10 and ErrorReportingType Property.

Unified POS, v1.15.1 Beta1 26 - 53

26.6.4 StatusUpdateEvent Updated in Release 1.12

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the MSR device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a status change, and has one of the following values:

Value Meaning
MSR_SUE_DEVICE_AUTHENTICATED

The device has entered the authenticated state.
MSR_SUE_DEVICE_DEAUTHENTICATED

The device is no longer in the authenticated state.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when a significant status change event has occurred.

See Also “Events” on page 1- 15.

26 - 54 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 27 - 1

27 Pin Pad

27.1 General
This Chapter defines the Pin Pad device category.

27.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.3 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 open
DataEventEnabled: boolean { read-write } 1.3 open
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

27 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapDisplay: int32 { read-only } 1.3 open
CapKeyboard: boolean { read-only } 1.3 open
CapLanguage: int32 { read-only } 1.3 open
CapMACCalculation: boolean { read-only } 1.3 open
CapTone: boolean { read-only } 1.3 open

AccountNumber: string { read-write } 1.3 open
AdditionalSecurityInformation: string { read-only } 1.3 open
Amount: currency { read-write } 1.3 open
AvailableLanguagesList: string { read-only } 1.3 open
AvailablePromptsList: string { read-only } 1.3 open
EncryptedPIN: string { read-only } 1.3 open
MaximumPINLength: int32 { read-write } 1.3 open
MerchantID: string { read-write } 1.3 open
MinimumPINLength: int32 { read-write } 1.3 open
PINEntryEnabled: boolean { read-only } 1.3 open
Prompt: int32 { read-write } 1.3 open
PromptLanguage: nls { read-write } 1.3 open
TerminalID: string { read-write } 1.3 open
Track1Data: binary { read-write } 1.3 open
Track2Data: binary { read-write } 1.3 open
Track3Data: binary { read-write } 1.3 open
Track4Data: binary { read-write } 1.5 open
TransactionType: string { read-write } 1.3 open

Unified POS, v1.15.1 Beta1 27 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim, enable }

1.3

clearInputProperties ():
void { raises-exception, use after open, claim, enable }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
beginEFTTransaction (PINPadSystem: string, transactionHost: int32):

void { raises-exception, use after open, claim, enable }
1.3

computeMAC (inMsg: string, outMsg: object):
void { raises-exception, use after beginEFTTransaction }

1.3

enablePINEntry():
void { raises-exception, use after beginEFTTransaction }

1.3

endEFTTransaction (completionCode: int32):
void { raises-exception, use after beginEFTTransaction }

1.3

updateKey (keyNum: int32, key: string):
void { raises-exception, use after beginEFTTransaction }

1.3

verifyMAC (message: string):
void { raises-exception, use after beginEFTTransaction }

1.3

27 - 4 Unified POS, v1.15.1 Beta1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.3
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.3
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 27 - 5

27.3 General Information
The PIN Pad programmatic name is “PINPad.”

A PIN Pad:

• Provides a mechanism for customers to perform PIN Entry.

• Acts as a cryptographic engine for communicating with an EFT Transaction Host.

A PIN Pad will perform these functions by implementing one or more PIN Pad Management Systems. A PIN Pad
Management System defines the manner in which the PIN Pad will perform functions such as PIN Encryption,
Message Authentication Code calculation, and Key Updating. Examples of PIN Pad Management Systems
include: Master-Session, DUKPT, APACS40, HGEPOS, AS2805, and JDEBIT2, along with many others.

27.3.1 Capabilities

The PIN Pad Control has the following minimal capability:

• Accept a PIN Entry at its keyboard and provide an Encrypted PIN to the application.

The PIN Pad Control may have the following additional capabilities:

• Compute Message Authentication Codes.

• Perform Key Updating in accordance with the selected PIN Pad Management System.

• Supports multiple PIN Pad Management Systems.

• Allow use of the PIN Pad Keyboard, Display, and Tone Generator for application usage. If one or more of these
 features are available, then the application opens and uses the associated POS Keyboard, Line Display, or Tone
 Indicator Device Objects.

27 - 6 Unified POS, v1.15.1 Beta1

27.3.2 Pin Pad Class Diagram

The following diagram shows the relationships between the PIN Pad classes.

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

PINPadConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

PINPadControl

<<capability>> CapDisplay : int32
<<capability>> CapLanguage : int32
<<capability>> CapKeyboard : boolean
<<capability>> CapMACCalculation : boolean
<<capability>> CapTone : boolean
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> Amount : currency
<<prop>> AvailableLanguagesList : string
<<prop>> AvailablePromptsList : string
<<prop>> EncryptedPIN : string
<<prop>> MaximumPINLength : int32
<<prop>> MerchantID : string
<<prop>> MinimumPINLength : int32
<<prop>> PINEntryEnabled : boolean
<<prop>> Prompt : int32
<<prop>> PromptLanguage : int32
<<prop>> TerminalID : string
<<prop>> Track1Data : binary
<<prop>> Track2Data : binary
<<prop>> Track3Data : binary
<<prop>> Track4Data : binary
<<prop>> TransactionType : int32

beginEFTTransaction(PINPadSystem : string, transactionHost : int32) : void
computeMAC(inMsg : string, outMsg : object) : void
enablePINEntry() : void
endEFTTransaction(completionCode : int32) : void
updateKey(keyNum : int32, key : string) : void
verifyMAC(message : string) : void

(from upos)

<<Interface>>

fires

fires

fires

DirectIOEvent
(from events)

<<event>>
fires

BaseControl
(from upos)

<<Interface>>

<<sends>>

<<uses>>
<<uses>>

<<uses>>

<<sends>>

Unified POS, v1.15.1 Beta1 27 - 7

27.3.3 Pin Pad Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of a PIN Pad device, showing a general sequence of an
application performing an EFT transaction with message authentication.

NOTE: we are assuming that the :ClientApp already successfully opened, claimed and enabled the PINPad
device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :PINPad :PINPadService

 : Customer

:DataEvent

Without loss of generality we are assuming that CapTone
== false and CapDisplay == PPAD_DISP_NONE so that
tone and display functionality for the application are done via
other controls for some other tone and display devices.

1: setAccountNumber(accountNumber)
2: setAccountNumber(accountNumber)

3: setAmount(amount) 4: setAmount(amount)

5: setMerchantID(merchanID) 6: setMerchantID(merchanID)

7: setTerminalID(terminalID)
8: setTerminalID(terminalID)

9: setTrack1Data(track1Data) 10: setTrack1Data(track1Data)

11: setTrack2Data(track2Data)
12: setTrack2Data(track2Data)

13: setTrack3Data(track3Data) 14: setTrack3Data(track3Data)

15: setTrack4Data(track4Data)
16: setTrack4Data(track4Data)

This will be an empty array
except when the track data
is coming from a JIS-II card.

17: beginEFTTransaction() 18: beginEFTTransaction()

At this point the device is
initialized to perform the
encryption functions for
the EFT transaction.

19: enablePINEntry() 20: enablePINEntry()

21: PINEntryEnabled property set to true

22: successfully entered PIN

23: PINEntryEnabled property set to false

24: create new DataEvent

25: enqueue DataEvent [DataEventEnabled == false]

26: deliver DataEvent to control [DataEventEnabled == true && FreezeEvents == false]

Right before the DataEvent is
delivered set DataEventEnabled
to false.

27: deliver event to all registered handlers28: notify application of new event

Assume message
authentication is required.

29: computeMAC(inMsg, outMsg) 30: computeMAC(inMsg, outMsg)

31: verifyMAC(message) 32: verifyMAC(message)

33: endEFTTransaction(PPA_EFT_NORMAL)

34: endEFTTransaction(PPA_EFT_NORMAL)

27 - 8 Unified POS, v1.15.1 Beta1

27.3.4 Feature Not Supported

This specification does not include support for the following:

• Initial Key Loading. This operation usually requires downloading at least one key in the clear and must be
 done in a secure location (typically either the factory or at a Financial Institution). Thus, support for initial
 key loading is outside the scope of this specification. However, this specification does include support for
 updating keys while a PIN Pad unit is installed at a retail site.

• Full EFT functionality. This specification addresses the functionality of a PIN Pad that is used solely as a
 peripheral device by an Electronic Funds Transfer application. It specifically does not define the
 functionality of an Electronic Funds Transfer application that might execute within an intelligent PIN
 Pad. This specification does not include support for applications in which the PIN Pad application
 determines that a message needs to be transmitted to the EFT Transaction Host. Consequently, this
 specification will not apply in Canada, Germany, Netherlands, and possibly other countries. It also does
 not apply to PIN Pad in which the vendor has chosen to provide EFT Functionality in the PIN Pad.

• Smartcard Reader. Some PIN Pad devices will include a Smartcard reader. Support for this device may be included
 in a future revision of this specification. In the interim, the directIO method could be used to control such added
 functionality.

27.3.5 Note on Terminology

For the PIN Pad device, clarification of the terminology used to describe the data exchange with the device is
necessary. “Hex-ASCII” is used to indicate that the “standard” representation of bytes as hexadecimal ASCII
characters is used. For instance, the byte stream {0x15, 0xC7, 0xF0} would be represented in hex-ASCII as
“15C7F0.”

Unified POS, v1.15.1 Beta1 27 - 9

27.3.6 Model

A PIN Pad performs encryption functions under control of a PIN Pad Management System. Some PIN Pads will
support multiple PIN Pad Management Systems. Some PIN Pad Management Systems support multiple keys
(sets) for different EFT Transaction Hosts. Thus, for each EFT transaction, the application will need to select the
PIN Pad Management System and EFT Transaction Host to be used. Depending on the PIN Pad Management
System, one or more EFT transaction parameters will need to be provided to the PIN Pad for use in the
encryption functions. The application should set the value of ALL EFT Transaction parameter properties to
enable easier migration to EFT Transaction Hosts that require a different PIN Pad Management System.

After opening, claiming, and enabling the PIN Pad Control, an application should use the following general
scenario for each EFT Transaction.

• Set the EFT transaction parameters (AccountNumber, Amount, MerchantID, TerminalID, Track1Data,
 Track2Data, Track3Data, Track4Data, and TransactionType properties) and then call the
 beginEFTTransaction method. This will initialize the Device to perform the encryption functions for the EFT
 transaction.

• If PIN Entry is required, call the enablePINEntry method. Then set the DataEventEnabled property and wait for
 the DataEvent.

• If Message Authentication Codes are required, use the computeMAC and verifyMAC methods as needed.

• Call the endEFTTransaction method to notify the Device that all operations for the EFT transaction have been
 completed.

• All input data enqueued by the Control may be deleted by calling the clearInput method.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
 default values by calling the clearInputProperties method.

This specification supports two models of usage of the display. The CapDisplay property indicates one of the
following models.

• An application has complete control of the text that is to be displayed. For this model, there is an associated Line
 Display Control that is used by the application to interact with the display.

• An application cannot supply the text to be displayed. Instead, it can only select from a list of predefined messages
 to be displayed. For this model, there is a set of PIN Pad properties that are used to control the display.

27.3.7 Device Sharing

The PIN Pad is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling methods
 that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

27 - 10 Unified POS, v1.15.1 Beta1

27.3.8 Pin Pad State Diagram

The following state diagram depicts the PIN Pad Control device model.

Closed Opened Claimed

Enabled

EFT Transaction

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Wait for PIN Input

ErrorEvent
Processing

DataEvent
Processing

open()

close()

claim()

Error
[DataEventEnabled == true]

release()

/set DeviceEnabled(true)

close()

beginEFTTransaction()

endEFTTransaction()

release()

/set DeviceEnabled(false)

close()

done

enablePINEntry()

computeMAC(),
verifyMAC()

done

Unified POS, v1.15.1 Beta1 27 - 11

27.4 Properties (UML attributes)

27.4.1 AccountNumber Property

Syntax AccountNumber: string { read-write, access after open }

Remarks Holds the account number to be used for the current EFT transaction. The application must set this
property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

See Also beginEFTTransaction Method.

27.4.2 AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-only, access after open }

Remarks Holds additional security/encryption information when a DataEvent is delivered. This property
will be formatted as a HEX-ASCII string. The information content and internal format of this string
will vary among PIN Pad Management Systems. For example, if the PIN Pad Management System
is DUKPT, then this property will contain the “PIN Pad sequence number”. If the PIN Entry was
cancelled, this property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

27.4.3 Amount Property Corrected in Release 1.8

Syntax Amount: currency { read-write, access after open }

Remarks Holds the amount of the current EFT transaction. The application must set this property before
calling the beginEFTTransaction method. This property is a monetary value stored using an
implied four decimal places. For example, an actual value of 12345 represents 1.2345.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

See Also beginEFTTransaction Method.

27 - 12 Unified POS, v1.15.1 Beta1

27.4.4 AvailableLanguagesList Property

Syntax AvailableLanguagesList: string { read-only, access after open }

Remarks Holds a semi-colon separated list of a set of a “language definitions” that are supported by the pre-
defined prompts in the PIN Pad. A “language definition” consists of an ISO-639 language code and
an ISO-3166 country code. The two codes are comma separated.

For example, the string “EN,US;FR,CAN” represents two supported language definitions. US
English and Canadian French where the variant of French used will be dependent on what is
available on the device.

If CapLanguage is PPAD_LANG_NONE, then this property will be the empty string.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PromptLanguage Property.

27.4.5 AvailablePromptsList Property

Syntax AvailablePromptsList: string { read-only, access after open }

Remarks Holds a comma-separated string representation of the supported values for the Prompt property.

The full set of supported Prompt values are shown below:

Name (Value) Meaning
PPAD_MSG_ENTERPIN (1)

Enter pin number on the PIN Pad.

PPAD_MSG_PLEASEWAIT (2)
The system is processing. Wait.

PPAD_MSG_ENTERVALIDPIN (3)
The pin that was entered is not correct. Enter the correct pin number.

PPAD_MSG_RETRIESEXCEEDED (4)
The user has failed to enter the correct pin number and the maximum
number of attempts has been exceeded.

PPAD_MSG_APPROVED (5)
The request has been approved.

PPAD_MSG_DECLINED (6)
The EFT Transaction Host has declined to perform the requested function.

PPAD_MSG_CANCELED (7)
The request is canceled.

Unified POS, v1.15.1 Beta1 27 - 13

PAD_MSG_AMOUNTOK (8)
Enter Yes/No to approve the amount.

PPAD_MSG_NOTREADY (9)
PIN Pad is not ready for use.

PPAD_MSG_IDLE (10)
The System is Idle.

PPAD_MSG_SLIDE_CARD (11)
Slide card through the integrated MSR.

PPAD_MSG_INSERTCARD (12)
Insert (smart)card.

PPAD_MSG_SELECTCARDTYPE (13)
Select the card type (typically credit or debit).

Value 1000 and above are reserved for device specific defined values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Prompt Property.

27 - 14 Unified POS, v1.15.1 Beta1

27.4.6 CapDisplay Property

Syntax CapDisplay: int32 { read-only, access after open }

Remarks Defines the operations that the application may perform on the PIN Pad display.

Value Meaning
PPAD_DISP_UNRESTRICTED

The application can use the PIN Pad display in an unrestricted
manner to display messages. In this case, an associated Line Display
Control Object is the interface to the PIN Pad display. The application

 must call Line Display methods to manipulate the display.

PPAD_DISP_PINRESTRICTED
The application can use the PIN Pad display in an unrestricted manner
except during PIN Entry. The PIN Pad will display a pre-defined message
during PIN Entry. If an attempt is made to use the associated Line Display
Control Object while PIN Entry is enabled, the Line Display Control will
throw a UposException with an associated ErrorCode of E_BUSY.

PPAD_DISP_RESTRICTED_LIST
The application cannot specify the text of messages to display. It can only
select from a list of pre-defined messages. There is no associated Line
Display Device Control.

PPAD_DISP_RESTRICTED_ORDER
The application cannot specify the text of messages to display. It can only
select from a list of pre-defined messages. The selections must occur in a
pre-defined acceptable order. There is no associated Line Display Device
Control.

PPAD_DISP_NONE The PIN Pad does not have the PIN Pad display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

27.4.7 CapKeyboard Property

Syntax CapKeyboard: boolean { read-only, access after open }

Remarks If true, the application can use the PIN Pad to obtain input. The application will use an associated
POS Keyboard Device Control object as the interface to the PIN Pad keyboard. Note that the
associated POS Keyboard Control is effectively disabled while PINEntryEnabled is true.
If false, the application cannot obtain input directly from the PIN Pad keyboard.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 27 - 15

27.4.8 CapLanguage Property Updated in Release 1.9

Syntax CapLanguage: int32 { read-only, access after open }

Remarks Defines the capabilities that the application has to select the language of pre-defined messages (e.g.,
English, French, Arabic etc.).
Value Meaning
PPAD_LANG_NONE The PIN Pad supports no predefined prompt messages. The property will

be set to this value if CapDisplay = PPAD_DISP_UNRESTRICTED.
 Any attempt to set the value of the PromptLanguage property will cause

a UposException to be thrown with the associated ErrorCode of
E_ILLEGAL.

PPAD_LANG_ONE The PIN Pad supports predefined prompt messages in one language. Any
attempt to set the value of the PromptLanguage property to other than
the default value will cause a UposException to be thrown with the
associated ErrorCode of E_ILLEGAL.

PPAD_LANG_PINRESTRICTED
The PIN Pad cannot change prompt languages during PIN Entry. The
application must set the desired value into the PromptLanguage property
before calling enablePINEntry. Any attempt to set the value of the
PromptLanguage while PINEntryEnabled is true will cause a
UposException to be thrown with the associated ErrorCode of E_BUSY.

PPAD_LANG_UNRESTRICTED
The application can change the language of predefined prompt messages
at anytime. The currently displayed message will change immediately.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also PromptLanguage Property.

27.4.9 CapMACCalculation Property

Syntax CapMACCalculation: boolean { read-only, access after open }

Remarks If true, the PIN Pad supports MAC calculation.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

27 - 16 Unified POS, v1.15.1 Beta1

27.4.10 CapTone Property

Syntax CapTone: boolean { read-only, access after open }

Remarks If true, the PIN Pad has a Tone Indicator. The Tone Indicator may be accessed by use of an
associated Tone Indicator Control. If false, there is no Tone Indicator.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

27.4.11 EncryptedPIN Property

Syntax EncryptedPIN: string { read-only, access after open }

Remarks Holds the value of the Encrypted PIN after a DataEvent. This property will be formatted as a
hexadecimal ASCII string. Each character is in the ranges ‘0’ through ‘9’ or ‘A’ through ‘F’. Each
pair of characters is the hexadecimal representation for a byte.
For example, if the first four characters are “12FA”, then the first two bytes of the PIN are 12
hexadecimal (18) and FA hexadecimal (250).

If the PIN Entry was canceled, this property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

27.4.12 MaximumPINLength Property

Syntax MaximumPINLength: int32 { read-write, access after open }

Remarks Holds the maximum acceptable number of digits in a PIN. This property must be set to a default
value by the open method. If the application wishes to change this property, it should be set before
the enablePINEntry method is called. Note that in some implementations, this value cannot be
changed by the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the
 enablePINEntry method has been called.

Unified POS, v1.15.1 Beta1 27 - 17

27.4.13 MerchantID Property

Syntax MerchantID: string { read-write, access after open }

Remarks Holds the Merchant ID, as it is known to the EFT Transaction Host. The application must set this
property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

27.4.14 MinimumPINLength Property

Syntax MinimumPINLength: int32 { read-write, access after open }

Remarks Holds the minimum acceptable number of digits in a PIN. This property will be set to a default value
by the open method. If the application wishes to change this property, it should be set before the
enablePINEntry method is called. Note that in some implementations, this value cannot be
changed by the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the enablePINEntry

method has been called.

27.4.15 PINEntryEnabled Property Updated in Release 1.12

Syntax PINEntryEnabled: boolean { read-only, access after open }

Remarks If true, the PIN entry operation is enabled. It is set when the enablePINEntry method is called. It
will be set to false when the user has completed the PIN Entry operation or when the
endEFTTransaction method has completed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

27 - 18 Unified POS, v1.15.1 Beta1

27.4.16 Prompt Property

Syntax Prompt: int32 { read-write, access after open }

Remarks Holds the identifies a predefined message to be displayed on the PIN Pad. This property is used if
CapDisplay is PPAD_DISP_RESTRICTED_LIST or PPAD_DISP_RESTRICTED_ORDER. It is
also used during PIN Entry if CapDisplay has a value of PPAD_DISP_PINRESTRICTED. The
AvailablePromptsList property lists the possible values for this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following has occurred.
 * An attempt was made to set the property to a value that is not supported
 by the PIN Pad Service.
 * An attempt was made to select prompt messages in an unacceptable
 order (if CapDisplay is PPAD_DISP_RESTRICTED_ORDER).

See Also PromptLanguage Property.

Unified POS, v1.15.1 Beta1 27 - 19

27.4.17 PromptLanguage Property

Syntax PromptLanguage: nls { read-write, access after open }

Remarks Holds the “language definition” for the message to be displayed (as specified by the Prompt
property). This property is used if the Prompt property is being used. The exact effect of changing
this property depends on the value of CapLanguage.

A “language definition” consists of an ISO-639 language code and an ISO-3166 country code. The
two codes are comma separated.

The country code is optional and implies that the application does not care which country variant of
the language is used.

For example, the string “EN,US” represents a US English language definition, the string “FR”,
represents a French language definition where the variant of French used will be dependent on what
is available on the device.

The property is initialized to a default value by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following occurred.

* An attempt was made to set the property to a value that is not supported
by the PIN Pad Service.
* CapLanguage is PPAD_LANG_NONE. and an attempt was made to
set the value of this property.
* CapLanguage is PPAD_LANG_ONE and an attempt was made to set
the value of this property to other than the default value.

E_BUSY CapLanguage is PPAD_LANG_PINRESTRICTED and
PINEntryEnabled is true.

See Also CapLanguage Property, AvailableLanguagesList Property.

27.4.18 TerminalID Property

Syntax TerminalID: string { read-write, access after open }

Remarks Holds the terminal ID, as it is known to the EFT Transaction Host. The application must set this
property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

27 - 20 Unified POS, v1.15.1 Beta1

27.4.19 Track1Data Property

Syntax Track1Data: binary { read-write, access after open }

Remarks Holds either the decoded track 1 data from the previous card swipe or an empty array. An empty
array indicates that the track was not physically read. The application must set this property before
calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the
 beginEFTTransaction method has been called.

27.4.20 Track2Data Property

Syntax Track2Data: binary { read-write, access after open }

Remarks Holds either the decoded track 2 data from the previous card swipe or an empty array. An empty
array indicates that the track was not physically read. The application must set this property before
calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the
 beginEFTTransaction method has been called.

27.4.21 Track3Data Property

Syntax Track3Data: binary { read-write, access after open }

Remarks Holds either the decoded track 3 data from the previous card swipe or an empty array. An empty
array indicates that the track was not physically read. The application must set this property before
calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the
 beginEFTTransaction method has been called.

Unified POS, v1.15.1 Beta1 27 - 21

27.4.22 Track4Data Property Added in Release 1.5

Syntax Track4Data: binary { read-write, access after open }

Remarks Holds either the decoded track 4 (JIS-II) data from the previous card swipe or an empty array. An
empty array indicates that the track was not physically read. The application must set this property
before calling the beginEFTTransaction method.

To maintain compatibility with previous versions, the Control may also continue to store the JIS-II
data in another TracknData property. However, it should be noted that to ensure application
portability, Track4Data should be used to access JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

27.4.23 TransactionType Property

Syntax TransactionType: int32 { read-write, access after open }

Remarks Holds the type of the current EFT Transaction. The application must set this property before calling
the beginEFTTransaction method.

This property have one of the following values:

Value Meaning
PPAD_TRANS_DEBIT Debit (decrease) the specified account

PPAD_TRANS_CREDIT
Credit (increase) the specified account

PPAD_TRANS_INQ (Balance) Inquiry

PPAD_TRANS_RECONCILE
Reconciliation/Settlement

PPAD_TRANS_ADMIN
Administrative Transaction

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

27 - 22 Unified POS, v1.15.1 Beta1

27.5 Methods (UML operations)

27.5.1 beginEFTTransaction Method Updated in Release 1.14

Syntax beginEFTTransaction (PINPadSystem: string, transactionHost: int32):
void { raises-exception, use after open-claim-enable }

Value Description
PINPadSystem Name of the desired PIN Pad Management System (see below).
 Note: The Service may support other PIN Pad Management systems not
 defined below; it is left up to the Application to have knowledge of the
 proper string value.

transactionHost Identifications particular EFT Transaction Host to be used for this
transaction.

The PINPadSystem Parameter has one of the following values:

Value Description
“M/S” Master/Session (U.S.A Latin America)

“DUKPT” Derived Unique Key Per Transaction (USA, Latin America)

“APACS40” Standard 40 (UK and other countries)

“AS2805” Australian Standard 2805

“HGEPOS” (Italian)

“JDEBIT2” Japan Debit 2

Remarks Initialize the beginning of an EFT Transaction. The device will perform initialization functions
(such as computing session keys). No other PIN Pad functions can be performed until this method
is called.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The requested PIN Pad Management System is not supported by the
 Control, or the requested EFT Transaction Host is an illegal value for the
 selected PIN Pad Management System.

E_BUSY The PIN Pad is already performing an EFT transaction.

Unified POS, v1.15.1 Beta1 27 - 23

27.5.2 computeMAC Method Updated in Release 1.7

Syntax computeMAC (inMsg: string, outMsg: object):
void { raises-exception, use after beginEFTTransaction)

Value Description
inMsg1 The message that the application intends to send to an EFT Transaction.
outMsg1 Contains the result of applying the MAC calculation to inMsg. This output

parameter will contain a reformatted message that may actually be
transmitted to an EFT Transaction Host.

Remarks Computes a MAC value and appends it to the designated message. Depending on the selected PIN
Pad management system, the PIN Pad may also insert other fields into the message. Note that this
method cannot be used while PIN Pad input (PIN Entry) is enabled.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_DISABLED A beginEFTTransaction method has not been performed.
E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform a MAC

calculation during PIN Entry.

27.5.3 enablePINEntry Method

Syntax enablePINEntry ():
void { raises-exception, use after beginEFTTransaction);

Remarks Enable PIN Entry at the PIN Pad device. When this method is called, the PINEntryEnabled

property will be changed to true. If the PIN Pad uses pre-defined prompts for PIN Entry, then the
Prompt property will be changed to PPAD_MSG_ENTERPIN.
When the user has completed the PIN entry operation (either by entering their PIN or by hitting
Cancel), the PINEntryEnabled property will be changed to false. A DataEvent will be delivered to
provide the encrypted PIN to the application when DataEventEnabled is set to true. Note that any
data entered at the PIN Pad while PINEntryEnabled is true will be supplied in encrypted form and
will NOT be provided to any associated Keyboard Control Object.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_DISABLEDA beginEFTTransaction method has not been performed.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

27 - 24 Unified POS, v1.15.1 Beta1

27.5.4 endEFTTransaction Method

Syntax endEFTTransaction (completionCode: int32):
void { raises-exception, use after beginEFTTransaction }

The completionCode is one of the following values:

Value Description
PPAD_EFT_NORMAL The EFT transaction completed normally. Note that this does not mean
 that the EFT transaction was approved. It merely means that the proper
 sequence of messages was transmitted and received.

PPAD_EFT_ABNORMAL
The proper sequence of messages was not transmitted and received.

Remarks Ends an EFT Transaction. The Device will perform termination functions (such as computing next
transaction keys).

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

27.5.5 updateKey Method

Syntax updateKey (keyNum: int32, key: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description
keyNum A key number.

key A Hex-ASCII value for a new key.

Remarks Provides a new encryption key to the PIN Pad. It is used only for those PIN Pad Management
Systems in which new key values are sent to the terminal as a field in standard messages from the
EFT Transaction Host.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following conditions occurred.
 * The selected PIN Pad Management System does not support this
 function.
 * The keyNum specifies an unacceptable key number.
 * The key contains a bad key (not Hex-ASCII or wrong length or bad
 parity).

Unified POS, v1.15.1 Beta1 27 - 25

27.5.6 verifyMAC Method Updated in Release 1.9

Syntax verifyMAC (message: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description
message Contains a message received from an EFT Transaction Host.

Remarks Verify the MAC value in a message received from an EFT Transaction Host. This method throws a
UposException if it cannot verify the message. Note that this method cannot be used while PIN
Entry is enabled.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform a MAC

verification during PIN Entry.
E_DISABLED A beginEFTTransaction method has not been performed.
E_FAILURE The Service failed to verify the MAC value in message.

27 - 26 Unified POS, v1.15.1 Beta1

27.6 Events (UML interfaces)

27.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when a PIN Entry operation has completed.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 See below.

The Status property has one of the following values:

Value Meaning
PPAD_SUCCESS PIN Entry has occurred and values have been stored into the
EncryptedPIN and AdditionalSecurityInformation properties.

PPAD_CANCEL The user hit the cancel button on the PIN Pad.
PPAD_TIMEOUT A timeout condition occurred in the PIN Pad. (Not all PIN Pads will report

this condition).
Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation

that is was processed by the device successfully.

See Also “Device Input Model” on page 1- 18.

Unified POS, v1.15.1 Beta1 27 - 27

27.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific PIN Pad Service to provide events to the application that are not otherwise supported by the
Device Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service event.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s PIN Pad devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method

27 - 28 Unified POS, v1.15.1 Beta1

27.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error was detected while trying to perform a PIN encryption
function.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-21.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_INPUT indicating that the error
occurred while gathering or processing event-driven input.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EPPAD_BAD_KEY An Encryption Key is corrupted or missing.
The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.

The application’s error processing may change ErrorResponse to the following value:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited. Default when locus

is EL_INPUT.

Remarks Enqueued when an error is detected and the Service’s State transitions into the error state. This
event is not delivered until DataEventEnabled is true, so that proper application sequencing
occurs.

See Also “Device Behavior Models” on page 1- 10 and ErrorReportingType Property.

Unified POS, v1.15.1 Beta1 27 - 29

27.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a PIN Pad.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a PIN Pad.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the PIN Pad detects a power state change.

See Also “Events” on page 1- 15.

27 - 30 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 28 - 1

28 Point Card Reader/Writer

28.1 General
This Chapter defines the Point Card Reader/Writer device category.

28.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.5 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.5 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.5 open
Claimed: boolean { read-only } 1.5 open
DataCount: int32 { read-only } 1.5 open
DataEventEnabled: boolean { read-write } 1.5 open
DeviceEnabled: boolean { read-write } 1.5 open & claim
FreezeEvents: boolean { read-write } 1.5 open
OutputID: int32 { read-only } 1.5 open
PowerNotify: int32 { read-write } 1.5 open
PowerState: int32 { read-only } 1.5 open
State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --
DeviceControlVersion: int32 { read-only } 1.5 --
DeviceServiceDescription: string { read-only } 1.5 open
DeviceServiceVersion: int32 { read-only } 1.5 open
PhysicalDeviceDescription: string { read-only } 1.5 open
PhysicalDeviceName: string { read-only } 1.5 open

28 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific: Type Mutability Version May Use After
CapBold: boolean { read-only } 1.5 open
CapCardEntranceSensor: beelean { read-only } 1.5 open
CapCharacterSet: int32 { read-only } 1.5 open
CapCleanCard: boolean { read-only } 1.5 open
CapClearPrint: boolean { read-only } 1.5 open
CapDhigh: boolean { read-only } 1.5 open
CapDwide: boolean { read-only } 1.5 open
CapDwideDhigh: boolean { read-only } 1.5 open
CapItalic: boolean { read-only } 1.5 open
CapLeft90: boolean { read-only } 1.5 open
CapMapCharacterSet: boolean { read-only } 1.7 open
CapPrint: boolean { read-only } 1.5 open
CapPrintMode: boolean { read-only } 1.5 open
CapRight90: boolean { read-only } 1.5 open
CapRotate180: boolean { read-only } 1.5 open
CapTracksToRead: int32 { read-only } 1.5 open
CapTracksToWrite: int32 { read-only } 1.5 open
CardState: int32 { read-only } 1.5 open
CharacterSet: int32 { read-write } 1.5 open, claim, & enable
CharacterSetList: string { read-only } 1.5 open
FontTypeFaceList: string { read-only } 1.5 open
LineChars: int32 { read-only } 1.5 open, claim, & enable
LineCharsList: string { read-only } 1.5 open
LineHeight: int32 { read-only } 1.5 open, claim, & enable
LineSpacing: int32 { read-only } 1.5 open, claim, & enable
LineWidth: int32 { read-only } 1.5 open, claim, & enable
MapCharacterSet: boolean { read-write } 1.7 open
MapMode: int32 { read-only } 1.5 open, claim, & enable
MaxLine: int32 { read-only } 1.5 open, claim, & enable
PrintHeight: int32 { read-only } 1.5 open, claim, & enable
ReadState1: int32 { read-only } 1.5 open
ReadState2: int32 { read-only } 1.5 open
RecvLength1: int32 { read-only } 1.5 open, claim, & enable
RecvLength2: int32 { read-only } 1.5 open, claim, & enable
SidewaysMaxChars: int32 { read-only } 1.5 open
SidewaysMaxLines: int32 { read-only } 1.5 open

Unified POS, v1.15.1 Beta1 28 - 3

Properties (Continued)
Specific: Type Mutability Version May Use After
TracksToRead: int32 { read-write } 1.5 open, claim, & enable
TracksToWrite: int32 { read-write } 1.5 open, claim, & enable
Track1Data: binary { read-only } 1.5 open
Track2Data: binary { read-only } 1.5 open
Track3Data: binary { read-only) 1.5 open
Track4Data: binary { read-only } 1.5 open
Track5Data: binary { read-only } 1.5 open
Track6Data: binary { read-only } 1.5 open
WriteState1: int32 { read-only } 1.5 open
WriteState2: int32 { read-only } 1.5 open
Write1Data: binary { read-write } 1.5 open
Write2Data: binary { read-write } 1.5 open
Write3Data: binary { read-write } 1.5 open
Write4Data: binary { read-write } 1.5 open
Write5Data: binary { read-write } 1.5 open
Write6Data: binary { read-write } 1.5 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.5

close ():
void { raises-exception, use after open }

1.5

claim (timeout: int32):
void { raises-exception, use after open }

1.5

release ():
void { raises-exception, use after open, claim }

1.5

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.5

clearInput ():
void { raises-exception, use after open, claim }

1.5

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { raises-exception, use after open, claim }

1.5

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.5

28 - 4 Unified POS, v1.15.1 Beta1

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
1.5

beginRemoval (timeout: int32):
void{ raises-exception, use after open, claim, enable }

1.5

cleanCard ():
void { raises-exception, use after open, claim, enable }

1.5

clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width:
int32, height: int32):
void { raises-exception, use after open, claim, enable }

1.5

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.5

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.5

printWrite (kind: int32, hposition: int32,vposition: int32,data: string):
void { raises-exception, use after open, claim, enable }

1.5

rotatePrint (rotation: int32):
void { raises-exception, use after open, claim, enable }

1.5

validateData (data: string):
void { raises-exception, use after open, claim, enable }

1.5

Unified POS, v1.15.1 Beta1 28 - 5

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.5

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.5
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.5
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.5
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.5
 Status: int32 { read-only }

28 - 6 Unified POS, v1.15.1 Beta1

28.3 General Information
The Point Card Reader / Writer programmatic name is “PointCardRW”.

This device was introduced in Version 1.5 of the specification.

28.3.1 Capabilities

The Point Card Reader / Writer has the following capabilities.

• Both reading and writing of the point card magnetic data are possible.

• Supports reading and writing of data from up to 6 tracks.

• The data on the tracks is in a device specific format, see the device manual for specific definition. The data is
 usually in ASCII format.

• Supports point cards with or without a printing area. Actual printing support depends upon the capabilities of the
 device.

• Supports both card insertion and ejection.

• No special security capabilities (e.g., encryption) are supported.

Unified POS, v1.15.1 Beta1 28 - 7

28.3.2 Point Card Reader/Writer Class Diagram

The following diagram shows the relationships between the Point Card Reader Writer classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

PointCardRWConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

PointCardRWControl

<<capability>> CapBold : boolean
<<capability>> CapCardEntranceSensor : boolean
<<capability>> CapCharacterSet : int32
<<capability>> CapCleanCard : boolean
<<capability>> CapClearPrint : boolean
<<capability>> CapDhigh : boolean
<<capability>> CapDwide : boolean
<<capability>> CapDwideDhigh : boolean
<<capability>> CapItalic : boolean
<<capability>> CapLeft90 : boolean
<<capability>> CapPrint : boolean
<<capability>> CapPrintMode : boolean
<<capability>> CapRight90 : boolean
<<capability>> CapRotate180 : boolean
<<capability>> CapTracksToRead : int32
<<capability>> CapTracksToWrite : int32
<<prop>> CardState : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> FontTypeFaceList : string
<<prop>> LineChars : int32
<<prop>> LineCharsList : string
<<prop>> LineHeight : int32
<<prop>> LineSpacing : int32
<<prop>> LineWidth : int32
<<prop>> MapMode : int32
<<prop>> MaxLines : int32
<<prop>> PrintHeight : int32
<<prop>> RecvLength1 : int32
<<prop>> RecvLength2 : int32
<<prop>> ReadState1 : int32
<<prop>> ReadState2 : int32
<<prop>> SidewaysMaxChars : int32
<<prop>> SidewaysMaxLines : int32
<<prop>> Tracks1Data : binary
<<prop>> Tracks2Data : binary
<<prop>> Tracks3Data : binary
<<prop>> Tracks4Data : binary
<<prop>> Tracks5Data : binary
<<prop>> Tracks6Data : binary
<<prop>> TracksToRead : int32
<<prop>> TracksToWrite : int32
<<prop>> Write1Data : binary
<<prop>> Write2Data : binary
<<prop>> Write3Data : binary
<<prop>> Write4Data : binary
<<prop>> Write5Data : binary
<<prop>> Write6Data : binary
<<prop>> WriteState1 : int32
<<prop>> WriteState2 : int32

beginInsertion()
beginRemoval()
cleanCard()
clearPrintWrite()
endInsertion()
endRemoval()
printWrite()
rotatePrint()
validateData()

(from upos)

<<Interface>>

<<uses>>

<<sends>>

fires

fires

fires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<uses>>

<<sends>>

28 - 8 Unified POS, v1.15.1 Beta1

28.3.3 Model

The general model of Point Card Reader Writer is as follows:

• The Point Card Reader Writer reads all the magnetic stripes on a point card. The data length and reading
 information are placed in the property corresponding to the track.

• The Point Card Reader Writer follows the input model of event driven input during the card insertion processing.
 Also, writing to the printing area and the magnetic stripe follows the output model.

28.3.3.1 Input Model

• An application must call open and claim, then set DeviceEnabled to true.

• When an application wants a card inserted, it calls the beginInsertion method, specifying a timeout value.

• If a card is not inserted before the timeout period elapses, the Point Card Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in insertion mode. If the application still wants a
 card inserted, it must call the beginInsertion method again.

• To exit insertion mode, either after a card was inserted or the application wishes to abort insertion, the application
 calls the endInsertion method.

• If there is a point card in the Point Card Reader Writer when endInsertion is called, the point card’s data tracks are
 automatically read and a DataEvent is enqueued. When the application sets the DataEventEnabled property to
 true, the DataEvent will be delivered.

• If an error occurs while reading the point card’s data tracks, an ErrorEvent is enqueued instead of a DataEvent.
 When the application sets the DataEventEnabled property to true, the ErrorEvent will be delivered.

• The application can obtain the current number of enqueued data events by reading the DataCount property.

• All enqueued but undelivered input may be deleted by calling the clearInput method.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
 default values by calling the clearInputProperties method.

Unified POS, v1.15.1 Beta1 28 - 9

28.3.3.2 Output Model Updated in Release 1.7

• To write data to a card, the application calls the printWrite method. The ability to write data depends upon the
 capabilities of the device.

• The printWrite method is always performed asynchronously. All asynchronous output is performed on a first-in,
 first-out basis.

• When the application calls printWrite, the Point Card Reader Writer buffers the request in program memory, for
 delivery to the Physical Device as soon as the Physical Device can receive and process it, assigns a unique
 identification number for this request. This ID is stored in the property OutputID. The Point Card Reader Writer
 then either queues the request or starts its processing. Either way, the Point Card Reader Writer returns to the
 application quickly.

• When the printWrite method completes, an OutputCompleteEvent is delivered to the application. The
 OutputID associated with the completed request is passed in the OutputCompleteEvent.

• If the printWrite method fails during its processing, an ErrorEvent will be delivered to the application. If the
 application had multiple outstanding output requests, the OutputID of the request that failed can be determined by
 watching which requests have successfully completed by monitoring OutputCompleteEvents. The request that
 failed is the one that was issued immediately after the last request that successfully completed.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput. This method
 also stops any output that is in progress, if possible. No OutputCompleteEvents will be delivered for output
 requests terminated in this manner.

• When done accessing the point card, the application calls the beginRemoval method, specifying a timeout value.

• If the card is not removed before the timeout period elapses, the Point Card Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in removal mode. If the application still wants the
 card removed, it must call the beginRemoval method again.

• To exit removal mode, either after the card was physically removed or the application wishes to abort removal, the
 application calls the endRemoval method.

28 - 10 Unified POS, v1.15.1 Beta1

28.3.4 Card Insertion Diagram

The processing from card insertion to card removal is shown below. All methods, other than printWrite, are
performed synchronously.

1. If the card is not inserted into the Point Card Reader Writer before the application specified timeout elapses, an
 exception is fired. The application needs to call beginInsertion again to confirm that a point card has been inserted
 or call endInsertion to cancel the card insertion. After a successful beginInsertion, the application must call
 endInsertion to cause the Point Card Reader Writer to exit insertion mode and to read the magnetic stripe data
 from the point card.

2. If the card is not removed from the Point Card Reader Writer before the application specified timeout elapses, an
 exception is fired. The application needs to call beginRemoval again to confirm that the point card has been
 removed, or call endRemoval to cancel the card removal. After a successful beginRemoval, the application must
 call endRemoval to cause the Point Card Reader Writer to exit removal mode.

DataEvent

beginInsertion

endInsertion

DataEventEnabled = true

OutputCompleteEvent

printWrite

beginRemoval

endRemoval

Card
insertion

Card
write

Card
removal

beginInsertion (1)

beginRemoval

Application
Point Card

Reader Writer

(2)

Unified POS, v1.15.1 Beta1 28 - 11

28.3.5 Printing Capability

• The Point Card Reader Writer supports devices that allow for rewriting the print area of a card.

• The Point Card Reader Writer supports printing specified either by dot units or by line units. When
 CapPrintMode is true, the unit type is determined by the value of the MapMode property. When CapPrintMode
 is false, the unit type is defined as lines.

• The data to print is passed to the printWrite method as the data parameter. Special character modifications, such
 as double height, are dependent upon the capabilities of the device. The starting print location is specified by the
 vposition and hposition parameters respectively indicating the vertical and horizontal start position expressed in
 units defined by the MapMode property value.

• When using line units, the start position for lines containing both single and double high characters is the top of a
 single high character for horizontal printing and the bottom of all characters for vertical printing. See the diagram
 below for further clarification.

Horizontal printing Vertical printing

0

0
hposition

vposition

0

0

B
A

Line feed

BA

hposition

vposition

direction of
insertion

Line feed

direction of
insertion

28 - 12 Unified POS, v1.15.1 Beta1

28.3.6 Cleaning Capability

• Cleaning of the Point Card Reader Writer is necessary to prevent errors caused by dirt build up inside the device.

• A special cleaning card is used. There are two types of cleaning card: a wet card (such as a card wet with ethanol
 before use) and a dry card.

• Cleaning is carried out by having the inserted cleaning card make several passes over the read heads inside the
 device.

• Some Point Card Reader Writers perform the cleaning operation by use of a switch on the device. Others perform
 the cleaning operation entirely under control of the application.

28.3.7 Initialization of Magnetic Stripe Data

• Some Point Card Reader Writers can initialize the magnetic stripe data to prevent the illegal use of a point card.

• There are three initialization techniques in use for Point Card Reader Writers:

• Initialize all of the data, including the start sentinel, end sentinel, and a correct LRC.

• Write an application specific code into the data area using no sentinels.

• Initialize all tracks to empty by just writing start and end sentinels.

• Initialization of the magnetic stripe is dependent upon the capability of the device.

28.3.8 Device Sharing

The Point Card Reader Writer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many Point Card Reader Writer specific
 properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 28 - 13

28.3.9 Data Characters and Escape Sequences Updated in Release 1.7

The default character set of all Point Card Reader Writers is assumed to support at least the ASCII characters 20-
hex through 7F-hex, which include spaces, digits, uppercase, lowercase, and some special characters. If the Point
Card Reader Writer does not support lowercase characters, then the Service may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical
bar (‘|’). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is
terminated by an uppercase alphabetic character.

If a sequence does not begin with ESC “|”, or it begins with ESC “|” but is not a valid UnifiedPOS escape
sequence, the Service will make a reasonable effort to pass it through to the Point Card Reader Writer. However,
not all such sequences can be distinguished from printable data, so unexpected results may occur.

Starting with Release 1.7, the application can use the ESC|#E escape sequence to ensure more reliable handling
of the amount of data to be passed through to the Point Card Reader Writer. Use of this escape sequence will
make an application non-portable. The application may, however, maintain portability by performing Embedded
Data Escape sequence calls within conditional code. This code may be based upon the value of the
DeviceServiceDescription, the PhysicalDeviceDescription, or the PhysicalDeviceName property.

NOTE: This command sequence definition and the corresponding definition in the POS Printer Chapter, are the
only known deviations from preserving the interchangeability of devices defined in this specification. If an
application finds it necessary to utilize this command sequence, please inform the UnifiedPOS Committee
(retail.omg.org) with the details of its usage, so that a possible standard/generic Application Interface may be
incorporated into a future release of the UnifiedPOS Standard. In order to preserve peripheral independence and
interoperability at the Application level, it is the Committee’s position that this command sequence should be
used only as a “last resort.”

To determine if escape sequences or data can be performed on Point Card Reader Writer, the application can call
the validateData method. (For some escape sequences, corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies an operation that is not
supported by the Point Card Reader Writer, then it is ignored.

Commands Perform indicated action. Added in Release1.7

Name Data Remarks

Pass through
embedded data
 (See a below.)

a.This escape sequence is only available in Version 1.7 and later.

ESC |#E

Send the following # characters of data through to
the hardware without modifying it. The character '#'
is replaced by an ASCII decimal string telling the
number of bytes following the escape sequence that
should be passed through as-is to the hardware.

http://retail.omg.org

28 - 14 Unified POS, v1.15.1 Beta1

Print Mode Characteristics that are remembered until explicitly changed.

Print Line Characteristics that are reset at the end of each print method or by a “Normal”
 sequence.

Name Data Remarks

Font typeface selection ESC |#fT

Selects a new typeface for the following data. Values
for the character ‘#’ are:

0 = Default typeface.
1 = Select first typeface from the FontTypefaceList
property.
2 = Select second typeface from the FontType-
faceList property.
And so on.

Name Data Remarks

Bold ESC |bC Prints in bold or double-strike.

Underline ESC |#uC Prints with underline. The character ‘#’ is replaced by
an ASCII decimal string telling the thickness of the
underline in printer dot units. If ‘#’ is omitted, then a
printer-specific default thickness is used.

Italic ESC |iC Prints in italics.

Reverse video ESC |rvC Prints in a reverse video format.

Single high and
wide

ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high and
wide

ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC Prints with the width scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.

Scale vertically ESC |#vC Prints with the height scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Normal ESC |N Restores printer characteristics to normal condition.

Unified POS, v1.15.1 Beta1 28 - 15

28.3.10 Point Card Reader Writer Sequence Diagram Added in Release 1.7

ClientApp cd:PCRWDataEventHandler PCRWServiceDataEvent

new

Create and register a DataEventHandler with the control

claim(timeOut) claim(timeOut)

setDeviceEnabled(true)

setDataEventEnabled(true)

setDeviceEnabled(true)

setDataEventEnabled(true)

beginInsertion(timeout)

endInsertion() endInsertion()

beginInsertion(timeout)

new

copy data to DataEvent

parse and set PCRW properties

enqueue DataEvent to service's internal queue

deliver DataEventdeliver DataEvent to each handler

printWrite(kind, hposition, vposition, data)

OCE=OutputCompleteEvent

OCEHandler

set TrackXData properties

printWrite(kind, hposition, vposition, data)

OutputID++

new

copy data to OCE

enqueue OCE to service's internal queue

deliver OutputCompleteEvent

deliver OutputCompleteEvent to each handler

beginRemoval(timeout)

endRemoval() endRemoval()

beginRemoval(timeout)

28 - 16 Unified POS, v1.15.1 Beta1

28.3.11 Point Card Reader Writer State Diagram

no

Unified POS, v1.15.1 Beta1 28 - 17

28.4 Properties (UML attributes)

28.4.1 CapBold Property

Syntax CapBold: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print bold characters, false if it cannot.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.2 CapCardEntranceSensor Property

Syntax CapCardEntranceSensor: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has an entrance sensor, false if it does not.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.3 CapCharacterSet Property

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It may be one of the following:

Value Meaning
PCRW_CCS_ALPHA The default character set supports upper case alphabetic plus numeric,

space, minus, and period.

PCRW_CCS_ASCII The default character set supports all ASCII characters between 20-hex
and 7F-hex.

PCRW_CCS_KANA The default character set supports partial code page 932, including
ASCII characters 20-hex through 7F-hex and the Japanese Kana
characters A1-hex through DF-hex, but excluding the Japanese Kanji
characters.

PCRW_CCS_KANJI The default character set supports code page 932, including the Shift-
JIS Kanji characters, Levels 1 and 2.

PCRW_CCS_UNICODE The default character set supports Unicode.

The default character set may contain a superset of these ranges. The initial CharacterSet property
may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28 - 18 Unified POS, v1.15.1 Beta1

28.4.4 CapCleanCard Property

Syntax CapCleanCard: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports cleaning under application control, false if it does
not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.5 CapClearPrint Property

Syntax CapClearPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports clearing (erasing) the printing area, false if it
does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.6 CapDhigh Property

Syntax CapDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.7 CapDwide Property

Syntax CapDwide: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double wide characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 28 - 19

28.4.8 CapDwideDhigh Property

Syntax CapDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high / double wide characters, false if it
cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.9 CapItalic Property

Syntax CapItalic: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print italic characters, false if it cannot.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.10 CapLeft90 Property

Syntax CapLeft90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in rotated 90° left mode, false if it cannot.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.11 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character
set when printing data.

If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

28 - 20 Unified POS, v1.15.1 Beta1

28.4.12 CapPrint Property

Syntax CapPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has printing capability; false if it does not.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.13 CapPrintMode Property

Syntax CapPrintMode: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can designate a printing start position with the MapMode
property, false if it cannot.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.14 CapRight90 Property

Syntax CapRight90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated 90° right mode, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.15 CapRotate180 Property

Syntax CapRotate180: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated upside down mode, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 28 - 21

28.4.16 CapTracksToRead Property

Syntax CapTracksToRead: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are accessible on the inserted point card. The value
contained in this property is a bitwise OR of the constants PCRW_TRACK1 through
PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning
PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.17 CapTracksToWrite Property

Syntax CapTracksToWrite: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are writable on the inserted point card. The value
contained in this property is a bitwise OR of the constants PCRW_TRACK1 through
PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning
PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28 - 22 Unified POS, v1.15.1 Beta1

28.4.18 CardState Property

Syntax CardState: int32 { read-only, access after open }

Remarks If CapCardEntranceSensor is true, the current card entrance sensor status is stored in this
property. The value will be one of the following.

Value Meaning
PCRW_STATE_NOCARD No card or card sensor position indeterminate

PCRW_STATE_REMAINING Card remaining at the entrance

PCRW_STATE_INRW There is a card in the device

If CapCardEntranceSensor is false, then CardState will always be set to
PCRW_STATE_NOCARD.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapCardEntranceSensor Property.

Unified POS, v1.15.1 Beta1 28 - 23

28.4.19 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks The character set for printing characters.

Value Meaning
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII

or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
PCRW_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
PCRW_CS_ASCII The ASCII character set, supporting the ASCII characters between 0x20

and 0x7F. The value of this constant is 998.
PCRW_CS_ANSI The ANSI character set. The value of this constant is 999.

Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the
“Mapping of CharacterSet” section in the Annexes. For OPOS, see Annex A, for JavaPOS, see
Annex B.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CharacterSetList Property.

28.4.20 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the string of character set numbers. The string consists of an ASCII numeric set numbers
separated by commas.

For example, if the string is “101,850,999”, then the device supports a device specific character set,
code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property.

28 - 24 Unified POS, v1.15.1 Beta1

28.4.21 FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks A string that specifies the fonts and/or typefaces that are supported by the Point Card Reader Writer.

The string consists of font or typeface names separated by commas. The application selects a font
or typeface for the Point Card Reader Writer by using the font typeface selection escape sequence
(ESC |#fT). The “#” character is replaced by the number of the font or typeface within the list: 1, 2,
and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic”. Other fonts or
typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Data Characters and Escape Sequences" on page 1-13.

28.4.22 LineChars Property

Syntax LineChars: int32 { read-write, access after open-claim-enable }

Remarks The number of characters that may be printed on a line on the Point Card Reader Writer.
If changed to a line character width that can be supported, then the width is set to the specified value.
If the exact width cannot be supported, then subsequent lines will be printed with a character size
that most closely supports the specified characters per line. (For example, if set to 36 and the Point
Card Reader Writer can print either 30 or 40 characters per line, then the Service should select the
character size “40” and print up to 36 characters on each line.)

If the character width cannot be supported, then an exception is thrown. (For example, if set to 42
and Point Card Reader Writer can print either 30 or 40 characters per line, then the Service cannot
support the request.)

Setting LineChars may also update LineWidth, LineHeight, and LineSpacing, since the character
pitch or font may be changed.

The value of LineChars is initialized to the Point Card Reader Writer’s default line character width
when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid line character width was specified.

See Also LineCharsList Property.

Unified POS, v1.15.1 Beta1 28 - 25

28.4.23 LineCharsList Property

Syntax LineCharsList: string { read-only, access after open }

Remarks A string containing the line character widths supported by the Point Card Reader Writer.

The string consists of an ASCII numeric set numbers separated by commas. For example, if the
string is “32,36,40,” then the station supports line widths of 32, 36, and 40 characters.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also LineChars Property.

28.4.24 LineHeight Property

Syntax LineHeight: int32 { read-write, access after open-claim-enable }

Remarks The Point Card Reader Writer print line height. If CapPrintMode is true, this is expressed in the
unit of measure given by MapMode.
If changed to a height that can be supported with the current character width, then the line height is
set to this value. If the exact height cannot be supported, then the height is set to the closest
supported value.
When LineChars is changed, LineHeight is updated to the default line height for the selected
width.
The value of LineHeight is initialized to the Point Card Reader Writer’s default line height when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.25 LineSpacing Property

Syntax LineSpacing: int32 { read-write, access after open-claim-enable }

Remarks The spacing of each single-high print line, including both the printed line height plus the white space
between each pair of lines. Depending upon the Point Card Reader Writer and the current line
spacing, a multi-high print line might exceed this value. If CapPrintMode is true, line spacing is
expressed in the unit of measure given by MapMode.
If changed to a spacing that can be supported by the Point Card Reader Writer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the closest supported
value.
When LineChars or LineHeight is changed, LineSpacing is updated to the default line spacing for
the selected width or height.
The value of LineSpacing is initialized to the Point Card Reader Writer’s default line spacing when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28 - 26 Unified POS, v1.15.1 Beta1

28.4.26 LineWidth Property

Syntax LineWidth: int32 { read-only, access after open-claim-enable }
Remarks The width of a line of LineChars characters. If CapPrintMode is true, expressed in the unit of

measure given by MapMode.
Setting LineChars may also update LineWidth.
The value of LineWidth is initialized to the Point Card Reader Writer’s default line width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.27 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}
Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred

by the application to the character set selected in the CharacterSet property for printing data.
If MapCharacterSet is false, then no mapping is supported. In such a case the application has to
ensure the mapping of the character set used in the application to the character set selected in the
CharacterSet property.
If CapMapCharacterSet is false, then this property is always false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, CapMapCharacterSet Property.

Unified POS, v1.15.1 Beta1 28 - 27

28.4.28 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open-claim-enable }
Remarks Contains the mapping mode of the Point Card Reader Writer. The mapping mode defines the unit

of measure used for other properties, such as line heights and line spacings. The following map
modes are supported:
Value Meaning
PCRW_MM_DOTS The Point Card Reader Writer’s dot width. This width may be differ-

ent for each Point Card Reader Writer.
PCRW_MM_TWIPS 1/1440 of an inch.
PCRW_MM_ENGLISH 0.001 inch.
PCRW_MM_METRIC 0.01 millimeter.
Setting MapMode may also change LineHeight, LineSpacing, and LineWidth.
Note: The value of MapMode for the PointCardReader/Writer is initialized to PCRW_MM_DOTS
when the device is first enabled following the open method. This default value may be different
from other peripheral devices in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid mapping mode value was specified.

28.4.29 MaxLine Property

Syntax MaxLine: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is false, MaxLine contains the maximum printable line number.

In the case where there is a double-high character in the same line, this is dependent upon the
capability of the device.

When the LineHeight property and/or the LineSpacing property change, the MaxLine property
may be changed.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also LineHeight Property.

28 - 28 Unified POS, v1.15.1 Beta1

28.4.30 PrintHeight Property

Syntax PrintHeight: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is true, the height of the largest character in the character set is
stored in this property expressed in MapMode units.

When the MapMode property is changed the value of the PrintHeight property changes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapPrintMode Property, MapMode Property.

28.4.31 ReadState1 Property

Syntax ReadState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status information about the first
four tracks. The diagram below indicates how the property value is divided:

The Control sets a value to this property immediately before it enqueues the ErrorEvent or
DataEvent.

The following values can be set:
Value Meaning
SUCCESS Successful read of the data.
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error.
EPCRW_ENCODE There is no encoding.
EPCRW_LRC It is a LRC error.
EPCRW_VERIFY It is a verify error.
E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ReadState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

Unified POS, v1.15.1 Beta1 28 - 29

28.4.32 ReadState2 Property

Syntax ReadState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with two bytes containing status information about the fifth
and sixth tracks. The diagram below indicates how the property value is divided:

The Point Card Reader Writer sets a value to this property immediately before it enqueues the
ErrorEvent or DataEvent.

The following values can be set.
Value Meaning
SUCCESS Successful read of the data.
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error. 　　　　　　　　

EPCRW_ENCODE There is no encoding. 　　　　　　　　　　　　　

EPCRW_LRC It is a LRC error.　　　　　　　　　　　　　　　　　　　

EPCRW_VERIFY It is a verify error.　　　　　　　　　　　　　　　　　　
E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ReadState1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

28 - 30 Unified POS, v1.15.1 Beta1

28.4.33 RecvLength1 Property

Syntax RecvLength1: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with each of the bytes representing information about the
first four tracks. The diagram below indicates how the value is divided:

A value of zero for a track byte means that no data was obtained from the swipe for that particular
track. This might be due to the hardware device simply not having a read head for the track, or
STX, ETX and LRC only was obtained from the swipe for that particular track, or reading of data
without being made with some errors, or perhaps the application intentionally precluded incoming
data from the track via the TracksToRead property. A value greater than zero indicates the length
in bytes of the corresponding TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapTracksToRead property, TracksToRead property, RecvLength2 Property.

28.4.34 RecvLength2 Property

Syntax RecvLength2: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with two of the bytes representing information about the fifth
and sixth tracks, while the third and fourth bytes are unused. The diagram below indicates how the
value is divided:

A value of zero for a track byte means that no data was obtained from the swipe for that particular
track. This might be due to the hardware device simply not having a read head for the track, or
STX, ETX, and LRC only was obtained from the swipe for that particular track, or reading of data
without being made with some errors, or perhaps the application intentionally precluded incoming
data from the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapTracksToRead property, TracksToRead property, RecvLength1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

Unified POS, v1.15.1 Beta1 28 - 31

28.4.35 SidewaysMaxChars Property

Syntax SidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then SidewaysMaxChars is zero.
Changing the properties LineHeight, LineSpacing, and LineChars may cause this property to
change.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SidewaysMaxLines Property.

28.4.36 SidewaysMaxLines Property

Syntax SidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then SidewaysMaxLines is zero.
Changing the properties LineHeight, LineSpacing, and LineChars may cause this property to
change.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SidewaysMaxChars Property.

28 - 32 Unified POS, v1.15.1 Beta1

28.4.37 TracksToRead Property

Syntax TracksToRead: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be read from the point card. It contains a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6. It may only contain values that are marked as
allowable by the CapTracksToRead property. For example, to read tracks 1, 2, and 3, this property
should be set to: PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_ILLEGAL An illegal track was defined. The track is not available for reading.
Refer to CapTracksToRead.

See Also CapTracksToRead Property.

28.4.38 TracksToWrite Property

Syntax TracksToWrite: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be written to the point card. It contains a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6. It may only contain values that are marked as
allowable by the CapTracksToWrite property. For example, to write tracks 1, 2, and 3, this
property should be set to: PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_ILLEGAL An illegal track was defined. The track is not available for writing.
Refer to CapTracksToWrite.

See Also CapTracksToWrite Property, printWrite Method.

Unified POS, v1.15.1 Beta1 28 - 33

28.4.39 Track1Data Property

Syntax Track1Data: binary { read-only, access after open }

Remarks Contains the track 1 data from the point card.

This property contains track data between but not including the start and end sentinels.
An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.40 Track2Data Property

Syntax Track2Data: binary { read-only, access after open }

Remarks Contains the track 2 data from the point card.

This property contains track data between but not including the start and end sentinels.
An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.41 Track3Data Property

Syntax Track3Data: binary { read-only, access after open }

Remarks Contains the track 3 data from the point card.

This property contains track data between but not including the start and end sentinels.
An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.42 Track4Data Property

Syntax Track4Data: binary { read-only, access after open }

Remarks Contains the track 4 data from the point card.

This property contains track data between but not including the start and end sentinels.
An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28 - 34 Unified POS, v1.15.1 Beta1

28.4.43 Track5Data Property

Syntax Track5Data: binary { read-only, access after open }

Remarks Contains the track 5 data from the point card.

This property contains track data between but not including the start and end sentinels.
An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

28.4.44 Track6Data Property

Syntax Track6Data: binary { read-only, access after open }

Remarks Contains the track 6 data from the point card.

This property contains track data between but not including the start and end sentinels.
An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 28 - 35

28.4.45 WriteState1 Property

Syntax WriteState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status information about the first
four tracks. The diagram below indicates how the property is divided:

The Control sets a value to this property immediately before it enqueues the ErrorEvent.

The following value is set.
Value Meaning
SUCCESS Successful write of the data.
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error.
EPCRW_ENCODE There is not encoding.
EPCRW_LRC It is a LRC error.
EPCRW_VERIFY It is a verify error.
E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also WriteState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

28 - 36 Unified POS, v1.15.1 Beta1

28.4.46 WriteState2 Property

Syntax WriteState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status information about the fifth
and sixth tracks. The diagram below indicates how the property is divided:

The Control sets a value to this property immediately before it enqueues the ErrorEvent.

The following value is set.
Value Meaning
SUCCESS Successful write of the data.
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error.
EPCRW_ENCODE There is not encoding.
EPCRW_LRC It is a LRC error.
EPCRW_VERIFY It is a verify error.
E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also WriteState1 Property.

28.4.47 Write1Data Property

Syntax Write1Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 1 of a point card.

This property contains track data between but not including the start and end sentinels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

28.4.48 Write2Data Property

Syntax Write2Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 2 of a point card.

This property contains track data between but not including the start and end sentinels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

Unified POS, v1.15.1 Beta1 28 - 37

28.4.49 Write3Data Property

Syntax Write3Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 3 of a point card.

This property contains track data between but not including the start and end sentinels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

28.4.50 Write4Data Property

Syntax Write4Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 4 of a point card.

This property contains track data between but not including the start and end sentinels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

28.4.51 Write5Data Property

Syntax Write5Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 5 of a point card.

This property contains track data between but not including the start and end sentinels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

28.4.52 Write6Data Property

Syntax Write6Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 6 of a point card.

This property contains track data between but not including the start and end sentinels.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

28 - 38 Unified POS, v1.15.1 Beta1

28.5 Methods (UML operations)

28.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates insertion mode and either returns immediately if successful, or raises an
exception. If FOREVER (-1), the method initiates the begin insertion mode, then waits as long as
needed until either the point card is inserted or an error occurs.

Remarks Called to initiate point card insertion processing.

When called, Point Card Reader Writer state is changed to allow the insertion of a point card and
the point card insertion mode is entered. This method is paired with the endInsertion method for
controlling point card insertion.

If the Point Card Reader Writer device cannot be placed into insertion mode an exception is raised.
Otherwise, the Control continues to monitor point card insertion until either the point card is not
inserted before timeout milliseconds have elapsed, or an error is reported by the Point Card Reader
Writer device. In the latter case, the Control raises an exception with the appropriate error code. The
Point Card Reader Writer device remains in point card insertion mode. This allows an application
to perform some user interaction and reissue the beginInsertion method without altering the point
card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_ILLEGAL The Point Card Reader Writer does not exist or an invalid timeout
parameter was specified.

E_TIMEOUT The specified time has elapsed without the point card being properly
inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 47.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 28 - 39

28.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode and either returns immediately or raises an
exception. If FOREVER (-1), the method initiates the begin removal mode, then waits as long as
needed until either the form is removed or an error occurs.

Remarks Called to initiate point card removal processing.

When called, the Point Card Reader Writer is made ready to eject a point card or activating a point
card ejection mode. This method is paired with the endRemoval method for controlling point card
removal.

The model that has the sensor in the entrance ends normally when a card is ejected from Point Card
Reader Writer. The model without the sensor ends normally when that ejection processing is
implemented.

If the Point Card Reader Writer cannot be placed into removal or ejection mode, an exception is
raised. Otherwise, the Control continues to monitor point card removal until either the point card is
not ejected before timeout milliseconds have elapsed, or an error is reported by the Point Card
Reader Writer. In this case, the Control raises an exception with the appropriate error code. The
Point Card Reader Writer remains in point card ejection mode. This allows an application to
perform some user interaction and reissue the beginRemoval method without altering the point card
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is

in progress.
E_ILLEGAL The Point Card Reader Writer does not exist or an invalid

timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the point card being properly
inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 47.

See Also CapCardEntranceSensor Property, CardState Property, beginInsertion Method, endInsertion
Method, endRemoval Method.

28 - 40 Unified POS, v1.15.1 Beta1

28.5.3 cleanCard Method

Syntax cleanCard():
void { raises-exception, use after open-claim-enable }

Remarks This method is used to clean the read/write heads of the Point Card Reader Writer. This method is
only supported if the CapCleanCard property is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The Point Card Reader Writer does not exist or CapCleanCard is
 false.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 47.

See Also CapCleanCard Property.

Unified POS, v1.15.1 Beta1 28 - 41

28.5.4 clearPrintWrite Method

Syntax clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width: int32,
height: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
kind Defines the parts of the point card that will be cleared.
 1: Printing area

2: Magnetic tracks
3: Both printing area and magnetic tracks

hposition The horizontal start position for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

vposition The vertical start position for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

width The width used for erasing the printing area. The value is in MapMode units
if CapPrintMode is true.

height The height used for erasing the printing area. The value is in MapMode units
if CapPrintMode is true.

Remarks Used to erase the printing area of a point card and/or erase the magnetic track data on a point card.

When the CapPrint and CapClearPrint properties are both true, this method can be used to clear
the printing area of a point card. The hposition, vposition, width, and height parameters define the
rectangle that will be cleared. If these parameters are 0, 0, -1, -1 respectively, this method will
erase the entire printing area.

The initialization of the magnetic track data relies upon the capability of the device.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 47.

See Also CapClearPrint Property, CapPrint Property, CapPrintMode Property, MapMode Property.

28 - 42 Unified POS, v1.15.1 Beta1

28.5.5 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end point card insertion processing.
When called, the Point Card Reader Writer is taken out of point card insertion mode. If no point
card is present, an exception is raised.
This method is paired with the beginInsertion method for controlling point card insertion.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The Point Card Reader Writer is not in point card insertion mode.
E_FAILURE A card is not inserted in the Point Card Reader Writer.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events
 section, “ErrorEvent Updated in Release 1.10” on page 47.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

28.5.6 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end point card removal processing.
When called, the Point Card Reader Writer is taken out of point card removal or ejection mode. If
a point card is present, an exception is raised. This method is paired with the beginRemoval
method for controlling point card removal.
The application may choose to call this method immediately after a successful beginRemoval if it
wants to use the Point Card Reader Writer sensors to determine when the point card has been
ejected. Alternatively, the application may prompt the user and wait for a key being pressed before
calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The Point Card Reader Writer is not in point card removal mode.
E_FAILURE There is a card in the Point Card Reader Writer.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 47.
See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

Unified POS, v1.15.1 Beta1 28 - 43

28.5.7 printWrite Method Updated in Release 1.7

Syntax printWrite (kind: int32, hposition: int32, vposition: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
kind Designates the effect of the point card.
 1: Print2: Write3: Print+Write

hposition The horizontal start position for printing. The value is in MapMode units
if CapPrintMode is true.

vposition The vertical start position for printing. The value is in MapMode units if
CapPrintMode is true.

data1 The data to be printed. Any escape sequences in the data are dependent
upon the capabilities of the device.

Remarks This method will either print the specified data on the printing area of the point card, write data
from the WriteXData properties to the magnetic tracks, or both. In order to print on a point card,
the CapPrint property must be true. In order to write the magnetic tracks on a point card, the
WriteXData properties for each desired track must be set to the desired value, the TracksToWrite
property must be set to a bitmask indicating which tracks to write (see TracksToWrite for a com-
plete description) and the CapTracksToWrite property must indicate that each tracks specified in
TracksToWrite is legal.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL There is no card in the Point Card Reader Writer.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 47.

See Also CapPrint Property, CapPrintMode Property, CapTracksToWrite Property, MapMode
Property, TracksToWrite Property, WriteXData Property.

1. In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

28 - 44 Unified POS, v1.15.1 Beta1

28.5.8 rotatePrint Method

Syntax rotatePrint (rotation: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
rotation Direction of rotation. See values below.

Value Meaning
PCRW_RP_RIGHT90 Rotate printing 90º to the right (clockwise).

PCRW_RP_LEFT90 Rotate printing 90º to the left (counter-clockwise).

PCRW_RP_ROTATE180 Rotate printing 180º, that is print upside-down.

PCRW_RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

The rotatePrint method designates the rotation of the printing area. After calling this method, the
application calls the printWrite method and the print data is printed in the direction specified by
the rotatePrint call. If rotation is PCRW_RP_NORMAL, then rotated print mode is exited.

Changing the rotation mode may also change the Point Card Reader Writer’s line height, line
spacing, line width, and other metrics.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is

 in progress.

E_ILLEGAL The Point Card Reader Writer does not support the specified rotation.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 47.
See Also “Data Characters and Escape Sequences” in Chapter 31, printWrite Method.

Unified POS, v1.15.1 Beta1 28 - 45

28.5.9 validateData Method Updated in Release 1.7

Syntax validateData (data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
data2 The data to be validated. May include printable data and escape

sequences.
Remarks Called to determine whether a data sequence, possibly including one or more escape sequences, is

valid for printing, prior to calling the printWrite method. This method does not cause any printing,
but is used to determine the capabilities of the Point Card Reader Writer.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Some of the data is not precisely supported by the device, but the Control

can select valid alternatives.
E_FAILURE Some of the data is not supported. No alternatives can be selected.
Cases which cause ErrorCode of E_ILLEGAL:
Escape Sequence Condition
Underline The thickness ‘#’ is not precisely supported: Control will select the closest

supported value.
Shading The percentage ‘#’ is not precisely supported: Control will select the

closest supported value.
Scale horizontally The scaling factor ‘#’ is not supported. Control will select the closest

supported value.
Scale vertically The scaling factor ‘#’ is not supported. Control will select the closest

supported value.
Cases which will cause E_FAILURE to be returned are:
Escape Sequence Condition
(General) The escape sequence format is not valid
Font typeface The typeface ‘#’ is not supported:
Bold Not supported.
Underline Not supported.
Italic Not supported.
Reverse video Not supported.
Single high and wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high and wide Not supported.

 See Also “Data Characters and Escape Sequences” in Chapter 31, printWrite Method.

2. In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

28 - 46 Unified POS, v1.15.1 Beta1

28.6 Events (UML Interfaces)

28.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Fired to present input data from the device to the application.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks The point card data is placed in each property before this event is delivered.

28.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific PointCard Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s point card devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 28 - 47

28.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a PointCard error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 1.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EPCRW_READ There was a read error.
EPCRW_WRITE There was a write error.
EPCRW_JAM There was a card jam.
EPCRW_MOTOR There was a conveyance motor error.
EPCRW_COVER The conveyance motor cover was open.
EPCRW_PRINTER The printer has an error.
EPCRW_RELEASE There is a card remaining in the entrance.
EPCRW_DISPLAY There was a display indicator error.
EPCRW_NOCARD There is no card in the reader.

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

28 - 48 Unified POS, v1.15.1 Beta1

Value Meaning
ER_RETRY Typically valid only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 May be valid when locus is EL_INPUT.
 Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus is EL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the magnetic track data from a
newly inserted card. These error events are not delivered until the DataEventEnabled property is
set to true so as to allow proper application sequencing. All error information is placed into the
ReadStateX properties before this event is delivered. The RecvLengthX property is set to 0 for
each track that had an error and the TrackXData property is set to empty for each track that had an
error.

Output error events are generated and delivered when an error occurs during asynchronous
printWrite processing. The errors are placed into the WriteStateX properties before the event is
delivered.

See Also ReadStatex Property, RecvLengthx Property, TrackxData Property, WriteStatex Property.

28.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that is was processed by the device successfully.

See Also Device Output Models on page 1- 21.

Unified POS, v1.15.1 Beta1 28 - 49

28.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the PointCard device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the PointCard device.

The Status parameter has one of the following values:

Value Meaning
PCRW_SUE_NOCARD No card or card sensor position indeterminate.
PCRW_SUE_REMAINING Card remaining in the entrance.
PCRW_SUE_INRW There is a card in the device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added
additional Status values for communicating the status/progress of an
asynchronous update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Fired when the entrance sensor status of the Point Card Reader Writer changes. If the capability
CapCardEntranceSensor is false, then the device does not support status reporting, and this event
will never be fired to report card insertion state changes.

See Also Events on page 1- 15, CapCardEntranceSensor Property.

28 - 50 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 29 - 1

29 POS Keyboard

29.1 General
This Chapter defines the POS Keyboard device category.

29.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.1 open
Claimed: boolean { read-only } 1.1 open
DataCount: int32 { read-only } 1.2 open
DataEventEnabled: boolean { read-write } 1.1 open
DeviceEnabled: boolean { read-write } 1.1 open & claim
FreezeEvents: boolean { read-write } 1.1 open
OutputID: int32 { read-only } 1.1 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.1 --

DeviceControlDescription: string { read-only } 1.1 --
DeviceControlVersion: int32 { read-only } 1.1 --
DeviceServiceDescription: string { read-only } 1.1 open
DeviceServiceVersion: int32 { read-only } 1.1 open
PhysicalDeviceDescription: string { read-only } 1.1 open
PhysicalDeviceName: string { read-only } 1.1 open

29 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapKeyUp: boolean { read-only } 1.2 open
EventTypes: int32 { read-write } 1.2 open
POSKeyData: int32 { read-only } 1.1 open
POSKeyEventType: int32 { read-only } 1.2 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.1

close ():
void { raises-exception, use after open }

1.1

claim (timeout: int32):
void { raises-exception, use after open }

1.1

release ():
void { raises-exception, use after open, claim }

1.1

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.1

clearInput ():
void { raises-exception, use after open, claim }

1.1

clearInputProperties ():
void { }

Not supporteda

a. Only a single key value is stored at any one time.

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.1

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
None

Unified POS, v1.15.1 Beta1 29 - 3

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.1
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.1
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.1
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

29 - 4 Unified POS, v1.15.1 Beta1

29.3 General Information
The POS Keyboard programmatic name is “POSKeyboard”.

29.3.1 Capabilities

The POS Keyboard has the following capability:

• Reads keys from a POS keyboard. A POS keyboard may be an auxiliary keyboard, or it may be a virtual keyboard
 consisting of some or all of the keys on the system keyboard.

29.3.2 POS Keyboard Class Diagram

The following diagram shows the relationships between the POS Keyboard classes.

UposException
(from upos)

<<exception>>

UposConst

(from upos)

<<uti lity>>

POSKeyboardConst

(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

POSKeyboardControl

<<capability>> CapKeyUp : boolean
<<prop>> EventTypes : int32
<<prop>> POSKeyData : int32
<<prop>> POSKeyEventType : int32

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

BaseControl

(from upos)

<<Interface>>
<<uses>><<sends>>

Unified POS, v1.15.1 Beta1 29 - 5

29.3.3 POS Keyboard Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of the POS Keyboard device.

:POSKeyboardService

NOTE: we are assuming that the :ClientApp already successfully registered event handlers and opened, claimed
and enabled the POSKeyboard device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :POSKeyboard

 : Operator

:DataEvent

1: setDataEventEnabled(true) 2: setDataEventEnabled(true)

3: key pressed4: new

5: copy data info and enqueue DataEvent for delivery

7: key pressed
8: new

9: copy data info and enqueue DataEvent for delivery

Depending on how fast the :Operator presses key, it might be that DataEvent
are delivered as soon as enqueued (but conceptually this detail is not important)

11: deliver each DataEvent to control [DataEventEnabled == true && FreezeEvents == false]

At this point the
:ClientApp event
handler code executes

14: clearInput()
15: clearInput()

16: all enqueued DataEvent are cleared from queue

17: DataCount is set to 0

10: DataCount++

13: notify client of new event

6: DataCount++

Right before the DataEvent is
delivered set DataEventEnabled
to false and DataCount--.

12: deliver DataEvents to all registered handlers

29 - 6 Unified POS, v1.15.1 Beta1

29.3.4 Model

The POS Keyboard follows the general “Device Input Model” for input devices:

• When input is received from the POS Keyboard a DataEvent is enqueued.

• If the AutoDisable property is true, then the Device automatically disables itself when a DataEvent is enqueued.

• A queued DataEvent can be delivered to the application when the DataEventEnabled property is true and other
 event delivery requirements are met. Just before firing this event, data is copied into the properties, and further data
 events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be enqueued while
 the application processes the current input and associated properties. When the application has finished the current
 input and is ready for more data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered to
 the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued DataEvents.

• All queued input may be deleted by calling clearInput.

29.3.4.1 Keyboard Translation Updated in Release 1.13

The POS Keyboard Control must supply a mechanism for translating its internal key codes into user-defined
codes which are returned by the DataEvents. Note that this translation must be end-user configurable. If the end-
user does not
specify translation for some key codes, then they will return vendor-specific values.

29.3.5 Device Sharing

The POS keyboard is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 29 - 7

29.4 Properties (UML attributes)

29.4.1 CapKeyUp Property

Syntax CapKeyUp: boolean { read-only, access after open }

Remarks If true, then the device is able to generate both key down and key up events, depending upon the
setting of the EventTypes. If false, then the device is only able to generate the key down event.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also EventTypes Property.

29.4.2 EventTypes Property

Syntax EventTypes: int32 { read-write, access after open }

Remarks Holds the type of events that the application wants to receive. It has one of the following values:

Value Meaning
KBD_ET_DOWN Generate key down events.

KBD_ET_DOWN_UP Generate key down and key up events.

This property is initialized to KBD_ET_DOWN by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

29.4.3 POSKeyData Property

Syntax POSKeyData: int32 { read-only, access after open }

Remarks Holds the value of the key from the last DataEvent. The application may treat this value as device
independent, assuming that the system installer has configured the Service to translate internal key
codes to the codes expected by the application. Such configuration is inherently Service-specific.

This property is set just before delivering the DataEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEvent.

29 - 8 Unified POS, v1.15.1 Beta1

29.4.4 POSKeyEventType Property

Syntax POSKeyEventType: int32 { read-only, access after open }

Remarks Holds the type of the last keyboard event: Is the key being pressed or released? It has one of the
following values:

Value Meaning
KBD_KET_KEYDOWN The key in POSKeyData was pressed.

KBD_KET_KEYUP The key in POSKeyData was released.

This property is set just before delivering the DataEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also POSKeyData Property, DataEvent.

Unified POS, v1.15.1 Beta1 29 - 9

29.5 Events (UML interfaces)

29.5.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available from the POS Keyboard device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Contains zero.

Remarks The logical key number is placed in the POSKeyData property and the event type is placed in the
POSKeyEventType property before this event is delivered.

See Also POSKeyData Property, POSKeyEventType Property, “Events” on page 1- 15.

29.5.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific POS Keyboard Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s POS Keyboard devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method

29 - 10 Unified POS, v1.15.1 Beta1

29.5.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error was detected trying to read POS Keyboard data.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See list of ErrorCodes on

 page 0-21.

ErrorCodeExtended int32 Extended Error Code causing the error event. It may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the

application (i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read POS Keyboard data. This event is not
delivered until DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Device Input Model" on page 1- 18, “Device Information Reporting Model" on page 1- 25.

Unified POS, v1.15.1 Beta1 29 - 11

29.5.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the working status of the POS Keyboard changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the POS Keyboard.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the POS Keyboard needs to alert the application of a device state change.

See Also “Events” on page 1- 15.

29 - 12 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 30 - 1

30 POS Power

30.1 General
This Chapter defines the POS Power device category.

30.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.5 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.5 open
Claimed: boolean { read-only } 1.5 open
DataCount: int32 { read-only } 1.5 Not supported
DataEventEnabled: boolean { read-write } 1.5 Not supported
DeviceEnabled: boolean { read-write } 1.5 open
FreezeEvents: boolean { read-write } 1.5 open
OutputID: int32 { read-only } 1.5 Not supported
PowerNotify: int32 { read-write } 1.5 open
PowerState: int32 { read-only } 1.5 open
State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --
DeviceControlVersion: int32 { read-only } 1.5 --
DeviceServiceDescription: string { read-only } 1.5 open
DeviceServiceVersion: int32 { read-only } 1.5 open
PhysicalDeviceDescription: string { read-only } 1.5 open
PhysicalDeviceName: string { read-only } 1.5 open

30 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
BatteryCapacityRemaining: int32 { read-only } 1.9 open
BatteryCriticallyLowThreshold: int32 { read-write } 1.9 open
BatteryLowThreshold: int32 { read-write } 1.9 open
CapBatteryCapacityRemaining: boolean { read-only } 1.9 open
CapFanAlarm: boolean { read-only } 1.5 open
CapHeatAlarm: boolean { read-only } 1.5 open
CapQuickCharge: boolean { read-only } 1.5 open
CapRestartPOS: boolean { read-only } 1.9 open
CapShutdownPOS: boolean { read-only } 1.5 open
CapStandbyPOS: boolean { read-only } 1.9 open
CapSuspendPOS: boolean { read-only } 1.9 open
CapUPSChargeState: int32 { read-only } 1.5 open
CapVariableBatteryCriticallyLowThreshold: boolean { read-only } 1.9 open
CapVariableBatteryLowThreshold: boolean { read-only } 1.9 open
EnforcedShutdownDelayTime: int32 { read-write } 1.5 open
PowerFailDelayTime: int32 { read-only } 1.5 open
PowerSource: int32 { read-only } 1.9 open
QuickChargeMode: boolean { read-only } 1.5 open
QuickChargeTime: int32 { read-only } 1.5 open
UPSChargeState: int32 { read-only } 1.5 open & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.5

close ():
void { raises-exception, use after open }

1.5

claim (timeout: int32):
void { raises-exception, use after open }

1.5

release ():
void { raises-exception, use after open, claim }

1.5

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.5

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

Unified POS, v1.15.1 Beta1 30 - 3

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.5

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
restartPOS ():

void { raises-exception, use after open, enable }
1.9

shutdownPOS ():
void { raises-exception, use after open, enable }

1.5

standbyPOS (reason: int32):
void { raises-exception, use after open, enable }

1.9

suspendPOS (reason: int32):
void { raises-exception, use after open, enable }

1.9

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.5
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.5
 Status: int32 { read-only }

30 - 4 Unified POS, v1.15.1 Beta1

30.3 General Information Updated in Release 1.9
The POS Power programmatic name is “POSPower”.

30.3.1 Capabilities

The POSPower device class has the following capabilities:

• Supports a command to “shut down” the system.

• Supports a command to restart the system.

• Supports a command to “suspend” the system.

• Supports a command to have the system go to standby.

• Supports accessing a power handling mechanism of the underlying operating system and hardware.

• Informs the application if a power fail situation has occurred.

• Informs the application about battery level.

• Informs the application if the UPS charge state has changed.

• Informs the application about high CPU temperature.

• Informs the application about stopped CPU fan.

• Informs the application if an operating system dependent enforced shutdown mechanism is processed.

• Allows the application after saving application data locally or transferring application data to a server to shut down
 the POS terminal.

• Informs the application about an initiated shutdown.

30.3.2 Device Sharing

The POSPower is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive status
 update events.

• If more than one application has opened and enabled the device, all applications may access its properties and
 methods. Status update events are fired to all of the applications.

• If one application claims the POSPower, then only that application may call the shutdownPOS, standbyPOS, or
 suspendPOS methods. This feature provides a degree of security, such that these methods may effectively be
 restricted to the main POS application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 30 - 5

30.3.3 Model Updated in Release 1.9

The general model of POSPower is based on the power model of each device in version 1.3 or later. The same
common properties are used but all states relate to the POS terminal itself and not to a peripheral device.

There are three states of the POSPower:

• ONLINE. The POS terminal is powered on and ready for use. This is the “operational” state.

• OFF. The POS terminal is powered off or detached from the power supplying net. The POS terminal runs on battery
 power support. This is the powerfail situation.

• OFFLINE. The POS terminal is powered on but is running in a “lower-power-consumption” mode. It may need to
 be placed online by pressing a button or key or something else which may wake up the system.

Power reporting only occurs while the device is open, enabled and power notification is switched on.

In a powerfail situation - that means the POSPower is in the state OFF - the POS terminal will be shut down
automatically after the last application has closed the POSPower device or the time specified by the
EnforcedShutdownDelayTime property has been elapsed.

A call to the shutdownPOS method will always shut down the POS terminal independent of the system power
state.

Version 1.9 or later

Support of battery powered devices is added. In addition to adding properties to report battery levels and power
sources, properties are added to allow for the setting of low and critically low battery levels. The POSPower
device also includes the ability to request or respond to request to enter the standby and suspend states. The
model does not attempt to duplicate other power management models such as APM and ACPI, but leaves those
implementation details to the provider. As a rule, the suspend state will consume less power than the standby
state, which in turn will consume less power than the on state. A suggested mapping of these states to other
power management models is:

State ACPI APM Description
On S0 ON Active, Powered On

Standby S1 SUSPEND Displays and drives off, CPU, RAM and fans
powered on

Suspend S3 SUSPEND Only RAM powered
Off S5 OFF Completely powered off

30 - 6 Unified POS, v1.15.1 Beta1

30.3.4 POSPower Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the POSPower classes.

BaseControl
(from upos)

<<Interface>>

UposException
(f rom upos)

<<exception>>

<<sends>>

UposConst
(f rom upos)

<<utility>>

<<uses>>

POSPowerConst

PWR_UPS_FULL : int32 {frozen}
PWR_UPS_LOW : int32 {frozen}
PWR_UPS_CRITICAL : in32 {frozen}
PWR_UPS_WARING : int32 {frozen}
PWR_SUE_UPS_FULL : int32 {frozen}
PWR_SUE_UPS_LOW : int32 {frozen}
PWR_SUE_UPS_CRITICAL : in32 {frozen}
PWR_SUE_UPS_WARING : int32 {frozen}
PWR_SUE_FAN_STOPPED : int32 {frozen}
PWR_SUE_FAN_RUNNING : int32 {frozen}
PWR_SUE_TEMPERATURE_HIGH : int32 {frozen}
PWR_SUE_TEMPERATURE_OK : int32 {frozen}
PWR_SUE_SHUTDOWN : int32 {frozen}
PWR_SOURCE_NA : int32 {frozen}
PWR_SOURCE_AC : int32 {frozen}
PWR_SOURCE_BATTERY : int32 {frozen}
PWR_SOURCE_BACKUP : int32 {frozen}
PWR_SUE_BAT_LOW : int32 {frozen}
PWR_SUE_BAT_CRITICAL : in32 {frozen}
PWR_SUE_BAT_CAPACITY_REMAINING : in32 {frozen}
PWR_SUE_RESTART : int32 {frozen}
PWR_SUE_STANDBY : int32 {frozen}
PWR_SUE_USER_STANDBY : int32 {frozen}
PWR_SUE_SUSPEND : int32 {frozen}
PWR_SUE_USER_SUSPEND : int32 {frozen}
PWR_SUE_POWER_SOURCE : int32 {frozen}

(f rom upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(f rom ev ents)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(f rom ev ents)

<<event>>

POSPowerControl

<<prop>> BatteryCapacityRemaining : int32
<<prop>> BatteryCriticallyLowThreshold : int32
<<prop>> BatteryLowThreshold : int32
<<capability>> CapBatteryCapacityRemaining : boolean
<<capability>> CapFanAlarm : boolean
<<capability>> CapHeatAlarm : boolean
<<capability>> CapQuickCharge : boolean
<<capability>> CapRestartPOS : boolean
<<capability>> CapShutdownPOS : boolean
<<capability>> CapStandbyPOS : boolean
<<capability>> CapSuspendPOS : boolean
<<capability>> CapUPSChargeState : int32
<<capability>> CapVariableBatteryCriticallyLowThreshold : boolean
<<capability>> CapVariableBatteryLowThreshold : boolean
<<prop>> EnforcedShutdownDelayTime : int32
<<prop>> PowerFailDelayTime : int32
<<prop>> PowerSource : int32
<<prop>> QuickChargeMode : boolean
<<prop>> QuickChargeTime : int32
<<prop>> UPSChargeState : int32

restartPOS() : void
shutdownPOS() : void
standbyPOS(reason : int32) : void
suspendPOS(reason : int32) : void

(f rom upos)

<<Interface>>

<<sends>>

<<uses>>

<<uses>>

fires

fires

Unified POS, v1.15.1 Beta1 30 - 7

30.3.5 POSPower Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the POSPower device for registering for
StatusUpdateEvents and an atypical case of initiating a shutdownPOS call.

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the
POSPower device and also PowerNotify property is set to PN_ENABLED.

:ClientApp :POSPower :POSPowerService Some Critical Situation
(like power failure)

:StatusUpdateEvent

7: getPowerFailDelayTime() 8: getPowerFailDelayTime()

:ClientApp might access other properties and setup
internal condition to handle events and power situation
such as decision to shutdown...

9: UPS battery LOW
10: create new SUE

11: deliver SUE to POSPower control
:ClientApp will execute
some SUE handling code
and if conditions for
shutdown are met and
CapShutdownPOS == true.
Initiates shutdown, as below.

14: prepare for shutdown by releasing resources and saving appropriate data

15: claim(timeout)

17: claim(timeout)

Assuming that claim was
successful (that is no
other application has
claimed the service).

16: shutdownPOS()

18: shutdownPOS()

12: deliver SUE to all handlers

1: setPowerNotify(true) 2: setPowerNotify(true)

3: setDeviceEnabled(true) 4: setDeviceEnabled(true)

5: getUPSChargeState() 6: getUPSChargeState()

13: notify client of new event

30 - 8 Unified POS, v1.15.1 Beta1

30.3.6 POSPower Standby Sequence Diagram Added in Release 1.9

:ClientApp :POSPower :StatusUpdateEvent :
POSPowerSe...

Some Battery Level
Situation : Event

NOTE: we are assuming that the :ClientApp already successfully opened and enabled
the POSPower device and also PowerNotify property is set to PN_ENABLED.

1: setPowerNotify(true)

2: setPowerNotify(true)

3: setDeviceEnabled(true)

4: setDeviceEnabled(true)

5: getCapBatteryLowThreshold()

6: getCapBatteryLowThreshold()

7: setBatteryLowThreshold(10)

8: setBatteryLowThreshold(10)

9: battery less than 10%

10: create new SUE

11: deliver SUE to POSPower control

12: deliver SUE to all handlers

13: notify client of new event

:ClientApp will execute
some SUE handling code
and if conditions for
shutdown are met and
CapShutdownPOS == true.
Initiates shutdown,...

14: prepare for standby

15: claim(timeout)

16: claim(timeout)

17: standbyPOS(reason)

18: standbyPOS(reason)

19: create new SUE

20: deliver SUE to POSPower control

21: deliver SUE to all handlers

22: notify client of new event

Unified POS, v1.15.1 Beta1 30 - 9

30.3.7 POSPower State Diagram

The following state diagram depicts the POSPower Control device model.

The State Diagram shows
the states when the device is
opened, claimed, enabled and
additionally when PowerNotify is enabled.
Claiming the device is optional since
POSPower is a sharable device.

Additionally, for CapPowerReporting only
the value PR_ADVANCED is possible.

/open(…)

/ claim(...)/ release()

/close()

/ setDevice-
Enabled(false)

/ setDevice-
Enabled (true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ claim(...)

/ setDevice-
Enabled(true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ setDevice-
Enabled(false)

/ release()

/ setDevice-
Enabled(true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)

/ setDevice-
Enabled (true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)
[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

Opened & Claimed
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_DISABLED

Opened, Claimed & Enabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened & PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened, Claimed & PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened & Enabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened
State = S_IDLE

Claimed=false

DeviceEnabled=false

PowerNotify=PN_DISABLED

OS / application stopped.

[CapShutdownPOS == true]
/ Application saves all data and
sets itself to a defined state.
/ shutdownPOS()

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

(PWR_SUE_SHUTDOWN) }

Opened, Claimed, Enabled
& PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_ENABLED

Opened, Enabled
& PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_ENABLED

The
details of
these
states are
described
in
separate
diagrams
below.

30 - 10 Unified POS, v1.15.1 Beta1

30.3.8 POSPower PowerState Diagram - Part 1

The following state diagram depicts the POSPower Power States.

Opened, Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagram shows
the states when the POS terminal
changes its power state.

PowerState ONLINE

The POS terminal is powered on and ready for use

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (SUE_POWER_ONLINE) }

PowerState OFFLINE

The POS terminal is powered on but is running

is a “lower-power-consumption” mode

PowerState= = PS_OFFLINE

entry / {Deliver StatusUpdateEvent
(SUE_POWER_OFFLINE) }

[The POS terminal is powered off or
detached from the power supplying net.]

[The POS terminal is
again powered on
or attached to the
power supplying net.]

[The POS terminal is running in a
“lower-power-consumption” mode]

[The POS
terminal is
placed online by
pressing a
button or key or
due to a power
fail situation or
some-thing else
which may wake
up the system.]

Application saves all
data and sets itself
to a defined state.

OS/ application stopped.

[last POSPower
Device instance
opened]

/ close ()

[EnforcedShutdown-
DelayTime >0]

After the time specified in
EnforcedShutdown-DelayTime

PowerState OFF
(Power Fail Situation)

The POS terminal runs on battery power

support. This is the powerfail situation.

PowerState == PS_OFF

entry / {Deliver StatusUpdateEvent
(SUE_POWER_OFF) }

[PowerFailDelayTime >0 && The POS terminal is
powered off or detached from the power supplying
net

[The POS terminal is again powered on or attached
to the power supplying net within the time specified in
PowerFailDelayTime.]

OFFONLINE

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

(PWR_SUE_SHUTDOWN) }

The details of these
states are described
in separate diagrams
below.

Unified POS, v1.15.1 Beta1 30 - 11

30.3.9 POSPower PowerState Diagram - Part 2

The following state diagram depicts the POSPower PowerState ONLINE.

PowerState ONLINE

The State Diagram shows
the sub states in the
PowerState ONLINE state
when charging the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
&& physical battery

charge state is near empty]
/ Battery is loading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
&& physical battery charge state

is near 50%]
/ Battery is loading

[(CapUPSChargeState &
PWR_UPS_FULL) != 0
&& physical battery charge

state is near full]
/ Battery is loading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
&& physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
&& physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
is near full]

30 - 12 Unified POS, v1.15.1 Beta1

30.3.10 POSPower PowerState Diagram - Part 3

The following state diagram depicts the POSPower PowerState OFF.

PowerState OFF

The State Diagram shows
the sub states in the
PowerState OFF state
when unloading the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_CRITICAL) != 0
&& physical battery charge

state is critical]
/ Battery is unloading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
&& physical battery charge

state is near empty] / Battery
is unloading

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
&& physical battery charge
state is near 50%]
/ Battery is unloading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
&& physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
&& physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
is near full]

Unified POS, v1.15.1 Beta1 30 - 13

30.3.11 POSPower State Chart Diagram for Fan and Temperature

The following state diagram depicts the handling of fan and temperature alarms.

Opened, Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagrams shows
the states for handling
high CPU temperature and
stopped CPU fan.

CPU temperature is high

entry / {Deliver StatusUpdateEvent
(PWR_SUE_TEMPERATURE_HIGH) }

CPU temperature
decrease and leaves
the critical state

CPU temperature
increases and reaches
a critical state

CPU temperature is low

entry / {Deliver StatusUpdateEvent
(PWR_SUE_TEMPERATURE_OK) }

[(CapHeatAlarm == true &&
CPU temperature is critical]

[(CapHeatAlarm == true &&
CPU temperature is uncritical]

Opened, Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The CPU fan is stopped.

entry / {Deliver StatusUpdateEvent
(PWR_SUE_FAN_STOPPED) }

Fan starts running
Fan stops running

CPU fan is running

entry / {Deliver StatusUpdateEvent
(PWR_SUE_FAN_RUNNING) }

[(CapFanAlarm == true &&
fan is stopped]

[(CapFanAlarm == true &&
fan works properly]

30 - 14 Unified POS, v1.15.1 Beta1

30.3.12 POSPower Battery State Diagram Added in Release 1.9

Illustrates the transition of states when the POS
is only powered by the battery. It is assumed
that the battery threshold is already set.

Opened, Enabled and PowerEnabled OR Opened, Claimed, Enabled and PowerEnabled (Battery)

Battery is fully charged

entry/ PowerSource is set to PWR_SOURCE_BATTERY

Battery is low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_LOW
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

Battery is critically low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_CRITICAL
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

Battery is fully charged

entry/ PowerSource is set to PWR_SOURCE_BATTERY

Battery is low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_LOW
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

Battery is critically low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_CRITICAL
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

disconnected from power, battery is fully charged

disconnected from power, battery is low

disconnected from power, battery is critically low

Battery capacity falls below BatteryLowThreshold returns to AC power

Battery capacity falls below BatteryCriticallyLowThreshold
returns to AC power

returns to AC power

Unified POS, v1.15.1 Beta1 30 - 15

30.3.13 POSPower Transitions State Diagram Added in Release 1.9

The state diagram
illustrates the changes
when the POS is
powered by battery

Opened, Enabled and PowerEnabled OR Opened, Claimed, Enabled and PowerEnabled

POS attached and receiving AC Power

entry/ PowerSource is set to PWR_SOURCE_AC
entry/ PWR_SUE_POWER_SOURCE fired

POS running on UPS Power

do/ See previous diagrams
entry/ PowerSource is set to PWR_SOURCE_BACKU...
entry/ PWR_SUE_POWER_SOURCE fired

POS running on battery

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ PWR_SUE_POWER_SOURCE fired

POS is shutdown

entry/ PWR_SUE_SHUTDOWN Fired

POS is suspended

entry/ PWR_SUE_SUSPEND or PWR_SUE_USER_SUSPEND fired

POS is restarted

entry/ PWR_SUE_RESTART fired
POS is in standby

entry/ PWR_SUE_STANDBY or PWR_SUE_USER_STANDBY fired

POS attached and receiving AC Power

entry/ PowerSource is set to PWR_SOURCE_AC
entry/ PWR_SUE_POWER_SOURCE fired

POS running on UPS Power

do/ See previous diagrams
entry/ PowerSource is set to PWR_SOURCE_BACKU...
entry/ PWR_SUE_POWER_SOURCE fired

POS running on battery

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ PWR_SUE_POWER_SOURCE fired

POS is shutdown

entry/ PWR_SUE_SHUTDOWN Fired

POS is suspended

entry/ PWR_SUE_SUSPEND or PWR_SUE_USER_SUSPEND fired

POS is restarted

entry/ PWR_SUE_RESTART fired

Loss of AC power

running on AC power

running on UPS power

running on battery power

Loss of UPS power

AC restored

attached to AC Power

UPS restored

application request shutdown

application request suspend

application request restart

POS is in standby

entry/ PWR_SUE_STANDBY or PWR_SUE_USER_STANDBY fired

application request standby

30 - 16 Unified POS, v1.15.1 Beta1

30.4 Properties (UML attributes)

30.4.1 BatteryCapacityRemaining Property Added in Release 1.9

Syntax BatteryCapacityRemaining: int32 { read-only, access after open }

Remarks A value of 0 to 100 represents percent of battery capacity remaining.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapBatteryCapacityRemaining Property

30.4.2 BatteryCriticallyLowThreshold Property Added in Release 1.9

Syntax BatteryCriticallyLowThreshold: int32 { read-write, access after open }

Remarks If not zero, this property holds the threshold at which a PWR_SUE_BAT_CRITICAL Status
Update Event is generated. The values 1 through 99 represent the percentage of the capacity
remaining. The value 0 indicates that Battery Critically Low reporting is not supported or is
disabled.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapVariableBatteryCriticallyLowThreshold Property, StatusUpdateEvent

30.4.3 BatteryLowThreshold Property Added in Release 1.9

Syntax BatteryLowThreshold: int32 { read-write, access after open }

Remarks If not zero, this property holds the threshold at which a PWR_SUE_BAT_LOW Status Update
Event is generated. The value 1 to 99 represents the percent capacity remaining. The value 0
indicates that battery low reporting is not supported or is disabled. If variable battery low threshold
is supported, setting a value between 1 and 99 sets the threshold to that value. Setting a value of zero
disables battery low reporting.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapVariableBatteryLowThreshold Property, StatusUpdateEvent

Unified POS, v1.15.1 Beta1 30 - 17

30.4.4 CapBatteryCapacityRemaining Property Added in Release 1.9

Syntax CapBatteryCapacityRemaining: boolean { read-only, access after open }

Remarks If true the device is able to provide battery capacity information. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also BatteryCapacityRemaining Property

30.4.5 CapFanAlarm Property

Syntax CapFanAlarm: boolean { read-only, access after open }

Remarks If true the device is able to detect whether the CPU fan is stopped. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

30.4.6 CapHeatAlarm Property

Syntax CapHeatAlarm: boolean { read-only, access after open }

Remarks If true the device is able to detect whether the CPU is running at too high of a temperature.
Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

30.4.7 CapQuickCharge Property

Syntax CapQuickCharge: boolean { read-only, access after open }

Remarks If true the power management allows the charging of the UPS battery in quick mode. The time for
charging the battery is shorter than usual. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also QuickChargeMode Property, QuickChargeTime Property.

30 - 18 Unified POS, v1.15.1 Beta1

30.4.8 CapRestartPOS Property Added in Release 1.9

Syntax CapRestartPOS: boolean { read-only, access after open }

Remarks If true the device is able to explicitly restart the POS. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also restartPOS Method.

30.4.9 CapShutdownPOS Property

Syntax CapShutdownPOS: boolean { read-only, access after open }

Remarks If true the device is able to explicitly shut down the POS. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also shutdownPOS Method.

30.4.10 CapStandbyPOS Property Added in Release 1.9

Syntax CapStandbyPOS: boolean { read-only, access after open }

Remarks If true the device is able to request that the POS System enter the Standby state. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also standbyPOS Method.

30.4.11 CapSuspendPOS Property Added in Release 1.9

Syntax CapSuspendPOS: boolean { read-only, access after open }

Remarks If true the device is able to request that the POS System enter the Suspend state. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also suspendPOS Method.

Unified POS, v1.15.1 Beta1 30 - 19

30.4.12 CapUPSChargeState Property

Syntax CapUPSChargeState: int32 { read-only, access after open }

Remarks If not equal to zero, the UPS can deliver one or more charge states. It can contain any of the
following values logically ORed together.

Value Meaning
PWR_UPS_FULL UPS battery is near full charge.
PWR_UPS_WARNING UPS battery is near 50% charge.
PWR_UPS_LOW UPS battery is near empty. Application shutdown should be started to

ensure that is can be completed before the battery charge is depleted.
A minimum of 2 minutes of normal system operation can be assumed
when this state is entered unless this is the first state reported upon
entering the “Off” power state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be disconnected at any time
without further warning.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also UPSChargeState Property.

30.4.13 CapVariableBatteryCriticallyLowThreshold Property Added in Release 1.9

Syntax CapVariableBatteryCriticallyLowThreshold: boolean { read-only, access after open }

Remarks If true the device supports a variable threshold for critically low battery. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also BatteryCriticallyLowThreshold Property, StatusUpdateEvent

30.4.14 CapVariableBatteryLowThreshold Property Added in Release 1.9

Syntax CapVariableBatteryLowThreshold: boolean { read-only, access after open }

Remarks If true the device supports a variable threshold for battery low. Otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also BatteryLowThreshold Property, StatusUpdateEvent

30 - 20 Unified POS, v1.15.1 Beta1

30.4.15 EnforcedShutdownDelayTime Property

Syntax EnforcedShutdownDelayTime: int32 { read-write, access after open }

Remarks If not equal to zero the system has a built-in mechanism to shut down the POS terminal after a
determined time in a power fail situation. This property contains the time in milliseconds when the
system will shut down automatically after a power failure. A power failure is the situation when the
POS terminal is powered off or detached from the power supplying net and runs on UPS.
If zero no automatic shutdown is performed and the application has to call itself the shutdownPOS
method.

Applications will be informed about an initiated automatic shutdown.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also shutdownPOS Method.

30.4.16 PowerFailDelayTime Property

Syntax PowerFailDelayTime: int32 { read-only, access after open }

Remarks This property contains the time in milliseconds for power fail intervals which will not create a power
fail situation. In some countries the power has sometimes short intervals where the power supply is
interrupted. Those short intervals are in the range of milliseconds up to a few seconds and are
handled by batteries or other electric equipment and should not cause a power fail situation. The
power fail interval starts when the POS terminal is powered off or detached from the power
supplying net and runs on UPS. The power fail interval ends when the POS terminal is again
powered on or attached to the power supplying net. However, if the power fail interval is longer than
the time specified in the PowerFailDelayTime property a power fail situation is created.

Usually this parameter is a configuration parameter of the underlying power management. So, the
application can only read this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 30 - 21

30.4.17 PowerSource Property Added in Release 1.9

Syntax PowerSource: int32 { read-only, access after open }

Remarks This property holds the current power source if power source reporting is available. A
StatusUpdateEvent is generated each time this property is updated.

Value Meaning
PWR_SOURCE_NA Power source reporting is not available.

PWR_SOURCE_AC The current power source is the AC line.

PWR_SOURCE_BATTERY The current power source is a system battery. This value is only
presented for systems that operate normally on battery.

PWR_SOURCE_BACKUP The current power source is a backup source such as an UPS or
backup battery.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also StatusUpdateEvent

30.4.18 QuickChargeMode Property

Syntax QuickChargeMode: boolean { read-only, access after open }

Remarks If true, the UPS battery is being recharged in a quick charge mode.
If false, it is being charged in a normal mode.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

See Also CapQuickCharge Property, QuickChargeTime Property.

30 - 22 Unified POS, v1.15.1 Beta1

30.4.19 QuickChargeTime Property

Syntax QuickChargeTime: int32 { read-only, access after open }

Remarks This time specifies the remaining time for charging the UPS battery in quick charge mode. After the
time has elapsed, the UPS battery charging mechanism of power management usually switches into
normal mode.

This time is specified in milliseconds.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapQuickCharge Property, QuickChargeMode Property.

30.4.20 UPSChargeState Property

Syntax UPSChargeState: int32 { read-only, access after open-enable }

Remarks This property holds the actual UPS charge state.

It has one of the following values:

Value Meaning
PWR_UPS_FULL UPS battery is near full charge.

PWR_UPS_WARNING UPS battery is near 50% charge.

PWR_UPS_LOW UPS battery is near empty. Application shutdown should be started to
ensure that is can be completed before the battery charge is depleted.
A minimum of 2 minutes of normal system operation can be assumed
when this state is entered unless this is the first state reported upon
entering the “Off” power state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be disconnected at any time
without further warning.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapUPSChargeState Property.

Unified POS, v1.15.1 Beta1 30 - 23

30.5 Methods (UML operations)

30.5.1 restartPOS Method Added in Release 1.9

Syntax restartPOS ():
void { raises-exception, use after open-enable }

Remarks Call to restart the POS terminal. This method will always restart the system independent of the
system power state.

If the POSPower is claimed, only the application which claimed the device is able to restart the POS
terminal.

Applications will be informed about an initiated restart.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL This method is not supported (see the CapRestartPOS property)

See Also CapRestartPOS Property

30 - 24 Unified POS, v1.15.1 Beta1

30.5.2 shutdownPOS Method

Syntax shutdownPOS ():
void { raises-exception, use after open-enable }

Remarks Call to shut down the POS terminal. This method will always shut down the system independent of
the system power state.
If the POSPower is claimed, only the application which claimed the device is able to shut down the
POS terminal.
Applications will be informed about an initiated shutdown.
It is recommended that in a power fail situation an application has to call this method after saving
all data and setting the application to a defined state.
If the EnforcedShutdownDelayTime property specifies a time greater than zero and the
application did not call the shutdownPOS method within the time specified in
EnforcedShutdownDelayTime, the system will be shut down automatically. This mechanism may
be provided by an underlying operating system to prevent the battery from being emptied before the
system is shut down.
This method is only supported if CapShutdownPOS is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL This method is not supported (see the CapShutdownPOS property)

See Also CapShutdownPOS Property, EnforcedShutdownDelayTime Property.

Unified POS, v1.15.1 Beta1 30 - 25

30.5.3 standbyPOS Method Updated in Release 1.10

Syntax standbyPOS (reason: int32):
void { raises-exception, use after open-enable }

Remarks Call to request that the system be placed into the Standby state or to respond to a request from the
system, OS or other application that the system be put into Standby state.

The reason parameter indicates the reason the POS terminal should enter a standby state:

Value Description
PWR_REASON_REQUEST Call is to request that the system enter the standby state.
PWR_REASON_ALLOW Call is a response to a standby Status Update Event and specifies

that the request should be allowed.
PWR_REASON_DENY Call is a response to a standby Status Update Event and specifies

that the request should be denied.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL This method is not supported (see the CapStandbyPOS property)

See Also CapStandbyPOS Property.

30 - 26 Unified POS, v1.15.1 Beta1

30.5.4 suspendPOS Method Updated in Release 1.10

Syntax suspendPOS (reason: int32):
void { raises-exception, use after open-enable }

Remarks Call to request that the system be placed into the Suspend state or to respond to a request from the
system, OS or other application that the system be put into Suspend state.

The reason parameter indicates the reason the POS terminal should enter a standby state:

Value Description
PWR_REASON_REQUEST Call is to request that the system enter the suspend state.
PWR_REASON_ALLOW Call is a response to a suspend Status Update Event and specifies

that the request should be allowed.
PWR_REASON_DENY Call is a response to a suspend Status Update Event and specifies

that the request should be denied.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL This method is not supported (see the CapSuspendPOS property)

See Also CapSuspendPOS Property.

Unified POS, v1.15.1 Beta1 30 - 27

30.6 Events (UML interfaces)

30.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific POSPower Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s POSPower devices which may not have any knowledge of the Service’s need for this
event.

See Also “Errors” on page 1- 16, directIO Method.

30 - 28 Unified POS, v1.15.1 Beta1

30.6.2 StatusUpdateEvent Updated in Release 1.9

<< event >> upos::events::StatusUpdateEvent
 Status: int32 { read-only }

Description Delivered when UPSChargeState changes or an alarm situation occurs.

Attributes This event contains the following attribute:
Attributes Type Description
Status int32 See below.

The Status property contains the updated power status or alarm status.

Value Meaning
PWR_SUE_UPS_FULL UPS battery is near full charge. Can be returned if
CapUP SChargeState contains PWR_UPS_FULL.
PWR_SUE_UPS_WARNING UPS battery is near 50% charge. Can be returned if

CapUPSChargeState contains PWR_UPS_WARNING.
PWR_SUE_UPS_LOW UPS battery is near empty. Application shutdown should be

started to ensure that it can be completed before the battery
charge is depleted. A minimum of 2 minutes of normal system
operation can be assumed when this state is entered unless this is
the first charge state reported upon entering the “Off” state. Can
be returned if CapUPSChargeState contains PWR_UPS_LOW.

PWR_SUE_UPS_CRITICAL UPS is in critical state, and will in short time be disconnected.
Can be returned if CapUPSChargeState contains
PWR_UPS_CRITICAL.

PWR_SUE_FAN_STOPPED The CPU fan is stopped. Can be returned if CapFanAlarm is
true.

PWR_SUE_FAN_RUNNING The CPU fan is running. Can be returned if CapFanAlarm is
true.

PWR_SUE_TEMPERATURE_HIGH
The CPU is running on high temperature. Can be returned if
CapHeatAlarm is true.

PWR_SUE_TEMPERATURE_OK
The CPU is running on normal temperature. Can be returned if
CapHeatAlarm is true.

PWR_SUE_SHUTDOWN The system will shutdown immediately.

Unified POS, v1.15.1 Beta1 30 - 29

Note that Release 1.9 added the following status update events:

PWR_SUE_BAT_LOW The system remaining battery capacity is at or below the low
battery threshold and the system is operating from the battery.

PWR_SUE_BAT_CRITICAL The system remaining battery capacity is at or below the
critically low battery threshold and the system is operating from
the battery.

PWR_SUE_BAT_CAPACITY_REMAINING.
The BatteryCapacityRemaining property has been updated

PWR_SUE_RESTART The system will restart immediately.
PWR_SUE_STANDBY The system is requesting a transition to the Standby state
PWR_SUE_USER_STANDBY The system is requesting a transition to the Standby state as a

result of user input.
PWR_SUE_SUSPEND The system is requesting a transition to the Suspend state.
PWR_SUE_USER_SUSPEND The system is requesting a transition to the Suspend state as a

result of user input.
PWR_SUE_PWR_SOURCE The PowerSource property has been updated.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added
additional Status values for communicating the status/progress of
an asynchronous update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

See Also CapFanAlarm Property, CapHeatAlarm Property, CapUPSChargeState Property,
UPSChargeState Property.

30 - 30 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 31 - 1

31 POS Printer

31.1 General
This Chapter defines the POS Printer device category.

31.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

31 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapCharacterSet:
CapConcurrentJrnRec:
CapConcurrentJrnSlp:
CapConcurrentPageMode:
CapConcurrentRecSlp:
CapCoverSensor:
CapMapCharacterSet:
CapTransaction:

int32
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.1
1.0
1.0
1.9
1.0
1.0
1.7
1.1

open
open
open
open
open
open
open
open

CapJrnPresent:
CapJrn2Color:
CapJrnBold:
CapJrnDhigh:
CapJrnDwide:
CapJrnDwideDhigh:
CapJrnEmptySensor:
CapJrnItalic:
CapJrnNearEndSensor:
CapJrnUnderline:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

open
open
open
open
open
open
open
open
open
open

CapJrnCartridgeSensor:
CapJrnColor:

int32
int32

{ read-only }
{ read-only }

1.5
1.5

open
open

CapRecPresent:
CapRec2Color:
CapRecBarCode:
CapRecBitmap:
CapRecBold:
CapRecDhigh:
CapRecDwide:
CapRecDwideDhigh:
CapRecEmptySensor:
CapRecItalic:
CapRecLeft90:
CapRecNearEndSensor:
CapRecPapercut:
CapRecRight90:
CapRecRotate180:
CapRecStamp:
CapRecUnderline:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

CapRecCartridgeSensor: int32 { read-only } 1.5 open

Unified POS, v1.15.1 Beta1 31 - 3

Properties (Continued)
Specific (continued) Type Mutability Version May Use After
CapRecColor: int32 { read-only } 1.5 open
CapRecMarkFeed: int32 { read-only } 1.5 open
CapRecPageMode: boolean { read-only } 1.9 open
CapRecRuledLine: int32 { read-only } 1.13 open

CapSlpPresent:
CapSlpFullslip:
CapSlp2Color:
CapSlpBarCode:
CapSlpBitmap:
CapSlpBold:
CapSlpDhigh:
CapSlpDwide:
CapSlpDwideDhigh:
CapSlpEmptySensor:
CapSlpItalic:
CapSlpLeft90:
CapSlpNearEndSensor:
CapSlpRight90:
CapSlpRotate180:
CapSlpUnderline:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

CapSlpBothSidesPrint: boolean { read-only } 1.5 open
CapSlpCartridgeSensor: int32 { read-only } 1.5 open
CapSlpColor: int32 { read-only } 1.5 open
CapSlpPageMode: boolean { read-only } 1.9 open
CapSlpRuledLine: int32 { read-only } 1.13 open

AsyncMode: boolean { read-write } 1.0 open
CartridgeNotify: int32 { read-write } 1.5 open
CharacterSet: int32 { read-write } 1.0 open, claim, & enable
CharacterSetList: string { read-only } 1.0 open
CoverOpen: boolean { read-only } 1.0 open, claim, & enable
ErrorLevel: int32 { read-only } 1.1 open
ErrorStation: int32 { read-only } 1.0 open
ErrorString: string { read-only } 1.1 open
FontTypefaceList: string { read-only } 1.1 open
FlagWhenIdle: boolean { read-write } 1.0 open
MapCharacterSet: boolean { read-write } 1.7 open

31 - 4 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific (continued) Type Mutability Version May Use After
MapMode: int32 { read-write } 1.0 open
PageModeArea: string { read-only } 1.9 open
PageModeDescriptor: int32 { read-only } 1.9 open
PageModeHorizontalPosition: int32 { read-write } 1.9 open
PageModePrintArea: string { read-write } 1.9 open
PageModePrintDirection: int32 { read-write } 1.9 open
PageModeStation: int32 { read-write } 1.9 open
PageModeVerticalPosition: int32 { read-write } 1.9 open
RotateSpecial: int32 { read-write } 1.1 open

JrnLineChars: int32 { read-write } 1.0 open, claim, & enable
JrnLineCharsList: string { read-only } 1.0 open
JrnLineHeight: int32 { read-write } 1.0 open, claim, & enable
JrnLineSpacing: int32 { read-write } 1.0 open, claim, & enable
JrnLineWidth: int32 { read-only } 1.0 open, claim, & enable
JrnLetterQuality: boolean { read-write } 1.0 open, claim, & enable
JrnEmpty: boolean { read-only } 1.0 open, claim, & enable
JrnNearEnd: boolean { read-only } 1.0 open, claim, & enable
JrnCartridgeState: int32 { read-only } 1.5 open, claim, & enable
JrnCurrentCartridge: int32 (read-write } 1.5 open, claim, & enable

RecLineChars: int32 { read-write } 1.0 open, claim, & enable
RecLineCharsList: string { read-only } 1.0 open
RecLineHeight: int32 { read-write } 1.0 open, claim, & enable
RecLineSpacing: int32 { read-write } 1.0 open, claim, & enable
RecLineWidth: int32 { read-only } 1.0 open, claim, & enable
RecLetterQuality: boolean { read-write } 1.0 open, claim, & enable
RecEmpty: boolean { read-only } 1.0 open, claim, & enable
RecNearEnd: boolean { read-only } 1.0 open, claim, & enable
RecSidewaysMaxLines: int32 { read-only } 1.0 open, claim, & enable
RecSidewaysMaxChars: int32 { read-only } 1.0 open, claim, & enable
RecLinesToPaperCut: int32 { read-only } 1.0 open, claim, & enable
RecBarCodeRotationList: string { read-only } 1.0 open
RecBitmapRotationList: string { read-only } 1.7 open
RecCartridgeState: int32 { read-only } 1.5 open, claim, & enable
RecCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

Unified POS, v1.15.1 Beta1 31 - 5

Properties (Continued)
Specific (continued) Type Mutability Version May Use After
SlpLineChars: int32 { read-write } 1.0 open, claim, & enable
SlpLineCharsList: string { read-only } 1.0 open
SlpLineHeight: int32 { read-write } 1.0 open, claim, & enable
SlpLineSpacing: int32 { read-write } 1.0 open, claim, & enable
SlpLineWidth: int32 { read-only } 1.0 open, claim, & enable
SlpLetterQuality: boolean { read-write } 1.0 open, claim, & enable
SlpEmpty: boolean { read-only } 1.0 open, claim, & enable
SlpNearEnd: boolean { read-only } 1.0 open, claim, & enable
SlpSidewaysMaxLines: int32 { read-only } 1.0 open, claim, & enable
SlpSidewaysMaxChars: int32 { read-only } 1.0 open, claim, & enable
SlpMaxLines: int32 { read-only } 1.0 open, claim, & enable
SlpLinesNearEndToEnd: int32 { read-only } 1.0 open, claim, & enable
SlpBarCodeRotationList: string { read-only } 1.1 open
SlpBitmapRotationList: string { read-only } 1.7 open
SlpPrintSide: int32 { read-only } 1.5 open, claim, & enable
SlpCartridgeState: int32 { read-only } 1.5 open, claim, & enable
SlpCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

1.0

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

31 - 6 Unified POS, v1.15.1 Beta1

Methods (UML operations) (continued)
Common
Name Version
compareFirmwareVersion (firmwareFileName: string, out result: int32):

void { raises-exception, use after open, claim, enable }
1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name Version
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
1.0

beginRemoval (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.0

changePrintSide (side: int32):
void { raises-exception, use after open, claim, enable }

1.5

clearPrintArea ():
 void { raises-exception, use after open, claim, enable }

1.9

cutPaper (percentage: int32):
void { raises-exception, use after open, claim, enable }

1.0

drawRuledLine (station: int32, positionList: string, lineDirection: int32,
lineWidth: int32, lineStyle: int32, lineColor: int32):
void { raises-exception, use after open, claim, enable }

1.13

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.0

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.0

markFeed (type: int32):
void { raises-exception, use after open, claim, enable }

1.5

pageModePrint (control: int32):
 void { raises-exception, use after open, claim, enable }

1.9

printBarCode (station: int32, data: string, symbology: int32, height: int32,
width: int32, alignment: int32, textPosition: int32):
void { raises-exception, use after open, claim, enable }

1.0

printBitmap (station: int32, fileName: string, width: int32, alignment: int32):
void { raises-exception, use after open, claim, enable }

1.0

Unified POS, v1.15.1 Beta1 31 - 7

Methods (UML operations) (continued)
Specific
Name Version
printImmediate (station: int32, data: string):

void { raises-exception, use after open, claim, enable }
1.0

printMemoryBitmap (station: int32, data: binary, type: int32, width: int32,
alignment: int32):
void { raises-exception, use after open, claim, enable }

1.10

printNormal (station: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.0

printTwoNormal (station: int32, data1: string, data2: string):
void { raises-exception, use after open, claim, enable }

1.0

rotatePrint (station: int32, rotation: int32):
void { raises-exception, use after open, claim, enable }

1.0

setBitmap (bitmapNumber: int32, station: int32, fileName: string, width:
int32, alignment: int32):
void { raises-exception, use after open, claim, enable }

1.0

setLogo (location: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.0

transactionPrint (station: int32, control: int32):
void { raises-exception, use after open, claim, enable }

1.1

validateData (station: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.1

31 - 8 Unified POS, v1.15.1 Beta1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.0
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.0
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.0
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 31 - 9

31.3 General Information
The POS Printer programmatic name is “POSPrinter”.

The POS Printer Service does not attempt to encapsulate the behavior of a generic graphics printer. Rather, for
performance and ease of use considerations, the interfaces are defined to directly control a POS printer. Usually,
an application will print one line to one station per method, for ease of use and accuracy in recovering from
errors.

The printer model defines three stations with the following general uses:

• Journal: Used for simple text to log transaction and activity information. Kept by the store for audit and other
 purposes.

• Receipt: Used to print transaction information. Usually given to the customer. Also often used for store
 reports. Contains either a knife to cut the paper between transactions, or a tear bar to manually cut the paper.

• Slip: Used to print information on a form. Usually given to the customer.

• Also used to print “validation” information on a form. The form type is typically a check or credit card slip.

Sometimes, limited forms-handling capability is integrated with the receipt or journal station to permit validation
printing. Often this limits the number of print lines, due to the station’s forms-handling throat depth. The Printer
Service nevertheless addresses this printer functionality as a slip station.

31.3.1 Capabilities Updated in Release 1.8

The POS printer has the following capability:

• The default character set can print ASCII characters (0x20 through 0x7F), which includes space, digits,
 uppercase, lowercase, and some special characters. (If the printer does not support all of these, then it should
 translate them to close approximations – such as lowercase to uppercase.)

The POS printer may have several additional capabilities. See the capabilities properties for specific information.

The following capabilities are not addressed in this version of the specification. A Service may choose to support
them through the directIO mechanism.

• Downloadable character sets.

• Character substitution.

• Pixel-level printing is only supported through bitmaps when the printBitmap or setBitmap method is called
 with the width parameter set to PTR_BM_ASIS. Therefore, it is possible for the application to programmatically
 prepare and print bitmaps with the required pixels set.

31 - 10 Unified POS, v1.15.1 Beta1

31.3.2 POS Printer Class Diagram

The following diagram shows the relationships between the POS Printer classes.

StatusUpdateEvent
(from events)

<<event>>
ErrorEvent
(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>
DirectIOEvent

(from events)

<<event>>

POSPrinterControl

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
changePrintSide(side : int32) : void
cutPaper(percentage : int32) : void
endInsertion() : void
endRemoval() : void
markFeed(type : int32) : void
printBarCode(station : int32, data : string, symbology : int32, height : int32, width : int32, alignment : int32, textPosition : int32) : void
printBitmap(station : int32, fileName : string, width : int32, alignment : int32) : void
printImmediate(station : int32, data : string) : void
printNormal(station : int32, data : string) : void
printTwoNormal(stations : int32, data1 : string, data2 : string) : void
rotatePrint(station : int32, rotation : int32) : void
setBitmap(bitmapNumber : int32, station : int32, fileName : string, width : int32, alignment : int32) : void
setLogo(location : int32, data : string) : void
transactionPrint(station : int32, control : int32) : void
validateData(station : int32, data : string) : void

(from upos)

<<Interface>>

fires fires fires fires

POSPrinterConst
(from upos)

<<utility>>

<<uses>>

UposConst
(from upos)

<<utility>>

<<uses>>

UposException
(from upos)

<<exception>>
BaseControl

(from upos)

<<Interface>>
<<uses>> <<sends>>

<<sends>>

Only the methods of the
POSPrinterControl are shown in
order to avoid cluttering the diagram.

Unified POS, v1.15.1 Beta1 31 - 11

31.3.3 POS Printer Class Diagram Updates Updated in Release 1.10

The following diagram shows the relationships between the POS Printer classes that were updated/added in
versions 1.5 and later of the specification.

UposException
(from upos)

<<exception>>
UposConst

(from upos)

<<utility>>
POSPrinterConst

(from upos)

<<utility>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

POSPrinterControl

<<capability>> CapConcurrentPageMode : boolean
<<capability>> CapJrnCartridgeSensor : int32
<<capability>> CapJrnColor : int32
<<capability>> CapMapCharacterSet : boolean
<<capability>> CapRecCartridgeSensor : int32
<<capability>> CapRecColor : int32
<<capability>> CapRecMarkFeed : int32
<<capability>> CapRecPageMode : boolean
<<capability>> CapSlpBothSidesPrint : boolean
<<capability>> CapSlpCartridgeSensor : int32
<<capability>> CapSlpColor : int32
<<capability>> CapSlpPageMode : boolean
<<prop>> CartridgeNotify : int32
<<prop>> JrnCartridgeState : int32
<<prop>> JrnCurrentCartridge : int32
<<prop>> MapCharacterSet : boolean
<<prop>> RecBitmapRotationList : string
<<prop>> RecCartridgeState : int32
<<prop>> RecCurrentCartridge : int32
<<prop>> PageModeArea : string
<<prop>> PageModeDescriptor : int32
<<prop>> PageModeHorizontalPosition : int32
<<prop>> PageModePrintArea : string
<<prop>> PageModePrintDirection : int32
<<prop>> PageModeStation : int32
<<prop>> PageModeVerticalPosition : int32
<<prop>> SlpBitmapRotationList : string
<<prop>> SlpCartridgeState : int32
<<prop>> SlpCurrentCartridge : int32
<<prop>> SlpPrintSide : int32

changePrintSide(side : int32) : void
clearPrintArea() : void
markFeed(type : int32) : void
pageModePrint(control : int32) : void
printMemoryBitmap(station : int32, data : binary, type : int32, width : int32, alignment : int32) : void

(from upos)

<<Interface>>

<<uses>> <<sends>>

fires

fires

fires

fires

Only properties and methods
added at or after 1.5 of the
POSPrinterControl are shown
in order to avoid cluttering the
diagram.

31 - 12 Unified POS, v1.15.1 Beta1

31.3.4 Model Updated in Release 1.13

The POS Printer follows the general device behavior model for output devices, with some enhancements:

• The following methods are always performed synchronously: beginInsertion, endInsertion, beginRemoval,
 endRemoval, changePrintSide, and checkHealth. These methods will fail if asynchronous output is outstanding.

• The printImmediate method is also always performed synchronously: This method tries to print its data
 immediately (that is, as the very next printer operation). It may be called when asynchronous output is outstanding.
 This method is primarily intended for use in exception conditions when asynchronous output is outstanding.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
 AsyncMode property: cutPaper, drawRuledLine, markFeed, printBarCode, printBitmap, printNormal,
 printTwoNormal, rotatePrint, and transactionPrint. When AsyncMode is false, then these methods are
 performed synchronously.

• When AsyncMode is true, then these methods operate as follows:

• The Service buffers the request in program memory, for delivery to the Physical Device as soon as the
 Physical Device can receive and process it, sets the OutputID property to an identifier for this request, and
 returns as soon as possible. When the request completes successfully, an OutputCompleteEvent is enqueued.
 A property of this event contains the OutputID of the completed request.

• Asynchronous printer methods will not raise an exception due to a printing problem, such as out of paper or
 printer fault. These errors will only be reported by an ErrorEvent. An exception is raised only if the printer is
 not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. 　　　　　　　　　　

　The first two error cases are due to an application error, while the last is a serious system resource error 　　

　exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The ErrorStation
 property is set to the station or stations that were printing when the error occurred. The ErrorLevel and
 ErrorString properties are also set.

• The event handler may call synchronous print methods (but not asynchronous methods), then can either retry
 the outstanding output or clear it.

• All asynchronous output is performed on a first-in first-out basis.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput.
 OutputCompleteEvents will not be delivered for cleared output. This method also stops any output that may
 be in progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent to be enqueued when all outstanding
 outputs have finished, whether successfully or because they were cleared.

• Transaction mode printing is supported. A transaction is a sequence of print operations that are printed to a
 station as a unit. Print operations which may be included in a transaction are printNormal, cutPaper,
 drawRuledLine, rotatePrint, printBarCode, printBitmap, and markFeed. During a transaction, the print
 operations are first validated. If valid, they are added to the transaction but not printed yet. Once the
 application has added as many operations as required, then the transaction print method is called.

• If the transaction is printed synchronously and an exception is not raised, then the entire transaction printing
 was successful. If the transaction is printed asynchronously, then the asynchronous print rules listed above are
 followed. If an error occurs and the Error Event handler causes a retry, the entire transaction is retried.

Unified POS, v1.15.1 Beta1 31 - 13

• The printer error reporting model is as follows:

• Printer out-of-paper, cover open, and various cartridge handling conditions are reported by setting the
 exception’s (or ErrorEvent’s) ErrorCode to E_EXTENDED and then setting the associated
 ErrorCodeExtended to one of the following error conditions:
 EPTR_JRN_EMPTY,
 EPTR_REC_EMPTY,
 EPTR_SLP_EMPTY,
 EPTR_COVER_OPEN,

EPTR_JRN_CARTRIDGE_REMOVED,
EPTR_REC_CARTRIDGE_REMOVED,
EPTR_SLP_CARTRIDGE_REMOVED,
EPTR_JRN_CARTRIDGE_EMPTY,
EPTR_REC_CARTRIDGE_EMPTY,
EPTR_SLP_CARTRIDGE_EMPTY,
EPTR_JRN_HEAD_CLEANING,
EPTR_REC_HEAD_CLEANING, or
EPTR_SLP_HEAD_CLEANING.

• Other printer errors are reported by setting the exception’s (or ErrorEvent’s) ErrorCode to E_FAILURE or
 another standard error status. These failures are typically due to a printer fault or jam, or to a more serious
 error.

While the printer is enabled, the printer state is monitored, and changes are reported to the application. Most
printer statuses are reported by both firing a StatusUpdateEvent and by updating a printer property. Statuses, as
defined in the later properties and events sections, are:

StatusUpdateEvent Property
PTR_SUE_COVER_OPEN CoverOpen = true
PTR_SUE_COVER_OK CoverOpen = false
PTR_SUE_JRN_EMPTY JrnEmpty = true
PTR_SUE_JRN_NEAREMPTY JrnNearEnd = true
PTR_SUE_JRN_PAPEROK JrnEmpty = JrnNearEnd = false
PTR_SUE_REC_EMPTY RecEmpty = true
PTR_SUE_REC_NEAREMPTY RecNearEnd = true
PTR_SUE_REC_PAPEROK RecEmpty = RecNearEnd = false
PTR_SUE_SLP_EMPTY SlpEmpty = true
PTR_SUE_SLP_NEAREMPTY SlpNearEnd = true
PTR_SUE_SLP_PAPEROK SlpEmpty = SlpNearEnd = false

31 - 14 Unified POS, v1.15.1 Beta1

Release 1.5 and later

Two properties are used to report cartridge statuses. One (such as RecCurrentCartridge) selects a station’s
cartridge, and a second (such as RecCartridgeState) reports that cartridge’s status. When a cartridge
StatusUpdateEvent is delivered, it indicates the highest priority cartridge condition. The cartridge state for at
least one cartridge should match the StatusUpdateEvent’s corresponding property value, while other cartridges
may have lower priority conditions or be OK.

PTR_SUE_JRN_CARTRIDGE_EMPTY
JrnCartridgeState = PTR_CART_EMPTY or
PTR_CART_REMOVED

PTR_SUE_JRN_HEAD_CLEANING
JrnCartridgeState = PTR_CART_CLEANING

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY
JrnCartridgeState = PTR_CART_NEAREND

PTR_SUE_JRN_CARTRIDGE_OK
JrnCartridgeState = PTR_CART_OK

PTR_SUE_REC_CARTRIDGE_EMPTY
RecCartridgeState = PTR_CART_EMPTY or

 PTR_CART_REMOVED
PTR_SUE_REC_HEAD_CLEANING

RecCartridgeState = PTR_CART_CLEANING
PTR_SUE_REC_CARTRIDGE_NEAREMPTY

RecCartridgeState = PTR_CART_NEAREND
PTR_SUE_REC_CARTRIDGE_OK

RecCartridgeState = PTR_CART_OK
PTR_SUE_SLP_CARTRIDGE_EMPTY

SlpCartridgeState = PTR_CART_EMPTY or
PTR_CART_REMOVED

PTR_SUE_SLP_HEAD_CLEANING
SlpCartridgeState = PTR_CART_CLEANING

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY
SlpCartridgeState = PTR_CART_NEAREND

PTR_SUE_SLP_CARTRIDGE_OK
SlpCartridgeState = PTR_CART_OK

Rlease 1.8 and later

PTR_SUE_JRN_COVER_OPEN CoverOpen = true
PTR_SUE_JRN_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
PTR_SUE_REC_COVER_OPEN CoverOpen = true
PTR_SUE_REC_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
PTR_SUE_SLP_COVER_OPEN CoverOpen = true
PTR_SUE_SLP_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open

Unified POS, v1.15.1 Beta1 31 - 15

Release 1.8 – Clarification

The printer’s slip station statuses must be reported independently from the slip insertion and removal
methods – beginInsertion / endInsertion and beginRemoval / endRemoval. This is important because
some applications base logic decisions upon printer state changes. That is, the application will only perform
slip insertion after knowing that a slip has been placed at the entrance to the slip station. An example: After
the Total key is pressed, the application enters tendering mode. It begins to monitor peripherals and the
keyboard to determine the type of tender to perform. If a credit or debit card is swiped at an MSR, then its
DataEvent causes the application to begin credit/debit tender. But if a form is placed at the slip station, then
its StatusUpdateEvent or SlpEmpty property change causes the application to begin a check MICR read.

When a form is placed at the entrance to the slip station, the printer must fire a PTR_SUE_SLP_PAPEROK
StatusUpdateEvent and set the SlpEmpty and SlpNearEnd properties to false. The application may then
call the beginInsertion and endInsertion methods with reasonable confidence that they will succeed. Note
that it must not be assumed that the form is ready for printing after the PTR_SUE_SLP_PAPEROK is
received. Only after successful beginInsertion and endInsertion calls is the form ready for printing.

When a form is removed from the slip station, the printer must fire a PTR_SUE_SLP_EMPTY
StatusUpdateEvent and set the SlpEmpty property to true. If the beginInsertion and endInsertion method
sequence has not been called, then removing the form from the slip station entrance will cause this to occur.
If this method sequence has successfully completed, then the event and property change will typically occur
after a beginRemoval and endRemoval method sequence. But they would also occur if the slip prints
beyond the end of the form or if the form is forcibly removed.

Exception: The design of some printers makes it impossible for a service to determine the presence of a
form until the printer “jaws” are opened, which occurs when beginInsertion is called. This exception is
largely limited to cases where the CapSlpFullslip property is false, indicating a “validation” type of slip
station. Validation stations typically use the same printer mechanism as the receipt and/or journal stations. In
these cases, the slip status events must be fired as soon as possible, given the constraints of the device.

Release 1.5 and later – Print cartridge support added

The print cartridge model is as follows:

• The CapJrnCartridgeSensor, CapRecCartridgeSensor, and the CapSlpCartridgeSensor capabilities are
used to determine whether the printer has the ability to detect the operating condition of the cartridge.

• Prior to determining a cartridge’s operating condition, a cartridge is selected by using one of the following
properties: JrnCurrentCartridge, RecCurrentCartridge, or SlpCurrentCartridge.

• The condition of the selected cartridge is set up using one of the JrnCartridgeState, RecCartridgeState or
SlpCartridgeState properties. The values that these properties can take in order of high priority to low priority
are as follows: PTR_CART_UNKNOWN, PTR_CART_REMOVED, PTR_CART_EMPTY,
PTR_CART_CLEANING, PTR_CART_NEAREND, PTR_CART_OK.

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are used to determine the color capabilities of the
station.

31 - 16 Unified POS, v1.15.1 Beta1

Mono Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are set to PTR_COLOR_PRIMARY.

Two Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical OR combination of
PTR_COLOR_PRIMARY and PTR_COLOR_CUSTOM1.

• PTR_COLOR_CUSTOM1 refers to the secondary color, usually red.

• Secondary color printing can be done by using the ESC|rC escape sequence.

Custom Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical OR combination of
PTR_COLOR_PRIMARY and any of the following bit values:
PTR_COLOR_CUSTOM1, PTR_COLOR_CUSTOM2, PTR_COLOR_CUSTOM3,
PTR_COLOR_CUSTOM4, PTR_COLOR_CUSTOM5, PTR_COLOR_CUSTOM6.

• Selection of a custom color can be done using the ESC|#rC escape sequence.

Full Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical OR combination of
PTR_COLOR_FULL and the following values:
PTR_COLOR_CYAN, PTR_COLOR_MAGENTA, PTR_COLOR_YELLOW.

• PTR_COLOR_FULL is not used to indicate that a print cartridge is currently installed in the printer. Rather, it
is used to indicate that the printer has the ability to print in full color mode.

• Full color printing is accomplished by using the ESC|#fC escape sequence.

Full Color with Custom Color(s)

• CapJrnColor, CapRecColor, and CapSlpColor are a logical OR combination of the settings for Custom
Color and Full Color.

Release 1.5 and later – Cartridge State Reporting Requirements for DeviceEnabled

• The print cartridge state reporting model is:

• CartridgeNotify property: The application may set this property to enable cartridge state reporting via
StatusUpdateEvents and JrnCartridgeState, RecCartridgeState, and SlpCartridgeState properties.
This property may only be set before the device is enabled (that is, before DeviceEnabled is set to true).
This restriction allows simpler implementation of cartridge status notification with no adverse effects on the
application. The application is either prepared to receive notifications or doesn’t want them, and has no need
to switch between these cases. This property may be one of:

PTR_CN_DISABLED, or PTR_CN_ENABLED

• The following semantics are added to DeviceEnabled when the CapJrnCartridgeSensor,
CapRecCartridgeSensor, and CapSlpCartridgeSensor capabilities are not zero, and CartridgeNotify is set to
PTR_CN_ENABLED:

• Monitoring the cartridge state begins when DeviceEnabled changes from false to true.

Unified POS, v1.15.1 Beta1 31 - 17

• When DeviceEnabled changes from true to false, the state of the cartridge is no longer valid. Therefore,
JrnCartridgeState, RecCartridgeState, and SlpCartridgeState properties are set to
PTR_CART_UNKNOWN.

Release 1.8 and later – Synchronous Printing – Updated in Release 1.10

Prior to Release 1.8 the behavior of line printers, such as thermal printers, when in synchronous mode was
not clearly defined. For example, when an application called printNormal (PTR_S_RECEIPT,
“UnifiedPOS”), the synchronous model stated that the method should not return successfully unless the text
was printed on the paper. However, this example would not print on paper unless a line feed or carriage
return is included in the printed data or unless the current print line was full.

Starting with Release 1.8, each call to printNormal, printTwoNormal, or printImmediate when in
synchronous mode must completely print its data (that is, no unprinted partial line of text may remain) or an
exception will be raised. For example, calling these APIs with the C- or Java-formatted strings
“UnifiedPOS\n” (text followed by a line feed) or “\x1B|3B” (escape sequence to print bitmap #3) is correct,
while “UnifiedPOS” (text without a line feed) will result in an exception. It is recommended that the
application follow this practice for all print modes.

Release 1.9 and later – Page Mode Printing

Page Mode printing support is modeled after Transaction Mode printing support, i.e., all activities within
Page Mode are handled and recovered as a single entity. Page Mode support is designed to allow the user to
dynamically compose elaborate page printouts using the printNormal, printBitmap, and printBarcode
methods as well as additional Page Mode methods and properties. Composed pages can be printed, saved,
and modified multiple times as long as Page Mode is active.

31.3.5 Device Sharing

The POS Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many printer-specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

31 - 18 Unified POS, v1.15.1 Beta1

31.3.6 POS Printer State Diagram

The following diagram illustrates the various state transitions within the POS Printer device category.

Unified POS, v1.15.1 Beta1 31 - 19

31.3.7 Page Mode Printing State Diagram Added in Release 1.9

The following illustrates the various state transitions within the full Page Mode support.

Note that when the slip station is being used in Page Mode, beginInsertion/endInsertion should be
used to control the slip handling process as normal.

Normal
pageModePrint(PTR_PM_NORMAL|PTR_PM_CANCEL) Mode

setPageModeStation(PTR_S_RECEIPT) / pageModePrint(PTR_PM_PAGE_MODE)

Page Mode
pageModePrint(PTR_PM_PRINT_SAVE)

printNormal/printBitmap/printBarcode

31 - 20 Unified POS, v1.15.1 Beta1

31.3.8 “Both sides printing” sequence Diagram

The following sequence diagram is a representation of the typical usage of the “Both sides printing” feature.

:POSPrinterControl:Client

beginInsertion(1000)

endInsertion()

Example on how to print some string on both
side with a POSPrinter service s upporting both
sides printing.
NOTE: the sequence below assumes no errors

Prints "Some
String Data"
on the Side1
of the Slip of
POSPrinter

changePrintSide(PTR_PS_SIDE2) [CapSlpBothSidesPrint == true]

changePrintSide(PTR_PS_SIDE1) [CapSlpBothSidesPrint == true]

printNormal(PTR_S_SLIP, "Some String Data")

printNormal(PTR_S_SLIP, "Some String Data")

Prints "Some
String Data"
on the Side2
of the Slip of
POSPrinter

beginRemoval(5000)

endRemoval()

Unified POS, v1.15.1 Beta1 31 - 21

31.3.9 Page Mode printing sequence Diagram Added in Release 1.9

Various sequence diagrams are used to illustrate how the Full Page Mode support API can be used. These
scenarios are designed to show the rationale and key concepts behind the structure of the Page Mode API. There
are two main scenarios for Page Mode support:

• Page Mode invoked on a single station

• Page Mode invoked simultaneously on multiple stations

The following sequence diagram is a representation of Page Mode printing to a single print station.

Application :POSPrinterControl

1: setPageModeStation(PTR_S_RECEIPT)

2: pageModePrint(PTR_PM_PAGE_MODE)

3: getPageModeArea(buffer)

4: "200,200"

5: setPageModePrintArea("1,1,100,100")

6: printNormal(PTR_S_RECEIPT, "1st line\0d\0a")

7: setPageModePrintDirection(PTR_PD_TOP_TO_BOTTOM)

8: printNormal(PTR_S_RECEIPT, "2nd Line printed Right 90\0d\0a")

9: pageModePrint(PTR_PM_NORMAL)

31 - 22 Unified POS, v1.15.1 Beta1

31.3.10 Data Characters and Escape Sequences Updated in Release 1.13

The default character set of all POS printers is assumed to support at least the ASCII characters 0x20 through
0x7F, which include spaces, digits, uppercase, lowercase, and some special characters. If the printer does not
support lowercase characters, then the Service may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical
bar (‘|’). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is
terminated by an uppercase alphabetic character.

In the escape sequences tables below, the digits forming a non-negative number are denoted by the place holder
“#”. If a part of the escape sequence is optional then this part is enclosed by brackets “[...]”. E.g., the UnifiedPOS
escape sequence for paper cut is “ESC|[#]P” which means that the ‘#’ placeholder is optional. For this pattern the
escape sequence “ESC|75P” - meaning a 75% cut is requested - will be valid as well as “ESC|P” - meaning a full
cut is requested.

If the escape sequence begins with the escape ESC, Vertical bar (’|’), and asterisk (‘*’), then the sequence
contains variable length data after its terminating uppercase alphabetic character. The asterisk must be followed
by a sequence of digits whose value specifies the length of this data. A hypothetical example is:
ESC |*6azQHELLO!
where the 6 characters “HELLO!” complete the sequence.

If the escape sequence begins with escape ESC, Vertical bar (’|’), and exclamation point (‘!’), then the ‘!’ causes
the effect of the remainded of the sequence to be reversed. The documentation indicates when this functionality
is valid, such as:
ESC|[!]bC
where the ‘!’, when present, causes bold printing to be disabled.

If a sequence does not begin with ESC “|”, or it begins with ESC “|” but is not a valid UnifiedPOS escape
sequence, the Service will make a reasonable effort to pass it through to the printer. However, not all such
sequences can be distinguished from printable data, so unexpected results may occur.

Starting with Release 1.7, the application can use the ESC|#E escape sequence to ensure more reliable handling
of the amount of data to be passed through to the printer. Use of this escape sequence will make an application
non-portable. The application may, however, maintain portability by performing Embedded Data Escape
sequence calls within conditional code. This code may be based upon the value of the
DeviceServiceDescription, the PhysicalDeviceDescription, or the PhysicalDeviceName property.

NOTE: This command sequence definition and the corresponding definition in the Point Card Reader Writer
Chapter, are the only known deviations from preserving the interchangeability of devices defined in this
specification. If an application finds it necessary to utilize this command sequence, please inform the
UnifiedPOS Committee (retail.omg.org) with the details of its usage, so that a possible standard/generic
Application Interface may be incorporated into a future release of the UnifiedPOS Standard. In order to preserve
peripheral independence and interoperability at the Application level, it is the Committee’s position that this
command sequence should be used only as a “last resort”.

To determine if escape sequences or data can be performed on a printer station, the application can call the
validateData method. (For some escape sequences, corresponding capability properties can also be used.) To
avoid unpredictable printing results due to escape sequence parameter scope violations or unsupported parameter

http://retail.omg.org

Unified POS, v1.15.1 Beta1 31 - 23

values it is recommended to verify escape sequences by calling the validateData method. The following escape
sequences are recognized. If an escape sequence specifies an operation that is not supported by the printer
station, then it is ignored.

Commands Perform indicated action. Updated in Release 1.13

Name Data Remarks

Paper cut ESC |[#]P

Cuts receipt paper. The placeholder ‘#’ is replaced by an
ASCII decimal string telling the percentage cut desired.
If ‘#’ is omitted, then a full cut is performed. For
example: The C string “\x1B|75P” requests a 75%
partial cut.
If the printer does not support the requested cut value
then the service implementation will choose the most
suitable cutting behavior depending on the underlying
hardware.

Feed and Paper cut ESC |[#]fP
Cuts receipt paper, after feeding the paper by the
RecLinesToPaperCut lines. The placeholder ‘#’ is
defined by the “Paper cut” escape sequence.

Feed, Paper cut,
and Stamp

ESC |[#]sP
Cuts and stamps receipt paper, after feeding the paper
by the RecLinesToPaperCut lines. The placeholder
‘#’ is defined by the “Paper cut” escape sequence.

Fire stamp ESC |sL Fires the stamp solenoid, which usually contains a
graphical store emblem.

Print bitmap ESC |#B

Prints the pre-stored bitmap. The placeholder ‘#’ is
replaced by the bitmap number. See setBitmap method.
If the given bitmap number has not been set
successfully by the setBitmap method then the printing
results may be unpredictable.

Print top logo ESC |tL Prints the pre-stored top logo.
Print bottom logo ESC |bL Prints the pre-stored bottom logo.

Feed lines ESC |[#]lF
Feed the paper forward by lines. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the number
of lines to be fed. If ‘#’ is omitted, then one line is fed.

Feed units ESC |[#]uF

Feed the paper forward by mapping mode units. The
placeholder ‘#’ is replaced by an ASCII decimal string
telling the number of units to be fed. If ‘#’ is omitted,
then one unit is fed.

Feed reverse ESC |[#]rF
Feed the paper backward. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the number
of lines to be fed. If ‘#’ is omitted, then one line is fed.

31 - 24 Unified POS, v1.15.1 Beta1

In-Line BarCode Printing Updated in Release 1.13

Starting with Release 1.10, the application can use the ESC|[*]#R escape sequence to print barcodes in-line with
other print commands. The character ‘#’ is the number of characters following the R to use in the definition of
the characteristics of the barcode to be printed.

In the data following the R, other lower case letters and numbers are used to identify different values. The same
value definitions as defined for the printBarCode method headers and definitions are used for the various
barcode values. Converting to string the values from the definitions are consistent.

The attribute symbols are defined as follows:
s symbology
h height
w width
a alignment
t human readable text position
d start of data
e end of sequence

The attributes must appear in the order specified in the above list. All attributes are mandatory. If one of these
two conditions is violated or the parameters contain unsupported values then the printing results may be
unpredictable.

Using a basic UPCA, center aligned, with bottom text, 200 dots height and ~400 dots wide, the command is as
follows:

Pass through
embedded data
 (See a below.)

ESC |[*]#E

Send the following # characters of data through to the
hardware without modifying it. The placeholder '#' is
replaced by an ASCII decimal string telling the number
of bytes following the escape sequence that should be
passed through as-is to the hardware.

Print in-line
barcode
(See b below.)

ESC |[*]#R

Prints the defined barcode in-line. The placeholder ‘#’
is the number of characters following the R to use in the
definition of the characteristics of the barcode to be
printed. See details below.

a. This escape sequence is only available in Version 1.7 and later. The ‘*’ may be used in
Version 1.13 and later.

b. This escape sequence is only available in Version 1.10 and later; updated in Version 1.13.
The ‘*’ may be used in Version 1.13 and later.

Name Data Remarks

Print in-line ruled
line
(See a below.)

a. This escape sequence is only available in Version 1.13 and later.

ESC |*#dL

Draws a continuous ruled line in-line. The placeholder
‘#’ is the number of character positions following the
dL to be used to determine the characteristics of the
ruled line to be drawn. See further details below.

Unified POS, v1.15.1 Beta1 31 - 25

ESC|33Rs101h200w400a-2t-13d123456789012e

or optionally for Version 1.13 or later:

ESC|*33Rs101h200w400a-2t-13d123456789012e

Ruled Line Drawing Printing Added in Release 1.13

Starting with Release 1.13, the application can use the ESC|*#dL escape sequence to print Ruled Line Drawings
in line with other print commands. The character ‘#’ is the number of characters following the dL to use in the
definition of the characteristics of the ruled line to be drawn.

In the data following the dL, other lower case letters and numbers are used to identify the different values. The
same value definitions as defined for the drawRuledLine method headers and definitions are used for the
various ruled line values. Converting to string the values from the definitions are consistent.

The attribute symbols are defined as follows:
p position
d line direction
w line width
s line style
c line color

The attributes must appear in the order specified in the above list. All attributes are mandatory. If one of these
two conditions is violated or the parameters contain unsupported values, then the printing results may be
unpredictable.

Drawing a ruled line, 300 dots of length, with a starting position of 0 dot position, horizontal in direction, 1 dot
in width, using double solid line as the style, and using red color (Custom1), the command is as follows:

ESC|*14dLp0,300d1w1s2c1

Print Mode Characteristics that are remembered until explicitly changed.

Name Data Remarks

Font typeface selection ESC |#fT

Selects a new typeface for the following data.
Values for the placeholder ‘#’ are:
0 = Default typeface.
1 = Select first typeface from the FontTypefaceList
property.
2 = Select second typeface from the
FontTypefaceList property.
And so on.
If the given font typeface number exceeds the
number of font typefaces defined in the
FontTypefaceList property then the printing results
may be unpredictable.

31 - 26 Unified POS, v1.15.1 Beta1

Print Line Characteristics that are reset at the end of each print method, by an explicit reset (where applicable),
or by a “Normal” sequence. Updated in Release 1.12

Name Data Remarks

Bold ESC |[!]bC Prints in bold or double-strike. If ‘!’ is specified then
bold is disabled, see a below.

Underline ESC |[!][#]uC

Prints with underline. The placeholder ‘#’ is replaced
by an ASCII decimal string telling the thickness of
the underline in printer dot units. If ‘#’ is omitted,
then a printer-specific default thickness is used. If ‘!’
is specified then underline mode is switched off, see
c below.

Italic ESC |[!]iC Prints in italics. If ‘!’ is specified then italic is
disabled, see a below.

Alternate color (Custom) ESC |[#]rC

Prints using an alternate custom color. The
placeholder ‘#’ is replaced by an ASCII decimal
string indicating the desired color. The value of the
decimal string is equal to the value of the cartridge
constant used in the printer device properties. If ‘#’ is
omitted, then the secondary color (Custom Color 1) is
selected. Custom Color 1 is usually red.
If the given color value specifies an unsupported
cartridge number then the printing results may be
unpredictable.

Reverse video ESC |[!]rvC Prints in a reverse video format. If ‘!’ is specified
then reverse video is disabled, see a below.

Shading ESC |[#]sC
Prints in a shaded manner. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the
percentage shading desired. If ‘#’ is omitted, then a
printer-specific default level of shading is used.

Single high and wide ESC |1C Prints normal size.
Double wide ESC |2C Prints double-wide characters.
Double high ESC |3C Prints double-high characters.
Double high and wide ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC

Prints with the width scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.
If the scaled printout would exceed the printable area
then the printing results may be unpredictable.

Scale vertically ESC |#vC

Prints with the height scaled ‘#’ times the normal
size, where ‘#’ is replaced by an ASCII decimal
string.
If the scaled printout would exceed the printable area
then the printing results may be unpredictable.

Unified POS, v1.15.1 Beta1 31 - 27

RGB Color
 (See b below)

ESC |[#]fC

Prints in # color. The placeholder ‘#’ is replaced by
an ASCII decimal string indicating the additive
amount of RGB to produce the desired color. There
are 3 digits each of Red, Green, and Blue elements.
Valid values range from “000” to “255”. (E.g.,
“255255000” represents yellow). Color Matching to
the subtractive percentage of CMY (Cyan, Magenta
and Yellow color components) to produce the desired
color matching specified by RGB is up to the Service.
If ‘#’ is omitted, then the primary color is used.
Bitmap printing is not affected.
If the specified RGB color element values exceed the
allowed RGB range then the printing results may be
unpredictable.

SubScript (See b below) ESC |[!]tbC Prints SubScript characters. If ‘!’ is specified then
SubScript is disabled, see a below.

SuperScript (See b below) ESC |[!]tpC Prints SuperScript characters. If ‘!’ is specified then
SuperScript is disabled, see a below.

Center ESC |cA Aligns following text in the center.
Right justify ESC |rA Aligns following text at the right.
Left justify (see a below) ESC |lA Aligns following text at the left.

Strike-through
 (see c below)

ESC |[!][#]stC

Prints in strike-through mode. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the
thickness of the strike-through in printer dot units. If
‘#’ is omitted, then a printer-specific default
thickness is used. If ‘!’ is specified then strike-
through mode is switched off.
If the given thickness exceeds the maximum
thickness supported by the printer then the printing
results may be unpredictable.

Normal ESC |N Restores printer characteristics to normal condition.

a. These escape sequences and variations are only available in Version 1.10 and later.
b. These escape sequences are only available in Version 1.5 and later.
c. These escape sequences and variations are only available in Version 1.12 and later.

31 - 28 Unified POS, v1.15.1 Beta1

31.3.11 POS Printer State Diagrams (Low Level)

Purpose:

The Low level state diagrams show a simplified, implementable flow of the POSPrinter.

They are intended to be used by Service implementers as an example of how a Service may be designed. It uses
multiple threads of execution to separate initiation of requests (via the POSPrinter APIs) with their processing
and event delivery.

They are also intended to be used by application developers to show more details on processing of their API calls
than can be given in the high level state diagram.

These diagrams assume:

• A separate request thread that processes print request.
Print requests are placed on a request queue (RequestQ) for the request thread to
access. The request thread has some mechanism to report request completion and results.

• A separate event thread that delivers events.
Events are placed on an event queue (EventQ) for the event thread to access. The event thread has some mechanism
to report error event results.

Print Commands: changePrintSide, cutPaper, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint.

Not Shown: Validation of APIs. If an API fails during validation, then it may return an error result and return
prematurely to the “Wait for API“ state.

Unified POS, v1.15.1 Beta1 31 - 29

POS Printer State Diagram (Low Level): API

[Opened &&
Claimed &&
Enabled]

[Closed ||
Released ||
Disabled]

Wait For API

/ transactionPrint (end)

/ transactionPrint (begin)

/ printImmediate
[request
complete]

Print Immediate

do { Add print request to beginning
of RequestQ }

Request Complete

do { Raise exception
if error }

Begin Transaction

do { Init transaction buffer;
Set Transaction-Mode (TM) flag }

End Transaction

do { Make print request from
transaction buffer; Reset TM flag }

Print

do { Add print request to
end of RequestQ }

Print Transaction

do { Add print request to
transaction buffer }

Clear Output

do { Add clear request to end of RequestQ; cancel TM }

Begin Insertion

do { Wait for up to app specified
timeout for form in }

Begin Removal

do { Wait for up to app specified
timeout for form out }

Other

do { Process command }

End Removal

do { If form not out, then error }

Removal

Mode

[No form out before timeout ||
other failure]

/ beginRemoval

/ endRemoval

[Form out] / endRemoval

End Insertion

do { If form in, then close “jaws”; else error}

Insertion

Mode

[No form in before timeout ||
other failure]

/ beginInsertion

[Form in] / endInsertion

/ endInsertion

/ Other Command

/ beginRemoval

/ beginInsertion

/ clearOutput

[TM]
/ Print Command

[no TM] / Print Command

Async Request Started

do { Assign & Set OutputID }

[AsyncMode == true]

[(AsyncMode == false)
&& request complete]

[request complete]

31 - 30 Unified POS, v1.15.1 Beta1

POS Printer State Diagram (Low Level):

Request Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Wait For Work

Clear

do { Stop printer; clear
RequestQ & InProgressQ;

mark as complete }

Error

do { Stop printer;
enqueue ErrorEvent } [response

== retry]

Done

do { Set print request
result; mark as complete;

remove from InProgressQ }

Print Request

do { Send to printer; move
from PrintQ to
InProgressQ }

[(AsyncMode == false)
&& (done || error)]

[AsyncMode == true]

[AsyncMode == false]

[AsyncMode == true]

StatusUpdateEvent

do { Enqueue
StatusUpdateEvent }

Idle SUE

do { Enqueue Idle
StatusUpdateEvent; set
FlagWhenIdle = false }

Retry

do { Resend requests in
the InProgressQ }

OutputCompleteEvent

do { Enqueue
OutputCompleteEvent }

[RequestQ Empty && FlagWhenIdle == true]

[status change]

/ RequestQ: Print

[async request done]

[async request error]

/ RequestQ: Clear

[response == clear]

Unified POS, v1.15.1 Beta1 31 - 31

POS Printer State Diagram (Low Level):

Event Delivery Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Idle

Events to Deliver

Fire DataEvent

do { Set DataEventEnabled =
false; Fire event }

Fire ErrorEvent

do { Fire event; Return response
to Request Thread }

Events
= true]

[Input ErrorEvent &&
DataEventEnabled == true]

[Output ErrorEvent]

[OutputCompleteEvent ||
StatusUpdateEvent ||
DirectIOEvent]

Events to Deliver and

Events Not Frozen

[DataEvent &&
DataEventEnabled == true]

Fire Other Event

do { Fire event }

[EventQ Not
Empty]

[EventQ
Empty]

[FreezeEvents
== false]

[Freeze
=

31 - 32 Unified POS, v1.15.1 Beta1

POS Printer Slip Handling State Diagram

Non-Slip Printing (Receipt and/or Journal)

/ beginInsertion

[(no form in before timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

beginInsertion (timeout)

endInsertion

[Form in before
timeout
(SUCCESS)]
/ endInsertion

Insertion

Mode

/ beginInsertion

/ endInsertion

[Failure (EPTR_SLP_EMPTY, E_FAILURE, etc.)][Form in
(SUCCESS)]

Slip Inserted: Perform Slip Printing (printNormal, etc…)

/ beginRemoval

beginRemoval (timeout)

endRemoval

Removal

Mode

[(Form not out before timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

[Form out before
timeout
(SUCCESS)]
/ endRemoval

/ beginRemoval

/ endRemoval

[Failure (EPTR_SLP_FORM, E_FAILURE, etc.)][Form out
(SUCCESS)]

Unified POS, v1.15.1 Beta1 31 - 33

31.4 Properties (UML attributes)

31.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods cutPaper, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint, and transactionPrint will be performed asynchronously.
If false, they will be printed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.2 CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning
PTR_CCS_ALPHA The default character set supports uppercase alphabetic plus numeric,

space, minus, and period.
PTR_CCS_ASCII The default character set supports all ASCII characters 0x20 through

0x7F.
PTR_CCS_KANA The default character set supports partial code page 932, including ASCII

characters 0x20 through 0x7F and the Japanese Kana characters 0xA1
through 0xDF, but excluding the Japanese Kanji characters.

PTR_CCS_KANJI The default character set supports code page 932, including the Shift-JIS
Kanji characters, Levels 1 and 2.

PTR_CCS_UNICODE The default character set supports Unicode.

The default character set may contain a superset of these ranges. The initial CharacterSet property
may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property.

31 - 34 Unified POS, v1.15.1 Beta1

31.4.3 CapConcurrentJrnRec Property

Syntax CapConcurrentJrnRec: boolean { read-only, access after open }

Remarks If true, then the Journal and Receipt stations can print at the same time.
The printTwoNormal method may be used with the PTR_TWO_RECEIPT_JOURNAL and
PTR_S_JOURNAL_RECEIPT station parameter. If false, the application should print to only one
of the stations at a time, and minimize transitions between the stations. Non-concurrent printing may
be required for reasons such as:
• Higher likelihood of error, such as greater chance of paper jams when moving between the

stations.
• Higher performance when each station is printed separately.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.4 CapConcurrentJrnSlp Property

Syntax CapConcurrentJrnSlp: boolean { read-only, access after open }

Remarks If true, then the Journal and Slip stations can print at the same time. The printTwoNormal method
may be used with the PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_SLIP station
parameter. If false, the application must use the sequence beginInsertion/endInsertion followed
by print requests to the Slip followed by beginRemoval/endRemoval before printing on the
Journal. Non-concurrent printing may be required for reasons such as:
• Physical constraints, such as the Slip form being placed in front of the Journal station.
• Higher likelihood of error, such as greater chance of paper jams when moving between the

stations.
• Higher performance when each station is printed separately.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.5 CapConcurrentPageMode Property Added in Release 1.9

Syntax CapConcurrentPageMode: boolean { read-only, access after open }

Remarks If true, then the printer is capable of supporting Page Mode concurrently for both the receipt and
slip stations. If Page Mode is not supported on either station, only on one station, or only on one
station at a time, then this value should be false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 35

31.4.6 CapConcurrentRecSlp Property

Syntax CapConcurrentRecSlp: boolean { read-only, access after open }

Remarks If true, then the Receipt and Slip stations can print at the same time. The printTwoNormal method
may be used with the PTR_TWO_RECEIPT_JOURNAL and PTR_S_RECEIPT_SLIP station
parameter. If false, the application must use the sequence beginInsertion/endInsertion followed
by print requests to the Slip followed by beginRemoval/endRemoval before printing on the
Receipt. Non-concurrent printing may be required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Receipt station.
• Higher likelihood of error, such as greater chance of paper jams when moving between the

stations.
• Higher performance when each station is printed separately.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.7 CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the printer has a “cover open” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.8 CapJrn2Color Property

Syntax CapJrn2Color: boolean { read-only, access after open }

Remarks If true, then the journal can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 36 Unified POS, v1.15.1 Beta1

31.4.9 CapJrnBold Property

Syntax CapJrnBold: boolean { read-only, access after open }

Remarks If true, then the journal can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.10 CapJrnCartridgeSensor Property Added in Release 1.5

Syntax CapJrnCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Journal Cartridge monitoring sensors.
If CapJrnPresent is false, this property is “0”. Otherwise it is a logical OR combination of any of
the following values:
Value Meaning
PTR_CART_REMOVED There is a function to indicate that the Cartridge has been

removed.
PTR_CART_EMPTY There is a function to indicate that the Cartridge is empty.
PTR_CART_CLEANING There is a function to indicate that the head is being cleaned.
PTR_CART_NEAREND There is a function to indicate that the color Cartridge is near end.
Note that the above mentioned values are arranged according to their priority level.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnCartridgeState Property, JrnCurrentCartridge Property, CartridgeNotify Property.

Unified POS, v1.15.1 Beta1 31 - 37

31.4.11 CapJrnColor Property Added in Release 1.5

Syntax CapJrnColor: int32 { read-only, access after open}

Remarks This capability indicates the availability of Journal color cartridges.
If CapJrnPresent is false, this property is “0.” Otherwise, this property indicates the supported
color cartridges.
CapJrnColor is a logical OR combination of any of the following values:
Value Meaning
PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)
PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color, usually Red)
PTR_COLOR_CUSTOM2 Supports 2nd Custom Color
PTR_COLOR_CUSTOM3 Supports 3rd Custom Color
PTR_COLOR_CUSTOM4 Supports 4th Custom Color
PTR_COLOR_CUSTOM5 Supports 5th Custom Color
PTR_COLOR_CUSTOM6 Supports 6th Custom Color
PTR_COLOR_CYAN Supports Cyan Color for full color printing
PTR_COLOR_MAGENTA Supports Magenta Color for full color printing
PTR_COLOR_YELLOW Supports Yellow Color for full color printing
PTR_COLOR_FULL Supports Full Color.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.12 CapJrnDhigh Property

Syntax CapJrnDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.13 CapJrnDwide Property

Syntax CapJrnDwide: boolean { read-only, access after open }

Remarks If true, then the journal can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 38 Unified POS, v1.15.1 Beta1

31.4.14 CapJrnDwideDhigh Property

Syntax CapJrnDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.15 CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.16 CapJrnItalic Property

Syntax CapJrnItalic: boolean { read-only, access after open }

Remarks If true, then the journal can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.17 CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 39

31.4.18 CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.19 CapJrnUnderline Property

Syntax CapJrnUnderline: boolean { read-only, access after open }

Remarks If true, then the journal can underline characters.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.20 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character
set when printing data.
If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

31.4.21 CapRec2Color Property

Syntax CapRec2Color: boolean { read-only, access after open }

Remarks If true, then the receipt can print dark plus an alternate color.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

31 - 40 Unified POS, v1.15.1 Beta1

31.4.22 CapRecBarCode Property

Syntax CapRecBarCode: boolean { read-only, access after open }

Remarks If true, then the receipt has bar code printing capability.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.23 CapRecBitmap Property

Syntax CapRecBitmap: boolean { read-only, access after open }

Remarks If true, then the receipt can print bitmaps.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.24 CapRecBold Property

Syntax CapRecBold: boolean { read-only, access after open }

Remarks If true, then the receipt can print bold characters.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.25 CapRecCartridgeSensor Property Added in Release 1.5

Syntax CapRecCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Receipt Cartridge monitoring sensors.
If CapRecPresent is false, this property is “0”. Otherwise it is a logical OR combination of any of
the following values:
Value Meaning
PTR_CART_REMOVED There is a function to indicate that the Cartridge has been

removed.
PTR_CART_EMPTY There is a function to indicate that the Cartridge is empty.
PTR_CART_CLEANING There is a function to indicate that the head is being cleaned.
PTR_CART_NEAREND There is a function to indicate that the color Cartridge is near end.
Note that the above mentioned values are arranged according to their priority level.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecCartridgeState Property, RecCurrentCartridge Property,
CartridgeNotify Property.

Unified POS, v1.15.1 Beta1 31 - 41

31.4.26 CapRecColor Property Added in Release 1.5

Syntax CapRecColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Receipt color cartridges.

If CapRecPresent is false, this property is “0”. Otherwise, this property indicates the supported
color cartridges.

CapRecColor is a logical OR combination of any of the following values:

Value Meaning
PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)
PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color, usually Red)
PTR_COLOR_CUSTOM2 Supports 2nd Custom Color
PTR_COLOR_CUSTOM3 Supports 3rd Custom Color
PTR_COLOR_CUSTOM4 Supports 4th Custom Color
PTR_COLOR_CUSTOM5 Supports 5th Custom Color
PTR_COLOR_CUSTOM6 Supports 6th Custom Color
PTR_COLOR_CYAN Supports Cyan Color for full color printing
PTR_COLOR_MAGENTA Supports Magenta Color for full color printing
PTR_COLOR_YELLOW Supports Yellow Color for full color printing
PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.27 CapRecDhigh Property

Syntax CapRecDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.28 CapRecDwide Property

Syntax CapRecDwide: boolean { read-only, access after open }

Remarks If true, then the receipt can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 42 Unified POS, v1.15.1 Beta1

31.4.29 CapRecDwideDhigh Property

Syntax CapRecDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high /double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.30 CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.31 CapRecItalic Property

Syntax CapRecItalic: boolean { read-only, access after open }

Remarks If true, then the receipt can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.32 CapRecLeft90 Property

Syntax CapRecLeft90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 43

31.4.33 CapRecMarkFeed Property Added in Release 1.5

Syntax CapRecMarkFeed: int32 { read-only, access after open }

Remarks This parameter indicates the type of mark sensed paper handling available.

CapRecMarkFeed is a logical OR combination of the following values. (The values are identical
to those used with the markFeed method.)

Value Meaning
PTR_MF_TO_TAKEUP Feed the Mark Sensed paper to the paper take-up position.
PTR_MF_TO_CUTTER Feed the Mark Sensed paper to the autocutter cutting position.
PTR_MF_TO_CURRENT_TOF Feed the Mark Sensed paper to the present paper’s top of form.

(Reverse feed if required)
PTR_MF_TO_NEXT_TOF Feed the Mark Sensed paper to the paper’s next top of form.
If CapRecMarkFeed equals “0”, mark sensed paper handling is not supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also markFeed Method.

31.4.34 CapRecNearEndSensor Property

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.35 CapRecPageMode Property Added in Release 1.9

Syntax CapRecPageMode: boolean { read-only, access after open }

Remarks If true, then the printer is capable of supporting Page Mode for the receipt station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 44 Unified POS, v1.15.1 Beta1

31.4.36 CapRecPapercut Property

Syntax CapRecPapercut: boolean { read-only, access after open }

Remarks If true, then the receipt can perform paper cuts.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.37 CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.38 CapRecRight90 Property

Syntax CapRecRight90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.39 CapRecRotate180 Property

Syntax CapRecRotate180: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 45

31.4.40 CapRecRuledLine Property Added in Release 1.13

Syntax CapRecRuledLine: int32 { read-only, access after open}

Remarks This capability property indicates the printer has the ability to support the use of ruled lines in the
receipt.
If CapRecPresent is false, this property is “0”.

If CapRecRuledLine equals “0”, the printer does not support drawing ruled lines.

CapRecRuledLine is a logical OR combination of any of the following values:

Value Meaning
PTR_RL_HORIZONTAL The horizontal ruled line is supported.
PTR_RL_VERTICAL The vertical ruled line is supported.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also CapRecPresent Property, drawRuledLine Method.

31.4.41 CapRecStamp Property

Syntax CapRecStamp: boolean { read-only, access after open }

Remarks If true, then the receipt has a stamp capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.42 CapRecUnderline Property

Syntax CapRecUnderline: boolean { read-only, access after open }

Remarks If true, then the receipt can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 46 Unified POS, v1.15.1 Beta1

31.4.43 CapSlp2Color Property

Syntax CapSlp2Color: boolean { read-only, access after open }

Remarks If true, then the slip can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.44 CapSlpBarCode Property

Syntax CapSlpBarCode: boolean { read-only, access after open }

Remarks If true, then the slip has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.45 CapSlpBitmap Property

Syntax CapSlpBitmap: boolean { read-only, access after open }

Remarks If true, then the slip can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.46 CapSlpBold Property

Syntax CapSlpBold: boolean { read-only, access after open }

Remarks If true, then the slip can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 47

31.4.47 CapSlpBothSidesPrint Property Added in Release 1.5

Syntax CapSlpBothSidesPrint: boolean { read-only, access after open }

Remarks If true, then the slip station can automatically print on both sides of a check, either by flipping the
check or through the use of dual print heads.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.48 CapSlpCartridgeSensor Property Added in Release 1.5

Syntax CapSlpCartridgeSensor: int32 { read-only, access after open }

Remarks This bit mapped parameter is used to indicate the presence of Slip Cartridge monitoring sensors.

If CapSlpPresent is false, this property is “0”. Otherwise it is a logical OR combination of any of
the following values:

Value Meaning
PTR_CART_REMOVED There is a function to indicate the Cartridge has been removed.
PTR_CART_EMPTY There is a function to indicate the Cartridge is empty.
PTR_CART_CLEANING There is a function to indicate head is being cleaned.
PTR_CART_NEAREND There is a function to indicate the color Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpCartridgeState Property, SlpCurrentCartridge Property,
CartridgeNotify Property.

31 - 48 Unified POS, v1.15.1 Beta1

31.4.49 CapSlpColor Property Added in Release 1.5

Syntax CapSlpColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Slip printing color cartridges.

If CapSlpPresent is false, this property is “0.” Otherwise, this property indicates the supported
color cartridges.

CapSlpColor is a logical OR combination of any of the following values:

Value Meaning
PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)
PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color, usually Red)
PTR_COLOR_CUSTOM2 Supports 2nd Custom Color
PTR_COLOR_CUSTOM3 Supports 3rd Custom Color
PTR_COLOR_CUSTOM4 Supports 4th Custom Color
PTR_COLOR_CUSTOM5 Supports 5th Custom Color
PTR_COLOR_CUSTOM6 Supports 6th Custom Color
PTR_COLOR_CYAN Supports Cyan Color for full color printing
PTR_COLOR_MAGENTA Supports Magenta Color for full color printing
PTR_COLOR_YELLOW Supports Yellow Color for full color printing
PTR_COLOR_FULL Supports Full Color.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.50 CapSlpDhigh Property

Syntax CapSlpDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.51 CapSlpDwide Property

Syntax CapSlpDwide: boolean { read-only, access after open }

Remarks If true, then the slip can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 49

31.4.52 CapSlpDwideDhigh Property

Syntax CapSlpDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.53 CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.54 CapSlpFullslip Property

Syntax CapSlpFullslip: boolean { read-only, access after open }

Remarks If true, then the slip is a full slip station. It can print full-length forms. If false, then the slip is a
“validation” type station. This usually limits the number of print lines, and disables access to the
receipt and/or journal stations while the validation slip is being used.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.55 CapSlpItalic Property

Syntax CapSlpItalic: boolean { read-only, access after open }

Remarks If true, then the slip can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 50 Unified POS, v1.15.1 Beta1

31.4.56 CapSlpLeft90 Property

Syntax CapSlpLeft90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.57 CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.58 CapSlpPageMode Property Added in Release 1.9

Syntax CapSlpPageMode: boolean { read-only, access after open }

Remarks If true, then the printer is capable of supporting Page Mode for the slip station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.59 CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the slip print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 51

31.4.60 CapSlpRight90 Property

Syntax CapSlpRight90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.61 CapSlpRotate180 Property

Syntax CapSlpRotate180: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.62 CapSlpRuledLine Property Added in Release 1.13

Syntax CapSlpRuledLine: int32 { read-only, access after open}

Remarks This capability property indicates the printer has the ability to support the use of ruled lines in the
slip.
If CapSlpPresent is false, this property is “0.”

If CapSlpRuledLine equals “0,” the printer does not support drawing ruled lines.

CapSlpRuledLine is a logical OR combination of any of the following values:

Value Meaning
PTR_RL_HORIZONTAL The horizontal ruled line is supported.
PTR_RL_VERTICAL The vertical ruled line is supported.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

See Also CapSlpPresent Property, drawRuledLine Method.

31 - 52 Unified POS, v1.15.1 Beta1

31.4.63 CapSlpUnderline Property

Syntax CapSlpUnderline: boolean { read-only, access after open }

Remarks If true, then the slip can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.64 CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, then printer transactions are supported by each station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 53

31.4.65 CartridgeNotify Property Added in Release 1.5

Syntax CartridgeNotify: int32 { read-write, access after open }

Remarks Contains the type of cartridge state notification selected by the application.
The CartridgeNotify values are:
Value Meaning
PTR_CN_DISABLED The Control will not provide any cartridge state notifications to the

application or set any cartridge related ErrorCodeExtended values. No
cartridge state notification StatusUpdateEvents will be fired, and
JrnCartridgeState, RecCartridgeState, and SlpCartridgeState may
not be set.

PTR_CN_ENABLED The Control will fire cartridge state notification StatusUpdateEvents and
update JrnCartridgeState,RecCartridgeState and SlpCartridgeState,
beginning when DeviceEnabled is set true. The level of functionality
depends upon CapJrnCartridgeSensor, CapRecCartridgeSensor and
CapSlpCartridgeSensor.

CartridgeNotify may only be set while the device is disabled, that is, while DeviceEnabled is
false.
This property is initialized to PTR_CN_DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

The device is already enabled.
CapJrnCartridgeSensor, CapRecCartridgeSensor, and
CapSlpCartridgeSensor = “0”.

See Also CapJrnCartridgeSensor Property, CapRecCartridgeSensor Property, CapSlpCartridgeSensor
Property, JrnCartridgeState Property, RecCartridgeState Property, SlpCartridgeState Property.

31 - 54 Unified POS, v1.15.1 Beta1

31.4.66 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for printing characters. It has one of the following values:

Value Meaning
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII

or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
PTR_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
PTR_CS_ASCII The ASCII character set, supporting the ASCII characters 0x20 through

0x7F. The value of this constant is 998.

PTR_CS_ANSI The ANSI character set. The value of this constant is 999.
Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the
“Mapping of CharacterSet” section in the Appendices. For OPOS, see Annex A, for JavaPOS, see
Annex B.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSetList Property.

31.4.67 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers. It consists of ASCII numeric set numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-specific character set,
code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property.

Unified POS, v1.15.1 Beta1 31 - 55

31.4.68 CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the printer’s cover is open.

If CapCoverSensor is false, then the printer does not have a cover open sensor, and this property
always returns false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.69 ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition. It has one of the following values:

Value Meaning
PTR_EL_NONE No error condition is present.
PTR_EL_RECOVERABLE

A recoverable error has occurred.
(Example: Out of paper.)

PTR_EL_FATAL A non-recoverable error has occurred.
(Example: Internal printer failure.)

This property is set just before delivering an ErrorEvent. When the error is cleared, then the
property is changed to PTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 56 Unified POS, v1.15.1 Beta1

31.4.70 ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values:
PTR_S_JOURNAL PTR_S_RECEIPT
PTR_S_SLIP PTR_S_JOURNAL_RECEIPT
PTR_S_JOURNAL_SLIP PTR_S_RECEIPT_SLIP
PTR_TWO_RECEIPT_JOURNAL PTR_TWO_SLIP_JOURNAL
PTR_TWO_SLIP_RECEIPT

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is set just before
delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.71 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is available, the property
is set to an empty string. When the error is cleared, then the property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 57

31.4.72 FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control
when all outstanding asynchronous outputs have been processed. The event will be enqueued if the
outputs were completed successfully or if they were cleared by the clearOutput method or by an
ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.73 FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks Holds the fonts and/or typefaces that are supported by the printer. The string consists of font or
typeface names separated by commas. The application selects a font or typeface for a printer station
by using the font typeface selection escape sequence (ESC |#fT). The “#” character is replaced by
the number of the font or typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic.” Other fonts or
typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Data Characters and Escape Sequences" in Chapter 31.

31 - 58 Unified POS, v1.15.1 Beta1

31.4.74 JrnCartridgeState Property Added in Release 1.5

Syntax JrnCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Journal cartridge (ink, ribbon or toner).

It contains one of the following values:

Value Meaning
PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of the following

reasons:
CapJrnCartridgeSensor = “0.”
Device does not support cartridge state reporting.
CartridgeNotify = PTR_CN_DISABLED. Cartridge state
notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until the device is
enabled.

PTR_CART_REMOVED The cartridge selected by JrnCurrentCartridge has been
removed.

PTR_CART_EMPTY The cartridge selected by JrnCurrentCartridge is empty.
PTR_CART_CLEANING The head selected by JrnCurrentCartridge is being cleaned.
PTR_CART_NEAREND The cartridge selected by JrnCurrentCartridge is near end.
PTR_CART_OK The cartridge selected by JrnCurrentCartridge is in normal

condition.
Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnCurrentCartridge Property, CapJrnCartridgeSensor Property, CartridgeNotify Property.

Unified POS, v1.15.1 Beta1 31 - 59

31.4.75 JrnCurrentCartridge Property Updated in Release 1.9

Syntax JrnCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Journal cartridge.

This property is initialized when the device is first enabled following the open method call. If
CapJrnPresent is false, this property is initialized to zero. Otherwise, this value is guaranteed to
be one of the color cartridges specified by the CapJrnColor property. (PTR_COLOR_FULL
cannot be set.)

Setting JrnCurrentCartridge may also update JrnCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CapJrnPresent property, JrnCartridgeState Property.

31.4.76 JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnNearEnd Property.

31 - 60 Unified POS, v1.15.1 Beta1

31.4.77 JrnLetterQuality Property

Syntax JrnLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is desired. For
example, printers with bi-directional print capability may be placed in unidirectional mode for high
quality, so that column alignment is more precise.

Setting this property may also update JrnLineWidth, JrnLineHeight, and JrnLineSpacing if
MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to false when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.78 JrnLineChars Property

Syntax JrnLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a journal line.

If changed to a line character width that is less than or equal to the maximum value allowed for the
printer, then the width is set to the specified value. If the exact width cannot be supported, then
subsequent lines will be printed with a character size that most closely supports the specified
characters per line. (For example, if set to 36 and the printer can print either 30 or 40 characters per
line, then the Service should select the 40 characters per line size and print only up to 36 characters
per line.)

If the character width is greater than the maximum value allowed for the printer, then an exception
is thrown. (For example, if set to 42 and the printer can print either 30 or 40 characters per line, then
the Service cannot support the request.)

Setting this property may also update JrnLineWidth, JrnLineHeight, and JrnLineSpacing, since
the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnLineCharsList Property.

Unified POS, v1.15.1 Beta1 31 - 61

31.4.79 JrnLineCharsList Property

Syntax JrnLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the journal station. The string consists of ASCII
numeric set numbers separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32, 36, and 40
characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnLineChars Property.

31.4.80 JrnLineHeight Property

Syntax JrnLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the journal print line height. Expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is
set to this value. If the exact height cannot be supported, then the height is set to the closest
supported value.

When JrnLineChars is changed, this property is updated to the default line height for the selected
width.

This property is initialized to the printer’s default line height when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 62 Unified POS, v1.15.1 Beta1

31.4.81 JrnLineSpacing Property

Syntax JrnLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line height plus the
whitespace between each pair of lines. Depending upon the printer and the current line spacing, a
multi-high print line might exceed this value. Line spacing is expressed in the unit of measure given
by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value.
If the spacing cannot be supported, then the spacing is set to the closest supported value.

When JrnLineChars or JrnLineHeight is changed, this property is updated to the default line
spacing for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.82 JrnLineWidth Property

Syntax JrnLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of JrnLineChars characters. Expressed in the unit of measure given by
MapMode.

Setting JrnLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.83 JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }
Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also JrnEmpty Property.

Unified POS, v1.15.1 Beta1 31 - 63

31.4.84 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}
Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred

by the application to the character set selected in the CharacterSet property for printing data.
If MapCharacterSet is false, then no mapping is supported. In such a case the application has to
ensure the mapping of the character set used in the application to the character set selected in the
CharacterSet property.
If CapMapCharacterSet is false, then this property is always false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, CapMapCharacterSet Property.

31.4.85 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }
Remarks Holds the mapping mode of the printer. The mapping mode defines the unit of measure used for

other properties, such as line heights and line spacings. It has one of the following values:
Value Meaning
PTR_MM_DOTS The printer’s dot width. This width may be different for each printer

station.1
PTR_MM_TWIPS 1/1440 of an inch.
PTR_MM_ENGLISH 0.001 inch.
PTR_MM_METRIC 0.01 millimeter.
Setting this property may also change JrnLineHeight, JrnLineSpacing, JrnLineWidth,
RecLineHeight, RecLineSpacing, RecLineWidth, SlpLineHeight, SlpLineSpacing, and
SlpLineWidth.
Note: The value of the MapMode for the POSPrinter is initialized to PTR_MM_DOTS when the
device is first enabled following the open method. This default value may be different from other
peripheral devices in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

1. From the POS Printer perspective, the exact definition of a “dot” is not significant. It is a Printer/Service unit used
to express various metrics. For example, some printers define a “half-dot” that is used in high-density graphics
printing, and perhaps in text printing. A POS Printer Service may handle this case in one of these ways:
(a) Consistently define a “dot” as the printer’s smallest physical size, that is, a half-dot.
(b) If the Service changes bitmap graphics printing density based on the XxxLetterQuality setting, then alter the

size of a dot to match the bitmap density (that is, a physical printer dot when false and a half-dot when true).
Note that this choice should not be used if the printer’s text metrics are based on half-dot sizes, since accurate
values for the metrics may not then be possible.

31 - 64 Unified POS, v1.15.1 Beta1

31.4.86 PageModeArea Property Added in Release 1.9

Syntax PageModeArea: string { read-only, access after open }
Remarks Holds the page area for the selected PageModeStation expressed in the unit of measure given by

MapMode. This page area can be different than the print area and is determined by the hardware
capability of the printer. The string consists of two ASCII numbers separated by a comma, in the
following order: horizontal size, vertical size.
For example, if the string is “450,800”, then the page size is 450 horizontal units by 800 vertical
units, and the station print area is a rectangle beginning at the top left point (0,0), and continuing up
to but not including the bottom right point (450,800).
The PageModeStation property must be set to a valid station before accessing this property,
otherwise an empty string is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also MapMode Property, PageModeStation Property.

31.4.87 PageModeDescriptor Property Added in Release 1.9

Syntax PageModeDescriptor: int32 { read-only, access after open }

Remarks This is a bitmask indicating the basic Page Mode functionality of the printer for the selected
PageModeStation.
Value Meaning
PTR_PM_BITMAP Printing of bitmaps on the PageModeStation is supported
PTR_PM_BARCODE Printing of barcodes on the PageModeStation is supported
PTR_PM_BM_ROTATE

Rotation of bitmaps on the PageModeStation is supported
PTR_PM_BC_ROTATE

Rotation of barcodes on the PageModeStation is supported
PTR_PM_OPAQUE Text, graphics, and background are opaque, meaning items already placed

on the page area in the specified print area will not be visible after being
printed over.

The PageModeStation property must be set to a valid station before accessing this property,
otherwise the value zero (0) is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PageModeStation Property.

Unified POS, v1.15.1 Beta1 31 - 65

31.4.88 PageModeHorizontalPosition Property Added in Release 1.9

Syntax PageModeHorizontalPosition: int32 { read-write, access after open }

Remarks Holds the horizontal start position offset within the print area for the selected PageModeStation,
expressed in the unit of measure given by MapMode.

The horizontal direction is the same as the actual PageModePrintDirection property. If the exact
position cannot be supported then the position is set to the closest supported value.

A read/get on this property will return the horizontal position offset set by the last write/set and not
the current position. The PageModeStation property must be set to a valid station before accessing
this property, otherwise the value zero (0) is returned.

The following code sample shows usage of PageModeHorizontalPosition.
myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to 2 inches by 0.5 inches
myptr.setPageModePrintArea(“0,0,2000,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.setPageModeHorizontalPosition(1500);
myptr.printNormal(PTR_S_RECEIPT, “123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also MapMode Property, PageModePrintDirection Property, PageModeStation Property.

012345678901234567890 0.5 inches

2 inches

PageModeHorizontalPosition = 1.5 inches 123456789

31 - 66 Unified POS, v1.15.1 Beta1

31.4.89 PageModePrintArea Property Added in Release 1.9

Syntax PageModePrintArea: string { read-write, access after open }

Remarks Holds the print area for the selected PageModeStation expressed in the unit of measure given by
MapMode. The maximum print area is the page area.

The string consists of four ASCII numbers separated by commas, in the following order: horizontal
start, vertical start, horizontal size, vertical size. For example, if the string is “50,100,200,400”, then
the station print area is a rectangle beginning at the point (50,100), and continuing up to but not
including the point (250,500). This property is initialized to “0,0,0,0”.

Text written to the right edge of the print area will wrap to the next line. Any text or image written
beyond the bottom of the print area will be truncated. For example:

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to half inch square block
myptr.setPageModePrintArea(“0,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

The PageModeStation property must be set to a valid station before accessing this property,
otherwise an empty string is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also MapMode Property, PageModeStation Property.

12345678
90123456
78901234

0.5 inches

0.5 inches

Unified POS, v1.15.1 Beta1 31 - 67

31.4.90 PageModePrintDirection Property Added in Release 1.9

Syntax PageModePrintDirection: int32 { read-write, access after open }

Remarks Holds the print direction. The print direction shall be as follows:
Value Meaning
PTR_PD_LEFT_TO_RIGHT Print left to right, starting at top left position of the print area, i.e.,

normal printing.
PTR_PD_BOTTOM_TO_TOP Print bottom to top, starting at the bottom left position of the print

area, i.e., rotated left 90° printing.
PTR_PD_RIGHT_TO_LEFT Print right to left, starting at the bottom right position of the print

area, i.e., upside down printing.
PTR_PD_TOP_TO_BOTTOM Print top to bottom, starting at the top right position of the print

area, i.e., rotated right 90° printing.

This property is initialized to PTR_PD_LEFT_TO_RIGHT when the device is first enabled
following the open method.

Setting this property may also change PageModeHorizontalPosition and
PageModeVerticalPosition. Setting this property will have an effect on the current print area. By
changing the print area, it is possible to generate a receipt or slip with text printed in multiple
rotations. For example:

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to half inch square block
myptr.setPageModePrintArea(“0,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);
myptr.setPageModePrintArea(“500,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_BOTTOM_TO_TOP);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);
myptr.setPageModePrintArea(“1000,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_RIGHT_TO_LEFT);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);
myptr.setPageModePrintArea(“1500,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_TOP_TO_BOTTOM);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

0.5 inches

0.5 inches 0.5 inches 0.5 inches 0.5 inches

12345678
90123456
78901234 12

34
56

78
90

12
34

56
78

90
12

34

12345678
90123456
78901234 12345678

90123456
78901234

31 - 68 Unified POS, v1.15.1 Beta1

It is also possible to generate rotated text.
myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
myptr.pageModeVerticalPosition(100);
myptr.pageModeHorizontalPosition(200);
myptr.setPageModePrintArea(“0,0,1000,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.printNormal(PTR_S_RECEIPT, “Normal print.\n”);
myptr.setPageModePrintArea(“1000,0,1000,500”);
myptr.setPageModePrintDirection(PTR_PD_TOP_TP_BOTTOM);
myptr.printNormal(PTR_S_RECEIPT, “Rotated right 90 print.\n”);
myptr.setPageModePrint(PTR_PM_NORMAL);

The above code sample will generate the following receipt.

The PageModeStation property must be set to a valid station before accessing this property,
otherwise the value zero (0) is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PageModeHorizontalPosition Property, PageModeStation Property,
PageModeVerticalPosition Property.

0.5 inches

1.0 inch 1.0 inch

Normal print.

 R
otat

ed right
90 print.

PageModeVerticalPosition = 0.1 inches

PageModeHorizontalPosition = 0.2 inches

Unified POS, v1.15.1 Beta1 31 - 69

31.4.91 PageModeStation Property Added in Release 1.9

Syntax PageModeStation: int32 { read-write, access after open }

Remarks Set the print station for subsequent Page Mode properties. Note that pageModePrint will allow for
the selection of the print station that the output will be generated on. This value will only contain
one Page Mode station at a time, PTR_S_RECEIPT or PTR_S_SLIP. If Page Mode is not supported
on any station, the value should be zero. To control Page Mode for more than one station, this value
will need to be changed between the stations.
This property is initialized to zero by the open method, and must be set to a valid value before Page
Mode properties or methods are used.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also pageModePrint Method.

31.4.92 PageModeVerticalPosition Property Added in Release 1.9

Syntax PageModeVerticalPosition: int32 { read-write, access after open }
Remarks Holds the vertical start position offset within the print area for the selected PageModeStation,

expressed in the unit of measure given by MapMode. The vertical direction is perpendicular to the
direction specified in the actual PageModePrintDirection property. If the exact position cannot be
supported then the position is set to the closest supported value. A read/get on this property will
return the vertical position offset set by the last write/set and not the current position.
The following code sample shows usage of PageModeVerticalPosition.

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to 2 inches by 0.5 inches
myptr.setPageModePrintArea(“0,0,2000,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.setPageModeVerticalPosition(250);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

The PageModeStation property must be set to a valid station before accessing this property,
otherwise the value zero (0) is returned.

123456789012345678901234567890
0.5 inches

2 inches

PageModeVerticalPosition = 0.25 inches

31 - 70 Unified POS, v1.15.1 Beta1

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also MapMode Property, PageModePrintDirection Property, PageModeStation Property.

31.4.93 RecBarCodeRotationList Property Updated in Release 1.7

Syntax RecBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a receipt bar code may be rotated. The string consists of rotation
strings separated by commas. An empty string indicates that bar code printing is not supported. The
legal rotation strings are:

Value Meaning
0 Bar code may be printed in the normal orientation.
R90 Bar code may be rotated 90° to the right.
L90 Bar code may be rotated 90° to the left.
180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes and upside down
bar codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RotateSpecial Property, printBarCode Method, rotatePrint Method.

31.4.94 RecBitmapRotationList Property Added in Release 1.7

Syntax RecBitmapRotationList: string { read-only, access after open }

Remarks Holds the directions in which a receipt bitmap may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bitmap printing is not supported. The legal
rotation strings are:

Value Meaning
0 Bitmap may be printed in the normal orientation.
R90 Bitmap may be rotated 90° to the right.
L90 Bitmap may be rotated 90° to the left.
180 Bitmap may be rotated 180° - upside down.

For example, if the string is “0,180,” then the printer can print normal bitmaps and upside down
bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also printBitmap Method, rotatePrint Method.

Unified POS, v1.15.1 Beta1 31 - 71

31.4.95 RecCartridgeState Property Added in Release 1.5

Syntax RecCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Receipt cartridge (ink, ribbon or toner).

It contains one of the following values:

Value Meaning
PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of the following
 reasons:

CapRecCartridgeSensor = “0”.
Device does not support cartridge state reporting.
CartridgeNotify = PTR_CN_DISABLED. Cartridge state
notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until the device is
enabled.

PTR_CART_REMOVED The cartridge selected by RecCurrentCartridge has been
removed.

PTR_CART_EMPTY The cartridge selected by RecCurrentCartridge is empty.
PTR_CART_CLEANING The head selected by RecCurrentCartridge is being cleaned.
PTR_CART_NEAREND The cartridge selected by RecCurrentCartridge is near end.
PTR_CART_OK The cartridge selected by RecCurrentCartridge is in normal

condition.
Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecCurrentCartridge Property, CapRecCartridgeSensor Property, CartridgeNotify Property.

31 - 72 Unified POS, v1.15.1 Beta1

31.4.96 RecCurrentCartridge Property Updated in Release 1.9

Syntax RecCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Receipt cartridge.

This property is initialized when the device is first enabled following the open method call. If
CapRecPresent is false, this property is initialized to zero. Otherwise, this value is guaranteed to
be one of the color cartridges specified by the CapRecColor property. (PTR_COLOR_FULL
cannot be set.)

Setting RecCurrentCartridge may also update RecCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CapRecPresent property, RecCartridgeState Property.

31.4.97 RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.

If CapRecEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecNearEnd Property.

Unified POS, v1.15.1 Beta1 31 - 73

31.4.98 RecLetterQuality Property

Syntax RecLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is desired. For
example:

• Printers with bi-directional print capability may be placed in unidirectional mode for high
quality, so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and in a low-density
mode for high speed.

Setting this property may also update RecLineWidth, RecLineHeight, and RecLineSpacing if
MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to false when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also MapMode Property, RecLineHeight Property, RecLineSpacing Property, RecLineWidth
Property.

31.4.99 RecLineChars Property

Syntax RecLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a receipt line.

If changed to a line character width that is less than or equal to the maximum value allowed for the
printer, then the width is set to the specified value. If the exact width cannot be supported, then
subsequent lines will be printed with a character size that most closely supports the specified
characters per line. (For example, if set to 36 and the printer can print either 30 or 40 characters
per line, then the Service should select the 40 characters per line size and print only up to 36
characters per line.)

If the character width is greater than the maximum value allowed for the printer, then an exception
is thrown. (For example, if set to 42 and the printer can print either 30 or 40 characters per line, then
the Service cannot support the request.)

Setting this property may also update RecLineWidth, RecLineHeight, and RecLineSpacing,
since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecLineCharsList Property.

31 - 74 Unified POS, v1.15.1 Beta1

31.4.100 RecLineCharsList Property

Syntax RecLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the receipt station. The string consists of ASCII
numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32, 36, and 40
characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecLineChars Property.

31.4.101 RecLineHeight Property

Syntax RecLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the receipt print line height, expressed in the unit of measure given by MapMode.
If changed to a height that can be supported with the current character width, then the line height is
set to this value. If the exact height cannot be supported, then the height is set to the closest
supported value.
When RecLineChars is changed, this property is updated to the default line height for the selected
width.
This property is initialized to the printer’s default line height when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecLineChars Property.

31.4.102 RecLineSpacing Property

Syntax RecLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line height plus the
whitespace between each pair of lines. Depending upon the printer and the current line spacing, a
multi-high print line might exceed this value. Line spacing is expressed in the unit of measure given
by MapMode.
If changed to a spacing that can be supported by the printer, then the line spacing is set to this value.
If the spacing cannot be supported, then the spacing is set to the closest supported value.
When RecLineChars or RecLineHeight are changed, this property is updated to the default line
spacing for the selected width or height.
This property is initialized to the printer’s default line spacing when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 75

31.4.103 RecLinesToPaperCut Property

Syntax RecLinesToPaperCut: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that must be advanced before the receipt paper is cut.
If CapRecPapercut is true, then this is the line count before reaching the paper cut mechanism.
Otherwise, this is the line count before the manual tear-off bar.
Changing the properties RecLineChars, RecLineHeight, and RecLineSpacing may cause this
property to change.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.104 RecLineWidth Property

Syntax RecLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of RecLineChars characters, expressed in the unit of measure given by
MapMode.

Setting RecLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.105 RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low.

If CapRecNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecEmpty Property.

31 - 76 Unified POS, v1.15.1 Beta1

31.4.106 RecSidewaysMaxChars Property

Syntax RecSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars may cause this
property to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecSidewaysMaxLines Property.

31.4.107 RecSidewaysMaxLines Property

Syntax RecSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.
If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.
Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars may cause this
property to change.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RecSidewaysMaxChars Property.

31.4.108 RotateSpecial Property

Syntax RotateSpecial: int32 { read-write, access after open }

Remarks Holds the rotation orientation for bar codes. It has one of the following values:
Value Meaning
PTR_RP_NORMAL Print subsequent bar codes in normal orientation.
PTR_RP_RIGHT90 Rotate printing 90° to the right (clockwise)
PTR_RP_LEFT90 Rotate printing 90° to the left (counter-clockwise)
PTR_RP_ROTATE180 Rotate printing 180°, that is, print upside-down

This property is initialized to PTR_RP_NORMAL by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also printBarCode Method.

Unified POS, v1.15.1 Beta1 31 - 77

31.4.109 SlpBarCodeRotationList Property Updated in Release 1.7

Syntax SlpBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a slip barcode may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bar code printing is not supported. The legal
rotation strings are:
Value Meaning
0 Bar code may be printed in the normal orientation.
R90 Bar code may be rotated 90° to the right.
L90 Bar code may be rotated 90° to the left.
180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes and upside down
bar codes.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RotateSpecial Property, printBarCode Method, rotatePrint Method.

31.4.110 SlpBitmapRotationList Property Added in Release 1.7

Syntax SlpBitmapRotationList: string { read-only, access after open }

Remarks Holds the directions in which a slip bitmap may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bitmap printing is not supported. The legal
rotation strings are:

Value Meaning
0 Bitmap may be printed in the normal orientation.
R90 Bitmap may be rotated 90° to the right.
L90 Bitmap may be rotated 90° to the left.
180 Bitmap may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bitmaps and upside down
bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also printBitmap Method, rotatePrint Method.

31 - 78 Unified POS, v1.15.1 Beta1

31.4.111 SlpCartridgeState Property Added in Release 1.5

Syntax SlpCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Slip cartridge (ink, ribbon or toner).
It contains one of the following values:
Value Meaning
PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of the following
 reasons:

CapSlpCartridgeSensor = “0”.
Device does not support cartridge state reporting.
CartridgeNotify = PTR_CN_DISABLED. Cartridge state
notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until the device is
enabled.

PTR_CART_REMOVED The cartridge selected by SlpCurrentCartridge has been
removed.

PTR_CART_EMPTY The cartridge selected by SlpCurrentCartridge is empty.
PTR_CART_CLEANING The head selected by SlpCurrentCartridge is being cleaned.
PTR_CART_NEAREND The cartridge selected by SlpCurrentCartridge is near end.
PTR_CART_OK The cartridge selected by SlpCurrentCartridge is in normal

condition.
Note that the above mentioned values are arranged according to their priority level.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpCurrentCartridge Property, CapSlpCartridgeSensor Property, CartridgeNotify Property.

Unified POS, v1.15.1 Beta1 31 - 79

31.4.112 SlpCurrentCartridge Property Updated in Release 1.9

Syntax SlpCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected slip cartridge.

This property is initialized when the device is first enabled following the open method call. If
CapSlpPresent is false, this property is initialized to zero. Otherwise, this value is guaranteed to be
one of the color cartridges specified by the CapSlpColor property. (PTR_COLOR_FULL cannot
be set.)

Setting SlpCurrentCartridge may also update SlpCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CapSlpPresent property, SlpCartridgeState Property.

31.4.113 SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.

If CapSlpEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been inserted before
printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed one
or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end of the
slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpNearEnd Property.

31 - 80 Unified POS, v1.15.1 Beta1

31.4.114 SlpLetterQuality Propert

Syntax SlpLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises that either high quality or high speed printing is desired.

For example:

• Printers with bi-directional print capability may be placed in unidirectional mode for high
quality, so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and in a low-density
mode for high speed.

Setting this property may also update SlpLineWidth, SlpLineHeight, and SlpLineSpacing if
MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to false when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.115 SlpLineChars Property

Syntax SlpLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a slip line.

If changed to a line character width that is less than or equal to the maximum value allowed for the
printer, then the width is set to the specified value. If the exact width cannot be supported, then
subsequent lines will be printed with a character size that most closely supports the specified
characters per line. (The Service should print the requested characters in the column positions
closest to the side of the slip table at which the slip is aligned. (For example, if the operator inserts
the slip with the right edge against the table side and if SlpLineChars is set to 36 and the printer
prints 60 characters per line, then the Service should add 24 spaces at the left margin and print the
characters in columns 25 through 60.)

If the character width is greater than the maximum value allowed for the printer, then an exception
is thrown. (For example, if set to 65 and the printer can only print 60 characters per line, then the
Service cannot support the request.)

Setting this property may also update SlpLineWidth, SlpLineHeight, and SlpLineSpacing, since
the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpLineCharsList Property.

Unified POS, v1.15.1 Beta1 31 - 81

31.4.116 SlpLineCharsList Property

Syntax SlpLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the slip station. The string consists of ASCII numeric
set numbers, separated by commas.
For example, if the string is “32,36,40”, then the station supports line widths of 32, 36, and 40
characters.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpLineChars Property.

31.4.117 SlpLineHeight Property

Syntax SlpLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the slip print-line height, expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is
set to this value. If the exact height cannot be supported, then the height is set to the closest
supported value.

When SlpLineChars is changed, this property is updated to the default line height for the selected
width.

This property is initialized to the printer’s default line height when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpLineChars Property.

31 - 82 Unified POS, v1.15.1 Beta1

31.4.118 SlpLinesNearEndToEnd Property

Syntax SlpLinesNearEndToEnd: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that may be printed after the “slip near end” sensor is true but before the
printer reaches the end of the slip.

This property may be used to optimize the use of the slip, so that the maximum number of lines may
be printed.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may cause this
property to change.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpEmpty Property, SlpNearEnd Property.

31.4.119 SlpLineSpacing Property

Syntax SlpLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line height plus the
whitespace between each pair of lines. Depending upon the printer and the current line spacing, a
multi-high print line might exceed this value. Line spacing is expressed in the unit of measure given
by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value.
If the spacing cannot be supported, then the spacing is set to the closest supported value.

When SlpLineChars or SlpLineHeight are changed, this property is updated to the default line
spacing for the selected width or height.

The value of this property is initialized to the printer’s default line spacing when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 31 - 83

31.4.120 SlpLineWidth Property

Syntax SlpLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of SlpLineChars characters, expressed in the unit of measure given by
MapMode.

Setting SlpLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31.4.121 SlpMaxLines Property

Syntax SlpMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that can be printed on a form.

When CapSlpFullslip is true, then this property will be zero, indicating an unlimited maximum slip
length. When CapSlpFullslip is false, then this value will be non-zero.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may cause this
property to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

31 - 84 Unified POS, v1.15.1 Beta1

31.4.122 SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end.
The “near end” sensor is also sometimes called the “trailing edge” sensor, referring to the bottom
edge of the slip.
If CapSlpNearEndSensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been inserted before
printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed one
or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end of the
slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpEmpty Property, SlpLinesNearEndToEnd Property.

Unified POS, v1.15.1 Beta1 31 - 85

31.4.123 SlpPrintSide Property Added in Release 1.5

Syntax SlpPrintSide: int32 { read-only, access after open-claim-enable }
Remarks This property holds the current side of the slip document on which printing will occur.

If the Slip is not inserted, the value of the property is PTR_PS_UNKNOWN.
If the printer has both side print capability, CapSlpBothSidesPrint is true, then when a slip is
inserted, the value stored here will be either PTR_PS_SIDE1 or PTR_PS_SIDE2. This property
value may be changed when the changePrintSide method is executed.
If a printer does not have both side print capability, CapSlpBothSidesPrint is false, then when a
slip is inserted, the property is always set to PTR_PS_SIDE1.
If a printer has both side print capability, the value of SlpPrintSide property is PTR_PS_SIDE1
after beginInsertion/endInsertion methods are executed. However, after beginInsertion/
endInsertion methods for MICR processing are executed, the value of SlpPrintSide property is not
limited to PTR_PS_SIDE1. In this case, SlpPrintSide property indicates the side of the validation
printing.
It contains one of the following values:
Value Meaning
PTR_PS_UNKNOWN Slip is not inserted.
PTR_PS_SIDE1 Default Print side. (After slip paper

insertion, printer can print this side
immediately.)

PTR_PS_SIDE2 The other side of the document to print
on. (Reverse side of default.)

This property is initialized and kept current while the device is enabled.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.
See Also CapSlpBothSidesPrint Property, changePrintSide Method.

31.4.124 SlpSidewaysMaxChars Property

Syntax SlpSidewaysMaxChars: int32 { read-only, access after open-claim-enable }
Remarks Holds the maximum number of characters that may be printed on each line in sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.
Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars may cause this
property to change.
This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpSidewaysMaxLines Property.

31 - 86 Unified POS, v1.15.1 Beta1

31.4.125 SlpSidewaysMaxLines Property

Syntax SlpSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars may cause this
property to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SlpSidewaysMaxChars Property.

Unified POS, v1.15.1 Beta1 31 - 87

31.5 Methods (UML operations)

31.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin insertion mode, then returns the appropriate status
immediately. If FOREVER (-1), the method initiates the begin insertion mode, then waits as long
as needed until either the form is inserted or an error occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s handling “jaws”
or activating a form insertion mode. This method is paired with the endInsertion method for
controlling form insertion.

If the printer device cannot be placed into insertion mode, an exception is raised. Otherwise, form
insertion is monitored until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error is reported by the
printer device. In this case, an exception is raised with an ErrorCode of E_TIMEOUT or
another value. The printer device remains in form insertion mode. This allows an application to
perform some user interaction and reissue the beginInsertion method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or an
invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

31 - 88 Unified POS, v1.15.1 Beta1

31.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode, then returns the appropriate status
immediately. If FOREVER (-1), the method initiates the begin removal mode, then waits as long as
needed until either the form is removed or an error occurs.

Remarks Initiates form removal processing.

When called, the printer is made ready to remove a form by opening the form handling “jaws” or
activating a form ejection mode. This method is paired with the endRemoval method for controlling
form removal.

If the printer device cannot be placed into removal or ejection mode, an exception is raised.
Otherwise, form removal is monitored until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error is reported by
the printer device. In this case, an exception is raised with an ErrorCode of E_TIMEOUT or
another value. The printer device remains in form removal mode. This allows an application to
perform some user interaction and reissue the beginRemoval method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or an
invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 31 - 89

31.5.3 changePrintSide Method Updated in Release 1.9

Syntax changePrintSide (side: int32):
void { raises-exception, use after open-claim-enable }

The side parameter indicates the side on which to print. Valid values are:

Value Description
PTR_PS_SIDE1 Indicates that the default print side of the document is selected. (Default
 print side is the side where printing will occur immediately after a
 document has been inserted. Therefore, PTR_PS_SIDE1 is selected after
 beginInsertion/endInsertion is executed.)
PTR_PS_SIDE2 Indicates that the opposite side of the document from the one that the

printer defaults to is to be selected. (Reverse side of PTR_PS_SIDE1.)
PTR_PS_OPPOSITE Indicates that the current printing side is switched and printing will now

occur on the opposite side of the slip. (e.g., if SlpPrintSide was
PTR_PS_SIDE1, it is to be changed to PTR_PS_SIDE2.)

Remarks Selects the side of the document where printing is to occur.

This allows a print operation to occur on both sides of a document. This may be accomplished by
mechanical paper handling of the document or by using multiple print heads that are positioned to
print on each side of the document.

If a document is not inserted, an error is returned.

If side is not SlpPrintSide or side is PTR_PS_OPPOSITE, the side of the document is changed and
the document is fed to TOF. If side is SlpPrintSide, nothing occurs and method returns.
Executing the method may cause the SlpPrintSide property to change.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot be performed while output is in progress.

(Can only apply if AsyncMode is false.)
E_ILLEGAL One of the following errors occurred:

* The slip station does not exist (see the CapSlpPresent property)
* the printer does not support both sides printing (see the

CapSlpBothSidesPrint property)
* an invalid side parameter was specified

31 - 90 Unified POS, v1.15.1 Beta1

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip station cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip station cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip station head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also CapSlpBothSidesPrint Property, CapSlpPresent Property, SlpPrintSide Property, cutPaper
Method.

31.5.4 clearPrintArea Method Added in Release 1.9

Syntax clearPrintArea ():
void { raises-exception, use after open-claim-enable }

Remarks Clear the area defined by the PageModePrintArea property.
The entire page may be cleared by setting the PageModePrintArea to be the same as the
PageModeArea and then using clearPrintArea or by exiting Page Mode with pageModePrint
with PTR_PM_CANCEL.
The PageModeStation property must be set to a valid station prior to invoking this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also PageModeArea Property, PageModePrintArea Property, PageModeStation Property,
pageModePrint Method.

Unified POS, v1.15.1 Beta1 31 - 91

31.5.5 cutPaper Method Updated in Release 1.9

Syntax cutPaper (percentage: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
percentage The percentage of paper to cut.

The constant identifier PTR_CP_FULLCUT or the value 100 causes a full paper cut. Other values
request a partial cut percentage.

Remarks Cuts the receipt paper.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
Many printers with paper cut capability can perform both full and partial cuts. Some offer gradations
of partial cuts, such as a perforated cut and an almost-full cut. Although the exact type of cut will
vary by printer capabilities, the following general guidelines apply:
Value Meaning
100 Full cut.
90 Leave only a small portion of paper for very easy final separation.
70 Perforate the paper for final separation that is somewhat more difficult

and unlikely to occur by accidental handling.
50 Partial perforation of the paper.

The Service will select an appropriate type of cut based on the capabilities of its device and these
general guidelines.

An escape sequence embedded in a printNormal or printImmediate method call may also be used
to cause a paper cut.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Can only apply if
 AsyncMode is false.)
E_ILLEGAL An invalid percentage was specified, the receipt station does not exist (see

the CapRecPresent property), the receipt printer does not have paper
cutting ability (see the CapRecPapercut property), or Page Mode for the
receipt station is active.

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” in Chapter 31.

31 - 92 Unified POS, v1.15.1 Beta1

31.5.6 drawRuledLine Method Added in Release 1.13

Syntax drawRuledLine (station: int32, positionList: string, lineDirection: int32, lineWidth: int32,
lineStyle: int32, lineColor: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_RECEIPT or
 PTR_S_SLIP.
positionList Position parameters for the ruled line
lineDirection Direction of ruled line. See values below.

lineWidth Width of the ruled line. The unit of thickness is “dot”.

lineStyle How the printed ruled line appears. See values below.

lineColor Color of the ruled line. Has the same values as discussed in the Print Line
Table, Alternate Color, page 27.

The lineDirection parameter has one of the following values:
Value Meaning
PTR_RL_HORIZONTAL

Print the ruled line in a horizontal direction.
PTR_RL_VERTICAL Print the ruled line in a vertical direction.
Other Values A UposException will be thrown.

The lineStyle parameter has one of the following values:

Value Meaning

Other Values The printing results will be unpredictable.

Remarks Prints a drawn, ruled line on the paper of the specified printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

The character string of the positionList is different for the specified lineDirection of a horizontal
ruled line and a vertical ruled line.

Unified POS, v1.15.1 Beta1 31 - 93

Horizontal Ruled Line Example:
The positionList character string consists of ASCII numeric, comma delimited units of measure values
which denote starting position and length and followed by the ASCII semicolon character “;” if multiple
ruled lines are specified. The data pattern is repeated for any additional horizontal ruled lines. The units
of measure are the same as the units of measure defined by the MapMode property.

positionList = “0,500”

This results in a drawn ruled line started in MapMode unit position “0” and continuing for 500
MapMode units in length.

positionList = “0,200;300,100”

This results in a drawn ruled line started in MapMode unit position “0” and continuing for 200
MapMode units in length; then a drawn ruled line started in MapMode unit position “300” and
continues for 100 MapMode units in length.

Vertical Ruled Line Example:
The parameter consists of ASCII numeric, comma delimited values which denote the positions for the
vertical drawn ruled line(s). A continuous vertical ruled line will be drawn from each position for the
print lines that follow, until the vertical ruled lines are changed or terminated by a call to drawRuledLine
or a ruled line escape sequence. An empty string in the positionLine value causes the vertical ruled lines
to be terminated.. The units of measure are the same as the units of measure defined by the MapMode
property.

positionList = “0,100,400,500”

This results in four drawn ruled lines starting in MapMode unit positions “0”, “100”, “400”, and “500”
when each line of data is printed.

positionList = “” (empty string)

When the empty string value is set in the positionLine parameter, the vertical ruled line drawing will be
terminated.

The base point (“0”) position is changed by the rotatePrint method as follows:
Value Meaning
PTR_RP_NORMAL Starting position is Top Left position
PTR_RP_RIGHT90 Starting position is Top Right position
PTR_RP_LEFT90 Starting postion is Bottom Left position
PTR_RP_ROTATE180 Starting position is Bottom Right position

The lineWidth parameter specifies the thickness of the ruled line. When an unsupported value is
specified, the “best fit” value for the printer will be used.

The lineStyle parameter specifies the type of the ruled line to be used as noted in table above. When
an unsupported value is specified, the printing results will be unpredictable.

31 - 94 Unified POS, v1.15.1 Beta1

The lineColor parameter specifies the color of the ruled line. When an unsupported value is
specified, the printing results may be unpredictable.

This method can be used when the data for the printing is buffered by the service (device) in
transaction mode or the rotate print mode. Otherwise a UposException will be thrown.

If a ruled line of rotate left 90 or rotate right 90 is not supported by the device, a UposException will
be thrown.

If clearOutput method is called or if the print mode is changed, the drawing of ruled lines is
terminated and positionList is set to “” (empty string).

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Can only apply if
 AsyncMode is false.)
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 31 - 95

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property.

31.5.7 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the printer is taken out of form insertion mode. If the slip device has forms “jaws,”
they are closed by this method. If no form is present, an exception is raised with its
ErrorCodeExtended property set to EPTR_SLP_EMPTY.

This method is paired with the beginInsertion method for controlling form insertion. The
application may choose to call this method immediately after a successful beginInsertion if it wants
to use the printer sensors to determine when a form is positioned within the slip printer.
Alternatively, the application may prompt the user and wait for a key press before calling this
method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform request while output is in progress.
E_ILLEGAL The printer is not in slip insertion mode.
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

The device was taken out of insertion mode while the printer cover was
open.
ErrorCodeExtended = EPTR_SLP_EMPTY:
The device was taken out of insertion mode without a form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

31 - 96 Unified POS, v1.15.1 Beta1

31.5.8 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the printer is taken out of form removal or ejection mode. If a form is present, an
exception is raised with its ErrorCodeExtended property set to EPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form removal. The
application may choose to call this method immediately after a successful beginRemoval if it wants
to use the printer sensors to determine when the form has been removed. Alternatively, the
application may prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EPTR_SLP_FORM:
The device was taken out of removal mode while a form was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

Unified POS, v1.15.1 Beta1 31 - 97

31.5.9 markFeed Method Added in Release 1.5

Syntax markFeed (type: int32):
void { raises-exception, use after open-claim-enable }

The type parameter indicates the type of mark sensed paper handling. Valid values are:

Value Description
PTR_MF_TO_TAKEUP

Feed the Mark Sensed paper to the paper take-up position.

PTR_MF_TO_CUTTER
Feed the Mark Sensed paper to the auto cutter cutting position.

PTR_MF_TO_CURRENT_TOF
Feed the Mark Sensed paper to the present paper’s top of form. (Reverse
feed.)

PTR_MF_TO_NEXT_TOF
Feed the Mark Sensed paper to the next paper’s top of form.

Remarks This method is used to utilize the printer’s mark sensor for receipt paper.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

If type is PTR_MF_TO_TAKEUP, the printer will feed the mark sensed paper so that the present
form is moved so that it can be manually removed by the operator.

If type is PTR_MF_TO_CUTTER, the printer will feed the mark sensed paper so that the present
form is in position to be cut off by the auto cutter. This will usually be followed by a call to the
cutPaper method.

If type is PTR_MF_TO_CURRENT_TOF, the printer will feed the mark sensed paper (backwards
if necessary) so that the print head points to the top of the present form.

If type is PTR_MF_TO_NEXT_TOF, the printer will feed the mark sensed paper so that print head
points to the top of the next form.

The following diagram provides a pictorial representation of the functions performed by this
method.

31 - 98 Unified POS, v1.15.1 Beta1

1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_CUTTER

1

2

1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_
CURRENT_TOF

1

2

PTR_MF_TO_CURRENT_TOFPTR_MF_TO_TAKEUP

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

2

3

PTR_MF_TO_NEXT_TOF

Unified POS, v1.15.1 Beta1 31 - 99

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot be performed while output is in progress.

(Can only apply if AsyncMode is false.)
E_ILLEGAL The receipt print station does not support the given mark sensed paper

handling function. (Refer to the CapRecMarkFeed property)
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt paper is empty.
(Can only apply if AsyncMode is false.)

See Also CapRecMarkFeed Property.

31.5.10 pageModePrint Method Updated in Release 1.11

Syntax pageModePrint (control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
control Page Mode control. See values below:

Value Meaning
PTR_PM_PAGE_MODE

Enter Page Mode.
PTR_PM_PRINT_SAVE

Print PageModePrintArea and save the canvas. Page Mode is not exited.
Use for printing of repeated pages.

PTR_PM_NORMAL Print the print area and destroy the canvas and exit Page Mode.
PTR_PM_CANCEL Clear the page and exit the Page Mode without any printing of any print

area.

Remarks Enters or exits Page Mode for the station specified in the PageModeStation property.

If control is PTR_PM_PAGE_MODE, then Page Mode is entered. Subsequent calls to
printNormal, printBarCode, printBitmap, and printMemoryBitmap will buffer the print data
(either at the printer or the Service, depending on the printer capabilities) until pageModePrint is
called with the control parameter set to PTR_PM_PRINT_SAVE, PTR_PM_NORMAL, or
PTR_PM_CANCEL. (In this case, the print methods only validate the method parameters and
buffer the data – they do not initiate printing. Also, the value of the AsyncMode property does not
affect their operation: No OutputID will be assigned to the request, nor will an
OutputCompleteEvent be enqueued.)

31 - 100 Unified POS, v1.15.1 Beta1

If control is PTR_PM_PRINT_SAVE, then Page Mode is not exited. If some data is buffered by
calls to the methods printNormal, printBarCode, printBitmap, and printMemoryBitmap, then
the buffered data is saved and printed. This control is used to print the same page layout with
additional print items inside of the page.

If control is PTR_PM_NORMAL, then Page Mode is exited. If some data is buffered by calls to the
methods printNormal, printBarCode, printBitmap, and printMemoryBitmap, then the buffered
data is printed. The buffered data will not be saved.

If control is PTR_PM_CANCEL, then Page Mode is exited. If some data is buffered by calls to the
methods printNormal, printBarCode, printBitmap, and printMemoryBitmap, then the buffered
data is not printed and is not saved.

Note that when the pageModePrint method is called, all of the data that is to be printed in the
PageModePrintArea will be printed and the paper is fed to the end of the PageModePrintArea.
If more than one PageModePrintArea is defined, then after the pageModePrint method is called,
all of the data that is to be printed in the respective PageModePrintArea(s) will be printed and the
paper will be fed to the end of the PageModePrintArea located the farthest “down” the sheet of
paper. (See figure below).

The entire Page Mode transaction is treated as one message. This method is performed
synchronously if AsyncMode is false, and asynchronously if AsyncMode is true.

Feed End Position

Paper Feed Direction
PageModeArea

PageModePrintArea
(Second)

PageModePrintArea
(First)

Paper

Unified POS, v1.15.1 Beta1 31 - 101

Calling the clearOutput method cancels Page Mode. Any buffered print lines are also cleared.

Page Mode can be used within a transaction print, but not within a rotate print.

The PageModeStation property must be set to a valid station prior to invoking this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified PageModeStation does not exist (see the CapRecPresent

and CapSlpPresent properties), or CapxxxPageMode is false, or the
specified PageModeStation is not in Page Mode and control is set to
PTR_PM_NORMAL, PTR_PM_PRINT_SAVE, or
PTR_PM_CANCEL.

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false and control is PTR_PM_NORMAL,
PTR_PM_PRINT_SAVE, or PTR_PM_CANCEL.)

See Also CapXxxPageMode Properties, PageModePrintArea Property, PageModeStation Property.

31.5.11 printBarCode Method Updated in Release 1.15.1

Syntax printBarCode (station: int32, data: string, symbology: int32, height: int32, width: int32,
alignment: int32, textPosition: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_RECEIPT or

PTR_S_SLIP.
data2 Character string to be bar coded.
symbology Bar code symbol type to use. See values below.
height Bar code height. Expressed in the unit of measure given by MapMode.
width Bar code width. Expressed in the unit of measure given by MapMode.
alignment Placement of the bar code. See values below.
textPosition Placement of the readable character string. See values below.

2. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

31 - 102 Unified POS, v1.15.1 Beta1

The alignment parameter has one of the following values:

Value Meaning
PTR_BC_LEFT Align with the left-most print column.
PTR_BC_CENTER Align in the center of the station.
PTR_BC_RIGHT Align with the right-most print column.
Other Values Distance from the left-most print column to the start of the bar code.

Expressed in the unit of measure given by MapMode.

The textPosition parameter has one of the following values:

Value Meaning
PTR_BC_TEXT_NONE No text is printed. Only print the bar code.
PTR_BC_TEXT_ABOVE Print the text above the bar code.
PTR_BC_TEXT_BELOW Print the text below the bar code.

The symbology parameter has one of the following values:

Value Meaning
One Dimensional Symbologies
PTR_BCS_UPCA UPC-A
PTR_BCS_UPCA_S UPC-A with supplemental barcode
PTR_BCS_UPCE UPC-E
PTR_BCS_UPCE_S UPC-E with supplemental barcode
PTR_BCS_UPCD1 UPC-D1
PTR_BCS_UPCD2 UPC-D2
PTR_BCS_UPCD3 UPC-D3
PTR_BCS_UPCD4 UPC-D4
PTR_BCS_UPCD5 UPC-D5
PTR_BCS_EAN8 EAN 8 (= JAN 8)
PTR_BCS_JAN8 JAN 8 (= EAN 8)
PTR_BCS_EAN8_S EAN 8 with supplemental barcode
PTR_BCS_EAN13 EAN 13 (= JAN 13)
PTR_BCS_JAN13 JAN 13 (= EAN 13)
PTR_BCS_EAN13_S EAN 13 with supplemental barcode
PTR_BCS_EAN128 EAN-128
 EAN-128 is deprecated and replaced by GS1-128.
 PTR_BCS_EAN128 is deprecated and replaced by
 PRT_BCS_GS1128 (which has the same value)
PTR_BCS_TF Standard (or discrete) 2 of 5
PTR_BCS_ITF Interleaved 2 of 5
PTR_BCS_Codabar Codabar
PTR_BCS_Code39 Code 39
PTR_BCS_Code93 Code 93
PTR_BCS_Code128 Code 128
PTR_BCS_OCRA OCR “A”
PTR_BCS_OCRB OCR “B”

Unified POS, v1.15.1 Beta1 31 - 103

Added in Release 1.8
PTR_BCS_Code128_Parsed Code 128 with parsing.
PTR_BCS_RSS14 Reduced Space Symbology - Deprecated v1.12; replaced by

PTR_BCS_GS1DATABAR (which has the same value)
PTR_BCS_RSS_EXPANDED Reduced Space Symbology - Expanded - Deprecated v1.12;

replaced by PTR_BCS_GS1DATABAR_E (which has the same
value)

Added in Release 1.12
PTR_BCS_GS1DATABAR GS1 DataBar Omnidirectional
PTR_BCS_GS1DATABAR_S GS1 DataBar Stacked Omnidirectional
PTR_BCS_GS1DATABAR_E GS1 DataBar Expanded
PTR_BCS_GS1DATABAR_E_S

GS1 DataBar Expanded Stack

Added in Release 1.15.1
PTR_BCS_GS1128 GS1-128

GS1-128 has replaced EAN-128. (which has the same value)
PTR_BCS_EAN-128 is deprecated and replaced by

 PTR_BCS_GS1128
PTR_BCS_DOTCODE Dot Code
PTR_BCS_HANXIN Han Xin Code

Two Dimensional Symbologies

PTR_BCS_PDF417 PDF 417
PTR_BCS_MAXICODE MAXICODE

Added in Release 1.13
PTR_BCS_DATAMATRIX Data Matrix
PTR_BCS_QRCODE QR Code
PTR_BCS_UQRCODE Micro QR Code
PTR_BCS_AZTEC Aztec
PTR_BCS_UPDF417 Micro PDF 417

Added in Release 1.15.1
PTR_BCS_GS1DATAMATRIX

 GS1DataMatrix

Special Cases
PTR_BCS_OTHER If a Service defines additional symbologies, they will be greater or equal

to this value.

31 - 104 Unified POS, v1.15.1 Beta1

Note: Added in Release 1.14

The “Scanner (Bar Code Reader) device was updated in Release 1.14 to include additional scanner
symbologies, not all of which are common to POS transactions. Therefore it would not be a normal
requirement for a POS printer to be able to print these new symbologies. These new symbologies
are not included in the above supported symbology lists above. However, if one of these newly
added Scanner symbologies were to be printed, it would fall under the Special Cases,
PTR_BCS_OTHER if a printer was capable of printing.

Future updates to the above list may be included as usage of new POS scanner codes become
mainstream requirements for POS.

Special Considerations for Code 128

The Code 128 Bar Code Symbology is comprised of three code sets and also includes some special
characters that denote either a change in code set, a function
code, or a shift code. The characters for each code set are:

Code Set Character Set
Code A 0x00-0x5f, FNC1, FNC2, FNC3, FNC4, SHIFT, CODE B, CODE C
Code B 0x20-0x7f, FNC1, FNC2, FNC3, FNC4, SHIFT, CODE A, CODE C
Code C 0x00-0x63 for decimal values 00-99, FNC1, CODE A, CODE B

Release 1.7 and earlier

The data format to be supplied by the application was not specified in these releases. Therefore, the
default code set and data content varies by vendor. An application that sends Code 128 data to a 1.7
or earlier service will need to conform to that service's requirements.

Release 1.8 and later

For migration of current applications, the symbology PTR_BCS_Code128 is maintained so that a
service may continue to support the data format that it used with earlier releases. (New service
implementations should handle this symbology as with PTR_BCS_Code128_Parsed.)

The new symbology PTR_BCS_Code128_Parsed standardizes the data format with consistent
parsing. Data is comprised of ASCII characters, which the service maps to the corresponding value
for the selected code set. In Code Sets A and B, this will be a one to one mapping. In Code Set C,
each pair of digits is converted to a single Code C data character in the range 0x00 through 0x63
(99). (If the Code Set C data contains an odd number of digits, then a leading zero digit is added by
the service before conversion.) A sentinel character, the left curly bracket “{”, followed by a certain
value, is used to indicate a special character. The following table lists the character pairs for
encoding the special characters:

Special Characters ASCII Representation
SHIFT {S
CODE A {A
CODE B {B
CODE C {C
FNC1 {1
FNC2 {2
FNC3 {3

Unified POS, v1.15.1 Beta1 31 - 105

FNC4 {4
{ {{

The default Code Set may differ by vendor, so a starting code set is required at the start of the data.

Remarks Prints a bar code on the specified printer station.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
If RotateSpecial indicates that the bar code is to be rotated, then perform the rotation. The height,
width, and textPosition parameters are applied to the bar code before the rotation. For example, if
PTR_BC_TEXT_BELOW is specified and the bar code is rotated left, then the text will appear on
the paper to the right of the bar code.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bar code printing
* height or width is zero or too big
* symbology is not supported
* not all characters in data are supported by symbology
* alignment is invalid or too big
* Code Set is not specified for PTR_BCS_Code128_Parsed at start of

data
* textPosition is invalid, or
* the RotateSpecial rotation is not supported.

E_BUSY Cannot perform while output is in progress.
(Can only apply if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

31 - 106 Unified POS, v1.15.1 Beta1

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property, RotateSpecial Property.

Unified POS, v1.15.1 Beta1 31 - 107

31.5.12 printBitmap Method Updated in Release 1.7

Syntax printBitmap (station: int32, fileName: string, width: int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_RECEIPT or
 PTR_S_SLIP.
fileName File name or URL of bitmap file. Various file formats may be supported,

such as bmp, gif, or jpeg files.3

width Printed width of the bitmap to be performed. See values below.

alignment Placement of the bitmap. See values below.

The width parameter has one of the following values:
Value Meaning
PTR_BM_ASIS Print the bitmap with one bitmap pixel per printer dot.
Other Values Bitmap width expressed in the unit of measure given by MapMode.

The alignment parameter has one of the following values:

Value Meaning
PTR_BM_LEFT Align with the left-most print column.
PTR_BM_CENTER Align in the center of the station.
PTR_BM_RIGHT Align with the right-most print column.
Other Values Distance from the left-most print column to the start of the bitmap.

Expressed in the unit of measure given by MapMode.

Remarks Prints a bitmap on the specified printer station. If a partial text line has been sent (for example, via
printNormal) but not yet printed, then an implicit line feed is added to this text and the line is
printed before the bitmap is printed. Text data sent after this printBitmap begins on the line
following the bitmap.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

The width parameter controls transformation of the bitmap. If width is PTR_BM_ASIS, then no
transformation is performed. The bitmap is printed with one bitmap pixel per printer dot.
Advantages of this option are that it:
• Provides the highest performance bitmap printing.
• Works well for bitmaps tuned for a specific printer’s aspect ratio between horizontal dots and

vertical dots.

3. In the OPOS environment, the Service Object must support two-color (black and white)
uncompressed Windows bitmaps. Black pixels are printed, while white pixels are not printed.
Additional formats may be supported.

31 - 108 Unified POS, v1.15.1 Beta1

If width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap
such that its width is the specified width and the aspect ratio is unchanged. Advantages of this option
are:
• Sizes a bitmap to fit a variety of printers.
• Maintains the bitmap’s aspect ratio.

Disadvantages are:
• Lowers performance than untransformed data.
• Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Can only apply if
 AsyncMode is false.)
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

E_NOEXIST fileName was not found.
E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:

The bitmap is either too wide to print without transformation, or it is too
big to transform.
ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported
format.
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

Unified POS, v1.15.1 Beta1 31 - 109

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property.

31 - 110 Unified POS, v1.15.1 Beta1

31.5.13 printImmediate Method Updated in Release 1.13

Syntax printImmediate (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_JOURNAL,
 PTR_S_RECEIPT or PTR_S_SLIP.
data4 The characters to be printed. May consist of printable characters, escape

sequences, carriage returns (13 decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station immediately.

This method tries to print its data immediately – that is, as the very next printer operation. It may be
called when asynchronous output is outstanding. This method is primarily intended for use in
exception conditions when asynchronous output is outstanding, such as within an error event
handler.

Special character values within data are:

Value Meaning
Line Feed (10) Print any data in the line buffer, and feed to the next print line. (A Carriage

Return is not required in order to cause the line to be printed.)
Carriage Return (13) If a Carriage Return immediately precedes a Line Feed, or if the line

buffer is empty, then it is ignored.
Otherwise, the line buffer is printed and the printer does not feed to the
next print line. On some printers, print without feed may be directly
supported. On others, a print may always feed to the next line, in which
case the Service will print the line buffer and perform a reverse line feed
if supported. If the printer does not support either of these features, then
Carriage Return acts like a Line Feed.
The validateData method may be used to determine whether a Carriage
Return without Line Feed is possible, and whether a reverse line feed is
required to support it.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist (see the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties.), or the station is in Page Mode and the device
 does not support direct printing in Page Mode.

4. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 31 - 111

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.

See Also printNormal Method, printTwoNormal Method.

31 - 112 Unified POS, v1.15.1 Beta1

31.5.14 printMemoryBitmap Method Added in Release 1.12

Syntax printMemoryBitmap (station: int32, data: binary, type: int32, width: int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_RECEIPT or
 PTR_S_SLIP.
data5 Memory byte array representation of the bitmap.
type Various bitmap formats may be supported, such as bmp, gif, or jpeg files.6

See values below.
width Printed width of the bitmap to be performed. See values below.
alignment Placement of the bitmap. See values below.
The type parameter has one of the following values:
Value Meaning
PTR_BMT_BMP The data parameter contains a BMP format bitmap.
PTR_BMT_JPEG The data parameter contains a JPEG format bitmap.
PTR_BMT_GIF The data parameter contains a GIF format bitmap.
The width parameter has one of the following values:
Value Meaning
PTR_BM_ASIS Print the bitmap with one bitmap pixel per printer dot.
Other Values Bitmap width expressed in the unit of measure given by MapMode.
The alignment parameter has one of the following values:
Value Meaning
PTR_BM_LEFT Align with the left-most print column.
PTR_BM_CENTER Align in the center of the station.
PTR_BM_RIGHT Align with the right-most print column.
Other Values Distance from the left-most print column to the start of the bitmap.

Expressed in the unit of measure given by MapMode.
Remarks Prints a memory-stored bitmap on the specified printer station. If a partial text line has been sent

(for example, via printNormal) but not yet printed, then an implicit line feed is added to this text
and the line is printed before the bitmap is printed. Text data sent after this printMemoryBitmap
begins on the line following the bitmap.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
The width parameter controls transformation of the bitmap. If width is PTR_BM_ASIS, then no
transformation is performed. The bitmap is printed with one bitmap pixel per printer dot.
Advantages of this option are that it:
• Provides the highest performance bitmap printing.
• Works well for bitmaps tuned for a specific printer’s aspect ratio between horizontal dots and

vertical dots.

5. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

6. In the OPOS environment, the Service Object must support two-color (black and white)
uncompressed Windows bitmaps. Black pixels are printed, while white pixels are not printed.
Additional formats may be supported.

Unified POS, v1.15.1 Beta1 31 - 113

If width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap
such that its width is the specified width and the aspect ratio is unchanged. Advantages of this option
are:
• Sizes a bitmap to fit a variety of printers.
• Maintains the bitmap’s aspect ratio.
Disadvantages are:
• Lowers performance compared to untransformed data.
• Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY Cannot perform while output is in progress. (Can only apply if
 AsyncMode is false.)
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without transformation, or it is too
big to transform.
ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported
format.
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property.

31 - 114 Unified POS, v1.15.1 Beta1

31.5.15 printNormal Method Updated in Release 1.7

Syntax printNormal (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_JOURNAL,
 PTR_S_RECEIPT or PTR_S_SLIP.
data7 The characters to be printed. May consist of printable characters, escape

sequences, carriage returns (13 decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Special character values within data are:

Value Meaning
Line Feed (10) Print any data in the line buffer, and feed to the next print line. (A Carriage

Return is not required in order to cause the line to be printed.)
Carriage Return (13) If a Carriage Return immediately precedes a Line Feed, or if the line

buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does not feed to the
next print line. On some printers, print without feed may be directly
supported. On others, a print may always feed to the next line, in which
case the Service will print the line buffer and perform a reverse line feed
if supported. If the printer does not support either of these features, then
Carriage Return acts like a Line Feed.

The validateData method may be used to determine whether a Carriage
Return without Line Feed is possible, and whether a reverse line feed is
required to support it.

7. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 31 - 115

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist. (See the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties.)

E_BUSY Cannot perform while output is in progress.(Can only apply if AsyncMode is
false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printImmediate Method, printTwoNormal Method.

31 - 116 Unified POS, v1.15.1 Beta1

31.5.16 printTwoNormal Method Updated in Release 1.9

Syntax printTwoNormal (stations: int32, data1: string, data2: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
stations Release 1.2
 The printer stations to be used may be: PTR_S_JOURNAL_RECEIPT,
 PTR_S_JOURNAL_SLIP, or PTR_S_RECEIPT_SLIP.
 Release 1.3 and later:
 Select one of the following:

data1 8 The characters to be printed on the first station. May consist of printable characters
and escape sequences as listed in the “Print Line” table under “Data Characters
and Escape Sequences” in Chapter 31. The characters must all fit on one printed
line, so that the printer may attempt to print on both stations simultaneously.

data2 7 The characters to be printed on the second station. (Restrictions are the same as for
data1.) If this string is the empty string (“”), then print the same data as data1. On
some printers, using this format may give additional increased print performance.

Remarks Prints two strings on two print stations simultaneously. When supported, this may give increased
print performance.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.
Release 1.2
Documentation release 1.2 was not sufficiently clear as to the meaning of “first” and “second”
station so Service implementations varied between the following:

• Assign stations based on order within the constants. For example,
PTR_S_JOURNAL_RECEIPT prints data1 on the journal and data2 on the receipt.

• Assign stations based upon physical device characteristics or internal print order.
Due to this inconsistency, the application should use the new constants if the Control and Service
versions indicate Release 1.3 or later.

stations Parameter First
Station

Second
Station

PTR_TWO_RECEIPT_JOURNAL Receipt Journal
PTR_TWO_SLIP_JOURNAL Slip Journal
PTR_TWO_SLIP_RECEIPT Slip Receipt

8. In the OPOS environment, the format of data1 and data2 depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 31 - 117

Release 1.3 and later
Service for Release 1.3 or later should support both sets of constants. The vendor should define and
document the behavior of the obsolete constants.
The sequence of stations in the constants does not imply the physical printing sequence on the
stations. The physical sequence depends on the printer and may be different based on the bi-
directional printing multiple print heads and so on.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The specified stations do not support concurrent printing (see the
 CapConcurrentJrnRec, CapConcurrentJrnSlp, and CapConcurrentRecSlp
 properties.), or Page Mode is active for either station specified in stations.
E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode is

false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper. (Can only apply if
AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted. (Can only apply if
AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty. (Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned. (Can only apply if AsyncMode is false.)

See Also printNormal Method

31 - 118 Unified POS, v1.15.1 Beta1

31.5.17 rotatePrint Method Updated in Version 1.11

Syntax rotatePrint (station: int32, rotation: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be PTR_S_RECEIPT or
 PTR_S_SLIP.
rotation Direction of rotation. See values below.

Value Meaning
PTR_RP_RIGHT90 Start rotated printing 90° to the right (clockwise)
PTR_RP_LEFT90 Start rotated printing 90° to the left (counter-clockwise)
PTR_RP_ROTATE180 Start rotated printing 180°, that is, print upside-down
PTR_RP_BARCODE Start rotated bar code printing. This value is ORed with one of the above

start rotated print values.
PTR_RP_BITMAP Start rotated bitmap printing. This value is ORed with one of the above

start rotated print values.
PTR_RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.
This method is performed synchronously if AsyncMode is false, asynchronously if AsyncMode is
true.
If rotation includes PTR_RP_ROTATE180, then upside-down print mode is entered. Subsequent
calls to printNormal or printImmediate will print the data upside-down until rotatePrint is called
with rotation set to PTR_RP_NORMAL. Each print line is rotated by 180°. Lines are printed in the
order that they are sent, with the start of each line justified at the right margin of the printer station.
If rotation does not include PTR_RP_BARCODE and/or PTR_RP_BITMAP, then only the print
methods printNormal and printImmediate may be used while in upside-down print mode.
If rotation includes PTR_RP_RIGHT90 or PTR_RP_LEFT90, then sideways print mode is entered.
Subsequent calls to printNormal will buffer the print data (either at the printer or the Service,
depending on the printer capabilities) until rotatePrint is called with rotation set to
PTR_RP_NORMAL. (In this case, printNormal only buffers the data – it does not initiate printing.
Also, the value of the AsyncMode property does not affect its operation: No OutputID will be
assigned to the request, nor will an OutputCompleteEvent be enqueued.) Each print line is rotated
by 90°. If the lines are not all the same length, then they are justified at the start of each line. If
rotation does not include PTR_RP_BARCODE and/or PTR_RP_BITMAP, then only printNormal
may be used while in sideways print mode.
If rotation includes PTR_RP_NORMAL, then rotated print mode is exited. If sideways-rotated print
mode was in effect and some data was buffered by calls to the printNormal method, then the
buffered data is printed. The entire rotated block of lines are treated as one message.
If rotation includes PTR_RP_BARCODE and/or PTR_RP_BITMAP, then any bar codes (printed
with printBarCode or printed with the Escape Sequence “|#R”) and/or bitmaps (printed with
printBitmap or printed with the Escape Sequence “|#B”) submitted for printing during the
rotatePrint processing cycle will also be rotated. Such rotation will be within the limitations that
may be specified by the RecBarCodeRotationList, SlpBarCodeRotationList,
RecBitmapRotationList, and SlpBitmapRotationList properties respectively.
If rotation includes PTR_RP_BARCODE, then the contents of RotateSpecial are ignored.

Unified POS, v1.15.1 Beta1 31 - 119

Changing the rotation mode may also change the station’s line height, line spacing, line width, and
other metrics.
Calling the clearOutput method cancels rotated print mode. Any buffered sideways rotated print
lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The specified station does not exist (see the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties), or the station does not support the specified
 rotation (see the station’s rotation capability properties).
E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode is

false.)
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” in Chapter 31, RotateSpecial Property.

31 - 120 Unified POS, v1.15.1 Beta1

31.5.18 setBitmap Method Updated in Release 1.7

Syntax setBitmap (bitmapNumber: int32, station: int32, fileName: string, width: int32, alignment:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
bitmapNumber The number to be assigned to this bitmap. Valid bitmap numbers are 1
 through 20.

Release 1.6 and earlier: Valid bitmap numbers are 1 and 2.
station The printer station to be used. May be either PTR_S_RECEIPT or

PTR_S_SLIP.
fileName File name or URL of bitmap file. Various file formats may be supported,

such as bmp, gif, or jpeg files.9

If set to an empty string (“”), then the bitmap is unset.
width Printed width of the bitmap to be performed. See printBitmap for values.
alignment Placement of the bitmap. See printBitmap for values.

Remarks Saves information about a bitmap for later printing.
The bitmap may then be printed by calling the printNormal or printImmediate method with the
print bitmap escape sequence in the print data. The print bitmap escape sequence will typically be
included in a string for printing top and bottom transaction headers.
If a partial text line has been sent before the print bitmap escape sequence is encountered, then an
implicit line feed is added to this text and the line is printed before the bitmap is printed. Text data
sent after the print bitmap escape sequence begins on the line following the bitmap.
A Service may choose to cache the bitmap for later use to provide better performance. Regardless,
the bitmap file and parameters are validated for correctness by this method.
The most frequently used bitmaps should be assigned a small bitmapNumber (close to 1), while
occasionally used bitmaps should be assigned the larger bitmapNumbers. The Service will use these
subsets to determine how best to store the bitmaps. It may download them to the device when
possible, or cache them in Service memory, or simply remember the fileName and associated
properties for use when it is printed.
The application must ensure that the printer station metrics, such as character width, line height, and
line spacing are set for the station before calling this method. The Service may perform
transformations on the bitmap in preparation for later printing based upon the current values.
The application may set bitmaps numbered 1 through 20 for each of the two valid stations. If
desired, the same bitmap fileName may be set to the same bitmapNumber for each station, so that
the same print bitmap escape sequence may be used for either station.

9. In the OPOS environment, the Service Object must support two-color (black and white)
uncompressed Windows bitmaps. Black pixels are printed, while white pixels are not printed.
Additional formats may be supported.

Unified POS, v1.15.1 Beta1 31 - 121

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:
 * bitmapNumber is invalid
 * station does not exist
 * station does not support bitmap printing
 * width is too big
 * alignment is invalid or too big
E_NOEXIST fileName was not found.
E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:

The bitmap is either too wide to print without transformation, or it is too
big to transform.
ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported
format.

See Also “Data Characters and Escape Sequences” in Chapter 31, printBitmap Method.

31.5.19 setLogo Method Updated in Release 1.10

Syntax setLogo (location: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
location The logo to be set. May be PTR_L_TOP or PTR_L_BOTTOM.
data10 The characters that produce the logo. May consist of printable characters,

escape sequences (except logos), carriage returns (13 decimal), and line
feeds (10 decimal).

Remarks Saves a data string as the top or bottom logo.
A logo may then be printed by calling the printNormal, printTwoNormal, or printImmediate
method with the print top logo or print bottom logo escape sequence in the print data.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid location was specified.

See Also “Data Characters and Escape Sequences” in Chapter 31.

10.In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

31 - 122 Unified POS, v1.15.1 Beta1

31.5.20 transactionPrint Method

Syntax transactionPrint (station: int32, control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be PTR_S_JOURNAL,
PTR_S_RECEIPT, or PTR_S_SLIP.

control Transaction control. See values below:

Value Meaning

PTR_TP_TRANSACTION Begin a transaction.

PTR_TP_NORMAL End a transaction by printing the buffered data.

Remarks Enters or exits transaction mode.

If control is PTR_TP_TRANSACTION, then transaction mode is entered. Subsequent calls to
printNormal, cutPaper, rotatePrint, printBarCode, and printBitmap will buffer the print data
(either at the printer or the Service, depending on the printer capabilities) until transactionPrint is
called with the control parameter set to PTR_TP_NORMAL. (In this case, the print methods only
validate the method parameters and buffer the data – they do not initiate printing. Also, the value of
the AsyncMode property does not affect their operation: No OutputID will be assigned to the
request, nor will an OutputCompleteEvent be enqueued.)

If control is PTR_TP_NORMAL, then transaction mode is exited. If some data was buffered by
calls to the methods printNormal, cutPaper, rotatePrint, printBarCode, and printBitmap, then
the buffered data is printed. The entire transaction is treated as one message. This method is
performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print lines are also
cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist (see the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties), or CapTransaction is false.

E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode is false
and control is PTR_TP_NORMAL.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false and control is PTR_TP_NORMAL.)
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.

Unified POS, v1.15.1 Beta1 31 - 123

ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also CapTransaction Property, cutPaper Method, printBarCode Method, printBitmap Method,
printNormal Method, rotatePrint Method.

31 - 124 Unified POS, v1.15.1 Beta1

31.5.21 validateData Method Updated in Release 1.9

Syntax validateData (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_JOURNAL,

PTR_S_RECEIPT or PTR_S_SLIP.
data11 The data to be validated. May include printable data and escape

sequences.
Remarks Determines whether a data sequence, possibly including one or more escape sequences, is valid for

the specified station, before calling the printImmediate, printNormal, or printTwoNormal
methods.
This method does not cause any printing, but is used to determine the capabilities of the station.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Some of the data is not precisely supported by the printer station, but
 the Service can select valid alternatives. This exception can also be
 thrown if an escape sequence is not supported while either Page

Mode or rotate sideways is active.
E_FAILURE Some of the data is not supported. No alternatives can be selected.
Cases which cause ErrorCode of E_ILLEGAL:
Escape Sequence Condition
Paper cut The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed and Paper cut The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed, Paper cut, and Stamp The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed units The unit count ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed reverse The line count ‘#’ is too large: Service will select the maximum

supported value.
Underline The thickness ‘#’ is not precisely supported: Service will select the

closest supported value.
Shading The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Scale horizontally The scaling factor ‘#’ is not supported: Service will select the closest

supported value.
Scale vertically The scaling factor ‘#’ is not supported: Service will select the closest

supported value.

11.In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 31 - 125

Alternate Color The color ‘#’ is not supported: Service will select the closest
supported value.

RGB Color The color ‘#’ is not supported: Service will select the closest
supported value.

Data Condition

data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed.) In order to
print data data1 and remain on the same line, the Service will print
with a line advance, then perform a reverse line feed. The data data2
will then overprint data1.

Cases which will cause ErrorCode of E_FAILURE:
Escape Sequence Condition
(General) The escape sequence format is not valid.
Paper cut Not supported.
Feed and Paper cut Not supported.
Feed, Paper cut, and Stamp Not supported.
Fire stamp Not supported.
Print bitmap Bitmap printing is not supported, or the bitmap number ‘#’ is out of

range.
Feed reverse Not supported.
Font typeface The typeface ‘#’ is not supported.
Bold Not supported.
Underline Not supported.
Italic Not supported.
Alternate color Not supported.
RGB color Not supported.
Reverse video Not supported.
SubScript Not supported.
SuperScript Not supported.
Shading Not supported.
Single high and wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high and wide Not supported.
Data Condition
data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed.) Not able to

print data and remain on the same line. The data data1 will print on
one line, and the data data2 will print on the next line.

See Also “Data Characters and Escape Sequences” in Chapter 31.

31 - 126 Unified POS, v1.15.1 Beta1

31.6 Events (UML interfaces)

31.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific POS Printer Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s POS Printer devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 31 - 127

31.6.2 ErrorEvent Updated in Release 1.9

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a POS Printer error has been detected and that a suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT indicating that the error
occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EPTR_COVER_OPEN The printer cover is open.

EPTR_JRN_EMPTY The journal station is out of paper.
EPTR_REC_EMPTY The receipt station is out of paper.
EPTR_SLP_EMPTY A form is not inserted in the slip station.
EPTR_JRN_CARTRIDGE_REMOVED:

A journal cartridge has been removed.
EPTR_JRN_CARTRIDGE_EMPTY:

A journal cartridge is empty.
EPTR_JRN_HEAD_CLEANING:

A journal cartridge head is being cleaned.
EPTR_REC_CARTRIDGE_REMOVED:

A receipt cartridge has been removed.
EPTR_REC_CARTRIDGE_EMPTY:

A receipt cartridge is empty.
EPTR_REC_HEAD_CLEANING:

A receipt cartridge head is being cleaned.

31 - 128 Unified POS, v1.15.1 Beta1

EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.

EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.

EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered output data, including all asynchronous output. (The
 effect is the same as when clearOutput is called.) The error state is
 exited.

ER_RETRY Retry the asynchronous output. The error state is exited. The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the error state.

See Also “Device Output Models” on page 1- 21, “Device Information Reporting Model” on page 1- 25.

31.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that it was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

Unified POS, v1.15.1 Beta1 31 - 129

31.6.4 StatusUpdateEvent Updated in Release 1.8

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates the status change, and has one of the

following values:
Value Meaning
PTR_SUE_COVER_OPEN Printer cover is open.
PTR_SUE_COVER_OK Printer cover is closed.
PTR_SUE_JRN_EMPTY No journal paper.
PTR_SUE_JRN_NEAREMPTY Journal paper is low.
PTR_SUE_JRN_PAPEROK Journal paper is ready.
PTR_SUE_REC_EMPTY No receipt paper.
PTR_SUE_REC_NEAREMPTY Receipt paper is low.
PTR_SUE_REC_PAPEROK Receipt paper is ready.
PTR_SUE_SLP_EMPTY No slip form is inserted, and no slip form has been detected at the

 entrance to the slip station. (See “Model” in Chapter 30 for
 further details on slip properties and events.)

PTR_SUE_SLP_NEAREMPTY Almost at the bottom of the slip form.
PTR_SUE_SLP_PAPEROK Slip form is inserted.
PTR_SUE_IDLE All asynchronous output has finished, either successfully or

 because output has been cleared. The printer State is now
 S_IDLE. The FlagWhenIdle property must be true for this event
 to be delivered, and the property is automatically reset to false
 just before the event is delivered.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added
additional Status values for communicating the status/progress of
an asynchronous update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

31 - 130 Unified POS, v1.15.1 Beta1

Release 1.5 and later – Cartridge State Reporting

If CartridgeNotify = PTR_CN_ENABLED, StatusUpdateEvents with the following status
parameter values may be fired.

Value Meaning
PTR_SUE_JRN_CARTRIDGE_EMPTY

A journal cartridge needs to be replaced. Cartridge is empty or not
 present.
PTR_SUE_JRN_HEAD_CLEANING

A journal cartridge has begun cleaning.
PTR_SUE_JRN_CARTRIDGE_NEAREMPTY

A journal cartridge is near end.
PTR_SUE_JRN_CARTRIDGE_OK

All journal cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_REC_CARTRIDGE_EMPTY
A receipt cartridge needs to be replaced. Cartridge is empty or not present.

PTR_SUE_REC_HEAD_CLEANING
A receipt cartridge has begun cleaning.

PTR_SUE_REC_CARTRIDGE_NEAREMPTY
A receipt cartridge is near end.

PTR_SUE_REC_CARTRIDGE_OK
All receipt cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_SLP_CARTRIDGE_EMPTY
A slip cartridge needs to be replaced. Cartridge is empty or not present.

PTR_SUE_SLP_HEAD_CLEANING
A slip cartridge has begun cleaning.

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY
A slip cartridge is near end.

PTR_SUE_SLP_CARTRIDGE_OK
All slip cartridges are ready. It gives no indication of the
amount of media in the cartridge.

Release 1.8 and later - Specific Cover State Reporting

Starting with Release 1.8, StatusUpdateEvents for specific stations’ covers are supported. If a
printer has only one cover or if the printer cannot determine/report which covers are open, then only
the original PTR_SUE_COVER_OPEN and PTR_SUE_COVER_OK events should be fired.

For printers supporting multiple covers, the original events should also be fired for compatibility
with current applications. In these cases, the station-specific event should be fired first, followed by
the original event.

If more than one cover is open, the original PTR_SUE_COVER_OPEN event should only be fired
once after a cover is opened. A PTR_SUE_COVER_OK event should only be fired after all the
covers are closed.

Unified POS, v1.15.1 Beta1 31 - 131

The event’s Status attribute can contain one of the following additional values to indicate a status
change.
Value Meaning
PTR_SUE_JRN_COVER_OPEN Journal station cover is open.
PTR_SUE_JRN_COVER_OK Journal station cover is closed.
PTR_SUE_REC_COVER_OPEN Receipt station cover is open.
PTR_SUE_REC_COVER_OK Receipt station cover is closed.
PTR_SUE_SLP_COVER_OPEN Slip station cover is open.
PTR_SUE_SLP_COVER_OK Slip station cover is closed.

Example A: Suppose that a printer includes two cover sensors, but reports “cover open” if either is
open. Then here are the actions and StatusUpdateEvents that should be fired.

Action StatusUpdateEvent
Open front cover PTR_SUE_COVER_OPEN
Open rear cover (no additional SUE)
Close front cover (no additional SUE)
Close rear cover PTR_SUE_COVER_OK

Example B: Suppose that a printer includes two sensors which report their statuses independently.
Then here are the actions and StatusUpdateEvents that should be fired.

Action StatusUpdateEvent(s)
Open front cover PTR_SUE_SLP_COVER_OPEN, then

PTR_SUE_COVER_OPEN
Open rear cover PTR_SUE_REC_COVER_OPEN
Close front cover PTR_SUE_SLP_COVER_OK
Close rear cover PTR_SUE_REC_COVER_OK, then

PTR_SUE_COVER_OK

This status reporting allows the migration of applications written to earlier releases, plus additional
functionality for applications written to the new release:

• An application that either ignores the new statuses or was written before 1.8 continues to respond to
 the PTR_SUE_COVER_OPEN and PTR_SUE_COVER_OK StatusUpdateEvents. (It is assumed
 that the application will ignore statuses that are not expected.)
• An application written to support the new statuses can respond to the station-specific status
 (PTR_SUE_xxx_COVER_OK), and the general status (PTR_SUE_COVER_OK) will not

provide any additional information. But if it receives a general status without a preceding
station-specific status, then it processes the general status.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 1- 15.

31 - 132 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 32 - 1

32 Remote Order Display

32.1 General
This Chapter defines the Remote Order Display device category.

32.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.3 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 open
DataEventEnabled: boolean { read-write } 1.3 open
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --
DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

32 - 2 Unified POS, V1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapMapCharacterSet: boolean { read-only } 1.7 open
CapSelectCharacterSet: boolean { read-only } 1.3 open, claim, & enable
CapTone: boolean { read-only } 1.3 open, claim, & enable
CapTouch: boolean { read-only } 1.3 open, claim, & enable
CapTransaction: boolean { read-only } 1.3 open

AsyncMode: boolean { read-write } 1.3 open, claim, & enable
AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable
AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable
CharacterSet: int32 { read-only } 1.3 open, claim, & enable
CharacterSetList: string { read-only } 1.3 open, claim, & enable
Clocks: int32 { read-only } 1.3 open, claim, & enable
CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable
ErrorString: string { read-only } 1.3 open
ErrorUnits: int32 { read-only } 1.3 open
EventString: string { read-only } 1.3 open & claim
EventType: int32 { read-write } 1.3 open
EventUnitID: int32 { read-only } 1.3 open & claim
EventUnits: int32 { read-only } 1.3 open & claim
MapCharacterSet: boolean { read-write } 1.7 open
SystemClocks: int32 { read-only } 1.3 open, claim, & enable
SystemVideoSaveBuffers: int32 { read-only } 1.3 open, claim, & enable
Timeout: int32 { read-write } 1.3 open
UnitsOnline: int32 { read-only } 1.3 open, claim, & enable
VideoDataCount: int32 { read-only } 1.3 open, claim, & enable
VideoMode: int32 { read-write } 1.3 open, claim, & enable
VideoModesList: string { read-only } 1.3 open, claim, & enable
VideoSaveBuffers: int32 { read-only } 1.3 open, claim, & enable

Unified POS, v1.15.1 Beta1 32 - 3

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearInputProperties ():
void { }

Not supporteda

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
clearVideo (units: int32, attribute: int32):

void { raises-exception, use after open, claim, enable }
1.3

clearVideoRegion (units: int32, row: int32, column: int32, height: int32, width:
int32, attribute: int32):
void { raises-exception, use after open, claim, enable }

1.3

controlClock (units: int32, function: int32, clockId: int32, hour: int32, min: int32,
sec: int32, row: int32, column: int32, attribute: int32, mode: int32):
void { raises-exception, use after open, claim, enable }

1.3

controlCursor (units: int32, function: int32):
void { raises-exception, use after open, claim, enable }

1.3

copyVideoRegion (units: int32, row: int32, column: int32, height: int32, width:
int32, targetRow: int32, targetColumn: int32):
void { raises-exception, use after open, claim, enable }

1.3

a. No sensitive information is generated or stored.

32 - 4 Unified POS, V1.15.1 Beta1

a.No sensitive information is generated or stored.

Methods (Continued)
displayData (units: int32, row: int32, column: int32, attribute: int32, data: string):

void { raises-exception, use after open, claim, enable }
1.3

drawBox (units: int32, row: int32, column: int32, height: int32, width: int32, attri-
bute: int32, bordertype: int32):
void { raises-exception, use after open, claim, enable }

1.3

freeVideoRegion (units: int32, bufferId: int32):
void { raises-exception, use after open, claim, enable }

1.3

resetVideo (units: int32):
void { raises-exception, use after open, claim, enable }

1.3

restoreVideoRegion (units: int32, targetRow: int32, targetColumn: int32, bufferId:
int32):
void { raises-exception, use after open, claim, enable }

1.3

saveVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32,
bufferId: int32):
void { raises-exception, use after open, claim, enable }

1.3

selectCharacterSet (units: int32, characterSet: int32):
void { raises-exception, use after open, claim, enable }

1.3

setCursor (units: int32, row: int32, column: int32):
void { raises-exception, use after open, claim, enable }

1.3

transactionDisplay (units: int32, function: int32):
void { raises-exception, use after open, claim, enable }

1.3

updateVideoRegionAttribute (units: int32, function: int32, row: int32, column:
int32, height: int32, width: int32, attribute: int32):
void { raises-exception, use after open, claim, enable }

1.3

videoSound (units: int32, frequency: int32, duration: int32, numberOfCycles: int32,
interSoundWait: int32):
void { raises-exception, use after open, claim, enable }

1.3

Unified POS, v1.15.1 Beta1 32 - 5

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.3
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.3
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.3
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

32 - 6 Unified POS, V1.15.1 Beta1

32.3 General Information
The Remote Order Display programmatic name is “RemoteOrderDisplay.”

32.3.1 Capabilities

The Remote Order Display has the following minimal set of capabilities:

• Supports color or monochrome text character displays.

• Supports 8 foreground colors (or gray scale on monochrome display) with the option of using the intensity attribute.

• Supports 8 background colors (or gray scale on monochrome display) with the option of using only a blinking
 attribute.

• The individual event types support disabling such that the application only receives a subset of data events if
 requested.

• Supports video region buffering.

• Supports cursor functions.

• Supports clock functions.

• Supports resetting a video unit to power on state.

The Remote Order Display may also have the following additional capabilities:

• Supports multiple video displays each with possibly different video modes.

• Supports touch video input for a touch screen display unit.

• Supports video enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a video display unit is touched (for touch screen only).

• Supports downloading alternate character sets to one or many video units.

• Supports transaction mode display output to one or many video units.

The following capability is not supported:

• Support for graphical displays, where the video display is addressable by individual pixels or dots. The addition of
 this support is under investigation for future revisions.

Unified POS, v1.15.1 Beta1 32 - 7

32.3.2 Remote Order Display Class Diagram

The following diagram shows the relationships between the Remote Order Display classes.

UposException

(from upos)

<<exception>>

RemoteOrderDisplayConst
(from upos)

<<utility>>

UposConst

(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

RemoteOrderDisplayControl

<<capability>> CapSelectCharacterSet : boolean
<<capability>> CapTone : boolean
<<capability>> CapTouch : boolean
<<capability>> CapTransaction : boolean
<<prop>> AsyncMode : boolean
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> Clocks : int32
<<prop>> CurrentUnitID : int32
<<prop>> ErrorString : string
<<prop>> ErrorUnits : int32
<<prop>> EventString : string
<<prop>> EventType : int32
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> SystemClocks : int32
<<prop>> SystemVideoSaveBuffers : in32
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> VideoDataCount : int32
<<prop>> VideoMode : in32
<<prop>> VideoModesList : string
<<prop>> VideoSaveBuffers : int32

clearVideo()
clearVideoRegion()
controlClock()
controlCursor()
copyVideoRegion()
displayData()
drawBox()
freeVideoRegion()
resetVideo()
restoreVideoRegion()
saveVideoRegion()
selectCharacterSet()
setCursor()
transactionDisplay()
updateVideoRegionAttribute()
videoSound()

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

fires

BaseControl

(from upos)

<<Interface>>
<<uses>>

<<sends>>

32 - 8 Unified POS, V1.15.1 Beta1

32.3.3 Model Updated in Release 1.7

The general model of a Remote Order Display:

The Remote Order Display device class is a subsystem of video units. The initial targeted environment is food
service, to display order preparation and fulfillment information. Remote Order Displays are often used in
conjunction with Bump Bars.

The general model of a Remote Order Display is an output device but may also be an input device when, in some
implementations, the device can report additional status or user input data back to the application program.

• The subsystem can support up to 32 video units.

Typically, one application on one workstation (or POS Terminal) would manage and control the entire subsystem of
Remote Order Displays. However, if applications on the same or other workstations (or POS Terminals) would need
to access the subsystem, then one of the applications must act as a subsystem server and expose the necessary
interfaces to other applications.

• All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of units or
 all online units. The units parameter is an int32, with each bit identifying an individual video unit. The Service will
 attempt to satisfy the method for all units indicated in the units parameter. If an error is received from one or more
 units, the ErrorUnits property is updated with the appropriate units in error. The ErrorString property is updated
 with a description of the error or errors received. The method will then raise a UposException. In the case where two
 or more units encounter different errors, the exception’s ErrorCode will indicate the more severe error.

• The common methods checkHealth, clearInput, and clearOutput are not broadcast methods and use the unit ID
 indicated in the CurrentUnitID property. See the description of these common methods to understand how the
 CurrentUnitID property is used.

• When the CurrentUnitID property is set by the application, all the corresponding properties are updated to reflect
 the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-
initialized values.

The CurrentUnitID uniquely represent a single video unit. The definitions range from ROD_UID_1 to
ROD_UID_32. These definitions are also used to create the bitwise parameter, units, used in the broadcast methods.

• The rows and columns are numbered beginning with (0,0) at the top-left corner of the video display. The dimensions
 are defined by the height and width parameters. The region depicted below would have the parameters
 row = 1, column = 2, height = 3, and width = 4.

Unified POS, v1.15.1 Beta1 32 - 9

All position parameters are expressed in text characters.

• The VGA-like attribute parameter, that is used in various methods, is an int32. Bits 7-0 define the text attribute and
 bits 31-8 are reserved and must be 0, otherwise an E_ILLEGAL exception is raised. The following table defines bits
 7-0:

If a foreground or background color is requested, but the Service does not support that color, it chooses the best fit
from the colors supported.

The following constants may be used, with up to one constant selected from each category:

• Blinking: ROD_ATTR_BLINK

• Background Color: ROD_ATTR_BG_color, where color is replaced by BLACK, BLUE, GREEN, CYAN, RED,
 MAGENTA, BROWN, or GRAY

• Intensity: ROD_ATTR_INTENSITY

• Foreground Color: ROD_ATTR_FG_color, where color is replaced by BLACK, BLUE, GREEN, CYAN, RED,
 MAGENTA, BROWN, or GRAY

• For touch video input, the Remote Order Display Control follows the general “Input Model” for event-driven input
 with some differences:

• When input is received a DataEvent is enqueued.

• This device does not support the AutoDisable property, so will not automatically disable itself when a DataEvent is
 enqueued.

• An enqueued DataEvent is delivered to the application when the DataEventEnabled property is true and other
 event delivery requirements are met. Just before delivering this event, data is copied into the properties, and further
 data events are disabled by setting the DataEventEnabled property to false. This causes subsequent input data to be
 enqueued while the application processes the current input and associated properties. When the application has
 finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to true.

•

• An ErrorEvent is enqueued if an error occurs while gathering or processing input, and is delivered to the
 application when the DataEventEnabled property is true and other event delivery requirements are met.

• The VideoDataCount property may be read to obtain the number of video DataEvents for a specific unit ID
 enqueued. The DataCount property can be read to obtain the total number of data events enqueued.

• Input enqueued may be deleted by calling the clearInput method. See clearInput method description for more
 details.

• For video and tone output, the Remote Order Display follows the general Output Model, with some enhancements.

32 - 10 Unified POS, V1.15.1 Beta1

• The following methods are always performed synchronously: controlClock, controlCursor, selectCharacterSet,
 resetVideo, and setCursor. These methods will fail if asynchronous output is outstanding. The following method is
 also always performed synchronously but without regard to outstanding asynchronous output: freeVideoRegion.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
 AsyncMode property: clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
 restoreVideoRegion, saveVideoRegion, transactionDisplay, updateVideoRegionAttribute, and videoSound.
 When AsyncMode is false, then these methods operate synchronously.

• When AsyncMode is true, then these methods operate as follows:

• The request is buffered in program memory for delivery to the Physical Device as soon as the Physical Device can
 receive and process it, the OutputID property is set to an identifier for this request, and returns as soon as possible.
 When the device completes the request successfully, then the EventUnits property is updated and an
 OutputCompleteEvent is enqueued. A property of this event contains the output ID of the completed request.
 Asynchronous methods will not raise a UposException due to a display problem, such as communications failure.

 These errors will only be reported by an ErrorEvent. A UposException is raised only if the display is not claimed
 and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error cases are due to an
 application error, while the last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The EventUnits
 property is set to the unit or units in error. The EventString property is also set.

Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a synchronous broadcast method,
then ErrorUnits and ErrorString are set instead.

The event handler may call synchronous display methods (but not asynchronous methods), then can either retry the
outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All unit buffered output data, including all asynchronous output, may be deleted by setting the CurrentUnitID
property and calling clearOutput. OutputCompleteEvents will not be delivered for cleared output. This method
also stops any output that may be in progress (when possible).

When AsyncMode is false, then these methods operate synchronously and the Service returns to the application after
completion. When operating synchronously, a UposException is raised if the method could not complete
successfully.

• The Remote Order Display device may support transaction mode. A transaction is a sequence of display operations
 that are sent to a video unit as a single unit. Display operations which may be included in a transaction are
 clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox, restoreVideoRegion,
 saveVideoRegion, and updateVideoRegionAttribute. During a transaction, the display operations are first
 validated. If valid, they are added to the transaction but not displayed yet. Once the application has added as many
 operations as required, then the transaction display method is called.

If the transaction is displayed synchronously, then any exception raised indicates that an error occurred during the
display. If the transaction is displayed asynchronously, then the asynchronous display rules listed above are followed.
If an error occurs and the ErrorEvent handler causes a retry, the entire transaction is retried.

Unified POS, v1.15.1 Beta1 32 - 11

32.3.4 Device Sharing

The Remote Order Display is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many Remote Order Display specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• When a claim method is called again, settable device characteristics are restored to their condition at release.
 Examples of restored characteristics are character set, video mode, and tone frequency. Region memory buffers,
 clock and cursor settings are considered state characteristics and are not restored.

• See the “Summary” table for precise usage prerequisites.

32 - 12 Unified POS, V1.15.1 Beta1

32.4 Properties (UML attributes)

32.4.1 AsyncMode Property Updated in Release 1.11

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, transactionDisplay, updateVideoRegionAttribute,
and videoSound methods will be performed asynchronously.
If false, they will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

32.4.2 AutoToneDuration Property Updated in Release 1.11

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the video unit indicated in the
CurrentUnitID property.

This property is initialized to the default value for each online video unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An illegal value was specified. The ErrorString property is updated.

See Also CurrentUnitID Property.

32.4.3 AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the video unit indicated in the
CurrentUnitID property.
This property is initialized to the default value for each online video unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An illegal value was specified. The ErrorString property is updated.

See Also CurrentUnitID Property.

Unified POS, v1.15.1 Beta1 32 - 13

32.4.4 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character
set when displaying data.

If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

32.4.5 CapSelectCharacterSet Property

Syntax CapSelectCharacterSet: boolean {read-only, access after open-claim-enable}

Remarks If true, the video unit indicated in the CurrentUnitID property may be loaded with an alternate,
user supplied character set.

This property is initialized for each video unit online when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property.

32.4.6 CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the video unit indicated in the CurrentUnitID property supports an enunciator.

This property is initialized for each video unit online when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property.

32 - 14 Unified POS, V1.15.1 Beta1

32.4.7 CapTouch Property

Syntax CapTouch: boolean { read-only, access after open-claim-enable }
Remarks If true, the video unit indicated in the CurrentUnitID property supports the

ROD_DE_TOUCH_UP, ROD_DE_TOUCH_DOWN, and ROD_DE_TOUCH_MOVE event
types.
This property is initialized for each video unit online when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property, DataEvent.

32.4.8 CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }
Remarks If true, then transactions are supported by each video unit.

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 32 - 15

32.4.9 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-only, access after open-claim-enable }
Remarks Holds the character set for displaying characters for the video unit indicated by CurrentUnitID.

When CapSelectCharacterSet is true, this property can be set to one of the following values:
Value Meaning
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII

or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
ROD_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
ROD_CS_ASCII The ASCII character set, supporting the ASCII characters 0x20 through

0x7F. The value of this constant is 998.
ROD_CS_ANSI The ANSI character set. The value of this constant is 999.
Range 1000 and above Code page; matches one of the standard values.
For additional implementation-specific information on the use of this property, refer to the
“Mapping of CharacterSet” section in the Annexes. For OPOS, see Annex A, for JavaPOS, see
Annex B.
This property is initialized to the default video character set used by each video unit online when
the device is first enabled following the open method.
This is updated during the selectCharacterSet method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property, CharacterSetList Property, CapSelectCharacterSet Property,
selectCharacterSet method.

32.4.10 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open-claim-enable }

Remarks Holds a string of character set numbers for the video unit indicated in the CurrentUnitID property.

If CapSelectCharacterSet is true, this property is initialized for each video unit online when the
device is first enabled following the open method.

The character set number string consists of an ASCII numeric set of numbers, separated by commas.

For example, if the string is “101, 850, 999”, the video unit supports a device-specific character set,
code page 850, and the ANSI character set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property, CharacterSet Property, CapSelectCharacterSet Property,
selectCharacterSet Method.

32 - 16 Unified POS, V1.15.1 Beta1

32.4.11 Clocks Property

Syntax Clocks: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of clocks the video unit, indicated in the CurrentUnitID property, can support.

This property is initialized for each online video unit when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property

32.4.12 Current UnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current video unit ID. Up to 32 units are allowed on one Remote Order Display device.
The unit ID definitions range from ROD_UID_1 to ROD_UID_32.

The following properties and methods apply only to the selected video unit ID:

• Properties: AutoToneDuration, AutoToneFrequency, CapSelectCharacterSet, CapTone,
CapTouch, CharacterSet, CharacterSetList, Clocks, VideoDataCount, VideoMode,
VideoModesList, VideoSaveBuffers.

Setting CurrentUnitID will update these properties to the current values for the specified unit.

Methods: checkHealth, clearInput, clearOutput.

This property is initialized to ROD_UID_1 when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.

Unified POS, v1.15.1 Beta1 32 - 17

32.4.13 DataCount Property (Common)

Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in this value. The
number of enqueued events for a specific unit ID is stored in the VideoDataCount property.

The application may read this property to determine whether additional input is enqueued from a
device, but has not yet been delivered because of other application processing, freezing of events,
or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18, VideoDataCount Property, DataEvent.

32.4.14 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred to the unit(s) specified by the ErrorUnits property,
when an error occurs for any method that acts on a bitwise set of video units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the
property EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ErrorUnits Property.

32.4.15 ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs for any method
that acts on a bitwise set of video units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the
property EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ErrorString Property.

32 - 18 Unified POS, V1.15.1 Beta1

32.4.16 EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the EventUnits property,
when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also EventUnits Property, ErrorEvent.

32.4.17 EventType Property

Syntax EventType: int32 { read-write, access after open }

Remarks Holds a bitwise mask that is used to selectively indicate which event types are to be delivered by
the DataEvent, for all video units online. See the DataEvent description for event type definitions.

This property is initialized to all defined event types by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.

See Also DataEvent

32.4.18 EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the video unit ID of the last delivered DataEvent. The unit ID definitions range from
BB_UID_1 to BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DataEvent

Unified POS, v1.15.1 Beta1 32 - 19

32.4.19 EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, output ErrorEvent, or
StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

32.4.20 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}
Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred

by the application to the character set selected in the CharacterSet property for displaying data.

If MapCharacterSet is false, then no mapping is supported. In such a case the application has to
ensure the mapping of the character set used in the application to the character set selected in the
CharacterSet property.

If CapMapCharacterSet is false, then this property is always false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CharacterSet Property, CapMapCharacterSet Property.

32.4.21 SystemClocks Property

Syntax SystemClocks: int32 { read-only, access after open-claim-enable }

Remarks Holds the total number of clocks the Remote Order Display device can support at one time.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also Clocks Property.

32 - 20 Unified POS, V1.15.1 Beta1

32.4.22 SystemVideoSaveBuffers Property

Syntax SystemVideoSaveBuffers: int32 { read-only, access after open-claim-enable }

Remarks Holds the total number of video save buffers the Remote Order Display device can support at one
time.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also VideoSaveBuffers Property.

32.4.23 Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the Remote Order Display device to complete all
output methods supported. If the device cannot successfully complete an output method within the
timeout value, then the method throws a UposException if AsyncMode is false, or enqueues an
ErrorEvent if AsyncMode is true.

This property is initialized to a Service dependent default timeout following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.

See Also AsyncMode Property.

32.4.24 UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Holds a bitwise mask indicating the video units online. Bit 0 is ROD_UID_1. 32 video units are
supported.
This property is initialized when the device is first enabled following the open method. This
property is updated as changes are detected, such as before a StatusUpdateEvent is enqueued and
during the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Model Updated in Release 1.7” on page 8, checkHealth Method, StatusUpdateEvent.

Unified POS, v1.15.1 Beta1 32 - 21

32.4.25 VideoDataCount Property

Syntax VideoDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the video unit indicated in the CurrentUnitID
property.
The application may read this property to determine whether additional input is enqueued from a
video unit, but has not yet been delivered because of other application processing, freeing of events,
or other causes.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property, DataEvent.

32.4.26 VideoMode Property

Syntax VideoMode: int32 { read-write, access after open-claim-enable }

Remarks Holds the video ModeId selected for the video unit indicated by the CurrentUnitID property. The
ModeId represents one of the selections in the VideoModesList property.
This property is initialized to the Service dependent default video ModeId used by each video unit
online when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.
E_FAILURE An error occurred while communicating with the video unit indicated in

the CurrentUnitID property. The ErrorString property is updated.
See Also CurrentUnitID Property, VideoModesList Property.

32 - 22 Unified POS, V1.15.1 Beta1

32.4.27 VideoModesList Property

Syntax VideoModesList: string { read-only, access after open-claim-enable }

Remarks Holds the video modes supported for the video unit indicated in the CurrentUnitID property. The
video modes are listed in a comma delineated string with the following format:
<ModeId>:<Height>x<Width>x<NumberOfColors><M|C>.
The ModeId values are determined by the Remote Order Display system.
M = Monochrome (and gray scales) and C = Color.

For example, if the string is “1:40x25x16C,2:80x25x16C”, then the video unit supports two video
modes, ModeId 1 and ModeId 2. ModeId 1 has 40 rows, 25 columns, 16 colors, and is Color.
ModeId 2 has 80 rows, 25 columns, 16 colors, and is Color.

The ModeId is used to initialize the VideoMode property for each video unit online.

This property is initialized to the video modes list supported by each video unit online when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property, VideoMode Property.

32.4.28 VideoSaveBuffers Property

Syntax VideoSaveBuffers: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of save buffers for the video unit indicated in the CurrentUnitID property. This
property should be consulted when using the saveVideoRegion, restoreVideoRegion and
freeVideoRegion methods. When set to 0, this indicates that buffering for the selected unit is not
supported. When this property is greater than 0, the Remote Order Display device can save at
minimum one entire video screen for the selected video unit.

This property is initialized for each video unit online when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentUnitID Property, saveVideoRegion Method, restoreVideoRegion Method,
freeVideoRegion Method.

Unified POS, v1.15.1 Beta1 32 - 23

32.5 Methods (UML operations)

32.5.1 checkHealth Method (Common)

Syntax checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the level of health check to be performed on the device. The following
values may be specified:

Value Meaning
CH_INTERNAL Perform a health check that does not physically change the device. The
 device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device. For example, a
pattern may be displayed on the video.

CH_INTERACTIVE Perform an interactive test of the device. The Service will typically
display a modal dialog box to present test options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method checks the health of the
unit indicated in the CurrentUnitID property. If the current unit ID property is zero, an
EROD_NOUNITS error is set. When the current unit ID property is set to a unit that is not currently
online, the device will attempt to check the health of the video unit and report a communication error
if necessary. The CH_INTERACTIVE health check operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The CurrentUnitID property
 is zero.

E_FAILURE An error occurred while communicating with the video unit indicated in
CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.

32 - 24 Unified POS, V1.15.1 Beta1

32.5.2 clearInput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit indicated in the CurrentUnitID property.
If the current unit ID property is zero, an EROD_NOUNITS is set.

Any data events that are enqueued – usually waiting for DataEventEnabled to be set to true and
FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The CurrentUnitID property
 is zero.

See Also CurrentUnitID Property, “Device Input Model” on page 1- 18.

32.5.3 clearOutput Method (Common) Updated in Release 1.7

Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears all outputs that have been buffered, including all asynchronous output, for the unit indicated
in the CurrentUnitID property, including video and tone outputs. If the current unit ID property is
zero, an EROD_NOUNITS is set.

Any output complete and output error events that are enqueued – usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The CurrentUnitID property
　　　　　　　　 is set to zero.

See Also CurrentUnitID Property, “Device Output Models” on page 1- 21.

Unified POS, v1.15.1 Beta1 32 - 25

32.5.4 clearVideo Method

Syntax clearVideo (units: int32, attribute: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
attribute See Model on page 1- 8 in the General Information section.

Remarks Clears the entire display area for the video unit(s) indicated in the units parameter. The display area
will be cleared using the attribute placed in the attribute parameter.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also AsyncMode Property, “Model Updated in Release 1.7”.

32.5.5 clearVideoRegion Method

Syntax clearVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32,
attribute: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The region’s start row.
column The region’s start column.
height The number of rows in the region.
width The number of columns in the region.
attribute See “Model Updated in Release 1.7” on page 8 in the General Information section.

Remarks Clears the specified video region for the video unit(s) indicated in the units parameter. The display
area will be cleared using the attribute placed in the attribute parameter.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indicated in

units. The ErrorUnits and ErrorString properties are updated. (Can only occur
if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release
1.7” on page 8.

32 - 26 Unified POS, V1.15.1 Beta1

32.5.6 controlClock Method

Syntax controlClock (units: int32, function: int32, clockId: int32, hour: int32, min: int32, sec:
int32, row: int32, column: int32, attribute: int32, mode: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

function The requested clock command. See values below.
clockId Clock identification number. The valid values can be from 1 - Clocks. When the

function parameter is
ROD_CLK_PAUSE, ROD_CLK_RESUME,
or ROD_CLK_STOP
then clockId can be ROD_CLK_ALL to specify all clocks started on the specified
video unit(s).

hour The initial hours for the clock display.
min The initial minutes for the clock display.
sec The initial seconds for the clock display.
row The clock’s row.
column The clock’s start column.
attribute See “Model Updated in Release 1.7” on page 8 in the General Information section.
mode The type of clock to display. See values below.

The function parameter values are:

Value Meaning
ROD_CLK_START Starts a clock display assigned to the given clockId.

ROD_CLK_PAUSE Temporarily stops a clock from updating the display until a
ROD_CLK_RESUME requested.

ROD_CLK_RESUME Resumes a clock that was previously paused, such that display updates
continue.

ROD_CLK_STOP Permanently stops the clock from updating the display and the clockId
becomes free.

ROD_CLK_MOVE Moves an instantiated clock to a new position.

The mode parameter values are:

Value Meaning
ROD_CLK_SHORT Displays a clock with “M:SS” format.

ROD_CLK_NORMAL Displays a clock with “MM:SS” format.
ROD_CLK_12_int Displays a 12 hour clock with “HH:MM:SS” format.
ROD_CLK_24_int Displays a 24 hour clock with “HH:MM:SS” format.

Unified POS, v1.15.1 Beta1 32 - 27

Remarks Performs the clock command requested in the function parameter on the video unit(s) indicated in
the units parameter. The clock will be displayed in the requested mode format at the location found
in the row and column parameters.
The clock will start at the specified hour, min, and sec, time values and will be updated every second
until a ROD_CLK_PAUSE or ROD_CLK_STOP is requested for this clockId.
When a ROD_CLK_PAUSE, ROD_CLK_RESUME, or ROD_CLK_STOP command is issued,
the hour, min, sec, row, column, attribute, and mode parameters are ignored. During a
ROD_CLK_PAUSE command, the clock display updates are suspended. During a
ROD_CLK_RESUME command, the clock updates continue.
If a ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_STOP or ROD_CLK_MOVE
command is requested on an uninitialized clockId for any of the video units indicated in the units
parameter, a EROD_BADCLK error is thrown. If a ROD_CLK_RESUME command is requested
without doing a ROD_CLK_PAUSE, this has no effect and no exception is thrown.
When a ROD_CLK_MOVE command is issued, the clock is moved to the new location found in
the row and column parameters. The hour, min, sec, attribute and mode parameters are ignored for
this command function.
Generally a video unit can support the number of clocks indicated in the Clocks property. However,
the ROD_CLK_START command will raise an exception containing EROD_NOCLOCKS if it
exceeds the number of SystemClocks even though the Clocks property may indicate the unit can
support more clocks than allocated for that unit.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_BADCLK:
 A ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_START,
 ROD_CLK_MOVE command was requested and the specified clockId
 has not been initialized by the ROD_CLK_START command.

 ErrorCodeExtended = EROD_NOCLOCKS: The ROD_CLK_START
 failed because the number of SystemClocks has been reached.
 The ErrorUnits and ErrorString properties are updated.

E_FAILURE An error occurred while communicating with one of the video units
 indicated in the units parameter. The ErrorUnits and ErrorString
 properties are updated.

E_BUSY When a ROD_CLK_START command is requested but the specified
 clockId is in use. The ErrorUnits and ErrorString properties are

 updated.
See Also Clocks Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release 1.7” on

page 8.

32 - 28 Unified POS, V1.15.1 Beta1

32.5.7 controlCursor Method

Syntax controlCursor (units: int32, function: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

function The cursor command, indicating the type of cursor to display. See values below.

Value Meaning
ROD_CRS_LINE enable a solid underscore line.

ROD_CRS_LINE_BLINK enable a blinking solid underscore cursor.

ROD_CRS_BLOCK enable a solid block cursor.

ROD_CRS_BLOCK_BLINK enable a blinking solid block cursor.

ROD_CRS_OFF Disable cursor.

Remarks Enables or disables the cursor depending on the function parameter, for the video unit(s) indicated
in the units parameter.

When the function is ROD_CRS_OFF, the cursor is disabled, otherwise the cursor is enabled as the
requested cursor type. If the video unit cannot support the requested cursor type, the Service will
use the next closest cursor type.

The cursor attribute is taken from the current cursor location.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred communicating with one of the video units indicated in
 units. The ErrorUnits and ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.

Unified POS, v1.15.1 Beta1 32 - 29

32.5.8 copyVideoRegion Method

Syntax copyVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32,
targetRow: int32, targetColumn: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

row The region’s start row.
column The region’s start column.
height The number of rows in the region.
width The number of columns in the region.
targetRow The start row of the target location.
targetColumn The start column of the target location.

Remarks Copies a region of the display area to a new location on the display area for the video unit(s)
indicated in the units parameter. The source area is defined by the row, column, height, and width
parameters. The top-left corner of the target location is defined by the targetRow and targetColumn
parameters. If the ranges overlap the copy is done such that all original data is preserved.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indi
 cated in units. The ErrorUnits and ErrorString properties are updated.
 (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release
1.7” on page 8.

32 - 30 Unified POS, V1.15.1 Beta1

32.5.9 displayData Method Updated in Release 1.7

Syntax displayData (units: int32, row: int32, column: int32, attribute: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The start row for the text.
column The start column for the text.
attribute The video attribute. See “Model Updated in Release 1.7” on page 8 in the
General Information section. data1 The string
of characters to display.

Remarks Displays the characters in data beginning at the location specified by row and column, and continues
in succeeding columns on the video unit(s) indicated in the units parameter. Any characters that
extend beyond the last column will be discarded.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units
 indicated in units. The ErrorUnits and ErrorString properties are
 updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release
1.7” on page 8.

1. In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 32 - 31

32.5.10 drawBox Method

Syntax drawBox (units: int32, row: int32, column: int32, height: int32, width: int32, attribute: int32,
bordertype: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The box’s start row.
column The box’s start column.
height The number of rows in the box.
width The number of columns in the box.
attribute The video attribute. See “Model Updated in Release 1.7” on page 8.
bordertype The border type to be drawn. Can be any printable character or a defined
 border type. See values below.

Value Meaning
ROD_BDR_SINGLE A single line border.
ROD_BDR_DOUBLE A double line border.
ROD_BDR_SOLID A solid block border.

Remarks Draws a box on the video unit(s) indicated in the units parameter.

The Remote Order Display will attempt to draw a box with the border type specified. If the character
set does not support the chosen border type, the Service will choose the best fit from the given
character set.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units
 indicated in units. The ErrorUnits and ErrorString properties are
 updated.

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release
1.7” on page 8.

32 - 32 Unified POS, V1.15.1 Beta1

32.5.11 freeVideoRegion Method

Syntax freeVideoRegion (units: int32, bufferId: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
bufferId Number identifying the video buffer to free. Valid values range from 1 to the

VideoSaveBuffers property for a selected unit(s).

Remarks Frees any buffer memory allocated for the video unit(s) indicated in the units parameter. The
number of video buffers supported is stored in the VideoSaveBuffers property for each video unit
online. If the bufferId was never used in a previous saveVideoRegion method, no action is taken.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated.

See Also ErrorString Property, ErrorUnits Property, VideoSaveBuffers Property, saveVideoRegion
Method.

32.5.12 resetVideo Method

Syntax resetVideo (units: int32):
void { raises-exception, use after open-claim-enable }

units is a bitwise mask indicating which video unit(s) to operate on.

Remarks Sets the video unit(s) indicated in the units parameter to a power on state. All Service buffers and
clocks associated with the unit(s) are released. All settable characteristics are set to default values.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated.

See Also ErrorString Property, ErrorUnits Property.

Unified POS, v1.15.1 Beta1 32 - 33

32.5.13 restoreVideoRegion Method

Syntax restoreVideoRegion (units: int32, targetRow: int32, targetColumn: int32, bufferId: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
targetRow The start row of the target location.
targetColumn The start column of the target location.
bufferId Number identifying the source video buffer to use. Valid values range from 1

to the VideoSaveBuffers property for the selected unit(s).

Remarks Restores a previously saved video region of the display area from the requested bufferId for the
video unit(s) indicated in the units parameter. A region can be saved using the saveVideoRegion
method. The number of video buffers supported is stored in the VideoSaveBuffers property for
each video unit online. The target location is defined by the targetRow and targetColumn
parameters. This method doesn’t free the memory after restoring, therefore, this method can be used
to copy a video region to multiple locations on the display. Use the freeVideoRegion method to free
any memory allocated for a video buffer.

If the bufferId does not contain a previously saved video region for the units selected, a
EROD_NOREGION exception is raised.

Video regions cannot be restored between video units. For example, the saveVideoRegion method
is called with units = 0000 1000 and bufferId = 1. This will save a video region for the Unit Id 4, in
to Buffer 1 for that unit. If this method is called with units = 0000 0100 and bufferId = 1 with the
intention of restoring the previously saved buffer to Unit Id 3, then either a UposException with
ErrorCode of EROD_NOREGION would be thrown, or an unwanted region would be restored.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_NOREGION: The bufferId does not

contain a previously saved video region.
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, VideoSaveBuffers Property,
saveVideoRegion Method.

32 - 34 Unified POS, V1.15.1 Beta1

32.5.14 saveVideoRegion Method

Syntax saveVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32, bufferId:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The start row of the region to save.
column The start column of the region to save.
height The number of rows in the region to save.
width The number of columns in the region to save.
bufferId Number identifying the video buffer to use. Valid values range from 1 to the
 VideoSaveBuffers property for a selected unit(s).

Remarks Saves the specified video region of the display area to one of the provided video buffers for the
video unit(s) indicated in the units parameter. The number of video buffers supported is stored in
the VideoSaveBuffers property for each video unit online. However, a UposException will be
raised if the requested buffer exceeds the number of SystemVideoSaveBuffers even though the
VideoSaveBuffers property may indicated the unit can support more save buffers than currently
allocated for that unit.
If VideoSaveBuffers is greater than 0, the Service will be able to support at minimum one entire
video screen. This does not guarantee that the Service can save an entire video screen in each
supported buffer for a single unit. A UposException is raised when all the buffer memory has been
allocated for a specific unit.
The source area is defined by the row, column, height, and width parameters. The video region can
be restored to the screen by calling the restoreVideoRegion method. If saveVideoRegion is called
twice with the same bufferId, the previous video data is lost, and any allocated memory is returned
to the system.
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL bufferId, row, column, height, or width is out of range. The ErrorUnits

and ErrorString properties are updated.
E_EXTENDED ErrorCodeExtended = EROD_NOBUFFERS:

Requested buffer exceeds the number of SystemVideoSaveBuffers.
ErrorCodeExtended = EROD_NOROOM:
All the buffer memory has been allocated for a specific unit. The
ErrorUnits and ErrorString properties are updated.

E_FAILURE An error occurred while communicating with one of the video units
indicated in units. The ErrorUnits and ErrorString properties are
updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, SystemVideoSaveBuffers
Property, VideoSaveBuffers Property, restoreVideoRegion Method.

Unified POS, v1.15.1 Beta1 32 - 35

32.5.15 selectCharacterSet Method

Syntax selectCharacterSet (units: int32, characterSet: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
characterSet Contain the character set for displaying characters. Values are:
Value Meaning
Range 101 - 199 A device-specific character set that does not match a code page, nor the

ASCII or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
ROD_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
ROD_CS_ASCII The ASCII character set, supporting the ASCII characters between 20-

hex and 7F-hex. The value of this constant is 998.
ROD_CS_ANSI The ANSI character set. The value of this constant is 999.

Remarks Selects a compatible character set for the video unit(s) indicated in the units parameter.
The CharacterSet property is updated for each video unit id that is successfully assigned a new
character set.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated.

See Also ErrorString Property, ErrorUnits Property, CapSelectCharacterSet Property, CharacterSet
Property.

32 - 36 Unified POS, V1.15.1 Beta1

32.5.16 setCursor Method

Syntax setCursor (units: int32, row: int32, column: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row Row to place the cursor on.
column Column to place the cursor on.

Remarks Updates the cursor position on the video unit(s) indicated in the units parameter.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated.

See Also ErrorString Property, ErrorUnits Property.

Unified POS, v1.15.1 Beta1 32 - 37

32.5.17 transactionDisplay Method

Syntax transactionDisplay (units: int32, function: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
function Transaction control function. Valid values are:

Value Meaning
ROD_TD_TRANSACTION Begin a transaction.
ROD_TD_NORMAL End a transaction by displaying the buffered data.

Remarks Enters or exits transaction mode for the video unit(s) indicated in the units parameter.

If function is ROD_TD_TRANSACTION, then transaction mode is entered. Subsequent calls to
clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, and updateVideoRegionAttribute will buffer the
display data (either at the video unit or the Service, depending on the display capabilities) until
transactionDisplay is called with the function parameter set to ROD_TD_NORMAL. (In this case,
the display methods only validate the method parameters and buffer the data – they do not initiate
displaying. Also, the value of the AsyncMode property does not affect their operation: No
OutputID will be assigned to the request, nor will an OutputCompleteEvent be enqueued.)

If function is ROD_TD_NORMAL, then transaction mode is exited. If some data was buffered by
calls to the methods clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, and updateVideoRegionAttribute, then the buffered
data is displayed. The entire transaction is treated as one message. This method is performed
synchronously if AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode for the unit indicated in the
CurrentUnitID property. Any buffered print lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress for one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated. (Can only occur if AsyncMode is false and function is
ROD_TD_NORMAL.)

E_FAILURE An error occurred while communicating with one of the video units
indicated in units. The ErrorUnits and ErrorString properties are
updated. (Can only occur if AsyncMode is false and function is
ROD_TD_NORMAL.)

See Also clearVideo Method, clearVideoRegion Method, copyVideoRegion Method, displayData
Method, drawBox Method, restoreVideoRegion Method, saveVideoRegion Method,
updateVideoRegionAttribute Method.

32 - 38 Unified POS, V1.15.1 Beta1

32.5.18 updateVideoRegionAttribute Method

Syntax updateVideoRegionAttribute (units: int32, function: int32, row: int32, column: int32, height:
int32, width: int32, attribute: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
function The attribute command. See values below.
row The region’s start row.
column The region’s start column.
height The number of rows in the region.
width The number of columns in the region.
attribute See “Model Updated in Release 1.7” on page 8 in the General Information

section.
The function parameter values are:
Value Meaning
ROD_UA_SET Set the region with the new attribute.
ROD_UA_INTENSITY_ON Turn on foreground intensity in the region.
ROD_UA_INTENSITY_OFF Turn off foreground intensity in the region.
ROD_UA_REVERSE_ON Reverse video the region.
ROD_UA_REVERSE_OFF Remove reverse video from the region.
ROD_UA_BLINK_ON Turn on blinking in the region.
ROD_UA_BLINK_OFF Turn off blinking in the region.

Remarks Modifies the attribute on the video unit(s) indicated in the units parameter in the region defined by
the row, column, height, and width parameters. When the function parameter is ROD_UA_SET, the
region’s attributes will be replaced with the new value in the attribute parameter; otherwise the
attribute parameter is ignored and the region’s attributes will be modified.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release
1.7” on page 8.

Unified POS, v1.15.1 Beta1 32 - 39

32.5.19 videoSound Method

Syntax videoSound (units: int32, frequency: int32, duration: int32, numberOfCycles: int32,
interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
frequency Tone frequency in Hertz.
duration Tone duration in milliseconds.
numberOfCycles If FOREVER, then start tone sounding and, repeat continuously. Else perform

the specified number of cycles.
interSoundWait When numberOfCycles is not one, then pause for interSoundWait

milliseconds before repeating the tone cycle (before playing the tone again).
Remarks Sounds the video enunciator for the video(s) indicated in the units parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

The duration of a video tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the video has started an asynchronous sound, then the clearOutput method will stop the
sound. (When an interSoundWait value of FOREVER was used to start the sound, then the
application must use clearOutput to stop the continuous sounding of tones.)

If CapTone is false for the selected unit(s), a UposException is raised.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units

indicated in units. The ErrorUnits and ErrorString properties are
updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, CapTone Property,
clearOutput Method.

32 - 40 Unified POS, V1.15.1 Beta1

32.6 Events (UML interfaces)

32.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when input data from a video touch unit is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 As described below

The Status attribute is divided into four bytes as indicated below:

The low word contains the Event type. The high word contains additional data depending on the
Event type. When the Event type is ROD_DE_TOUCH_UP, ROD_DE_TOUCH_DOWN, or
ROD_DE_TOUCH_MOVE, the high word indicates where the touch occurred. The low byte
contains the Column position and the high byte contains the Row position, with valid values ranging
from 0-255.

Remarks This event can be filtered at the Remote Order Display device by setting the EventType property.

The EventUnitID property is updated before the event is delivered.

See Also “Device Input Model” on page 1- 18, EventUnitID Property, DataEventEnabled Property,
FreezeEvents Property.

High Word Low Word (Event Type)
High Byte Low Byte

Row Column
 ROD_DE_TOUCH_UP
 ROD_DE_TOUCH_DOWN
 ROD_DE_TOUCH_MOVE

Unified POS, v1.15.1 Beta1 32 - 41

32.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Remote Order Display Service to provide events to the application that are not otherwise
supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Remote Order Display devices which may not have any knowledge of the Service’s need
for this event.

See Also “Errors” on page 1- 16, directIO Method.

32 - 42 Unified POS, V1.15.1 Beta1

32.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Remote Order Display error has been detected and a suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error code causing the error event. See list of ErrorCodes in Chapter 1.
ErrorCodeExtended

int32 Extended error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Use only when locus is EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Unified POS, v1.15.1 Beta1 32 - 43

Remarks Input error events are not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

The EventUnits and EventString properties are updated before the event is delivered.

See Also “Device Output Models” on page 1- 21, “Device Information Reporting Model” on page 1- 25,
DataEventEnabled Property, EventUnits Property, EventString Property.

32.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID property has
completed successfully.

Attributes This event contains the following attribute:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks Enqueued when a previously started asynchronous output request completes successfully. The
EventUnits property is updated before the event is delivered.

See Also EventUnits Property, “Device Output Models” on page 1- 21.

32 - 44 Unified POS, V1.15.1 Beta1

32.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a video unit.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a display.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Remote Order Display detects a power state change.
Deviation from the standard StatusUpdateEvent (see Chapter 2):
• Before delivering the event, the EventUnits property is set to the units for which the new power

state applies.
• When the Remote Order Display is enabled, then a StatusUpdateEvent is enqueued to specify

the bitmask of online units.
• While the Remote Order Display is enabled, a StatusUpdateEvent is enqueued when the

power state of one or more units change. If more than one unit changes state at the same time,
the Service may choose to either enqueue multiple events or to coalesce the information into a
minimal number of events applying to EventUnits.

See Also EventUnits Property.

Unified POS, v1.15.1 Beta1 33 - 1

33 RFID Scanner

33.1 General
This Chapter defines the RFID Scanner device category.

33.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 open
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 open
DataEventEnabled: boolean { read-write } 1.12 open
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 open
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

33 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific: Type Mutability Version May Use After
CapContinuousRead: boolean { read-only } 1.12 open
CapDisableTag: boolean { read-only } 1.12 open
CapLockTag: boolean { read-only } 1.12 open
CapMultipleProtocols: int32 { read-only } 1.12 open
CapReadTimer: boolean { read-only } 1.12 open
CapWriteTag: int32 { read-only } 1.12 open
ContinuousReadMode: boolean { read-only } 1.12 open
CurrentTagID: binary { read-only } 1.12 open
CurrentTagProtocol: int32 { read-only } 1.12 open
CurrentTagUserData: binary { read-only } 1.12 open
ProtocolMask: int32 { read-write } 1.12 open & claim
ReadTimerInterval: int32 { read-write } 1.12 open & claim
TagCount: int32 { read-only } 1.12 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.12

clearInput ():
void { raises-exception, use after open, claim }

1.12

clearInputProperties ():
void { raises-exception, use after open, claim }

1.12

clearOutput ():
void { raises-exception, use after open, claim }

1.12

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.12

Unified POS, v1.15.1 Beta1 33 - 3

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.12

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

Specific
Name
disableTag (tagID: binary, timeout: int32, password: binary):

void { raises-exception, use after open, claim, enable }
1.12

firstTag ():
void { raises-exception, use after open }

1.12

lockTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open, claim, enable }

1.12

nextTag ():
 void { raises-exception, use after open }

1.12

previousTag ():
 void { raises-exception, use after open }

1.12

readTags (cmd: int32, filterID: binary, filtermask: binary, start: int32, length:
int32, timeout: int32, password: binary):

void { raises-exception, use after open, claim, enable }

1.12

startReadTags (cmd: int32, filterID: binary, filtermask: binary, start: int32,
length: int32, password: binary):

void { raises-exception, use after open, claim, enable }

1.12

stopReadTags (password: binary):
void { raises-exception, use after open, claim, enable }

1.12

writeTagData (tagID: binary, userdata: binary, start: int32, timeout: int32,
password: binary):

void { raises-exception, use after open, claim, enable }

1.12

writeTagID (sourceID: binary, destID: binary, timeout: int32, password:
binary):

void { raises-exception, use after open, claim, enable }

1.12

33 - 4 Unified POS, v1.15.1 Beta1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.12

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.12
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.12
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.12
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.12
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 33 - 5

33.3 General Information
The RFID Scanner device programmatic name is “RFIDScanner”.

This device was introduced in Version 1.12 of this specification.

33.3.1 Capabilities

The RFID Scanner device has the following capabilities:

• Reads TagID and UserData from RFID tags.

• Reading of partial UserData

The RFID Scanner device may also support the following capabilities:

• Continuous reading of tags.

• Writes TagID to RFID tags

• Locking a tag

• Writes UserData to specified RFID tags

• Disables (kills) RFID tags

• Writing of partial UserData

33 - 6 Unified POS, v1.15.1 Beta1

33.3.2 RFID Scanner Class Diagram

The following diagram shows the relationships between the RFID Scanner classes.

Unified POS, v1.15.1 Beta1 33 - 7

33.3.3 Model

The RFID Scanner is both an event-driven input device and an output device. Input and output are always
asynchronous. The tag is considered to consist of contiguous fields called the Tag ID and the User Data. This
present standard does not at this time define the Tag ID or User Data fields; they are determined in a device
specific manner by the RFID Scanner Service and may vary depending on the protocol property setting.

Input

The RFID Scanner follows the general “Device Input Model”, with some differences. In particular, only one
DataEvent is delivered for the entire group of tags read in one input operation:

• In its simplest form, readTags method can be invoked with the cmd parameter serving as data selector (ID,
 FullData, PartialData, or combinations) and other parameters holding corresponding default values, a collection of
 tags that meet the parameterized criteria will be returned.

• Application can filter read tags by passing in two bit patterns: filterID and filtermask. A filtered read operation
 should only return the tags whose TagID, when bitwise AND’ed with the parameterized filtermask matches the
 bitwise AND’ed result of filterID and filtermask. To request all tags in read range, the application can pass in a
 filtermask with all zeros. When all tag data has been collected, a DataEvent is enqueued. Tag filtering must be
supported, either in hardware or in the RFID Scanner Service.

• Partial UserData reading must also be supported, if not in the hardware then in the RFID Scanner Service. For
 accessing a specific segment of the UserData, the application can configure the cmd parameter by turning on the
 RFID_RT_PARTIALUSERDATA bit, and then pass in the starting position and the length of the targeted segment.
 The CurrentTagUserData property that is populated by a navigation method such as nextTag will now contain the
 segment that is specified.

• If the AutoDisable property is true, the device automatically disables itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
 other event delivery requirements are met. Just before delivering this event, TagCount is set to the total number of
 tags that were read, the data from the first tag are placed into the CurrentTagID, CurrentTagProtocol and
 CurrentTagUserData properties, and further DataEvents are disabled by setting DataEventEnabled to false.

• After receiving a DataEvent the application determines the total number of tags read by reading the TagCount
 property. The application can navigate through the tags by calling firstTag, nextTag, and previousTag and can
 retrieve tag information via the CurrentTagID, CurrentTagProtocol, and CurrentTagUserData properties. The
firstTag, nextTag, and previousTag methods are synchronous and no physical input or output occurs when they
are called.

• When the application finishes processing all the current input and is ready for more data, it re-enables events by
 setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, such as a timeout
 event, and is delivered to the application when DataEventEnabled is true and other event delivery requirements are
 met.

• A DataEvent or an ErrorEvent must be received before another readTags method can be invoked. All enqueued
 input may be deleted by calling clearInput.

• If CapContinuousRead is true, application can invoke startReadTags and stopReadTags for continuously
 reading. startReadTags polls tags within the range in the same manner as readTags, but it continuously queues tag
 read DataEvent until it is interrupted by stopReadTags.

33 - 8 Unified POS, v1.15.1 Beta1

Output

The RFID Scanner follows the general “Device Output Model,” with some differences and enhancements:

• The application can determine what is writable by querying CapWriteTag.

• If supported, the application can write to TagID and UserData by invoking the writeTagID or the writeTagData
method respectively.

• All write operations involving the tag’s UserData can be considered partial writes (i.e. they will only overwrite the
 section of the tag’s UserData field specified by the userData and start parameters of the writeTagData method).
Therefore, in order to overwrite the entire contents of the tag’s UserData field, the application must ensure that the
userData parameter contains enough data to completely overwrite the tag’s UserData section. The application may
need to pad the userData parameter with null (0x0) bytes in order to completely overwrite existing data and may
need to first read the tag’s UserData in order to determine amount of padding required.

• If CapLockTag is true, the application can also lock a tag by invoking the lockTag method. When a tag is locked
 both the ID and UserData become read-only. For the case where a password is required, it can be specified in the
 parameter list.

• If CapDisableTag is true, the application can also call disableTag giving the tagID of the tag it wants to
 permanently disable (kill).

• The RFID Scanner Service buffers the request for delivery to the RFID hardware as soon as the RFID hardware can
 receive and process it, sets the OutputID property to an identifier for this request, and returns as soon as possible.
 When the Service completes the request successfully, an OutputCompleteEvent is enqueued. A property of this
 event contains the OutputID of the completed request.

• If an error occurs while performing an asynchronous request, such as a timeout event, an ErrorEvent is enqueued.

Unified POS, v1.15.1 Beta1 33 - 9

33.3.4 RFID Scanner Sequence Diagrams

The following diagram shows a typical initialization sequence for a RFID Scanner device.

: Client App : RFID Scanner : RFID Scanner Service

getCapMultipleProtocols()

getCapMultipleProtocols()

setProtocolMask()

setProtocolMask()

33 - 10 Unified POS, v1.15.1 Beta1

The following diagram shows a typical usage of a RFID Scanner device reading tags.

: ClientApp : RFID Scanner : RFID Scanner Service : RFID Hardware

setProtocolMask()

setProtocolMask()

readTag(RFID_READ_TAGID)

readTag(RFID_READ_TAGID)

issue read command

send tag data

collect data from all tags which match the tag mask

enqueue DataEvent
load data from first tag into CurrentTag* properties and deliver enqueued DataEvent to control

deliver DataEvent to application
notify client of new event

getTagCount()

getCurrentTagID() getCurrentTagID()

nextTag()
nextTag()

load next tag data into CurrentTag* properties

getTagCount()

getCurrentTagUserData() getCurrentTagUserData()

Unified POS, v1.15.1 Beta1 33 - 11

The following diagram shows a typical usage of a RFID Scanner device writing tags.

: Client App : RFID Scanner : RFID Scanner Service
: RFID Output Complete

Event : RFID Hardware

writeTagData()

writeTagData()

generate OutputID(1)

send write cmd and associated user datagetOutputID()

getOutputID()

write cmd complete

create

deliver enqueued OutputCompleteEvent to control

deliver OutputCompleteEvent to all event handlers

notify client of new event

33 - 12 Unified POS, v1.15.1 Beta1

33.3.5 RFID Scanner State Diagram

The following diagram illustrates the various state transitions within the RFID Scanner device category.

33.3.6 Device Sharing

The RFID Scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the RFID Scanner specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Closed

Opened

Claimed

EnabledContinuous Read Mode

Output Requested

Input RequestedreadTags()

writeTagData()

writeTagID()

lockTag()

disableTag()

OutputCompleteEvent

ErrorEvent

clearOutput()

ErrorEvent

DataEvent
clearInput()

startReadTags()

stopReadTags()

release()

open()

close()

claim()

Busy State

SetDeviceEnabled(true)

SetDeviceEnabled(false)

Unified POS, v1.15.1 Beta1 33 - 13

33.4 Properties (UML Attributes)

33.4.1 CapContinuousRead Property

Syntax CapContinuousRead: boolean { read-only, access after open }

Remarks If true, the device supports continuous reading. The application should query this property before
invoking startReadTags and other continuous read methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ContinuousReadMode Property, startReadTags Method, stopReadTags Method.

33.4.2 CapDisableTag Property

Syntax CapDisableTag: boolean { read-only, access after open }

Remarks If true, the device supports disabling a tag permanently. The application should query this property
before invoking the disableTag method.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also disableTag Method.

33.4.3 CapLockTag Property

Syntax CapLockTag: boolean { read-only, access after open }
Remarks Indicates whether this reader supports locking a tag. Application should query this property before

invoking lockTag method.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also lockTag Method.

33 - 14 Unified POS, v1.15.1 Beta1

33.4.4 CapMultipleProtocols Property

Syntax CapMultipleProtocols: int32 { read-only, access after open }
Remarks This property indicates the available predefined RFID tag protocols this device supports. If the

device supports more than one of these protocols, the value of this property will be the bitwise sum
of the values of the supported protocols.
Value Meaning
RFID_PR_EPC0 EPC class 0 read-only passive tags
RFID_PR_0PLUS Non-standard EPC class “0+” write once passive tags
RFID_PR_EPC1 EPC class 1 write once passive tags
RFID_PR_EPC1G2 EPC class 1 gen 2 (ISO 18000-6C) write once passive tags
RFID_PR_EPC2 EPC class 2 rewritable tags
RFID_PR_ISO14443A ISO 14443A HF tags
RFID_PR_ISO14443B ISO 14443B HF tags
RFID_PR_ISO15693 ISO 15693 HF tags
RFID_PR_ISO180006B ISO 18000-6B UHF tags
RFID_PR_OTHER A tag that does not fit into one of the defined protocols
Based on this property, ProtocolMask can further filter the tags it wants to exclude by turning off
the bits.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CurrentTagProtocol Property, ProtocolMask Property.

33.4.5 CapReadTimer Property

Syntax CapReadTimer: boolean { read-only, access after open }

Remarks If true, the device supports a read timer. Application should query this property first before setting
ReadTimerInterval.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ReadTimerInterval Property.

Unified POS, v1.15.1 Beta1 33 - 15

33.4.6 CapWriteTag Property

Syntax CapWriteTag: int32 { read-only, access after open }

Remarks Indicates the writable fields in the tag. Possible values are:
Value Meaning
RFID_CWT_NONE No writable fields in the tag (0)
RFID_CWT_ID The ID field in the tag is writable (1)
RFID_CWT_USERDATA The UserData field in the tag is writable (2)
RFID_CWT_ALL All fields in the tag are writable (3)
The value of this property indicates only the write capability of the device and does not imply the
writability of any specific tag. The application should query this property before invoking writing
methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also writeTagData Method, writeTagID Method.

33.4.7 ContinuousReadMode Property

Syntax ContinuousReadMode: boolean {read-only, access after open}
Remarks If true, the device is in continuous read mode. The ProtocolMask and ReadTimerInterval

properties are read-only when this property is true.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapContinuousRead Property.

33.4.8 CurrentTagID Property

Syntax CurrentTagID: binary { read-only, access after open }1

Remarks This property represents present tag’s TagID.
Just before a DataEvent is delivered, the service populates this property with data from the first tag
that was read. The service keeps this property up to date when the application calls the firstTag,
nextTag, and previousTag methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also firstTag Method, nextTag Method, previousTag Method, readTags Method, startReadTags
Method.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

33 - 16 Unified POS, v1.15.1 Beta1

33.4.9 CurrentTagProtocol Property

Syntax CurrentTagProtocol: int32 { read-only, access after open }
Remarks The Service populates this property with the Protocol that this tag was read through. The value here

should match one of the selection in ProtocolMask. This property may be updated by the Service
for each individual tag.
Just before a DataEvent is delivered, the service populates this property with data from the first tag
that was read. The service keeps this property up to date when the application calls the firstTag,
nextTag, and previousTag methods.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ProtocolMask Property, firstTag Method, nextTag Method, previousTag Method, readTags
Method, startReadTags Method.

33.4.10 CurrentTagUserData Property

Syntax CurrentTagUserData: binary { read-only, access after open }1

Remarks The Service populates this property with the data read from the physical tag. If it is a partial read, it
will populate it with the targeted segment.
Just before a DataEvent is delivered, the service populates this property with data from the first tag
that was read. The service keeps this property up to date when the application calls the firstTag,
nextTag, and previousTag methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16. .

See Also firstTag Method, nextTag Method, previousTag Method, readTags Method, startReadTags
Method.

Unified POS, v1.15.1 Beta1 33 - 17

33.4.11 ProtocolMask Property

Syntax ProtocolMask: int32 { read-write, access after open-claim }
Remarks Holds a bit pattern wherein each bit signifies one predefined RFID tag protocol. The nonzero bit

entries indicate protocols for which the read is requested. Only tags of the specified protocol type
will be read. If the reader is in Continuous Read mode, this property is read-only.
Value Tag Type
RFID_PR_EPC0EPC class 0 read-only passive tags
RFID_PR_0PLUS Non-standard EPC class “0+” write once passive tags
RFID_PR_EPC1 EPC class 1 write once passive tags
RFID_PR_EPC1G2 EPC class 1 gen 2 (ISO 18000-6C) write once passive tags
RFID_PR_EPC2 EPC class 2 rewritable tags
RFID_PR_ISO14443A ISO 14443A HF tags
RFID_PR_ISO14443B ISO 14443B HF tags
RFID_PR_ISO15693 ISO 15693 HF tags
RFID_PR_ISO180006B ISO 18000-6B UHF tags
RFID_PR_OTHER A tag that does not fit into one of the defined protocols
RFID_PR_ALL Read all tags supported by the reader

This property is initialized to the same value as CapMultipleProtocols by the open method, and is
normally updated by the application during its initialization phase.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapMultipleProtocols Property, CurrentTagProtocol Property.

33.4.12 ReadTimerInterval Property

Syntax ReadTimerInterval: int32 { read-write, access after open-claim }
Remarks Indicates the minimum time interval between tag reads in milliseconds. This property only applies

to continuous reading. A value of zero indicates no delay between reads. The value of this property
is zero if CapReadTimer is false. Attempts to set this property when CapReadTimer is false or
when ContinuousReadMode is true will raise an exception.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapReadTimer Property.

33.4.13 TagCount Property

Syntax TagCount: int32 { read-only, access after open }
Remarks This property contains the total number of tags read by the corresponding read operation. The

service populates this property just before a DataEvent is delivered to the application.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also readTags Method, startReadTags Method, DataEvent Event.

33 - 18 Unified POS, v1.15.1 Beta1

33.5 Methods (UML operations)

33.5.1 disableTag Method

Syntax disableTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
tagId2 the tagID of the tag it is disabling
timeout allowed execution time, in milliseconds, before the method fails and a

timeout ErrorEvent is sent to the application. If FOREVER (-1) the
service will wait as long as needed until either the operation completes or
an error occurs.

password2 authorized key for reader that might be required for this operation, zero
length (or empty) if not applicable.

Remarks Permanently disables the specific tag matching the tagID parameter.

This method is always performed asynchronously and OutputID will be set on a successful start
plus an OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also “Device Output Models” on page 1- 21.

33.5.2 firstTag Method

Syntax firstTag ():
void { raises-exception, use after open }

Remarks Resets the Service’s counter to the first tag in the tag list, and copies that tag’s information into the
corresponding properties. Used if the application needs to re-process the list of tags from its
beginning. The method is synchronous, because no physical input or output occurs when it is called.

Errors A UposException may be thrown when this method is invoked. For further information, See
“Errors” on page 1- 16.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property,
TagCount Property.

2. In the OPOS environment, the format of tagId and password depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 33 - 19

33.5.3 lockTag Method

Syntax lockTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
tagId3 the tagID of the tag it is locking
timeout allowed execution time, in milliseconds, before the method fails and a

timeout ErrorEvent is sent to the application. If FOREVER (-1) the
service will wait as long as needed until either the operation completes or
an error occurs.

password3 authorized key for reader that might be required for this operation, zero
length (or empty) if not applicable.

Remarks This operation will turn the tag into a read-only mode that both ID and UserData fields are not
writable. If invoking this method with CapLockTag being false, an exception will the thrown.

This method is always performed asynchronously and OutputID will be set on a successful start
plus an OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, See
“Errors” on page 1- 16.

See Also “Device Output Models” on page 1- 21, CapLockTag Property.

33.5.4 nextTag Method

Syntax nextTag ():
void { raises-exception, use after open }

Remarks Moves the Service’s counter to the next tag in the tag list, and copies that tag’s information into the
corresponding properties. Used in normal RFID read processing. The method is synchronous,
because no physical input or output occurs when it is called, only memory to memory copies.

Errors A UposException may be thrown when this method is invoked. For further information, See
“Errors” on page 1- 16.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property,
TagCount Property.

3. In the OPOS environment, the format of tagId and password depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

33 - 20 Unified POS, v1.15.1 Beta1

33.5.5 previousTag Method

Syntax previousTag ():
void { raises-exception, use after open }

Remarks Moves the Service’s counter to the previous tag in the tag list, and copies that tag’s information into
the corresponding properties. Used if the application needs to process the list of tags in reverse
order. The method is synchronous, because no physical input or output occurs when it is called, only
memory to memory copies.

Errors A UposException may be thrown when this method is invoked. For further information, See
“Errors” on page 1- 16.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property,
TagCount Property.

Unified POS, v1.15.1 Beta1 33 - 21

33.5.6 readTags Method

Syntax readTags (cmd: int32, filterID: binary, filtermask: binary, start: int32, length: int32, timeout:
int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
cmd Possible values are:

Value Description
RFID_RT_ID Read only the ID data
RFID_RT_FULLUSERDATA

Read the full UserData
RFID_RT_PARTIALUSERDATA

Read the defined partial UserData
RFID_RT_ID_FULLUSERDATA

Read the ID and full UserData
RFID_RT_ID_PARTIALUSERDATA

Read the ID and the defined partial UserData
Some readers allow for a faster read if only the ID is requested.

filterID4 It holds a bit pattern to be AND’ed with filtermask to determine which tag(s) to
read.

filtermask4 It holds a bit pattern to be AND’ed with filterID, only the tagIDs that when
AND’ed with this mask match the ANDing of filterID and filtermask will be
returned. To get all tags in the field, pass in a filtermask of all 0’s.

start Indicates the zero-based position within the tags UserData field to begin reading
from. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

length Indicates the number of bytes of user data to read starting at the position indicated
by the start parameter. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

timeout allowed execution time, in milliseconds, before the method fails and a timeout
ErrorEvent is sent to the application. If FOREVER (-1) the service will wait as
long as needed until either the operation completes or an error occurs.

password4 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

Remarks Performs a poll of all the tags within range that meet the parameterized criteria. A DataEvent or an
ErrorEvent has to be received before another readTags invocation.

4. In the OPOS environment, the format of filterID, filtermask, and password depends upon the value of
the BinaryConversion property. See BinaryConversion property in Annex A.

33 - 22 Unified POS, v1.15.1 Beta1

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also TagCount Property, firstTag Method, nextTag Method, previousTag Method, “Device Input
Model” on page 1- 18.

33.5.7 startReadTags Method

Syntax startReadTags (cmd: int32, filterID: binary, filtermask: binary, start: int32, length: int32,
password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
cmd Possible values are:

Value Description
RFID_RT_ID Read only the ID data
RFID_RT_FULLUSERDATA

Read the full UserData
RFID_RT_PARTIALUSERDATA

Read the defined partial UserData
RFID_RT_ID_FULLUSERDATA

Read the ID and full UserData
RFID_RT_ID_PARTIALUSERDATA

Read the ID and the defined partial UserData
Some readers allow for a faster read if only the ID is requested.

filterID5 It holds a bit pattern to be AND’ed with filtermask to determine which tag(s) to
read.

filtermask5 It holds a bit pattern to be AND’ed with filterID, only the tagIDs that when
AND’ed with this mask match the ANDing of filterID and filtermask will be
returned. To get all tags in the field, pass in a filtermask of all 0’s.

start Indicates the zero-based position within the tags UserData field to begin reading
from. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

length Indicates the number of bytes of user data to read starting at the position indicated
by the start parameter. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

password5 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

5. In the OPOS environment, the format of filterID and filtermask depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 33 - 23

Remarks Performs a continuous polling of tags that meet the parameterized criteria. Each polling operation
will result in either a DataEvent or an ErrorEvent being sent. The service will continue polling
until stopReadTags is invoked. ContinuousReadMode is true during startReadTags execution,
another startReadTags invocation will trigger an exception.

This method is always performed asynchronously but OutputID is not set and
OutputCompleteEvents are not sent as a result of invoking this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18, stopReadTags Method.

33.5.8 stopReadTags Method

Syntax stopReadTags (password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
password6 authorized key for reader that might be required for this operation, zero length (or

empty) if not applicable.

Remarks Stops the continuous reading mode. All read-only properties due to continuous reading mode are
writable again. Invoking this method when not in continuous reading mode will trigger an
exception.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18, startReadTags Method.

6. In the OPOS environment, the format of password depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

33 - 24 Unified POS, v1.15.1 Beta1

33.5.9 writeTagData Method

Syntax writeTagData (tagID: binary, userdata: binary, start: int32, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
tagID7 tagID of the tag whose UserData it is writing to
userdata7 to-be-written data
start Indicates the zero-based position within the tags UserData field to begin writing to.
timeout allowed execution time, in milliseconds, before the method fails and a timeout

ErrorEvent is sent to the application. If FOREVER (-1) the service will wait as
long as needed until either the operation completes or an error occurs.

password7 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

Remarks Over-write the entire or part of the UserData field of targeted tag. Application should query
CapWriteTag for this operation’s supportability.

This method is always performed asynchronously and OutputID will be set on a successful start
plus an OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also “Device Output Model” on page 1- 18, CapWriteTag Property.

33.5.10 writeTagID Method

Syntax writeTagID (sourceID: binary, destID: binary, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
sourceID8 tagID of the tag that it is writing the new ID to
destID8 new ID of the tag
timeout allowed execution time, in milliseconds, before the method fails and a timeout

ErrorEvent is sent to the application. If FOREVER (-1) the service will wait as
long as needed until either the operation completes or an error occurs.

password8 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

7. In the OPOS environment, the format of tagID, userData, and password depends upon the value of
the BinaryConversion property. See BinaryConversion property in Annex A.

8. In the OPOS environment, the format of sourceID, destID, and password depends upon the value of
the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 33 - 25

Remarks Over-write the existing tagID with a new ID. Application should query CapWriteTag to verify this
is a supported method. Invoking this method with CapWriteTag’s WRITE_TAG_ID bit off will
trigger an exception.

This method is always performed asynchronously and OutputID will be set on a successful start
plus an OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

See Also “Device Output Model” on page 1- 18, CapWriteTag Property.

33 - 26 Unified POS, v1.15.1 Beta1

33.6 Events (UML Interfaces)

33.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data from the RFID Scanner is available.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks The property TagCount is updated prior to this event being delivered to the application. For tag
details reported by this DataEvent, the application should invoke the firstTag or nextTag method
to enumerate each tag in the Event, then query a series of CurrentTagXXX properties.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property,
TagCount Property.

33.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific RFID Scanner Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and
 the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

 This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendors’ RFID Scanner devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 33 - 27

33.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an RFID Scanner device error has been detected and a suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following attributes:
Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-21.
ErrorCodeExtended

int32 Extended Error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.
The ErrorLocus property may be one of the following:
Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.
The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:
Value Meaning
ER_RETRY Typically valid only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 May be valid when locus is EL_INPUT.
 Default when locus is EL_OUTPUT.
ER_CLEAR Clear all buffered output data (including all asynchronous output) or

buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus isEL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the data from the RFID Scanner
device. Such events are not delivered until the DataEventEnabled property is set to true so as to
allow proper application sequencing.

Output error events are generated and delivered when an error occurs during asynchronous output
processing.

See Also “Events” on page 1- 15.

33 - 28 Unified POS, v1.15.1 Beta1

33.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that it was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

33.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of an RFID Scanner device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of an RFID Scanner device.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional Status
values for communicating the status/progress of an asynchronous update firmware
process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the RFID Scanner device detects a power state change.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 34 - 1

34 Scale

34.1 General
This Chapter defines the Scale device category.

34.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.3 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.3 open
DataEventEnabled: boolean { read-write } 1.3 open
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

34 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapDisplay: boolean { read-only } 1.2 open
CapDisplayText: boolean { read-only } 1.3 open
CapFreezeValue boolean { read-only } 1.14 open
CapPriceCalculating: boolean { read-only } 1.3 open
CapReadLiveWeightWithTare boolean { read-only } 1.14 open
CapSetPriceCalculationMode boolean { read-only } 1.14 open
CapSetUnitPriceWithWeightUnit boolean { read-only } 1.14 open
CapSpecialTare boolean { read-only } 1.14 open
CapStatusUpdate: boolean { read-only } 1.9 open
CapTarePriority boolean { read-only } 1.14 open
CapTareWeight: boolean { read-only } 1.3 open
CapZeroScale: boolean { read-only } 1.3 open
AsyncMode: boolean { read-write } 1.3 open
MaxDisplayTextChars: int32 { read-only } 1.3 open
MaximumWeight: int32 { read-only } 1.0 open
MinimumWeight: int32 { read-only } 1.14 open
SalesPrice: currency { read-only } 1.3 open, claim, & enable
ScaleLiveWeight: int32 { read-only } 1.9 open
StatusNotify: int32 { read-write } 1.9 open
TareWeight: int32 { read-write } 1.3 open, claim, & enable
UnitPrice: currency { read-write } 1.3 open, claim, & enable
WeightUnit: int32 { read-only } 1.0 open
ZeroValid boolean { read-write } 1.13 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

Unified POS, v1.15.1 Beta1 34 - 3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
displayText (data: string):

void { raises-exception, use after open, claim, enable }
1.3

doPriceCalculating (out weightValue: int32, out tare: int32,
out unitPrice: currency, out unitPriceX: currency,
out weightUnitX: int32, out weightNumeratorX: int32,
out weightDenominatorX: int32, out price: currency,
timeout: int32):
void { raises-exception, use after open, claim, enable }

1.14

freezeValue (item: int32, freeze: boolean):
void { raises-exception, use after open, claim, enable }

1.14

readLiveWeightWithTare (out weightData: int32, out tare: int32,
timeout: int32):
void { raises-exception, use after open, claim, enable }

1.14

readWeight (inout weightData: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.3

setPriceCalculationMode (mode: int32):
void { raises-exception, use after open, claim, enable }

1.14

setSpecialTare (mode: int32, data: int32):
void { raises-exception, use after open, claim, enable }

1.14

setTarePrioity (priority: int32):
void { raises-exception, use after open, claim, enable }

1.14

setUnitPriceWithWeightUnit (unitPrice: currency, weightUnit: int32,
weightNumerator: int32, weightDenominator: int32):
void { raises-exception, use after open, claim, enable }

1.14

zeroScale ():
void { raises-exception, use after open, claim, enable }

1.3

34 - 4 Unified POS, v1.15.1 Beta1

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.3
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.3
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

Unified POS, v1.15.1 Beta1 34 - 5

34.3 General Information
The Scale programmatic name is “Scale”.

34.3.1 Capabilities

The scale Device has the following capability:

• Provides item weight to the application. The measure of weight may be in grams, kilograms, ounces, or pounds,
 depending upon the scale device.

The scale may have the following additional capabilities:

• Includes an integrated display with the current weight, or with the current weight plus application-specified text.

• Performs price calculations (weight X unit price) and returns the sale price. (This feature is mostly used in Europe at
 this time.)

• Supports application setting of tare weight.

• Supports application zeroing of the scale.

The following functionality is added for Release 1.9:

A scale device is used to obtain weight for two distinct purposes, legal weight for calculating price, and live
weight for updating customer displays. Prior to Release 1.9, a good interface is provided for an application to
obtain a legal weight, but no interface for obtaining a live weight existed. The following added functionality in
Release 1.9 formalizes an interface for obtaining scale status and live weight:

• A scale weight status update capability property, CapStatusUpdate.

• A scale weight status notify property, StatusNotify, to enable or disable weight status event notification.

• A ScaleLiveWeight property containing a value to be used for updating a customer display with the current scale
 weight.

• Extensions to the readWeight method and StatusUpdateEvent for scale weight status.

The following functionality is added for Release 1.13.

A writable property that controls the delivery of “0” as a valid weight for applications that need to report this as
a legitimate value for the weight was added. When the property ZeroValid is true, the service is allowed to
report “0” back to the application as a valid weight; when false, allows the service to be backward compatible by
not allowing a “0” weight to be valid.

Changes in Release 1.14

The more sophisticated scales have the functionality to not only weigh items but to calculate the prices of the
items in the scale and return to the application. Building on simple price calculation added in Release 1.3,
Release 1.14 adds more complex price calculation allowing for multiple tare values and adding additional items
on the scale which may have different pricing requirements. The new Properties and Methods are:

• A CapFreezeValue property to indicate if the scale supports the freezeValue method.

• A CapReadLiveWeightWithTare property to indicate if the scale supports live weight measurements

34 - 6 Unified POS, v1.15.1 Beta1

incorporating a tare value.

• A CapSetPriceCalculationMode property to indicate if the scale supports different methods to calculate price.

• A CapSetUnitPriceWithWeightUnit property to indicate if the scale supports the ability to use different weight
 unit types apart from the default scale weight unit types; useful for more complext price calculations.

• A CapSpecialTare property to indicate if the scale supports the ability to use different tare values in replacement of
 or in addition to the default scale tare value used in determining the net weight.

• A CapTarePriority property to indicate if the scale supports the ability to use multiple tare values in a certain
 ranking order for the calculation of net weight and item price.

• A MinimumWeight property which contains the minimum value that the scale will use before it will register a
 valid weight read.

• A doPriceCalculating method that comprises the functionality of the readWeight method plus the ability to do
 price calculating. All the properties necessary to facilitate the price calculation are included in one method call.

• A freezeValue method to control the state of the tare and unit price values that the scale uses.

• A readLiveWeightWithTare method that allows the scale to return the live weight and the tare value; it may be
 used to display the tare value and weight value. In this method, the live weight is the stable net weight.

• A setPriceCalculationMode method to allow for different uses of the scale such as self service or operator attended
 modes.

• A setSpecialTare method that provides for different ways the scale can use the tare values in deteriming net weight
 and item price.

• A setTarePriority method that provides for ranking the order of tare values the scale can use in determining the net
 weight and item price.

• A setUnitPriceWithWeightUnit method that allows the scale to calculate the price of the item using other than the
 default scale parameter values.

Unified POS, v1.15.1 Beta1 34 - 7

34.4 Scale Class Diagram Updated in Release 1.14
The following diagram shows the relationships between the Scale classes.

34 - 8 Unified POS, v1.15.1 Beta1

34.5 Scale Sequence Diagram Added in Release 1.7
The following sequence diagram shows the typical synchronous usage of a Scale device.

:ClientApp :Scale :ScaleService

 : Operator
1: open(logicalName)

2: open(logicalName)

3: claim(timeout) 4: claim(timeout)

5: setDeviceEnabled(true)
6: setDeviceEnabled(true)

7: makes sure that scale is empty (ask :Operator if necessary)

8: zeroScale() [CapZeroScale == true]

9: zeroScale() [CapZeroScale == true]

After successful
execution of this
method the scale is
assumed to be
"zeroed"10: show message to place item on scale

11: place item on scale

12: readWeight(weightData, timeout)
13: readWeight(weightData, timeout)

14: displayText(data) [CapDisplayText == true]

15: displayText(data) [CapDisplayText == true]

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the
Scale device.

Unified POS, v1.15.1 Beta1 34 - 9

34.5.1 Model

The general model of a scale is:

• A scale returns the weight of an item placed on its weighing surface.

• The primary scale method is readWeight. By default, it is performed synchronously. It returns after reading data
 from the scale; the weight is returned in the readWeight’s weightData parameter. If an error occurs or if the timeout
 elapses, a UposException will be thrown.

• UnifiedPOS Release 1.3 and later - Asynchronous Input

If the AsyncMode property is true when readWeight is called, then the method is performed asynchronously. It
initiates event driven input and returns immediately. The timeout parameter specifies the maximum time the
application wants to wait for a settled weight. Additional points are:

• If an error occurs while initiating event driven input (such as the device is offline), then a UposException is thrown.
 Otherwise, readWeight returns immediately to the application, and scale processing continues asynchronously.

• If a settled weight is received, then a DataEvent is enqueued containing the weight data in the Status property.

• If a scale error occurs (including a timeout with no settled weight), then an ErrorEvent is enqueued. The
 application event handler may retry the weighing process by setting the event’s ErrorResponse property to
 ER_RETRY.

• Only one asynchronous call to readWeight can be in progress at a time. An attempt to nest asynchronous scale
 operations will result in a UposException being thrown.

• An asynchronous scale operation may be cancelled with the clearInput method.

For price-calculating scales, the application should set the UnitPrice property before calling readWeight. After
a weight is read (and just before the DataEvent is delivered to the application, for asynchronous mode), the
SalesPrice property is set to the calculated price of the item.

34.5.2 Device Sharing

The scale is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

34 - 10 Unified POS, v1.15.1 Beta1

34.6 Properties (UML attributes)

34.6.1 AsyncMode Property Added in Release 1.3

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the readWeight method will be performed asynchronously. If false, the readWeight
method will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

34.6.2 CapDisplay Property

Syntax CapDisplay: boolean { read-only, access after open }

Remarks If true, the scale includes an integrated display that shows the current weight. If false, the application
may need to show the current weight on another display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDisplayText Property, MaxDisplayTextChars Property.

34.6.3 CapDisplayText Property Added in Release 1.3

Syntax CapDisplayText: boolean { read-only, access after open }

Remarks If true, the scale includes an integrated display that shows the current weight and can also show text
that describes the item being weighed. If false, extra text cannot be shown on the display.

If true, then CapDisplay must also be true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDisplay Property, MaxDisplayTextChars Property.

Unified POS, v1.15.1 Beta1 34 - 11

34.6.4 CapFreezeValue Property Added in Release 1.14

Syntax CapFeeezeValue: boolean { read-only, access after open }

Remarks If true, the scale supports the ability to determine and control the state and values of the tare and unit
price that it uses after a readWeight or doPriceCalculating method call. If false, the scale does
not support the freezeValue method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also freezeValue Method, readWeight Method, doPriceCalculating Method.

34.6.5 CapPriceCalcuating Property Added in Release 1.3

Syntax CapPriceCalculating: boolean { read-only, access after open }

Remarks If true, the scale can calculate prices. If false, the scale only returns a weight.

For price calculating scales the calculation unit is in the scale rather than in the data-receiving
terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also readWeight Method, WeightUnit Property, UnitPrice Property,
SalesPrice Property.

34.6.6 CapReadLiveWeightWithTare Property Added in Release 1.14

Syntax CapReadLiveWeightWithTare: boolean { read-only, access after open }

Remarks If true, the scale supports the ability to return the weightData and the tare value with the
readLiveWeightWithTare method.

If false, the scale does not support the readLiveWeightWith Tare method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also readLiveWeightWithTare Method.

34 - 12 Unified POS, v1.15.1 Beta1

34.6.7 CapSetPriceCalculationMode Property Added in Release 1.14

Syntax CapSetPriceCalculationMode: boolean { read-only, access after open }

Remarks If true, the scale can utilize different methods for calculating the price of a weighed item on the
scale. This may be useful, for example, to determine the pricing information for a produce label. If
false, the scale does not support the setPriceCalculationMode method.

For price calculating scales this functionality is resident in the scale rather than in the data-receiving
terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also setPriceCalculationMode Method, doPriceCalculating Method, WeightUnit Property,
UnitPrice Property, SalesPrice Property.

34.6.8 CapSetUnitPriceWithWeightUnit Property Added in Release 1.14

Syntax CapSetUnitPriceWithWeightUnit: boolean { read-only, access after open }

Remarks If true, the scale can support a method to associate a unit price with a specific weight unit measure
that is different from the default weight measure unit for the scale. If false, the scale can only
associate a unit price with a preset weight measure unit.

For price calculating scales this functionality is resident in the scale rather than in the data-receiving
terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also setUnitPriceWithWeightUnit Method, readWeight Method, doPriceCalculating Method,
WeightUnit Property, UnitPrice Property, SalesPrice Property.

34.6.9 CapSpecialTare Property Added in Release 1.14

Syntax CapSpecialTare: boolean { read-only, access after open }

Remarks If true, the scale supports special tare weight components that can be used in the calculations to
determine the scale net weight. If false, the scale may only support standard scale tare net weight
calculations.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also setSpecialTare Method.

Unified POS, v1.15.1 Beta1 34 - 13

34.6.10 CapStatusUpdate Property Added in Release 1.9

Syntax CapStatusUpdate: boolean { read-only, access after open }

Remarks If true, then the scale is capable of providing scale weight status with StatusUpdateEvents. This
property is initialized by the open method.

If true when the device is enabled, an immediate StatusUpdateEvent will be generated to tell the
application the current state of the scale.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ScaleLiveWeight Property, StatusNotify Property.

34.6.11 CapTarePriority Property Added in Release 1.14

Syntax CapTarePriority: boolean { read-only, access after open }

Remarks If true, the scale supports the ability to set the order in which multiple tare weight components can
be applied in the calculations used to determine the scale net weight. If false, the scale does not
support this setTarePriority method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also setTarePriority Method.

34.6.12 CapTareWeight Property Added in Release 1.3

Syntax CapTareWeight: boolean { read-only, access after open }

Remarks If true, the scale includes setting a tare value. If false, the scale does not support tare values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TareWeight Property.

34 - 14 Unified POS, v1.15.1 Beta1

34.6.13 CapZeroScale Property Added in Release 1.3

Syntax CapZeroScale: boolean { read-only, access after open }

Remarks If true, the application can set the scale weight to zero. If false, the scale does not support
programmatic zeroing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also zeroScale Method.

34.6.14 MaxDisplayTextChars Property Added in Release 1.3

Syntax MaxDisplayTextChars: int32 { read-only, access after open }

Remarks Holds the number of characters that may be displayed on an integrated display for the text which
describes an article.

If CapDisplayText is false, then the device does not support text displaying and this property is
always zero.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapDisplay Property, CapDisplayText Property.

34.6.15 MaximumWeight Property

Syntax MaximumWeight: int32 { read-only, access after open }

Remarks Holds the maximum weight measurement possible from the scale. The measurement unit is
available via the WeightUnit property.

This property has an assumed decimal place located after the “thousands” digit position. For
example, an actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005.

The value held by this property must be processed considering the value returned by the
WeightUnit property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also WeightUnit Property.

Unified POS, v1.15.1 Beta1 34 - 15

34.6.16 MinimumWeight Property Added in Release 1.14

Syntax MinimumWeight: int32 { read-only, access after open }

Remarks Holds the minimum weight measurement possible from the scale. The measurement unit is
available via the WeightUnit property.

This property has an assumed decimal place located after the “thousands” digit position. For
example, an actual value of 5 represents 0.005.

The value held by this property must be processed considering the value returned by the
WeightUnit property.

This property is initialized by the open method. The minimum weight depends upon the operation
mode of the scale (see setPriceCalculationMode).

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also WeightUnit Property.

34.6.17 SalesPrice Property Updated in Release 1.6

Syntax SalesPrice: currency { read-only, access after open }

Remarks Holds the sales price read from the scale for price calculating scales. For price calculating scales the
scale calculates this value during the process of weighing by multiplying the UnitPrice property by
the acquired weight. This property is a monetary value stored using an implied four decimal places.
For example, an actual value of 12345 represents 1.2345.

This property is set before the readWeight or doPriceCalculating methods return (in synchronous
mode) or the DataEvent is delivered (in asynchronous mode).

If CapPriceCalculating is false, then the device is not a price calculating scale and SalesPrice is
always zero.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also readWeight Method, doPriceCalculating Method, setUnitPriceWithWeightUnit Method,
WeightUnit Property, CapPriceCalculating Property, UnitPrice Property.

34 - 16 Unified POS, v1.15.1 Beta1

34.6.18 ScaleLiveWeight Property Updated in Release 1.14

Syntax ScaleLiveWeight: int32 { read-only, access after open-claim-enable }

Remarks Contains the returned value for the weight measured by the scale if the StatusUpdateEvent Status
is set to SCAL_SUE_STABLE_WEIGHT, else zero.

The property is set before the readLiveWeightWithTare method returns
when AsyncMode = false or before the DataEvent is delivered when AsyncMode = true.

The weight has an assumed decimal place located after the “thousands” digit position. For example,
an actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005.

It is suggested that an application use the weight in this property only for display purposes. For a
weight to use for sale purposes, it is suggested that the application call the readWeight or the
doPriceCalculating method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model" on page 1- 18, CapStatusUpdate Property, StatusNotify Property,
readLiveWeightWithTare method.

Unified POS, v1.15.1 Beta1 34 - 17

34.6.19 StatusNotify Property Updated in Release 1.10

Syntax StatusNotify: int32 { read-write, access after open }

Remarks Scale weight state notification can only be set by the application if the capability CapStatusUpdate
is true. The StatusNotify values are:

Value Meaning
SCAL_SN_DISABLED The Control will not provide any scale weight state notifications to the

application or set any related ErrorCodeExtended values. No scale weight
state notification StatusUpdateEvents will be fired, and
ScaleLiveWeight may not be set.

SCAL_SN_ENABLED The Control will fire scale weight state notification StatusUpdateEvents
and update the ScaleLiveWeight property beginning when
DeviceEnabled is set true. The level of functionality depends upon
CapStatusUpdate.

StatusNotify may only be set while the device is disabled, that is, while DeviceEnabled is false.
This property is initialized to SCAL_SN_DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The device is already enabled.
• CapStatusUpdate is false.

See Also CapStatusUpdate Property, ScaleLiveWeight Property.

34 - 18 Unified POS, v1.15.1 Beta1

34.6.20 TareWeight Property Updated in Release 1.14

Syntax TareWeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the tare weight of scale data. This property has an assumed decimal place located after the
“thousands” digit position. For example, an actual value of 12345 represents 12.345, and an actual
value of 5 represents 0.005. The measured unit is specified in the WeightUnit property. If
CapTareWeight is false, then the device does not support setting of a tare value and this property
is always zero.

TareWeight is not included in the item weight returned by the readWeight method. It is updated
by the doPriceCalculating method.

This property is initialized to the scale’s default tare weight (usually zero), when the device is first
enabled following the open method. (In releases prior to 1.5, this description stated that
initialization took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapTareWeight is false or an invalid tare value was specified.

See Also readWeight Method, doPriceCalculating method, WeightUnit Property, CapTareWeight
Property.

34.6.21 UnitPrice Property Updated in Release 1.14

Syntax UnitPrice: currency { read-write, access after open-claim-enable }

Remarks Holds the unit price of the article to be weighed. For price calculating scales this property is to be
set before calling the readWeight method. It is updated by the doPriceCalculating method.
During weighing, the scale sets the SalesPrice property to the product of the item’s weight and this
property. This property is a monetary value stored using an implied four decimal places. For
example, an actual value of 12345 represents 1.2345. If CapPriceCalculating is false, then setting
of a unit price is not supported and this property is always zero.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapPriceCalculating is false or an invalid price was specified.

See Also readWeight Method, doPriceCalculating method, WeightUnit Property, CapPriceCalculating
Property, SalesPrice Property.

Unified POS, v1.15.1 Beta1 34 - 19

34.6.22 WeightUnit Property

Syntax WeightUnit: int32 { read-only, access after open }

Remarks Holds the unit of weight of scale data, and has one of the following values:

Value Meaning
SCAL_WU_GRAM Unit is a gram.

SCAL_WU_KILOGRAM Unit is a kilogram (= 1000 grams).

SCAL_WU_OUNCE Unit is an ounce.

SCAL_WU_POUND Unit is a pound (= 16 ounces).

This property is initialized to the scale’s weight unit by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

34.6.23 ZeroValid Property Added in Release 1.13

Syntax ZeroValid: boolean { read-write, access after open }

Remarks If true, then the readWeight method will return zero (0.00) as a valid stable weight.

If false, then the readWeight method will not return zero as a valid stable weight.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also readWeight Method.

34 - 20 Unified POS, v1.15.1 Beta1

34.7 Methods (UML operations)

34.7.1 displayText Method Updated in Release 1.7

Syntax displayText (data: string):
 void { raises-exception, use after open-claim-enable }

Parameter Description
data1 The string of characters to display.

Remarks If CapDisplayText is true, updates the text shown on the integrated display. Calling this method
with an empty string (“”) will clear the display.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid text was specified -- the text contains more characters than

MaxDisplayTextChars, or CapDisplayText is false.

See Also CapDisplay Property, CapDisplayText Property, MaxDisplayTextChars Property.

34.7.2 doPriceCalculating Method Added in Release 1.14

Syntax doPriceCalculating (out weightData: int32, out tare: int32,
out unitPrice: currency, out unitPriceX: currency, out weightUnitX: int32,
out weightNumeratorX: int32, out weightDenominatorX: int32,
out price: currency, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
weightData The value for the net weight in the price calculation algorithm.

If in asynchronous mode (AsyncMode is true), the returned value is zero.

tare The value used to determine the item net weight in the price calculation
algorithm.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

unitPrice The cost per measurement unit that is used in the price calcuation
algorithm. The measurement unit is the same as that in the scale
WeightUnit property.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

1. In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 34 - 21

unitPriceX The cost per measurement unit that is used in the price calcuation
algorithm that comes from the setUnitPriceWithWeightUnit method.
The measurement unit is the same as that in the
setUnitPriceWithWeightUnit method parameter, weightUnit.

weightUnitX The value representing the unit of weight that differs from the default
value for the scale and is the same as setUnitPriceWithWeightUnit
method parameter, weightUnit.

weightNumeratorX The dividend which is the weight value based on the
setUnitPriceWithWeightUnit method parameter, weightNumerator.

weightDenominatorX The divisor which is the weight value based on the
setUnitPriceWithWeightUnit method parameter, weightDenominator.

price The calculated monetary value for the item on the scale in the price
calculation algorithm.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

timeout In synchronous mode the number of milliseconds to wait for a settled
weight before failing the method.
If in asynchronous mode (AsyncMode is true), the timeout value is
ignored.

Remarks This method is used to have the scale calculate and return the price of the item(s) on it allowing for
multiple price determing factors.

In synchronous mode (AsyncMode = false), this method starts the read weight process and when a
stable weight is obtained, does a price calculation. Upon successful completion, the
ScaleLiveWeight, TareWeight, UnitPrice, and SalesPrice properties are updated; the values for
weightData, tare, unitPrice, unitPriceX, weightUnitX, weightNumeratorX, weightDenominatorX,
and the resultant price are returned.

In asynchronous mode (AsyncMode = true), the weighing and subsequent price calcualtion is done
asynchronously. The method returns immediately with the return values for weightData, tare,
unitPrice, unitPriceX, weightUnitX, weightNumeratorX, weightDenominatorX and resultant price
set as noted in table above.

Upon completion of the price calculating process, the ScaleLiveWeight, TareWeight, UnitPrice,
and SalesPrice properties are updated and a DataEvent is delivered.

The weight returned, weightData and ScaleLiveWeight, has an assumed decimal place located after
the “thousands” digit position. For example, an actual value of 12345 represents 12.345, and an
actual value of 5 represents 0.005.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

34 - 22 Unified POS, v1.15.1 Beta1

Value Meaning
E_ILLEGAL An invalid timeout parameter was specified.
E_BUSY An asynchronous doPriceCalculating method is in progress.
E_TIMEOUT If ZeroValid is false, a stable non-zero weight was not available before

timeout milliseconds elapsed (only if AsyncMode is false).
If ZeroValid is true, a stable weight (including a zero weight) was not
available before timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight. This can only be returned if
AsyncMode is false.
ErrorCodeExtended = ESCAL_UNDERWEIGHT:
The weight was under the MinimumWeight. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_UNDER_ZERO:
The scale is reporting a weight that is less than zero due to a calibration
error. The scale should be recalibrated. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_SAME_WEIGHT:
The scale is reporting that the item/weight on the scale is identical to the
previously reported item/weight; i.e., the item has not been removed from
the scale. This can only be returned if AsyncMode is false and the scale
hardware directly supports this capability.

See Also setUnitPriceWithWeightUnit method, UnitPrice Property, WeightUnit Property,
CapPriceCalculating Property, CapSetPriceCalculationMode property, SalesPrice Property,
TareWeight Property, ZeroValid Property.

Unified POS, v1.15.1 Beta1 34 - 23

34.7.3 freezeValue Method Added in Release 1.14

Syntax freezeValue (item: int32, freeze: boolean):
 void { raises-exception, use after open-claim-enable }

Parameter Description
item The bitwise value setting the state of the selected parameter item(s).

freeze If the freeze value is true, the representative item is not automatically set
to zero; as an example after a readWeight method call and the weight is
removed.
Note: In this example, to delete the specific item without calling the
readWeight method, make a freezeValue method call with the freeze
value set to false.

If the freeze value is set to false, the item is automatically set to zero after
a readWeight method call and the removal of the weight.

Value Description
SCAL_SFR_MANUAL_TARE Freezes a manual tare

SCAL_SFR_WEIGHTED_TARE Freezes a weighted tare

SCAL_SFR_PERCENT_TARE Freezes a percentage tare

SCAL_SFR_UNITPRICE Freezes the unit price

Remarks The freezeValue method performs a bitwise logical OR function to determine the state of the
item(s) selected after a readWeight or a doPriceCalculating method call is processed. If the
representative item bit value is set to true, then the scale will not clear (set to zero) the associated
tare values and/or unit price.
If the representative item bit value is set to false, then the scale will clear (set to zero) the associated
tare values and/or unit price.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow the freezing of the

requested tare or unit price value.

See Also doPriceCalculating Method, readWeightWithTare Method, setSpecialTare Method

34 - 24 Unified POS, v1.15.1 Beta1

34.7.4 readLiveWeightWithTare Method Added in Release 1.14

Syntax readLiveWeightWithTare (out weightData: int32, out tare: int32,
timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
weightData If in synchronous mode (AsyncMode is false), contains the returned

value for the net weight calculated by the scale.
If in asynchronous mode (AsyncMode is true) the returned value is zero.

tare The value used to calculate the net weight.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

timeout In synchronous mode the number of milliseconds to wait for a settled
weight before failing the method.
If in asynchronous mode (AsyncMode is true), the timeout value is
ignored.

Remarks This method is used to determine the value for the displaying the net weight.
In synchronous mode (AsyncMode is false), this method starts the read weight process and when a
stable weight is obtained, does a net weight calculation. Upon successful completion, the
ScaleLiveWeight and TareWeight properties are updated and the values for weightData and tare
are returned.

In asynchronous mode (AsyncMode is true), the weighing and subsequent net weight calculation is
done asynchronously. The method returns immediately with the return values for weightData and
tare set as noted above. Upon completion of this method, the ScaleLiveWeight and TareWeight
properties are updated and a DataEvent is delivered.

The weight returned, weightData and ScaleLiveWeight, has an assumed decimal place located after
the “thousands” digit position. For example, an actual value of 12345 represents 12.345, and an
actual value of 5 represents 0.005.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 34 - 25

Value Meaning
E_ILLEGAL An invalid timeout parameter was specified.
E_BUSY An asynchronous readWeightWithTare method is in progress.
E_TIMEOUT If ZeroValid is false, a stable non-zero weight was not available before

timeout milliseconds elapsed (only if AsyncMode is false).
If ZeroValid is true, a stable weight (including a zero weight) was not
available before timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight. This can only be returned if
AsyncMode is false.
ErrorCodeExtended = ESCAL_UNDERWEIGHT:
The weight was under the MinimumWeight. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_UNDER_ZERO:
The scale is reporting a weight that is less than zero due to a calibration
error. The scale should be recalibrated. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_SAME_WEIGHT:
The scale is reporting that the item/weight on the scale is identical to the
previously reported item/weight; i.e., the item has not been removed from
the scale. This can only be returned if AsyncMode is false and the scale
hardware directly supports this capability.

See Also ScaleWeight Property, TareWeight Property, ZeroValid Property, readWeight method.

34 - 26 Unified POS, v1.15.1 Beta1

34.7.5 readWeight Method

Syntax readWeight (inout weightData: int32, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
weightData If AsyncMode is false, contains the returned value for the weight

measured by the scale, else zero.

timeout The number of milliseconds to wait for a settled weight before failing the
method. If zero, the method attempts to read the scale weight, then returns
the appropriate status immediately. If FOREVER (-1), the method waits
as long as needed until a weight is successfully read or an error occurs.

Remarks Reads a weight from the scale.

The weight returned, weightData, has an assumed decimal place located after the “thousands” digit
position. For example, an actual value of 12345 represents 12.345, and an actual value of 5
represents 0.005.

Release 1.2
The weighing process is performed synchronously and the method will return after finishing the
weighing process. The weight is returned in the weightData parameter.

Release 1.3 and later
If AsyncMode is false, then readWeight operates synchronously, as with earlier releases.

Release 1.13 and later
If the ZeroValid property is true, the scale service will return zero as a valid weight. If this property
is false, then the service will behave as prior to release 1.13, namely zero on the scale platter will
result in E_TIMEOUT. This property is initialized to false by the open method.

If AsyncMode is true, the weighing process is performed asynchronously. The method will initiate
a read, then return immediately. Once the weighing process is complete, a DataEvent is delivered
with the item’s weight contained in the event’s Status property.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 34 - 27

Value Meaning
E_ILLEGAL An invalid timeout parameter was specified.
E_BUSY An asynchronous readWeight is in progress.
E_TIMEOUT If ZeroValid is false, a stable non-zero weight was not available before

timeout milliseconds elapsed (only if AsyncMode is false).
If ZeroValid is true, a stable weight (including a zero weight) was not
available before timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight. This can only be returned if
AsyncMode is false.
The following standard extended error codes have been added in Release
1.14
ErrorCodeExtended = ESCAL_UNDERWEIGHT:
The weight was under the MinimumWeight. This can only be returned if
AsyncMode is false.

 The following standard extended error codes have been added in Release
　　　　　　　　　　1.9 as possible values of the exception’s ErrorCode property:

 ErrorCodeExtended = ESCAL_UNDER_ZERO:
The scale is reporting a weight that is less than zero due to a calibration
error. The scale should be re-calibrated. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_SAME_WEIGHT:
The scale is reporting that the item/weight on the scale is identical to the
previously reported item/weight; i.e., the item has not been removed from
the scale. This can only be returned if AsyncMode is false and the scale
hardware directly supports this capability.

See Also UnitPrice Property, WeightUnit Property, CapPriceCalculating Property, SalesPrice Property,
TareWeight Property, ZeroValid Property.

34 - 28 Unified POS, v1.15.1 Beta1

34.7.6 setPriceCalculationMode Method Added in Release 1.14

Syntax setPriceCalculationMode (mode: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
mode The operation functionality selected for the scale.

Value Description
SCAL_PCM_PRICE_LABELING

Set scale to price labeling mode.The scale has a printer and is capable of
printing price labels.

SCAL_PCM_SELF_SERVICE
Set scale to self service mode. The customer is weighing the products
placed on the scale.

SCAL_PCM_OPERATOR
Set scale to operator mode. The operator is using the scale and weighing
the items for the customer.

Remarks This method allows for various modes of operation based upon the user and provides for the
corresponding rules for price calculations.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this type of

functionality or invalid parameters were received.

See Also CapSetPriceCalculationMode Property

Unified POS, v1.15.1 Beta1 34 - 29

34.7.7 setSpecialTare Method Added in Release 1.14

Syntax setSpecialTare (mode: int32, data: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
mode Select the tare mode that is to be modified.

data Provides additional information specific to the mode selected to
determine the characteristics for the tare that is to be modified.

Value Description
SCAL_SST_DEFAULT The data argument is interpreted as a weight value. For instance, a value

of 12345 means 12.345 kg.
The measured unit is specified in the WeightUnit property.
The data argument will be used as the TareWeight for the price
calculation.

SCAL_SST_MANUAL The data argument is interpreted as a weight value. For instance, a value
of 12345 means 12.345 kg.
The measured unit is specified in the WeightUnit property.
The data argument will be used as the TareWeight for the price
calculation.

A data value of zero disables the tare immediately and deletes the tare
value.

SCAL_SST_PERCENT The data argument is interpreted as a percent value. For instance a value
of 99999 means 999.99%.

A data value of zero disables the tare immediately and deletes the tare
value.

SCAL_SST_WEIGHTED If there is a weight on the scale the data argument is ignored and the
weight from the scale will be used as the TareWeight for the next price
calculation.

When there is no weight on the scale the weighted tare is deleted.

Remarks The TareWeight used by the scale usually differs from the data parameter and depends upon the
rounding rules of the scale. The exact value for data is returned by the doPriceCalculation method.
If a tare is set, additional setSpecialTare calls with the same mode parameter are accepted and will
update the new data value. Other values of the mode parameter may be accepted and depend upon
the tare priority indicated by the setTarePriority or the influence of local jurisdictional laws.
In addition, the tare value might be deleted automatically if this action is required as a result of a
prior freezeValue method call.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

34 - 30 Unified POS, v1.15.1 Beta1

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this operation.

See Also CapSpecialTare Property, setTarePriority Method, readWeight Method, doPriceCalculation
Method, freezeValue Method

34.7.8 setTarePriority Method Added in Release 1.14

Syntax setTarePriority(priority: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
priority The sequence in which a tare value is used when determining the net

weight.

Value Description
SCAL_STP_FIRST If a tare is active, no other tare can be selected until the current tare is

disabled.

SCAL_STP_NONE Any tare can replace the currently selected tare.

Remarks This method provides the mechanism to select the set of rules that can be used to control the
prioritization of the tare component for net weight calculations.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this operation.

See Also CapTarePriority Property

Unified POS, v1.15.1 Beta1 34 - 31

34.7.9 setUnitPriceWithWeightUnit Method Added in Release 1.14

Syntax setUnitPriceWithWeightUnit (unitPrice: currency, weightUnit: int32,
weightNumerator: int32, weightDenominator: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
unitPrice The cost per unit price as calculated by this method.

weightUnit The value representing the new unit of weight that differs from the default
value for the scale.

weightNumerator The dividend which is the weight value based on the current unit weight.

weightDenominator The divisor which is the weight value based on the new unit weight.

weightUnit Value Description
SCAL_WU_GRAM Units of weight specified in grams

SCAL_WU_KILOGRAM
Units of weight specified in kilograms

SCAL_WU_OUNCE Units of weight specified in ounces

SCAL_WU_POUND Units of weight specified in pounds

Remarks This method can be used to calculate a new unitPrice based upon a conversion factor that translates
the old per unitPrice into a new per unitPrice.
For an example:
The tags at a chocolate shop are based upon 100 g instead of 1kg. The conversion calculation can
be done by the scale instead of forcing the application to normalize every tag to kg. The scale works
with kg by default. The application has provided the unit price of chocolate to be 2.55 Euros per 100
g. The correct weighing can be configured by:
setUnitPriceWithWeightUnit (2.55, SCAL_WU_GRAM, 100, 1);

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this function of the

scale or wrong parameters have been used.

See Also WeightUnit Property

34 - 32 Unified POS, v1.15.1 Beta1

34.7.10 zeroScale Method Updated in Release 1.10

Syntax zeroScale ():
 void { raises-exception, use after open-claim-enable }

Remarks If CapZeroScale is true, sets the current scale weight to zero. It may be used for initial calibration,
or to account for tare weight on the scale.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapZeroScale is false.

E_BUSY An asynchronous readWeight is in progress.

See Also CapZeroScale Property.

Unified POS, v1.15.1 Beta1 34 - 33

34.8 Events (UML interfaces)

34.8.1 DataEvent Added in Release 1.3

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that an asynchronous readWeight has completed.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The weight of the item.

 Remarks If the scale is a price calculating scale, the unit price is placed in the UnitPrice property and the
calculated sales price is placed in the SalesPrice property before this event is delivered.

See Also “Events” on page 1- 15.

34.8.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Scale Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Scale devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

34 - 34 Unified POS, v1.15.1 Beta1

34.8.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a scale device error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error code causing the error event. See list of ErrorCodes on page 1-21.
ErrorCodeExtended

int32 Extended error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.
The ErrorLocus property has one of the following values:
Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.
The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:
Value Meaning
ER_RETRY Retry the asynchronous input. The error state is exited.

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read scale data. This event is not delivered until
DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 34 - 35

34.8.4 StatusUpdateEvent Updated in Release 1.10

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Scale device.

If the StatusNotify property is SCAL_SN_ENABLED, this event can also notify the application
that there is a change in the Scale device weight.

If the property StatusNotify is true when the scale is enabled, an immediate StatusUpdateEvent
should be generated to notify the application of the current state of the scale.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a Scale device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Added in Release 1.9 and delivered if StatusNotify is set to SCAL_SN_ENABLED.

Value Meaning
SCAL_SUE_STABLE_WEIGHT Scale weight is stable. The ScaleLiveWeight property
 is updated before event delivery.
SCAL_SUE_WEIGHT_UNSTABLE Scale weight is unstable.
SCAL_SUE_WEIGHT_ZERO Scale weight is zero.
SCAL_SUE_WEIGHT_OVERWEIGHT Scale weight is overweight.
SCAL_SUE_WEIGHT_UNDERWEIGHT

Scale weight is underweight.
SCAL_SUE_NOT_READY Scale is not ready to weigh.
SCAL_SUE_WEIGHT_UNDER_ZERO Scale weight is under zero.

Remarks Enqueued when the Scale device detects a power state change or a status change.

See Also “Events” on page 1- 15, ScaleLiveWeight Property, StatusNotify Property.

34 - 36 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 35 - 1

35 Scanner (Bar Code Reader)

35.1 General
This Chapter defines the Scanner (Bar Code Reader) device category.

35.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 open
DataEventEnabled: boolean { read-write } 1.0 open
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

35 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
DecodeData: boolean { read-write } 1.2 open
ScanData: binary { read-only } 1.0 open
ScanDataLabel: binary { read-only } 1.2 open
ScanDataType: int32 { read-only } 1.2 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
None

Unified POS, v1.15.1 Beta1 35 - 3

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.0
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.0
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

35 - 4 Unified POS, v1.15.1 Beta1

35.3 General Information
The Scanner programmatic name is “Scanner”.

35.3.1 Capabilities

The Scanner Device has the following capability:

• Reads encoded data from a label.

35.3.2 Scanner Class Diagram

The following diagram shows the relationships between the Scanner classes.

Unified POS, v1.15.1 Beta1 35 - 5

35.3.3 Scanner Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of a Scanner device.

35 - 6 Unified POS, v1.15.1 Beta1

NOTE: we are assuming that the :ClientApp already successfully registered event handlers and opened,
claimed and enabled the Scanner device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :Scanner :DataEvent :ScannerService

 : Operator
1: setDecodeData(true)

2: setDecodeData(true)

3: setAutoDisable(true) 4: setAutoDisable(true)

5: setDataEventEnabled(true) 6: setDataEventEnabled(true)

7: scan successful label

9: create DataEvent

10: decode data

11: enqueue DataEvent and DataCount++

13: set Scanner data properties and deliver enqueued DataEvent to control
 [DataEventEnabled == true && FreezeEvents == false]

Typically this firing of events would
be done by some worker thread
managed by the ScannerService

12: set DeviceEnabled property to false [AutoDisable == true]

16: getScanData() 17: getScanData()

18: getScanDataLabel() 19: getScanDataLabel()

20: setDeviceEnabled(true) 21: setDeviceEnabled(true)

8: service is notified of new event

15: notify client of new event

14: deliver DataEvent to all event handlers
Right before the DataEvent is
delivered set DataEventEnabled
to false and DataCount--.

22: setDataEventEnabled(true)
23: setDataEventEnabled(true)

Unified POS, v1.15.1 Beta1 35 - 7

35.3.4 Model

The Scanner follows the general “Device Input Model” for event-driven input:

• When input is received from the scanner, a DataEvent is enqueued.

• If the AutoDisable property is true, then the device automatically disables itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
 other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
 properties, and further data events are disabled by setting DataEventEnabled to false. This causes subsequent input
 data to be enqueued while the application processes the current input and associated properties. When the
 application has finished processing the current input and is ready for more data, it reenables events by setting
 DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered to
 the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the total number of enqueued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
 default values by calling the clearInputProperties method.

Scanned data is placed into the property ScanData. If the application sets the property DecodeData to true, then
the data is decoded into the ScanDataLabel and ScanDataType properties.

35.3.5 Device Sharing

The scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.

35 - 8 Unified POS, v1.15.1 Beta1

35.4 Properties (UML attributes)

35.4.1 DecodeData Property

Syntax DecodeData: boolean { read-write, access after open }

Remarks If true, then ScanData will be decoded into the properties ScanDataLabel and ScanDataType.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18

Unified POS, v1.15.1 Beta1 35 - 9

35.4.2 ScanData Property Updated in Release 1.7

Syntax ScanData: binary { read-only, access after open } 1

Remarks Holds the data read from the scanner.

Scan data is, in general, in the format as delivered from the scanner. Message header and trailer
information are removed, however, since they do not contain useful information for an application
and are likely to be scanner-specific.

Common header information is a prefix character (such as an STX character). Common trailer
information is a terminator character (such as an ETX or CR character) and a block check character
if one is generated by the scanner.

This property should include a symbology character if one is returned by the scanner (for example,
an ‘A’ for UPC-A). It should also include check digits if they are present in the label and returned
by the scanner. (Note that both symbology characters and check digits may or may not be present,
depending upon the scanner configuration. The scanner will return them if present, but will not
generate or calculate them if they are absent.)

Some merchandise may be marked with a supplemental barcode. This barcode is typically placed
to the right of the main barcode, and consists of an additional two or five characters of information.
If the scanner reads merchandise that contains both main and supplemental barcodes, the
supplemental characters are appended to the main characters, and the result is delivered to the
application as one label. (Note that a scanner may support configuration that enables or disables the
reading of supplemental codes.)

Some merchandise may be marked with multiple labels, sometimes called multi-symbol labels or
tiered labels. These barcodes are typically arranged vertically, and may be of the same or different
symbology. If the scanner reads merchandise that contains multiple labels, each barcode is delivered
to the application as a separate label. This is necessary due to the current lack of standardization of
these barcode types. One is not able to determine all variations based upon the individual barcode
data. Therefore, the application will need to determine when a multiple label barcode has been read
based upon the data returned. (Note that a scanner may or may not support reading of multiple
labels.)

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18.

1. In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

35 - 10 Unified POS, v1.15.1 Beta1

35.4.3 ScanDataLabel Property Updated in Release 1.10

Syntax ScanDataLabel: binary { read-only, access after open } 2

Remarks Holds the decoded bar code label.

When DecodeData is false, this property will have zero length. When DecodeData is true, then
ScanData is decoded into this property as follows:

• Scanner-generated symbology characters are removed, if present.

• If the label type can be determined to be a UPC/EAN label (a symbology identifier was
provided by the scanner), then the check digit must be present in this property. If the scanner
hardware does not return the UPC/EAN check digit, then the Service must calculate it and
include it in this property to ensure that the data reflects a complete UPC/EAN label.

• For variable length bar codes, the length identification is removed, if present.

For example, the EAN-13 barcode which appears printed as “5 018374 827715” on a label may be
received from the scanner and placed into ScanData as the following:

Received from scanner ScanData Comment
5018374827715 5018374827715 Complete barcode only

501837482771<CR> 501837482771 Without check digit with carriage return

F5018374827715<CR> F5018374827715 With scanner-dependent symbology
character and carriage return

<STX>F5018374827715<ETX> F5018374827715 With header, symbology character, and
trailer

For each of these cases (and any other variations), this property must always be set to the string
“5018374827715,” and ScanDataType must be set to SCAN_SDT_EAN13.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18.

2. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 35 - 11

35.4.4 ScanDataType Property Updated in Release 1.15.1

Syntax ScanDataType: int32 { read-only, access after open }

Remarks Holds the decoded bar code label type.

When DecodeData is false, this property is set to SCAN_SDT_UNKNOWN. When DecodeData
is true, the Service tries to determine the scan label type. The following label types are defined:

Value Label Type
One Dimensional Symbologies Updated in Release 1.15.1

SCAN_SDT_UPCA UPC-A
SCAN_SDT_UPCA_S UPC-A with supplemental barcode
SCAN_SDT_UPCE UPC-E
SCAN_SDT_UPCE_S UPC-E with supplemental barcode
SCAN_SDT_UPCD1 UPC-D1
SCAN_SDT_UPCD2 UPC-D2
SCAN_SDT_UPCD3 UPC-D3
SCAN_SDT_UPCD4 UPC-D4
SCAN_SDT_UPCD5 UPC-D5
SCAN_SDT_EAN8 EAN 8 (= JAN 8)
SCAN_SDT_JAN8 JAN 8 (= EAN 8)
SCAN_SDT_EAN8_S EAN 8 with supplemental barcode
SCAN_SDT_EAN13 EAN 13 (= JAN 13)
SCAN_SDT_JAN13 JAN 13 (= EAN 13)
SCAN_SDT_EAN13_S EAN 13 with supplemental barcode
SCAN_SDT_EAN128 EAN-128
 EAN-128 is deprecated and replaced by GS1-128
 SCAN_SDT_EAN128 is deprecated and replaced by
 SCAN_SDT_GS1128 (which has the same value).
SCAN_SDT_TF Standard (or discrete) 2 of 5
SCAN_SDT_ITF Interleaved 2 of 5
SCAN_SDT_Codabar Codabar
SCAN_SDT_Code39 Code 39
SCAN_SDT_Code93 Code 93
SCAN_SDT_Code128 Code 128
SCAN_SDT_OCRA OCR “A”
SCAN_SDT_OCRB OCR “B”

Value Label Type
One Dimensional Symbologies - Added in Release 1.8

SCAN_SDT_RSS14 14 digit GTIN only - Deprecated v1.12; replaced by
SCAN_SDT_GS1DATABAR (which has the same value)

SCAN_SDT_RSS_EXPANDED 14 digit GTIN plus additional defined fields (e.g., price, weight)
- Deprecated v1.12; replaced by
SCAN_SDT_GS1DATABAR_E (which has the same value)

35 - 12 Unified POS, v1.15.1 Beta1

Value Label Type
One Dimensional Symbologies - Added in Release 1.12

SCAN_SDT_GS1DATABAR GS1 DataBar Omnidirectional (normal or stacked)
SCAN_SDT_GS1DATABAR_E GS1 DataBar Expanded (normal or stacked)

Value Label Type
One Dimensional Symbologies - Added in Release 1.14

SCAN_SDT_ITF_CK Interleaved 2 of 5 check digit verified and transmitted
SCAN_SDT_GS1DATABAR_TYPE2

GS1 DataBar Limited
SCAN_SDT_AMES Ames Code
SCAN_SDT_TFMAT Matrix 2 of 5
SCAN_SDT_Code39_CK Code 39 with check character verified and transmitted
SCAN_SDT_Code32 Code 39 with Mod 32 check character
SCAN_SDT_CodeCIP Code 39 CIP
SCAN_SDT_TRIOPTIC39 Tri-Optic Code 39
SCAN_SDT_ISBT128 ISBT-128
SCAN_SDT_Code11 Code 11
SCAN_SDT_MSI MSI Code
SCAN_SDT_PLESSEY Plessey Code
SCAN_SDT_TELEPEN Telepen

Value Label Type
One Dimensional Symbologies - Added in Release 1.15.1

SCAN_SDT_GS1128 GS1-128
 GS1-128 replace the EAN-128 (which has the same value).
 SCAN_SDT_EAN128 is deprecated and replaced by
 SCAN_SDT_GS1128.
SCAN_SDT_DWCODE Digital Watermarking

Value Label Type
Composite Symbologies - Added in Release 1.8
SCAN_SDT_CCA Composite Component A.

Up to 56 characters of data.
SCAN_SDT_CCB Composite Component B.

Up to 338 characters of data.
SCAN_SDT_CCC Composite Component C.

Up to 2361 characters of data.
Value Label Type
Composite Symbologies - Added in Release 1.14
SCAN_SDT_TLC39 TLC-39

A Composite Component may occur with any one of several different label types, such as UPC,
EAN, and GS1 DataBar. The composite component is read at the same time as the linear component.
When such a label is read, a DataEvent is delivered that sets ScanDataType to SCAN_SDT_CCA,
SCAN_SDT_CCB, or SCAN_SDT_CCC. The next DataEvent always delivers the linear
component. (In other words, the Service enqueues two DataEvents at the same time: First the
composite component, then the linear component.) It is the application writer's responsibility to
merge the data associated with the two DataEvents.

Unified POS, v1.15.1 Beta1 35 - 13

Value Label Type
Two Dimensional Symbologies

SCAN_SDT_PDF417 PDF 417
SCAN_SDT_MAXICODE MAXICODE

Value Label Type
Two Dimensional Symbologies - Added in Release 1.11

SCAN_SDT_DATAMATRIX Data Matrix
SCAN_SDT_QRCODE QR Code
SCAN_SDT_UQRCODE Micro QR Code
SCAN_SDT_AZTEC Aztec
SCAN_SDT_UPDF417 Micro PDF 417

Value Label Type
Two Dimensional Symbologies - Added in Release 1.14

SCAN_SDT_GS1DATAMATRIX
GS1 DataMatrix

SCAN_SDT_GS1QRCODE
GS1 QR Code

SCAN_SDT_Code49 Code 49
SCAN_SDT_Code16k Code 16K
SCAN_SDT_CodablockA Codablock A
SCAN_SDT_CodablockF Codablock F
SCAN_SDT_Codablock256 Codablock 256
SCAN_SDT_HANXIN Han Xin Code

Value Label Type
Two Dimensional Symbologies - Added in Release 1.15.1

SCAN_SDT_DOTCODE DotCode

Value Label Type
Postal Code Symbologies - Added in Release 1.14

SCAN_SDT_AusPost Australian Post
SCAN_SDT_CanPost Canada Post
SCAN_SDT_ChinaPost China Post
SCAN_SDT_DutchKix Dutch Post
SCAN_SDT_InfoMail InfoMail
SCAN_SDT_JapanPost Japan Post
SCAN_SDT_KoreanPost Korean Post
SCAN_SDT_SwedenPost Sweden Post
SCAN_SDT_UkPost UK Post BPO
SCAN_SDT_UsIntelligent US Intelligent Mail
SCAN_SDT_UsPlanet US Planet Code
SCAN_SDT_PostNet US Postnet

35 - 14 Unified POS, v1.15.1 Beta1

Value Label Type
Special Cases

SCAN_SDT_OTHER If greater or equal to this type, then the Service has returned an
undefined symbology.

SCAN_SDT_UNKNOWN The Service cannot determine the barcode symbology.
ScanDataLabel may not be properly formatted for the actual
barcode type.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also “Device Input Model” on page 1- 18.

Unified POS, v1.15.1 Beta1 35 - 15

35.5 Events (UML interfaces)

35.5.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data from the Scanner (Bar Code Reader) is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Always zero.

Remarks The scanner data is placed in the ScanData, ScanDataLabel, and ScanDataType properties prior
to a DataEvent being delivered to the application.

See Also “Events” on page 1- 15.

35.5.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Scanner Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Scanner devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method

35 - 16 Unified POS, v1.15.1 Beta1

35.5.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a scanner device error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error code causing the error event. See list of ErrorCodes on page 1-21.
ErrorCodeExtended

int32 Extended error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read scanner data. This event is not delivered
until DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Events” on page 1- 15.

Unified POS, v1.15.1 Beta1 35 - 17

35.5.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Scanner device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a Scanner device.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional Status
values for communicating the status/progress of an asynchronous update firmware
process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Scanner device detects a power state change.

See Also “Events” on page 1- 15.

35 - 18 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 36 - 1

36 Signature Capture

36.1 General
This Chapter defines the Signature Capture device category.

36.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 open
DataEventEnabled: boolean { read-write } 1.0 open
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

36 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
CapDisplay: boolean { read-only } 1.0 open
CapRealTimeData: boolean { read-only } 1.2 open
CapUserTerminated: boolean { read-only } 1.0 open
MaximumX: int32 { read-only } 1.0 open
MaximumY: int32 { read-only } 1.0 open

PointArray: array of
points { read-only } 1.0 open, claim, & enable

RawData: binary { read-only } 1.0 open, claim, & enable
RealTimeDataEnabled: boolean { read-write } 1.2 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Unified POS, v1.15.1 Beta1 36 - 3

Methods (Continued)
Specific
Name
beginCapture (formName: string):

void { raises-exception, use after open, claim, enable }
1.0

endCapture ():
void { raises-exception, use after open, claim, enable }

1.0

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.0
 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.0
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

36 - 4 Unified POS, v1.15.1 Beta1

36.3 General Information
The Signature Capture programmatic name is “SignatureCapture”.

36.3.1 Capabilities

The Signature Capture Device has the following capability:

• Obtains a signature captured by a signature capture device. The captured signature data is in the form of lines
 consisting of a series of points. Each point lies within the co-ordinate system defined by the resolution of the device,
 where (0, 0) is the upper-left point of the device, and (MaximumX, MaximumY) is the lower-right point. The
 signature line points are presented to the application by a DataEvent with a single array of line points

The Signature Capture Device may have the following additional capabilities:

• Provides a way for the user to terminate signature capture – that is, to tell the device that she or he has completed the
 signature.

• Displays form/data on the signature capture device.

• Returns the signature in “real time” as it is entered on the device. If this capability is true and has been enabled by
 application by setting the RealTimeDataEnabled property to true, then a series of DataEvents are enqueued, each
 with an array of one or more line points representing a partial signature.

Unified POS, v1.15.1 Beta1 36 - 5

36.3.2 Signature Capture Class Diagram

The following diagram shows the relationships between the Signature Capture classes.

UposException
(from upos)

<<exception>>
UposConst
(from upos)

<<utility>>

SignatureCaptureConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

SignatureCaptureControl

<<capability>> CapDisplay : boolean
<<capability>> CapRealTimeData : boolean
<<capability>> CapUserTerminated : boolean
<<prop>> MaximumX : int32
<<prop>> MaximumY : int32
<<prop>> PointArray : array of point
<<prop>> RawData : binary
<<prop>> RealTimeDataEnabled : boolean

beginCapture(formName : string) : void
endCapture() : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

36 - 6 Unified POS, v1.15.1 Beta1

36.3.3 Signature Capture Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of gathering data from a Signature Capture device.

NOTE: we are assuming that the :ClientApp already successfully registered event handlers and opened, claimed and
enabled the SignatureCapture device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :SignatureCapture :SignatureCapture
Service

 : Customer

:DataEvent

1: setDataEventEnabled(true)
2: setDataEventEnabled(true)

3: beginCapture(formName)
4: beginCapture(formName)

5: sign name

6: create new DataEvent

8: update properties and deliver DataEvent
[DataEventEnabled == true && FreezeEvents == false]

At this point the :ClientApp
will execute some event
handling code as shown
below

11: getMaximumX()
12: getMaximumX()

13: getMaximumY()
14: getMaximumY()

15: getPointArray()
16: getPointArray()

17: application specific processing with gathered data

9: deliver DataEvent to each registered handlers

We are assuming that this device support real time
data capture so that CapRealTimeData == true

7: DataCount++ and enqueue

If CapUserTerminate == true
then there is no need to
terminate capture with
endCapture()

10: notify client of new event

Right before the DataEvent
is delivered, set
DataEventEnabled to false
and DataCount--.

Unified POS, v1.15.1 Beta1 36 - 7

36.3.4 Model

The signature capture device usage model is:

• Open and claim the device.

• Enable the device and set the property DataEventEnabled to true.

• Begin capturing a signature by calling beginCapture. This method displays a form or data screen (if the device has
 a display) and enables the stylus.

• If the device is capable of supplying signature data in real time as the signature is entered (CapRealTimeData is
 true), and if RealTimeDataEnabled is true, the signature is presented to the application as a series of partial
 signature data events until the signature capture is terminated.

• If the device provides a way for the user to terminate the signature, then when the user terminates, a DataEvent is
 enqueued. Otherwise, the application must call endCapture to terminate the signature.

• Disable the device. If the device has a display, this also clears the display.

The Signature Capture follows the general “Device Input Model” for event-driven input:

• When input is received by the Service, it enqueues a DataEvent.

• If AutoDisable is true, then the Device automatically disables itself when a DataEvent is enqueued. However, note
 that setting AutoDisable probably is not very useful for the Signature Capture control. If RealTimeDataEnabled is
 true, then AutoDisable does not make sense. If RealTimeDataEnabled is false, then the pacing of signatures is
 controlled by the application via the beginCapture method. It is probably in the best interests of the application not
 to use the AutoDisable property for this device class.

• A queued DataEvent can be delivered to the application when the property DataEventEnabled is true and other
 event delivery requirements are met. Just before delivering this event, data is copied into properties, and further data
 events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be enqueued while
 the application processes the current input and associated properties. When the application has finished processing
 the current input and is ready for more data, it re-enables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if the an error occurs while gathering or processing input, and is delivered
 to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
 default values by calling the clearInputProperties method.

Deviations from the general “Device Input Model” for event-driven input are:

• The capture of signature data begins when beginCapture is called.

• If signature capture is terminated by calling endCapture, then no DataEvent will be enqueued.

36 - 8 Unified POS, v1.15.1 Beta1

36.3.5 Device Sharing

The Signature Capture is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device or before
 changing some writable properties.

• See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 36 - 9

36.4 Properties (UML attributes)

36.4.1 CapDisplay Property

Syntax CapDisplay: boolean { read-only, access after open }

Remarks If true, the device is able to display a form or data entry screen.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

36.4.2 CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply signature data as the signature is being captured (“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

36.4.3 CapUserTerminated Property

Syntax CapUserTerminated: boolean { read-only, access after open }

Remarks If true, the user is able to terminate signature capture by checking a completion box, pressing a
completion button, or performing some other interaction with the device. If false, the application
must end signature capture by calling the endCapture method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

36.4.4 DeviceEnabled Property (Common)

Syntax DeviceEnabled: boolean { read-write, access after open-claim }

Remarks If true, the signature capture device is enabled.

If CapDisplay is true, then the display screen of the device is cleared.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

36 - 10 Unified POS, v1.15.1 Beta1

36.4.5 MaximumX Property

Syntax MaximumX: int32 { read-only, access after open }

Remarks Holds the maximum horizontal coordinate of the signature capture device. It must be less than
65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

36.4.6 MaximumY Property

Syntax MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 36 - 11

36.4.7 PointArray Property Updated in Release 1.7

Syntax PointArray: array-of-points { read-only, access after open-claim-enable } 1

Remarks Holds the signature captured from the device. It consists of an array of (x, y) coordinate points. Each
point is represented by four characters: x (low 8 bits), x (high 8 bits), y (low 8 bits), y (high 8 bits).

A special point value is (0xFFFF, 0xFFFF) which indicates the end of a line (that is, a pen lift).
Almost all signatures are comprised of more than one line.

If RealTimeDataEnabled is false, then this property contains the entire captured signature. If
RealTimeDataEnabled is true, then this property contains at least one point of the signature. The
actual number of points delivered at one time is implementation dependent. The points from
multiple data events are logically concatenated to form the entire signature, such that the last point
from a data event is followed immediately by the first point of the next data event.

The point representation definition is the same regardless of whether the signature is presented as a
single PointArray, or as a series of real time PointArrays.

Reconstruction of the signature using the points is accomplished by beginning a line from the first
point in the signature to the second point, then to the third, and so on. When an end-of-line point is
encountered, the drawing of the line ends, and the next line is drawn beginning with the next point.
An end-of-line point is assumed (but need not be present in PointArray) at the end of the signature.

This property is set prior to a DataEvent being delivered to the application or by the endCapture
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also RawData Property.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

36 - 12 Unified POS, v1.15.1 Beta1

36.4.8 RawData Property Updated in Release 1.7

Syntax RawData: binary { read-only, access after open-claim-enable } 2

Remarks Holds the signature captured from the device in a device-specific format.

This data is often in a compressed form to minimize signature storage requirements. Reconstruction
of the signature from this data requires device-specific processing.

This property is set prior to a DataEvent being delivered to the application or by the endCapture
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also PointArray Property.

36.4.9 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean { read-write, access after open }

Remarks If true and CapRealTimeData is true, a series of partial signature data events is enqueued as the
signature is captured until signature capture is terminated. Otherwise, the captured signature is
enqueued as a single DataEvent when signature capture is terminated.

Setting RealTimeDataEnabled will not cause any change in system behavior until a subsequent
beginCapture method is performed. This prevents confusion regarding what would happen if it
were modified between a beginCapture - endCapture pairing.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot set to true because CapRealTimeData is false.

See Also CapRealTimeData Property, beginCapture Method, endCapture Method.

2. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 36 - 13

36.5 Methods (UML operations)

36.5.1 beginCapture Method

Syntax beginCapture (formName: string):
 void { raises-exception, use after open-claim-enable }

Parameter Description
formName The parameter contains the platform specific location for obtaining form

or data screen information for display on the device screen.

Remarks Starts capturing a signature.

If CapDisplay is true, then formName is used to find information about the form or data screen to
be displayed. The format and features of each signature capture device’s form/data screen varies
widely and is often built with proprietary tools. Therefore, this location’s data, and possibly
additional values and data, contain information that varies by Service. Typically, the contents of this
data are set to a form/data screen file name, and extra values and data are set as needed to control
its display.

After displaying the form or data screen, when applicable, the signature capture stylus is enabled.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_NOEXIST formName was not found.

See Also CapDisplay Property, endCapture Method.

36 - 14 Unified POS, v1.15.1 Beta1

36.5.2 endCapture Method

Syntax endCapture ():
 void { raises-exception, use after open-claim-enable }

Remarks Stops (terminates) capturing a signature.

If RealTimeDataEnabled is false and a signature was captured, then it is placed in the properties
PointArray and RawData. If no signature was captured, then PointArray and RawData are set to
a length of zero.

If RealTimeDataEnabled is true and there are signature points remaining which have not been
delivered to the application by a DataEvent, then the remaining signature is placed into the
properties PointArray and RawData. If no signature was captured or all signature points have been
delivered to the application, then PointArray and RawData are set to a length of zero.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Signature capture was not in progress.

See Also PointArray Property, RawData Property, RealTimeDataEnabled Property, beginCapture
Method, DataEvent.

Unified POS, v1.15.1 Beta1 36 - 15

36.6 Events (UML interfaces)

36.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Non-zero if the user has entered a signature before terminating capture.

Zero if the user terminated capture with no signature.
Remarks This event can only be enqueued if the user can terminate signature capture – that is, if

CapUserTerminated is true or RealTimeDataEnabled is true.
The properties PointArray and RawData are set to appropriate values prior to a DataEvent being
delivered to the application.

See Also endCapture Method, “Events” on page 1- 15.

36.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Signature Capture Service to provide events to the application that are not otherwise
supported by the Device Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.
 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise

described. Use of this event may restrict the application program from being used with other
vendor’s Signature Capture devices which may not have any knowledge of the Service’s need for
this event.

See Also “Events” on page 1- 15, directIO Method

36 - 16 Unified POS, v1.15.1 Beta1

36.6.3 ErrorEvent Updated in Release 1.11

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Signature Capture device error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes on

page 1- 16.
ErrorCodeExtended

int32 Extended Error Code causing the error event. This may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No
 previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available. (Very unlikely – see
Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
enqueued with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Unified POS, v1.15.1 Beta1 36 - 17

Remarks Enqueued when an error is detected while trying to read signature capture data. This event is not
delivered until DataEventEnabled is true and other event delivery requirements are met, so that
proper application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_INPUT_DATA will not occur. This is
because each signature requires an explicit beginCapture method, which can generate at most one
DataEvent. The application would need to defer the DataEvent by setting DataEventEnabled to
false and request another signature before an EL_INPUT_DATA would be possible.

See Also “Device Input Model” on page 1- 18, “Device Information Reporting Model” on page 1- 25,
“Events” on page 1- 15.

36.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Signature Capture device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a Signature Capture device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Signature Capture device detects a power state change.

See Also “Events” on page 1- 15.

36 - 18 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 37 - 1

37 Smart Card Reader/Writer

37.1 General
This Chapter defines the Smart Card Reader/Writer device category.

37.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.8 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.8 open
Claimed: boolean { read-only } 1.8 open
DataCount: int32 { read-only } 1.8 open
DataEventEnabled: boolean { read-write } 1.8 open
DeviceEnabled: boolean { read-write } 1.8 open & claim
FreezeEvents: boolean { read-write } 1.8 open
OutputID: int32 { read-only } 1.8 open
PowerNotify: int32 { read-write } 1.8 open
PowerState: int32 { read-only } 1.8 open
State: int32 { read-only } 1.8 --

DeviceControlDescription: string { read-only } 1.8 --
DeviceControlVersion: int32 { read-only } 1.8 --
DeviceServiceDescription: string { read-only } 1.8 open
DeviceServiceVersion: int32 { read-only } 1.8 open
PhysicalDeviceDescription: string { read-only } 1.8 open
PhysicalDeviceName: string { read-only } 1.8 open

37 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific: Type Mutability Version May Use After
CapCardErrorDetection: boolean { read-only } 1.8 open
CapInterfaceMode: int32 { read-only } 1.8 open
CapIsoEmvMode: int32 { read-only } 1.8 open
CapSCPresentSensor: int32 { read-only } 1.8 open
CapSCSlots: int32 { read-only } 1.8 open
CapTransmissionProtocol: int32 { read-only } 1.8 open
InterfaceMode: int32 { read-write } 1.8 open, claim, & enable
IsoEmvMode: int32 { read-write } 1.8 open, claim, & enable
SCPresentSensor: int32 { read-only } 1.8 open, claim, & enable
SCSlot: int32 { read-write } 1.8 open, claim, & enable
TransactionInProgress: boolean { read-only } 1.8 open
TransmissionProtocol: int32 { read-only } 1.8 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.8

close ():
void { raises-exception, use after open }

1.8

claim (timeout: int32):
void { raises-exception, use after open }

1.8

release ():
void { raises-exception, use after open, claim }

1.8

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.8

clearInput ():
void { raises-exception, use after open, claim }

1.8

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { raises-exception, use after open, claim }

1.8

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.8

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

Unified POS, v1.15.1 Beta1 37 - 3

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name Version
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
1.8

beginRemoval (timeout: int32):
void{ raises-exception, use after open, claim, enable }

1.8

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.8

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.8

readData (action: int32, inout count: int32, inout data: string):
void { raises-exception, use after open, claim, enable }

1.8

writeData (action: int32, count: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.8

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent 1.8

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.8
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.8
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.8
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.8
 Status: int32 { read-only }

37 - 4 Unified POS, v1.15.1 Beta1

37.3 General Information
The Smart Card Reader / Writer programmatic name is “SmartCardRW”.

This device was introduced in Version 1.8 of the specification.

37.3.1 Capabilities

The Smart Card Reader / Writer (SCR/W) device has the following capabilities.

• Support for the reading and writing of Smart Cards that conform to the ISO/IEC 7816 standard (contact type) and
 ISO/IEC 14443 (contactless type).

• Interface with simple memory cards, protected or segmented memory cards, stored value memory cards, and CPU/
 MPU multifunction cards.

• Functions are limited to the actual Smart Card read and write operations only. Full function type devices such as a
 “Payment Terminal” (defined as a unit that incorporates a SCR/W plus additional devices such as a Pin Pad,
 Display, Signature Capture, and MSR reader in an integrated device) are not covered in this peripheral class.

• Support for Smart Cards that use physical electrical contacts and/or close range Radio Frequency to exchange power
 and data.

• Ability to sense when a card is present or absent is supported.

• Optional support of Security Application Modules (SAM) for CPU/MPU cards may be provided.

• Up to four types of API communication methods to the SCR/W may be supported:

1. Command and Data Mode: Very basic ASCII format for commands and data interchange.

2. Data Block Mode: A block of string data that contains commands and data is sent to the SCR/W Device Service.
 The application and the SCR/W Service need to agree upon a communication protocol and data format before
 using this mode.

3. APDU Mode: Same as Data Block Mode except that the block of string data that contains commands and
 data sent to the SCR/W Service conforms to the ISO/IEC 7816 APDU (Application Protocol Data Units)
 standard for smart cards. ISO and EMV messaging formats are supported and selectable if the SCR/W has
 the capability to switch to one of these formats.

4. XML Data Block Mode: A block of string data that contains commands and data is sent to the SCR/W
 Service. The application and the SCR/W Service agree to use a communication protocol and data format
 defined in this standard consistent with the XML Data Dictionary and XML schema guidelines as outlined in
 the ARTS XML standard.

Unified POS, v1.15.1 Beta1 37 - 5

37.4 Smart Card Reader / Writer Class Diagram
The following diagram shows the relationships between the SCR/W classes.

«event»
UPOSException

«event»
StatusUpdateEvent

«prop» Status : int32

«event»
BaseControl

«event»
DataEvent

«prop» Status : int32

«event»
DirectIOEvent

«prop» EventNumber : int32
«prop» Data : int32
«prop» Obj : object

«utility»
SmartCardRWConst

«utility»
UposConst

Smart Card R/W Control

«capability» CapCardErrorDetection : boolean
«capability» CapInterfaceMode : int32
«capability» CapIsoEmvMode : int32
«capability» CapSCPresentSensor : int32
«capability» CapSCSlots : int32
«capability» CapTransmissionProtocol : int32
«prop» InterfaceMode : int32
«prop» IsoEmvMode : int32
«prop» SCPresentSensor : int32
«prop» SCSlot : int32
«prop» TransactionInProgress : boolean
«prop» TransmissionProtocol : int32

«method» beginInsertion ()
«method» beginRemoval ()
«method» endInsertion ()
«method» endRemoval ()
«method» readData ()
«method» writeData ()

<<sends>>
<<uses>>

«fires»

<<sends>>

«fires»

«fires»

<<uses>>

«event»
ErrorEvent

«prop» ErrorCode : int32
«prop» ErrorCodeExtended : int32
«prop» ErrorLocus : int32
«prop» ErrorResponse : int32

«fires»

37 - 6 Unified POS, v1.15.1 Beta1

37.5 Model
The general model of Smart Card Reader / Writer is as follows:

• The Smart Card Reader / Writer (SCR/W) device has a wide range of usages that depend upon a variety of ISO 7816
 compliant smart cards. These include cards with or without physical electrical contacts and proximity types that may
 function as memory cards, processor cards (T0 and/or T1 TransmissionProtocol), electronic purse cards, security
 access module (SAM) processor cards, and security cards. The SCR/W scope is limited to providing access to the
 smart card so that data retrieval, data storage, or program execution on the smart card can be implemented.

• It is the responsibility of the application to have knowledge of what type of Smart Card transactions the SCR/W
 device will allow. To help facilitate a wide range of possibilities of usage, four different communication command
 and data interchange methods (InterfaceMode) are provided. As part of the initialization sequence, the application
 should query the CapInterfaceMode to determine what is allowed and set the InterfaceMode property to the mode
 that will be used.

• To begin operation, the application must call the open and claim methods to set up a communication path to the
 SCR/W device. When the application is ready to interact with a smart card, the DeviceEnabled property must be set
 to true. Then the SCR/W is able to accept a smart card; a StatusUpdateEvent is fired when one has been detected.

The beginInsertion method, with its time-out value set to some finite value, provides a way to allow the application
to wait for a smart card to be detected. If the time-out value expires, the program must call another beginInsertion
method to continue its quest for detecting a smart card. Once the smart card has been detected, the application must
call the endInsertion method.

• Input Updated in Release 1.15.1
The application must invoke the readData method in order to request data from the smart card. When access to the
smart card’s data is enabled after the EndInsertion, the DataEvent will be delivered to the application to
notify the availability. The application must set the DataEventEnabled property to true in order for the
DataEvent to be delivered. For this device, notification of a DataEvent does not mean the data has been read,
only that the smart card is in a stable condition where any data that is available to be read can in fact be read. The
application must use the readData method to actually retrieve the data that the smart card has available. The applica-
tion must set the DataEventEnabled property to true in order for the DataEvent to be delivered.
The application must invoke the readData method in order to request the data from smart card.
If an error occurs while reading the smart card’s data, an ErrorEvent is enqueued instead of a DataEvent. When the
application sets the DataEventEnabled property to true, the ErrorEvent will be delivered.

The application can obtain the current number of enqueued data events by reading the DataCount property.

All enqueued but undelivered input may be deleted by calling the clearInput method.

All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their default
values by calling the clearInputProperties method.

Unified POS, v1.15.1 Beta1 37 - 7

• Output
The writeData method is always performed asynchronously. All output data is performed on a first-in, first-out basis.
When the application calls the writeData method, the SCR/W buffers the request and begins the communication pro-
cess through the SCR/W device to the smart card.

Depending upon the InterfaceMode property, the writeData method data is either parsed by the Service or passed
natively directly to the SCR/W device and then on to the smart card. A unique identification number is assigned for
the data associated with the writeData call and is stored in the OutputID property. The data is enqueued for delivery
to the SCR/W device as soon as it can receive and process it.

When the writeData method completes sending the data associated with the current output request, an OutputCom-
pleteEvent is delivered to the application. The OutputID associated with this output request is contained in the Out-
putCompleteEvent.

If the writeData method fails during data transfer, an ErrorEvent will be delivered to the application. If the applica-
tion had multiple outstanding output requests, the OutputID of the failed request is determined by evaluating the
OutputID associated with the last successful OutputCompleteEvent. The request that failed is the one that was
issued immediately after the last request that successfully completed.

All buffered output data may be deleted by calling the clearOutput method. This also stops any output that is in
progress, if possible. No OutputCompleteEvents will be delivered for output requests terminated in this manner.

・When done accessing the smart card, the application must call the beginRemoval method, specifying a timeout 　
　value. If the card is not removed before the timeout period elapses, the SCR/W fires an exception. The application
　must call the beginRemoval method again until the smart card is removed from the SCR/W device.

When the smart card is no longer detected in the SCR/W, a StatusUpdateEvent is fired.

To exit the removal mode, either after the card was physically removed or the application aborts the smart card
removal process, the application must call the endRemoval method.

When the application is finished using the SCR/W device, the application must set the DeviceEnabled property to
false and call the release method. If no further interaction with the SCR/W device is required, the application must
call the close method.

There may be times when the smart card is extracted from the SCR/W device before the normal usage sequence has
been completed. This is referred to as having the card “torn” from the SCR/W device. The application will receive a
StatusUpdateEvent indicating the card is no longer “present”. In addition the SCPresentSensor property would
have been set to false.

37 - 8 Unified POS, v1.15.1 Beta1

37.6 Card Insertion Diagram
The processing from card insertion to card removal is shown below. All methods, other than writeData, are
performed synchronously.

1. If the smart card is not inserted into the SCR/W before the application specified timeout elapses, an exception is
 fired. The application needs to call beginInsertion again to confirm that a smart card has been inserted or call
 endInsertion to cancel the card insertion. After a successful beginInsertion, the application must call
 endInsertion to cause the SCR/W to exit insertion mode and allow for further readData, writeData, or other
 methods to be used with the SCR/W to obtain data from the smart card. When a card is detected, a
 StatusUpdateEvent is fired.

2. If the smart card is not removed from the SCR/W before the application specified timeout elapses, an exception is
 fired. The application needs to call beginRemoval again to confirm that the smart card has been removed, or call
 endRemoval to cancel the card removal. After a successful beginRemoval, the application must call endRemoval
 to cause the SCR/W to exit removal mode. When a card is no longer detected, a StatusUpdateEvent is fired.

Unified POS, v1.15.1 Beta1 37 - 9

37.7 Device Sharing
The SCR/W is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the SCR/W specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

37 - 10 Unified POS, v1.15.1 Beta1

37.8 Data Transfer Modes
The SCR/W has the flexibility to be able to operate in one or more modes to enable the transfer of data to and
from the smart card. When the SCR/W is initialized, the application must determine what communication and
operation mode will be used based upon a query of the capabilities of the SCR/W device.

The InterfaceMode property is used to store the current communication mode.

In the Command / Data mode, a simple read and write data functionality is defined between the application and
the SCR/W. The commands will cause the data to be retrieved from, placed onto, or placed onto and executed on
the smart card currently available to the SCR/W device. Greater knowledge of the specific SCR/W device is
required in this mode. The application should query the PhysicalDeviceName and/or
PhysicalDeviceDescription properties and create the write data and resultant read data based upon the type of
SCR/W that is connected to the system.

In the Block Transfer mode, blocks of commands/data are sent to and retrieved from the SCR/W Service. It is up
to the Service to parse the commands and data from the block of information sent to it from the application and
invoke the necessary function and response in the smart card currently in the SCR/W. Knowledge of the message
content between the application and the SCR/W must be established when the open method is called. The
application should query the PhysicalDeviceName and/or PhysicalDeviceDescription properties and base its
message content upon the type of SCR/W that is connected to the system.

In the APDU Transfer mode, blocks of data are sent to and retrieved from the SCR/W Service similar to the
Block Transfer mode described above. However, in this mode the commands and data consist of string data
elements that comply to the ISO/IEC 7816 APDU (Application Protocol Data Units) standard for Smart Cards
communication. Provision has been made to support the messaging requirements of ISO or EMV for operating
in the APDU mode. The CapIsoEmvMode property can be queried to determine what modes are supported by
the device. The application then sets the IsoEmvMode property to the desired messaging scheme prior to
sending data to and receiving data from the SCR/W device.

In the XML Block Transfer mode, blocks of data are sent to and retrieved from the SCR/W Service similar to the
Block Transfer mode described above. However, in this mode the commands and data are in the form of XML
messages. The data elements and schemas of these messages conform to the ARTS XML messaging as they
apply to the SCR/W device.

Unified POS, v1.15.1 Beta1 37 - 11

37.9 Smart Card Reader / Writer Sequence Diagram

37 - 12 Unified POS, v1.15.1 Beta1

37.10 Smart Card Reader / Writer State Diagram

Unified POS, v1.15.1 Beta1 37 - 13

37.11 Properties (UML Attributes)

37.11.1 CapCardErrorDetection Property

Syntax CapCardErrorDetection: boolean { read-only, access after open }

Remarks If true, then the SCR/W has the ability to report that the smart card has been “torn” (removed before
all transfers have been completed) from the device, false if it does not. The ErrorEvent is only fired
with the ErrorCode set to the value “ESC_TORN” if a “torn” error is detected and the value for this
property is true.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also ErrorEvent event.

37.11.2 CapInterfaceMode Property

Syntax CapInterfaceMode: int32 { read-only, access after open }

Remarks This capability indicates the types of interface modes that the SCR/W device is capable of
supporting, a simple transaction command and data mode, a block data mode, APDU format block
data mode, or a block XML data mode that uses the ARTS XML Standard for SCR/W functionality.
The InterfaceMode property will reflect the currently selected interface mode that the application
is using to communicate with the device.

CapInterfaceMode is a bitwise logical OR combination of any of the following values:

Value Meaning
SC_CMODE_TRANS Simple Transaction Command and Data Mode
SC_CMODE_BLOCK Block Data Mode
SC_CMODE_APDU Same as Block Data Mode except APDU Standard

Commands are used.
SC_CMODE_XML XML Block Data Mode
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also InterfaceMode Property, IsoEmvMode Property.

37 - 14 Unified POS, v1.15.1 Beta1

37.11.3 CapIsoEmvMode Property

Syntax CapIsoEmvMode: int32 { read-only, access after open }

Remarks This capability indicates the message modes the SCR/W supports in order to interoperate with a
smart card when the InterfaceMode is set to SC_MODE_APDU. The APDU messaging format is
dependent upon whether the ISO or EMV standard is desired to be used. The IsoEmvMode
property is used to select the APDU mode that the SCR/W is currently using to interoperate with
the smart card.

CapIsoEmvMode is a bitwise logical OR combination of any of the following values:

Value Meaning
SC_CMODE_ISO APDU messaging format conforms to the ISO standard.
SC_CMODE_EMV APDU messaging format conforms to the EMV standard.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also IsoEmvMode Property, InterfaceMode Property.

37.11.4 CapSCPresentSensor Property

Syntax CapSCPresentSensor: int32 { read-only, access after open }

Remarks This capability indicates if the SCR/W device can sense if a smart card is present in one of the
available slots (entry points and/or proximity zones) where a user can insert a smart card.
The SCR/W device will always have a minimum of one slot available (designated as the default slot)
indicated by the LSB.

CapSCPresentSensor is a bitwise logical OR combination of any of the int32 bits with bit 0 (LSB)
slot 0 (default); bit 1, slot 1; bit 2, slot 2; etc. If the bit value is one, then the SCR/W has a sensor
that can detect when a smart card is present; the bit value is zero if it does not.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SCPresentSensor Property.

Unified POS, v1.15.1 Beta1 37 - 15

37.11.5 CapSCSlots Property

Syntax CapSCSlots: int32 { read-only, access after open }

Remarks This capability indicates the bit mask of available slots (entry points and/or proximity zones) where
a user can insert a smart card for detection in the SCR/W device. The application can select the slot
to use by setting the SCSlot property to one of the allowable CapSCSlots values. The device will
always have a minimum of one slot available (designated as the default slot) indicated by the LSB
set to one.

CapSCSlots is a bitwise logical OR combination of any of the int32 bits with bit 0 (LSB) slot 0
(default); bit 1, slot 1; bit 2, slot 2; etc.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SCSlot Property.

37.11.6 CapTransmissionProtocol Property

Syntax CapTransmissionProtocol: int32 { read-only, access after open }

Remarks This capability indicates the types of ISO 7816-3 transmission protocols that the SCR/W device is
capable of supporting, T=0 (asynchronous half duplex character transmission protocol), T=1
(asynchronous half duplex block transmission protocol). The TransmissionProtocol property will
reflect the currently selected transmission protocol being used to communicate with the device.

CapTransmissionProtocol is a bitwise logical OR combination of any of the following values:

Value Meaning
SC_CTRANS_PROTOCOL_T0 Asynchronous, Half Duplex, Character,

Transmission Protocol Mode
SC_CTRANS_PROTOCOL_T1 Asynchronous, Half Duplex, Block Transmission Protocol

Mode
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also TransmissionProtocol Property.

37 - 16 Unified POS, v1.15.1 Beta1

37.11.7 InterfaceMode Property

Syntax InterfaceMode: int32 { read-write, access after open-claim-enable }

Remarks This property indicates the current communication interface mode that the SCR/W device is using
to communicate with the application program. The property CapInterfaceMode contains the
interface modes that are supported by the SCR/W Service. If an InterfaceMode is selected that is
not consistent with CapInterfaceMode, a UposException will be thrown.

InterfaceMode may be one of the following values:

Value Meaning
SC_MODE_TRANS Simple Transaction Command and Data Mode
SC_MODE_BLOCK Block Data Mode
SC_MODE_APDU Same as Block Data Mode except APDU Standard

Defines the Commands and data.
SC_MODE_XML XML Block Data Mode
This property is initialized to SC_MODE_TRANS by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapInterfaceMode Property.

37.11.8 IsoEmvMode Property

Syntax IsoEmvMode: int32 { read-only, access after open-claim-enable }

Remarks This property indicates the message modes the SCR/W is currently using in order to interoperate
with a smart card when the InterfaceMode is set to SC_MODE_APDU. The APDU messaging
format is dependent upon whether the ISO or EMV standard is desired to be used. The
CapIsoEmvMode capability defines the available modes the SCR/W supports and the
IsoEmvMode property will be set to reflect the mode that is currently in use by the SCR/W device.

IsoEmvMode may be one of the following values:

Value Meaning
SC_MODE_ISO APDU messaging format currently in use conforms to the ISO standard.
SC_MODE_EMV APDU messaging format currently in use conforms to the EMV standard.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapIsoEmvMode Property, InterfaceMode Property.

Unified POS, v1.15.1 Beta1 37 - 17

37.11.9 SCPresentSensor Property

Syntax SCPresentSensor: int32 { read-only, access after open-claim-enable }

Remarks This property indicates that a smart card has been detected in one of the supported slots present in
the SCR/W device and is in a position to exchange data with the application. This property is only
active if the CapSCPresentSensor confirms that a smart card present sensor is supported by the
slot. The SCR/W device will always have a minimum of one slot available (designated as the default
slot) indicated by the LSB but may or may not support a smart card present sensor.

SCPresentSensor is a bitwise logical OR combination of any of the int32 bits with bit 0 (LSB) slot
0 (default); bit 1, slot 1; bit 2, slot 2; etc. If the bit value is one, then the sensor indicates that a smart
card is present; the bit value is zero if it does not. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapSCPresentSensor Property.

37.11.10 SCSlot Property

Syntax SCSlot: int32 { read-write, access after open-claim-enable }

Remarks This property indicates the current slot (entry point or proximity zone) where a user can insert a
smart card for detection in the SCR/W device. The application can select the slot to use by setting
the SCSlot property to one of the allowable CapSCSlots values. The device will always have a
minimum of one slot available (designated as the default, slot 0) indicated by the LSB set to one.

SCSlot may be set by the application to one of the CapSCSlots values as follows:

bit 0 (LSB) slot 0 (default); bit 1, slot 1; bit 2, slot 2; etc.

This property is initialized by the open method to the default, slot 0 value.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapSCSlots Property.

37.11.11 TransactionInProgress Property

Syntax TransactionInProgress: boolean { read-only, access after open }

Remarks If true, then a smart card has been detected and active interchange of information with the smart card
is taking place.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also SCPresentSensor Property.

37 - 18 Unified POS, v1.15.1 Beta1

37.11.12 TransmissionProtocol Property

Syntax TransmissionProtocol: int32 { read-only, access after open }

Remarks This property indicates the type of ISO 7816-3 transmission protocols that the SCR/W device is
currently supporting, T=0 (asynchronous half duplex character transmission protocol) or T=1
(asynchronous half duplex block transmission protocol). The TransmissionProtocol property will
reflect the currently selected transmission protocol being used to communicate with the device.

TransmissionProtocol is a bitwise data element based upon the supported modes as defined by the
CapTransmissionProtocol property and may be one of the following values:

Value Meaning
SC_TRANS_PROTOCOL_T0 Asynchronous, Half Duplex, Character,

Transmission Protocol Mode
SC_TRANS_PROTOCOL_T1 Asynchronous, Half Duplex, Block

Transmission Protocol Mode
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapTransmissionProtocol Property.

Unified POS, v1.15.1 Beta1 37 - 19

37.12 Methods (UML operations)

37.12.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method.
If zero, the method initiates insertion mode and either returns immediately if successful, or raises an
exception. If FOREVER (-1), the method initiates the begin insertion mode, then waits as long as
needed until either the smart card is inserted or an error occurs.

Remarks Called to initiate smart card insertion processing in either a contact type or contactless type SCR/W.

When called, SCR/W state is changed to allow the insertion of a smart card and the smart card
insertion mode is entered. This method is paired with the endInsertion method for controlling smart
card insertion.

If the SCR/W device cannot be placed into insertion mode an exception is raised. Otherwise, the
Control continues to monitor smart card insertion until either the smart card is not inserted before
timeout milliseconds have elapsed, or an error is reported by the SCR/W device. In the latter case,
the Control raises an exception with the appropriate error code. The SCR/W device remains in smart
card insertion mode. This allows an application to perform some user interaction and reissue the
beginInsertion method without altering the smart card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is

 in progress.
E_ILLEGAL The SCR/W does not exist or an invalid timeout parameter was

specified.
E_TIMEOUT The specified time has elapsed without the smart card being properly

inserted.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 47.
See Also endInsertion Method, beginRemoval Method, endRemoval Method.

37 - 20 Unified POS, v1.15.1 Beta1

37.12.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode and either returns immediately or raises an
exception. If FOREVER (-1), the method initiates the begin removal mode, then waits as long as
needed until either the smart card is removed or an error occurs.

Remarks Called to initiate smart card removal processing.

When called, the SCR/W is made ready to be removed from either a contact type or a contactless
type SCR/W. This method is paired with the endRemoval method for controlling smart card
removal.

The contact type model that has the sensor in the entrance ends normally when a card is removed
from SCR/W. The contactless model (without a sensor) ends normally when the smart card has been
removed from the proximity of the
SCR/W device.

If the SCR/W cannot be placed into removal or ejection mode, an exception is raised. Otherwise,
the Control continues to monitor smart card removal until either the smart card is not ejected before
timeout milliseconds have elapsed, or an error is reported by the SCR/W. In this case, the Control
raises an exception with the appropriate error code. The SCR/W remains in smart card ejection
mode. This allows an application to perform some user interaction and reissue the beginRemoval
method without altering the smart card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is

 in progress.
E_ILLEGAL The SCR/W does not exist or an invalid timeout parameter was

specified.
E_TIMEOUT The specified time has elapsed without the smart card being properly

removed.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 47.
See Also beginInsertion Method, endInsertion Method, endRemoval Method.

Unified POS, v1.15.1 Beta1 37 - 21

37.12.3 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end smart card insertion processing.
When called, the SCR/W is taken out of smart card insertion mode. If no smart card is present, an
exception is raised.
This method is paired with the beginInsertion method for controlling smart card insertion in either
a contact type or contactless type SCR/W.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The SCR/W is not in smart card insertion mode.
E_FAILURE A card is not inserted in the SCR/W.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 47.
See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

37.12.4 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end smart card removal processing.
When called, the SCR/W is taken out of smart card removal mode in either a contact type or
contactless type SCR/W. If a smart card is present, an exception is raised. This method is paired
with the beginRemoval method for controlling smart card removal.
The application may choose to call this method immediately after a successful beginRemoval if it
wants to use the SCR/W sensors to determine when the smart card has been removed. Alterna-
tively, the application may prompt the user and wait for a key being pressed before calling this
method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The SCR/W is not ti smart card removal mode.
E_FAILURE Thee is a card in the CSR/W.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section

“ErrorEvent “ on Page 905/

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

37 - 22 Unified POS, v1.15.1 Beta1

37.12.5 readData Method Updated in Release 1.10

Syntax readData (action: int32, inout count: int32, inout data: string):
 void { raises-exception, use after open-enable }

Parameter Description
action Indicates the type of processing of the data that is to be done by the smart
card.
count The total number of data bytes that are being returned by the smart card.
data The data that is returned from the smart card.

Remarks Reads data from a smart card using the SCR/W. Note that a DataEvent is used to indicate that the
smart card is in a stable condition where read data is available and that the readData method can
be called to return the data.

The action parameter may have one of the following values:

Value Meaning
SC_READ_DATA The data being read from the smart card present in the SCR/W is from the

Data Area on the smart card.
SC_READ_PROGRAM The data being read from the smart card present in the SCR/W is an

executable program that was found in the smart card memory associated
with executable programs.

SC_EXECUTE_AND_READ_DATA
The data being read from the smart card present in the SCR/W is data that
was processed by a program currently resident on the smart card. When
this action is requested the smart card program will be started and send
back the data that it has processed.

SC_XML_READ_BLOCK_DATA
The data being read is XML data that the SCR/W is sending to the
application. It is up to the application to parse the data being returned.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_CLAIMED Cannot read because the smart card present in the

SCR/W is claimed by another application.
E_ILLEGAL The action is not valid for the type of smart card present in the SCR/W or

the count value is not valid for the smart card present in the SCR/W.
See Also writeData Method, Smart Card Model, Input Section.

Unified POS, v1.15.1 Beta1 37 - 23

37.12.6 writeData Method

Syntax writeData (action: int32, count: int32, data: string):
 void { raises-exception, use after open-enable }
Parameter Description
action Indicates the type of processing of the data that is to be done by the smart

card.
count The total number of data bytes that are being sent to the smart card with

this method.
data The data that is to be sent to the smart card.

Remarks Writes data to a smart card using the SCR/W.
The action parameter may have one of the following values:
Value Meaning
SC_STORE_DATA The data being sent to the smart card present in the

SCR/W is to be stored in the Data Area on the smart card.
SC_STORE_PROGRAM

The data being sent to the smart card present in the
SCR/W is an executable program and will be placed in the smart card
memory associated with executable programs.

SC_EXECUTE_DATA The data being sent to the smart card present in the
SCR/W is data that will be processed by a program that is currently
resident and can execute on the smart card. When this action is requested
the smart card program will be started and will use the data that has been
sent.

SC_XML_BLOCK_DATA
The data being sent is XML data and is to be parsed by the SCR/W to
determine what actions are to take place.

SC_SECURITY_FUSE The smart card present in the SCR/W will have its security fuse activated
to prevent future data from being stored in the smart card.

SC_RESET The smart card present in the SCR/W will be instructed to be reset to its
“power on” state and ready to execute an application command.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_CLAIMED Cannot write because the smart card present in the

SCR/W is claimed by another application.
E_ILLEGAL The action is not valid for the type of smart card present in the SCR/W or

the count value is not valid for the smart card present in the SCR/W.
See Also readData Method.

37 - 24 Unified POS, v1.15.1 Beta1

37.13 Events (UML Interfaces)

37.13.1 DataEvent Updated in Release 1.10

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Fired to indicate that the smart card is in a stable condition in order to read data from the card. The
readData method can then be called to retrieve the data that the smart card contains.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks The smart card is now in a stable condition such that data can be read from the smart card. The smart
card has either been inserted into the SCR/W or is within the read range for a successful data read.
In either case, the readData method must be called to retrieve the data from the smart card.

See Also Smart Card Model, Input Section.

37.13.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific SCR/W Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.
Remarks This event is to be used only for those types of vendor specific functions that are not otherwise

described. Use of this event may restrict the application program from being used with other
vendor’s smart card devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directIO Method.

Unified POS, v1.15.1 Beta1 37 - 25

37.13.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a SCR/W error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 1.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.
If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
ESC_READ There was a read error.
ESC_WRITE There was a write error.
ESC_TORN The smart card was prematurely removed from the

SCR/W unexpectedly. Note: CapCardErrorDetection capability must
be true before this can be set.

ESC_NO_CARD There is no card detected in the SCR/W but a card was expected.

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

37 - 26 Unified POS, v1.15.1 Beta1

Value Meaning
ER_RETRY Typically valid only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 May be valid when locus is EL_INPUT.
 Default when locus is EL_OUTPUT.
ER_CLEAR Clear all buffered output data (including all asynchronous output) or

buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus isEL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the data from a newly inserted
smart card. These error events are not delivered until the DataEventEnabled property is set to true
so as to allow proper application sequencing. All error information is placed into the applicable
properties before this event is delivered.

Output error events are generated and delivered when an error occurs during asynchronous
writeData processing. The errors are placed into the applicable properties before the event is
delivered.

See Also CapCardErrorDetection Property, SCPresentSensor Property, readData method, writeData
method.

37.13.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that it was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

Unified POS, v1.15.1 Beta1 37 - 27

37.13.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the SCR/W device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the SCR/W device.
The Status parameter has one of the following values:

Value Meaning
SC_SUE_NO_CARD No card detected in the SCR/W Device.
SC_SUE_CARD_PRESENT There is a card in the device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Fired when the status of a smart card in the SCR/W changes.

See Also “Events” on page 1- 15.

37 - 28 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 38 - 1

38 Tone Indicator

38.1 General
This Chapter defines the Tone Indicator device category.

38.2 Summary

Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.2 open
Claimed: boolean { read-only } 1.2 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.2 Not supported
DeviceEnabled: boolean { read-write } 1.2 open
FreezeEvents: boolean { read-write } 1.2 open
OutputID: int32 { read-only } 1.2 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.2 --

DeviceControlDescription: string { read-only } 1.2 --
DeviceControlVersion: int32 { read-only } 1.2 --
DeviceServiceDescription: string { read-only } 1.2 open
DeviceServiceVersion: int32 { read-only } 1.2 open
PhysicalDeviceDescription: string { read-only } 1.2 open
PhysicalDeviceName: string { read-only } 1.2 open

38 - 2 Unified POS, v1.15.1 Beta1

Properties (Continued)
Specific Type Mutability Version May Use After
AsyncMode: boolean { read-write } 1.2 open & enable
CapMelody int32 { read-only } 1.13 open
CapPitch: boolean { read-only } 1.2 open
CapVolume: boolean { read-only } 1.2 open
InterToneWait: int32 { read-write } 1.2 open
MelodyType int32 { read-write } 1.13 open
MelodyVolume int32 { read-write } 1.13 open
Tone1Duration: int32 { read-write } 1.2 open
Tone1Pitch: int32 { read-write } 1.2 open
Tone1Volume: int32 { read-write } 1.2 open
Tone2Duration: int32 { read-write } 1.2 open
Tone2Pitch: int32 { read-write } 1.2 open
Tone2Volume: int32 { read-write } 1.2 open

Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string):

void { raises-exception }
1.2

close ():
void { raises-exception, use after open }

1.2

claim (timeout: int32):
void { raises-exception, use after open }

1.2

release ():
void { raises-exception, use after open, claim }

1.2

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note

1.2

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, enable }

1.2

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.2

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

Unified POS, v1.15.1 Beta1 38 - 3

Note:Also requires that no other application has claimed the ToneIndicator.

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name
sound (numberOfCycles: int32, interSoundWait: int32):

void { raises-exception, use after open, enable } Note
1.2

soundImmediate ():
void { raises-exception, use after open, enable } Note

1.2

Events (UML interfaces)
Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.2
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

upos::events::ErrorEvent 1.2
 ErrorCode: int32 { read-only }
 ErrorCodeExtended: int32 { read-only }
 ErrorLocus: int32 { read-only }
 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.2
 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3
 Status: int32 { read-only }

38 - 4 Unified POS, v1.15.1 Beta1

38.3 General Information
The Tone Indicator programmatic name is “ToneIndicator”.

38.3.1 Capabilities

The Tone Indicator has the following capabilities:

• Sound a tone device, which may be the PC or NC system speaker or another hardware device. In many cases the
 PC or NC speaker will not be available or will be in a position that is inaudible to the operator.

• Sound a two-tone indicator or multiple tone “melodies”, providing simple pitch and volume control.

• Provide a synchronous one-shot indicator, similar to an Operating System’s Beep function.

38.3.2 Tone Indicator Class Diagram

The following diagram shows the relationships between the Tone Indicator classes.

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

ToneIndicatorControl

<<capabi lity>> CapVolume : boolean
<<capabi lity>> CapPitch : boolean
<<prop>> AsyncMode : boolean
<<prop>> InterToneWait : boolean
<<prop>> Tone1Pitch : int32
<<prop>> Tone2Pitch : int32
<<prop>> Tone1Volume : int32
<<prop>> Tone2Volume : int32
<<prop>> Tone1Durat ion : int32
<<prop>> Tone2Durat ion : int32

sound(numOfCyles : int32, interSoundWait : int32) : void
soundImmediate() : void

(from upos)

<<Interface>>

fires

fires

f ires

f ires

UposConst
(from upos)

<<utility>>

ToneIndicatorConst
(from upos)

<<uti lity>>

UposExcept ion
(from upos)

<<exception>>

<<uses>>

<<sends>>

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>

Unified POS, v1.15.1 Beta1 38 - 5

38.3.3 Tone Indicator Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Tone Indicator device.

NOTE: we are assuming that the :ClientApp has already successfully opened and enabled the ToneIndicator device and
registered its event handlers with the control. This means that the DeviceEnabled property is == true

:ClientApp :ToneIndicator :ToneIndicatorService:OutputCompleteEvent

1: setInterToneWait(waitTime) 2: setInterToneWait(waitTime)

3: setTone1Pitch(t1Pitch)
4: setTone1Pitch(t1Pitch)

5: setTone2Pitch(t2Pitch) 6: setTone2Pitch(t2Pitch)

7: sound(numOfCycles, iSWait)
8: sound(numOfCycles, iSWait)

9: setAsyncMode(true)
10: setAsyncMode(true)

11: sound(numOfCycles, iSWait) 12: sound(numOfCycles, iSWait)

16: create new OCE event
15: enqueue requests and sound tones

17: deliver OCE to control

18: deliver event to all registered handlers

13: getOutputID() 14: getOutputID()

19: notify client of new event

The new OutputCompleteEvent is
created when tone finishes playing any
enqueued requests.

38 - 6 Unified POS, v1.15.1 Beta1

38.3.4 Model Updated in Release 1.13

The Tone Indicator device is for use when the POS hardware platform provides such capabilities external to the
PC or NC standard speaker. Many POS systems have such devices, embedded, for example, in a keyboard, so
that an indicator is always present at the point of sale.

This device may support a two-tone sound so that “siren” tones can be produced. It may also support multiple
tone sounds so that “melody” tones can be produced.

The indicator is in general also started asynchronously so applications may perform other functions while waiting
for the user to acknowledge the tone. There are also options to start the tone asynchronously with no count, so it
runs forever, and be stopped by the application at a later time.

When the tone is started asynchronously, an OutputCompleteEvent is enqueued when all the tones have been
played. This allows the application to know that the tone has stopped. For example, when the cash drawer is
opened the tone could be started, quietly for a given number of cycles. If the cash drawer is closed then the tone
is stopped explicitly by the application, if not then the notification by the OutputCompleteEvent allows the
application to alter the prompt to the operator and possibly restart the tone a little louder.

The Tone Indicator follows the general device behavior model for output devices. Asynchronous output is
handled as follows:

• The Device buffers the request in program memory, for delivery to the Physical Device as soon as the Physical
　Device can receive and process it, sets OutputID to an identifier for this request, and returns as soon as 　　

　possible. When the request completes successfully, an OutputCompleteEvent is enqueued. A parameter of
　this event contains the OutputID of the completed request.

The sound method will not raise an exception due to a hardware problem. These errors will only be reported by
an ErrorEvent. An exception will only be raised if the control is not claimed and enabled, a parameter is invalid,
or the request cannot be enqueued. The first two error cases are due to an application error, while the last is a
serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued.

• Asynchronous output is performed on a first-in first-out basis.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput.
 OutputCompleteEvents will not be delivered for cleared output. This method also stops any output that may
 be in progress (when possible).

• The selection of “siren” and “melody” tones is determined by the MelodyType property. If the MelodyType
 property is set to TONE_MT_NONE then the“siren” tone is selected; otherwise the“melody” tone is selected.
 If the“melody” tone is selected then properties ToneXPitch, ToneXVolume, ToneXDuration, and
 InterToneWait are ignored.

Unified POS, v1.15.1 Beta1 38 - 7

38.3.5 Device Sharing

The Tone Indicator is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties, methods, and enqueued
 StatusUpdateEvents.

• If more than one application has opened and enabled the device, each of these applications may access its
 properties and methods. StatusUpdateEvents will be delivered to all applications that are using the device
 and have registered to receive the event.

• If one application claims the tone indicator, then only that application may call sound and soundImmediate.
 Use of this feature will effectively restrict the tone indicator to the main application if that application claims
 the device at startup.

• The application that initiates asynchronous sounds is the only one that receives the corresponding
 OutputCompleteEvents and ErrorEvents.

• If a scenario exists such that an application is playing a sound and a separate application legally claims the
 device and plays a sound, then the sound being played from the first application will be interrupted. If the first
 application is in the midst of a synchronous sound method, an exception will be raised with the ErrorCode
 property set to E_CLAIMED from the method call. If the application has issued an asynchronous sound
 method, then no consistent reporting mechanism is possible and the first sound is simply terminated.

• See the “Summary” table for precise usage prerequisites.

38 - 8 Unified POS, v1.15.1 Beta1

38.4 Properties (UML attributes)

38.4.1 AsyncMode Property Updated in Release 1.6

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the sound method will be performed asynchronously. If false, tones are generated
synchronously.

This property is initialized to false when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38.4.2 CapMelody Property Added in Release 1.13

Syntax CapMelody: int32 { read-only, access after open-enable }

Remarks Holds the number of available “melody” tones. If “melody” tones are not supported the value of
this property is initialized to zero.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38.4.3 CapPitch Property

Syntax CapPitch: boolean { read-only, access after open }

Remarks If true, the hardware tone generator has the ability to vary the pitch of the tone.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38.4.4 CapVolume Property

Syntax CapVolume: boolean { read-only, access after open }

Remarks If true, the hardware tone generator has the ability to vary the volume of the tone.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 38 - 9

38.4.5 InterToneWait Property Updated in Release 1.6

Syntax InterToneWait: int32 { read-write, access after open-enable }

Remarks Holds the number of milliseconds of silence between tone-1 and tone-2. If a gap is required after
tone-2 but before a repeat of tone-1, then set the sound parameter interSoundWait.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A negative value was specified.

38.4.6 MelodyType Property Updated in Release 1.15.1

Syntax MelodyType: int32 { read-write, access after open-enable }

Remarks Holds the respective identifier for the “melody” tones that may be selected.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

If the device does not support user-defined melody tones (CapMelody is zero), then any value
greater than zero indicates that the tone indicator device uses its default tone value.
Some possible values MelodyType property are:

Value Meaning
TONE_MT_NONE (=0)The default tone “siren” is selected.
TONE_MT_TYPE1 (=1) The “melody” tone identified as TYPE1 is selected.
TONE_MT_TYPE2 (=2) The “melody” tone identified as TYPE2 is selected.
TONE_MT_TYPE3 (=3) The “melody” tone identified as TYPE3 is selected.
TONE_MT_TYPE4 (=4) The “melody” tone identified as TYPE4 is selected.
TONE_MT_TYPE5 (=5) The “melody” tone identified as TYPE5 is selected.
If the device supports more than six types of “melody” tones, a value greater than 6 can be specified.

This property is initialized to TONE_MT_NONE when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapMelody Property, MelodyVolume Property

38 - 10 Unified POS, v1.15.1 Beta1

38.4.7 MelodyVolume Property Updated in Release 1.15.1

Syntax MelodyVolume: int32 { read-write, access after open-enable }

Remarks Holds the volume of the selected “melody” as a percentage of the device’s capability where 0 (or
less) is silent and 100 (or more) is maximum loudness available.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

If the device does not support user defined volume to control loudness (CapVolume is false), then
any value greater than zero will enable the device to use its default level of loudness.

This property is initialized to “100” when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapMelody Property, CapVolume Property, MelodyType Property.

38.4.8 Tone1Duration Property Updated in Release 1.6

Syntax Tone1Duration: int32 { read-write, access after open-enable }

Remarks Holds the duration of the first tone in milliseconds. A value of zero or less will cause this tone not
to sound.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38.4.9 Tone1Pitch Property Updated in Release 1.6

Syntax Tone1Pitch: int32 { read-write, access after open-enable }

Remarks Holds the pitch or frequency of the first tone in hertz. A value of zero or less will cause this tone not
to sound.

If the device does not support user-defined pitch (CapPitch is false), then any value greater than
zero indicates that the tone indicator uses its default value.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 38 - 11

38.4.10 Tone1Volume Property Updated in Release 1.6

Syntax Tone1Volume: int32 { read-write, access after open-enable }

Remarks Holds the volume of the first tone in percent of the device's capability, where 0 (or less) is silent and
100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is false), then any value greater
than zero indicates that the tone indicator uses its default value.

This property is initialized to 100 when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38.4.11 Tone2Duration Property Updated in Release 1.6

Syntax Tone2Duration: int32 { read-write, access after open-enable }

Remarks Holds the duration of the second tone in milliseconds. A value of zero or less will cause this tone
not to sound.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38.4.12 Tone2Pitch Property Updated in Release 1.6

Syntax Tone2Pitch: int32 { read-write, access after open-enable }

Remarks Holds the pitch or frequency of the second tone in hertz. A value of zero or less will cause this tone
not to sound.

If the device does not support user-defined pitch (CapPitch is false), then any value greater than
zero indicates that the tone indicator uses its default value.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

38 - 12 Unified POS, v1.15.1 Beta1

38.4.13 Tone2Volume Property Updated in Release 1.6

Syntax Tone2Volume: int32 { read-write, access after open-enable }

Remarks Holds the volume of the second tone in percent of the device's capability, where 0 (or less) is silent
and 100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is false), then any value greater
than zero indicates that the tone indicator uses its default value.

This property is initialized to 100 when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In
Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 38 - 13

38.5 Methods (UML operations)

38.5.1 sound Method Updated in Release 1.13

Syntax sound (numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-enable }

Parameter Description
numberOfCycles The number of cycles to sound the indicator device. If FOREVER, then
 start the indicator sounding and repeat continuously, else perform the

sound for the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait
milliseconds before repeating the tone cycle (before playing tone-1
again).

Remarks Sounds the indicator device, or start it sounding asynchronously.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

The duration of an indicator cycle is:

“Siren” tones:
 Tone1Duration property +
 InterToneWait property +
 Tone2Duration property +
 interSoundWait parameter (except on the last tone cycle)

“Melody” tones:
 MelodyType property +
 interSoundWait parameter (except on the last tone cycle)

After the tone indicator has started an asynchronous sound, then the sound may be stopped by using
one of the following methods. (When a numberOfCycles value of FOREVER was used to start the
sound, then the application must use one of these to stop the continuous sounding of the tones.)

• clearOutput
• soundImmediate

 Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.
Some possible values of the exception’s ErrorCode property are:

38 - 14 Unified POS, v1.15.1 Beta1

Value Meaning
E_CLAIMED Indicates that another application has claimed the device and has

taken over the tone device causing the sound from this method to be
 interrupted (can only be returned if AsyncMode is false.)
E_ILLEGAL One of the following errors occurred:

• numberOfCycles is neither a positive, non-zero value
 nor FOREVER.
• numberOfCycles is FOREVER when
 AsyncMode is false.
• A negative interSoundWait was specified.
• A negative InterToneWait was specified.

38.5.2 soundImmediate Method

Syntax soundImmediate ():
void { raises-exception, use after open-enable }

Remarks Sounds the hardware tone generator once, synchronously. Both tone-1 and tone-2 are sounded using
InterToneWait.

If asynchronous output is outstanding, then it is terminated before playing the immediate sound (as
if clearOutput were called). This method is primarily intended for use in exception conditions
when asynchronous output is outstanding, such as within an error event handler.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 38 - 15

38.6 Events (UML interfaces)

38.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Tone Indicator Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Tone Indicator devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1- 15, directIO Method.

38.6.2 ErrorEvent Updated in Release 1.9

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the device and a suitable response is
necessary to process the error condition.

Attributes This event contains the following attributes:

38 - 16 Unified POS, v1.15.1 Beta1

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 1.

ErrorCodeExtended
int32 Extended Error code causing the error event. These values are device

category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Retry the asynchronous output. The error state is exited. This is the default

value.

ER_CLEAR Clear all buffered output data, including all asynchronous output. The
error state is exited.

Remarks This event is enqueued when an error is detected and the Device’s State transitions into the error
state.

See Also “Device Output Models” on page 1- 21, “Device Information Reporting Model” on page 1- 25,
“Error Codes” on page 1- 16.

38.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID property has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that is was processed by the device successfully.

See Also “Device Output Models” on page 1- 21.

Unified POS, v1.15.1 Beta1 38 - 17

38.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Tone Indicator device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a Tone Indicator device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Tone Indicator device detects a power state change.

See Also “Events” on page 1- 15.

38 - 18 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 A - 1

Annex A

OLE for Retail POS - OPOS
Implementation Reference

A.1 What is OLE for Retail POS?
OLE for Retail POS provides an open device driver architecture that allows Point-of-Sale (“POS”)1 hardware to
be easily integrated into POS systems based on Microsoft Windows family of Operating Systems2. It is an
implementation of the UnifiedPOS Standard based upon the Microsoft Operating System Software and the OLE
2.x architecture.

The goals of OLE for Retail POS (or “OPOS”) include:

• Defining an architecture for Win32-based POS device access.

• Defining a set of POS device interfaces sufficient to support a range of POS solutions.

Deliverables available for OPOS are:

• UnifiedPOS Programmer’s Guide – this document: For application developers and hardware providers.

• Header files with OPOS constants.

• No complete software components: Hardware providers or third-party providers develop and distribute these
 components.

• Reference Control Objects are available which incorporate the required functionality. These Control Objects, along
 with other helpful information may be found at the following web sites:

Reference implementation – Common Control Objects:
http://monroecs.com/opos.htm
https://github.com/kunif/OPOS-CCO

ARTS OMG Retail Domain Task Force Standards Body:
http://retail.omg.org/

1. POS may also refer to Point-of-Service – a somewhat broader category than Point-of-Sale

2. Excludes Windows 3.x. Other future operating systems that support OLE Controls may also support OLE for Retail
POS, depending upon software support by the hardware manufacturers or third-party developers.

http://monroecs.com/opos.htm
https://github.com/kunif/OPOS-CCO
http://retail.omg.org/

A - 2 Unified POS, v1.15.1 Beta1

A.2 Who Should Read This Section
This Section is targeted at an application developer who requires access to POS-specific peripheral devices and
wishes to implement the UnifiedPOS Standard on a Microsoft Windows operating system platform. It is also
targeted for the system developer who will write an OPOS Control, a vendor who wishes to write a OPOS
Service Object, or an application developer who desires a better understanding of how to interface with OPOS
under UnifiedPOS.

This guide assumes that the reader is familiar with the following:

• The UnifiedPOS Device chapters in this document.

• General characteristics of POS peripheral devices.

• ActiveX and Automation terminology and architecture.

• Familiarity with an ActiveX Control Container development environment, such as Microsoft Visual Basic or
 Microsoft Visual C++, will be useful.

A.3 General OLE for Retail POS Control Model
OLE for Retail POS Controls adhere to the ActiveX Control specifications. They expose properties, methods,
and events to a containing Application. The controls are invisible at run time, and rely exclusively upon the
containing application for requests through methods and sometimes properties. Responses are given to the
application through method return values and parameters, properties, and events.

The OLE for Retail POS software is implemented using the layers shown in the following diagram:

Unified POS, v1.15.1 Beta1 A - 3

A.4 OPOS Definitions

A.4.1 Device Class

A device class is a category of POS devices that share a consistent set of properties, methods, and events.
Examples are Cash Drawer and POS Printer.

Some devices support more than one device class. For example, some POS Printers include a Cash Drawer
kickout. Also, some Bar Code Scanners include an integrated Scale.

A.4.2 Control Object or CO

A Control Object exposes a set of properties, methods, and events to an application for its device class. This
guide describes these APIs.

A CO is a standard ActiveX (that is, OLE 32-bit) Control that is invisible at runtime. The CO interfaces have
been designed so that all implementations of a class' Control Object will be compatible. This allows the CO to be
developed independently of the SO's for the same class – including development by different companies.

A.4.3 Service Object or SO

A Service Object is called by a Control Object to implement the OPOS-prescribed functionality for a specific
device.

An SO is implemented as an Automation server. It exposes a set of methods that are called by a CO. It can also
call special methods exposed by the CO to cause events to be delivered to the application.

A Service Object may include multiple sets of methods in order to support devices with multiple device classes.

A Service Object is typically implemented as a local in-proc server (in a DLL). In theory, it may also be
implemented as a local out-proc server (in a separate executable process). However, we have found that, in
practice, out-proc servers do not work well for OPOS Service Objects, and do not recommend their use.

A.4.4 OPOS Control or Control

An OPOS Control consists of a Control Object for a device class – which provides the application interface, plus
a Service Object – which implements the APIs. The Service Object must support a device of the Control Object's
class.

Usually, this guide will refer to “Control.” On occasion, we must distinguish between the actions performed by
the Control Object and Service Object. Then the explicit layer is specified.

A - 4 Unified POS, v1.15.1 Beta1

A.5 How an Application Uses an OPOS Control
The first action the application must take on the Control is to call its Open method. The parameter of this method
selects a device name to associate with the Control. The Open method performs the following steps:

• Establishes a link to the device name.

• Initializes the properties OpenResult, Claimed, DeviceEnabled, DataEventEnabled, FreezeEvents,
 AutoDisable, DataCount, and BinaryConversion, as well as descriptions and version numbers of the OPOS
 Control layers. Additional class-specific properties may also be initialized.

Several applications may have an OPOS Control open at the same time. Therefore, after the device is opened, the
application will often need to call the ClaimDevice method to gain exclusive access to the device. Many devices
must be claimed before the Control allows access to its methods and properties. Claiming the device ensures that
other applications do not interfere with the use of the device. The application may call the ReleaseDevice
method when the device can be shared by other applications – for instance, at the end of a transaction.

Before using the device, the application must set the DeviceEnabled property to TRUE. This value brings the
device to an operational state, while FALSE disables the device. For example, if a scanner Control is disabled,
then the device will be physically disabled (when possible). Whether physically disabled or not, any input from
the device will be discarded until the device is enabled.

After the application has finished using the device, the Close method should be called to release the device and
associated resources. If the DeviceEnabled property is TRUE, then Close disables the device. If the Claimed
property is TRUE, then Close releases the lock. Before exiting, an application should close all open OPOS
Controls.

In summary, the application follows this general sequence:

• Open method: Call to link the Control Object to the Service Object.

• ClaimDevice method: Call to gain exclusive access to the device. Required for exclusive-use devices; optional for
 some sharable devices. (See “Device Sharing Model” on page 10 for more information).

• DeviceEnabled property: Set to TRUE to make the device operational. (For sharable devices, the device may be
 enabled without first claiming it.)

• Use the device.

• DeviceEnabled property: Set to FALSE to disable the device.

• ReleaseDevice method: Call to release exclusive access to the device.

• Close method: Call to release the Service Object from the Control Object.

Unified POS, v1.15.1 Beta1 A - 5

A.6 When Methods and Properties May Be Accessed

A.6.1 Methods

Before a successful Open, no other methods may be invoked. Doing so will do nothing but return a status of
OPOS_E_CLOSED.

Exclusive-use devices require the application to call the ClaimDevice method and to set the DeviceEnabled
property to TRUE before most other methods may be called.

Sharable devices require the application to set the DeviceEnabled property to TRUE before most other methods
may be called.

The “Summary” section of each device class’ chapter should be consulted for the specific prerequisites for each
method.

A.6.2 Properties

Before a successful Open, the values of most properties are not initialized. An attempt to set writable properties
will be ignored.

The following properties are always initialized:

Capability properties are initialized after the Open is successfully called.

Exclusive use devices require the application to call the ClaimDevice method and to set the DeviceEnabled
property to TRUE before some other properties are initialized or may be written.

Sharable devices require the application to set the DeviceEnabled property to TRUE before some other
properties are initialized or may be written.

To determine when a property is initialized or writable, refer to the Summary section of each device class plus
the property’s Remarks section.

Setting writable properties before the prerequisites are met will cause the write to be ignored, and will set the
ResultCode property to either OPOS_E_NOTCLAIMED or OPOS_E_DISABLED.

Reading an uninitialized property returns the following values, unless otherwise specified in the device class
documentation:

Property Value

State OPOS_S_CLOSED

ResultCode OPOS_E_CLOSED

ControlObjectDescription Control Object dependent string.

ControlObjectVersion Control Object dependent number.

A - 6 Unified POS, v1.15.1 Beta1

After properties have been initialized, subsequent claims and enables do not re-initialize the properties. They
remain initialized until the Close method is called.

Property Type Value

Boolean FALSE

Long 0

String “[Error]” – include the brackets.

Unified POS, v1.15.1 Beta1 A - 7

A.7 Status, Result Code, and State Model Updated in Release 1.11
The status, result code, and state models are built around several common properties, events, and methods,
described in the following table, and are supported by additional class-specific components.

Name Meaning
State A property containing the current state of the Control:

OPOS_S_CLOSED
OPOS_S_IDLE
OPOS_S_BUSY
OPOS_S_ERROR

ResultCode A property containing the status of the most recent method or the most
recently changed writable property:
OPOS_SUCCESS
OPOS_E_CLOSED
OPOS_E_CLAIMED
OPOS_E_NOTCLAIMED
OPOS_E_NOSERVICE
OPOS_E_DISABLED
OPOS_E_ILLEGAL
OPOS_E_NOHARDWARE
OPOS_E_OFFLINE
OPOS_E_NOEXIST
OPOS_E_EXISTS
OPOS_E_FAILURE
OPOS_E_TIMEOUT
OPOS_E_BUSY
OPOS_E_EXTENDED
OPOS_E_DEPRECATED

ResultCodeExtended A property containing the extended status of the most recent method or
the most recently changed writable property. Value varies by
ResultCode and by device class.

StatusUpdateEvent An event fired when some class-specific state or status variable has
changed.
Release 1.3 and later: All devices may be able to report device power
state. See “Device Power Reporting Model” in Annex D.

ErrorEvent An event fired when the State is changed to Error.

A - 8 Unified POS, v1.15.1 Beta1

A.7.1 Status Model

The rules of the status model are as follows:

• The only aspect of the status model that is common to all device classes is the means of alerting the application,
 which is through the firing of the StatusUpdateEvent.

• Each device class specifies the status changes that cause it to fire the event. Examples of device class-specific status
 changes are:

• A change in the cash drawer position (for example, a transition from open to closed).

• A change in a POS printer sensor (for example, activation of a “form present” sensor, indicating that a slip
 has been inserted).

A.7.2 Result Code Model

The rules of the result code model are as follows:

• Every method returns a result code. This code is also placed into ResultCode.

• Setting a writable property causes a result code to be placed into ResultCode.

• The ResultCode OPOS_SUCCESS is assigned the value of zero. Non-zero values indicate an error or warning.

• The Control must select one of the result codes listed below. If the Control sets ResultCode to
 OPOS_E_EXTENDED, then it must set ResultCodeExtended to one of the values specified in the device class
 documentation. (That is, when this ResultCode value is selected, then ResultCodeExtended may only contain one
 of the values listed in this document for the device class, in the appropriate method or property section.)

• If the Control sets ResultCode to a value other than OPOS_E_EXTENDED, then the Service Object may set the
 ResultCodeExtended property to any SO-specific value. If an application uses these values, it will, of course, need
 to add Service Object-specific code. (If the application needs to add such code, then the ServiceObjectDescription,
 DeviceDescription, or DeviceName property may be interrogated to determine the Service Object with which it is
 dealing.)

Unified POS, v1.15.1 Beta1 A - 9

A.7.3 State Model Updated in Release 1.7

The rules of the state model are as follows:

• The Control’s State is initially OPOS_S_CLOSED.

• The State is changed to OPOS_S_IDLE when the Open method is called and its result is OPOS_SUCCESS.

• The State is set to OPOS_S_BUSY when OPOS is processing output. The State is restored to OPOS_S_IDLE
 when these complete successfully.

• The State is changed to OPOS_S_ERROR when:

• An asynchronous output encounters an error condition.

• An error is encountered during the gathering or processing of event-driven input.

After OPOS changes the State property to OPOS_S_ERROR, it invokes ErrorEvent. The parameters to this
event are the result code and extended result code, the locus of the error, and a pointer to the application’s
response to the error. The locus can indicate one of three error locations:
• Output – The error occurred while processing previously queued output.
• InputWithData – The error occurred while gathering or processing event-driven input. Some previously
 gathered input data is available for the application. When this error locus is given, then the application can
 continue to process input until a second ErrorEvent is received with the InputNoData locus, or it can clear
 the input.
• InputNoData – The error occurred while gathering or processing event-driven input, and either all previously
 gathered input data has been processed or there is no input data available.

When the application returns from the ErrorEvent, it may change the response parameter. The response values are:
• Retry – If the locus is Output: Retry the asynchronous output and exit the error state. If an error occurs while

retrying, then another ErrorEvent will be generated.
If the locus is Input: Some devices support retrying the input, if retry can be controlled by the Service

Object.
“Retry” is the default response when the locus is “Output.”
• Clear – Clear all buffered output data (including all asynchronous output) or buffered input data and exit the
error state.

“Clear” is the default response when the locus is “InputNoData.”
• Continue – Use only if the locus is InputWithData. This response acknowledges the error and directs the
 Control to continue processing. The Control remains in the error state, and will deliver additional data events

as directed by the DataEventEnabled property. When all input has been delivered and the
 DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus
 “InputNoData.”

“Continue” is the default response when the locus is “InputNoData.”

The Control ensures that while the application is processing an ErrorEvent, it will not deliver any other
ErrorEvents.

A - 10 Unified POS, v1.15.1 Beta1

A.8 Device Sharing Model
The OLE for Retail POS device sharing model supports devices that are to be used exclusively by one
application3 at a time, as well as devices that may be partially or fully shared by multiple applications. (See
“When Methods and Properties May Be Accessed,” in Annex A, for other details.) All OPOS Controls may be
opened by more than one application at a given time. Some or many of the activities that an application can
perform with the Control, however, may be restricted to an application that claims access to the device.

A.8.1 Exclusive-Use Devices

The most common device type is called an “exclusive-use device.” An example is the POS printer. Due to
physical or operational characteristics, this device can only be used by one application at a time. The application
must call the ClaimDevice method to gain exclusive access to the device before most methods, properties, or
events are legal. Until the device is claimed, calling methods or setting properties cause an
OPOS_E_NOTCLAIMED error, and events are not fired to the application.

Should two closely cooperating applications want to treat an exclusive-use device in a shared manner, then one
application may claim the device for a short sequence of operations, then release it so that the other application
may use it.

When the ClaimDevice method is called again, settable device characteristics are restored to their condition at
ReleaseDevice. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read,
and the printer’s characters per line. State characteristics are not restored, such as the printer’s sensor properties.
Instead, these are updated to their current values.

A.8.2 Sharable Devices

Some devices are “sharable devices.” An example is the keylock. A sharable device allows multiple applications
to call its methods and access its properties. Also, it may fire its events to all applications that have opened it. A
sharable device may still limit access to some methods or properties to an application that has claimed it, or may
fire some events only to this application.

Note: One might argue that all devices should be defined as sharable to allow maximum flexibility to
applications. In practical use, this flexibility is unlikely to be useful. The downside is an implementation that
may be significantly more complex and less likely to be accurate. In the interest of a specification that is both
sufficiently robust for application development, plus implementable by hardware manufacturers, this document
defines most devices as exclusive-use, and defines as sharable only those devices that have a significant potential
for simultaneous use by multiple applications.

3. This document assumes that an application consists of only one process. Multi-process applications are possible to
create but uncommon. Technically, device sharing is performed on a process basis. However, with single-process applications
we can view sharing as application-level.

Unified POS, v1.15.1 Beta1 A - 11

A.9 Events Updated in Release 1.12
OLE for Retail POS uses events to inform an application of various activities or changes with the OPOS Control.
The five event types follow. Subsequent sections will clarify their definitions.

• DataEvent: Input data has been placed into device class-specific properties.

• ErrorEvent: An error has occurred during event-driven input or asynchronous output.

• StatusUpdateEvent: Reports a change in the device’s status.

• OutputCompleteEvent: An asynchronous output has successfully completed.

• DirectIOEvent: This event may be defined by a Service Object provider for purposes not covered by the
 specification.

The Service Object enqueues events as they occur. Often these events will be enqueued by worker threads, rather
than the application’s thread. Enqueued events are delivered to the application when conditions are correct.
Conditions which delay the delivery of events include:

• The application thread is busy processing other messages.
 OPOS Controls are to follow the OLE Apartment Threading model. According to OLE Apartment Threading rules,

 events are to be delivered on the thread that created the COM object, which will usually be the application’s main
 thread. If the application is processing another message, then event delivery must wait until this processing has
 finished.

• The application has set the property FreezeEvents to TRUE.

• The event type is DataEvent or an input ErrorEvent, but the property DataEventEnabled is FALSE. (See “Input
 Model” in Annex D).

If the oldest enqueued event is blocked for one of these reasons, then all newer events may also be blocked. That
is, the delivery of enqueued events is typically in a strict first in, first out order. Priority is not given to any event
types on the queue.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents
property.

A - 12 Unified POS, v1.15.1 Beta1

Note – Terminology

The following event terminology is used rather consistently in this document. Some implementations may vary
from the model described here, but the net effect is similar:

• Enqueue: When the Service Object determines that an event needs to be fired to the Application, it enqueues the
 event on an internal event queue. Event queuing typically occurs from one or more internal Service Object worker
 threads.

• Deliver: When the event queue is non-empty and all conditions are met for the top event on the queue, this event is
 removed from the queue and delivered to the Application. Event delivery is typically managed by a dedicated
 internal Service Object worker thread. This thread ensures that events are delivered in the context of the thread that
 created the Control, in order to adhere to the Apartment Threading model.

• Fire: The combination of enqueuing and delivering an event. Sometimes, the term is used more loosely and may
 only refer to one of these steps. The reader should differentiate these cases by context.

Rules on the management of the queue of events are:

• The Control may only enqueue new events while the device is enabled.

• The Control may deliver enqueued events until the application calls the ReleaseDevice method (for exclusive-use
 devices) or the Close method (for any device), at which time any remaining events are deleted.

• For input devices, the ClearInput method clears data and error events.

While within an event handler, the application may access properties and call methods. However, the application
must not call the ReleaseDevice or Close methods from an event handler, since ReleaseDevice may shut down
event handling (possibly including a thread that caused the event to be delivered) and Close must shut down
event handling before returning.

Unified POS, v1.15.1 Beta1 A - 13

A.10 OPOS Event Registration Sequence Diagram Added in Release 1.7
The following sequence diagram depicts the typical OPOS event registration process.

NOTE: this diagram shows the typical event registration process for a Service Object in OPOS. Various details are omitted on
purpose to make the diagram clearer. Also, DevCat == POSPrinter, CashDrawer, ... and other UnifiedPOS device categories.

:ClientApp :<DevCat> :<DevCat>Service:<OPOSEvent>

We are assuming that
the OpenService() call
is successful and that
the control is bound
with its service

Some devices (exclusive-use) need to be
claimed before being enabled (this is not
shown here).

No more events will be delivered by the
Service Object. For sharable devices this
is true after Disable, for exclusive-use
devices, this is true after Release. This
diagram depicts a sharable device.

For DataEvent you also need the
DataEventEnabled property to be true

register to receive events

Open(logicalName)

SetDeviceEnabled(TRUE)

unregister for events

SetDeviceEnabled(FALSE)

Close()

OpenService(DeviceClass, logicalName, pDispatch)

SetPropertyNumber(PIDX_DeviceEnabled, TRUE)

deliver :<OPOSEvent> to control [DeviceEnabled == TRUE &&
FreezeEvents == FALSE] through SOXxxx call

SetPropertyNumber(PIDX_DeviceEnabled, FALSE)

Close()

new

Depending on the
development environment,
registering for events is
done implicitly or
explicitly.

create :<DevCat> Control

deliver :<OPOSEvent> to
:ClientApp

A - 14 Unified POS, v1.15.1 Beta1

A.11 Input Model Updated in Release 1.12
The OLE for Retail POS input model supports event-driven input. Event-driven input allows input data to be
received after DeviceEnabled is set to TRUE. Received data is enqueued as a DataEvent, which is delivered to
the application when preconditions are correct. If the AutoDisable property is TRUE when data is received, then
the control will automatically disable itself, setting DeviceEnabled to FALSE. This will inhibit the Control from
enqueuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the device, it sets the DataEventEnabled property to TRUE.
Then, when input is received (usually as a result of a hardware interrupt), the Control enqueues and delivers a
DataEvent. (If input has already been enqueued, the DataEvent will be delivered.) This event may include input
status information through a numeric parameter. The Control places the input data plus other information as
needed into device specific-specific properties just before the event is fired.

Just before delivering this event, the Control disables further data events by setting the DataEventEnabled
property to FALSE. This causes subsequent input data to be enqueued by the Control while the application
processes the current input and associated properties. When the application has finished the current input and is
ready for more data, it re-enables events by setting DataEventEnabled to TRUE.

If the input device is an exclusive-use device, the application must both claim and enable the device before the
device begins reading input.

For sharable input devices, one or more applications must open and enable the device before the device begins
reading input. An application must call the ClaimDevice method to request exclusive access to the device before
the Control will send data to it using the DataEvent. If event-driven input is received, but no application has
claimed the device, then the input is buffered until an application claims the device (and the DataEventEnabled
property is TRUE). This behavior allows orderly sharing of the device between multiple applications, effectively
passing the input focus between them.

If the Control encounters an error while gathering or processing event-driven input, then the Control changes its
state to Error, and enqueues one or two ErrorEvents to alert the application of the error condition. This event (or
events) is not delivered until the DataEventEnabled property is TRUE, so that orderly application sequencing
occurs.

Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it leaves the
DataEventEnabled property value at TRUE. Note that the application may set DataEventEnabled to FALSE
within its event handler if subsequent input events need to be disabled for a period of time.

Error events are delivered with the following loci:

• InputWithData (OPOS_EL_INPUT_DATA) – Only enqueued if the error occurred while one or more DataEvents
 are enqueued. It is enqueued ahead of all DataEvents. (A typical implementation would place it at the head of the
 event queue.) This event gives the application the ability to immediately clear the input, or to optionally alert the
 user to the error and process the buffered input.

The latter case may be useful with a Scanner Control: The user can be immediately alerted to the error so that no
further items are scanned until the error is resolved. Any previously scanned items can then be successfully processed
before error recovery is performed.

• InputNoData (OPOS_EL_INPUT) – Delivered when an error has occurred and there is no data available. (A typical
 implementation would place it at the tail of the event queue.) If some input data was already enqueued when the
 error occurred, then an ErrorEvent with the locus “InputWithData” was enqueued and delivered first, and then this
 error event is delivered after all DataEvents have been fired. (If an “InputWithData” event was delivered and the

Unified POS, v1.15.1 Beta1 A - 15

application event handler responded with a “Clear”, then this “InputNoData” event is not delivered.)

The Control exits the Error state when one of the following occurs:

• The application returns from the InputNoData ErrorEvent.

• The application returns from the InputWithData ErrorEvent with OPOS_ER_CLEAR.

• The application calls the ClearInput method.

For some Controls, the Application must call a method to begin event driven input. After the input is received by
the Control, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

All input enqueued by a Control may be deleted by calling the ClearInput method. ClearInput may be called
after Open for sharable devices and after ClaimDevice for exclusive-use devices.

Calling the ClearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device classes containing
methods or properties that return input data directly. Some device classes will define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input is
sometimes called “synchronous input.”

A - 16 Unified POS, v1.15.1 Beta1

A.12 Output Model
The OLE for Retail POS output model consists of two output types: synchronous and asynchronous. A device
class may support one or both types, or neither type.

Synchronous Output
This type of output is preferred when device output can be performed quickly. Its merit is simplicity.

The application calls a class-specific method to perform output. The Control does not return until the output is
completed.

Asynchronous Output Updated in Release 1.12
This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

The application calls a class-specific method to start the output. The Control buffers the request in program
memory, for delivery to the Physical Device as soon as the Physical Device can receive and process it, sets the
OutputID property to an identifier for this request, and returns as soon as possible. When the device completes
the request successfully, OPOS fires an OutputCompleteEvent. A parameter of this event contains the
OutputID of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is fired. The application’s event
handler can either retry the outstanding output or clear it. The Control is in the Error state while the ErrorEvent
is in progress. (Note that if the condition causing the error was not corrected, then the Control may immediately
reenter the Error state and fire another ErrorEvent.)

Asynchronous output is performed on a first-in first-out basis.

All buffered output data, including all asynchronous output, may be deleted by calling ClearOutput.
OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in
progress (when possible).

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules Introductory Chapter). No further asynchronous output will occur until the event has been
delivered to the application. If the response is OPOS_ER_CLEAR, then outstanding asynchronous output is
cleared. If the response is OPOS_ER_RETRY, then output is retried; note that if several outputs were
simultaneously in progress at the time that the error was detected, then the Service may need to retry all of these
outputs.

Unified POS, v1.15.1 Beta1 A - 17

A.13 Device Power Reporting Model
 Added in OPOS Release 1.3, Updated in Release 1.8

Applications frequently need to know the power state of the devices they use. Earlier versions of OPOS had no
consistent method for reporting this information. Note: This model is not intended to report PC or POS Terminal
power conditions (such as “on battery” and “battery low”). Reporting of these conditions is now managed by the
POSPower device category, see Chapter 30.

A.13.1 Model

OPOS segments device power into three states:

• ONLINE: The device is powered on and ready for use. This is the “operational” state.

• OFF: The device is powered off or detached from the terminal. This is a “non-operational” state.

• OFFLINE: The device is powered on but is either not ready or not able to respond to requests. It may need to be
 placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational”

 state.

In addition, one combination state is defined:

• OFF_OFFLINE: The device is either off or offline, and the Service Object cannot distinguish these states.
Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.
__
Note – Enabled/Disabled vs. Power States

These states are different and usually independent. OPOS defines “disabled” / “enabled” as a logical state,
whereas the power state is a physical state. A device may be logically “enabled” but physically “offline”. It may
also be logically “disabled” but physically “online”. Regardless of the physical power state, OPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service Object typically can only
communicate with the device while enabled.)

If a device is “offline”, then a Service Object may choose to fail an attempt to “enable” the device. However,
once enabled, the Service Object may not disable a device based on its power state.
__

A - 18 Unified POS, v1.15.1 Beta1

A.13.2 Properties

The OPOS device power reporting model adds the following common elements across all device classes:

• CapPowerReporting property: Identifies the reporting capabilities of the device. This property may be one of:
• OPOS_PR_NONE: The Service Object cannot determine the state of the device. Therefore, no power
 reporting is possible.
• OPOS_PR_STANDARD: The Service Object can determine and report two of the power states –
 OFF_OFFLINE (that is, off or offline) and ONLINE.
• OPOS_PR_ADVANCED: The Service Object can determine and report all three power states – ONLINE,
 OFFLINE, and OFF.

• PowerState property: Maintained by the Service Object at the current power condition, if it can be determined. This
 property may be one of:
• OPOS_PS_UNKNOWN
• OPOS_PS_ONLINE
• OPOS_PS_OFF
• OPOS_PS_OFFLINE
• OPOS_PS_OFF_OFFLINE

• PowerNotify property: The Application may set this property to enable power reporting via StatusUpdateEvents
 and the PowerState property. This property may only be set before the device is enabled (that is, before
 DeviceEnabled is set to TRUE). This restriction allows simpler implementation of power notification with no
 adverse effects on the application. The application is either prepared to receive notifications or does not want them,
 and has no need to switch between these cases. This property may be one of:
• OPOS_PN_DISABLED
• OPOS_PN_ENABLED

Unified POS, v1.15.1 Beta1 A - 19

A.13.3 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when
CapPowerReporting is not OPOS_PR_NONE, and
PowerNotify is OPOS_PN_ENABLED:

• When the Control changes from DeviceEnabled FALSE to TRUE, then begin monitoring the power state:
• If the device is ONLINE, then:

 PowerState is set to OPOS_PS_ONLINE.
A StatusUpdateEvent is fired with Status parameter set to OPOS_SUE_POWER_ONLINE.
• If the device power state is OFF, OFFLINE, or OFF_OFFLINE, then the Control may choose to fail the
 enable, setting ResultCode to OPOS_E_NOHARDWARE or OPOS_E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Control chooses to return success
for the enable, then:
PowerState is set to OPOS_PS_OFF, OPOS_PS_OFFLINE, or OPOS_PS_OFF_OFFLINE.
A StatusUpdateEvent is fired with Status parameter set to OPOS_SUE_POWER_OFF,
OPOS_SUE_POWER_OFFLINE, or OPOS_SUE_POWER_OFF_OFFLINE.
• When the Control changes from DeviceEnabled TRUE to FALSE, then OPOS assumes that the Control is
 no longer monitoring the power state. Therefore: PowerState is set to OPOS_PS_UNKNOWN.

A - 20 Unified POS, v1.15.1 Beta1

A.14 Device Information Reporting Model Added in Release 1.8
POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See Introduction chapter for examples of XML
definitions of the device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the ClaimDevice method and by setting DeviceEnabled to
TRUE when access to a device is required and then setting DeviceEnabled to FALSE and using the
ReleaseDevice method when access to the device is no longer needed. Coordination of device access via this
mechanism is the responsibility of the applications themselves.

A.14.1 Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

• CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
 CapStatisticsReporting is FALSE, then no statistical data regarding the device is available. This is equivalent to
 Services compatible with prior versions of the specification. When CapStatisticsReporting is TRUE, then some
 statistical data for the device is available.

• CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by the
 application. This property is only valid if CapStatisticsReporting is TRUE. When CapUpdateStatistics is
 FALSE, then none of the statistical data can be reset/updated by the application. Otherwise, when
 CapUpdateStatistics is TRUE, then (some of) the statistical data can be reset/updated by the application.

• ResetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are TRUE.
 This method resets one, some, or all of the resettable device statistics to zero.

• RetrieveStatistics method. Can only be called if CapStatisticsReporting is TRUE. This method retrieves one,
 some, or all of the accumulated statistics for the device.

• UpdateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are TRUE.
 This method updates one, some, or all of the resettable device statistics to the supplied values.

Unified POS, v1.15.1 Beta1 A - 21

A.15 Update Firmware Device Model Added in Release 1.9
POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by an OPOS control.

This model has the following capabilities:

• A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

• A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be compared
 against the firmware version of the device.

• A method, UpdateFirmware, to perform an asynchronous update of the firmware in a device.

• A method, CompareFirmwareVersion, to compare the firmware file’s version against the firmware version of the
 device.

• Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS. The means by which a
Service actually updates the firmware in the device is not covered by this document, only the means by which the
update firmware process is started and progress is reported.

A - 22 Unified POS, v1.15.1 Beta1

A.16 OPOS Component Descriptions
The following sections are arranged as follows and provide detailed information on how an Application is
expected to interface with a device covered under OPOS.

Section 1:
Describes the specific characteristics of the data types that OPOS uses as they relate to the Windows OPOS
implementation.

Section 2:
Provides interface descriptions for the properties, methods, and events specific to OPOS. For thorough
description of these, one should consult the applicable chapters located in this document.

Section 3:
Details the OPOS use of the system registry specific to Windows.

Section 4:
Contains the list of the C++ OPOS application header files.

Section 5:
Provides some miscellaneous additional technical information to help the Application Developer understand
some of the finer details of a Windows OPOS implementation.

Section 6:
Provides additional information on ClaimDevice and ReleaseDevice methods which became necessary as a
result of Microsoft’s ActiveX changes that affected the Claim and Release method naming convention that was
used in OPOS 1.4 and earlier editions.

Section 7:
Provides the Change History previously contained in the OPOS Application Programmer’s Guide (OPOS APG).

Section 8:
Provides information previously contained in the OPOS Control Programmer’s Guide (OPOS CPG). Targeted at
system developers who intend to write an OPOS Control.

Unified POS, v1.15.1 Beta1 A - 23

A.17 Section 1: OPOS Data Types Updated in Release 1.12
The parameter and return types specified in the OPOS descriptions are as follows:
Type Meaning
BOOL An integer with the legal values TRUE (non-zero) and FALSE (zero).

COM IDL type: VARIANT_BOOL (short). Values
 VARIANT_TRUE (-1) and VARIANT_FALSE (0).
VARIANT type: VT_BOOL

BOOL* A pointer to a mutable integer with the legal values TRUE (non-zero)
and FALSE (zero).
COM IDL type: VARIANT_BOOL* (short*). Values
 VARIANT_TRUE (-1) and VARIANT_FALSE (0).
VARIANT type: VT_BYREF | VT_BOOL

BSTR A character string. Consists of a length component followed by the string
and a terminating NUL (0) character. See “System Strings (BSTR)”
(page A-1206) for more information.
COM IDL type: BSTR (unsigned short*)
VARIANT type: VT_BSTR

BSTR* A pointer to a mutable character string.
COM IDL type: BSTR* (unsigned short**)
VARIANT type: VT_BYREF | VT_BSTR

LONG An integer with a size of 32 bits.
COM IDL type: long
VARIANT type: VT_I4

LONG* A pointer to a mutable 32-bit integer.
COM IDL type: long*
VARIANT type: VT_BYREF | VT_I4

Supported in Release 1.3 and later

CURRENCY A monetary value. An integer with a size of 64 bits. The value assumes
four decimal places. For example, if the integer is “1234567”, then the
value is “123.4567”.
COM IDL type: CURRENCY (union tagCY)
 “union tagCY” is declared as
 {
 struct { long Hi; long Lo; };
 __int64 int64;
 };
VARIANT type: VT_CY

CURRENCY* A pointer to a mutable CURRENCY value.
COM IDL type: CURRENCY* (union tagCY*)
VARIANT type: VT_BYREF | VT_CY

A - 24 Unified POS, v1.15.1 Beta1

Supported in Release 1.10 and later

SAFEARRAY of BSTR An array of binary data; may be used as an in parameter.
COM IDL type: VARIANT
VARIANT type: VT_BSTR | VT_ARRAY or VT_BYREF |
VT_BSTR | VT_ARRAY

SAFEARRAY of LONG An array of 32-bit integers; may be used as an in parameter.
COM IDL type: VARIANT
VARIANT type: VT_I4 | VT_ARRAY or VT_BYREF | VT_I4 |
VT_ARRAY

SAFEARRAY* of LONG A pointer to a mutable array of 32-bit integers; may be used as an
out or in-out parameter.
COM IDL type: VARIANT
VARIANT type: VT_EMPTY or
VT_I4 | VT_ARRAY or
VT_BYREF | VT_I4 | VT_ARRAY

Notice that the IDL type for all arrays is “VARIANT”, and that the VARIANT type for all arrays
includes “VT_ARRAY”. In addition, the following requirements are imposed on the VARIANT
type:

• Immutable (in) arrays must include the type of the data (VT_BSTR or VT_I4) plus optional by-
reference (VT_BYREF).
Before calling the Service Object, the Common Control Objects (a) ensure that the VARIANT
type is valid, and (b) convert by-reference arrays into by-value arrays.

• Mutable (out or in-out) arrays must either have the type (a) VT_EMPTY or (b) the type of the
data (VT_BSTR or VT_I4) plus optional by-reference (VT_BYREF).
Before calling the Service Object, the Common Control Objects (a) ensure that the VARIANT
type is valid, and (b) convert by-reference arrays into by-value arrays.
After calling the Service Object, the Common Control Objects try to update the VARIANT
with the value set by the Service Object, converting by-reference arrays into by-value arrays.
(The current CCOs do not check the type of the returned value. The Service Object must
ensure that it is either empty or an array of the proper type.)

Unified POS, v1.15.1 Beta1 A - 25

A.18 Section 2: OPOS Interface Descriptions
Information in this section further defines the requirements of the UnifiedPOS for a Windows OS environment
implementation. The common Properties, Methods, and Events are included to help transition from the UML
given in Chapter 2 to the specifics for the Windows environment.

Next, tables are included that outline the specific programmatic examples for each of the device classifications
and reference back to the UML for the respective devices.

The examples have been provided in Visual Basic and Visual C++ as the Windows OS reference programming
platforms. Other programming languages written for the Windows OS environment may be supported as long as
they comply to the Microsoft OLE 2.x.

A.19 OPOS Common Properties, Methods, and Events

A.20 Common Properties Updated in Release 1.9
OPOS implementation specific definitions of the Common Properties.

Properties (UML attributes)

Name Type Mutability Version Usage
Notes

AutoDisable Boolean { read-write } 1.2 1
BinaryConversion Long { read-write } 1.2
CapCompareFirmwareVersion Boolean { read-only } 1.9
CapPowerReporting Long { read-only } 1.3
CapStatisticsReporting Boolean { read-only } 1.8
CapUpdateFirmware Boolean { read-only } 1.9
CapUpdateStatistics Boolean { read-only } 1.8
CheckHealthText String { read-only } 1.0
Claimed Boolean { read-only } 1.0
DataCount Long { read-only } 1.2 1
DataEventEnabled Boolean { read-write } 1.0 1
DeviceEnabled: Boolean { read-write } 1.0
FreezeEvents Boolean { read-write } 1.0
OpenResult Long { read-only } 1.5
OutputID Long { read-only } 1.0 2
PowerNotify Long { read-write } 1.3
PowerState Long { read-only } 1.3
ResultCode Long { read-only } 1.0
ResultCodeExtended Long { read-only } 1.0
State Long { read-only } 1.0

A - 26 Unified POS, v1.15.1 Beta1

Usage Notes:
1.Used only with Devices that have Event Driven Input.
2.Used only with Asynchronous Output Devices.

A.21 Common Methods Updated in Release 1.10
OPOS implementation specific definitions of the Common Methods.

ControlObjectDescription String { read-only } 1.0
ControlObjectVersion Long { read-only } 1.0
ServiceObjectDescription String { read-only } 1.0
ServiceObjectVersion Long { read-only } 1.0
DeviceDescription String { read-only } 1.0
DeviceName String { read-only } 1.0

Methods (UML operations)
Name Version
LONG Open (BSTR DeviceName); 1.0
LONG Close (); 1.0
LONG ClaimDevicea (LONG Timeout); 1.0
LONG ReleaseDevicea ();

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release methods are
also defined as ClaimDevice and ReleaseDevice due to Release being a reserved
method name used by Microsoft’s Component Object Model (COM).

1.0
LONG CheckHealth (LONG Level); 1.0
LONG ClearInput (); 1.0
LONG ClearInputProperties (); 1.10
LONG ClearOutput (); 1.0
LONG DirectIO (LONG Command, LONG* pData, BSTR* pString); 1.0
LONG CompareFirmwareVersion (BSTR FirmwareFileName, LONG* pResult

);
1.9

LONG ResetStatistics (BSTR StatisticsBuffer); 1.8
LONG RetrieveStatistics (BSTR* pStatisticsBuffer); 1.8
LONG UpdateFirmware (BSTR FirmwareFileName); 1.9
LONG UpdateStatistics (BSTR StatisticsBuffer); 1.8

Unified POS, v1.15.1 Beta1 A - 27

A.22 OPOS Programmatic Names Updated in Release 1.12
OPOS implementation specific definitions of the POS Device Categories’ programmatic IDs.

UnifiedPOS Device
Programmatic Names OPOS Programmatic IDs

Belt OPOS.Belt
BillAcceptor OPOS.BillAcceptor
BillDispenser OPOS.BillDispenser
Biometrics OPOS.Biometrics
BumpBar OPOS.BumpBar
CashChanger OPOS.CashChanger
CashDrawer OPOS.CashDrawer
CAT OPOS.CAT
CheckScanner OPOS.CheckScanner
CoinAcceptor OPOS.CoinAcceptor
CoinDispenser OPOS.CoinDispenser
ElectronicJournal OPOS.ElectronicJournal
ElectronicValueRW OPOS.ElectronicValueR
FiscalPrinter OPOS.FiscalPrinter
Gate OPOS.Gate
HardTotals OPOS.HardTotals
ImageScanner OPOS.ImageScanner
ItemDispenser OPOS.ItemDispenser
Keylock OPOS.Keylock
Lights OPOS.Lights
LineDisplay OPOS.LineDisplay
MICR OPOS.MICR
MotionSensor OPOS.MotionSensor
MSR OPOS.MSR
PINPad OPOS.PINPad
PointCardRW OPOS.PointCardRW
POSKeyboard OPOS.POSKeyboard
POSPower OPOS.POSPower
POSPrinter OPOS.POSPrinter
RemoteOrderDisplay OPOS.RemoteOrderDispl
RFIDScanner OPOS.RFIDScanner
Scale OPOS.Scale
Scanner OPOS.Scanner
SignatureCapture OPOS.SignatureCapture
SmartCardRW OPOS.SmartCardRW
ToneIndicator OPOS.ToneIndicator

A - 28 Unified POS, v1.15.1 Beta1

A.23 Properties

AutoDisable Property R/W Added in Release 1.2
Syntax BOOL AutoDisable;
Remarks This property applies to event-driven input devices. It provides the application with an additional

option for controlling the receipt of input data. If an application wants to receive and process only
one input, or only one input at a time, then this property may be set to TRUE.
When TRUE, then as soon as the Service Object receives and enqueues data to be fired as a
DataEvent, then it sets DeviceEnabled = FALSE. Before any additional input can be received, the
application must set DeviceEnabled = TRUE.
When FALSE, the Service Object does not automatically disable the device when data is received.
This is the behavior of OPOS controls prior to Release 1.2.
This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS The property was set successfully.

BinaryConversion Property R/W Updated in Release 1.14.1
Syntax LONG BinaryConversion;
Remarks OPOS passes multi-character input and output using BStrings. BStrings may be safely used for text

data. As the BStrings are passed between the application and the OPOS Control, OLE may perform
language-specific translations to or from Unicode.
When BStrings are used to pass binary data, then these translations may alter the data such that the
data byte in a BString character at the application does not match the corresponding byte at the
Control. This mismatch is more likely when BString pointers are used, since the Unicode
characters are presented to the application and/or Control, and a language difference between them
may cause misinterpretation. (This was first reported with Japanese, which uses the MBCS Code
Page 932, but can occur with other languages, also.)
Characters between 0x00 and 0x7F may be sent without fear of language-specific translation. Only
characters between 0x80 and 0xFF sometimes cause incorrect translations.
This document specifies those properties and method parameters that are affected by
BinaryConversion in the individual property and method descriptions. The following line is
added to their description:
“In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.”

The following table defines the affected device categories and affected Properties, Methods and
events.

Unified POS, v1.15.1 Beta1 A - 29

Device Category Property/Method/Event Name Reference

Common PME directIO
DirectIOEvent See Chapter 2

Biometrics

BIR
RawSensorData
beginEnrollCapture (2 parameters)
identify (1 parameter)
identifyMatch (2 parameters)
processPrematchData (3 parameters)
verify (3 parameters)
verifyMatch (4 parameters)

See Chapter 5

CAT AdditionalSecurityInformation
DailyLog See Chapter 9

CheckScanner ImageData See Chapter 10

ElectronicValueRW AdditionalSecurityInformation
TransitionEvent See Chapter 14

FiscalPrinter printNormal See Chapter 15

HardTotals read
write See Chapter 17

ImageScanner FrameData See Chapter 18

Keylock ElectronicKeyValue See Chapter 20

LineDisplay
defineGlyph
displayText
displayTextAt

See Chapter 22

MSR

AdditionalSecurityInformation
CardAuthenticationData
Track1Data
Track1DiscretionaryData
Track1EncryptedData
Track2Data
Track2DiscretionaryData
Track2EncryptedData
Track3Data
Track3EncryptedData
Track4Data
Track4EncryptedData
authenticateDevice
deauthenticateDevice
retrieveDeviceAuthenticationData
writeTracks

See Chapter 25

PINPad

Track1Data
Track2Data
Track3Data
Track4Data
computeMAC (2 parameters)

See Chapter 26

PointCardRW printWrite
validateData See Chapter 27

A - 30 Unified POS, v1.15.1 Beta1

The binary conversion values are:
Value Meaning
OPOS_BC_NONE Data is placed one byte per BString character, with no conversion.

(This is the default, and is the behavior of OPOS Service Objects prior to
1.2.)

OPOS_BC_NIBBLE Each byte is converted into two characters.
(This option provides for the fastest conversion between binary and
ASCII characters.)
Each data byte is converted as follows:
 First character = 0x30 + bits 7-4 of the data byte.
 Second character = 0x30 + bits 3-0 of the data byte.
Example: Byte value 154 = 0x9A is converted into the characters 0x39
0x3A (= the string “9:”). Note that this conversion is not the more
common hexadecimal ASCII, which would have converted 154 to 0x39
0x41 (= the string “9A”).

OPOS_BC_DECIMAL Each byte is converted into three characters.
(This option provides for the easiest conversion between binary and
ASCII characters for Visual Basic and similar languages.)

VAL(string) may be used on each 3 characters to convert from ASCII to
binary.
RIGHT(“^^”+STR(byte), 3) may be used to produce 3 ASCII characters
from each byte, where '^' represents the space character.

POSPrinter

printBarCode
printImmediate
printMemoryBitmap
printNormal
printTwoNormal (2 parameters)
setLogo
validateData

See Chapter 30

RemoteOrderDisplay displayData See Chapter 31

RFIDScanner

CurrentTagID
CurrentTagUserData
disableTag (2 parameters)
lockTag (2 parameters)
readTags (3 parameters)
startReadTags (3 parameters)
stopReadTags
writeTagData (3 parameters)
writeTagID (3 parameters)

See Chapter 32

Scale displayText See Chapter 33

Scanner ScanData
ScanDataLabel See Chapter 34

SignatureCapture PointArray
RawData See Chapter 35

SmartCardRW readData
writeData See Chapter 36

Device Category Property/Method/Event Name Reference

Unified POS, v1.15.1 Beta1 A - 31

Example 1: Byte value 154 = 0x9A becomes the characters 0x31 0x35
0x34 (= the string “154”).

Example 2: Byte value 8 becomes the characters 0x30 0x30 0x38 (= the
string “008”).

Requirements for a Service Object are:
(1) When the Service Object converts from ASCII to binary, it must
allow either leading spaces or ASCII zeros, since STR(byte) produces a
leading space. (For example, the application may pass “^^8^27”, where
'^' represents the space character, which will be interpreted as the two
bytes 8 (0x08) and 27 (0x1B).)
(2) When the Service Object converts from binary to ASCII, is must
always convert each byte into exactly three ASCII decimal characters
(range 0x30 to 0x39).

When BinaryConversion is on (that is, not OPOS_BC_NONE) and the property or method
parameter description specifies that BinaryConversion applies, then the application has the
following responsibilities:
• Before setting the property or passing the method parameter, convert the string data into the for-

mat specified by the BinaryConversion value.
• If XMLPOS is used to transmit binary data, the “ARTSBinary” conversion shall be used to pro-

cess the data to and from XMLPOS. See “Taxonomy for Converting XML Data to Unified-
POS” in Annex D.

• After getting the property or receiving the method parameter, convert the string data from the
format specified by the BinaryConversion value.

To better understand the “direction” of the conversion, determine if the data flow follows the
Output Model or the Input Model. If the flow follows the Output Model, then the application must
adhere to the first responsibility listed above. If the flow follows the Input Model, then the
application must adhere to the second responsibility listed above.

This property is initialized to OPOS_BC_NONE by the Open method.

Return When this property is set, one of the following values is placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS The property was set successfully.
OPOS_E_ILLEGAL An illegal value was specified.

CapCompareFirmwareVersion Property Added in Release 1.9
Syntax BOOL CapCompareFirmwareVersion;

Remarks If TRUE, then the Service/device supports comparing the version of the firmware in the physical
device against that of a firmware file.

See Also CompareFirmwareVersion Method.

A - 32 Unified POS, v1.15.1 Beta1

CapPowerReporting Property Added in Release 1.3
Syntax LONG CapPowerReporting;

Remarks Identifies the reporting capabilities of the device.

The power reporting values are:

Value Meaning
OPOS_PR_NONE The Service Object cannot determine the state of the device. Therefore,

no power reporting is possible.
OPOS_PR_STANDARD

The Service Object can determine and report two of the power states –
OFF_OFFLINE (that is, off or offline) and ONLINE.

OPOS_PR_ADVANCED
The Service Object can determine and report all three power states –
OFF, OFFLINE, and ONLINE.

This property is initialized by the Open method.

CapStatisticsReporting Property Added in Release 1.8
Syntax BOOL CapStatisticsReporting;

Remarks If TRUE, the device accumulates and can provide various statistics regarding usage; otherwise no
usage statistics are accumulated. The information accumulated and reported is device specific, and
is retrieved using the RetrieveStatistics method.

This property is initialized by the Open method.

See Also RetrieveStatistics Method.

CapUpdateFirmware Property Added in Release 1.9
Syntax BOOL CapUpdateFirmware;

Remarks If TRUE, then the device’s firmware can be updated via the UpdateFirmware method.

See Also UpdateFirmware Method.

CapUpdateStatistics Property Added in Release 1.8
Syntax BOOL CapUpdateStatistics;

Remarks If TRUE, the device statistics, or some of the statistics, can be reset to zero using the ResetStatistics
method, or updated using the UpdateStatistics method.

If CapStatisticsReporting is FALSE, then CapUpdateStatistics is also FALSE.

This property is initialized by the Open method.

See Also CapStatisticsReporting Property, ResetStatistics Method, UpdateStatistics Method.

Unified POS, v1.15.1 Beta1 A - 33

CheckHealthText Property
Syntax BSTR CheckHealthText;

Remarks Holds the results of the most recent call to the CheckHealth method. The following examples
illustrate some possible diagnoses:

• “Internal HCheck: Successful”

• “External HCheck: Not Responding”

• “Interactive HCheck: Complete”

Before the first CheckHealth method call, its value is uninitialized.

Claimed Property
Syntax BOOL Claimed;

Remarks If TRUE, the device is claimed for exclusive access.
If FALSE, the device is released for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will fire events to the application.

The value of Claimed is initialized to FALSE by the Open method.

ControlObjectDescription Property
Syntax BSTR ControlObjectDescription;

Remarks String identifying the Control Object and the company that produced it.

The property identifies the Control Object. A sample returned string is:
“POS Printer OLE Control, (C) 1995 Epson”

This property is always readable.

ControlObjectVersion Property
Syntax LONG ControlObjectVersion;

Remarks Control Object version number.

This property holds the Control Object version number. Three version levels are specified, as
follows:
Version Level Description
Major The “millions” place.

A change to the OPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

A - 34 Unified POS, v1.15.1 Beta1

Minor The “thousands” place.
A change to the OPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the Control Object developer. Updated when
corrections are made to the CO implementation.

A sample version number is:
1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the Control Object.
This property is always readable.

Note:
A Control Object for a device class will operate with any Service Object for that class, as long as
its major version number matches the Service Object’s major version number. If they match, but
the Control Object’s minor version number is greater than the Service Object’s minor version
number, then the Control Object may support some new methods or properties that are not
supported by the Service Object’s release.
The following rules apply to APIs supported by the Control Object’s release but not supported by
the Service Object’s older release:
• Reading an unsupported property: The Control Object returns the property’s uninitialized val-

ue. (See “When Methods and Properties May Be Accessed” in Annex D for uninitialized prop-
erty default values.)

• Writing an unsupported property: The Control Object returns, but must remember that an un-
supported property write or method call occurred. Then, if the application reads the ResultCode
property, the Control Object must return a value of OPOS_E_NOSERVICE (rather than read-
ing the current ResultCode from the Service Object). It must do this until the next property
write or method call, at which time ResultCode is set by that API.

• Calling an unsupported method: The Control Object returns a value of OPOS_E_NOSERVICE,
and must remember that an unsupported property write or method call occurred. Then, if the
application reads the ResultCode property, the Control Object must return a value of
OPOS_E_NOSERVICE (rather than reading the current ResultCode from the Service Object).
It must do this until the next property write or method call, at which time ResultCode is set by
that API.

DataCount Property Added in Release 1.2
Syntax LONG DataCount;

Remarks Holds the number of enqueued DataEvents at the control.

The application may interrogate DataCount to determine whether additional input is enqueued
from a device, but has not yet been delivered because of other application processing, freezing of
events, or other causes.

This property is initialized to zero by the Open method.

Unified POS, v1.15.1 Beta1 A - 35

DataEventEnabled Property R/W
Syntax BOOL DataEventEnabled;

Remarks When TRUE, a DataEvent will be delivered as soon as input data is enqueued. If changed to TRUE
and some input data is already queued, then a DataEvent is delivered immediately. (Note that other,
less likely, conditions may delay “immediate” delivery: If FreezeEvents is TRUE or another event
is already being processed at the application, the DataEvent will remain enqueued at the Service
Object until the condition is corrected.)

When FALSE, input data is queued for later delivery to the application. Also, if an input error
occurs, the ErrorEvent is not delivered while DataEventEnabled is FALSE.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.

DeviceDescription Property
Syntax BSTR DeviceDescription;

Remarks String identifying the device.
The property identifies the device and any pertinent information about it. A sample returned string
is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the Open method.

A - 36 Unified POS, v1.15.1 Beta1

DeviceEnabled Property R/W
Syntax BOOL DeviceEnabled;

Remarks When TRUE, the device has been placed in an operational state. If changed to TRUE, then the
device is brought to an operational state.
When FALSE, the device has been disabled. If changed to FALSE, then the device is physically
disabled when possible, any subsequent input will be discarded, and output operations are
disallowed.
Changing this property usually does not physically affect output devices. For consistency,
however, the application must set this property to TRUE before using output devices.
Release 1.3 and later: The device’s power state may be reported while DeviceEnabled is
TRUE.
This property is initialized to FALSE by the Open method.

Return When this property is set, one of the following values is placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS The property was set successfully.
OPOS_E_NOTCLAIMED

An exclusive use device must be claimed before the device may be
enabled.

Other Values See ResultCode.

DeviceName Property
Syntax BSTR DeviceName;
Remarks Short string identifying the device.

The property identifies the device and any pertinent information about it. This is a short version of
DeviceDescription and should be limited to 30 characters.
DeviceName will typically be used to identify the device in an application message box, where the
full description is too verbose. A sample returned string is:

“NCR 7192 Printer, Japanese”

This property is initialized by the Open method.

Unified POS, v1.15.1 Beta1 A - 37

FreezeEvents Property R/W Updated in Release 1.12
Syntax BOOL FreezeEvents;

Remarks When TRUE, the application has requested that the Control not deliver events. Events will be held
by the Control until events are unfrozen.

When FALSE, the application allows events to be delivered. If some events have been held while
events were frozen and all other conditions are correct for delivering the events, then changing
FreezeEvents to FALSE will cause these events to be delivered.4

An application may choose to freeze events for a specific sequence of code where interruption by
an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.

OpenResult Property Added in Release 1.5
Syntax LONG OpenResult;

Remarks Holds additional details about the most recent Open method.

The open result values are:
Value Meaning
OPOS_SUCCESS Successful open.
OPOS_OR_ALREADYOPEN

Control already open.
OPOS_OR_REGBADNAME

The registry does not contain a key for the specified device name.
OPOS_OR_REGPROGID

Could not read the device name key's default value, or could not convert
the Programmatic ID it holds into a valid Class ID.

OPOS_OR_CREATE Could not create a service object instance, or could not get its IDispatch
interface.

OPOS_OR_BADIF The service object does not support one or more of the methods required
by its release.

4. Firing of events can also be deferred by the containing application. A control container may request controls to
freeze event firing. For example, this feature is utilized by Visual Basic when modal dialog boxes are active.
Therefore, events are fired when both FreezeEvents is FALSE and the container has not requested event freezing.
Container-initiated event freezing is not referenced elsewhere in this document, since an Application will seldom
if ever notice it and cannot directly control it.

A - 38 Unified POS, v1.15.1 Beta1

OPOS_OR_FAILEDOPEN
The service object returned a failure status from its open call, but does
not have a more specific failure code.

OPOS_OR_BADVERSION
The service object major version number does not match the control
object major version number.
The following values can be returned by the Service Object if it returns a
failure status from its open call. The Service Object can choose to return
one of these, if applicable, or define additional values. (See the Control
Programmer's Guide's GetOpenResult description for details on how the
Service Object returns these values. If the Service Object does not
implement GetOpenResult, then OpenResult returns
OPOS_OR_FAILEDOPEN.)

OPOS_ORS_NOPORT The Service Object tried to access an I/O port (for example, an RS232
port) during Open processing, but the port that is configured for the
DeviceName is invalid or inaccessible.
As a general rule, an SO should refrain from accessing the physical
device until the DeviceEnabled property is set to TRUE. But in some
cases, it may require some access at Open; for instance, to dynamically
determining the device type in order to set the DeviceName and
DeviceDescription properties.

OPOS_ORS_NOTSUPPORTED
The Service Object does not support the specified device.

The SO has determined that it does not have the ability to control the
device it is opening. This determination may be due to an inspection of
the registry entries for the device, or dynamic querying of the device
during open processing.

OPOS_ORS_CONFIG Configuration information error.

Usually this is due to incomplete configuration of the registry, such that
the SO does not have sufficient or valid data to open the device.

OPOS_ORS_SPECIFIC Errors greater than this value are service object-specific.

If the previous return values do not apply, then the SO may define
additional OpenResult values. These values are Service Object-specific,
but may be of value in these cases:

 1) The Application logs or reports this error during debug and testing.
 2) The Application adds SO-specific logic, to attempt to report more

error conditions or to recover from them.
This property is initialized by the Open method.

Unified POS, v1.15.1 Beta1 A - 39

OutputID Property
Syntax LONG OutputID;

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Control assigns an identifier to
the request. When the output completes, the Control will fire an OutputCompleteEvent passing
this output ID as a parameter.

The output ID numbers are assigned by the Control and are guaranteed to be unique among the set
of outstanding asynchronous outputs. No other facts about the ID should be assumed.

PowerNotify Property R/W Added in Release 1.3
Syntax LONG PowerNotify;

Remarks Contains the type power notification selection made by the Application.

The power notification values are:
Value Meaning
OPOS_PN_DISABLED The Control will not provide any power notifications to the application.

No power notification StatusUpdateEvents will be fired, and
PowerState may not be set.

OPOS_PN_ENABLED The Control will fire power notification StatusUpdateEvents and
update PowerState, beginning when DeviceEnabled is set to TRUE.
The level of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is
FALSE.

This property is initialized to OPOS_PN_DISABLED by the Open method. This value provides
compatibility with earlier releases.

Return When this property is set, one of the following values is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.
OPOS_E_ILLEGAL One of the following occurred:

• The device is already enabled.
• PowerNotify = OPOS_PN_ENABLED but CapPowerReporting =

OPOS_PR_NONE.
Other Values See ResultCode.

A - 40 Unified POS, v1.15.1 Beta1

PowerState Property Added in Release 1.3
Syntax LONG PowerState;

Remarks Contains the current power condition, if it can be determined.

The power reporting values are:
Value Meaning
OPOS_PS_UNKNOWN Cannot determine the device's power state, for one of the following

reasons:
• CapPowerReporting = OPOS_PR_NONE. Device does not support

power reporting.
• PowerNotify = OPOS_PN_DISABLED. Power notifications are

disabled.
• DeviceEnabled = FALSE. Power state monitoring does not occur

until the device is enabled.
OPOS_PS_ONLINE The device is powered on and ready for use.

Can be returned if CapPowerReporting = OPOS_PR_STANDARD or
OPOS_PR_ADVANCED.

OPOS_PS_OFF The device is off or detached from the terminal.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_PS_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting =
OPOS_PR_STANDARD.

This property is initialized to OPOS_PS_UNKNOWN by the Open method. When PowerNotify
is set to enabled and DeviceEnabled is TRUE, then this property is updated as the Service Object
detects power condition changes.

ResultCode Property Updated in Release 1.11
Syntax LONG ResultCode;

Remarks This property is set by each method. It is also set when a writable property is set.

This property is always readable. Before the Open method is called, it returns the value
OPOS_E_CLOSED.

It is conceivable that more than one of the following result codes could be valid for a particular
failure. The order of error reporting precedence for such scenarios is the following:

• OPOS_E_CLAIMED
• OPOS_E_NOTCLAIMED
• OPOS_E_DISABLED

The result code values are:

Unified POS, v1.15.1 Beta1 A - 41

Value Meaning
OPOS_SUCCESS Successful operation.
OPOS_E_CLOSED Attempt was made to access a closed device.
OPOS_E_CLAIMED Attempt was made to access a device that is claimed by another process.

The other process must release the device before this access may be
made. For exclusive-use devices, the application will also need to claim
the device before the access is legal.

OPOS_E_NOTCLAIMED
Attempt was made to access an exclusive-use device that must be
claimed before the method or property set action can be used.
If the device is already claimed by another process, then the status
OPOS_E_CLAIMED is returned instead.

OPOS_E_NOSERVICE The Control cannot communicate with the Service Object. Most likely, a
setup or configuration error must be corrected.

OPOS_E_DISABLED Cannot perform operation while device is disabled.
OPOS_E_ILLEGAL Attempt was made to perform an illegal or unsupported operation with

the device, or an invalid parameter value was used.
OPOS_E_NOHARDWARE

The device is not connected to the system or is not powered on.
OPOS_E_OFFLINE The device is off-line.
OPOS_E_NOEXIST The file name (or other specified value) does not exist.
OPOS_E_EXISTS The file name (or other specified value) already exists.
OPOS_E_FAILURE The device cannot perform the requested procedure, even though the

device is connected to the system, powered on, and on-line.
OPOS_E_TIMEOUT The Service Object timed out waiting for a response from the device, or

the Control timed out waiting for a response from the Service Object.
OPOS_E_BUSY The current Service Object state does not allow this request. For

example, if asynchronous output is in progress, certain methods may not
be allowed.

OPOS_E_EXTENDED A class-specific error condition occurred. The error condition code is
available in the ResultCodeExtended property.

OPOS_E_DEPRECATED
The requested operation can not be performed since it has been
deprecated. See “Deprecation Handling" on page 1-38 for additional
information.

A - 42 Unified POS, v1.15.1 Beta1

ResultCodeExtended Property
Syntax LONG ResultCodeExtended;

Remarks When the ResultCode is set to OPOS_E_EXTENDED, this property is set to a class-specific value,
and must match one of the values given in this document under the appropriate device class section.

When the ResultCode is set to any other value, this property may be set by the Service Object to
any SO-specific value. These values are only meaningful if the application adds Service Object-
specific code to handle them.

ServiceObjectDescription Property
Syntax BSTR ServiceObjectDescription;

Remarks String identifying the Service Object supporting the device and the company that produced it.

A sample returned string is:
“TM-U950 Printer OPOS Service Driver, (C) 1995 Epson”

This property is initialized by the Open method.

Unified POS, v1.15.1 Beta1 A - 43

ServiceObjectVersion Property
Syntax LONG ServiceObjectVersion;

Remarks Service object version number.
This property holds the Service Object version number. Three version levels are specified, as
follows:
Version Level Description
Major The “millions” place.

A change to the OPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the OPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the Service Object developer. Updated when
corrections are made to the SO implementation.

A sample version number is:
1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the Service Object.
This property is initialized by the Open method.

Note:
A Service Object for a device class will operate with any Control Object for that class, as long as
its major version number matches the Control Object’s major version number. If they match, but
the Service Object’s minor version number is greater than the Control Object’s minor version
number, then the Service Object may support some methods or properties that cannot be accessed
from the Control Object’s release.

If the application requires such features, then it will need to be updated to use a later version of the
Control Object.

State Property
Syntax LONG State;

Remarks Contains the current state of the Control.
Value Meaning
OPOS_S_CLOSED The Control is closed.
OPOS_S_IDLE The Control is in a good state and is not busy.
OPOS_S_BUSY The Control is in a good state and is busy performing output.
OPOS_S_ERROR An error has been reported, and the application must recover the Control

to a good state before normal I/O can resume.
This property is always readable.

A - 44 Unified POS, v1.15.1 Beta1

A.24 Methods

CheckHealth Method
Syntax LONG CheckHealth (LONG Level);

The Level parameter indicates the type of health check to be performed on the device. The
following values may be specified:

Value Meaning
OPOS_CH_INTERNAL

Perform a health check that does not physically change the device. The
device is tested by internal tests to the extent possible.

OPOS_CH_EXTERNAL
Perform a more thorough test that may change the device. For example, a
pattern may be printed on the printer.

OPOS_CH_INTERACTIVE
Perform an interactive test of the device. The supporting Service Object
will typically display a modal dialog box to present test options and
results.

Remarks Called to test the state of a device.

A text description of the results of this method is placed in the CheckHealthText property.

The CheckHealth method is always synchronous.

Return One of the following values is returned by the method and also placed in the ResultCode property.

Value Meaning
OPOS_SUCCESS Indicates that the health checking procedure was initiated properly and,

when possible to determine, indicates that the device is healthy.
However, the health of many devices can only be determined by a visual
inspection of the test results.

OPOS_E_ILLEGAL The specified health check level is not supported by the Service Object.
OPOS_E_BUSY Cannot perform while output is in progress.
Other Values See ResultCode.

Unified POS, v1.15.1 Beta1 A - 45

ClaimDevice Method Added in Release 1.5
Syntax LONG ClaimDevice (LONG Timeout);

The Timeout parameter gives the maximum number of milliseconds to wait for exclusive access to
be satisfied.
If zero, the method attempts to claim the device, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks Call this method to request exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to TRUE.

Release 1.0 – 1.4 In releases prior to 1.5, this method is named Claim.

Release 1.5 and later 5

ClaimDevice must be used by early-bound applications. For compatibility with late-bound
applications, the Control Object’s IDispatch interface supports both ClaimDevice and Claim. It is
recommended that applications written to the 1.5 specification use ClaimDevice, not Claim.

Early bound applications acquire Control Object calling details at development time, including
Class IDs, Interface IDs, and method, property, and event calling details. They then can build in
static sequences to call methods and properties and receive events. Microsoft Visual C++ and
Visual Basic plus most compiled languages support early binding.

Late bound applications acquire calling details at run time. They then dynamically build code
sequences to call methods and properties plus receive events. Scripting languages usually support
late binding. Late binding can be implemented with many compiled languages, too, but often
require additional programmer effort, especially to receive events.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Exclusive access has been granted. The Claimed property is now TRUE.

Also returned if this application has already claimed the device.
OPOS_E_ILLEGAL This device cannot be claimed for exclusive access, or an invalid

Timeout parameter was specified.
OPOS_E_TIMEOUT Another application has exclusive access to the device, and did not

relinquish control before Timeout milliseconds expired.

5. For further details, see Annex A.24 - Section 6.

A - 46 Unified POS, v1.15.1 Beta1

ClearInput Method
Syntax LONG ClearInput ();

Remarks Called to clear all device input that has been buffered.

Any data events or input error events that were enqueued – usually waiting for DataEventEnabled
to be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Input has been cleared.
OPOS_E_CLAIMED The device is claimed by another process.
OPOS_E_NOTCLAIMED

The device must be claimed before this method can be used.

ClearInputProperties Method

Added in Release 1.10

Syntax LONG ClearInputProperties ();

Remarks Sets all data properties, that were populated as a result of firing a DataEvent or ErrorEvent, back
to their default values. This does not reset the DataCount or State properties.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Properties have been rest.
OPOS_E_CLAIMED The device is claimed by another process.
OPOS_E_NOTCLAIMED

The device must be claimed before this method can be used.

ClearOutput Method Updated in Release 1.7
Syntax LONG ClearOutput ();

Remarks Called to clear all buffered output data, including all asynchronous output. Also, when possible,
halts outputs that are in progress.

Any output error events that were enqueued – usually waiting for FreezeEvents to be set to
FALSE – are also cleared.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS Output has been cleared.
OPOS_E_CLAIMED The device is claimed by another process.
OPOS_E_NOTCLAIMED

The device must be claimed before this method can be used.

Unified POS, v1.15.1 Beta1 A - 47

Close Method
Syntax LONG Close ();

Remarks Called to release the device and its resources.

If the DeviceEnabled property is TRUE, then the device is first disabled.

If the Claimed property is TRUE, then exclusive access to the device is first released.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Device has been disabled and closed.
Other Values See ResultCode.

CompareFirmwareVersion Method Added in Release 1.9
Syntax LONG CompareFirmwareVersion (BSTR FirmwareFileName, LONG* pResult);

Parameter Description
FirmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files whose versions are to be compared
against those of the device.

pResult Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer
than, older than, or the same as the version of the firmware in the physical device.
The Service should check that the specified firmware file exists and that its contents are valid for
this device before attempting to perform the comparison operation.
The result of the comparison is returned in the pResult parameter and will be one of the following
values:
Value Meaning
OPOS_CFV_FIRMWARE_OLDER

Indicates that the version of one or more of the firmware files is
older than the firmware in the device and that none of the
firmware files is newer than the firmware in the device.

OPOS_CFV_FIRMWARE_SAME
Indicates that the versions of all of the firmware files are the same
as the firmware in the device.

OPOS_CFV_FIRMWARE_NEWER
Indicates that the version of one or more of the firmware files is
newer than the firmware in the device and that none of the
firmware files is older than the firmware in the device.

OPOS_CFV_FIRMWARE_DIFFERENT
Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
• The chronological relationship cannot be determined, or
• The relationship is inconsistent -- one or more are older while

one or more are newer.
OPOS_CFV_FIRMWARE_UNKNOWN

Indicates that a relationship between the two firmware versions
could not be determined. A possible reason for this result could
be an attempt to compare Japanese and US versions of firmware.

A - 48 Unified POS, v1.15.1 Beta1

If the FirmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS Compare firmware successful.
OPOS_E_ILLEGAL CapCompareFirmwareVersion is false.
OPOS_E_NOEXIST The file specified by FirmwareFileName does not exist or, if

FirmwareFileName specifies a file list, one or more of the component
firmware files are missing.

OPOS_E_EXTENDED ResultCodeExtended = OPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

Other Values See ResultCode.

See Also CapCompareFirmwareVersion Property.

DirectIO Method
Syntax LONG DirectIO (LONG Command, LONG* pData, BSTR* pString);

Parameter Description
Command Command number. Specific values assigned by the Service Object.
pData Pointer to additional numeric data. Specific values vary by Command

and Service Object.
pString Pointer to additional string data. Specific values vary by Command and

Service Object.
The format of this data depends upon the value of the
BinaryConversion property. See Annex A - Properties.

Remarks Call to communicate directly with the Service Object.
This method provides a means for a Service Object to provide functionality to the application that
is not otherwise supported by the standard Control Object for its device class. Depending upon the
Service Object’s definition of the command, this method may be asynchronous or synchronous.
Use of DirectIO will make an application non-portable. The application may, however, maintain
portability by performing DirectIO calls within conditional code. This code may be based upon
the value of the ServiceObjectDescription, DeviceDescription, or DeviceName property.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS Direct I/O successful.
Other Values See ResultCode.

Unified POS, v1.15.1 Beta1 A - 49

Open Method
Syntax LONG Open (BSTR DeviceName);

The DeviceName parameter specifies the device name to open.

Remarks Call to open a device for subsequent I/O.

The device name specifies which of one or more devices supported by this Control Object should
be used. The DeviceName must exist in the system registry for this device class. The relationship
between the device name and physical devices is determined by entries within the operating system
registry; these entries are maintained by a setup or configuration utility.

When the Open method is successful, it sets the properties Claimed, DeviceEnabled,
DataEventEnabled, and FreezeEvents, as well as descriptions and version numbers of the OPOS
software layers. Additional class-specific properties may also be initialized.

Release 1.5 and later

The value of the OpenResult property is set by the Open method.

Return One of the following values is returned by the method:
Value Meaning
OPOS_SUCCESS Open successful.
OPOS_E_ILLEGAL The Control is already open.
OPOS_E_NOEXIST The specified DeviceName was not found.
OPOS_E_NOSERVICE Could not establish a connection to the corresponding Service Object.
Other Values See ResultCode.

Note:
The value of the ResultCode property after calling the Open method may not be the same as the
Open method return value for the following two cases:
• The Control was closed and the Open method failed: The ResultCode property will continue to re-

turn OPOS_E_CLOSED.
• The Control was already opened: The Open method will return OPOS_E_ILLEGAL, but the Re-

sultCode property may continue to return the value it held before the Open method.

A - 50 Unified POS, v1.15.1 Beta1

ReleaseDevice Method Added in Release 1.5
Syntax LONG ReleaseDevice ();

Remarks Call this method to release exclusive access to the device.

If the DeviceEnabled property is TRUE, and the device is an exclusive-use device, then the device
is first disabled. (ReleaseDevice does not change the device enabled state of sharable devices.)

Release 1.0 – 1.4
In releases prior to 1.5, this method is named Release.

Release 1.5 and later 6

ReleaseDevice must be used by early-bound applications. For compatibility with late-bound
applications, the Control Object’s IDispatch interface supports both ReleaseDevice and Release. It
is recommended that applications written to the 1.5 specification use ReleaseDevice, not Release.

Early bound applications acquire Control Object calling details at development time, including
Class IDs, Interface IDs, and method, property, and event calling details. They then can build in
static sequences to call methods and properties and receive events. Microsoft Visual C++ and
Visual Basic plus most compiled languages support early binding.

Late bound applications acquire calling details at run time. They then dynamically build code
sequences to call methods and properties plus receive events. Scripting languages usually support
late binding. Late binding can be implemented with many compiled languages, too, but often
require additional programmer effort, especially to receive events.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS Exclusive access has been released. The Claimed property is now

FALSE.
OPOS_E_ILLEGAL The application does not have exclusive access to the device.

6. For further details, see Annex A.24 - Section 6.

Unified POS, v1.15.1 Beta1 A - 51

ResetStatistics Method Added in Release 1.8
Syntax LONG ResetStatistics (BSTR StatisticsBuffer);

Parameter Description
StatisticsBuffer The data buffer defining the statistics that are to be reset.
This is a comma-separated list of name(s), where an empty string (“”) means ALL resettable
statistics are to be reset, “U_” means all UnifiedPOS defined resettable statistics are to be reset,
“M_” means all manufacturer defined resettable statistics are to be reset, and “actual_name1,
actual_name2” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be reset.

Remarks Resets the defined resettable statistics in a device.
Both CapStatisticsReporting and CapUpdateStatistics must be TRUE in order to successfully
use this method.
This method is always executed synchronously.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS The statistics have been reset.
OPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is FALSE, or the

named statistic is not defined/resettable.
Other Values See ResultCode.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

RetrieveStatistics Method Added in Release 1.8
Syntax LONG RetrieveStatistics (BSTR* pStatisticsBuffer);

Parameter Description
pStatisticsBuffer The data buffer defining the statistics to be retrieved and in which the

retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”) means ALL statistics are to
be retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_” means all
manufacturer defined statistics are to be retrieved, and “actual_name1, actual_name2” (from the
XML file definitions) means that the specifically defined statistic(s) are to be retrieved.

Remarks Retrieves the statistics from a device.

CapStatisticsReporting must be TRUE in order to successfully use this method.
This method is always executed synchronously.
All calls to RetrieveStatistics will return the following XML as a minimum:

<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/
UPOSStat.xsd”>

A - 52 Unified POS, v1.15.1 Beta1

 <Event>
 <Parameter>
 <Name>RequestedStatistic</Name>
 <Value>1234</Value>
 </Parameter>
 </Event>
 <Equipment>
<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>
 </Equipment>
</UPOSStat>

If the application requests a statistic name that the device does not support, the <Parameter> entry
will be returned with an empty <Value>. e.g.,

<Parameter>
 <Name>RequestedStatistic</Name>
 <Value></Value>
</Parameter>
All statistics that the device collects that are manufacturer specific (not defined in the schema) will
be returned in a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>
 <Name>TheAnswer</Name>
 <Value>42</Value>
</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter>
entry for every defined statistic for the device category as defined by the XML schema version
specified by the version attribute in the <UPOSStat> tag. If the device does not record any of the
statistics, the <Value> tag will be empty.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS The statistics have been retrieved and placed into the supplied buffer.
OPOS_E_ILLEGAL CapStatisticsReporting is FALSE or the named statistic is not defined.
Other Values See ResultCode.

See Also CapStatisticsReporting Property.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at
http://retail.omg.org.

http://retail.omg.org
http://retail.omg.org

Unified POS, v1.15.1 Beta1 A - 53

UpdateFirmware Method Added in Release 1.9
Syntax LONG UpdateFirmware (BSTR FirmwareFileName);

Parameter Description
FirmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files that are to be downloaded into the
device.

Remarks This method updates the firmware of a device with the version of the firmware contained or defined
in the file specified by the FirmwareFileName parameter regardless of whether that firmware’s
version is newer than, older than, or the same as the version of the firmware already in the device.
If the FirmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.
When this method is invoked, the Service should check that the specified firmware file exists and
that its contents are valid for this device. If so, this method should return immediately and the
remainder of the update firmware process should continue asynchronously. The Service should
notify the application of the status of the update firmware process by firing StatusUpdateEvents
with values of OPOS_SUE_UF_PROGRESS + an integer between 1 and 100 indicating the
completion percentage of the update firmware process. For application convenience, the
StatusUpdateEvent value OPOS_SUE_UF_COMPLETE is defined to be the same value as
OPOS_SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been
downloaded into the physical device, any necessary physical device reset has completed, and the
Service and the physical device have been returned to the state they were in before the update
firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete
progress completion percentage (i.e., a percentage between 1 and 99), even if the device cannot
physically report the progress of the update firmware process. If the update firmware process
completes successfully, the Service must fire a StatusUpdateEvent with a progress of 100 or use
the special constant OPOS_SUE_UF_COMPLETE, which has the same value. These Service
requirements allow applications using this method to be designed to always expect some level of
progress notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the
following StatusUpdateEvents will be fired:

Value Meaning
OPOS_UF_FAILED_DEV_OK The update firmware process failed but the device is still

operational.
OPOS_UF_FAILED_DEV_UNRECOVERABLE

The update firmware process failed and the device is neither
usable nor recoverable through software. The device requires
service to be returned to an operational state.

OPOS_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

A - 54 Unified POS, v1.15.1 Beta1

OPOS_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The device firmware has been updated.
OPOS_E_ILLEGAL CapUpdateFirmware is false.
OPOS_E_NOEXIST The file specified by FirmwareFileName does not exist or, if

FirmwareFileName specifies a file list, one or more of the component
firmware files are missing.

OPOS_E_EXTENDED ResultCodeExtended = OPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

See Also CapUpdateFirmware Property.

UpdateStatistics Method Added in Release 1.8
Syntax LONG UpdateStatistics (BSTR StatisticsBuffer);

Parameter Description
StatisticsBuffer The data buffer defining the statistics with values that are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name (““”=value1”)
means ALL resettable statistics are to be set to the value “value1”, “U_=value2” means all
UnifiedPOS defined resettable statistics are to be set to the value “value2”, “M_=value3” means all
manufacturer defined resettable statistics are to be set to the value “value3”, and
“actual_name1=value4, actual_name2=value5” (from the XML file definitions) means that the
specifically defined resettable statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be TRUE in order to successfully
use this method.

This method is always executed synchronously.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The statistics have been reset.
OPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is FALSE, or the

named statistic is not defined/updatable.
Other Values See ResultCode.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

Unified POS, v1.15.1 Beta1 A - 55

A.25 Events

DataEvent Event
Syntax void DataEvent (LONG Status);

The Status parameter contains the input status. Its value is Control-dependent, and may describe
the type or qualities of the input.

Remarks Fired to present input data from the device to the application. The DataEventEnabled property is
changed to FALSE, so that no further data events will be generated until the application sets this
property back to TRUE. The actual input data is placed in one or more device-specific properties.

If DataEventEnabled is FALSE at the time that data is received, then the data is queued in an
internal OPOS buffer, the device-specific input data properties are not updated, and the event is not
delivered. (When this property is subsequently changed back to TRUE, the event will be delivered
immediately if input data is queued and FreezeEvents is FALSE.)

DirectIOEvent Event
Syntax void DirectIOEvent (LONG EventNumber, LONG* pData, BSTR* pString);

Parameter Description
EventNumber Event number. Specific values are assigned by the Service Object.

pData Pointer to additional numeric data. Specific values vary by EventNumber
and the Service Object.

pString Pointer to additional string data. Specific values vary by EventNumber
and the Service Object.
The format of this data depends upon the value of the
BinaryConversion property. See Annex A - Properties.

Remarks Fired by a Service Object to communicate directly with the application.

This event provides a means for a Service Object to provide events to the application that are not
otherwise supported by the Control Object.

A - 56 Unified POS, v1.15.1 Beta1

ErrorEvent Event Updated in Release 1.12
Syntax void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,

LONG ErrorLocus, LONG* pErrorResponse);

Parameter Description
ResultCode Result code causing the error event. See ResultCode for values.
ResultCodeExtended Extended result code causing the error event. See ResultCodeExtended

for values.
ErrorLocus Location of the error. See values below.
pErrorResponse Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:
Value Meaning
OPOS_EL_OUTPUT Error occurred while processing asynchronous output.
OPOS_EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
OPOS_EL_INPUT_DATA

Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default
value, based on the ErrorLocus. The application may change them to one of the following:

Value Meaning
OPOS_ER_RETRY Typically valid only when locus is OPOS_EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
May be valid when locus is OPOS_EL_INPUT.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the
error and directs the Control to continue processing. The Control remains
in the error state and will deliver additional DataEvents as directed by
the DataEventEnabled property. When all input has been delivered and
the DataEventEnabled property is again set to TRUE, then another
ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks Fired when an error is detected and the Control’s State transitions into the error state.
Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper
application sequencing occurs.
Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it
leaves the DataEventEnabled property value at TRUE. Note that the application may set
DataEventEnabled to FALSE within its event handler if subsequent input events need to be
disabled for a period of time.

Unified POS, v1.15.1 Beta1 A - 57

OutputCompleteEvent Event
Syntax void OutputCompleteEvent (LONG OutputID);

The OutputID parameter indicates the ID number of the asynchronous output request that is
complete.

Remarks Fired when a previously started asynchronous output request completes successfully.

StatusUpdateEvent Event Updated in Release 1.9
Syntax void StatusUpdateEvent (LONG Status);

The Status parameter is for device class-specific data, describing the type of status change.

Remarks Fired when a Control needs to alert the application of a device status change.
Examples are a change in the cash drawer position (open vs. closed) or a change in a POS printer
sensor (form present vs. absent).
When a device is enabled, then the Control may fire initial StatusUpdateEvents to inform the
application of the device state. This behavior, however, is not required.
Release 1.3 and later – Power State Reporting

All device classes may fire StatusUpdateEvents with at least the following Status parameter
values, if PowerNotify = OPOS_PN_ENABLED:

Value Meaning
OPOS_SUE_POWER_ONLINE

The device is powered on and ready for use.
Can be returned if CapPowerReporting = OPOS_PR_STANDARD or
OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF
The device is off or detached from the terminal.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to
requests.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting =
OPOS_PR_STANDARD.

The common property PowerState is also maintained at the current power state of the device.

A - 58 Unified POS, v1.15.1 Beta1

Release 1.9 and later – Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:
Value Meaning
OPOS_SUE_UF_PROGRESS + 1 to 100

The update firmware process has successfully completed 1 to 100 percent
of the total operation.

OPOS_SUE_UF_COMPLETEThe update firmware process has completed successfully. The value
of this constant is identical to OPOS_SUE_UF_PROGRESS + 100.

OPOS_SUE_UF_COMPLETE_DEV_NOT_RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the
update firmware process started. The Service has restored all properties to
their default initialization values.
To ensure consistent Service and physical device states, the application
needs to Close the Service, then Open, Claim, and enable again, and also
restore all custom application settings.

OPOS_SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still operational.

OPOS_SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned
to an operational state.

OPOS_SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

OPOS_SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

See Also CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify Property.

A.26 Peripheral Interfaces
Note:

The following are two examples that attempt to show how a Visual Basic program and a VC++
program would use the commands in a typical MFC implementation. Where possible the tables are
arranged to show the sequence of the commands for proper operation of the peripheral device.

The Cash Drawer and the MICR devices were chosen because they represent a simple output device
and a more complex input device. The other peripheral devices would follow similar command
usage and flow.

Unified POS, v1.15.1 Beta1 A - 59

A.27 OPOS: Cash Drawer
Visual Basic Command Examples.

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

Open * M lResult = CashDrawer.Open(“Standard”)   1 LONG  

ClaimDevice * M lResult = CashDrawer.ClaimDevice(“1000”)   1 LONG  

Claimed P bResult = CashDrawer.Claimed  BOOL

DeviceEnabled * P CashDrawer.DeviceEnabled = True  1 -

DeviceEnabled P bResult = CashDrawer.DeviceEnabled  BOOL  

DirectIO M lResult= CashDrawer.DirectIO(0,lval,”[[“)   3 LONG  

CheckHealth M lResult = CashDrawer.CheckHealth(OPOS_CH_INTERNAL)   1 LONG  

DirectIOEvent E Private Sub CashDrawer_DirectIOEvent(ByVal EventNumber
As Long, pData As Long, pString As String)

3 CMF

StatusUpdateEvent E Private Sub CashDrawer_StatusUpdateEvent(ByVal Status As
Long)

1 CMF

BinaryConversion P CashDrawer.BinaryConversion = OPOS_BC_DECIMAL  1 -  

BinaryConversion P lResult = CashDrawer.BinaryConversion  LONG

CapPowerReporting P lResult = CashDrawer.CapPowerReporting  LONG

CheckHealthText P sResult = CashDrawer.CheckHealthText  BSTR

FreezeEvents P CashDrawer.FreezeEvents = True  1 -  

FreezeEvents P bResult = CashDrawer.FreezeEvents  BOOL

PowerNotify P CashDrawer.PowerNotify = OPOS_PN_ENABLED  1 -  

PowerNotify P lResult = CashDrawer.PowerNotify  LONG

PowerState P lResult = CashDrawer.PowerState  LONG

A - 60 Unified POS, v1.15.1 Beta1

Cash Drawer Operations Properties and Methods

Terminating Methods

Notes:

* Required for basic Cash Drawer operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

ResultCode P lResult = CashDrawer.ResultCode  LONG

ResultCodeExtended P lResult = CashDrawer.ResultCodeExtended  LONG

State P lResult = CashDrawer.State  LONG

ControlObject
Description

P sResult = CashDrawer.ControlObjectDescription  BSTR

ControlObject
Version

P lResult = CashDrawer.ControlObjectVersion  LONG

ServiceObject
Description

P sResult = CashDrawer.ServiceObjectDescription  BSTR

ServiceObject
Version

P lResult = CashDrawer.ServiceObjectVersion  LONG

DeviceDescription P sResult = CashDrawer.DeviceDescription  BSTR

DeviceName P sResult = CashDrawer.DeviceName  BSTR

CapStatus P bResult = CashDrawer.CapStatus  BOOL

CapStatusMultiDrawerDetect P bResult = CashDrawer.CapStatusMultiDrawerDetect  BOOL

DrawerOpened P bResult = CashDrawer.DrawerOpened  BOOL

OpenDrawer * M lResult = CashDrawer.OpenDrawer   LONG  

WaitForDrawerClose M lResult = CashDrawer.WaitForDrawerClose(2500, 1000, 10, 5)   4 LONG  

ReleaseDevice M lResult = CashDrawer.ReleaseDevice   LONG  

Close * M lResult = CashDrawer.Close   LONG  

Unified POS, v1.15.1 Beta1 A - 61

Visual C++ Command Examples.

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

Open * M lResult = m_CashDrawer.Open(“Standard”);   1 LONG  

ClaimDevice * M lResult = m_CashDrawer.ClaimDevice(“1000”);   1 LONG  

Claimed P bResult = m_CashDrawer.GetClaimed();  BOOL

DeviceEnabled * P m_CashDrawer.SetDeviceEnabled(TRUE);  1 -

DeviceEnabled P bResult = m_CashDrawer.GetDeviceEnabled();  BOOL  

DirectIO M lResult = m_CashDrawer.DirectIO(0,&lval,”[[“)   3 LONG  

CheckHealth M lResult = m_CashDrawer.CheckHealth(OPOS_CH_INTERNAL);   1 LONG  

DirectIOEvent E void COCashDrawerDlg::OnDirectIOEventCashDrawerctrl(long
EventNumber, long FAR* pData, BSTR FAR* pString)

3 CMF

StatusUpdateEvent E void COCashDrawerDlg::OnStatusUpdateEventCashDrawerctrl
(long Status)

1 CMF

BinaryConversion P m_CashDrawer.SetBinaryConversion(OPOS_BC_DECIMAL);  1 -  

BinaryConversion P lResult = m_CashDrawer.GetBinaryConversion();  LONG

CapPowerReporting P lResult = m_CashDrawer.GetCapPowerReporting();  LONG

CheckHealthText P sResult = m_CashDrawer.GetCheckHealthText();  BSTR

FreezeEvents P m_CashDrawer.SetFreezeEvents(TRUE);  1 -  

FreezeEvents P bResult = m_CashDrawer.GetFreezeEvents();  BOOL

PowerNotify P m_CashDrawer.SetPowerNotify(OPOS_PN_ENABLED);  1 -  

PowerNotify P lResult = m_CashDrawer.GetPowerNotify();  LONG

PowerState P lResult = m_CashDrawer.GetPowerState();  LONG

ResultCode P lResult = m_CashDrawer.GetResultCode();  LONG

ResultCodeExtended P lResult = m_CashDrawer.GetResultCodeExtended();  LONG

A - 62 Unified POS, v1.15.1 Beta1

Cash Drawer Operations Properties and Methods

Terminating Methods

Notes:

* Required for basic Cash Drawer operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

State P lResult = m_CashDrawer.GetState ();  LONG

ControlObject
Description

P sResult = m_CashDrawer.GetControlObjectDescription();  BSTR

ControlObject
Version

P lResult = m_CashDrawer.GetControlObjectVersion();  LONG

ServiceObject
Description

P sResult = m_CashDrawer.GetServiceObjectDescription();  BSTR

ServiceObject
Version

P lResult = m_CashDrawer.GetServiceObjectVersion();  LONG

DeviceDescription P sResult = m_CashDrawer.GetDeviceDescription();  BSTR

DeviceName P sResult = m_CashDrawer.GetDeviceName();  BSTR

CapStatus P bResult = m_CashDrawer.GetCapStatus();  BOOL

CapStatusMultiDrawerDetect P bResult = m_CashDrawer.GetCapStatusMultiDrawerDetect();  BOOL

DrawerOpened P bResult = m_CashDrawer.GetDrawerOpened();  BOOL

OpenDrawer * M lResult = m_CashDrawer.OpenDrawer();   LONG  

WaitForDrawerClose M lResult = m_CashDrawer.WaitForDrawerClose(2500, 1000,
10, 5);   4 LONG  

ReleaseDevice M lResult = m_CashDrawer.ReleaseDevice();   LONG  

Close * M lResult = m_CashDrawer.Close();   LONG  

Unified POS, v1.15.1 Beta1 A - 63

A.28 OPOS: MICR
Visual Basic Command Examples.

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

Open * M lResult = Micr.Open(“M101”)   1 LONG  

ClaimDevice * M lResult = Micr.ClaimDevice(“1000”)   1 LONG  

Claimed P bResult = Micr.Claimed  BOOL

DeviceEnabled * P Micr.DeviceEnabled = True  1 -  

DeviceEnabled P bResult = Micr.DeviceEnabled  BOOL

AutoDisable P Micr.AutoDisable = True  1 -  

AutoDisable P bResult = Micr.AutoDisable  1 BOOL

DirectIO M lResult= Micr.DirectIO(0,lval,”0x1b“)   3 LONG  

CheckHealth M lResult = Micr.CheckHealth(OPOS_CH_INTERNAL)   1 LONG  

DirectIOEvent E Private Sub Micr_DirectIOEvent(ByVal EventNumber As Long,
pData As Long, pString As String)

3 CMF

ErrorEvent E Private Sub Micr_ErrorEvent(ByVal ResultCode As Long, ByVal
ResultCodeExtended As Long, ByVal ErrorLocus As Long,
pErrorResponse As Long)

4 CMF

StatusUpdateEvent E Private Sub Micr_StatusUpdateEvent(ByVal Status As Long) 1 CMF

BinaryConversion P Micr.BinaryConversion = OPOS_BC_DECIMAL  1 -  

BinaryConversion P lResult = Micr.BinaryConversion  LONG

CapPowerReporting P lResult = Micr.CapPowerReporting  LONG

CheckHealthText P sResult = Micr.CheckHealthText  BSTR

DataCount P lResult = Micr.DataCount  LONG

FreezeEvents P Micr.FreezeEvents = True  1 -  

FreezeEvents P bResult = Micr.FreezeEvents  BOOL

A - 64 Unified POS, v1.15.1 Beta1

MICR Operations Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

PowerNotify P Micr.PowerNotify = OPOS_PN_ENABLED  1 -  

PowerNotify P lResult = Micr.PowerNotify  LONG

PowerState P lResult = Micr.PowerState  LONG

ResultCode P lResult = Micr.ResultCode  LONG

ResultCodeExtended P lResult = Micr.ResultCodeExtended  LONG

State P lResult = Micr.State  LONG

ControlObject
Description

P sResult = Micr.ControlObjectDescription  BSTR

ControlObject
Version

P lResult = Micr.ControlObjectVersion  LONG

ServiceObject
Description

P sResult = Micr.ServiceObjectDescription  BSTR

ServiceObject
Version

P lResult = Micr.ServiceObjectVersion  LONG

DeviceDescription P sResult = Micr.DeviceDescription  BSTR

DeviceName P sResult = Micr.DeviceName  BSTR

CapValidationDevice P bResult = Micr.CapValidationDevice  BOOL

ClearInput M lResult = Micr.ClearInput   LONG  

DataEventEnabled * P Micr.DataEventEnabled = True  1 -  

DataEventEnabled P bResult = Micr.DataEventEnabled  BOOL

BeginInsertion * M lResult = Micr.BeginInsertion   LONG  

EndInsertion * M lResult = Micr.EndInsertion   LONG  

DataEvent E Private Sub Micr_DataEvent(ByVal Status As Long) 1 CMF

BeginRemoval * M lResult = Micr.BeginRemoval   LONG  

EndRemoval * M lResult = Micr.EndRemoval   LONG  

RawData P sResult = Micr.RawData  BSTR

AccountNumber P sResult = Micr.AccountNumber  BSTR

Unified POS, v1.15.1 Beta1 A - 65

Terminating Methods

Notes:

* Required for basic MICR operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

Visual C++ Command Examples.

Initializing Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

Amount P sResult = Micr.Amount  BSTR

BankNumber P sResult = Micr.BankNumber  BSTR

EPC P sResult = Micr.EPC  BSTR

SerialNumber P sResult = Micr.SerialNumber  BSTR

TransitNumber P sResult = Micr.TransitNumber  BSTR

CheckType P lResult = Micr.CheckType  LONG

CountryCode P lResult = Micr.CountryCode  LONG

ReleaseDevice M lResult = Micr.ReleaseDevice   LONG  

Close * M lResult = Micr.Close   LONG  

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

Open * M lResult = m_Micr.Open(“M101”);   1 LONG  

ClaimDevice * M lResult = m_Micr.ClaimDevice(“1000”);   1 LONG  

Claimed P bResult = m_Micr.GetClaimed();  BOOL

DeviceEnabled * P m_Micr.SetDeviceEnabled(TRUE);  1 -  

A - 66 Unified POS, v1.15.1 Beta1

Capabilities, Assignments and Descriptions Properties, Methods, and Events

DeviceEnabled P bResult = m_Micr.GetDeviceEnabled();  BOOL

AutoDisable P m_Micr.SetAutoDisable(TRUE);  1 -  

AutoDisable P bResult m_Micr.GetAutoDisable();  1 BOOL

DirectIO M lResult = m_Micr.DirectIO(0,&lval,”0x1b“)   3 LONG  

CheckHealth M lResult = m_Micr.CheckHealth(OPOS_CH_INTERNAL);   1 LONG  

DirectIOEvent E void COMicrDlg::OnDirectIOEventMicrctrl(long EventNumber,
long FAR* pData, BSTR FAR* pString)

3 CMF

ErrorEvent E void COMicrDlg::OnErrorEventMicrctrl(long ResultCode, long
ResultCodeExtended, long ErrorLocus, long FAR*
pErrorResponse)

4 CMF

StatusUpdateEvent E void COMicrDlg::OnStatusUpdateEventMicrctrl
(long Status)

1 CMF

BinaryConversion P m_Micr.SetBinaryConversion(OPOS_BC_DECIMAL);  1 -  

BinaryConversion P lResult = m_Micr.GetBinaryConversion();  LONG

CapPowerReporting P lResult = m_Micr.GetCapPowerReporting();  LONG

CheckHealthText P sResult = m_Micr.GetCheckHealthText();  BSTR

DataCount P lResult = m_Micr.GetDataCount();  LONG

FreezeEvents P m_Micr.SetFreezeEvents(TRUE);  1 -  

FreezeEvents P bResult = m_Micr.GetFreezeEvents();  BOOL

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

PowerNotify P m_Micr.SetPowerNotify(OPOS_PN_ENABLED);  1 -  

PowerNotify P lResult = m_Micr.GetPowerNotify();  LONG

PowerState P lResult = m_Micr.GetPowerState();  LONG

ResultCode P lResult = m_Micr.GetResultCode();  LONG

ResultCodeExtended P lResult = m_Micr.GetResultCodeExtended();  LONG

State P lResult = m_Micr.GetState();  LONG

ControlObject
Description

P sResult = m_Micr.GetControlObjectDescription();  BSTR

ControlObject
Version

P lResult = m_Micr.GetControlObjectVersion();  LONG

Unified POS, v1.15.1 Beta1 A - 67

MICR Operations Properties, Methods, and Events

ServiceObject
Description

P sResult = m_Micr.GetServiceObjectDescription();  BSTR

ServiceObject
Version

P lResult = m_Micr.GetServiceObjectVersion();  LONG

DeviceDescription P sResult = m_Micr.GetDeviceDescription();  BSTR

DeviceName P sResult = m_Micr.GetDeviceName();  BSTR

CapValidationDevice P bResult = m_Micr.GetCapValidationDevice();  BOOL

ClearInput M lResult = m_Micr.ClearInput();   LONG  

DataEventEnabled * P m_Micr.SetDataEventEnabled(TRUE);  1 -  

DataEventEnabled P bResult = m_Micr.GetDataEventEnabled();  BOOL

BeginInsertion * M lResult = m_Micr.BeginInsertion();   LONG  

EndInsertion * M lResult = m_Micr.EndInsertion();   LONG  

DataEvent E void COMicrDlg::OnDirectIOEventMicrctrl(long Status) 1 CMF

BeginRemoval * M lResult = m_Micr.BeginRemoval();   LONG  

EndRemoval * M lResult = m_Micr.EndRemoval();   LONG  

RawData P sResult = m_Micr.GetRawData();  BSTR

AccountNumber P sResult = m_Micr.GetAccountNumber();  BSTR

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

R
C

R
C
E

Amount P sResult = m_Micr.GetAmount();  BSTR

BankNumber P sResult = m_Micr.GetBankNumber();  BSTR

EPC P sResult = m_Micr.GetEPC();  BSTR

SerialNumber P sResult = m_Micr.GetSerialNumber();  BSTR

TransitNumber P sResult = m_Micr.GetTransitNumber();  BSTR

CheckType P lResult = m_Micr.GetCheckType();  LONG

CountryCode P lResult = m_Micr.GetCountryCode();  LONG

A - 68 Unified POS, v1.15.1 Beta1

Terminating Methods

Notes:

* Required for basic MICR operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

ReleaseDevice M lResult = m_Micr.ReleaseDevice();   LONG  

Close * M lResult = m_Micr.Close();   LONG  

Unified POS, v1.15.1 Beta1 A - 69

A.29 Section 3: OPOS Registry Usage Updated in Release 1.12
OPOS Controls require some data in the system registry in order for the Control Objects to locate the proper
Service Object and initialize it for the device.
The registry is organized in a hierarchical structure, in which each level is named a “key.” Each key may
contain:
• Additional keys (sometimes called “subkeys”).
• Zero or more named “values.” A value is assigned “data” of type string, binary, or double-
 word.
• One “default value” that may be assigned data of type string.
OPOS only defines string data.

Service Object Root Registry Key
All OPOS Service Object entries should be placed under the following main key:
 HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceOPOS
The “HKEY_LOCAL_MACHINE\SOFTWARE” key is the recommended key for software configuration local
to the PC. The “OLEforRetail” key will group all OLE for Retail related configuration information. The
“ServiceOPOS” key maintains configuration information for OPOS Service Objects.
Device Class Keys
Each class has an identifying Device Class subkey under the main OPOS key. The following key names have
been established:

Key Name Key Name

Belt Keylock

BillAcceptor Lights

BillDispenser LineDisplay

Biometrics MICR

BumpBar MotionSensor

CashChanger MSR

CashDrawer PINPad

CAT PointCardRW

CoinAcceptor POSKeyboard

CoinDispenser POSPower

CheckScanner POSPrinter

ElectronicJournal RemoteOrderDispla
y

ElectronicValueRW RFIDScanner

FiscalPrinter Scale

A - 70 Unified POS, v1.15.1 Beta1

Device Name Keys and Values
Each device within a class is assigned a Device Name subkey under the class’s key. This should be performed
by a Service Object installation procedure. This Device Name key is passed to the Control Object’s Open
method by the application. The Device Name is not constrained, except that it must be unique among the names
under the device class.

The default value of the Device Name key is the programmatic ID7 of the Service Object. This string is needed
by the Control Object, so that the Service Object may be loaded and the OLE Automation interfaces established
between the CO and the SO.

The device unit key’s values and their data describe the characteristics of the actual device on the terminal or
PC. The following values are strongly recommended for use by installation and support personnel:

Other values may be defined as needed by the Service Object. Values might contain information such as:
Communications Port
Baud Rate
Serial Line Characteristics
Interrupt Request (IRQ) Values
Input/Output (I/O) Ports

Gate Scanner

HardTotals SignatureCapture

ImageScanner SmartCardRW

ItemDispenser ToneIndicator

7. A Programmatic ID, or “Prog ID”, is the name of a key that must appear in the “HKEY_CLASSES_ROOT” section of the
registry. This key must have a subkey named “CLSID”, which is the Class ID associated with the Prog ID. The Class ID must be a key within the
“HKEY_CLASSES_ROOT\CLSID” registry section. This key contains subkeys that specify the OLE Automation Server type and that instruct
OLE how to start the Server.

Value – Required Data

(Default) Service Object’s OLE Programmatic ID.

Value – Recommended Data
Service Filename of the Service Object.
Description String describing the Service Object.

Version
String containing the Service Object version number.

General format is:
MajorVersion.MinorVersion.BuildVersion.

Key Name Key Name

Unified POS, v1.15.1 Beta1 A - 71

Logical Device Name Values
An application may open a Control by passing the Device Name key to the Open method. In many cases,
however, the application will want a level of isolation where the application specifies a “Logical Device Name”
that is translated into a Device Name.

A Logical Device Name is added to the registry as a value contained in the Device Class key. The value name is
set to the Logical Device Name, and its data must match a Device Name key contained in the same Device
Class.

The application integrator is responsible for adding Logical Device Names to the registry. (They are not added
by the Service Object install procedure.)

Service Provider Root Registry Key
The SO service providers may need to store some information in the registry that is common to some or all of its
Service Objects. This data could include installation directories, installation date, and de-install information.
Service provider information should be placed under the following main key:

HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceInfo

The subkeys under this key should be the names of service provider companies. Subkeys and values within each
service provider company subkey are provider-dependent.

Example
In this example, keys are listed in italics. Comments appear as comment.

Two device classes are given: POSPrinter and CashDrawer.

The POSPrinter class contains two Device Names. Also, two Logical Device Names are present, which point to
the Device Names.

The CashDrawer class contains one Device Name and one Logical Device Name. The Service Object has a
unique ProgID but uses the same executable as one of the printers. This Service Object could use the example
value “Uses” to point to some registry values of the printer device that can be used for the cash drawer
parameters.

A - 72 Unified POS, v1.15.1 Beta1

\HKEY_LOCAL_MACHINE


\SOFTWARE

 
 \OLEforRetail

  
 \ServiceOPOS

  
 \POSPrinter Device Class Key
  
  \NCR7156=NCR.Ptr7156.1 Device Name Key
   Service=C:\OPOS\NCR\PTR7156.DLL

   Description=NCR 7156 Serial Printer

   Version=1.0.12

   ...Service Object-specific values. Might include:
   Port=COM3

   BaudRate=9600

  
  \Epson950=Epson.PtrTMU950.1 Device Name Key
   Service=TMU950.EXE

   Description=Epson TM-U950 Printer

   Version=1.0.7

   ...Service Object-specific values could go here.
  
  PSI.Ptr.1=NCR7156 Logical Device Name
  
  PSI.Ptr.2=Epson950 Logical Device Name
 

 \CashDrawer Device Class Key
 
 \EpsonCash=Epson.CD.1 Device Name Key
  Service=TMU950.EXE

  Description=Epson Cash Drawer Kickout on TM-U950

  Version=1.0.7

  ...Service Object-specific values. Might include:
  Uses=POSPrinter\Epson950

 
 PSI.CD.1=EpsonCash Logical Device Name

\ServiceInfo


 \EPSON

 InstallDir=C:\OPOS\EPSON

 InstallDate=1995/11/13



Unified POS, v1.15.1 Beta1 A - 73

A.30 Section 4: OPOS Application Header Files Updated in Release 1.12
The header files are listed in alphabetical order. The mapping of device class name to header file
name is as follows:

A - 74 Unified POS, v1.15.1 Beta1

General Opos.h
Belt OposBelt.h
Bill Acceptor OposBacc.h
Bill Dispenser OposBdsp.h
Biometrics OposBio.h
Bump Bar OposBb.h
Cash Changer OposChan.h
Cash Drawer OposCash.h
CAT OposCat.h
Check Scanner OposChk.h
Coin Acceptor OposCacc.h
Coin Dispenser OposCoin.h
Electronic Journal OposEj.h
Electronic Value R / W OposEvrw.h
Fiscal Printer OposFptr.h
Gate OposGate.h
Hard Totals OposTot.h
Image Scanner OposImg.h
Item Dispenser OposItem.h
Keylock OposLock.h
Lights OposLgt.h
Line Display OposDisp.h
MICR OposMicr.h
Motion Sensor OposMotion.h
MSR OposMsr.h
PIN Pad OposPpad.h
Point Card Reader Writer OposPcrw.h
POS Keyboard OposKbd.h
POS Power OposPwr.h
POS Printer OposPtr.h
Remote Order Display OposRod.h
RFID Scanner OposRfid.h
Scale OposScal.h
Scanner OposScan.h
Signature Capture OposSig.h
Smart Card Reader Writer OposScrw.h
Tone Indicator OposTone.h

The most up-to-date header files can be downloaded from the following web site:

 http://monroecs.com/oposccos_current.
 https://github.com/kunif/OPOS-CCO

http://monroecs.com/oposccos_current.htm
http://monroecs.com/oposccos_current.htm

Unified POS, v1.15.1 Beta1 A - 75

A.31 Section 5: Technical Details

A.31.1 System Strings (BSTR)

System String Characteristics
OPOS uses OLE system strings to pass and return data of variable length. System strings are often referred to as
BStrings, and are assigned the type BSTR by Microsoft Visual C++.

A system string consists of a sequence of Unicode characters, which are each 16-bits wide. Thus, they are also
referred to as “wide” characters. The string is followed by a NUL, or zero, character. The string is preceded by
an unsigned long count of the bytes in the string, not including the NUL. Divide this count by two to obtain the
number of characters in the string.

Most of the time, OPOS uses system strings to pass character data back and forth among the Application, Control
Object, and System Object. A system string (BSTR) is used to pass string parameters by methods and to return
string properties. A pointer to a system string (BSTR*) is used as a method parameter when the method must
return string data.

System String Usage
Visual Basic both receives and sends system strings without any complications. The internal representation of
VB strings is as wide characters with a length component. A BSTR may be passed using a variable, a string
expression, or a literal. A BSTR* requires use of a variable, so that the data may be modified by the method.

Similarly, Visual C++ using ATL is straightforward. BSTR and BSTR* data is passed and received using these
types. Any translation to or from Unicode is the developer’s responsibility.

Visual C++ with MFC, however, requires more consideration.

BSTR is handled as follows:

• BSTR Method Parameters
• Calling Function: Calling an automation method with a BSTR parameter is treated by MFC as a pointer to
 a character string, LPCTSTR. If the VC++ ANSI option is used, MFC automatically converts from ANSI to
 Unicode.
• Called Function: The function implementing an automation method receives a BSTR parameter as a
 pointer to a character string, LPCTSTR. If the VC++ ANSI option is used, then MFC performs an
 automatic conversion from Unicode into ANSI before passing control to the function. The string length
 immediately precedes the string pointer.

• BSTR Return Type (used for getting properties)
• Calling Function: An automation method returning a BSTR result is automatically converted by MFC into
 a CString.
• Called Function: An automation method returns a BSTR result by placing the data into an MFC CString
 object, and returning the result of the CString's “AllocSysString” member function. If the VC++ ANSI

option is used, then this function automatically converts the string from ANSI into Unicode.

BSTR* is passed and received by MFC as BSTR*, so the developer handling is the same as with ATL. Some
MFC macros and classes may be helpful:

A - 76 Unified POS, v1.15.1 Beta1

• If the VC++ ANSI option is used, then conversion between Unicode and MBCS is required. Some macros are
 available that make this conversion easier, such as T2OLE and OLE2T. (These do not handle NUL characters
 embedded in the string, however.)

• To set the string, place the data into an MFC CString object, and use CString's “SetSysString” member function.

A.31.2 System Strings and Binary Data

Sometimes OPOS uses BSTR and BSTR* to pass binary data.

These cases may return byte data in the range 00-hex to FF-hex. Each 16-bit character of the system string
contains one byte of binary data in the lower 8 bits. The upper 8 bits are zero. This can lead to two problematic
areas:

• The NUL character, or zero. Although system strings have a length component, some software still relies upon the
 NUL character to determine the end of the string.

• Characters in the range 0x80 – 0xFF. The translation between ANSI and Unicode formats may yield incorrect data,
 especially for eastern languages.

In order to avoid these translation and transmission problems, an Application should employ the
BinaryConversion feature if data outside the range of 0x01 – 0x7F may be sent or received by a method
parameter or a property. BinaryConversion, added in Release 1.2, supports two means of converting data
between binary and ASCII formats.

Unified POS, v1.15.1 Beta1 A - 77

A.31.3 Mapping of CharacterSet Updated in Release 1.10

This section provides some details for proper use of the MapCharacterSet property that is provided for some
devices such as the LineDisplay, POSPrinter, PointCardReaderWriter, and RemoteOrderDisplay. First, the
application must select an appropriate device character set in the CharacterSet property of the Service Object.
Next, the application must pass strings to the Service Object using the Unicode character set. Then, the Service
Object is responsible for mapping these Unicode characters to the device-side code page when necessary.

A special case occurs for applications and/or service objects written in Microsoft C++ using Microsoft
Foundation Classes, when building in MBCS (and not Unicode) mode. The effects of MFC are described in the
earlier section on System Strings (BSTR). When MFC perform conversions between “narrow” strings and
Unicode strings, it does so using the system ANSI Code Page, or “ACP”. The ACP may be found in the
Windows registry at the key “HKLM\System\CurrentControlSet\Control\Nls\Codepage”, value “ACP”.

The following code snippet should assist Service Object providers in adding the mapping mechanism into their
Services. It assumes that the data transferred to the Service for output to the device is already transformed from
BSTR to LPCTSTR, as with MFC. (If the data is still in Unicode, then adjust the snippet to only perform the
second conversion.)

BOOL AnsiToOEMCodePage(
UINT CodePage, // the desired destination code page like 858
LPCTSTR src, // source string assumed to be ACP (default

// system code page)
INT srcLength, // the length of the source string
LPTSTR dest, // destination String; when called ’dest’

// shows to a reserved area of ’destLength’-
INT *destLength) // bytes length of the destination string

{
LPWSTR lpWideCharStr = NULL;
INT WideCharStrLen = (srcLength+1)* sizeof(lpWideCharStr[0]);
lpWideCharStr = (LPWSTR) malloc (WideCharStrLen);
if (lpWideCharStr == NULL)

return FALSE;
// convert to Unicode
WideCharStrLen = MultiByteToWideChar (CP_ACP, 0, src, srcLength,

lpWideCharStr, WideCharStrLen);
if (WideCharStrLen<=0)
{

free (lpWideCharStr);
return FALSE;

}
// convert Unicode back to desired codepage;
// non mappable characters are mapped to space character
const char defaultChar = 0x20;
*destLength = WideCharToMultiByte (CodePage, 0, lpWideCharStr,

WideCharStrLen, dest, *destLength, &defaultChar, NULL);
free (lpWideCharStr);
if (*destLength == 0 && WideCharStrLen != 0)// cp does not exist

return FALSE;
return TRUE;

}

Note:
• The code page currently selected in the system can be found in the Registry under: HKLM\Sys-

tem\CurrentControlSet\Control\Nls\Codepage\ACP.
• The destination code page must of course be installed when using the system API calls for map-

ping.

A - 78 Unified POS, v1.15.1 Beta1

A.32 Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice
The common methods Claim and Release were defined in the very first OPOS release. Since that time, an
increased number of conflicts have occurred between the OPOS Release method and the COM Release method,
which is a required method of every COM object. This conflict has required some development restrictions:

• Control Objects and Service Objects must define their interfaces as pure dispatch interfaces. This has precluded the
 use of the Microsoft Visual C++ Active Template Library, since ATL only supports IDispatch via a dual interface
 implementation.

• Some development environments assume that ActiveX Controls will not define a dispatch method that conflicts
 with COM. For example, users of Delphi have had to work around the Release conflict. Future tools may be even
 less tolerant of this conflict.

Therefore, these methods have been renamed to ClaimDevice and ReleaseDevice in Release 1.5.

Several steps have been taken to provide a maximal migration of Applications and Service Objects. These have
been implemented in the reference set of Control Objects known as the “Common Control Objects”:

• Application.

Both the ClaimDevice and Claim methods and the ReleaseDevice and Release methods are supported by the
Control Object’s IDispatch interface. The IDispatch interface is used by an application to implement late binding. By
doing this, full backward compatibility is provided for current late bound Applications.

If an application using a development environment that performs early binding (including Microsoft Visual C++ and
Visual Basic) changes from a 1.4 or earlier Control Object to a 1.5 or later Control Object, then it will also have to
update all Claim calls to ClaimDevice, and Release calls to ReleaseDevice.

• Service Object.

A Service Object may expose either the Claim or ClaimDevice method and either the Release or ReleaseDevice
method through its IDispatch interface. Note that if the Service Object is implemented using ATL, then it must use
ReleaseDevice, since Release is reserved for COM’s IUnknown reference counting.

When the Application calls ClaimDevice or Claim, the Control Object calls the Service Object method ClaimDevice
if present; otherwise it calls Claim. When the Application calls ReleaseDevice or Release, the Control Object calls
the Service Object method ReleaseDevice if present; otherwise it calls Release. By doing this, full backward
compatibility is provided for current Service Objects while allowing new Service Objects to be implemented using
ATL.

Unified POS, v1.15.1 Beta1 A - 79

A.33 Section 7: OPOS APG Change History
 　　　　　　　　　　　　　　　　　　　　　　　　　　　　

　　　 Release 1.01
Release 1.01 mostly adds clarifications and corrections, but the Line Display and Signature Capture
chapters received substantive changes to correct deficiencies in their definition.

Release 1.01 replaces Release 1.0. The ControlObjectVersion for a compliant Control Object is
1000xxx, where xxx is a vendor-specific build number. The ServiceObjectVersion for a compliant
Service Object is 1000xxx, where xxx is a vendor-specific build number.

Section Change
Second Page Add name of Microsoft Web site for OPOS information.
Introduction When … Properties May Be Accessed

Update to say that capabilities are initialized at Open, others may not be
initialized until DeviceEnabled = TRUE, and properties remain
initialized until the Control is closed.

Introduction Device Sharing Model
If an exclusive device is Released, then reClaimed, settable device
characteristics are restored to their state at Release.

Common Release method
If device is enabled, then disable before releasing.

Cash Drawer WaitForDrawerClose method
BeepFrequency is in hertz.

Hard Totals General Information
Recommend claiming necessary files before a BeginTrans, to ensure
that CommitTrans does not fail.

Keylock General Information
Claim will return OPOS_E_ILLEGAL, not success.

Line Display General Information
Major clarification of line display usage modes; including intercharacter
wait and marquees.

Line Display MarqueeFormat property
Add this property.

Line Display MarqueeType property
Add DISP_MT_INIT value.

Line Display ClearText and RefreshWindow methods
Clarify their functionality.

POS Printer XxxLetterQuality properties
Add initialization information.

POS Printer XxxLineWidth properties
Clarify these properties.

A - 80 Unified POS, v1.15.1 Beta1

POS Printer CapConcurrentXxxXxx properties
Clarify that if a “concurrent” capability is false, then the application
should print to only one of the stations at a time, and not alternate print
lines between them.

POS Printer CapXxxNearendSensor properties
Rename to CapXxxNearEndSensor for consistency with XxxNearEnd
properties.

POS Printer CapXxxBarcode properties
Rename to CapXxxBarCode for consistency with PrintBarCode
method.

Scale Summary Change ClearInput method to Not Supported. Scale input is not event-
driven.

Scale WeightUnit property
Change to read-only property.

Signature Capture MaximumX and MaximumY properties
Clarify that maximum value is 65,535.

Signature Capture TotalVectors and VectorArray properties
Rename to TotalPoints and PointArray. Update the General
Information and the property remarks sections for consistency.

Signature Capture PointArray property
Clarify that each point is represented by four characters: x (low 8 bits), x
(high 8 bits), y (low 8 bits), y (high 8 bits).

Throughout Update the property initialization details.

OposDisp.h header file
Add DISP_MT_INIT constant and MarqueeFormat constants.

Appendix C Technical Details
Add this appendix, with the sections:
 - System strings and binary data.
 - Event Handler Restrictions.

 Release 1.1
Release 1.1 adds APIs based on requirements from OPOS-J, the Japanese OPOS consortium.

Release 1.1 is a superset of Release 1.01.

Section Change
POS Keyboard New device: Add information in several locations, plus POS Keyboard

chapter and header file.
Second Page Remove CompuServe reference.
Line Display CapCharacterSet property

Add values for Kana and Kanji.

Unified POS, v1.15.1 Beta1 A - 81

Line Display CharacterSet property
Add Windows code page information.

POS Printer Data Characters and Escape Sequences
Add new sequences for:

Feed and Paper cut
Feed, Paper cut, and Stamp
Feed lines
Feed units
Feed reverse
Font typeface selection
Reverse video
Shading
Scale horizontally
Scale vertically

Add width selection for underline sequence.
POS Printer: Add the following properties and methods:

CapCharacterSet property
CapTransaction property
ErrorLevel property
ErrorString property
FontTypefaceList property
RecBarCodeRotationList property
RotateSpecial property
SlpBarCodeRotationList property
TransactionPrint method
ValidateData method

POS Printer CharacterSet property
Add Windows code page information.

POS Printer PrintBarCode method
Add information on effects of the RotateSpecial property.

POS Printer PrintImmediate and PrintNormal methods
Clarify the effects of Carriage Return and Line Feed.

Scanner ScanData property
Clarify the data that is present in this property.

OposDisp.h header file
Add CapCharacterSet values for Kana and Kanji.

OposPtr.h header file
Add CapCharacterSet values.
Add ErrorLevel values.
Add TransactionPrint Control values.

A - 82 Unified POS, v1.15.1 Beta1

 Release 1.2
Release 1.2 adds additional device classes, plus additional APIs based on requirements from
various OPOS-US, OPOS-Japan, and OPOS-Europe members.
Release 1.2 is a superset of Release 1.1.
Section Change
Cash Changer New device: Add information in several locations, plus Cash Changer

chapter and header file.
Tone Indicator New device: Add information in several locations, plus Tone Indicator

chapter and header file.
Several places When a method has a Timeout parameter, added the constant

OPOS_FOREVER as a value, and noted that OPOS_E_ILLEGAL can
be returned.

First Two Pages Update company names.
Update copyright notices.
Update web reference.

Introduction How an Application Uses an OPOS Control and
Device Sharing Model
Explicitly state that a control may be simultaneously opened by many
applications, but may be restricted in its functionality based on the
Claim method.

Introduction Events Add this section.
Introduction Input Model

Clarify the handling of error conditions.
Add usage of AutoDisable and DataCount.
Clarify the Error state exit conditions.
Clarify when ClearInput is legal.

Introduction Output Model
Clarify the Error state conditions.

Introduction Result Code Model
Clarify the setting of ResultCodeExtended.

Common BinaryConversion, AutoDisable, and DataCount properties
Add these new properties.
Throughout document, add to Summary sections for each device class.
Throughout document, specify the BString properties and method
parameters that are affected by BinaryConversion.

Common ControlObjectVersion and ServiceObjectVersion properties
Add compliance information when versions don’t match.

Common FreezeEvents property
Clarify FreezeEvents role in delaying event firing.

Common ResultCodeExtended property
Clarify the setting of ResultCodeExtended.

Unified POS, v1.15.1 Beta1 A - 83

Common ClearInput and ClearOutput methods
Correct return value information: May return one of three statuses.

Common Open method Correct return value information: ResultCode may not match method
return value.

Common Release method
Correct DeviceEnabled side effects: Only exclusive use devices are
disabled during the Release.

Common StatusUpdateEvent event
Clarify the initial firing of events at device enable.

MICR BankNumber Correct definition to digits 4-8 of the TransitNumber.
MSR ErrorReportingType

Add this new property.
MSR ParseDecodeData

Clarify inconsistency: Both ParseDecodeData and ParseDecodedData
were used for this property.

MSR ErrorEvent Update for track level error notification.
POS Keyboard General Information

Clarify the type of keyboards that may be a POS Keyboard.
POS Keyboard POSKeyData property

Update definition of this property: A logical key value.
POS Keyboard CapKeyUp, EventTypes, and POSKeyEventType properties

Add these new properties.
POS Printer Escape Sequences

Clarify that escape sequences that are not OPOS sequences are passed
through to the printer.

POS Printer CapConcurrentXxxYyy
Clarify the interpretation of a FALSE value.

POS Printer XxxLineSpacing
Clarify that line spacing includes the printed line height. Could have
been interpreted as only the whitespace between each pair of lines.

POS Printer PrintBarCode
Add list of symbologies.

POS Printer MapMode and XxxLetterQuality
Clarified legal handling of MapMode when the printer supports half-
dots.
Clarified potential impact on metrics when XxxLetterQuality is
changed and MapMode is dots.

POS Printer SetBitmap Extend the bitmap number usage to allow the same bitmap to be used for
both receipt and slip.

POS Printer TransactionPrint
Clarify when Busy and Extended statuses may be returned.

POS Printer ValidateData
Add “Underline” to the Illegal status section.

A - 84 Unified POS, v1.15.1 Beta1

Scale Model Correct to state the weight unit is defined by the device, and not settable
by the application.

Scale CapDisplay Add this new property.
Scale WeightUnit Clarify inconsistency: Both WeightUnit and WeightUnits were used for

this property.
Scanner ScanDataLabel and ScanDataType

Add these new properties.
Signature Capture “Real Time” feature

Add the new properties CapRealTimeData and
RealTimeDataEnabled.
Update various sections for real time operation.

Change History Release 1.1
Remove the compliance requirements for 1.1 Control Objects. This
information was corrected and added to the common
ControlObjectVersion and ServiceObjectVersion properties.

Opos.h header file Add OPOS_FOREVER constant.
Add BinaryConversion values.

OposMsr.h header file
Add ErrorReportingType values.

OposKbd.h header file
Add EventTypes values.

OposPtr.h header file
Remove PTR_RP_NORMAL_ASYNC.
Add symbologies to match scanner.

OposScan.h header file
Add symbologies for ScanDataType.

Technical Details “Event Handlers”
Delete section. Much of the information was inaccurate, and the rest was
merged into the new “Events” section in the first chapter.

Throughout Correct various editing errors.

Unified POS, v1.15.1 Beta1 A - 85

 Release 1.3
Release 1.3 adds additional device classes, a few additional APIs, and some corrections.

Release 1.3 is a superset of Release 1.2.

Section Change
First Two Pages Update copyright notices.

Update web reference.
General Modify the use of the term event “firing.” Use “enqueue” and “deliver”

appropriately to describe event firing.
Bump Bar New device: Add information in several locations, plus Bump Bar

chapter and header file.
Fiscal Printer New device: Add information in several locations, plus Fiscal Printer

chapter and header file.
PIN Pad New device: Add information in several locations, plus PIN Pad chapter

and header file.
Remote Order Display New device: Add information in several locations, plus Remote Order

Display chapter and header file.
Several places Relax ErrorEvent “retry” response to allow its use with some input

devices.
Introduction Events Clarify effect of the top event being blocked.
Introduction Input Model

Add details concerning enqueuing and delivery of ErrorEvents.
Add description of asynchronous input.

Introduction Device Power Reporting Model
Add this section.

Introduction OPOS Control Descriptions
Add CURRENCY data type.

Common CapPowerReporting, PowerNotify, PowerState properties
Add these properties here, plus…
Add to the Summary section of each device.

Common ResultCode property
Generalize the meaning of OPOS_E_BUSY.

Common StatusUpdateEvent
Add power state reporting information.
Change parameter name from Data to Status.

Every Device Add power reporting properties to Summary section.
Add StatusUpdateEvent support (if previously not reported.
Add power reporting reference to existing StatusUpdateEvent
descriptions.

MSR DecodeData Add “raw format” description and column to track data table.
MSR ExpirationDate Specify the format.

A - 86 Unified POS, v1.15.1 Beta1

MSR TrackxData Specify that data excludes the sentinels and LRC.
Add that decoding occurs when DecodeData is TRUE.

MSR ErrorEvent Clarify that DataCount and AutoDisable are not relevant for MSR error
events.

POSPrinter XxxLineChars
Add implementation recommendations.

POSPrinter PrintTwoNormal
Clarify the meaning of the Stations parameter, including the addition of
new constants.

Scale Add the following features:
• Asynchronous input. Property AsyncMode. Method ClearInput,

updates to ReadWeight. Events DataEvent and ErrorEvent.
• Display of text. Properties CapDisplayText, MaxDisplayTextChars.

Method DisplayText.
• Price calculation. Properties CapPriceCalculating, SalesPrice,

UnitPrice.
• Tare weight. Properties CapTareWeight, TareWeight.
• Scale zeroing. Property CapZeroScale. Method ZeroScale.

Tone Indicator Summary and General Information’s Device Sharing
Consistently specify that Tone Indicator is a sharable device.

Opos.h header file Add CapPowerReporting, PowerState, and PowerNotify properties.
Add StatusUpdateEvent power reporting values.

OposPtr.h header file Add new PrintTwoNormal station constants.
Throughout Correct some editing errors.

 Release 1.4
Release 1.4 adds one additional device class.

Release 1.4 is a superset of Release 1.3.

Section Change
CAT Added new device class, Credit Authorization Terminal which includes

CAT chapter and header file. This device class was added at the request
of OPOS-J and is used primarily in Japan. No other revisions were made
to the version 1.3 of the OPOS specification.

Unified POS, v1.15.1 Beta1 A - 87

 Release 1.5
Release 1.5 is a superset of Release 1.4.

Release 1.5 adds 2 additional device classes.

Section Change
First Two Pages Update copyright notices.

Update web references.
General Replace Claim with ClaimDevice and Release with ReleaseDevice.
Introduction Update references to OLE to ActiveX where appropriate.
Common OpenResult property

Add new property, plus add to the Summary section of each device.
Common ClaimDevice and ReleaseDevice

Name change plus update remarks.
Cash Changer Added support for receipt of money functionality.
Cash Drawer Added multi-drawer handling.
CAT Added PaymentMedia property.

The TransactionNumber property summary was changed to correctly
show the type as String.

Fiscal Printer Properties CountryCode, ErrorOutID, PrinterState,
QuantityDecimalPlaces and QuantityLength have been updated to
reflect the fact that they should be initialized after Open instead of
Open, Claim and Enable.
DuplicateReceipt: Corrected to show that is R/W. Added return values.

Line Display Added DISP_CCS_UNICODE to CapCharacterSet and
DISP_CS_UNICODE to CharacterSet to allow for devices that support
the Unicode character set.

MSR Added Track4Data, CapTransmitSentinels and TransmitSentinels
properties. Clarified support for JIS-II track data.
DataEvent status: Added meaning for the high byte.
ErrorEvent's ResultCodeExtended when
ResultCode=OPOS_E_EXTENDED: Added meaning for the high byte.

PINPad Added Track4Data property.
Point Card Reader Writer

New device: Add information in several locations, plus Point Card
Reader Writer chapter and header file.

POS Keyboard CapKeyUp: Corrected type from LONG to BOOL.
POS Power New device: Add information in several locations, plus POS Power

chapter and header file.
POS Printer Added support for color printing (ink jet technology), printing both sides

on the slip station and mark feed paper.
Added PTR_CCS_UNICODE to CapCharacterSet and
PTR_CS_UNICODE to CharacterSet to allow for devices that support

A - 88 Unified POS, v1.15.1 Beta1

the Unicode character set.
Remote Order Display Added ROD_CCS_UNICODE to CapCharacterSet and

ROD_CS_UNICODE to CharacterSet to allow for devices that support
the Unicode character set.

Scale Properties SalesPrice, TareWeight and UnitPrice have been updated to
reflect the fact that they should be initialized after Open instead of
Open, Claim and Enable.
ErrorEvent: Added OPOS_ER_RETRY as a value response.

Signature Capture Update Model to discuss AutoDisable implications.
RealTimeDataEnabled: Clarify when this takes effect.
DataEvent: Correct conditions when this event may be fired to include
real-time data.

Tone Indicator Properties AsyncMode, Tone1Pitch, Tone1Volume, Tone1Duration,
Tone2Pitch, Tone2Volume, Tone2Duration and InterToneWait have
been updated to reflect the fact that they should be initialized after Open
instead of Open, Claim and Enable.
Clarified handling of the Sound method when another application claims
the device and calls the Sound method.

Opos.h header file Add OpenResult property values.
Appendix C Added header files for Point Card Reader Writer and POS Power.

Updated other header files for devices modified in this specification.
Appendix D Update System String information to include ATL usages.
Appendix E Added this appendix for details on ClaimDevice and ReleaseDevice.

 Release 1.6
Release 1.6 is a superset of Release 1.5.

Section Change
Line Display Added the CapBlinkRate, CapCursorType, CapCustomGlyph,

CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight and GlyphWidth properties.
Added DefineGlyph and ReadCharacterAtCursor methods.
Many updates in the General Information section.
Updated the DisplayText and DisplayTextAt methods to include
support for new attribute types for reverse video, DISP_DT_REVERSE
and DISP_DT_BLINK_REVERSE.

Fiscal Printer Added the CapAdditionalHeader, CapAdditionalTrailer,
CapChangeDue, CapEmptyReceiptIsVoidable,
CapFiscalReceiptStation, CapFiscalReceiptType,
CapMultiContractor, CapOnlyVoidLastItem,
CapPackageAdjustment, CapPostPreLine, CapSetCurrency,
CapTotalizerType, ActualCurrency, AdditionHeader,
AdditionalTrailer, ChangeDue, ContractorId, DateType,
FiscalReceiptStation, FiscalReceiptType, MessageType, PostLine,

Unified POS, v1.15.1 Beta1 A - 89

PreLine and TotalizerType properties.
Added the SetCurrency, PrintRecCash, PrintRecItemFuel,
PrintRecItemFuelVoid, PrintRecPackageAdjustment,
PrintRecPackageAdjustVoid, PrintRecRefundVoid,
PrintRecSubtotalAdjustVoid and PrintRecTaxID methods.
Added country support for Bulgaria and Romania.
Many updates in the General Information section.
Clarified the description of the CapPositiveAdjustment property.
Updated the CountryCode, DayOpened and DescriptionLength
properties to reflect additions to the specification.
Updated the EndFiscalReceipt, GetData, GetDate, PrintRecItem,
PrintRecMessage, PrintRecNotPaid, PrintRecRefund,
PrintRecSubtotal, PrintRecSubtotalAdjustment, PrintRecTotal,
PrintRecVoid, PrintRecVoidItem, PrintZReport and SetHeaderLine
methods to reflect additions to the specification.
Updated the ErrorEvent event to reflect additions to the specification.
Properties CountryCode, ErrorOutID, PrinterState,
QuantityDecimalPlaces and QuantityLength have been updated to
tone down strong language in the 1.5 revision that changes the
“Initialized After” text.

Scale Properties SalesPrice, TareWeight and UnitPrice have been updated to
tone down strong language in the 1.5 revision that changes the
“Initialized After” text

Tone Indicator Properties AsyncMode, Tone1Pitch, Tone1Volume, Tone1Duration,
Tone2Pitch, Tone2Volume, Tone2Duration and InterToneWait have
been updated to tone down strong language in the 1.5 revision that
changes the “Initialized After” text.

Appendix C Added new constants for Fiscal Printer and Line Display updates.

 Release 1.7
The change history above has been maintained to this point for historical reference.
No specific change history relative to the OPOS APG is maintained from this release forward.
Refer to Appendix D for the change history details (if any) relative to this section.

A - 90 Unified POS, v1.15.1 Beta1

A.34 Section 8: OPOS Control Programmer’s Guide

A.34.1 Who Should Read This Section

This Section of the OPOS Annex is targeted for the system developer who will write an OPOS Control.

This Section assumes that the reader understands the following:

• The POS peripheral device to be supported.

• ActiveX Control and Automation terminology and architecture.

• ActiveX Control Container development environments, such as Microsoft Visual Basic or Microsoft Visual C++.
These will be required for testing the OPOS Control.

• A thorough knowledge of the OPOS models and APIs presented in the other sections of Annex A, The OPOS
Implementation Reference.

See the following Web sites for additional OPOS information:
ARTS OMG Retail Domain Task Force Standards Body:

http://retail.omg.org/

Reference implementation – Common Control Objects:
http://monroecs.com/opos.htm

https://github.com/kunif/OPOS-CCO

OPOS-Japan Page(Japanese Language Site):
https://cloudblogs.microsoft.com/industry-blog/ja-jp/retail/2019/12/23/it-standardization-

activities-in-the-distribution-industry/

http://retail.omg.org/
http://monroecs.com/opos.htm
https://github.com/kunif/OPOS-CCO霑ｽ蜉縺吶∋縺阪°
http://www.microsoft.com/business/industry/ret/retoposoverview.asp
http://www.microsoft.com/business/industry/ret/retoposoverview.asp

Unified POS, v1.15.1 Beta1 A - 91

A.34.2 General OLE for Retail POS Control Model

OLE for Retail POS Controls adhere to the ActiveX Control specifications. They expose properties, events, and
methods to a containing application. They specifically do not include a user interface, but rather rely exclusively
upon the containing application for requests through methods and sometimes properties. Responses are given to
the application through method return values and parameters, events, and properties.

The OLE for Retail POS software is implemented using the layers shown in the following diagram:

A - 92 Unified POS, v1.15.1 Beta1

A.34.3 OPOS Definitions

Device Class
A device class is a category of POS devices that share a consistent set of properties, methods, and events.
Examples are Cash Drawer and POS Printer.

Some devices support more than one device class. For example, some POS Printers include a Cash Drawer
kickout. Also, some Bar Code Scanners include an integrated Scale.

Control Object or CO
A Control Object exposes a set of properties, methods, and events to an application for its device class. The
OPOS Application Programmer’s Guide describes these APIs.

A CO is a standard ActiveX (that is, OLE 32-bit) Control that is invisible at runtime. The CO interfaces have
been designed such that all implementations of a class' Control Object will be compatible. This allows the CO to
be developed independently of the SO's for the same class – including development by different companies.

Service Object or SO
A Service Object is called by a Control Object to implement the OPOS-prescribed functionality for a specific
device.

An SO is implemented as an Automation server. It exposes a set of methods that are called by a CO. It can also
call special methods exposed by the CO to cause events to be fired to the application.

A Service Object may include multiple sets of methods in order to support devices with multiple device classes.

A Service Object is typically implemented as a local in-proc server (in a DLL). In theory, it may also be
implemented as a local out-proc server (in a separate executable process). However, we have found that, in
practice, out-proc servers do not work well for OPOS Service Objects, and do not recommend their use.

OPOS Control or Control
An OPOS Control consists of a Control Object for a device class – which provides the application interface, plus
a Service Object – which implements the APIs. The Service Object must support a device of the Control Object's
class.

Note - Service Object Implementation: Out-of-Process vs. In-Process Servers

In general, the primary difficulty in using out-proc automation servers arises when either of the two possible
scenarios may occur:

(A) The server is processing a COM function for the client application (such as when the client has called a
Control’s method) when another server calls a COM function in the client (such as when a Control’s event is
fired).

(B) The server has called a COM function in a client application (such as when a Control’s event is fired) when
another client application calls a COM function in the server (such as when this client calls a Control’s method).

The likelihood of these scenarios, especially (A), is greater for OPOS Service Objects since:

• Some OPOS methods require an indeterminately long time to be processed, such as the Cash Drawer

Unified POS, v1.15.1 Beta1 A - 93

WaitForDrawerClose.

• Some OPOS events may require an indeterminately long time to be processed, such as an ErrorEvent whose
 application handler waits for a user response to a dialog box.

The case where an OPOS event occurs from one service object while another service object is processing a
method call or a property access then becomes probable.

These scenarios could be handled if both the client application and the out-proc server installed message filters
(using the function CoRegisterMessageFilter), and the code for these filters dealt with these scenarios in an
OPOS-prescribed manner. However, the default message filters for client environments such as Visual Basic and
Visual C++ do not adequately handle the scenarios. Behavior varies from displaying a dialog and waiting for a
user response (which is unacceptable for many POS operations) to generating an exception that terminates the
client application (which is certainly unacceptable for POS applications). In addition, some environments do not
provide a mechanism that easily allows an application to set up its custom message filter.

These issues simply do not exist when in-proc servers are used. Therefore, we recommend that they be used to
implement service objects. This does, however, somewhat complicate sharing a Control between applications.
Interprocess communication mechanisms, such as shared memory and named mutexes and events, may be used
for this sharing.

If out-proc servers are used, then both the service object developer and the application developer will need to
carefully implement message filters. The service object vendor should properly document this requirement to its
application writers.

A.34.4 Interface Overview

A major OPOS objective is to provide general peripheral device APIs that can be applied to many vendors’
peripherals. This leads to a requirement that any implementation of a Control Object be able to communicate
with any vendor’s Service Object. A straightforward example is with printers: Suppose a fast-food restaurant
requires a local printer by one vendor and a remote kitchen printer by another vendor. Two instances of the
printer CO will be required where each instance communicates with a different SO. The single CO must work
with both vendors’ SOs.

In order to define Control Objects that work across many vendors’ Service Objects, the Control Object interfaces
should be as generic and simple as possible. Therefore, the CO will maintain very little information and will, in
general, perform the following three duties:

• Service Object coupling: Supervises a dispatch interface with a Service Object for the device.

• Methods and properties: Performs a pass-through of the application's method and property requests to the Service
 Object.

• Events: When a Service Object calls one of the special event request methods in the Control Object, the CO fires an
 appropriate event to the application.

The various paths of communication between the application, Control Object, and Service Object are shown in
the following sections.

A - 94 Unified POS, v1.15.1 Beta1

A.34.5 Methods

An application initiates method calls to the OPOS Control.

Open Method
The Open method is processed as follows:

Close Method
The Close method is processed as follows:

Other Methods
All other methods are processed as follows, where Method represents the name of the method:

Application

1. App calls CO's Open method.

Control Object

2. CO calls SO's OpenService method.

Service Object

Application

1. App calls CO's Close method.

Control Object
2. CO calls SO's CloseService method, if

present; otherwise calls Close method.
Service Object

Application

1. App calls CO's Method method.

Control Object

2. CO calls SO's Method method.

Service Object

Unified POS, v1.15.1 Beta1 A - 95

A.34.6 Properties

An application initiates property accesses to the OPOS Control.

String Properties
Gets and sets of string properties are processed as follows, where StringProp represents the name of the property:

LONG and BOOL Properties
Gets and sets of long and boolean properties are processed as follows, where NumericProp represents the name
of the property:

Application

1. App accesses CO's StringProp property.

Control Object
2. If get, CO calls SO's GetPropertyString

method, with an index that represents
StringProp.
If set, CO calls SO's SetPropertyString
method, with an index that represents
StringProp.
The index values are specified in header
files.

Service Object

Application

1. App accesses CO's NumericProp property.

Control Object
2. If get, CO calls SO's GetPropertyNumber

method, with an index that represents
NumericProp.
If set, CO calls SO's SetPropertyNumber
method, with an index that represents
NumericProp.
The index values are specified in header
files.

Service Object

A - 96 Unified POS, v1.15.1 Beta1

Other Property Types
Gets and sets of properties of any other type are processed as follows, where Property represents the name of the
property:

Application

1. App accesses CO's Property property.

Control Object

2. If get, CO calls SO's GetProperty method.
If set, CO calls SO's SetProperty method.

Service Object

Unified POS, v1.15.1 Beta1 A - 97

A.34.7 Events

See “Events” in this Annex for an overview of event handling.

The Service Object enqueues events, which are delivered to an application handler for the event.

The Service Object delivers events as follows:

Architecture: Firing an Event
A Service Object may need to fire an event for the following reasons:

• Method call or property set. A side effect of an application request to the control may cause an event to be fired.

Example: Assume that some data has been read and enqueued by the SO. When the application changes the
DataEventEnabled property to TRUE, then the SO needs to deliver a DataEvent.

• Asynchronous activity. The Service Object will usually create one or more worker threads to monitor the device's
 input or output. The SO cannot rely upon the application to call OPOS methods or access OPOS properties on a
 regular basis to gain some processing time, so independently scheduled worker threads are a good solution. These
 threads may determine that an event needs to be fired.

Example: Assume that the DataEventEnabled property is TRUE, and that a worker thread is managing device input
through a serial port. When the thread receives a data message, then the SO enqueues and needs to deliver a
DataEvent.

When the SO needs to deliver an event, it calls a special event request method within the CO. The CO then
delivers the event to the application.

Application
2. CO event request method delivers a

Data, DirectIO, Error, OutputComplete,
or StatusUpdate event to the App.

Control Object
1. SO calls a CO event request method.

The methods SOData, SODirectIO,
SOError, SOOutputComplete, and
SOStatusUpdate are exposed
specifically to cause events to be
delivered to the App.

Service Object

A - 98 Unified POS, v1.15.1 Beta1

Architectural Issue: Freezing Events by the Container
ActiveX control containers may freeze and unfreeze events by calling the IOleControl::FreezeEvents function.
This is presented to a control written with MFC via the COleControl::OnFreezeEvents member function, or to
an control written with ATL via the IOleControlImpl::FreezeEvents member function. (One use of this feature
is by the Visual Basic Common Dialog functions, which freeze events while the dialog is up.) When events have
been frozen, a control should not deliver events. The Visual C++ documentation notes that the control may either
discard events that occur during the freeze period, or it may buffer them for later delivery.

For OPOS Controls, enqueued events must be retained but not delivered while the container has frozen them.
Then, when events are unfrozen by the container, the events may be delivered.

Each Service Object must support the method COFreezeEvents. The Control Object will call this method to
freeze and unfreeze events.

Architectural Feature: Freezing Events by the Application
The application may wish to disable the arrival of events for a period of time. They may do this by setting the
common boolean property FreezeEvents to TRUE.

The event freezing mechanism implemented for container-requested freezing is utilized to remember requests
while the application has frozen them. Then, when the application sets the property to FALSE to unfreeze events,
the events are delivered.

Summary of Event Firing
When a Service Object needs to deliver an event, it calls the appropriate event request method within the Control
Object.

However, if events have been frozen due to a Control Object call to COFreezeEvents or due to the application
setting the FreezeEvents property to TRUE, then the SO keep the event on its event queue. If the event is to be
delivered from a worker thread, then this typically will be implemented by blocking the thread until events are
unfrozen.

Unified POS, v1.15.1 Beta1 A - 99

A.34.8 Control Object Responsibilities

The following sections describe the responsibilities of the Control Object. The Common Control Object is a
reference implementation, whose source is available on the web.

A.34.9 Methods

The following sections describe the responsibilities of the Control Object methods.

If a device class does not support a common method (as specified by the device class Summary section in this
document), then the Control Object should not define that method.

Since a Control Object must perform properly with any version of Service Object, as long as the major version
numbers match, some bookkeeping must be performed in the Control Object. Specifically, the Control Object
must not call methods that are not defined by a Service Object, or access properties that it does not define. In
addition, it must perform additional management with the return values and ResultCode. (See “OPOS Common
Properties, Methods, and Events” on page 25, “ControlObjectVersion” section for additional information.) The
processing steps below assume that the Control Object defines a ResultCode flag to help manage version
mismatch conditions.

Open Method
• If the Control Object is already open, then set OpenResult to OPOS_OR_ALREADYOPEN return
 OPOS_E_ILLEGAL.

• If an empty device name has been passed, then set OpenResult to OPOS_OR_REGBADNAME and return
 OPOS_E_NOEXIST.

• Query the registry to find the Service Object that corresponds to this device class and device name. If the device
 class or device name is not found in the registry, then set OpenResult to OPOS_OR_REGBADNAME and return
 OPOS_E_NOEXIST.

• Load the Service Object for the device name. This requires (a) reading the device’s Programmatic ID from the
 registry, (b) converting it to a Class ID, (c) creating an instance of the Service Object, and (d) getting its IDispatch
 interface. If any of these are unsuccessful, then return OPOS_E_NOSERVICE. Set OpenResult to
 OPOS_OR_REGPROGID if (a) or (b) fails, or OPOS_OR_CREATE if (c) or (d) fails.

MFC (a) Use RegQueryValueEx. (b) Use CLSIDFromProgID.
(c)-(d) Calling the CreateDispatch member function of an instance of the Service Object class, passing the Class ID
from (b).

The Service Object class is generated by using the Visual C++ Class Wizard:

• Within the “OLE Automation” tab, push the “Add Class from an OLE TypeLib...” button. Then choose the .TLB
 file generated by a Service Object project.

• The Class Wizard will generate a COleDispatchDriver derivative, with member functions matching the OLE
 Automation methods exposed by the Service Object.

The Class Wizard will also generate an implementation of the member functions, which call InvokeHelper with
fixed dispatch IDs. Since dispatch IDs depend upon the definition order of the automation methods, this
implementation must be updated by the next step to allow for Service Objects that define the methods in a different
order.

A - 100 Unified POS, v1.15.1 Beta1

ATL (a) Use RegQueryValueEx. (b) Use CLSIDFromProgID.
(c) Use CoCreateInstance. (d) Use QueryInterface on the interface pointer returned by (c).

• Look up the dispatch IDs for all of the Service Object methods defined by the device class.

If any of the dispatch IDs defined in the initial version of the device class are not found in the Service Object, then
close the dispatch interface, set OpenResult to OPOS_OR_BADIF, and return OPOS_E_NOSERVICE. (This
ensures that the Service Object supports at least the minimum methods of a valid Service Object for the device class,
before calling any of its methods.)

MFC Look up the dispatch IDs by calling the Service Object instance’s m_lpDispatch  GetIDsOfNames
function. Update the generated Service Object methods to pass these dispatch IDs to the InvokeHelper member
function.

ATL Look up the dispatch IDs by calling the Service Object instance’s GetIDsOfNames function. Save them for
later use – they must be passed to the Service Object dispatch’s Invoke function.

• Call the OpenService method of the Service Object, passing a device class string, a device name string, and the
 IDispatch pointer to the Control Object. If OpenService returns any result except OPOS_SUCCESS, then close the
 dispatch interface and return the OpenService result to the application. If the Service Object supports the method
 GetOpenResult, then call it and set OpenResult to its returned value; otherwise set OpenResult to
 OPOS_OR_FAILEDOPEN.

MFC The Control Object’s dispatch pointer is accessed through its GetIDispatch(FALSE) member function.

ATL The Control Object’s dispatch pointer is accessed by calling its QueryInterface function, requesting an
IDispatch interface.

• Call the GetPropertyNumber(PIDX_ServiceObjectVersion) method of the Service Object to retrieve its version
 number. If the major version number is not one (1), then set OpenResult to OPOS_OR_BADVERSION and return
 OPOS_E_NOSERVICE.

• If any of the dispatch IDs for the methods that should be defined by the Service Object’s version are not found, then:
 - call the Service Object’s CloseService method if present, otherwise call
 its Close method,
 - close the dispatch interface,
 - set OpenResult to OPOS_OR_BADIF,
 - and return OPOS_E_NOSERVICE.
(This ensures that the Service Object supports all of the methods of a valid Service Object for the device class and
version it claims to support. If the Service Object’s version is newer than the Control Object, then the Control Object
ensures that all of the methods for the Control Object’s version are supported.)

• If all of the steps above are successful, then set an internal variable that shows that the Control Object is open, set
 OpenResult to OPOS_SUCCESS, and return OPOS_SUCCESS. Otherwise, the Control Object remains closed.

Unified POS, v1.15.1 Beta1 A - 101

Close Method
• If the Control Object is closed, then return OPOS_E_CLOSED.

• If the Service Object supports the CloseService method, then call it. Otherwise, call its Close method.

• Set an internal variable that shows that the Control Object is closed.

• Release the Service Object.
• MFC Call the ReleaseDispatch member function of the Service Object class.
• ATL Call the Service Object dispatch pointer’s Release member function.

• Return the result of the Service Object’s Close method.

Other method calls
• If the Control Object is closed, then return OPOS_E_CLOSED.

• If the method was not defined in the Service Object’s version of the device class, then:
• Set the special ResultCode flag to show “version violation state”.
• Return OPOS_E_NOSERVICE.

• If the method is defined in the Service Object, then:
• Pass the request down to the Service Object by calling the identically named Service Object method, using
 an identical list of parameters.
• Set the special ResultCode flag to show “normal state.”
• Return the result of the Service Object method.

A - 102 Unified POS, v1.15.1 Beta1

A.34.10 Properties

The Control Object processes property accesses as follows:

• The Control Object only maintains the properties ControlObjectDescription, ControlObjectVersion, and
OpenResult. The Control Object will handle accesses to these properties directly, and return their value.

• If the Control Object is closed, then:

• If setting a property, then return. (There is no means of informing the application that the set failed.)

• If getting a property, then:

• If the property is State, return OPOS_S_CLOSED.

• If the property is ResultCode, return OPOS_E_CLOSED.

• Otherwise, return a default property value:
 FALSE for boolean.

 Zero for numeric.
 “[Error]” for string.

• If getting the property ResultCode and the special ResultCode flag is “version violation state”, then return
 OPOS_E_NOSERVICE.

• If the property is not supported by the version of the Service Object, then:

• If setting a property, then set the special ResultCode flag to show “version violation state” and return.

• If getting a property, then return the default property value.

If not one of the cases above...
• Set the internal ResultCode flag to show “normal state”.
• Pass down the request to the Service Object as follows.
• If the property type is a 4-byte numeric value, including boolean and long, then call the
 Service Object's GetPropertyNumber or SetPropertyNumber. A parameter specifies the

index of the property. These indices are established in the OPOS internal header files.In
order to supply control objects for new devices, the writers of new device chapters may be

　　 requested to prepare the approximately 2-page data file used to define some of the key 　
　　 attributes of the device to the generator.In order to supply control objects for new devices,
　　　　 the writers of new device chapters may be requested to prepare the approximately 2-page
　　 data file used to define some of the key attributes of the device to the generator.
• If the property type is string, then call the Service Object’s GetPropertyString or
 SetPropertyString. A parameter specifies the index of the property. These indices are

established in the OPOS internal header files.
• If the property is any other type, then call the Service Object’s get or set method for that

property.

Unified POS, v1.15.1 Beta1 A - 103

A.34.11 Events

The Service Object initiates events. The SO calls an event request method exposed by the Control Object.

The mapping of event request methods called by the Service Object into OPOS events is:

Upon receiving one of these event request methods, the Control Object delivers the appropriate event to the
application. The Service Object thread will not regain control until the application event handler has completed.

Warning: These methods are only for use by the Service Object. Though accessible to the application, the
application should not call them.

These five event request methods are defined on the following pages.

SOData
Syntax void SOData (LONG Status);

The Status parameter contains the input status. Its value is control-dependent and may describe the
type of or qualities of the input.

Remarks Requests the Control Object to deliver the event:

void DataEvent (LONG Status);

Called by the Service Object to deliver input data from the device to the application. The SO must
not call SOData unless the DataEventEnabled property is TRUE. Just before calling SOData,
the SO must change this property to FALSE, so that no further data events will be generated until
the application sets this property back to TRUE. The actual input data is placed in one or more
device class-specific properties.

Event Request Methods OPOS Event

SOData DataEvent

SODirectIO DirectIOEvent

SOError ErrorEvent

SOOutputComplete OutputCompleteEvent

SOStatusUpdate StatusUpdateEvent

A - 104 Unified POS, v1.15.1 Beta1

SODirectIO
Syntax void SODirectIO (LONG EventNumber, LONG* pData, BSTR* pString);

Parameter Description
EventNumber Event number. Specific values assigned by the Service Object.

pData Pointer to additional numeric data. Specific values vary by EventNumber
and the Service Object.

pString Pointer to additional string data. Specific values vary by EventNumber
and the Service Object.

Remarks Requests the Control Object to deliver the event:

void DirectIOEvent (LONG EventNumber, LONG* pData,
BSTR* pString);

Called by the Service Object to communicate information directly to the application.

This event provides a means for a Service Object to deliver events to the application that are not
otherwise supported by the Control Object.

The Service Object must ensure that pString points to a valid system string, and then must free this
string after SODirectIO returns.

Unified POS, v1.15.1 Beta1 A - 105

SOError Updated in Release 1.10
Syntax void SOError (LONG ResultCode, LONG ResultCodeExtended,

LONG ErrorLocus, LONG* pErrorResponse);

Parameter Description
ResultCode Result code causing the error event. See “ResultCode Property” in this

Annex for values.

ResultCodeExtended Extended result code causing the error event. See “ResultCodeExtended
Property” in this Annex for values.

ErrorLocus Location of the error. See values below.
pErrorResponse Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value Meaning
OPOS_EL_OUTPUT Error occurred while processing asynchronous output.
OPOS_EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
OPOS_EL_INPUT_DATA

Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default
value, based on the ErrorLocus. The application may change the value to one of the following:

Value Meaning
OPOS_ER_RETRY Typically valid only when locus is OPOS_EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
May be valid when locus is OPOS_EL_INPUT.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the
error and directs the Control to continue processing. The Control remains
in the error state and will fire additional DataEvents as directed by the
DataEventEnabled property. When all input has been fired and the
DataEventEnabled property is again set to TRUE, then another
ErrorEvent is fired with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

A - 106 Unified POS, v1.15.1 Beta1

Remarks Requests the Control Object to deliver the event:

void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);

Once SOError has been called, the Service Object must not request another error event until the
error has been cleared. However, if an error with locus
OPOS_EL_INPUT_DATA is fired and the event handler responds with
OPOS_ER_CONTINUEINPUT, then the SO may fire another error event with
OPOS_EL_INPUT after the enqueued input has been delivered.

SOOutputComplete

Syntax void SOOutputComplete (LONG OutputID);

The OutputID parameter indicates the number of the asynchronous output request that has
completed.

Remarks Requests the Control Object to deliver the event:

void OutputCompleteEvent (LONG OutputID);

Called by the Service Object when a previously started asynchronous output request completes
successfully.

SOStatusUpdate
Syntax void SOStatusUpdate (LONG Data);

The Data parameter is for device class-specific data describing the type of status change.

Remarks Requests the Control Object to deliver the event:

void StatusUpdateEvent (LONG Data);

Called by the Service Object when the SO needs to alert the application of a device status change.

Examples include a change in the cash drawer position (open vs. closed) and a change in a POS
printer sensor (form present vs. absent).

The following method is not related to event firing, but is a special purpose support
method.OPOS_EL_INPUT after the enqueued input has been delivered.

Unified POS, v1.15.1 Beta1 A - 107

SOProcessID
Syntax LONG SOProcessID();

Remarks Return the process ID of the application in which the Control Object exists.

The following method is provided to support local out-proc Service Objects. As noted in the
introduction chapter, out-proc servers are not recommended for OPOS Service Objects. However,
if a vendor successfully designs and implements such a Service Object, this method may be useful.

For example, if a Service Object which supports Printer with MICR has allowed an application to
Claim the printer, then it will want to restrict Claim of the MICR to the same application, since it
is not reasonable for two applications to share such a device with such closely interacting classes.

A - 108 Unified POS, v1.15.1 Beta1

A.34.12 Service Object Responsibilities and Implementation

Methods
The following common Service Object methods are defined for implementing corresponding Control Object
methods. If a device class does not support a common method (as specified by the device class Summary section
in the this document), then the Service Object should not define that method.

For each device class, additional methods are defined for each device specific method.

The general rules used to define the Service Object methods are:

• The Service Object method name is the same as the Control Object’s method name.

• The parameters match those of the Control Object, both in order and type.

The only exceptions to these rules are the OpenService, CloseService (optional – may use Close instead),
GetOpenResult (optional), and COFreezeEvents methods.

Note that these methods are always called through the Service Object’s IDispatch interface.

For each of the methods below, syntax is shown for MFC as entered into the control’s “Add Method” dialog, and
for ATL as entered into the COM object’s “Add Method to Interface” dialog.

CheckHealth
Syntax MFC long CheckHealth(long Level);

ATL HRESULT CheckHealth(long Level, [out, retval] long* pRC);

Remarks Called to test the state of a device.

ClaimDevice / Claim
Syntax MFC long ClaimDevice(long Timeout);

long Claim(long Timeout);

ATLHRESULT ClaimDevice(long Timeout, [out, retval] long* pRC);
HRESULT Claim(long Timeout, [out, retval] long* pRC);

Remarks Called to request exclusive access to the device.

Release 1.0 – 1 .4
Control Objects for these releases will only look for the Claim method.

Release 1.5 and later
A Control Object for this release will first look for the ClaimDevice method. If ClaimDevice is
not present, then the Control Object looks for Claim.

Unified POS, v1.15.1 Beta1 A - 109

ClearInput
Syntax MFC long ClearInput();

ATL HRESULT ClearInput([out, retval] long* pRC);

Remarks Called to clear all device input that has been enqueued.

ClearInputProperties
Syntax MFC long ClearInputProperties();

ATL HRESULT ClearInputProperties([out, retval] long* pRC);

Remarks Called to clear all input properties that have been populated by the last DataEvent or ErrorEvent.

ClearOutput Updated in Release 1.7
Syntax MFC long ClearOutput();

ATL HRESULT ClearOutput([out, retval] long* pRC);

Remarks Called to clear all buffered output data, including all asynchronous output. Also, when possible,
halts outputs that are in progress.

Close
Syntax MFC long CloseService();

long Close();
ATL HRESULT CloseService([out, retval] long* pRC);

HRESULT Close([out, retval] long* pRC);

Remarks Called to release the device and its resources.

Release 1 .0 – 1 .4

Control Objects for these releases will only look for the Close method.

Release 1 .5 and later

A Control Object for this release will first look for the CloseService method. If CloseService is
not present, then the Control Object looks for Close.

COFreezeEvents Internal Control/Service Object Method

Syntax MFC long COFreezeEvents(BOOL Freeze);
ATL HRESULT COFreezeEvents(VARIANT_BOOL Freeze,

[out, retval] long* pRC);

The Freeze parameter is TRUE / VARIANT_TRUE when event firing must be frozen, and FALSE
/ VARIANT_FALSE when event firing is reenabled.

Remarks This method is for internal use by the Control Object.

The CO calls it in response to a container event freeze request to inform the SO of a change in the
state of event firing. See “Architectural Issue: Freezing Events by the Container” in this Annex for
more information.

A - 110 Unified POS, v1.15.1 Beta1

CompareFirmwareVersion Added in Release 1.9
Syntax MFC long CompareFirmwareVersion(BSTR FirmwareFileName, LONG* pResult);

ATL HRESULT CompareFirmwareVersion(BSTR FirmwareFileName, [out] long* pResult,
[out, retval] long* pRC);

Remarks This method determines whether the version of the firmware contained in the specified file is newer
than, older than, or the same as the version of the firmware in the physical device.

DirectIO
Syntax MFC long DirectIO(long Command, long* pData, BSTR* pString);

ATL HRESULT DirectIO(long Command, [in, out] long* pData,
[in, out] BSTR* pString, [out, retval] long* pRC);

Remarks Call to communicate directly with the Service Object.

GetOpenResult Internal Control/Service Object Method
 Added in Release 1.5

Syntax MFC long GetOpenResult();
ATL HRESULT GetOpenResult([out, retval] long* pRC);

Remarks This method is for internal use by the Control Object. It is optional.
If a Service Object’s OpenService method returns a status other than OPOS_SUCCESS, and it has
implemented this method, then the Control Object calls this method to set its OpenResult
property.
The Service Object may select one of the values given in the OPOS.H header file, or return a
Service Object-specific value.

Return For MFC implementations, return one of the following values. For ATL implementations, store one
of the following values at pRC, and return S_OK.

Value Meaning
OPOS_ORS_NOPORT The Service Object tried to access an I/O port (for example, an RS232

port) during Open processing, but the port that is configured for the
DeviceName is invalid or inaccessible.
As a general rule, an SO should refrain from accessing the physical
device until the DeviceEnabled property is set to TRUE. But in some
cases, it may require some access at Open; for instance, to dynamically
determining the device type in order to set the DeviceName and
DeviceDescription properties.

OPOS_ORS_NOTSUPPORTED
The Service Object does not support the specified device.
The SO has determined that it does not have the ability to control the
device it is opening. This determination may be due to an inspection of
the registry entries for the device, or dynamic querying of the device
during Open processing.

Unified POS, v1.15.1 Beta1 A - 111

OPOS_ORS_CONFIG Configuration information error.
Usually this is due to incomplete configuration of the registry, such that
the SO does not have sufficient or valid data to open the device.

OPOS_ORS_SPECIFIC Errors greater than this value are service object-specific.
If the previous return values do not apply, then the SO may define
additional OpenResult values. These values are Service Object-specific,
but may be of value in these cases:
 1) The Application logs or reports this error during debug and testing.
 2) The Application adds SO-specific logic, to attempt to report more

error conditions or to recover from them.

OpenService Internal Control/Service Object Method
Syntax MFC long OpenService(LPCTSTR DeviceClass, LPCTSTR DeviceName,

LPDISPATCH pDispatch);
ATL HRESULT OpenService(BSTR DeviceClass, BSTR DeviceName,

IDispatch* pDispatch, [out, retval] long* pRC);

Parameter Description
DeviceClass Contains the requested device class, which are given in the header file

OPOS.HI. Examples are “CashDrawer” and “POSPrinter.”
DeviceName Contains the Device Name to be managed by this Service Object. The

relationship between the device name and physical devices is determined
by entries within the operating system registry; a setup or configuration
utility maintains these entries. (See the “Application Programmer’s
Guide” annex “OPOS Registry Usage.”)

pDispatch Points to the Control Object’s dispatch interface, which contains the
event request methods.

Remarks Call to open a device for subsequent I/O. The Control Object calls this method as part of its Open
method processing.

The Service Object will use the DeviceClass and DeviceName parameters in inquiring the registry
for additional device specific information.

The following steps assume that the Control Object is written using Visual C++ with MFC. Modify
appropriately if another development environment is selected.

A - 112 Unified POS, v1.15.1 Beta1

For MFC implementations, the pDispatch parameter may be used as follows:
• Attach to the Control Object’s IDispatch interface by passing the pDispatch IDispatch pointer

to the AttachDispatch member function of an instance of a class that defines the Control Ob-
ject’s event request methods.
This class is generated by using the Visual C++ Class Wizard:
• Within the “OLE Automation” tab, push the “Add Class from an OLE TypeLib...” button.

Then choose the .TLB file generated by a Control Object project.
• The Class Wizard will generate a COleDispatchDriver derivative, with member functions

matching the OLE Automation methods exposed by the Control Object.
• The Class Wizard will also generate an implementation of the member functions, which

call InvokeHelper with fixed dispatch IDs. Since dispatch IDs depend upon the definition
order of the automation methods, this implementation must be updated by the next step to
allow for Control Objects that define the methods in a different order.

• The class definition and implementation should be updated to remove all of the non-event
request methods.

• Look up the event request methods (such as SOData) by calling the Control Object instance’s
m_lpDispatch  GetIDsOfNames function. Update the generated Control Object methods to
pass these dispatch IDs to the InvokeHelper member function.
For ATL implementations, the pDispatch parameter may be used directly to call IDispatch’s
GetIDsOfNames and Invoke functions. Alternatively, a CComDispatchDriver class instance
may be created; its Invoke1 and InvokeN functions may be used to call the event functions.

Note
The Service Object attaches back to the Control Object’s dispatch pointer in order to access the event
request methods within the CO. This implies the following two points:
• When the Control Object exposes the event request methods for access by the Service Object,

these methods also become accessible by the application. The application, of course, should not
call these methods.

• The Service Object can access other methods and properties within the Control Object. This is
not usually beneficial; however, the SO may wish to access the ControlObjectDescription or
ControlObjectVersion to validate compatibility between itself and the CO.

Return For MFC implementations, return one of the following values. For ATL implementations, store one
of the following values at pRC, and return S_OK.

Value Meaning
OPOS_SUCCESS The Service Object is open.

This does not tell the Control Object or Application that the device is
online and functional. Rather, it states that the Service Object software is
initialized, and ready to attempt device interaction when the
DeviceEnabled property is set to TRUE.

Unified POS, v1.15.1 Beta1 A - 113

Other Values See “ResultCode Property” in this Annex.
Any return value except OPOS_SUCCESS is an Open failure, and will
result in the Control Object shutting down the Service Object (by
releasing its COM pointer) and passing this status to the Application.
Since the APG defines meanings for OPOS_E_ILLEGAL and
OPOS_E_NOEXIST, a Service Object should return one of these only if
the failure is similar to one of these meanings. Otherwise, the
Application may be misled.

Release 1 .5 and later

On a failure, the Control Object will call the Service Object’s
GetOpenResult method, if present, to retrieve an additional status value.

ReleaseDevice / Release
Syntax MFC long ReleaseDevice();

long Release();

ATL HRESULT ReleaseDevice([out, retval] long* pRC);

Remarks Called to release exclusive access to the device.

Release 1 .0 – 1 .4

Control Objects for these releases will only look for the Release method.

Release 1 .5 and later

A Control Object for this release will first look for the ReleaseDevice method. If ReleaseDevice is
not present, then the Control Object looks for Release.

Note that ATL implementations cannot support the Release method (at least not without updating/
overriding ATL classes).

ResetStatistics Added in Release 1.8
Syntax MFC long ResetStatistics(BSTR StatisticsBuffer);

ATL HRESULT ResetStatistics(BSTR StatisticsBuffer, [out, retval] long* pRC);

Remarks Resets the defined resettable statistics in a device.

RetrieveStatistics Added in Release 1.8
Syntax MFC long RetrieveStatistics(BSTR* pStatisticsBuffer);

ATL HRESULT RetrieveStatistics([in, out] BSTR* pStatisticsBuffer, [out, retval] long* pRC);

Remarks Retrieves the statistics from a device.

UpdateFirmware Added in Release 1.9
Syntax MFC long UpdateFirmware(BSTR FirmwareFileName);

ATL HRESULT UpdateFirmware(BSTR FirmwareFileName, [out, retval] long* pRC);

Remarks Updates the firmware of a device with the version of the firmware contained or defined in the file
specified by the FirmwareFileName parameter.

A - 114 Unified POS, v1.15.1 Beta1

UpdateStatistics Added in Release 1.8
Syntax MFC long UpdateStatistics(BSTR StatisticsBuffer);

ATL HRESULT UpdateStatistics(BSTR StatisticsBuffer, [out, retval] long* pRC);

Remarks Updates the defined resettable statistics in a device.

Unified POS, v1.15.1 Beta1 A - 115

A.34.13 Properties

The following methods are defined for getting and setting properties of the following types: 4-byte numeric and
string.

For each method, the first parameter is:
LONG PropIndex
The values of PropIndex are specified in Opos.hi for the common properties. The values of class-specific
properties are specified in the class-specific header files.

For robustness, the Service Object should validate the PropIndex. If an invalid value is found, then it could
display a message box specifying the error, generate a debug exception, or produce another alert to the developer.
This type of error should be found during development, testing, or staging prior to rollout to a customer, so the
method of informing the user may be rather terse.

Note that these methods are always called through the Service Object’s IDispatch interface.

GetPropertyNumber
Syntax MFC long GetPropertyNumber(long PropIndex);

ATL HRESULT GetPropertyNumber(long PropIndex,
[out, retval] long* pNumber);

Return The current value of the LONG or BOOL / VARIANT_BOOL property.

For BOOL properties - VARIANT_BOOL COM IDL type - the Common Control Objects return a
zero value as VARIANT_FALSE and a non-zero value as VARIANT_TRUE.

GetPropertyString
Syntax MFC BSTR GetPropertyString(long PropIndex);

ATL HRESULT GetPropertyString(long PropIndex,
[out, retval] BSTR* pString);

Return The current value of the string property.

SetPropertyNumber
Syntax MFC void SetPropertyNumber(long PropIndex, long Number);

ATL HRESULT SetPropertyNumber(long PropIndex, long Number);

Remarks Sets the LONG or BOOL property to Number.

For BOOL properties - VARIANT_BOOL COM IDL type - the Common Control Objects pass a
zero value as zero (0) and a non-zero value as one (1).

A - 116 Unified POS, v1.15.1 Beta1

SetPropertyString
Syntax MFC void SetPropertyString(long PropIndex, LPCTSTR String);

ATL HRESULT SetPropertyString(long PropIndex, BSTR String);

Remarks Sets the string property to String.

Note – Rationale for property get and set methods

Instead of using the four methods above, the Service Object interface could have defined distinct
get methods for every property, plus set methods for writable properties.

Due to the large number of properties present in several Control Objects, however, the four
methods above were chosen to reduce the amount of overhead and Service Object code.

Other Types: Not BSTR, LONG, or BOOL
If the Control defines properties of types that are not BStrings, LONGs, or BOOLeans, then the
Service Object must define additional get and set methods for these properties.

If using Visual C++ with MFC, this is most easily accomplished through the Class Wizard by
adding an Automation property.

Getting Other Property Types

Syntax MFC Type GetPropertyName();
ATL HRESULT GetPropertyName([out, retval] Type* pProp);

Where Type is replaced by the property’s type,
and PropertyName is replaced by the property’s name.

Return The current value of the property.

Example: If a property

CURRENCY SomeMoney;
is defined by the control, then the Service Object must define the method

MFC CURRENCY GetSomeMoney();
 ATL HRESULT GetSomeMoney([out, retval] CURRENCY* pCY);

Unified POS, v1.15.1 Beta1 A - 117

Setting Other Property Types
Syntax MFC void SetPropertyName(Type value);

ATL HRESULT SetPropertyName(Type value);

Where Type is replaced by the property’s type,
and PropertyName is replaced by the property’s name.

Remarks Sets the property to value.

This method is only defined if the property PropertyName is a writable property.

Example: If a read/write property

CURRENCY SomeMoney;
is defined by the control, then the Service Object must define the method

MFC void SetSomeMoney(CURRENCY NewMoneyValue);
ATL HRESULT SetSomeMoney(CURRENCY NewMoneyValue);

A.34.14 Events

A Service Object causes events to be fired by calling event methods in the Control Object. These methods are
named:

SOData
SODirectIO
SOError
SOOutputComplete
SOStatusUpdate

They are described in “Control Object Responsibilities” in this Annex.

See the OpenService description in Annex D for information about how to get the dispatch interface and
dispatch IDs necessary for calling these functions.

A - 118 Unified POS, v1.15.1 Beta1

A.34.15 OPOS CPG Change History

 Release 1.01
Release 1.01 mostly adds clarifications and corrections, but the Line Display and Signature
Capture chapters received substantive changes to correct deficiencies in their definition.

Section Change
Second Page Add name of Microsoft Web site for OPOS information.

Opos.hi header file
Remove HKEY_LOCAL_MACHINE from the root keys.

OposPtr.hi header file
Change ...Nearend to ...NearEnd.
Change ...Barcode to ...BarCode.

OposScal.hi header file
Correct WeightUnits value from 1 to 2.

OposSig.hi header file
Change TotalVectors to TotalPoints.
Change VectorArray to PointArray.

 Release 1.1
Release 1.1 adds APIs based on requirements from OPOS-J, the Japanese OPOS consortium.

Section Change
Second Page Remove CompuServe reference.
Opos.hi header file Add POS Keyboard values.
OposKbd.hi header file New header file for POS Keyboard.
OposPtr.hi header file Add the following properties:

CapCharacterSet
CapTransaction
ErrorLevel
ErrorString
FontTypefaceList
RecBarCodeRotationList
RotateSpecial
SlpBarCodeRotationList

Unified POS, v1.15.1 Beta1 A - 119

 Release 1.2
Release 1.2 adds additional device classes, plus additional APIs based on requirements from
various OPOS-US, OPOS-Japan, and OPOS-Europe members.

Release 1.2 is a superset of Release 1.1.

Section Change
First Two Pages Update company names.

Update copyright notices.
Update web reference.

Introduction Add discussion of out-proc and in-proc service objects.
Control Object Chapter Update to include handling of version mismatch between the Control

Object and Service Object.
Add the method SOProcessID.

Opos.hi header file Add Cash Changer and Tone Indicator.
Add the following properties:

AutoDisable
BinaryConversion
DataCount

OposChan.hi header file
New header file for Cash Changer.

OposMsr.hi header file
Add the property ErrorReportingType.
Add the property ParseDecodedData, with value set the same as
ParseDecodeData.

OposKbd.hi header file
Add the following properties:

CapKeyUp
EventTypes
POSKeyEventType properties

OposScal.hi header file
Add the following properties:

CapDisplay
WeightUnit.

OposScan.hi header file
Add the following properties:

ScanDataLabel
ScanDataType

OposSig.hi header file
Add the following properties:

CapRealTimeData
RealTimeDataEnabled.

OposTone.hi header file
New header file for Tone Indicator.

A - 120 Unified POS, v1.15.1 Beta1

 Release 1.3
Release 1.3 adds additional device classes, a few additional APIs, and some corrections.

Release 1.3 is a superset of Release 1.2.

Section Change
First Two Pages Update copyright notices.

Update web reference.
General Modify the use of the term event “firing.” Use “enqueue” and “deliver”

appropriately to describe event firing.
Control Object Chapter SOError: Allow OPOS_ER_RETRY to be returned on input events if

the Control supports it.
Service Object Chapter Add descriptions of property methods that don’t fall into “4-byte

number” or “string” types.
Opos.hi header file Add Bump Bar, Fiscal Printer, PIN Pad, and Remote Order Display. Add

the following properties:
CapPowerReporting
PowerNotify
PowerState

OposBb.hi header file New header file for Bump Bar
OposChan.hi header file Correct the string indices to use PIDX_STRING instead of

PIDX_NUMBER.
OposFptr.hi header file New header file for Fiscal Printer
OposPPad.hi header file New header file for PIN Pad
OposROD.hi header file New header file for Remote Order Display
OposScal.hi header file

Add the following properties:
CapDisplayText
CapPriceCalculating
CapTareWeight
CapZeroScale
AsyncMode
MaxDisplayTextChars
TareWeight

Several header files Add validation functions for the first release containing the device.

 Release 1.4
Release 1.4 adds 1 additional device class.

Release 1.4 is a superset of Release 1.3.

Section Change

Opos.hi header file Add CAT.

OposCat.hi header file New header file for CAT.

Unified POS, v1.15.1 Beta1 A - 121

 Release 1.5
Release 1.5 adds 2 additional device classes.

Release 1.5 is a superset of Release 1.4.

Section Change
First Two Pages Update copyright notices.

Update web references.
General Update Claim and Release references to include ClaimDevice and

ReleaseDevice information.
Update references to OLE to ActiveX where appropriate.
Generalize some references to MFC implementations, and add some
ATL implementation information.

Control Object Responsibilities
Remove implementation details, and refer to the Common Control
Objects.

Service Object GetOpenResult method
Add new method.

Opos.hi header file Added Point Card Reader Writer and POS Power device categories.
OposCash.hi header file

Add CapMultiDrawerDetect property.
OposCat.hi header file

Add PaymentMedia property
OposCash.hi header file

Add DepositAmount, DepositStatus, DeviceStatus, CapDeposit,
CapDepositDataEvent, CapPauseDeposit, CapRepayDeposit,
DepositCashList, DepositCodeList and DepositCounts properties.

OposMSR.hi header file
Add CapTransmitSentinels, Track4Data and TransmitSentinels
properties.

OposPcrw.hi header file
New header file for Point Card Reader Writer.

OposPpad.hi header file Update to match the released 1.3 header file, then
Remove the Amount property index – it isn’t a string.
Add Track4Data property.

OposPtr.hi header file
Add CapJrnCartridgeSensor, CapJrnColor,
CapRecCartrdigeSensor, CapRecColor, CapRecMarkFeed,
CapSlpBothSidesPrint, CapSlpCartridgeSensor, CapSlpColor,
CartridgeNotify, JrnCartridgeState, JrnCurrentCartridge,
RecCartridgeState, RecCurrentCartridge, SlpPrintSide,
SlpCartridgeState, and SlpCurrentCartridge properties.

OposPwr.hi header file New header file for POS Power.

A - 122 Unified POS, v1.15.1 Beta1

 Release 1.6
Release 1.6 is a superset of Release 1.5.

Section Change
OposDisp.hi header file

Added CapBlinkRate, CapCursorType, CapCustomGlyph,
CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight and GlyphWidth properties.

OposFptr.hi header file
Added CapAdditionalHeader, CapAdditionalTrailer,
CapChangeDue, CapEmptyReceiptIsVoidable,
CapFiscalReceiptStation, CapFiscalReceiptType,
CapMultiContractor, CapOnlyVoidLastItem,
CapPackageAdjustment, CapPostPreLine, CapSetCurrency,
CapTotalizerType, ActualCurrency, AdditionHeader,
AdditionalTrailer, ChangeDue, ContractorId, DateType,
FiscalReceiptStation, FiscalReceiptType, MessageType, PostLine,
PreLine and TotalizerType properties.

 Release 1.7
The change history above has been maintained to this point for historical reference.
No specific change history relative to the OPOS CPG is maintained from this release forward.
Refer to Appendix D for the change history details (if any) relative to this section.

 Common Control Objects
As a combination of the personal effort of Curtiss Monroe plus as part of the commitment of his
employer, NCR (formerly Research Computer Services, Inc. in Dayton, Ohio) to the retail
community, a complete set of OPOS control objects have been developed for public use. These
have been dubbed the “Common Control Objects.”

These control objects are delivered as a reference implementation, believed to be correct and
suitable for direct use by applications, but not warranted to be correct or to work with any vendor's
Service Objects.

Unified POS, v1.15.1 Beta1 A - 123

 Features
• All OPOS controls are supported.

• ATL-based, using dual interfaces so that the app can access them via IDispatch or COM
interfaces (of the form IOPOSCashDrawer, etc.).

• Built using Microsoft Visual C++. (Currently at Version 6.0,
Service Pack 4.)

• Backward compatible with all releases of service objects. This means that they check for older
SOs, and return the proper errors to the application if it accesses unsupported properties or
methods.

• They have been tested with several major hardware vendors’ Service Objects.

• Event firing logic supports well-behaved service objects that fire events from the thread that
created the control, plus other service objects that fire them from other threads.

• Self-contained, requiring only standard OS DLLs. Specifically, they do not require MFC or
ATL DLLs.

• Both MBCS and Unicode versions have been built and given limited testing. At this time, only
the MBCS versions are being posted.

• Source code for all control objects is available.

• For future additions, it is easy to add new control objects or update old ones. A custom generator
was developed that reads a data file for each control to be built. To add properties or methods,
the procedure is (a) update the data files, (b) regenerate, and (c) build the resulting projects.

 Availability and Future
Curtiss intends to maintain the control objects, and post corrections plus new releases at the site
http://www.monroecs.com as needed, for as long as he is affiliated with OPOS. Should he not be
able to perform this function, then the OPOS Core Committee is authorized to do so.

In order to supply control objects for new devices, the writers of new device chapters may be
requested to prepare the approximately 2-page data file used to define some of the key attributes of
the device to the generator.

A - 124 Unified POS, v1.15.1 Beta1

 OPOS Internal Header Files Updated in Release 1.12
The header files are listed in alphabetical order. The mapping of device class name to header file
name is as follows:
– General – Opos.hi
Belt OposBelt.hi
Bill Acceptor OposBacc.hi
Bill Dispenser OposBdsp.hi
Biometrics OposBio.hi
Bump Bar OposBb.hi
Cash Changer OposChan.hi
Cash Drawer OposCash.hi
CAT OposCat.hi
Check Scanner OposChk.hi
Coin Acceptor OposCacc.hi
Coin Dispenser OposCoin.hi
Electronic Journal OposEj.hi
Electronic Value R / W OposEvrw.hi
Fiscal Printer OposFptr.hi
Gate OposGate.hi
Hard Totals OposTot.hi
Image Scanner OposImg.hi
Item Dispenser OposItem.hi
Keylock OposLock.hi
Lights OposLgt.hi
Line Display OposDisp.hi
MICR OposMicr.hi
Motion Sensor OposMotion.hi
MSR OposMsr.hi
PIN Pad OposPpad.hi
Point Card Reader Writer OposPcrw.hi
POS Keyboard OposKbd.hi
POS Power OposPwr.hi
POS Printer OposPtr.hi
Remote Order Display OposRod.hi
RFID Scanner OposRfid.hi
Scale OposScal.hi
Scanner OposScan.hi
Signature Capture OposSig.hi
Smart Card Reader Writer OposScrw.hi
Tone Indicator OposTone.hi

The most up-to-date header files can be downloaded from the following web site:

http://monroecs.com/oposccos_current.htm
 https:/github.com/kunif/OPOS-CCO

http://monroecs.com/oposccos_current.htm

Unified POS, v1.15.1 Beta1 A - 125

A - 126 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 B - 1

Annex B

Java for Retail POS - JavaPOS
Implementation Reference

B.1 What is Java for Retail POS?
Java for Retail POS (JavaPOS) provides for open POS device solutions for applications based on Java
development technology. It is an implementation of the UnifiedPOS architecture that defines:

• An architecture for Java-based POS (Point-Of-Service or Point-Of-Sale) device access.

• A set of POS device interfaces (APIs) sufficient to support a range of POS solutions.

The Java for Retail POS standards committee was formed by a collection of retail vendors and end users, with a
primary goal of providing device interfaces for the retail applications written in Java. Prior to version 1.7 of the
UnifiedPOS and JavaPOS standards these documents were separate sets of documentation. This Annex has been
added to this UnifiedPOS Standard to provide guidance on how to implement services in a Java environment.

The JavaPOS committee will produce the following:

• UnifiedPOS Programmer’s Guide (this document).

• Java source files, including:

• Definition files. Various interface and class files described in the standard.

• jpos.config/loader (JCL), configuration and service loader example.

• Example files. These will include a set of sample Device Control classes, to illustrate the interface presented to an
application.

The JavaPOS committee will not provide the following:

• Complete software components. Hardware providers or third-party providers develop and distribute these
 components.

B.2 Benefits
The benefits of JavaPOS include:

• The opportunity for reduced POS terminal costs, through the use of thinner clients.

• Platform-independent applications, where the application is separated from both hardware and operating system
 specifics.

• Reduced administration costs, because an application and supporting software may be maintained on a server and
 loaded on demand by Java.

B - 2 Unified POS, v1.15.1 Beta1

B.3 Dependencies
Deployment of JavaPOS depends upon the following software components:

• Java Communications Port API (COM/API) or optionally some other Java communications API that supports
 hardware device connectivity.

• jpos.config/loader (JCL)

• For more information concerning the availability and any other up-to-date information about these components, see
 http://www.javapos.com/.

B.4 Relationship to OPOS
The OLE for Retail POS (OPOS) standards committee developed device interfaces for Win32-based terminals
using ActiveX technologies. The OPOS standard was used as the starting point for JavaPOS, due to:

• Similar purposes. Both standards involve developing device interfaces for a segment of the software community.

• Reuse of device models. The majority of the OPOS documentation specifies the properties, methods, events, and
 constants used to model device behavior. These behaviors are in large part independent of programming language.

• Reduced learning curve. Many application and hardware vendors are already familiar with using and
 implementing the OPOS APIs.

• Early deployment. By sharing device models, JavaPOS “wrappers” or “bridges” may be built to migrate existing
 OPOS device software to JavaPOS.

Therefore, most of the OPOS APIs were mapped into the Java language. The general translation rules are given
in Section 3 of this Annex.

B.5 Who Should Read This Section
This section is targeted to both the application developer who will use JavaPOS Devices and the system
developer who will write JavaPOS Devices.

This section assumes that the application developer is familiar with the following:

• General characteristics of POS peripheral devices.

• Java terminology and architecture.

• A Java development environment, such as Javasoft's JDK, Sun's Java Workshop, IBM's VisualAge for Java, or
 others.

A system developer must understand the above, plus the following:

• The POS peripheral device to be supported.

• The host operating system, if the JavaPOS Device will require a specific operating system.

• A thorough knowledge of the JavaPOS models and the APIs of the device.

http://www.javapos.com

Unified POS, v1.15.1 Beta1 B - 3

B.6 Appendix Overview
This annex contains the following major sections:

B.7 Architectural Overview
JavaPOS defines a multi-layered architecture in which a POS Application interacts with the Physical or Logical
Device through the JavaPOS Device.

Section Name Developer Audience

What Is “Java for Retail POS?” Application and System

Architectural Overview (page B-1257) Application and System

Device Behavior Models (page B-1259) Application and System

Classes and Interfaces (page B-1278) Application and System

Device Controls (page B-1294) System

Device Services (page B-1302) System

POS
Application

JavaPOS Device
Control

JavaPOS Device
Service

Physical (or Logical)
Device

JavaPOS
Device

JavaPOS
Device
Service

Interface

JavaPOS
Device

Interface

B - 4 Unified POS, v1.15.1 Beta1

B.8 Architectural Components
The POS Application (or Application) is either a Java Application or applet that uses one or more JavaPOS
Devices. An application accesses the JavaPOS Device through the JavaPOS Device Interface, which is
specified by Java interfaces.

JavaPOS Devices are divided into categories called Device Categories, such as Cash Drawer and POS Printer.

Each JavaPOS Device is a combination of these components:

• JavaPOS Device Control (or Device Control) for a device category. The Device Control class provides the
 interface between the Application and the device category. It contains no graphical component and is therefore
 invisible at runtime, and conforms to the JavaBeans API.

The Device Control has been designed so that all implementations of a device category’s control will be compatible.
Therefore, the Device Control can be developed independently of a Device Service for the same device category
(they can even be developed by different companies).

• JavaPOS Device Service (or Device Service), which is a Java class that is called by the Device Control through the
 JavaPOS Device Service Interface (or Service Interface). The Device Service is used by the Device Control to
 implement JavaPOS-prescribed functionality for a Physical Device. It can also call special event methods provided
 by the Device Control to deliver events to the Application.

A set of Device Service classes can be implemented to support Physical Devices with multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or peripheral) by calling the JavaPOS
Device APIs. Some Physical Devices support more than one device category. For example, some POS Printers
include a Cash Drawer kickout, and some Bar Code Scanners include an integrated Scale. However with
JavaPOS, an application treats each of these device categories as if it were an independent Physical Device. The
JavaPOS Device writer is responsible for presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-exposed hardware, in which case it
is called a Logical Device.

Unified POS, v1.15.1 Beta1 B - 5

B.8.1 Additional Layers and APIs

The JavaPOS architecture contains additional layers and APIs in order to integrate well with the Java
development environment.

Note: Comm Port API refers to the Java Communications Port API (COM/API) or optionally some other Java
communications API that supports hardware device connectivity.

JavaPOS Development Environment
JavaPOS will use these packages:

• JavaPOS Configuration / Loader (JCL) Added in Release 1.5
 The jpos.config/loader (JCL) is a simple binding (configuration and loading) API which enables a JavaPOS control

 to bind to the correct JavaPOS service in a manner independent of the actual configuration mechanism. For POS
 applications, it represents a somewhat minimum (however, extensible) functional equivalent of the “NT Registry,”
 JposEntryRegistry.
 All JavaPOS Device Controls should use this API.

• Communications Port API (for example, JavaComm v2.0 API), so that Applications can make standard access
 to devices that may use serial (RS-232), parallel, USB, and other future communication methods.

POS
Application

JavaPOS Device
Control

JavaPOS Device
Service

Serial
Driver

Parallel
Driver

USB Proprietary

Service
Loader

System
 Database

JDK 1.2 Comm Port API

Physical (or Logical)
Device

JDK

JavaPOS
Device
Service

Interface

JavaPO S
Device

Interface

Java
Device

Interface

JavaPOS
Device

B - 6 Unified POS, v1.15.1 Beta1

B.9 Device Behavior Models

B.10 Introduction to Properties, Methods, and Events
An application accesses a JavaPOS Device via the JavaPOS APIs.

The three elements of JavaPOS APIs are:

• Properties. Properties are device characteristics or settings. A type is associated with each property, such as
 boolean or String. An application may retrieve a property’s value, and it may set a writable property’s value.
 JavaPOS properties conform to the JavaBean property design pattern.

To read a property value, use the method:
Type getSampleProperty() throws JposException;
where Type is the data type of the property and SampleProperty is the property name.
To write a property value (assuming that the property is writable), use the method:
void setSampleProperty(Type value) throws JposException;
where Type is the data type of the property and SampleProperty is the property name.

• Methods. An application calls a method to perform or initiate some activity at a device. Some methods require
 parameters of specified types for sending and/or returning additional information.

A JavaPOS method has the form:
void sampleMethod(parameters) throws JposException;
where sampleMethod is the method name and parameters is a list of zero or more parameters.
Since JavaPOS uses Method names that are consistent with OPOS some Methods may appear to be Property
getters/setters (for example, setDate page 15-140 in Fiscal Printer). BeanInfo classes are used to properly
describe the Properties and Methods to provide clarification so that various vendors builder tools will properly
function.
• Events. A JavaPOS Device may call back into the application via events. The application must specifically register
 for each event type that it needs to receive. JavaPOS events conform to the JavaBean event design pattern.

See “Events” in this Annex for further details.

Unified POS, v1.15.1 Beta1 B - 7

B.11 Device Initialization and Finalization

B.11.1 Initialization

The first actions that an application must take to use a JavaPOS Device are:

• Obtain a reference to a JavaPOS Device Control, either by creating a new instance or by accessing an existing one.

• Call Control methods to register for the events that the application needs to receive. (See “Events” in this Annex)

To initiate activity with the Physical Device, an application calls the Control’s open method:
void open(String logicalDeviceName) throws JposException;

The logicalDeviceName parameter specifies a logical device to associate with the JavaPOS Device. The open
method performs the following steps:

1. Creates and initializes an instance of the proper Device Service class for the specified name.

2. Initializes many of the properties, including the descriptions and version numbers of the JavaPOS Device.

More than one instance of a Device Control may have a Physical Device open at the same time. Therefore, after
the Device is opened, an application might need to call the claim method to gain exclusive access to it. Claiming
the Device ensures that other Device instances do not interfere with the use of the Device. An application can
release the Device to share it with another Device Control instance– for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to true. This value brings the
Physical Device to an operational state, while false disables it. For example, if a Scanner JavaPOS Device is
disabled, the Physical Device will be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the JavaPOS Device is enabled.

B.11.2 Finalization

After an application finishes using the Physical Device, it should call the close method. If the DeviceEnabled
property is true, close disables the Device. If the Claimed property is true, close releases the claim.

Before exiting, an application should close all open JavaPOS Devices to free device resources in a timely
manner, rather than relying on the Java garbage collection mechanism to free resources at some indeterminate
time in the future.

B - 8 Unified POS, v1.15.1 Beta1

B.11.3 Summary

In general, an application follows this general sequence to open, use, and close a Device:

• Obtain a Device Control reference.

• Register for events (add listeners).

• Call the open method to instantiate a Device Service and link it to the Device Control.

• Call the claim method to gain exclusive access to the Physical Device. Required for exclusive-use Devices; optional
 for some sharable Devices. (See “Device Sharing Model” for more information).

• Set the DeviceEnabled property to true to make the Physical Device operational. (For sharable Devices, the Device
 may be enabled without first claiming it.)

• Use the device.

• Set the DeviceEnabled property to false to disable the Physical Device.

• Call the release method to release exclusive access to the Physical Device.

• Call the close method to unlink the Device Service from the Device Control.

• Unregister from events (remove listeners).

B.12 Device Sharing Model
JavaPOS Devices fall into two sharing categories:

• Devices that are to be used exclusively by one JavaPOS Device Control instance.

• Devices that may be partially or fully shared by multiple Device Control instances.

Any Physical Device may be open by more than one Device Control instance at a time. However, activities that
an application can perform with a Device Control may be restricted to the Device Control instance that has
claimed access to the Physical Device.

Note: Currently, device exclusivity and sharing can only be guaranteed within an application’s Java Virtual
Machine. This is because the Java language and environment does not directly support inter-virtual machine
communication or synchronization mechanisms. At some time in the future, this restriction may be lifted. Until
then, the sharing model will typically be of little benefit because a single application will seldom find value in
opening a Physical Device through multiple Device Control instances.

Unified POS, v1.15.1 Beta1 B - 9

B.12.1 Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is the POS printer. Due to physical
or operational characteristics, an exclusive-use device can only be used by one Device Control at a time. An
application must call the Device’s claim method to gain exclusive access to the Physical Device before most
methods, properties, or events are legal. Until the Device is claimed and enabled, calling methods or accessing
properties may cause a JposException with an error code of JPOS_E_NOTCLAIMED, JPOS_E_CLAIMED, or
JPOS_E_DISABLED. No events are delivered until the Device is claimed.

An application may in effect share an exclusive-use device by calling the Device Control’s claim method before
a sequence of operations, and then calling the release method when the device is no longer needed. While the
Physical Device is released, another Device Control instance can claim it.

When an application calls the claim method again (assuming it did not perform the sequence of close method
followed by open method on the device), some settable device characteristics are restored to their condition at
the release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and
the printer’s characters per line. However, state characteristics are not restored, such as the printer’s sensor
properties. Instead, these are updated to their current values.

B.12.2 Sharable Devices

Some devices are “sharable devices.” An example is the keylock. A sharable device allows multiple Device
Control instances to call its methods and access its properties. Also, it may deliver its events to all Device
Controls that have registered listeners. A sharable device may still limit access to some methods or properties to
the Device Control that has claimed it, or it may deliver some events only to the Device Control that has claimed
it.

B - 10 Unified POS, v1.15.1 Beta1

B.13 Data Types Updated in Release 1.11
JavaPOS uses the following data types:

The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s
primitive types, such as int and boolean, are passed by value, and its primitive wrapper types, such as Integer
and Boolean, do not support modification.

For strings and arrays, do not use a null value to report no information. Instead use an empty string (“”) or an
empty array (zero length).

In some chapters, an integer may contain a “bit-wise mask”. That is, the integer data may be interpreted one or
more bits at a time. The individual bits are numbered beginning with Bit 0 as the least significant bit.

Type Usage

boolean Boolean true or false.

boolean[
1] Mutable boolean.

byte 8-bit integer.

byte[] Immutable array of bytes.

byte[][] Immutable array of binary objects (themselves presented as arrays of
bytes).

byte[1][] Mutable array of bytes. The [0] element contains the array of bytes that
can be modified, both in size and/or contents.

int 32-bit integer.

int[] 32-bit integer array.

int[1] Mutable 32-bit integer.

int[1][] Mutable 32-bit integer array. The [0] element contains the array of 32-
bit integers that can be modified, both in size and/or contents.

long
64-bit integer. Sometimes used for currency values, where 4 decimal
places are implied. For example, if the integer is “1234567”, then the
currency value is “123.4567”.

long[1] Mutable 64-bit integer.

String Text character string.

String[1] Mutable text character string.

Point[] Array of points. Used by Signature Capture.

Object An object. This will usually be subclassed to provide a Device Service-
specific parameter.

Unified POS, v1.15.1 Beta1 B - 11

B.14 Exceptions
Every JavaPOS method and property accessor may throw a JposException upon failure, except for
the properties DeviceControlVersion, DeviceControlDescription, and State. No other types of
exceptions will be thrown.

JposException is in the package jpos, and extends java.lang.Exception. The constructor variations
are:
public JposException(int errorCode);

public JposException(int errorCode, int errorCodeExtended);

public JposException(int errorCode, String description);

public JposException(int errorCode, int errorCodeExtended,
String Description);

public JposException(int errorCode, String description,
Exception origException);

public JposException(int errorCode, int errorCodeExtended,
String description, Exception origException)

The parameters are:

Parameter Description
errorCode The JavaPOS error code. Access is through the getErrorCode method.

errorCodeExtended May contain an extended error code. If not provided by the selected
constructor, then is set to zero. Access is through the
getErrorCodeExtended method.

description A text description of the error. If not provided by the selected
constructor, then one is formed from the errorCode and
errorCodeExtended parameters. Access is through the superclass’
methods getMessage or toString.

origException Original exception. If the JavaPOS Device caught a non-JavaPOS
exception, then an appropriate errorCode is selected and the original
exception is referenced by this parameter. Otherwise, it is set to null.
Access is through the getOrigException method.

B - 12 Unified POS, v1.15.1 Beta1

B.14.1 ErrorCode Updated in Release 1.11

This section lists the general meanings of the error code property of an ErrorEvent or a
JposException. In general, the property and method descriptions in later chapters list error codes
only when specific details or information are added to these general meanings.
The error code is set to one of the following values:
Value Meaning
JPOS_E_CLOSED An attempt was made to access a closed JavaPOS Device.

JPOS_E_CLAIMED An attempt was made to access a Physical Device that is claimed by
another Device Control instance. The other Control must release the
Physical Device before this access may be made. For exclusive-use
devices, the application will also need to claim the Physical Device
before the access is legal.

JPOS_E_NOTCLAIMED
An attempt was made to access an exclusive-use device that must be
claimed before the method or property set action can be used.
If the Physical Device is already claimed by another Device Control
instance, then the status JPOS_E_CLAIMED is returned instead.

JPOS_E_NOSERVICE The Control cannot communicate with the Service, normally because of
a setup or configuration error.

JPOS_E_DISABLED Cannot perform this operation while the Device is disabled.

JPOS_E_ILLEGAL An attempt was made to perform an illegal or unsupported operation
with the Device, or an invalid parameter value was used.

JPOS_E_NOHARDWARE
The Physical Device is not connected to the system or is not powered on.

JPOS_E_OFFLINE The Physical Device is off-line.

JPOS_E_NOEXIST The file name (or other specified value) does not exist.

JPOS_E_EXISTS The file name (or other specified value) already exists.

JPOS_E_FAILURE The Device cannot perform the requested procedure, even though the
Physical Device is connected to the system, powered on, and on-line.

JPOS_E_TIMEOUT The Service timed out waiting for a response from the Physical Device,
or the Control timed out waiting for a response from the Service.

JPOS_E_BUSY The current Device Service state does not allow this request. For
example, if asynchronous output is in progress, certain methods may not
be allowed.

JPOS_E_EXTENDED A device category-specific error condition occurred. The error condition
code is available by calling getErrorCodeExtended.

Unified POS, v1.15.1 Beta1 B - 13

JPOS_E_DEPRECATED
The requested operation can not be performed since it has been
deprecated. See Deprecation Handling in this Annex for additional
information.

B.14.2 ErrorCodeExtended

The extended error code is set as follows:

• When errorCode is JPOS_E_EXTENDED, errorCodeExtended is set to a device category-specific value, and must
match one of the values given in this document under the appropriate device category chapter.

• When errorCode is any other value, errorCodeExtended may be set by the Service to any Device Service-specific
value. These values are only meaningful if an application adds Service-specific code to handle them.

B.15 Events Updated in Release 1.12
Java for Retail POS uses events to inform the application of various activities or changes with the JavaPOS
Device. The five event types follow.

Event Class Description
Supported When A

Device Category
Supports...

DataEvent Input data has been placed into device
class-category properties. Event-driven input

ErrorEvent An error has occurred during event-
driven input or asynchronous output.

Event-driven input
-or-

Asynchronous output

OutputCompleteEvent An asynchronous output has
successfully completed. Asynchronous output

StatusUpdateEvent

A change in the Physical Device’s
status has occurred.
Release 1.3 and later: All
devices may be able to report device
power state. See “Device Power
Reporting Model”.

Status change notification

DirectIOEvent
This event may be defined by a
Device Service provider for purposes
not covered by the specification.

Always, for Service-
specific use

B - 14 Unified POS, v1.15.1 Beta1

Each of these events contains the following properties:
Property Type Description
Source Object Reference to the Device Control delivering the event. If the application

defines a class that listens for events from more than one Device, then it
uses this property to determine the Device instance that delivered the
event.

SequenceNumber long JavaPOS event sequence number. This number is a sequence number that
is global across all JavaPOS Devices. Each JavaPOS event increments the
global sequence number, then places its value in this property.

When long An event timestamp; value is set to System.currentTimeMillis().

Chapter 2, “Events (UML interfaces)” provides details about each of these events, including
additional properties.

The Device Service must enqueue these events on an internally created and managed queue. All
JavaPOS events are delivered in a first-in, first-out manner. (The only exception is that a special
input error event is delivered early if some data events are also enqueued. See “Device Input
Model” in this Annex.) Events are delivered by an internally created and managed Device Service
thread. The Device Service causes event delivery by calling an event firing callback method in the
Device Control, which then calls each registered listener's event method in the order in which they
were added.

The following conditions cause event delivery to be delayed until the condition is corrected:

• The application has set the property FreezeEvents to true.
• The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled

is false. (See “Device Input Model” in this Annex.)

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

Rules for event queue management are:

• The JavaPOS Device may only enqueue new events while the Device is enabled.
• The Device delivers enqueued events until the application calls the release method (for

exclusive-use devices) or the close method (for any device), at which time any remaining events
are deleted.

• For input devices, the clearInput method clears data and input error events.
• For output devices, the clearOutput method clears output error events.
• The application returns from the JPOS_EL_INPUT_DATA ErrorEvent with ErrorResponse

set to JPOS_ER_CLEAR.

Unified POS, v1.15.1 Beta1 B - 15

B.15.1 Registering for Events

JavaPOS events use the event delegation model first outlined in JDK 1.1. With this model, an application
registers for events by calling a method supplied by the event source, which is the Device Control. The method
is supplied a reference to an application class that implements a listener interface extended from
java.util.EventListener.

The following table specifies the event interfaces and methods for each event class:

Although more than one listener may be registered for an event type, the typical case is for only one listener, or
at least only one primary listener. This listener takes actions such as processing data events and direct I/O events,
and responding to error events.

B.15.2 Event Delivery

A Device delivers an event by calling the listener method of each registered listener. The listener processes the
event, then returns to the Device Control.

An application must not assume that events are delivered in the context of any particular thread. The JavaPOS
Device delivers events on a privately created and managed thread. It is an application’s responsibility to
synchronize event processing with its threads as needed.

While an application is processing an event within its listener method, no additional events will be delivered by
the Device.

Event Class

Listener Interface and
Methods

Implemented in an
application class

Source Methods
Implemented in the Device Control

DataEvent DataListener
dataOccurred (DataEvent e)

addDataListener (DataListener l)
removeDataListener (DataListener l)

ErrorEvent ErrorListener
errorOccurred (ErrorEvent e)

addErrorListener (ErrorListener l)
removeErrorListener (ErrorListener l)

StatusUpdateEvent
StatusUpdateListener
statusUpdateOccurred
(StatusUpdateEvent e)

addStatusUpdateListener
(StatusUpdateListener l)
removeStatusUpdateListener
(StatusUpdateListener l)

OutputCompleteEvent
OutputCompleteListener
outputCompleteOccurred
(OutputCompleteEvent e)

addOutputCompleteListener
(OutputCompleteListener l)
removeOutputCompleteListener
(OutputCompleteListener l)

DirectIOEvent
DirectIOListener
directIOOccurred
(DirectIOEvent e)

addDirectIOListener (DirectIOListener l)
removeDirectIOListener (DirectIOListener
l)

B - 16 Unified POS, v1.15.1 Beta1

While within a listener method, an application may access properties and call methods of the Device. However,
an application must not call the release or close methods from an event method, because the release method may
shut down event handling (possibly including a thread on which the event was delivered) and close must shut
down event handling before returning.

Unified POS, v1.15.1 Beta1 B - 17

B.16 JavaPOS Event Registration Sequence Diagram
 Added in Release 1.7

The following sequence diagram shows how applications register for events with JavaPOS Controls, via classes
implementing the JavaPOS event listener interface.

The delivery of events from a JavaPOS Service is almost always performed asynchronously to calls by clients;
that is, once the clients have registered their <JposEvent>Listener objects with the Control, these listener
objects will be called back – appropriate <jposEvent>Occurred() method – in a separate thread than the
application thread. The event thread is usually a service thread that operates on an event queue, delivering all
posted events from the queue to the Controls depending on whether the FreezeEvents property is true.

NOTE: this diagram shows the typical event registration process for a device service in JavaPOS. Various details are omitted on
purpose to make the diagram clearer. Also, DevCat == POSPrinter, CashDrawer, Keylock ... and other UnifiedPOS device categories.

:ClientApp :<JposEvent>
Listener

:<DevCat> :<DevCat>Service:<JposEvent>

<JposEvent>Listener is a generic moniker for a class
implementing one of the jpos.events.<JposEvent>Listener
interfaces. This can be the application class or some
inner class or other class.

1: new

2: add<JposEvent>Listener(:<JposEventListener)

3: maintains a list of registered listeners

4: open(logicalName)
5: open(logicalName)

We are assuming that
the open() call is
successful and that the
control is bound with its
service

6: setDeviceEnabled(true) 7: setDeviceEnabled(true)

Some devices (exclusive-use) need to be
claimed before being enabled (this is not
shown here)

8: some hardware event occurred causing a JposEvent

9: new

10: deliver :<JposEvent> to control [FreezeEvents == false]11: deliver events to all listeners

12: appropriate listener method is called

At this point some
application code executes
in the listener class or by
having the listener object
call some other method
on some application
object [the details are
implied and not shown]

17: remove<JposEvent>Listener(:<JposEventListener>)

18: update list

No more events will be delivered to the
listener object

For DataEvent you also need the
DataEventEnabled property to be true. It will
be set to false once the event is delivered.

13: setDeviceEnabled(false)
14: setDeviceEnabled(false)

15: close() 16: close()

B - 18 Unified POS, v1.15.1 Beta1

B.17 Device Input Model
The standard JavaPOS input model for exclusive-use devices is event-driven input. Event-driven input allows
input data to be received after DeviceEnabled is set to true. Received data is enqueued as a DataEvent, which
is delivered to an application as detailed in the “Events” section in this Annex. If the AutoDisable property is
true when data is received, then the JavaPOS Device will automatically disable itself, setting DeviceEnabled to
false. This will inhibit the Device from enqueuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the JavaPOS Device, it sets the DataEventEnabled property
to true. Then, when input is received (usually as a result of a hardware interrupt), the Device delivers a
DataEvent. (If input has already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status information through its Status
property. The Device places the input data plus other information as needed into device category-specific
properties just before the event is delivered.

Just before delivering this event, the JavaPOS Device disables further data events by setting the
DataEventEnabled property to false. This causes subsequent input data to be enqueued by the Device while an
application processes the current input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting DataEventEnabled to true.

Error Handling Updated in Release 1.12
If the JavaPOS Device encounters an error while gathering or processing event-driven input, then the Device:

• Changes its state to JPOS_S_ERROR.

• Enqueues an ErrorEvent with locus JPOS_EL_INPUT to alert an application of the error condition. This event is
 added to the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional ErrorEvent with locus
 JPOS_EL_INPUT_DATA is enqueued before the DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is true, so that orderly application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves the
DataEventEnabled property value at true. Note that the application may set DataEventEnabled to false within
its event handler if subsequent input events need to be disabled for a period of time.

Unified POS, v1.15.1 Beta1 B - 19

The application’s event listener method can set the ErrorResponse property to one of the following:

The Device exits the Error state when one of the following occurs:

• The application returns from the JPOS_EL_INPUT ErrorEvent.

• The application returns from the JPOS_EL_INPUT_DATA ErrorEvent.

• The application calls the clearInput method.

ErrorLocus Description

JPOS_EL_INPUT_DATA

Only delivered if the error occurred when one or more DataEvents are
already enqueued.
This event gives the application the ability to immediately clear the input,
or to optionally alert the user to the error before processing the buffered
input. This error event is enqueued before the oldest DataEvent, so that an
application is alerted of the error condition quickly.
This locus was created especially for the Scanner: When this error event is
received from a Scanner JavaPOS Device, the operator can be immediately
alerted to the error so that no further items are scanned until the error is
resolved. Then, the application can process any backlog of previously
scanned items before error recovery is performed.

JPOS_EL_INPUT

Delivered when an error has occurred and there is no data available.
If some input data was buffered when the error occurred, then an
ErrorEvent with the locus JPOS_EL_INPUT_DATA was delivered first,
and then this error event is delivered after all DataEvents have been
delivered.
Note: This JPOS_EL_INPUT event is not delivered if: an
JPOS_EL_INPUT_DATA event was delivered and the application event
handler responded with a JPOS_ER_CLEAR.

ErrorResponse Description

JPOS_ER_CLEAR
Clear the buffered DataEvents and ErrorEvents and exit the error
state, changing State to JPOS_S_IDLE.
This is the default response for locus JPOS_EL_INPUT.

JPOS_ER_CONTINUEINPUT

This response acknowledges the error and directs the Device to
continue processing. The Device remains in the error state, and will
deliver additional data events as directed by the
DataEventEnabled property. When all input has been delivered
and the DataEventEnabled property is again set to true, another
ErrorEvent is delivered with locus JPOS_EL_INPUT.
This is the default response when the locus is
JPOS_EL_INPUT_DATA, and is legal only with this locus.

JPOS_ER_RETRY

This response directs the Device to retry the input. The error state
is exited, and State is changed to JPOS_S_IDLE.
This response may only be selected when the device chapter
specifically allows it and when the locus is JPOS_EL_INPUT. An
example is the scale.

B - 20 Unified POS, v1.15.1 Beta1

Miscellaneous
For some Devices, the Application must call a method to begin event driven input. After the input is received by
the Device, then typically no additional input will be received until the method is called again to re-initiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the JavaPOS Device.

Calling the clearInput method deletes all input enqueued by a JavaPOS Device. clearInput may be called after
open for sharable devices and after claim for exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device categories containing
methods or properties that return input data directly. Some device categories define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock Device. This type of input
is sometimes called “synchronous input.”

Unified POS, v1.15.1 Beta1 B - 21

B.18 Device Output Models
The Java for Retail POS output model consists of two output types: synchronous and asynchronous. A device
category may support one or both types, or neither type.

B.18.1 Synchronous Output

The application calls a category-specific method to perform output. The JavaPOS Device does not return until
the output is completed.

This type of output is preferred when device output can be performed relatively quickly. Its merit is simplicity.

B.18.2 Asynchronous Output Updated in Release 1.12

The application calls a category-specific method to start the output. The JavaPOS Device validates the method
parameters and throws an exception immediately if necessary. If the validation is successful, the JavaPOS Device
does the following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device can
 receive and process it.

2. Sets the OutputID property to an identifier for this request.

3. Returns as soon as possible.

When the JavaPOS Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery
to the application. A property of this event contains the output ID of the completed request. If the request is
terminated before completion, due to reasons such as the application calling the clearOutput method or
responding to an ErrorEvent with a JPOS_ER_CLEAR response, then no OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules in this Annex). No further asynchronous output will occur until the event has been delivered to the
application. If the response is JPOS_ER_CLEAR, then outstanding asynchronous output is cleared. If the
response is JPOS_ER_RETRY, then output is retried; note that if several outputs were simultaneously in progress
at the time that the error was detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

B - 22 Unified POS, v1.15.1 Beta1

Error Handling
If an error occurs while performing an asynchronous request, the error state JPOS_S_ERROR is entered and an
ErrorEvent is enqueued with the ErrorLocus property set to JPOS_EL_OUTPUT. The application is
guaranteed that the request in error is the one following the request whose output ID was most recently reported
by an OutputCompleteEvent. An application’s event listener method can set the ErrorResponse property to
one of the following:

Miscellaneous Updated in Release 1.7
Calling the clearOutput method deletes all buffered output data, including all asynchronous output, buffered by
the JavaPOS Device. This method also stops any output that may be in progress (when possible).

Note: Currently, only the POS printer uses the complete Asynchronous Output model described here. Other
device categories use portions of the model.

ErrorResponse Description

JPOS_ER_CLEAR Clear the outstanding output and exit the error state (to
JPOS_S_IDLE).

JPOS_ER_RETRY

Exit the error state (to JPOS_S_BUSY) and retry the outstanding
output. If the condition that caused the error was not corrected, then
the Device may immediately reenter the error state and enqueue
another ErrorEvent.
This is the default response.

Unified POS, v1.15.1 Beta1 B - 23

B.19 Device Power Reporting Model
 Added in JavaPOS Release 1.3, Updated in Release 1.8.

Applications frequently need to know the power state of the devices they use. Earlier Releases of JavaPOS had
no consistent method for reporting this information. Note: This model is not intended to report Workstation or
POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of these conditions is now
managed by the POSPower device category, see Chapter 30.

B.19.1 Model

JavaPOS segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the “operational” state.

• OFF. The device is powered off or detached from the terminal. This is a “non-operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to respond to requests. It may need to be
 placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational”
 state.

In addition, one combination state is defined:

• OFF_OFFLINE. The device is either off or offline, and the Device Service cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States
These states are different and usually independent. JavaPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, JavaPOS only reports the
state while the device is enabled. (This restriction is necessary because a Device Service
typically can only communicate with the device while enabled.)
If a device is “offline”, then a Device Service may choose to fail an attempt to “enable”
the device. However, once enabled, the Device Service may not disable a device based
on its power state.

B - 24 Unified POS, v1.15.1 Beta1

B.19.2 Properties

The JavaPOS device power reporting model adds the following common elements across all device
classes:

• CapPowerReporting property. Identifies the reporting capabilities of the device. This property may
 be one of:
•JPOS_PR_NONE. The Device Service cannot determine the state of the device. Therefore, no
 power reporting is possible.
•JPOS_PR_STANDARD. The Device Service can determine and report two of the power states -
 OFF_OFFLINE (that is, off or offline) and ONLINE.
•JPOS_PR_ADVANCED. The Device Service can determine and report all three power states -
 ONLINE, OFFLINE, and OFF.

• PowerState property. Maintained by the Device Service at the current power condition, if it can be
 determined. This property may be one of:
•JPOS_PS_UNKNOWN
•JPOS_PS_ONLINE
•JPOS_PS_OFF
•JPOS_PS_OFFLINE
•JPOS_PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power reporting via
 StatusUpdateEvents and the PowerState property. This property may only be set before the device is
 enabled (that is, before DeviceEnabled is set to true). This restriction allows simpler implementation
 of power notification with no adverse effects on the application. The application is either prepared to
 receive notifications or doesn't want them, and has no need to switch between these cases. This
 property may be one of:
•JPOS_PN_DISABLED
•JPOS_PN_ENABLED

Unified POS, v1.15.1 Beta1 B - 25

B.19.3 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when
CapPowerReporting is not JPOS_PR_NONE, and
PowerNotify is JPOS_PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin monitoring the power
state:
• If the Physical Device is ONLINE, then:

PowerState is set to JPOS_PS_ONLINE.
A StatusUpdateEvent is enqueued with its Status property set to
JPOS_SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or OFF_OFFLINE, then the
Device Service may choose to fail the enable by throwing a JposException with error code
JPOS_E_NOHARDWARE or JPOS_E_OFFLINE.
However, if there are no other conditions that cause the enable to fail, and the Device
Service chooses to return success for the enable, then:

PowerState is set to JPOS_PS_OFF, JPOS_PS_OFFLINE, or
JPOS_PS_OFF_OFFLINE.
A StatusUpdateEvent is enqueued with its Status property set to
JPOS_SUE_POWER_OFF, JPOS_SUE_POWER_OFFLINE, or
JPOS_SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, JavaPOS assumes that the Device
is no longer monitoring the power state and sets the value of PowerState to
JPOS_PS_UNKNOWN.

B - 26 Unified POS, v1.15.1 Beta1

B.20 Device Information Reporting Model Added in Release 1.8.
POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See Chapter 1 for examples of XML definitions of the
device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the claim and setDeviceEnabled(true) methods when
access to a device is required and using the setDeviceEnabled(false) and release methods when access to the
device is no longer needed. Coordination of device access via this mechanism is the responsibility of the
applications themselves.

B.20.1 Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

• CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
 CapStatisticsReporting is false, then no statistical data regarding the device is available. This is equivalent to
 Services compatible with prior versions of the specification. When CapStatisticsReporting is true, then statistical
 data for the device is available.

• CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by the
 application. This property is only valid if CapStatisticsReporting is true. When CapUpdateStatistics is false, then
 none of the statistical data can be reset/updated by the application. Otherwise, when CapUpdateStatistics is true,
 then (some of) the statistical data can be reset/updated by the application.

• resetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true. This
 method resets one, some, or all of the resettable device statistics to zero.

• retrieveStatistics method. Can only be called if CapStatisticsReporting is true. This method retrieves one, some,
 or all of the accumulated statistics for the device.

• updateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true.
 This method updates one, some, or all of the resettable device statistics to the supplied values.

Unified POS, v1.15.1 Beta1 B - 27

B.21 Update Firmware Device Model Added in Release 1.9
POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by a UnifiedPOS control.

This model has the following capabilities:

• A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

• A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be compared
 against the firmware version of the device.

• A method, UpdateFirmware, to perform an asynchronous update of the firmware in a device.

• A method, CompareFirmwareVersion, to compare the firmware file’s version against the firmware version of the
 device.

• Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not covered by this document, only
the means by which the update firmware process is started and progress is reported.

B.22 Device States
JavaPOS defines a property State with the following values:

JPOS_S_CLOSED
JPOS_S_IDLE
JPOS_S_BUSY
JPOS_S_ERROR

The State property is set as follows:

• State is initially JPOS_S_CLOSED.

• State is changed to JPOS_S_IDLE when the open method is successfully called.

• State is set to JPOS_S_BUSY when the Device Service is processing output. The State is restored to
 JPOS_S_IDLE when the output has completed.

• The State is changed to JPOS_S_ERROR when an asynchronous output encounters an error condition, or when an
 error is encountered during the gathering or processing of event-driven input.

After the Device Service changes the State property to JPOS_S_ERROR, it enqueues an ErrorEvent. The properties
of this event are the error code and extended error code, the locus of the error, and a mutable response to the error.
See Input Model Error Handling and Output Model Error Handling in this Annex for further details.

B - 28 Unified POS, v1.15.1 Beta1

B.23 Threads
The Java language directly supports threads, and an application may create additional threads to perform
different jobs. The use of threads can add complexity, however, often requiring synchronization to arbitrate
sharing of resources. For applications that share a control instance among multiple threads, actions of one thread
may have undesirable effects on the other thread(s). For example, cancelled I/O (e.g., clearOutput) can result in
any pending synchronous requests of other threads being completed with a JPOS exception with an error code of
JPOS_E_FAILURE. These situations can be avoided by insuring a control instance is managed by a single
thread.

An application must be aware of multiple threads in the following cases:

• Properties and Methods. Calling some JavaPOS methods or setting some properties can cause other property
 values to be changed. When an application needs to access these properties, it must either access the properties and
 methods from only one thread, or ensure that its threads synchronize these sequences as required.

• Events. An application must not assume that events are delivered in the context of any particular thread. The
 JavaPOS Device typically will deliver events on a privately created and managed thread. It is an application’s
 responsibility to synchronize event processing with its threads if necessary.

B.24 Version Handling
As JavaPOS evolves, additional releases will introduce enhanced versions of some Devices. JavaPOS imposes
the following requirements on Device Control and Service versions:

• Device Control requirements. A Device Control for a device category must operate with any Device Service for
 that category, as long as its major version number matches the Service's major version number. If they match, but
 the Control's minor version number is greater than the Service’s minor version number, the Control may support
 some new methods or properties that are not supported by the Service’s release. If an application calls one of these
 methods or accesses one of these properties, a JposException with error code JPOS_E_NOSERVICE will be
 thrown.

• Device Service requirements. A Device Service for a device category must operate with any Device Control for
 that category, as long as its major version number matches the Control's major version number. If they match, but
 the Service's minor version number is greater than the Control's minor version number, then the Service may
 support some methods or properties that cannot be accessed from the Control.

When an application wishes to take advantage of the enhancements of a version, it must first determine that the
Device Control and Device Service are at the proper major version and at or greater than the proper minor
version. The versions are reported by the properties DeviceControlVersion and DeviceServiceVersion.

Unified POS, v1.15.1 Beta1 B - 29

B.25 Classes and Interfaces

B.26 Synopsis
This section lists the JavaPOS classes and interfaces used by applications, Device Controls and Device Services.
Further details about their usage appear later in this document.

In the tables that follow, the following substitutions should be made for italic type:

The classes and interfaces defined or used by JavaPOS are summarized in the following tables, organized by the
software entity that implements them.

B.26.1 Application

Substitution
Name Description

Event Replace with one of the five event types:
Data, Error, OutputComplete, StatusUpdate, DirectIO

event Replace with one of the five event types:
data, error, outputComplete, statusUpdate, directIO

Devcat

Replace with one of the device categories:
BumpBar, CashChanger, CashDrawer, CAT, CoinDispenser, FiscalPrinter,
HardTotals, Keylock, LineDisplay, MICR, MSR, PINPad, PointCardRW,
POSKeyboard, POSPower, POSPrinter, RemoteOrderDisplay, Scale, Scanner,
SignatureCapture, ToneIndicator

Rr
Replace with the JavaPOS release number. For example, Release 1.2 is shown as 12.
When an interface or class uses a release number, interfaces for later releases at the
same major version number extend the previous release's interface or class.

Pp Replace with the JavaPOS release number prior to Rr. For example, if Rr is 13, then
Pp is 12.

Class or
Interface Name Description Extends / Implements

Interface jpos.EventListener
(Ex: DataListener)

Application defines and registers a
class that implements this interface.
Events are delivered by calling the
eventOccurred (ex: dataOccurred)
method of this interface with an
EventEvent (ex: DataEvent)
instance.

Extends:
java.util.EventListener

B - 30 Unified POS, v1.15.1 Beta1

B.26.2 Device Control

B.26.3 Device Service

Class or
Interface Name Description Extends / Implements

Class
jpos.Devcat
(ex: Scanner,
POSPrinter)

Device Control Class.
One fixed name per device
category.

Implements:
jpos.DevcatControlRr
(ex: ScannerControl12,
POSPrinterControl13)
Implements (as an Inner
Class): jpos.services.
EventCallbacks

Interface

jpos.DevcatControlR
r

(ex:
ScannerControl12,
POSPrinterControl1
3)

Contains the methods and
properties specific to Device
Controls for this device category
and release.

Extends either:
jpos.BaseControl
(for first release) or
jpos.DevcatControlPp
(for later releases) (ex:
POSPrinterControl13)

Interface jpos.BaseControl
Contains the methods and
properties common to all Device
Controls.

--

Interface jpos.services.
EventCallbacks

Includes one callback method per
event type. The Device Service
calls these methods to cause events
to be delivered to the application.

--

Class or
Interface Name Description Extends / Implements

Class Vendor-defined name Device Service Class.

Implements:
jpos.services.
DevcatServiceRr
(ex: ScannerService12,
POSPrinterService13)

Interface

jpos.services.
DevcatServiceRr
(ex:
ScannerService12,
POSPrinterService1
3)

Contains the methods and
properties specific to Device
Services for this device category
and release.

Extends either:
jpos.services.
BaseService
(for first release) or
jpos.services.
DevcatServicePp
(for later releases) (ex:
POSPrinterService13)

Interface jpos.services.
BaseService

Contains the methods and
properties common to all Device
Services.

--

Unified POS, v1.15.1 Beta1 B - 31

B.26.4 Helper Classes

Class or
Interface Name Description Extends / Implements

Interface jpos.JposConst
Interface containing the JavaPOS
constants that are common to
several device categories.

--

Interface
jpos.DevcatConst
(ex: ScannerConst,
POSPrinterConst)

Interface containing the JavaPOS
constants specific to a device
category.

--

Class jpos.JposEvent
Abstract class from which all
JavaPOS event classes are
extended.

Extends:
java.util.EventObject

Class jpos.EventEvent
(ex: DataEvent)

The Device Service creates Event
event instances of this class and
delivers them through the Device
Control’s event callbacks to the
application.

Extends:
jpos.JposEvent

Class jpos.JposException

Exception class. The Device
Control and Device Service create
and throw exceptions on method
and property access failures.

Extends:
java.lang.Exception

B - 32 Unified POS, v1.15.1 Beta1

B.27 Sample Class and Interface Hierarchies
The following example class hierarchies are given for the scanner Release 1.2 (the initial Release) and for the
printer (Release 1.3). Assume that neither Device Service generates any DirectIO events in which the application
is interested.

B.27.1 Application Sample

“MyApplication” class hierarchy:

• DataListener. Implement to receive Scanner data events.

• ErrorListener. Implement to receive Scanner and POSPrinter error events.

• OutputCompleteListener. Implement to receive POSPrinter output complete events.

• StatusUpdateListener. Implement to receive POSPrinter status update events.

(Frequently, an application will define additional classes that implement one or more of the listener interfaces.)

The “MyApplication” Application class also uses the following:

• Scanner and POSPrinter. Instances of the Device Controls.

• JposConst, ScannerConst, and POSPrinterConst. Use constants, either by fully qualified package names or by
 adding to the “implements” clause of an application class.

• DataEvent. Instance of this class received by the DataListener's method dataOccurred.

• ErrorEvent. Instance of this class received by the ErrorListener's method errorOccurred.

• OutputCompleteEvent. Instance of this class received by the OutputCompleteListener's method
 outputCompleteOccurred.

• StatusUpdateEvent. Instance of this class received by the StatusUpdateListener's method
 statusUpdateOccurred.

• JposException. Instance of this class is caught when a Scanner or POSPrinter method or property access fails.

Unified POS, v1.15.1 Beta1 B - 33

B.27.2 Device Control Sample

Scanner
Scanner class hierarchy:

• ScannerControl12. Implement scanner’s methods and properties.
• EventCallbacks. Derive an inner class to pass to Service so that it may generate events.

The Scanner Control class also uses the following:

• JposConst and ScannerConst. Use constants, either by fully qualified package names or
by adding to the “implements” clause of the Device Control.

• JposException. Instance of this class is thrown when a method or property access fails.

POSPrinter
POSPrinter class hierarchy:

• POSPrinterControl13. Implement printer’s methods and properties and extends
POSPrinterControl12.

• EventCallbacks. Derive an inner class to pass to Service so that it may generate events.

The POSPrinter Control class also uses the following:

• JposConst and POSPrinterConst. Use constants, either by fully qualified package names
or by adding to the “implements” clause of the Device Control.

• JposException. Instance of this class is thrown when a method or property access fails.

B - 34 Unified POS, v1.15.1 Beta1

B.27.3 Device Service Sample

“MyScannerService”
“MyScannerService” class hierarchy:

• ScannerService12. Implement scanner’s methods and properties.

The “MyScannerService” Service class also uses the following:

• JposConst and ScannerConst. Use constants, either by fully qualified package names or
by adding to the “implements” clause of the Device Service.

• DataEvent. Instance of this class created as data is received. It is delivered to an
application when the event delivery preconditions are met by calling the fireDataEvent
method of the Control's derived EventCallbacks class.

• ErrorEvent. Instance of this class created when an error is detected while reading scanner
data. It is delivered to an application when the event delivery preconditions are met by
calling the fireErrorEvent method of the Control's derived EventCallbacks class.

• JposException. Instance of this class is thrown when a method or property access fails.

“MyPrinterService”
“MyPrinterService” class hierarchy:

• POSPrinterService13. Implement printer’s methods and properties and extends
POSPrinterService12.

The “MyPrinterService” Service class also uses the following:

• JposConst and POSPrinterConst. Use constants, either by fully qualified package names
or by adding to the “implements” clause of the Device Service.

• ErrorEvent. Instance of this class created when an error is detected while printing
asynchronous data. It is delivered to an application when the event delivery preconditions
are met by calling the fireErrorEvent method of the Control's derived EventCallbacks
class.

• OutputCompleteEvent. Instance of this class created when an asynchronous output
request completes. It is delivered to an application when the event delivery preconditions
are met by calling the fireOutputCompleteEvent method of the Control's derived
EventCallbacks class.

• StatusUpdateEvent. Instance of this class created when a printer status change is detected.
It is delivered to an application when the event delivery preconditions are met by calling
the fireStatusUpdateEvent method of the Control's derived EventCallbacks class.

• JposException. Instance of this class is thrown when a method or property access fails.

Unified POS, v1.15.1 Beta1 B - 35

B.28 Sample Application Code
The following code snippet shows how to use a scanner.
//import ...;
import jpos.*;
import jpos.events.*;

public class MyApplication implements DataListener
{
 // Data listener’s method to process incoming scanner data.
 public void dataOccurred(DataEvent e)
 {
 jpos.Scanner dc = (jpos.Scanner) e.getSource();
 String Msg = “Scanner DataEvent (Status=” + e.getStatus() +
 “) received.”;
 System.out.println (Msg);
 try {
 dc.setDataEventEnabled(true);
 } catch (JposException e){}
 }

 // Method to initialize the scanner.
 public void initScanner(String openName) throws jpos.JposException
 {
 // Create scanner instance and register for data events.
 jpos.Scanner myScanner1 = new jpos.Scanner();
 myScanner1.addDataListener(this);
 // Initialize the scanner. Exception thrown if a method fails.
 myScanner1.open(openName);
 myScanner1.claim(1000);
 myScanner1.setDeviceEnabled(true);
 myScanner1.setDataEventEnabled(true);
 //...Success! Continue doing work...
 }

 //...Other methods, including main...
}

B - 36 Unified POS, v1.15.1 Beta1

B.29 Package Structure Updated in Release 1.13
The JavaPOS packages and files are as follows:
Note: The only difference between Release 1.3 and Release 1.4 of JavaPOS is the inclusion of
the CAT device. No other technical changes were made. Therefore the JavaPOS packages and
files for devices covered under Release 1.3 may be used for Release 1.4.

Additional device classifications of Point Card Reader Writer and POSPower were added in
Release 1.5.

No new devices were added for Release 1.6, however additional functionality was added to some
devices.

Additional device classifications of Check Scanner and Motion Sensor were added in Release
1.7.

Additional device classification of Smart Card Reader Writer was added in Release 1.8 and
additional functionality was added to all devices.

No new devices were added for Release 1.9, however additional functionality was added to all
devices.

Additional device classifications of Biometrics and Electronic Journal were added in Release
1.10 and additional functionality was added to all devices.

Additional device classifications of Bill Acceptor, Bill Dispenser, Coin Acceptor, and Image
Scanner were added in Release 1.11, and additional functionality was added to some devices.

Additional device classifications of Belt, Electronic Value Reader Writer, Gate, ItemDispenser,
Lights, and RFIDScanner were added in Release 1.12, and additional functionality was added to
some devices.

No new devices were added for Release 1.13, however additional functionality was added to
some devices as well as additional verbiage added to the standard for clarification purposes.

Unified POS, v1.15.1 Beta1 B - 37

jpos

New Peripheral Device Classes Added in Release 1.3

New Interfaces for existing Device Classes for Release 1.3

New Peripheral Device Class Added in Release 1.4

BaseControl.java
JposConst.java
JposException.java

CashChanger.java MSR.java
CashChangerBeanInfo.java MSRBeanInfo.java
CashChangerConst.java MSRConst.java
CashChangerControl12.java MSRControl12.java

CashDrawer.java POSKeyboard.java
CashDrawerBeanInfo.java POSKeyboardBeanInfo.java
CashDrawerConst.java POSKeyboardConst.java
CashDrawerControl12.java POSKeyboardControl12.java

CoinDispenser.java POSPrinter.java
CoinDispenserBeanInfo.java POSPrinterBeanInfo.java
CoinDispenserConst.java POSPrinterConst.java
CoinDispenserControl12.java POSPrinterControl12.java

HardTotals.java Scale.java
HardTotalsBeanInfo.java ScaleBeanInfo.java
HardTotalsConst.java ScaleConst.java
HardTotalsControl12.java ScaleControl12.java

Keylock.java Scanner.java
KeylockBeanInfo.java ScannerBeanInfo.java
KeylockConst.java ScannerConst.java
KeylockControl12.java ScannerControl12.java

LineDisplay.java SignatureCapture.java
LineDisplayBeanInfo.java SignatureCaptureBeanInfo.java
LineDisplayConst.java SignatureCaptureConst.java
LineDisplayControl12.java SignatureCaptureControl12.java

MICR.java ToneIndicator.java
MICRBeanInfo.java ToneIndicatorBeanInfo.java
MICRConst.java ToneIndicatorConst.java
MICRControl12.java ToneIndicatorControl12.java

BumpBar.java PINPad.java
BumpBarBeanInfo.java PINPadBeanInfo.java
BumpBarConst.java PINPadConst.java
BumpBarControl13.java PINPadControl13.java

FiscalPrinter.java RemoteOrderDisplay.java
FiscalPrinterBeanInfo.java RemoteOrderDisplayBeanInfo.java
FiscalPrinterConst.java RemoteOrderDisplayConst.java
FiscalPrinterControl13.java RemoteOrderDisplayControl13.java

CashChangerControl13.java MSRControl13.java
CashDrawerControl13.java POSKeyboardControl13.java
CoinDispenserControl13.java POSPrinterControl13.java
HardTotalsControl13.java ScaleControl13.java
KeylockControl13.java ScannerControl13.java
LineDisplayControl13.java SignatureCaptureControl13.java
MICRControl13.java ToneIndicatorControl13.java

CAT.java
CATBeanInfo.java
CATConst.java
CATControl14.java

B - 38 Unified POS, v1.15.1 Beta1

New Interfaces for existing Device Classes for Release 1.4

 New Peripheral Device Classes Added in Release 1.5

New Interfaces for existing Device Classes for Release 1.5

New Interfaces for existing Device Classes for Release 1.6

New Peripheral Device Classes Added in Release 1.7

New Interfaces for existing Device Classes for Release 1.7

BumpBarControl14.java MSRControl14.java
CashChangerControl14.java PINPadControl14.java
CashDrawerControl14.java POSKeyboardControl14.java
CoinDispenserControl14.java POSPrinterControl14.java
FiscalPrinterControl14.java RemoteOrderDisplayControl14.java
HardTotalsControl14.java ScaleControl14.java
KeylockControl14.java ScannerControl14.java
LineDisplayControl14.java SignatureCaptureControl14.java
MICRControl14.java ToneIndicatorControl14.java

PointCardRW.java POSPower.java
PointCardRWBeanInfo.java POSPowerBeanInfo.java
PointCardRWConst.java POSPowerConst.java
PointCardRWControl15.java POSPowerControl15.java

BumpBarControl15.java MSRControl15.java
CashChangerControl15.java PINPadControl15.java
CashDrawerControl15.java POSKeyboardControl15.java
CATControl15.java POSPrinterControl15.java
CoinDispenserControl15.java RemoteOrderDisplayControl15.java
FiscalPrinterControl15.java ScaleControl15.java
HardTotalsControl15.java ScannerControl15.java
KeylockControl15.java SignatureCaptureControl15.java
LineDisplayControl15.java ToneIndicatorControl15.java
MICRControl15.java

BumpBarControl16.java PINPadControl16.java
CashChangerControl16.java PointCardRWControl16.java
CashDrawerControl16.java POSKeyboardControl16.java
CATControl16.java POSPowerControl16.java
CoinDispenserControl16.java POSPrinterControl16.java
FiscalPrinterControl16.java RemoteOrderDisplayControl16.java
HardTotalsControl16.java ScaleControl16.java
KeylockControl16.java ScannerControl16.java
LineDisplayControl16.java SignatureCaptureControl16.java
MICRControl16.java ToneIndicatorControl16.java
MSRControl16.java

CheckScanner.java MotionSensor.java
CheckScannerBeanInfo.java MotionSensorBeanInfo.java
CheckScannerConst.java MotionSensorConst.java
CheckScannerControl17.java MotionSensorControl17.java

BumpBarControl17.java PINPadControl17.java
CashChangerControl17.java PointCardRWControl17.java
CashDrawerControl17.java POSKeyboardControl17.java
CATControl17.java POSPowerControl17.java
CoinDispenserControl17.java POSPrinterControl17.java
FiscalPrinterControl17.java RemoteOrderDisplayControl17.java
HardTotalsControl17.java ScaleControl17.java
KeylockControl17.java ScannerControl17.java
LineDisplayControl17.java SignatureCaptureControl17.java
MICRControl17.java ToneIndicatorControl17.java
MSRControl17.java

Unified POS, v1.15.1 Beta1 B - 39

New Peripheral Device Class Added in Release 1.8

New Interfaces for existing Device Classes for Release 1.8

New Interfaces for existing Device Classes for Release 1.9

New Peripheral Device Classes Added in Release 1.10

New Interfaces for existing Device Classes for Release 1.10

SmartCardRW.java
SmartCardRWBeanInfo.java
SmartCardRWConst.java
SmartCardRWControl18.java

BumpBarControl18.java MSRControl18.java
CashChangerControl18.java PINPadControl18.java
CashDrawerControl18.java PointCardRWControl18.java
CATControl18.java POSKeyboardControl18.java
CheckScannerControl18.java POSPowerControl18.java
CoinDispenserControl18.java POSPrinterControl18.java
FiscalPrinterControl18.java RemoteOrderDisplayControl18.java
HardTotalsControl18.java ScaleControl18.java
KeylockControl18.java ScannerControl18.java
LineDisplayControl18.java SignatureCaptureControl18.java
MICRControl18.java ToneIndicatorControl18.java
MotionSensorControl18.java

BumpBarControl19.java MSRControl19.java
CashChangerControl19.java PINPadControl19.java
CashDrawerControl19.java PointCardRWControl19.java
CATControl19.java POSKeyboardControl19.java
CheckScannerControl19.java POSPowerControl19.java
CoinDispenserControl19.java POSPrinterControl19.java
FiscalPrinterControl19.java RemoteOrderDisplayControl19.java
HardTotalsControl19.java ScaleControl19.java
KeylockControl19.java ScannerControl19.java
LineDisplayControl19.java SignatureCaptureControl19.java
MICRControl19.java SmartCardRWControl19.java
MotionSensorControl19.java ToneIndicatorControl19.java

Biometrics.java ElectronicJournal.java
BiometricsBeanInfo.java ElectronicJournalBeanInfo.java
BiometricsConst.java ElectronicJournalConst.java
BiometricsControl110.java ElectronicJournalControl110.java

BumpBarControl110.java MSRControl110.java
CashChangerControl110.java PINPadControl110.java
CashDrawerControl110.java PointCardRWControl110.java
CATControl110.java POSKeyboardControl110.java
CheckScannerControl110.java POSPowerControl110.java
CoinDispenserControl110.java POSPrinterControl110.java
FiscalPrinterControl110.java RemoteOrderDisplayControl110.java
HardTotalsControl110.java ScaleControl110.java
KeylockControl110.java ScannerControl110.java
LineDisplayControl110.java SignatureCaptureControl110.java
MICRControl110.java SmartCardRWControl110.java
MotionSensorControl110.java ToneIndicatorControl110.java

B - 40 Unified POS, v1.15.1 Beta1

New Peripheral Device Classes Added in Release 1.11

New Interfaces for existing Device Classes for Release 1.11

New Peripheral Device Classes Added in Release 1.12

New Interfaces for existing Device Classes for Release 1.12

BillAcceptor.java CoinAcceptor.java
BillAcceptorBeanInfo.java CoinAcceptorBeanInfo.java
BillAcceptorConst.java CoinAcceptorConst.java
BillAcceptorControl111.java CoinAcceptorControl111.java

BillDispenser.java ImageScanner.java
BillDispenserBeanInfo.java ImageScannerBeanInfo.java
BillDispenserConst.java ImageScannerConst.java
BillDispenserControl111.java ImageScannerControl111.java

BiometricsControl111.java MotionSensorControl111.java
BumpBarControl111.java MSRControl111.java
CashChangerControl111.java PINPadControl111.java
CashDrawerControl111.java PointCardRWControl111.java
CATControl111.java POSKeyboardControl111.java
CheckScannerControl111.java POSPowerControl111.java
CoinDispenserControl111.java POSPrinterControl111.java
ElectronicJournalControl111.java RemoteOrderDisplayControl111.java
FiscalPrinterControl111.java ScaleControl111.java
HardTotalsControl111.java ScannerControl111.java
KeylockControl111.java SignatureCaptureControl111.java
LineDisplayControl111.java SmartCardRWControl111.java
MICRControl111.java ToneIndicatorControl111.java

Belt.java ItemDispenser.java
BeltBeanInfo.java ItemDispenserBeanInfo.java
BeltConst.java ItemDispenserConst.java
BeltControl112.java ItemDispenserControl112.java

ElectronicValueRW.java Lights.java
ElectronicValueRWBeanInfo.java LightsBeanInfo.java
ElectronicValueRWConst.java LightsConst.java
ElectronicValueRWControl112.java LightsControl112.java

Gate.java RFIDScanner.java
GateBeanInfo.java RFIDScannerBeanInfo.java
GateConst.java RFIDScannerConst.java
GateControl112.java RFIDScannerControl112.java

BillAcceptorControl112.java LineDisplayControl112.java
BillDispenserControl112.java MICRControl112.java
BiometricsControl112.java MotionSensorControl112.java
BumpBarControl112.java MSRControl112.java
CashChangerControl112.java PINPadControl112.java
CashDrawerControl112.java PointCardRWControl112.java
CATControl112.java POSKeyboardControl112.java
CheckScannerControl112.java POSPowerControl112.java
CoinAcceptorControl112.java POSPrinterControl112.java
CoinDispenserControl112.java RemoteOrderDisplayControl112.java
ElectronicJournalControl112.java ScaleControl112.java
FiscalPrinterControl112.java ScannerControl112.java
HardTotalsControl112.java SignatureCaptureControl112.java
ImageScannerControl112.java SmartCardRWControl112.java
KeylockControl112.java ToneIndicatorControl112.java

Unified POS, v1.15.1 Beta1 B - 41

New Interfaces for existing Device Classes for Release 1.13

jpos.events

jpos.services

BeltControl113.java KeylockControl113.java
BillAcceptorControl113.java LightsControl113.java
BillDispenserControl113.java LineDisplayControl113.java
BiometricsControl113.java MICRControl113.java
BumpBarControl113.java MotionSensorControl113.java
CashChangerControl113.java MSRControl113.java
CashDrawerControl113.java PINPadControl113.java
CATControl113.java PointCardRWControl113.java
CheckScannerControl113.java POSKeyboardControl113.java
CoinAcceptorControl113.java POSPowerControl113.java
CoinDispenserControl113.java POSPrinterControl113.java
ElectronicJournalControl113.java RemoteOrderDisplayControl113.java
ElectronicValueRWControl113.java RFIDScannerControl113.java
FiscalPrinterControl113.java ScaleControl113.java
GateControl113.java ScannerControl113.java
HardTotalsControl113.java SignatureCaptureControl113.java
ImageScannerControl113.java SmartCardRWControl113.java
ItemDispenserControl113.java ToneIndicatorControl113.java

JposEvent.java

DataEvent.java
DataListener.java
DirectIOEvent.java
DirectIOListener.java
ErrorEvent.java
ErrorListener.java
OutputCompleteEvent.java
OutputCompleteListener.java
StatusUpdateEvent.java
StatusUpdateListener.java

BaseService.java EventCallbacks.java

CashChangerService12.java MSRService12.java
CashDrawerService12.java POSKeyboardService12.java
CoinDispenserService12.java POSPrinterService12.java
HardTotalsService12.java ScaleService12.java
KeylockService12.java ScannerService12.java
LineDisplayService12.java SignatureCaptureService12.java
MICRService12.java ToneIndicatorService12.java

New Peripheral Device Classes Added in Release 1.3

BumpBarService13.java PINPadService13.java
FiscalPrinterService13.java RemoteOrderDisplayService13.java

New Interfaces for Existing Device Classes for Release 1.3

CashChangerService13.java MSRService13.java
CashDrawerService13.java POSKeyboardService13.java
CoinDispenserService13.java POSPrinterService13.java
HardTotalsService13.java ScaleService13.java
KeylockService13.java ScannerService13.java
LineDisplayService13.java SignatureCaptureService13.java
MICRService13.java ToneIndicatorService13.java

B - 42 Unified POS, v1.15.1 Beta1

New Peripheral Device Classes Added in Release 1.4

CATService14.java

New Interfaces for Existing Device Classes for Release 1.4

BumpBarService14.java MSRService14.java
CashChangerService14.java PINPadService14.java
CashDrawerService14.java POSKeyboardService14.java
CoinDispenserService14.java POSPrinterService14.java
FiscalPrinterService14.java RemoteOrderDisplayService14.java
HardTotalsService14.java ScaleService14.java
KeylockService14.java ScannerService14.java
LineDisplayService14.java SignatureCaptureService14.java
MICRService14.java ToneIndicatorService14.java

New Peripheral Device Classes Added in Release 1.5

PointCardRWService15.java POSPowerService15.java

New Interfaces for Existing Device Classes for Release 1.5

BumpBarService15.java MSRService15.java
CashChangerService15.java PINPadService15.java
CashDrawerService15.java POSKeyboardService15.java
CATService15.java POSPrinterService15.java
CoinDispenserService15.java RemoteOrderDisplayService15.java
FiscalPrinterService15.java ScaleService15.java
HardTotalsService15.java ScannerService15.java
KeylockService15.java SignatureCaptureService15.java
LineDisplayService15.java ToneIndicatorService15.java
MICRService15.java

New Interfaces for Existing Device Classes for Release 1.6

BumpBarService16.java PINPadService16.java
CashChangerService16.java PointCardRWService16.java
CashDrawerService16.java POSKeyboardService16.java
CATService16.java POSPowerService16.java
CoinDispenserService16.java POSPrinterService16.java
FiscalPrinterService16.java RemoteOrderDisplayService16.java
HardTotalsService16.java ScaleService16.java
KeylockService16.java ScannerService16.java
LineDisplayService16.java SignatureCaptureService16.java
MICRService16.java ToneIndicatorService16.java
MSRService16.java

New Peripheral Device Classes Added in Release 1.7

CheckScannerService17.java MotionSensorService17.java

New Interfaces for Existing Device Classes for Release 1.7

BumpBarService17.java PINPadService17.java
CashChangerService17.java PointCardRWService17.java
CashDrawerService17.java POSKeyboardService17.java
CATService17.java POSPowerService17.java
CoinDispenserService17.java POSPrinterService17.java
FiscalPrinterService17.java RemoteOrderDisplayService17.java
HardTotalsService17.java ScaleService17.java
KeylockService17.java ScannerService17.java
LineDisplayService17.java SignatureCaptureService17.java
MICRService17.java ToneIndicatorService17.java
MSRService17.java

Unified POS, v1.15.1 Beta1 B - 43

New Peripheral Device Classes Added in Release 1.8

SmartCardRWService18.java

New Interfaces for Existing Device Classes for Release 1.8

BumpBarService18.java MSRService18.java
CashChangerService18.java PINPadService18.java
CashDrawerService18.java PointCardRWService18.java
CATService18.java POSKeyboardService18.java
CheckScannerService18.java POSPowerService18.java
CoinDispenserService18.java POSPrinterService18.java
FiscalPrinterService18.java RemoteOrderDisplayService18.java
HardTotalsService18.java ScaleService18.java
KeylockService18.java ScannerService18.java
LineDisplayService18.java SignatureCaptureService18.java
MICRService18.java ToneIndicatorService18.java
MotionSensorService18.java

New Interfaces for Existing Device Classes for Release 1.9

BumpBarService19.java MSRService19.java
CashChangerService19.java PINPadService19.java
CashDrawerService19.java PointCardRWService19.java
CATService19.java POSKeyboardService19.java
CheckScannerService19.java POSPowerService19.java
CoinDispenserService19.java POSPrinterService19.java
FiscalPrinterService19.java RemoteOrderDisplayService19.java
HardTotalsService19.java ScaleService19.java
KeylockService19.java ScannerService19.java
LineDisplayService19.java SignatureCaptureService19.java
MICRService19.java SmartCardRWService19.java
MotionSensorService19.java ToneIndicatorService19.java

New Peripheral Device Classes Added in Release 1.10

BiometricsService110.java ElectronicJournalService110.java

New Interfaces for Existing Device Classes for Release 1.10

BumpBarService110.java MSRService110.java
CashChangerService110.java PINPadService110.java
CashDrawerService110.java PointCardRWService110.java
CATService110.java POSKeyboardService110.java
CheckScannerService110.java POSPowerService110.java
CoinDispenserService110.java POSPrinterService110.java
FiscalPrinterService110.java RemoteOrderDisplayService110.java
HardTotalsService110.java ScaleService110.java
KeylockService110.java ScannerService110.java
LineDisplayService110.java SignatureCaptureService110.java
MICRService110.java SmartCardRWService110.java
MotionSensorService110.java ToneIndicatorService110.java

New Peripheral Device Classes Added in Release 1.11

BillAcceptorService111.java CoinAcceptorService111.java
BillDispenserService111.java ImageScannerService111.java

New Interfaces for Existing Device Classes for Release 1.11

BiometricsService111.java MotionSensorService111.java
BumpBarService111.java MSRService111.java
CashChangerService111.java PINPadService111.java
CashDrawerService111.java PointCardRWService111.java
CATService111.java POSKeyboardService111.java
CheckScannerService111.java POSPowerService111.java
CoinDispenserService111.java POSPrinterService111.java
ElectronicJournalService111.java RemoteOrderDisplayService111.java
FiscalPrinterService111.java ScaleService111.java
HardTotalsService111.java ScannerService111.java
KeylockService111.java SignatureCaptureService111.java
LineDisplayService111.java SmartCardRWService111.java
MICRService111.java ToneIndicatorService111.java

B - 44 Unified POS, v1.15.1 Beta1

New Peripheral Device Classes Added in Release 1.12

BeltService112.java ItemDispenserService112.java
ElectronicValueRWService112.java LightsService112.java
GateService112.java RFIDScannerService112.java

New Interfaces for Existing Device Classes for Release 1.12

BillAcceptorService112.java LineDisplayService112.java
BillDispenserService112.java MICRService112.java
BiometricsService112.java MotionSensorService112.java
BumpBarService112.java MSRService112.java
CashChangerService112.java PINPadService112.java
CashDrawerService112.java PointCardRWService112.java
CATService112.java POSKeyboardService112.java
CheckScannerService112.java POSPowerService112.java
CoinAcceptorService112.java POSPrinterService112.java
CoinDispenserService112.java RemoteOrderDisplayService112.java
ElectronicJournalService112.java ScaleService112.java
FiscalPrinterService112.java ScannerService112.java
HardTotalsService112.java SignatureCaptureService112.java
ImageScannerService112.java SmartCardRWService112.java
KeylockService112.java ToneIndicatorService112.java

New Interfaces for Existing Device Classes Added in Release 1.13

BeltService113.java KeylockService113.java
BillAcceptorService113.java LightsService113.java
BillDispenserService113.java LineDisplayService113.java
BiometricsService113.java MICRService113.java
BumpBarService113.java MotionSensorService113.java
CashChangerService113.java MSRService113.java
CashDrawerService113.java PINPadService113.java
CATService113.java PointCardRWService113.java
CheckScannerService113.java POSKeyboardService113.java
CoinAcceptorService113.java POSPowerService113.java
CoinDispenserService113.java POSPrinterService113.java
ElectronicJournalService113.java RemoteOrderDisplayService113.java
ElectronicValueRWService113.java RFIDScannerService113.java
FiscalPrinterService113.java ScaleService113.java
GateService113.java ScannerService113.java
HardTotalsService113.java SignatureCaptureService113.java
ImageScannerService113.java SmartCardRWService113.java
ItemDispenserService113.java ToneIndicatorService113.java

Unified POS, v1.15.1 Beta1 B - 45

B.30 Device Controls
Note: This section is intended primarily for programmers who are creating JavaPOS Device Controls and
Services.

B.31 Device Control Responsibilities
• Supporting the JavaPOS Device Interface for its category. This includes a set of properties, methods, and events.

• Managing the connection and interface to a Device Service.

• Forwarding most property accesses and method calls to the Device Service, and throwing exceptions when a
 property access or method call fails.

• Supporting add and remove event listener methods.

• Generating events to registered listeners upon command from the Device Service.

• Downgrading for older Device Service versions.

A Device Control is not responsible for:

• Managing multi-thread access to the Device Control and Service. An application must either access a Control from
 only one thread, or ensure that its threads synchronize sequences of requests as required to ensure that affected state
 and properties are maintained until the sequences have completed.

• Data buffering, including input and output data plus events. The Device Service manages all buffering and
 enqueuing.

• The device behavior/semantics and nuances that are specific to the functional control of the device.

• The loading functions that are to be contained in the jpos.config/loader (JCL).

B - 46 Unified POS, v1.15.1 Beta1

B.32 Device Service Management
The Device Control manages the connection to the Device Service. The Control calls upon the jpos.config/loader
(JCL) to accomplish the connection and disconnection.

B.32.1 jpos.config/loader (JCL) and JavaPOS Entry Registry (JER)

The jpos.config/loader (JCL) along with the JavaPOS Entry Registry (JER) is used as the binding (configuration
and loading) API that allows a JavaPOS control to bind to the correct JavaPOS service in a manner independent
of the actual configuration mechanism. For POS applications, it represents a somewhat minimum (but extensible)
functional equivalent of the “NT Registry” called the JposEntryRegistry.

All JavaPOS Device Controls that use this API and additional helpful reference material can be obtained on the
JavaPOS website, http://www.javapos.com. In addition other standards information may be obtained from the
http://www.omg.org website.

A reference open source implementation of the JCL is available on this website and maintained under the control
of the JavaPOS technical committee. Included on the website is a functioning JCL with complete JavaDoc
documentation, examples, sample code, a browser-based configuration editor and additional explanatory
material.

A brief description of the JCL process is given below. However, for additional detailed information on the JCL
one should consult the referenced web sites for the most up to date information.

B.32.2 jpos.config/loader (JCL) Characteristics

The jpos.config/loader is the name for the minimal set of classes (1) and interfaces (6) which are necessary to
abstract into the JavaPOS specification. They provide for an independent way of configuring, loading and
creating JavaPOS Device Services while maintaining the following important goals.

• Minimize the impact on existing controls

• Allow services to easily support multiple jpos.config/loader implementations

• Abstract as much as possible using Java interfaces to separate the JCL specification from its implementation

• Keep to a minimum the number of necessary classes and interfaces

The jpos.config/loader class/interfaces are added in two packages named jpos.config and jpos.loader. A jpos
implementation is dependent upon the jpos and jpos.loader packages included in the jpos.loader class/interfaces,
the jpos.JposConst interfaces and the jpos.JposException classes.

The jpos.config/loader specification contains 1 class and 6 interfaces. The single class is the
jpos.loader.ServiceLoader which bootstraps the implementation of the jpos.config/loader to be used in the JVM
by creating the manager object (an instance of the jpos.loader.JposServiceManager interface). It also defaults to
the simple jpos.config/loader implementation if no bootstrap is defined. The following table gives the name and
a brief description of the class and interfaces that are involved.

http://www.javapos.com
http://www.javapos.com
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org

Unified POS, v1.15.1 Beta1 B - 47

Class
or

Interface
Name Description

class jpos.loader.ServiceLoader

This is the only class in the jpos.config and
jpos.loader packages. It maintains a
JposServiceManager instance (manager) which it
uses to create a JposServiceConnection. The
manager is created by looking for a Java property
“jpos.loader.serviceManagerClass”. If this
property is defined, then the class that it defines will
be loaded and an instance of this class created as the
manager (NOTE: this also assumes that the class
implements JposServiceManager interface and has a
0-argument constructor). If the property is not
defined then the “simple” JCL reference
implementation manager is created
(jpos.loader.simple.SimpleServiceManager).

interface jpos.loader.JposServiceManager
This interface defines a manager used to create
JposServiceConnection and allows access to the
JposEntryRegistry.

interface jpos.loader.JposServiceConnection

Defines a mediator between the service and the user
of the service. The JavaPOS controls use this
interface to connect to the service and then get the
JposServiceInstance associated with the
connection. Once disconnected the
JposServiceinstance is no longer valid and a re-
connect is necessary.

interface jpos.config.JposEntry

Defines an interface for configuring a service.
Properties can be added, queried, modified and
removed. The JposServiceInstanceFactory uses
the information in the object implementing this
interface to create the current JposServiceInstance
and configure it.

interface jpos.loader.JposEntryRegistry
This interface defines a way to statistically and
dynamically add known JposEntry objects to the
system.

interface jpos.loader.JposServiceInstance

Only interface required to be implemented by all
JavaPOS services. It defines one method that is used
to indicate to the service that the connection has been
disconnected.

interface jpos.loader.JposServiceInstanceFactory

Factory interface to create JposServiceInstance
objects (i.e., the JavaPOS services). It is passed a
JposEntry which it uses to create the correct
service.

B - 48 Unified POS, v1.15.1 Beta1

The configuration information is described as a set of properties in the JposEntry. These are entered as <key,
value> pairs. The key is a String and the value is a Java Object of type: String, Integer, Long, Float, Boolean,
Character or Byte (which are the String and primitive wrapper classes provided in the java.lang package). The
following are two properties which must be defined by all the entries in the JposEntry in order for it to be
considered valid.

All other properties are optionally provided or needed for the correct creation and initialization of the JavaPOS
service. Note the service providers will most likely want to define their own set of properties and require them to
be in the JposEntry in order to allow their JposServiceFactory to be used and their Device Service to be
configured and loaded.

Future releases of the reference jpos.config/loader (JCL) might be modified to define a standard set of properties
(in addition to the two mandated above) that all JavaPOS services would need to define.

Property Name Property Type Description

logicalName String
This is the unique name that identifies this
entry. The control uses this name to bind itself
to the service.

serviceInstanceFactoryClass String

Defines the factory class which should be used
to create the service. This class must implement
the jpos.loader.JposServiceInstanceFactory
interface and it must have a default constructor.

Unified POS, v1.15.1 Beta1 B - 49

B.33 Property and Method Forwarding
The Device Control must use the Device Service to implement all properties and methods defined
by the JavaPOS Device Interface for a device category, with the following exceptions:

• open method.

• close method.

• DeviceControlDescription property. The Control returns its description.

• DeviceControlVersion property. The Control returns its version.

• State property. The Control forwards the request to the Service as shown in the following paragraphs.
 Any exception is changed to a return value of JPOS_S_CLOSED; an exception is never thrown to an
 application.

For all other properties and methods, the Device Control forwards the request to the identically
named method or property of the Device Service. A template for set property and method request
forwarding follows:
 public void name(Parameters) throws JposException
 {
 try
 service.name(Parameters);
 catch(JposException je)
 throw je;
 catch(Exception e)
 throw new JposException(JPOS_E_CLOSED,
 “Control not opened”, e);
 }

Similarly, a template for get property request forwarding is:

 public Type name() throws JposException
 {
 try
 return service.name();
 catch(JposException je)
 throw je;
 catch(Exception e)
 throw new JposException(JPOS_E_CLOSED,
 “Control not opened”, e);
 }

The general forwarding sequence is to call the Service to process the request, and return to the
application if no exception occurs. If an exception occurs and the exception is JposException,
rethrow it to the application.

Otherwise wrap the exception in a JposException and throw it. This should only occur if an open
has not successfully linked the Service to the Control, that is, if the service field contains a null
reference. (Any exceptions that occur while in the Service should be caught by it, and the Service
should rethrow it as a JposException.) This allows the Control to set the message text to “Control
not opened” with reasonable certainty.

B - 50 Unified POS, v1.15.1 Beta1

B.34 Event Handling

B.34.1 Event Listeners and Event Delivery

An application must be able to register with the Device Control to receive events of each type
supported by the Device, as well as unregister for these events. To conform to the JavaBean naming
pattern for events, the registration methods have the form:
 void addXxxListener(XxxListener l);
 void removeXxxListener(XxxListener l);

where Xxx is replaced by one of the event types: Data, Error, OutputComplete, StatusUpdate, or
DirectIO.

An example add listener method is:
 protected Vector dataListeners;
 public void addDataListener(DataListener l)
 {
 synchronized(dataListeners)
 dataListeners.addElement(l);
 }

When the Device Service requests that an event be delivered, the Control calls the event method of
each listener that has registered for that event. (Typically, only one listener will register for each
event type. However, diagnostic or other software may choose to listen, also.) The event methods
have the form:
 void xxxOccurred(XxxEvent e)

where xxx is replaced by: data, error, outputComplete, statusUpdate, or directIO.

Unified POS, v1.15.1 Beta1 B - 51

B.34.2 Event Callbacks

The Device Service requests that an event be delivered by calling a method in a callback instance.
This instance is created by the Control and passed to the Service in the open method.

The callback instance is typically created as an inner class of the Control. An example callback
inner class is:
 protected class ScannerCallbacks implements EventCallbacks
 {
 public BaseControl getEventSource()
 {
 return (BaseControl)Scanner.this;
 }

 public void fireDataEvent(DataEvent e)
 {
 synchronized(Scanner.this.dataListeners)
 // deliver the event to all registered listeners
 for(int x = 0; x < dataListeners.size(); x++)
 ((DataListener)dataListeners.elementAt(x)).
 dataOccurred(e);
 }

 public void fireDirectIOEvent(DirectIOEvent e)
 {
 //…Removed code similar to fireDataEvent…
 }

 public void fireErrorEvent(ErrorEvent e)
 {
 //…Removed code similar to fireDataEvent…
 }

 public void fireOutputCompleteEvent(OutputCompleteEvent e)
 {
 }

 public void fireStatusUpdateEvent(StatusUpdateEvent e)
 {
 }
 }

B - 52 Unified POS, v1.15.1 Beta1

B.35 Device Control Version Handling
The Device Control responsibilities given in the preceding sections “Device Service Management”
and “Property and Method Forwarding” are somewhat simplified: They do not take into account
version handling.

Both the Device Control and the Device Service have version numbers. Each version number is
broken into three parts: Major, minor, and build. The major and minor portions indicate compliance
with a release of the JavaPOS specifications. For example, release 1.4 compatibility is represented
by a major version of one and a minor version of four. The build portion is set by the JavaPOS
Device writer.

The JavaPOS version requirement is that a Device Control for a device category must operate and
return reasonable results with any Device Service for that class, as long as its major version number
matches the Service’s major version number.

In order to support this requirement, the following steps must be taken by the Control:

• open method. The Control must validate and determine the version of the Service, and save this
 version for later use (the “validated version”).

The steps are as follows:

1. After connecting to the Device Service and obtaining its reference, determine the level of JavaPOS
 Service interface supported by the Service (the “interface version”). This test ensures that the Service
 complies with the property and method requirements of the interface.

 For example, assume that the Scanner Control is at version 1.3. First attempt to cast the Service refer
 ence to the original release version, ScannerService12. If this succeeds, the “interface version” is at
 least 1.2; otherwise fail the open. Next, attempt to cast to ScannerService13. If this succeeds, the
 “interface version” is 1.3.

2. After calling the Service’s open method, get its DeviceServiceVersion property. If the major version
 does not match the Control’s major version, then fail the open.

3. At this point we know that some level of Service interface is supported, and that the major Control
 and Service versions match. Now determine the “validated version”:

Unified POS, v1.15.1 Beta1 B - 53

 if (service_version <= interface_version)
 {
 // The Service version may match the interface
 // version, or it may be less. The latter case may
 // be true for a Service that wraps or bridges to
 // OPOS software, because the Service may be able to
 // support a higher interface version, but
 // downgrades its reported Service version to that of
 // the OPOS software.
 // Remember the Services real version.
 validated_version = service_version;
 }
 else if (service_version > interface_version)
 {
 // The Service is newer than the Control.
 // Look at two subcases.
 if (control_version == interface_version)
 {
 // The Service is newer than the Control, and it
 // supports all the Controls methods and
 // properties (and perhaps more that the Control
 // will not call).
 // Remember the maximum version that the Control
 // supports.
 validated_version = interface_version;
 }
 else if (service_version > interface_version)
 {
 //... Fail the open!
 // The Service is reporting a version for which it
 // does not support all the required methods and
 // properties.
 }
 }

• Properties and other methods. If an application accesses a property or calls a method supported by the
Control’s version but not by the “validated version” of the Service, the Control must throw a
JposException with error code JPOS_E_NOSERVICE.

B - 54 Unified POS, v1.15.1 Beta1

B.36 Device Services
Note: This section is intended primarily for programmers creating JavaPOS Device Controls and Services.

B.37 Device Service Responsibilities
A Device Service for a device category is responsible for:

• Supporting the JavaPOS Device Service Interface for its category. This includes a set of properties and methods,
 plus event generation and delivery.

• Implementing property accesses and method calls, and throwing exceptions when a property access or method call
 fails.

• Enqueuing events and delivering them (through calls to Device Control event callback methods) when the
 preconditions for delivering the event are satisfied.

• Managing access to the Physical Device.

The Device Service requires the jpos.config/loader (JCL) JposEntry object which contains all the configuration
information.

B.38 Property and Method Processing
The Device Service performs the actual work for the property access and method processing. If the Service is
successful in carrying out the request, it returns to the application. Otherwise, it must throw a JposException.

At the beginning of property and method processing, the Service will typically need to validate that an
application has properly initialized the device before it is processed. If the device must first be claimed, the
Service throws an exception with the error code JPOS_E_CLAIMED (if the device is already claimed by another
JPOS Device) or JPOS_E_NOTCLAIMED (if the device is available to be claimed). If the device must first be
enabled, then the Service throws an exception with the error code JPOS_E_DISABLED.

Some special cases are:

• open method. The Service must perform additional housekeeping and initialization during this method.
 Initialization will often include accessing the Java System Database (Release 1.4 and prior) or JposEntryRegistry
 (Release 1.5 and beyond) to obtain parameters specific to the Service and the Physical Device.

• close method. The Service releases all resources that were acquired during or after open.

Unified POS, v1.15.1 Beta1 B - 55

B.39 Event Generation
The Device Service has the responsibility of enqueuing events and delivering them in the proper sequence. The
Service must enqueue and deliver them one at a time, in a first-in, first-out manner. (The only exception is when
a JPOS_EL_INPUT_DATA event must be delivered early on an input error because some data events are also
enqueued.) Events are delivered by an internally created and managed Service thread. They are delivered by
calling an event firing callback method in the Device Control, which then calls each registered listener's event
method. (See “Event Handling” in this Annex.)

The following conditions cause event delivery to be delayed until the condition is corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled is false. (See “Device
 Input Model” in this Annex).

Rules on the management of the queue of events are:

• The JavaPOS Device may only enqueue new events while the Device is enabled.

• The Device may deliver enqueued events until the application calls the release method (for exclusive-use devices)
 or the close method (for any device), at which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears output error events.

B.40 Physical Device Access
The Device Service is responsible for managing the Physical Device. Often, this occurs by using a
communications Port API (supplied or custom). At other times, the Service may need to use other device drivers
or techniques to control the device.

The Java for Retail POS (JavaPOS) and OLE for Retail POS (OPOS) industry standard initiatives are
intentionally similar in many respects.

Support for Java requires several differences from OPOS in architecture, but the JavaPOS committee agreed that
the general model of OPOS device classes should be reused as much as possible.

In order to reuse as much of the OPOS device models as possible, the following sections detail the general
mapping rules from OPOS to JavaPOS. A later section lists the deviations of JavaPOS APIs from OPOS.

B.41 API Mapping Rules
In most cases, OPOS APIs may be translated in a mechanical fashion to equivalent JavaPOS APIs. The
exceptions to this mapping are largely due to differences in some string parameters.

Areas of data mapping include data types, methods and properties, and events.

B - 56 Unified POS, v1.15.1 Beta1

B.42 JavaPOS Component Descriptions
The following sections are arranged as follows and provide detailed information on how an
Application is expected to interface with a device covered under JavaPOS.

Section 1:
Describes the specific characteristics of the data types that JavaPOS uses as they relate to Java and
a OS platform neutral implementation.

Section 2:
Provides interface descriptions for the properties, methods, and events specific to JavaPOS. For
thorough description of these, one should consult the applicable chapters located in previous
chapters in this document.

Section 3:
Compares the evolution of the JavaPOS from the OPOS standard and briefly describes some of the
differences between the two implementations.

Section 4:
Provides the Change History previously contained in the JavaPOS Programmer’s Guide.

Unified POS, v1.15.1 Beta1 B - 57

B.43 Section 1: JavaPOS Data Types

Data Types Updated in Release 1.11
Data types are mapped from OPOS to JavaPOS as follows, with exceptions noted after the table:

OPOS
Type

JavaPOS
Type Usage

BOOL boolean Boolean true or false.

BOOL * boolean[1] Mutable boolean.

LONG byte 8-bit integer.

LONG int 32-bit integer.

LONG * int[1] Mutable 32-bit integer.

SAFEARRAY of
LONG int[] 32-bit integer array.

SAFEARRAY * of
LONG int[1][]

Mutable 32-bit integer array. The [0] element contains the
array of 32-bit integers that can be modified, both in size
and/or contents.

CURRENCY long 64-bit integer. Used for currency values, with an assumed
4 decimal places.

CURRENCY * long[1] Mutable 64-bit integer.

The string types are usually represented with the follow-
ing mapping:

BSTR String Text character string.

BSTR * String[1] Mutable text character string.

For some APIs, the string types are represented in one of
the following:

BSTR byte[]
Immutable array of bytes. May be modified, but size of ar-
ray cannot be changed. Often used when non-textual data is
possible.

SAFEARRAY of
BSTR byte[][] Immutable array of binary objects (themselves presented as

arrays of bytes).

BSTR * byte[1][] Mutable array of bytes. The [0] element contains the array
of bytes that can be modified, both in size and/or contents.

BSTR Point[] Array of points. Used by Signature Capture.

BSTR * Object
An object. This will usually be subclassed to
provide a Device Service-specific parameter for
directIO or DirectIOEvent.

nls (LONG) nls (String) Operating System National Language Data type.

B - 58 Unified POS, v1.15.1 Beta1

B.44 Section 2: JavaPOS Interface Descriptions
Information in this section further defines the requirements of the UnifiedPOS for Java implementation. The
common Properties, Methods, and Events are included to help transition from the UML given in Chapter 1 to the
specifics for the Java Implementation on an Operating System that supports Java.

Next, tables are included that outline the specific programmatic examples for each of the device classifications
and reference back to the UML for the respective devices.

The examples have been provided in Java and make no requirement of a specific OS in order to run.

Unified POS, v1.15.1 Beta1 B - 59

B.45 JavaPOS Common Properties, Methods, and Events

Common Properties Updated in Release 1.9
JavaPOS implementation specific definitions of the Common Properties.

Usage Notes:
1.Used only with Devices that have Event Driven Input.
2.Used only with Asynchronous Output Devices.

Properties (UML attributes)
Name Type Mutability Version Usage Notes
AutoDisable boolean { read-write } 1.2 1
CapCompareFirmwareVersion boolean { read-only } 1.9
CapPowerReporting int { read-only } 1.3
CapStatisticsReporting boolean { read-only } 1.8
CapUpdateFirmware boolean { read-only } 1.9
CapUpdateStatistics boolean { read-only } 1.8
CheckHealthText String { read-only } 1.0
Claimed boolean { read-only } 1.0
DataCount int { read-only } 1.2 1
DataEventEnabled boolean { read-write } 1.0 1
DeviceEnabled boolean { read-write } 1.0
FreezeEvents boolean { read-write } 1.0
OutputID int { read-only } 1.0 2
PowerNotify int { read-write } 1.3
PowerState int { read-only } 1.3
State int { read-only } 1.0
DeviceControlDescription String { read-only } 1.0
DeviceControlVersion int { read-only } 1.0
DeviceServiceDescription String { read-only } 1.0
DeviceServiceVersion int { read-only } 1.0
PhysicalDeviceDescription String { read-only } 1.0
PhysicalDeviceName String { read-only } 1.0

B - 60 Unified POS, v1.15.1 Beta1

B.45.1 Common Methods Updated in Release 1.10

JavaPOS implementation specific definitions of the Common Methods.

B.45.2 JavaPOS Class Names Updated in Version 1.12

JavaPOS implementation specific definitions of the POS Device Categories’ Class names.

Methods (UML operations)
Name Version
void open (String logicalDeviceName) throws JposException; 1.4
void close () throws JposException; 1.4
void claim (int timeout) throws JposException; 1.4
void release () throws JposException; 1.4
void checkHealth (int level) throws JposException; 1.4
void clearInput () throws JposException; 1.4
void clearInputProperties () throws JposException; 1.10
void clearOutput () throws JposException; 1.4
void directIO (int command, int[1] data, Object object) throws

JposException;
1.4

void compareFirmwareVersion (String firmwareFileName, int[1] result)
throws JposException;

1.9

void resetStatistics (String statisticsBuffer) throws JposException; 1.8
void retrieveStatistics (String[1] statisticsBuffer) throws JposException; 1.8
void updateFirmware (String firmwareFileName) throws

JposException;
1.9

void updateStatistics (String statisticsBuffer) throws JposException; 1.8

UnifiedPOS Device
Programmatic Names JavaPOS Class Names

Belt jpos.Belt
BillAcceptor jpos.BillAcceptor
BillDispenser jpos.BillDispenser
Biometrics jpos.Biometrics
BumpBar jpos.BumpBar
CashChanger jpos.CashChanger
CashDrawer jpos.CashDrawer
CAT jpos.CAT
CheckScanner jpos.CheckScanner
CoinAcceptor jpos.CoinAcceptor
CoinDispenser jpos.CoinDispenser
ElectronicJournal jpos.ElectronicJournal
ElectronicValueRW jpos.ElectronicValueRW

Unified POS, v1.15.1 Beta1 B - 61

FiscalPrinter jpos.FiscalPrinter
Gate jpos.Gate
HardTotals jpos.HardTotals
ImageScanner jpos.ImageScanner
ItemDispenser jpos.ItemDispenser
Keylock jpos.Keylock
Lights jpos.Lights
LineDisplay jpos.LineDisplay
MICR jpos.MICR
MotionSensor jpos.MotionSensor
MSR jpos.MSR
PINPad jpos.PINPad
PointCardRW jpos.PointCardRW
POSKeyboard jpos.POSKeyboard
POSPower jpos.POSPower
POSPrinter jpos.POSPrinter
RemoteOrderDisplay jpos.RemoteOrderDisplay
RFIDScanner jpos.RFIDScanner
Scale jpos.Scale
Scanner jpos.Scanner
SignatureCapture jpos.SignatureCapture
SmartCardRW jpos.SmartCardRW
ToneIndicator jpos.ToneIndicator

UnifiedPOS Device
Programmatic Names JavaPOS Class Names

B - 62 Unified POS, v1.15.1 Beta1

B.46 Properties

AutoDisable Property R/W
Type boolean

Remarks If true, the Device Service will set DeviceEnabled to false after it receives and enqueues data as a
DataEvent. Before any additional input can be received, the application must set DeviceEnabled
to true.

If false, the Device Service does not automatically disable the device when data is received.
This property provides the application with an additional option for controlling the receipt of input
data. If an application wants to receive and process only one input, or only one input at a time, then
this property should be set to true. This property applies only to event-driven input devices.
This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

CapCompareFirmwareVersion Property R Added in Release 1.9

Type boolean

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical
device against that of a firmware file.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also compareFirmwareVersion Method.

CapPowerReporting Property R Added in Release 1.3

Type int

Remarks Identifies the reporting capabilities of the Device. It has one of the following values:

Value Meaning
JPOS_PR_NONE The Device Service cannot determine the state of the device. Therefore,

no power reporting is possible.
JPOS_PR_STANDARD The Device Service can determine and report two of the power states -

OFF_OFFLINE (that is, off or offline) and ONLINE.
JPOS_PR_ADVANCED The Device Service can determine and report all three power states - OFF,

OFFLINE, and ONLINE.
This property is initialized by the open method.

Errors None.

Unified POS, v1.15.1 Beta1 B - 63

CapStatisticsReporting Property R Added in Release 1.8

Type boolean

Remarks If true, the device accumulates and can provide various statistics regarding usage; otherwise no
usage statistics are accumulated. The information accumulated and reported is device specific, and
is retrieved using the retrieveStatistics method.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also retrieveStatistics Method.

CapUpdateFirmware Property R Added in Release1.9
Type boolean

Remarks If true, then the device’s firmware can be updated via the updateFirmware method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also updateFirmware Method.

CapUpdateStatistics Property R Added in Release1.8

Type boolean

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the resetStatistics
method, or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics Method.

B - 64 Unified POS, v1.15.1 Beta1

CheckHealthText Property R
Type string

Remarks Holds the results of the most recent call to the checkHealth method. The following examples
illustrate some possible diagnoses:
• “Internal HCheck: Successful”
• “External HCheck: Not Responding”
• “Interactive HCheck: Complete”
This property is empty (“”) before the first call to the checkHealth method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

Claimed Property R
Type boolean

Remarks If true, the device is claimed for exclusive access. If false, the device is released for sharing with
other applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

DataCount Property R
Type int

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a
device, but has not yet been delivered because of other application processing, freezing of events,
or other causes.

This property is initialized to zero by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

Unified POS, v1.15.1 Beta1 B - 65

DataEventEnabled Property R/W
Type boolean

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other
conditions may delay “immediate” delivery: if FreezeEvents is true or another event is already
being processed at the application, the DataEvent will remain queued at the Device Service until
the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs,
the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

DeviceControlDescription Property R
Type string

Remarks Holds an identifier for the Device Control and the company that produced it.

A sample returned string is:
“POS Printer JavaPOS Control, (C) 1998 Epson”

This property is always readable.

Errors None.

DeviceControlVersion Property R
Type int

Remarks Holds the Device Control version number.

Three version levels are specified, as follows:

Version Level Description
Major The “millions” place.

A change to the JavaPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the JavaPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the Device Control developer. Updated when
corrections are made to the Device Control implementation.

A sample version number is:
1002038

B - 66 Unified POS, v1.15.1 Beta1

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the Device Control.
This property is always readable.

Errors None.

DeviceEnabled Property R/W

Type boolean

Remarks If true, the device is in an operational state. If changed to true, then the device is brought to an
operational state.
If false, the device has been disabled. If changed to false, then the device is physically disabled when
possible, any subsequent input will be discarded, and output operations are disallowed.
Changing this property usually does not physically affect output devices. For consistency, however,
the application must set this property to true before using output devices.
Release 1.3 and later: The Device’s power state may be reported while DeviceEnabled is true; see
“Device Power Reporting Model” in this Annex for details.
This property is initialized to false by the open method. Note that an exclusive use device must be
claimed before the device may be enabled.

DeviceServiceDescription Property R

Type string

Remarks Holds an identifier for the Device Service and the company that produced it.

A sample returned string is:

“TM-U950 Printer JPOS Service Driver, (C) 1998 Epson”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

Unified POS, v1.15.1 Beta1 B - 67

DeviceServiceVersion Property R

Type int

Remarks Holds the Device Service version number.

Three version levels are specified, as follows:

Version Level Description
Major The “millions” place.

A change to the JavaPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the JavaPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the Device Service developer. Updated when
corrections are made to the Device Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the Device Service.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

FreezeEvents Property R/W Updated in Release 1.12
Type boolean

Remarks If true, events will not be delivered. Events will be enqueued until this property is set to false.

If false, the application allows events to be delivered. If some events have been held while events
were frozen and all other conditions are correct for delivering the events, then changing this
property to false will allow these events to be delivered. An application may choose to freeze events
for a specific sequence of code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

B - 68 Unified POS, v1.15.1 Beta1

OutputID Property R

Type int

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns an identifier to
the request. When the output completes, an OutputCompleteEvent will be enqueued with this
output ID as a parameter.

The output ID numbers are assigned by the Device and are guaranteed to be unique among the set
of outstanding asynchronous outputs. No other facts about the ID should be assumed.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

PowerNotify Property R/W Added in Release 1.3

Type int

Remarks Contains the type of power notification selection made by the Application. It has one of the
following values:

Value Meaning
JPOS_PN_DISABLED The Device Service will not provide any power notifications to the

application. No power notification StatusUpdateEvents will be fired,
and PowerState may not be set.

JPOS_PN_ENABLED The Device Service will fire power notification StatusUpdateEvents and
update PowerState, beginning when DeviceEnabled is set to true. The
level of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is false.

This property is initialized to JPOS_PN_DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL One of the following occurred:

The device is already enabled.

PowerNotify = JPOS_PN_ENABLED but CapPowerReporting =
JPOS_PR_NONE.

Unified POS, v1.15.1 Beta1 B - 69

PowerState Property R Added in Release 1.3

Type int

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning
JPOS_PS_UNKNOWN Cannot determine the device’s power state for one of the following

reasons:

CapPowerReporting = JPOS_PR_NONE; the device does not support
power reporting.

PowerNotify = JPOS_PN_DISABLED; power notifications are disabled.

DeviceEnabled = false; Power state monitoring does not occur until the
device is enabled.

JPOS_PS_ONLINE The device is powered on and ready for use. Can be returned if
CapPowerReporting = JPOS_PR_STANDARD or
JPOS_PR_ADVANCED.

JPOS_PS_OFF The device is powered off or detached from the POS terminal. Can only
be returned if CapPowerReporting = JPOS_PR_ADVANCED.

JPOS_PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting =
JPOS_PR_ADVANCED.

JPOS_PS_OFF_OFFLINE
The device is either off or offline. Can only be returned if
CapPowerReporting = JPOS_PR_STANDARD.

This property is initialized to JPOS_PS_UNKNOWN by the open method. When PowerNotify is
set to enabled and DeviceEnabled is true, then this property is updated as the Device Service detects
power condition changes.

Errors None.

PhysicalDeviceDescription Property R
Type string

Remarks Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

B - 70 Unified POS, v1.15.1 Beta1

PhysicalDeviceName Property R

Type string

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application message box, where the
full description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

State Property R
Type int

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning
JPOS_S_CLOSED The Device is closed.

JPOS_S_IDLE The Device is in a good state and is not busy.

JPOS_S_BUSY The Device is in a good state and is busy performing output.

JPOS_S_ERROR An error has been reported, and the application must recover the Device
to a good state before normal I/O can resume.

This property is always readable.

Errors None.

Unified POS, v1.15.1 Beta1 B - 71

B.47 Methods

checkHealth Method
Syntax void checkHealth (int level) throws JposException;

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
JPOS_CH_INTERNAL

Perform a health check that does not physically change the device. The
device is tested by internal tests to the extent possible.

JPOS_CH_EXTERNAL
Perform a more thorough test that may change the device. For example, a
pattern may be printed on the printer.

JPOS_CH_INTERACTIVE
Perform an interactive test of the device. The supporting Device Service
will typically display a modal dialog box to present test options and
results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined by a visual
inspection of these test results.

This method is always synchronous.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL The specified health check level is not supported by the Device Service.

claim Method
Syntax void claim (int timeout) throws JposException;

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to
be satisfied. If zero, then immediately either returns (if successful) or throws an appropriate
exception. If JPOS_FOREVER (-1), the method waits as long as needed until exclusive access is
satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to claim them before
they can be used.

When successful, the Claimed property is changed to true.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

B - 72 Unified POS, v1.15.1 Beta1

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL This device cannot be claimed for exclusive access, or an invalid timeout

parameter was specified.

JPOS_E_TIMEOUT Another application has exclusive access to the device, and did not
relinquish control before timeout milliseconds expired.

clearInput Method
Syntax void clearInput () throws JposException;

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Unified POS, v1.15.1 Beta1 B - 73

clearInputProperties Method Added in Release 1.10

Syntax void clearInputProperties () throws JposException;

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back
to their default values. This does not reset the DataCount or State properties.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

See Also “Device Input Model” on page 18.

clearOutput Method Updated in Release 1.7

Syntax void clearOutput () throws JposException;

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts
outputs that are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to be set to false –
are also cleared.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

close Method
Syntax void close () throws JposException;

 Remarks Releases the device and its resources.
If the DeviceEnabled property is true, then the device is disabled.
If the Claimed property is true, then exclusive access to the device is released.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

B - 74 Unified POS, v1.15.1 Beta1

compareFirmwareVersion Method Added in Release 1.9
Syntax void compareFirmwareVersion (String firmwareFileName, int[1] result) throws

JposException;

Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files whose versions are to be compared
against those of the device.

result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer
than, older than, or the same as the version of the firmware in the physical device.
The Service should check that the specified firmware file exists and that its contents are valid for
this device before attempting to perform the comparison operation.
The result of the comparison is returned in the result parameter and will be one of the following
values:
Value Meaning
JPOS_CFV_FIRMWARE_OLDER

Indicates that the version of one or more of the firmware files is older
than the firmware in the device and that none of the firmware files is
newer than the firmware in the device.

JPOS_CFV_FIRMWARE_SAME
Indicates that the versions of all of the firmware filed are the same as
the firmware in the device.

JPOS_CFV_FIRMWARE_NEWER
Indicates that the version of one or more of the firmware files is newer
than the firmware in the device and that none of the firmware files is
older than the firmware in the device.

JPOS_CFV_FIRMWARE_DIFFERENT
Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
• The chronological relationship cannot be determined, or
• The relationship is inconsistent -- one or more are older while one

or more are newer.
JPOS_CFV_FIRMWARE_UNKNOWN

Indicates that a relationship between the two firmware versions could
not be determined. A possible reason for this result could be an
attempt to compare Japanese and US versions of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 B - 75

Value Meaning
JPOS_E_ILLEGAL CapCompareFirmwareVersion is false.
JPOS_E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

JPOS_E_EXTENDED ErrorCodeExtended = JPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

See Also CapCompareFirmwareVersion Property.

directIO Method

Syntax void directIO (int command, int[] data, Object object) throws JposException;

Parameter Description
command Command number whose specific values are assigned by the Device

Service.
data An array of one mutable integer whose specific values or usage vary by

command and Device Service.
object Additional data whose usage varies by command and Device Service.

Remarks Communicates directly with the Device Service.

This method provides a means for a Device Service to provide functionality to the application that
is not otherwise supported by the standard Device Control for its device category. Depending upon
the Device Service’s definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may, however, maintain
portability by performing directIO calls within conditional code. This code may be based upon the
value of the DeviceServiceDescription, PhysicalDeviceDescription, or PhysicalDeviceName
property.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

open Method
Syntax void open(String logicalDeviceName) throws JposException;

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this Device Control should
be used.
In Controls from version 1.4 and prior, The logicalDeviceName must exist in the Java System
Database (JSD) for this device category so that its relationship to the physical device can be
determined. Entries in the JSD are created by a setup or configuration utility.

In Controls from version 1.5 and beyond, The logicalDeviceName must exist in the
JposEntryRegistry for this device category so that its relationship to the physical device can be
determined. JposEntry objects in the registry are created by a populator or some configuration utility
like the JCL GUI editor.

B - 76 Unified POS, v1.15.1 Beta1

When this method is successful, it initializes the properties Claimed, DeviceEnabled,
DataEventEnabled and FreezeEvents, as well as descriptions and version numbers of the
JavaPOS software layers. Additional category-specific properties may also be initialized.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL The Control is already open.
JPOS_E_NOEXIST The specified logicalDeviceName was not found.
JPOS_E_NOSERVICE Could not establish a connection to the corresponding Device Service.

release Method
Syntax void release () throws JposException;

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device, then the device is
also disabled (this method does not change the device enabled state of sharable devices).

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL The application does not have exclusive access to the device.

resetStatistics Method Added in Release 1.8

Syntax void resetStatistics (String statisticsBuffer) throws JposException;

Parameter Description
statisticsBuffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”) means ALL resettable
statistics are to be reset, “U_” means all UnifiedPOS defined resettable statistics are to be reset,
“M_” means all manufacturer defined resettable statistics are to be reset, and “actual_name1,
actual_name2” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be reset.

Unified POS, v1.15.1 Beta1 B - 77

Remarks Resets the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use
this method.

This method is always executed synchronously.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named

statistic is not defined/resettable.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

retrieveStatistics Method Added in Release 1.8

Syntax void retrieveStatistics (String[1] statisticsBuffer) throws JposException;

Parameter Description
statisticsBuffer The data buffer defining the statistics to be retrieved and in which the

retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”) means ALL statistics are to
be retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_” means all
manufacturer defined statistics are to be retrieved, and “actual_name1, actual_name2” (from the
XML file definitions) means that the specifically defined statistic(s) are to be retrieved.

Remarks Retrieves the statistics from a device.

CapStatisticsReporting must be true in order to successfully use this method.

This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>
 <Event>
 <Parameter>
 <Name>RequestedStatistic</Name>
 <Value>1234</Value>
 </Parameter>
 </Event>
 <Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>

B - 78 Unified POS, v1.15.1 Beta1

<InstallationDate>2000-03-01</InstallationDate>
 </Equipment>
</UPOSStat>

If the application requests a statistic name that the device does not support, the <Parameter> entry will be
returned with an empty <Value>. e.g.,

<Parameter>
 <Name>RequestedStatistic</Name>
 <Value></Value>
</Parameter>

All statistics that the device collects that are manufacturer specific (not defined in the schema) will be
returned in a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>
 <Name>TheAnswer</Name>
 <Value>42</Value>
</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter> entry for
every defined statistic for the device category as defined by the XML schema version specified by the
version attribute in the <UPOSStat> tag. If the device does not record any of the statistics, the <Value> tag
will be empty.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL CapStatisticsReporting is false or the named statistic is not defined.

See Also CapStatisticsReporting Property.

updateFirmware Method Added in Release 1.9

Syntax void updateFirmware (String firmwareFileName) throws JposException;

Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files that are to be downloaded into the
device.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http://
retail.omg.org.

http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org

Unified POS, v1.15.1 Beta1 B - 79

Remarks This method updates the firmware of a device with the version of the firmware contained or defined
in the file specified by the firmwareFileName parameter regardless of whether that firmware’s
version is newer than, older than, or the same as the version of the firmware already in the device.
If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.
When this method is invoked, the Service should check that the specified firmware file exists and
that its contents are valid for this device. If so, this method should return immediately and the
remainder of the update firmware process should continue asynchronously. The Service should
notify the application of the status of the update firmware process by firing StatusUpdateEvents
with values of JPOS_SUE_UF_PROGRESS + an integer between 1 and 100 indicating the
completion percentage of the update firmware process. For application convenience, the
StatusUpdateEvent value JPOS_SUE_UF_COMPLETE is defined to be the same value as
JPOS_SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been
downloaded into the physical device, any necessary physical device reset has completed, and the
Service and the physical device have been returned to the state they were in before the update
firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete
progress completion percentage (i.e. a percentage between 1 and 99), even if the device cannot
physically report the progress of the update firmware process. If the update firmware process
completes successfully, the Service must fire a StatusUpdateEvent with a progress of 100 or use
the special constant JPOS_SUE_UF_COMPLETE, which has the same value. These Service
requirements allow applications using this method to be designed to always expect some level of
progress notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the
following StatusUpdateEvents will be fired:

Value Meaning
JPOS_SUE_UF_FAILED_DEV_OK

The update firmware process failed but the device is still
operational.

JPOS_SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither
usable nor recoverable through software. The device requires
service to be returned to an operational state.

JPOS_SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

JPOS_SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

B - 80 Unified POS, v1.15.1 Beta1

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
JPOS_E_ILLEGAL CapUpdateFirmware is false.
JPOS_E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

JPOS_E_EXTENDED ErrorCodeExtended = JPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

See Also CapUpdateFirmware Property.

updateStatistics Method Added in Release 1.8
Syntax void updateStatistics (String statisticsBuffer) throws JposException;

Parameter Description
statisticsBuffer The data buffer defining the statistics with values that are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name (““”=value1”)
means ALL resettable statistics are to be set to the value “value1”, “U_=value2” means all
UnifiedPOS defined resettable statistics are to be set to the value “value2”, “M_=value3” means all
manufacturer defined resettable statistics are to be set to the value “value3”, and
“actual_name1=value4, actual_name2=value5” (from the XML file definitions) means that the
specifically defined resettable statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use
this method.

This method is always executed synchronously.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named

statistic is not defined/updatable.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

Unified POS, v1.15.1 Beta1 B - 81

B.48 Events

DataEvent
Interface jpos.events.DataListener

Method dataOccurred (DataEvent e)

Description Notifies the application that input data is available from the device.

Properties This event contains the following property:

Property Type Description
Status int The input status with its value dependent upon the device category; it may

describe the type or qualities of the input data.

 Remarks When this event is delivered to the application, the DataEventEnabled property is changed to false,
so that no further data events will be delivered until the application sets DataEventEnabled back
to true. The actual byte array input data is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is enqueued in an
internal buffer, the device-specific input data properties are not updated, and the event is not
delivered. When DataEventEnabled is subsequently changed back to true, the event will be
delivered immediately if input data is enqueued and FreezeEvents is false.

DirectIOEvent
Interface jpos.events.DirectIOListener

Method directIOOccurred (DirectIOEvent e);

Description Provides Device Service information directly to the application. This event provides a means for a
vendor-specific Device Service to provide events to the application that are not otherwise supported
by the Device Control.

Properties This event contains the following properties:

Property Type Description
EventNumber int Event number whose specific values are assigned by the Device Service.

Data int Additional numeric data. Specific values vary by the EventNumber and
the Device Service. This property is settable.

Object Object Additional data whose usage varies by the EventNumber and the Device
Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described as part of the JavaPOS standard. Use of this event may restrict the application program
from being used with other vendor’s devices which may not have any knowledge of the Device
Service’s need for this event.

B - 82 Unified POS, v1.15.1 Beta1

ErrorEvent Updated in Release 1.12

Interface jpos.events.ErrorListener

Method errorOccurred (ErrorEvent e);
Description Notifies the application that an error has been detected and a suitable response is necessary to

process the error condition.

Properties This event contains the following properties:
Property Type Description
ErrorCode int Error Code causing the error event. See the list of ErrorCodes in Chapter

2.
ErrorCodeExtended

int Extended Error Code causing the error event. These values are device
category specific.

ErrorLocus int Location of the error. See values below.
ErrorResponse int Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus parameter has one of the following values:
Value Meaning
JPOS_EL_OUTPUT Error occurred while processing asynchronous output.
JPOS_EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
JPOS_EL_INPUT_DATA

Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The application’s error event listener can set the ErrorResponse property to one of the following
values:
Value Meaning
JPOS_ER_RETRY Retry the asynchronous output. The error state is exited.

May be valid only when locus is JPOS_EL_INPUT. Default when locus
is JPOS_EL_OUTPUT.

JPOS_ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited. Default when locus is
JPOS_EL_INPUT.

JPOS_ER_CONTINUEINPUT
Acknowledges the error and directs the Device to continue input
processing. The Device remains in the error state and will deliver
additional DataEvents as directed by the DataEventEnabled property.
When all input has been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus JPOS_EL_INPUT.
Use only when locus is JPOS_EL_INPUT_DATA. Default when locus is
JPOS_EL_INPUT_DATA.

Unified POS, v1.15.1 Beta1 B - 83

Remarks This event is enqueued when an error is detected and the Device’s State transitions into the error
state. Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.
Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it
leaves the DataEventEnabled property value at true. Note that the application may set
DataEventEnabled to false within its event handler if subsequent input events need to be disabled
for a period of time.

OutputCompleteEvent

Interface jpos.events.OutputCompleteListener

Method outputCompleteOccurred (OutputCompleteEvent e);

Description Notifies the application that the queued output request associated with the OutputID property has
completed successfully.

Properties This event contains the following property:
Property Type Description
OutputID int The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Device Service has
confirmation that is was processed by the device successfully.

StatusUpdateEvent
Interface jpos.events.StatusUpdateListener

Method statusUpdateOccurred (StatusUpdateEvent e);

Description Notifies the application when a device has detected an operation status change.
Properties This event contains the following property:

Property Type Description
Status int Device category-specific status, describing the type of status change.
Release 1.3 and later – Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning
JPOS_SUE_POWER_ONLINE

The device is powered on and ready for use. Can be returned if
CapPowerReporting =
JPOS_PR_STANDARD or JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFF
The device is off or detached from the terminal. Can only be returned if
CapPowerReporting =
JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting =
JPOS_PR_ADVANCED.

B - 84 Unified POS, v1.15.1 Beta1

JPOS_SUE_POWER_OFF_OFFLINE
The device is either off or offline. Can only be returned if
CapPowerReporting = JPOS_PR_STANDARD.

The common property PowerState is also maintained at the current power state of the device.

Release 1.9 and later – Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:
Value Meaning
JPOS_SUE_UF_PROGRESS + 1 to 100

The update firmware process has successfully completed 1 to 100 percent
of the total operation.

JPOS_SUE_UF_COMPLETE
The update firmware process has completed successfully. The value of
this constant is identical to JPOS_SUE_UF_PROGRESS + 100.

JPOS_SUE_UF_COMPLETE_DEV_NOT_RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the
update firmware process started. The Service has restored all properties to
their default initialization values.
To ensure consistent Service and physical device states, the application
needs to close the Service, then open, claim, and enable again, and also
restore all custom application settings.

JPOS_SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still operational.

JPOS_SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned
to an operational state.

JPOS_SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

JPOS_SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

Remarks This event is enqueued when a Device needs to alert the application of a device status change.
Examples are a change in the cash drawer position (open vs. closed) or a change in a POS printer
sensor (form present vs. absent).
When a device is enabled, this event may be delivered to inform the application of the device state.
This behavior, however, is not required.

See Also CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify Property.

Unified POS, v1.15.1 Beta1 B - 85

B.49 Peripheral Interfaces

Note:

The following are two examples of how the proposed sections for each of the peripheral devices would be
constructed. Where possible the tables are arranged to show the sequence of the commands for proper
operation of the peripheral device.

The Cash Drawer and the MICR devices were chosen because they represent a simple output device and a
more complex input device. The other peripheral devices would follow similar command usage and flow.

B - 86 Unified POS, v1.15.1 Beta1

JavaPOS: Cash Drawer
Java Command Examples

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

E
X
C
P

open * M myCashDrawer.open(LogicalDeviceName.CashDrawer);  1 void 

claim * M myCashDrawer.claim(1000);  1 void 

Claimed P bResult = myCashDrawer.getClaimed();  boolean 

DeviceEnabled * P myCashDrawer.setDeviceEnabled(true);  1 - 

DeviceEnabled P bResult = myCashDrawer.getDeviceEnabled();  boolean 

DirectIO M myCashDrawer.directIO(100,int[],byte[])  3 void 

CheckHealth M myCashDrawer.checkHealth(JPOS_CH_INTERNAL);  1 void 

DirectIOEvent E public void directIOOccurred(DirectIOEvent e) 1 CMF

StatusUpdateEvent E public void statusUpdateOccurred(StatusUpdateEvent e) 1 CMF

CapPowerReporting P iResult = myCashDrawer.getCapPowerReporting();  int

CheckHealthText P sResult = myCashDrawer.getCheckHealthText();  String 

FreezeEvents P myCashDrawer.setFreezeEvents(true);  1 - 

FreezeEvents P bResult = myCashDrawer.getFreezeEvents();  boolean 

PowerNotify P myCashDrawer.setPowerNotify(JPOS_PN_ENABLED);  1 - 

PowerNotify P iResult = myCashDrawer.getPowerNotify();  int 

PowerState P iResult = myCashDrawer.getPowerState();  int 

PhysicalDevice
Description

P sResult = myCashDrawer.getPhysicalDeviceDescription();  String 

PhysicalDevice
Name

P sResult = myCashDrawer.getPhysicalDeviceName();  String 

Unified POS, v1.15.1 Beta1 B - 87

Cash Drawer Operations Properties, Methods, and Events

Cash Drawer Terminating Methods

Notes:
* Required for basic Cash Drawer operations

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

E
X
C
P

State P iResult = myCashDrawer.getState();  int

DeviceControl
Description

P sResult = myCashDrawer.getDeviceControlDescription();  String

DeviceControl
Version

P iResult = myCashDrawer.getDeviceControlVersion();  int

DeviceService
Description

P sResult = myCashDrawer.getDeviceServiceDescription();  String 

DeviceService
Version

P iResult = myCashDrawer.getDeviceServiceVersion();  int 

CapStatus P bResult = myCashDrawer.getCapStatus();  boolean 

CapStatusMultiDrawerDetect P bResult = myCashDrawer.getCapStatusMultiDrawerDetect();  boolean 

DrawerOpened P myCashDrawer.drawerOpened();  boolean 

OpenDrawer * M myCashDrawer.openDrawer();  void 

WaitForDrawerClose M myCashDrawer.waitForDrawerClose(2500, 1000, 10, 5);  4 void 

Release M myCashDrawer.release();  void 

Close * M myCashDrawer.close();  void 

B - 88 Unified POS, v1.15.1 Beta1

JavaPOS: MICR
Java Command Examples

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

E
X
C
P

open * M myMicr.open(LogicalDeviceName.MICR);  1 void 

claim * M myMicr.claim(1000);  1 void 

Claimed P bResult = myMicr.getClaimed();  boolean 

DeviceEnabled * P myMicr.setDeviceEnabled(true);  1 - 

DeviceEnabled P bResult = myMicr.getDeviceEnabled();  boolean 

AutoDisable P myMicr.setAutoDisable(true);  1 - 

AutoDisable P bResult = myMicr.getAutoDisable();  boolean 

DirectIO M myMicr.directIO(100,int[],byte[])  3 void 

CheckHealth M myMicr.checkHealth(JPOS_CH_INTERNAL);  1 void 

DirectIOEvent E public void directIOOccurred(DirectIOEvent e) 1 CMF

ErrorEvent E public void errorOccurred(ErrorEvent e) 1 CMF

StatusUpdateEvent E public void statusUpdateOccurred(StatusUpdateEvent e) 1 CMF

CapPowerReporting P iResult = myMicr.getCapPowerReporting();  int

CheckHealthText P sResult = myMicr.getCheckHealthText();  String 

DataCount P iResult = myMicr.getDataCount();  int 

FreezeEvents P myMicr.setFreezeEvents(true);  1 - 

FreezeEvents P bResult = myMicr.getFreezeEvents();  boolean 

PowerNotify P myMicr.setPowerNotify(JPOS_PN_ENABLED);  1 - 

PowerNotify P iResult = myMicr.getPowerNotify();  int 

Unified POS, v1.15.1 Beta1 B - 89

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

E
X
C
P

PowerState P iResult = myMicr.getPowerState();  int 

PhysicalDevice
Description

P sResult = myMicr.getPhysicalDeviceDescription();  String 

PhysicalDevice
Name

P sResult = myMicr.getPhysicalDeviceName();  String 

State P iResult = myMicr.getState();  int

DeviceControl
Description

P sResult = myMicr.getDeviceControlDescription();  String

DeviceControl
Version

P iResult = myMicr.getDeviceControlVersion();  int

DeviceService
Description

P sResult = myMicr.getDeviceServiceDescription();  String 

DeviceService
Version

P iResult = myMicr.getDeviceServiceVersion();  int 

B - 90 Unified POS, v1.15.1 Beta1

MICR Operations Properties, Methods, and Events

MICR Terminating Methods

* Required for basic MICR operations

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W
R
I
T
E

A
R
G
S

R
T
N
V

E
X
C
P

CapValidationDevice P bResult = myMicr.getCapValidationDevice();  boolean 

ClearInput M myMicr.clearInput();  void 

DataEventEnabled * P myMicr.setDataEventEnabled(true);  1 - 

DataEventEnabled P bResult = myMicr.getDataEventEnabled();  boolean 

BeginInsertion * M myMicr.beginInsertion(2000);  1 void 

EndInsertion * M myMicr.endInsertion();  void 

DataEvent E public void dataOccurred(DataEvent e) 1 CMF

BeginRemoval * M myMicr.beginRemoval(1000);  void 

EndRemoval * M myMicr.endRemoval();  void 

RawData P sResult = myMicr.getRawData();  String 

AccountNumber P sResult = myMicr.getAccountNumber();  String 

Amount P sResult = myMicr.getAmount();  String 

BankNumber P sResult = myMicr.getBankNumber();  String 

EPC P sResult = myMicr.getEPC();  String 

SerialNumber P sResult = myMicr.getSerialNumber();  String 

TransitNumber P sResult = myMicr.getTransitNumber();  String 

CheckType P iResult = myMicr.getCheckType();  int 

CountryCode P iResult = myMicr.getCountryCode();  int 

Release M myMicr.release();  void 

Close * M myMicr.close();  void 

Unified POS, v1.15.1 Beta1 B - 91

B.50 Section 3: Technical Details - OPOS and JavaPOS
The Java for Retail POS (JavaPOS) and OLE for Retail POS (OPOS) industry standard initiatives are
intentionally similar in many respects since the UnifiedPOS architecture is the basis from which JavaPOS and
OPOS implementations are derived. The most up to date information can be downloaded from the web site, http:/
/retail.omg.org, under the JavaPOS Standard files section.

Support for Java requires several differences from OPOS in architecture, but the JavaPOS committee agreed that
the general model of OPOS device classes should be reused as much as possible.

In order to reuse as much of the OPOS device models as possible, the following sections detail the general
mapping rules from OPOS to JavaPOS. A later section lists the deviations of JavaPOS APIs from OPOS.

B.51 OPOS to JavaPOS - API Mapping Rules
In most cases, OPOS APIs may be translated in a mechanical fashion to equivalent JavaPOS APIs. The
exceptions to this mapping are largely due to differences in some string parameters.

Areas of data mapping include data types, methods and properties, and events.

Data Types Updated in Release 1.11
Data types are mapped from OPOS to JavaPOS as shown in the table, with exceptions noted after the table.

Property and Method Names
Property and method names are mapped from OPOS to JavaPOS as follows:

Type OPOS Examples JavaPOS Examples Mapping Rule

Property
Read

Claimed
DeviceEnabled
OutputID

getClaimed()
getDeviceEnabled()
getOutputID()

Prepend “get” to the property name to
form the property accessor method.
No parameters.
Return value is the property.

Property
Write

AutoDisable
DeviceEnabled

setAutoDisable(...)
setDeviceEnabled(...)

Prepend “set” to the property name to
form the property mutator method.
One parameter, which is of the
property's type.
No return value.

Method
Open
CheckHealth
DirectIO

open
checkHealth
directIO

Change first letter to lowercase.
Other characters are unchanged.

http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org

B - 92 Unified POS, v1.15.1 Beta1

Events
JavaPOS events use the Java Development Kit 1.1 event delegation model, whereby the application registers for
events, supplying a class instance that implements an interface extended from EventListener.

For each Event type which the Application wishes to receive, the Application must implement the corresponding
jpos.events.EventListener interface and handle its event method. Events are delivered by the JavaPOS Device
by calling this event method.

Constants
Constants are mapped from OPOS to JavaPOS as follows:

• If the constant begins with “OPOS”, then change “OPOS” to “JPOS.”

• Otherwise, make no changes to the constant name.

All constant interface files are available in the package “jpos.” All constants are of type “static final int.”

B.52 API Deviations
The following OPOS APIs do not follow the above mapping rules:

• BinaryConversion property
Not needed by JavaPOS. This OPOS property was used to overcome a COM-specific issue with
passing binary data in strings. JavaPOS uses more appropriate types for these cases, such as
byte arrays.

• OpenResult property
Not supported by JavaPOS.

• ResultCode and ResultCodeExtended properties
Not needed by JavaPOS. These OPOS properties are used for reporting failures on method calls
and property sets. In JavaPOS, these failures (plus property get failures) cause a
JposException. This exception includes the properties ErrorCode and ErrorCodeExtended,
with values that match the OPOS properties.

• ClaimDevice method
In OPOS, this method was introduced in Release 1.5. Previous releases defined the Claim
method. This method is claim in all releases of JavaPOS.

• ReleaseDevice method
In OPOS, this method was introduced in Release 1.5. Previous releases defined the Release
method. This method is release in all releases of JavaPOS.

• DirectIO method and DirectIOEvent
The BSTR* parameter is mapped to Object.

• Cash Drawer WaitForDrawerClosed method
The tone function of this method may not work on non-PCs, since it depends on the availability
of a speaker.

• Hard Totals Read method
The BSTR* parameter is mapped to byte[], with its size set to the requested number of bytes.

Unified POS, v1.15.1 Beta1 B - 93

• Hard Totals Write method
The BSTR parameter is mapped to byte[].

• MSR Track1Data, Track1DiscretionaryData, Track2Data, Track2DiscretionaryData,
Track3Data properties
These BSTR properties are mapped to byte[].

• PINPad PromptLanguage property
This LONG property is mapped to String.

• Scanner ScanData and ScanDataLabel properties
These BSTR properties are mapped to byte[].

• Signature Capture PointArray property
This BSTR property is mapped to Point[].

• Signature Capture RawData property
This BSTR property is mapped to byte[].

• Signature Capture TotalPoints property
Not needed by JavaPOS. This property is equivalent to “PointArray.length”, so TotalPoints
is redundant.

B.53 Mapping of CharacterSet Updated in Release 1.10
This section provides some details for proper use of the MapCharacterSet property that is provided for some
devices such as the LineDisplay, POSPrinter, PointCardReaderWriter, and RemoteOrderDisplay. First, the
application must select an appropriate device character set in the CharacterSet property of the Service. Next,
the application must pass strings to the Service using the Unicode character set. Then, the Service is responsible
for mapping these Unicode characters to the device-side code page when necessary.

The following code snippet allows Device Service providers to easily add the mapping mechanism into their
Services. For mapping of the characters, the encoding capabilities of the Java Runtime Environment (JRE) are
used. (It is assumed that the data transferred to the Service for output to the device is a String, and that the lower
software layers, such as comm.api, use byte arrays.)

/** converts a string with the appropriate code page to a byte array.
@param codePage the desired code page to which

the characters should be mapped - such as 1252 or 850...
@param src the source string to be mapped.
@return the mapped character as byte array.

Returns null if mapping to this codepage is not supported.
*/
static byte[] UnicodeToOEMCodePage (int codePage, String src)
{

try { return src.getBytes (“Cp” + codePage);}
catch (java.io.UnsupportedEncodingException e) {}
return null;

}

Note:
• The used (extended) encoding set of the Java Runtime Environment must be installed. Usually,

the i18n package is required.
• Refer to the Java SDK documentation for the term Internationalization.

B - 94 Unified POS, v1.15.1 Beta1

B.54 Handling Binary Data inside Strings Added in Release 1.12
Sometimes there is a need to pass binary data as a Java string, e.g., the data parameter of the readData and
writeData methods of the SmartCard R/W when used in the APDU programming mode. The main challenge in
this case is to avoid the use of the default charset conversion for the binary values stored in the passed Java
string when they are processed.

This paragraph describes a technique to avoid the default charset conversion while processing binary data inside
Java strings.

 It is clear that code such as...
 char binaryChar = '\u00fc'; // german ü
 byte binaryData = (byte)binaryChar;

would be converted differently depending on the configured default charset in the underlying Java environment.

However, the following code always handles binary data stored inside a Java string object in the same way and
the default charset conversion does not take place. The only limitation is that strings containing binary data
should not contain Unicode characters > 0x00ff. Otherwise, only the lower byte of the two byte Unicode value
is used. But this should not be a problem due to the fact that only binary data should be inside of these strings
(see the note below).

// Define hex values 0x01 0x02 0xff as String
String binaryDataString = “\u0001\u0002\u00ff”;
byte[] binaryData = new byte[binaryDataString.length];
for (int i = 0; i < binaryData.length; i++) {
 binaryData[i]=(byte)(binaryDataString.charAt(i) & 0xFF);
}

The idea behind the code is, that the '&' operator automatically converts the Unicode character into its integer
representation to match the requested operator types. For the integer representation the Unicode value of the
Unicode character is used. The conversion to an integer value before casting it to a byte type ensures that no
default charset conversion takes place. To ensure that only the lower byte of the Unicode two byte value is used,
the Unicode value is ANDed with 0xff.

Note: All human readable characters in the binary data have to be converted to their corresponding
OEM codepage codes before the conversion algorithm shown above can be applied.

Unified POS, v1.15.1 Beta1 B - 95

B.55 Section 4: JavaPOS Change History

Release 1.3
Release 1.3 adds additional device classes, a few additional APIs, and some corrections. Release 1.3 is a
superset of Release 1.2.

Section Change
General Modify the use of the term event “firing.” Use “enqueue” and “deliver”

appropriately to describe event firing.
Bump Bar New device: Add information in several locations, plus Bump Bar chapter

and interface files.
Fiscal Printer New device: Add information in several locations, plus Fiscal Printer

chapter and interface files.
PIN Pad New device: Add information in several locations, plus PIN Pad chapter and

interface files.
Remote Order Display New device: Add information in several locations, plus Remote Order

Display chapter and interface files.
Several places Relax ErrorEvent “retry” response to allow its use with some input devices.
Introduction Events Clarify effect of the top event being blocked.
Introduction Input Model

Add details concerning enqueuing and delivering ErrorEvents.
Add description of asynchronous input.

Introduction Device Power Reporting Model
Add this section.

Common CapPowerReporting, PowerNotify, PowerState properties
Add these sections.

Common ErrorCode property
Generalize the meaning of JPOS_E_BUSY.

Common StatusUpdateEvent
Add power state reporting information.
Change parameter name from Data to Status.

Every Device Add power reporting properties to Summary section.
Add StatusUpdateEvent support (if previously not reported).
Add power reporting reference to existing StatusUpdateEvent descriptions.

MSR DecodeData Add “raw format” description and column to track data table.
MSR ExpirationDate Specify the format.
MSR TrackxData Specify that data excludes the sentinels and LRC.

Add that decoding occurs when DecodeData is true.
MSR ErrorEvent Clarify that DataCount and AutoDisable are not relevant for MSR error

events.
POSPrinter XxxLineChars

Add implementation recommendations.
POSPrinter printTwoNormal

Clarify the meaning of the stations parameter, including the addition of new
constants.

B - 96 Unified POS, v1.15.1 Beta1

Scale Add the following features:
• Asynchronous input. Property AsyncMode. Method clearInput,

updates to readWeight. Events DataEvent and ErrorEvent.
• Display of text. Properties CapDisplayText, MaxDisplayTextChars.

Method displayText.
• Price calculation. Properties CapPriceCalculating, SalesPrice,

UnitPrice.
• Tare weight. Properties CapTareWeight, TareWeight.
• Scale zeroing. Property CapZeroScale. Method zeroScale.

Tone Indicator Summary and General Information’s Device Sharing
Consistently specify that Tone Indicator is a sharable device.

JposConst.java interface files
Add CapPowerReporting, PowerState, and PowerNotify properties.
Add StatusUpdateEvent power reporting values.

POSPrinterConst.java interface files
Add new printTwoNormal station constants.

Throughout Correct some editing errors.

Release 1.4
Release 1.4 added the additional peripheral device, Credit Authorization Terminal (CAT). This device,
as specified, is currently only used in the Japanese POS markets.
Addition of this device required re-ordering the chapters and modifications to the Table of Contents.
Other minor changes to the standard are as noted below.
Release 1.4 is a superset of Release 1.3.
Section Change
General Update the Package Structure to include CAT device; update the files to

correct some erroneous references to OPOS.
Fiscal Printer Add clarification to when the ErrorStation property is valid.
POS Printer Add clarification to when the ErrorStation property is valid.
Appendix B Add clarification to the “Events” section description.
Throughout Correct interface name to jpos.events.OutputCompleteListener.

Correct minor spelling errors.

Release 1.5
Release 1.5 adds two additional peripheral devices: Pointcard Reader Writer and POSPower,
incorporates additional clarifications to the standard, adds a few new additional APIs for some of the
existing devices, and makes some corrections to insure consistency in the device descriptions. Release
1.5 is a superset of Release 1.4.
Section Change
Throughout Correct notation for Java Unicode to “\uxxxx”
General Add clarification to when the Device exits the Error state.

Remove the JPS documentation from the standard. The JPS
implementation has been replaced with the JCL mechanism for locating

Unified POS, v1.15.1 Beta1 B - 97

and maintaining the Java Device Services. Updated the tables and
diagrams as necessary to reflect these changes.
Update the Standard and the Package Structure to reflect the additional
new devices added to this version.

Common Properties, Methods, and Events
Modified General section to reflect JDK version dependencies.

Bump Bar Add clarification that this Device can be both an input and an output
device.

Cash Changer Add the necessary properties (DataCount, DataEventEnabled,
CapDeposit, CapDepositDataEvent, CapPauseDeposit,
CapRepayDeposit, DepositAmount, DepositCashList,
DepositCodeList, DepositCounts, DepositStatus), methods
(beginDeposit, endDeposit, fixDeposit, pauseDeposit) and events
(DataEvent) for this device to optionally be able to handle cash
acceptance.

Cash Drawer Added new property, CapStatusMultiDrawerDetect to improve status
reporting in multiple cash drawer environments.

CAT Correct the properties section to reflect the correct data type for
TransactionType (an integer) and TransactionNumber (a String); other
minor corrections to fix typographical errors.

Coin Dispenser No Changes
Fiscal Printer Added Russia to list of countries in the CountryCode property.

Added note to clarify that Currency value is specified to be four decimal
places.
Changed the properties CountryCode, ErrorOutID, PrinterState,
QuantityDecimalPlaces, and QuantityLength to clarify when the
parameters are Initialized.
Corrected DuplicateReceipt to show that it is
a R/W Property.

Hard Totals No Changes
Keylock No Changes
Line Display Clarify properties CharacterSet and CharacterSetList to indicate when

they are initialized and to what values they may be set.
MICR Added clarification to description of Model concerning the availability

of parsed data.
Clarify number of digits for BankNumber as specified by ABA
Standard, Thomson Financial Publishing Inc.

MSR Added properties CapTransmitSentinels, Track4Data, and
TransmitSentinels to enhance the features that may be available in a
global MSR device.
Updated the status byte definitions for the DataEvent event.

Pin Pad Added the Track4Data property.
Clarify that Track1Data, Track2Data, Track3Data, and Track4Data

B - 98 Unified POS, v1.15.1 Beta1

are assumed to be decoded data if a successful read takes place.
Pointcard Reader Writer

New device classification added to the standard. This device is used
primarily in Asian markets.

POS Keyboard CapKeyUp property type corrected from Long to boolean
POS Power New device classification added to the standard to allow for systems that

have the capability to report and manage alternative mains power (UPS
type devices).

POS Printer Revise this device classification to include properties, methods, and
events to add multi-color printing, both side printing for documents such
as checks, and marked paper and sensing capability for special POS
printer forms handling. This section had significant changes to the
General Information section as well to help clarify standard to reduce the
possibility of creating a Device Service that does not meet the intent of
the standard.

ROD Clarify model remarks to indicate that this device can be both an output
device and an input device.
Clarify General Model description explaining how Applications can
manage and control the Remote Order Displays.
Clarify to indicate that ErrorUnits and ErrorString are updated instead
by synchronous broadcast method.
Clarify what value the CurrentUnitID property is initialized.

Scale Clarify the properties SalesPrice, TareWeight, and UnitPrice to
indicate when the values are initialized and can be expected to remain
stable and valid.

Scanner (Bar Code Reader)
No Changes

Signature Capture Update Model to discuss AutoDisable implications; clarify when
RealTimeDataEnabled takes effect; correct DataEvent to indicate
when this event may be fired to include real-time data.

Tone Indicator Clarify all the specific properties to indicate when the values are
initialized and can be expected to remain stable and valid. Also clarify
handling of the Sound method when another application claims the
device and calls the Sound method.

Release 1.6
Release 1.6 does not add any new devices to the standard but does make significant changes to the
Fiscal Printer and Line Display devices. Additional minor clarification and correction changes are
added as noted below. Release 1.6 is a superset of Release 1.5.
Section Change

Fiscal Printer Added the CapAdditionalHeader, CapAdditionalTrailer,
CapChangeDue, CapEmptyReceiptIsVoidable,

Unified POS, v1.15.1 Beta1 B - 99

CapFiscalReceiptStation, CapFiscalReceiptType,
CapMultiContractor, CapOnlyVoidLastItem,
CapPackageAdjustment, CapPostPreLine, CapSetCurrency,
CapTotalizerType, ActualCurrency, AdditionHeader,
AdditionalTrailer, ChangeDue, ContractorId, DateType,
FiscalReceiptStation, FiscalReceiptType, MessageType, PostLine,
PreLine, and TotalizerType properties.
Added the setCurrency, printRecCash, printRecItemFuel,
printRecItemFuelVoid, printRecPackageAdjustment,
printRecPackageAdjustVoid, printRecRefundVoid,
printRecSubtotalAdjustVoid, and printRecTaxID methods.
Clarified the description of the CapPositiveAdjustment property.
Added country support for Bulgaria and Romania.
Updated the CountryCode, DayOpened, and DescriptionLength
properties to reflect additions to the specification.
Updated the endFiscalReceipt, getData, getDate, printRecItem,
printRecMessage, printRecNotPaid, printRecRefund,
printRecSubtotal, printRecSubtotalAdjustment, printRecTotal,
printRecVoid, printRecVoidItem, printZReport, and setHeaderLine
methods to reflect additions to the specification.
Updated ErrorEvent to reflect additions to the specification.
Properties CountryCode, ErrorOutputID, PrinterState,
QuantityDecimalPlaces, and QuantityLength have been updated to
reflect the fact that they should be initialized after open instead of open,
claim, and enable.
Many updates in the General Information section.

Line Display Added CapBlinkRate, CapCursorType, CapCustomGlyph,
CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight, and GlyphWidth properties.
Added defineGlyph and readCharacterAtCursor methods.
Updated the displayText and displayTextAt methods to support new
attributes for reverse video, DISP_DT_REVERSE and
DISP_DT_BLINK_REVERSE.

Scale Properties SalesPrice, TareWeight, and UnitPrice have been updated
when the parameters are initialized following an open method.

Tone Indicator Properties AsyncMode, Tone1Pitch, Tone1Volume, Tone1Duration,
Tone2Pitch, Tone2Volume, Tone2Duration, and InterToneWait have
been updated to reflect the fact that they should be initialized after open
instead of open, claim, and enable.
Clarified handling of the sound method when another application claims
the device and calls the sound method.

B - 100 Unified POS, v1.15.1 Beta1

Release 1.7

The change history above has been maintained to this point for historical reference.
No specific change history relative to the JavaPOS Programming Guide is maintained from this
release forward. Refer to Appendix E - Change History for the change history details (if any)
relative to this section.

Unified POS, v1.15.1 Beta1 C - 1

Annex C

POS for .NET Implementation Reference

C.1 What is POS for .NET? Updated in Release 1.15
POS for .NET is a class library implementation of the UnifiedPos Standard that provides an open device driver
architecture for applications utilizing the .NET Framework to easily integrate Point-of-Service (“POS”) hardware
on Microsoft Windows Operating Systems.

Note: Beginning with POS for .NET 1.0 , the POS for .NET version number reflects the version of the version of
the UnifiedPOS Specification that it conforms to. Earlier versions of POS for .NET such as POS for .NET 1.0
and POS for .NET 1.1 conform to UnifiedPOS Version 1.8 and UnifiedPOS Version 1.9 respectfully.

Microsoft will not break backwards compatibility with any documented API. Undocumented functionality,
including undocumented APIs, file locations, and schemas are subject to change at any time.

The goals of POS for .NET include:

• Defining an architecture for Win32-based POS device access for the .NET Framework, while maintaining a close
relationship to certain aspects of the existing OPOS implementation of the UnifiedPOS specification.

• Defining a set of POS device interfaces to support a range of POS applications that incorporate the UnifiedPOS
device abstraction. The benefits of the .NET Framework extensions aid in the management of these devices.

• Provide for a migration path for legacy (existing) OPOS device services to function under the .NET Framework,
albeit without the feature rich functionality that the .NET Framework potentially offers.

Deliverables available for POS for .NET in addition to this document include:

• POS for .NET SDK Documentation: https://aka.ms/p4dn-docs

• POS for .NET Runtime and SDK: https://aka.ms/p4dn-dl
Includes: Class libraries, runtime and code samples

Additional resources for creating POS for .NET service objects from legacy OPOS services:
 Updated in Release 1.11

• A set of software middleware documentation and code, known as a “Shim”, is available that allows for developers
to port their legacy OPOS service objects to run under the .NET framework, using existing OPOS naming
conventions. The “Shim” is not a Microsoft supported product, does not allow for all the .NET framework
benefits, but does allow for an alternative way to migrate to the POS for .NET platform with minimal code
changes. A brief description is included in this annex.

www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en

C - 2 Unified POS, v1.15.1 Beta1

C.2 Who Should Read This Section Updated in Release 1.15
This section is intended for application developers who require access to POS-specific peripheral devices and
want to implement the UnifiedPOS Standard on a POS for .NET supported Microsoft Windows Operating
System like Microsoft Windows Embedded for Point of Service (WEPOS). This section is also intended for a
programmer who wants to write a POS for .NET Service Object (usually the device manufacturer), or an
application developer who desires a better understanding of how to interface with POS for .NET.

This guide assumes that the reader is familiar with the following:

• The UnifiedPOS Device chapters in this document.

• The typical characteristics of POS peripheral devices.

• Microsoft’s .NET Framework terminology and architecture.

• A working knowledge of the OPOS Implementation Reference found in Appendix A in this document. This is
helpful to give the reader special insight into the Windows based nuances of peripheral devices implemented under
UnifiedPOS.

Familiarity with Microsoft Developer Integration tools including the latest version of Visual Studio and at least
one of the .NET Application Development languages. Note that as there is no Control Programmer’s Guide
(CPG) for POS for .NET, code samples can be found by searching for “POS for .NET SDK” located at: https://
aka.ms/p4dn-docs.

Note: Examples in this Annex use the Visual C# .NET syntax if method signatures are provided.

C.3 Overview of POS for .NET
The following diagram shows the high level architecture of POS for .NET. An application calls into the
PosExplorer API to enumerate available POS peripherals and to instantiate service objects for them. Once a
service object is instantiated by the PosExplorer API, the application then directly communicates to it. Device-
dependent service objects represent state and behavior of the physical peripheral via properties, methods, and
events.

Unlike the behavior of an OPOS implementation, in POS for .NET there is no notion of control objects. Instead,
the PosExplorer API acts, in some sense, as a sole control object for all device classes. There is a global
configuration store where the configuration of POS for .NET is persisted. PosExplorer API reads what logical
devices are defined in the system and other related information from the store. Also, configuration of the service
objects and physical devices is persisted in the configuration store. Service objects can read and write their
properties from and to the store.

www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en

Unified POS, v1.15.1 Beta1 C - 3

It is important to note that provision is made for both legacy OPOS CO/SO’s software code and new .NET base
class dependent software code to be used. However, the full rich features of a .NET based service cannot be
expected using an OPOS legacy service object scenario. It is fully expected that over time, full-featured .NET
enabled devices with full featured .NET designed services will become the preferred implementation for .NET
POS applications.

Like OPOS Controls, .NET SO base classes expose properties, methods, and events to a containing Application.
The Service Object is a class that implements a device class interface defined by POS for .NET. The Microsoft
supplied interfaces provide the class interfaces that serve as the basis for the Applications to interact with a POS
peripheral device using properties, methods, and events as defined by the UnifiedPOS standard. Responses are
given to the application through method return values and parameters, properties, and events.

C.4 POS for .NET Definitions

C.4.1 Device Class

 Aevice class is a category of POS devices that share a consistent set of properties, methods, and events.
Examples are CashDrawer and POSPrinter. Some devices support more than one device class. For example, some
POS Printers include a Cash Drawer kickout. Also, some Bar Code Scanners include an integrated Scale.

Application

Service ObjectService Object

Operating System & Drivers

PosExplorer API

Enumerates devices
and instantiates
Service Objects

Hardware

Configuration
Store

C - 4 Unified POS, v1.15.1 Beta1

C.4.2 Service Object or SO

A Service Object is a class that implements a device class interface defined by POS for .NET. It exposes
properties and methods that are called by an application.

C.5 Key POS for .NET Features

.NET Interfaces Classes for POS Peripherals
POS for .NET supplies interface classes for peripheral devices defined in the UnifiedPOS specification. The
interface classes provide the entry points as specified in the UnifiedPOS specification, but offer minimal
functionality.

Base Classes for Service Objects
POS for .NET supplies fully functional Base classes that extend their corresponding Basic classes with device-
specific members for nine primary UnifiedPOS device types. You could think of these classes as enhanced or
extended Basic classes. Because Base classes provide a nearly complete implementation, Service Object
developers should derive from these classes whenever possible.

Basic Classes for Service Objects
POS for .NET Basic classes contain basic functional support for peripheral devices defined in the UnifiedPOS
specification. Basic classes provide generic support for opening, claiming, and enabling the device, device
statistics, and management of delivering events to the application. In addition, each Basic class contains a set of
inherited and protected methods that can be implemented by the Service Object.

Plug and Play
POS for .NET helps to bring retail peripherals to the same parity as standard PC desktop peripherals which can
use the Plug and Play (PnP) Windows architecture. PnP is a feature of Windows that, with little or no user
intervention, automatically installs drivers when their corresponding hardware peripherals are plugged into a PC.
Currently PnP is not a feature of a UnifiedPOS implementation but usage of PnP devices is supported along with
UnifiedPOS devices. For more information about supporting PnP, see http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnwue/html/ch11j.asp.

Standardized Setup
A standard installation and uninstall procedure support of POS for .NET Service Objects is provided, which
negates the requirement for a special service loader install program (as is required in OPOS).

Device Enumeration
The ability to enumerate all the POS Peripheral devices installed on the system is provided in the POS for .NET
services.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch11j.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch11j.asp

Unified POS, v1.15.1 Beta1 C - 5

Software-Based Device Statistics
Additional native support for hardware-specific device statistics is available in addition to device statistics that
are provided for under UnifiedPOS.

Support for OPOS Service Objects Updated in Release 1.15
POS for .NET provides for full .NET to COM interoperability as part of the library to avoid depreciating the
investment in COM-based Service Objects. See Device Category Support Level table later in this chapter for
specific device types supported through legacy OPOS inter-op.

Service Object Verification Program Updated in Release 1.15
The Service Object Verification Program has been retired. It is the responsibility of the third party authoring POS
for .NET service objects to ensure compatibility.

Device Category Support Level Updated in Release 1.15
The following table shows the various classes and the POS for .NET version in which they were initially
supported.

Device Category OPOS
Inter-op

Interface
Class

Basic
Class

Base
Class

Belt 1.12 1.12

BillAcceptor 1.11 1.11

BillDispenser 1.11 1.11

Biometrics 1.11 1.11

BumpBar 1.14 1.0 1.0

CashChanger 1.14 1.0 1.0

CashDrawer 1.0 1.0 1.0 1.0
CAT (Credit Auth Terminal) 1.12 1.0 1.0
CheckScanner 1.0 1.0 1.0 1.0
CoinAcceptor 1.11 1.11
CoinDispenser 1.1 1.0 1.0
ElectronicJournal 1.11 1.11
ElectronicValueRW 1.12 1.12
FiscalPrinter 1.14 1.0 1.0
Gate 1.12 1.12
HardTotals 1.14 1.0 1.0
ImageScanner 1.11 1.11
ItemDispenser 1.12 1.12
Keylock 1.1 1.0 1.0
Lights 1.12 1.12
LineDisplay 1.0 1.0 1.0 1.0
MICR (Magnetic Ink Char Recognition) 1.1 1.0 1.0
MotionSensor 1.14 1.0 1.0

C - 6 Unified POS, v1.15.1 Beta1

C.6 Key Programming Construct Differences from OPOS

C.6.1 Naming Conventions

The library uses Pascal naming conventions for .NET classes and parameters of methods are camel-case. These
conventions are consistent with .NET Guidelines for Class Library Developers. For more information on .NET
Guidelines for Class Library Developers, see: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
cpgenref/html/cpconnetframeworkdesignguidelines.asp

 Updated in Release 1.13

POS for .NET makes extensive use of enumerations, which serves several purposes. Enumerations force both the
application and its Device Service Object to use in-bounds parameters. This method of type checking helps avoid
bugs that result from out-of-bounds parameters or from passing return values.

In addition, the use of enumerations eliminates the need for a large list of constants in the name space. Best
practices for a library development require range validation for constant data types, something that is
automatically provided by using enumerations.

Note that there are cases where the range of acceptable enumeration values is bound; however, the individual
number of choices can be quite large. An example is the timeout parameter. The possible values are -1 through
the size of an Int32. The value of -1 is interpreted as “wait forever” and all values from 0 through the size of an
Int32 represent the number of milliseconds before a timeout error occurs. Best practices in this case would be to
use a constant (such as -1) to define “wait forever” and to use an Int32 value for the non-wait condition.

The following pages contain a table showing the current OPOS reference implementation constant definitions
and the corresponding POS for .NET enumerations.

MSR (Magnetic Stripe Reader) 1.0 1.0 1.0 1.0
PINPad 1.0 1.0 1.0 1.0
PointCardRW 1.14 1.0 1.0
POSKeyboard 1.0 1.0 1.0 1.0
POSPower 1.1 1.0 1.0
POSPrinter 1.0 1.0 1.0 1.0
RemoteOrderDisplay 1.14 1.0 1.0
RFIDScanner 1.12 1.12 1.12
Scale 1.1 1.0 1.0
Scanner (Bar Code Reader) 1.0 1.0 1.0 1.0
SignatureCapture 1.1 1.0 1.0
SmartCardRW 1.14 1.0 1.0
ToneIndicator 1.1 1.0 1.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

Unified POS, v1.15.1 Beta1 C - 7

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

S_CLOSED ControlState enum Constant Closed
S_IDLE ControlState enum Constant Idle
S_BUSY ControlState enum Constant Busy
S_ERROR ControlState enum Constant Error

SUCCESS ErrorCode enum Constant Success
No_Equivalent_Defined0000 ErrorCode enum Constant Unspecified
E_CLOSED ErrorCode enum Constant Closed
E_CLAIMED ErrorCode enum Constant Claimed
E_NOTCLAIMED ErrorCode enum Constant NotClaimed
E_NOSERVICE ErrorCode enum Constant NoService
E_DISABLED ErrorCode enum Constant Disabled
E_ILLEGAL ErrorCode enum Constant Illegal
E_NOHARDWARE ErrorCode enum Constant NoHardware
E_OFFLINE ErrorCode enum Constant Offline
E_NOEXIST ErrorCode enum Constant NoExist
E_EXISTS ErrorCode enum Constant Exists
E_FAILURE ErrorCode enum Constant Failure
E_TIMEOUT ErrorCode enum Constant Timeout
E_BUSY ErrorCode enum Constant Busy
E_EXTENDED ErrorCode enum Constant Extended

ESTATS_ERROR PosCommon System.Int32 ExtendedErrorStatistics

CH_INTERNAL HealthCheckLevel enum Constant Internal
CH_EXTERNAL HealthCheckLevel enum Constant External
CH_INTERACTIVE HealthCheckLevel enum Constant Interactive

PR_NONE PowerReporting enum Constant None
PR_STANDARD PowerReporting enum Constant Standard
PR_ADVANCED PowerReporting enum Constant Advanced

PN_DISABLED PowerNotification enum Constant Disabled
PN_ENABLED PowerNotification enum Constant Enabled

PN_PS_UNKNOWN PowerState enum Constant Unknown
PS_ONLINE PowerState enum Constant Online
PS_OFF PowerState enum Constant Off
PS_OFFLINE PowerState enum Constant Offline
PS_OFF_OFFLINE PowerState enum Constant OffOffline

EL_OUTPUT ErrorLocus enum Constant Output
EL_INPUT ErrorLocus enum Constant Input
EL_INPUT_DATA ErrorLocus enum Constant InputData

ER_RETRY ErrorResponse enum Constant Retry
ER_CLEAR ErrorResponse enum Constant Clear
ER_CONTINUEINPUT ErrorResponse enum Constant ContinueInput

SUE_POWER_ONLINE PosCommon System.Int32 StatusPowerOnline
SUE_POWER_OFF PosCommon System.Int32 StatusPowerOff
SUE_POWER_OFFLINE PosCommon System.Int32 StatusPowerOffline
SUE_POWER_OFF_OFFLINE PosCommon System.Int32 StatusPowerOffOffline

CFV_FIRMWARE_DIFFERENT CompareFirmwareResult enum Constant Different
CFV_FIRMWARE_NEWER CompareFirmwareResult enum Constant Newer
CFV_FIRMWARE_OLDER CompareFirmwareResult enum Constant Older
CFV_FIRMWARE_SAME CompareFirmwareResult enum Constant Same
CFV_FIRMWARE_UNKNOWN CompareFirmwareResult enum Constant Unknown

SUE_UF_FAILED_DEV_OK PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceOk
SUE_UF_FAILED_DEV_UNRECOVERA
BLE

PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceUnrecovera
ble

SUE_UF_FAILED_DEV_NEEDS_FIRM
WARE

PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceNeedsFirm
ware

SUE_UF_FAILED_DEV_UNKNOWN PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceUnknown
SUE_UF_COMPLETE PosCommon System.Int32 StatusUpdateFirmwareComplete
SUE_UF_COMPLETE_DEV_NOT_RES
TORED

PosCommon System.Int32 StatusUpdateFirmwareCompleteDeviceNotRest
ored

SUE_UF_PROGRESS + 1 to 100 PosCommon System.Int32 StatusUpdateFirmwareProgress

FOREVER PosCommon System.Int32 WaitForever

C - 8 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

BB_UID_1 DeviceUnits enum Constant Unit1
BB_UID_2 DeviceUnits enum Constant Unit2
BB_UID_3 DeviceUnits enum Constant Unit3
BB_UID_4 DeviceUnits enum Constant Unit4
BB_UID_5 DeviceUnits enum Constant Unit5
BB_UID_6 DeviceUnits enum Constant Unit6
BB_UID_7 DeviceUnits enum Constant Unit7
BB_UID_8 DeviceUnits enum Constant Unit8
BB_UID_9 DeviceUnits enum Constant Unit9
BB_UID_10 DeviceUnits enum Constant Unit10
BB_UID_11 DeviceUnits enum Constant Unit11
BB_UID_12 DeviceUnits enum Constant Unit12
BB_UID_13 DeviceUnits enum Constant Unit13
BB_UID_14 DeviceUnits enum Constant Unit14
BB_UID_15 DeviceUnits enum Constant Unit15
BB_UID_16 DeviceUnits enum Constant Unit16
BB_UID_17 DeviceUnits enum Constant Unit17
BB_UID_18 DeviceUnits enum Constant Unit18
BB_UID_19 DeviceUnits enum Constant Unit19
BB_UID_20 DeviceUnits enum Constant Unit20
BB_UID_21 DeviceUnits enum Constant Unit21
BB_UID_22 DeviceUnits enum Constant Unit22
BB_UID_23 DeviceUnits enum Constant Unit23
BB_UID_24 DeviceUnits enum Constant Unit24
BB_UID_25 DeviceUnits enum Constant Unit25
BB_UID_26 DeviceUnits enum Constant Unit26
BB_UID_27 DeviceUnits enum Constant Unit27
BB_UID_28 DeviceUnits enum Constant Unit28
BB_UID_29 DeviceUnits enum Constant Unit29
BB_UID_30 DeviceUnits enum Constant Unit30
BB_UID_31 DeviceUnits enum Constant Unit31
BB_UID_32 DeviceUnits enum Constant Unit32

BB_DE_KEY BumpBar System.Int32 DataEventKey

CASH_SUE_DRAWERCLOSED CashDrawerStatus enum Constant Closed
CASH_SUE_DRAWEROPEN CashDrawerStatus enum Constant Open

CAT_PAYMENT_LUMP PaymentCondition enum Constant Lump
CAT_PAYMENT_BONUS_1 PaymentCondition enum Constant Bonus1
CAT_PAYMENT_BONUS_2 PaymentCondition enum Constant Bonus2
CAT_PAYMENT_BONUS_3 PaymentCondition enum Constant Bonus3
CAT_PAYMENT_BONUS_4 PaymentCondition enum Constant Bonus4
CAT_PAYMENT_BONUS_5 PaymentCondition enum Constant Bonus5
CAT_PAYMENT_INSTALLMENT_1 PaymentCondition enum Constant Installment1
CAT_PAYMENT_INSTALLMENT_2 PaymentCondition enum Constant Installment2
CAT_PAYMENT_INSTALLMENT_3 PaymentCondition enum Constant Installment3
CAT_PAYMENT_BONUS_COMBINATION_1 PaymentCondition enum Constant BonusCombination1
CAT_PAYMENT_BONUS_COMBINATION_2 PaymentCondition enum Constant BonusCombination2
CAT_PAYMENT_BONUS_COMBINATION_3 PaymentCondition enum Constant BonusCombination3
CAT_PAYMENT_BONUS_COMBINATION_4 PaymentCondition enum Constant BonusCombination4
CAT_PAYMENT_REVOLVING PaymentCondition enum Constant Revolving
CAT_PAYMENT_DEBIT PaymentCondition enum Constant Debit

CAT_TRANSACTION_SALES CreditTransactionType enum Constant Sales
CAT_TRANSACTION_VOID CreditTransactionType enum Constant Void
CAT_TRANSACTION_REFUND CreditTransactionType enum Constant Refund
CAT_TRANSACTION_VOIDPRESALES CreditTransactionType enum Constant VoidPreSales
CAT_TRANSACTION_COMPLETION CreditTransactionType enum Constant Completion
CAT_TRANSACTION_PRESALES CreditTransactionType enum Constant PreSales
CAT_TRANSACTION_CHECKCARD CreditTransactionType enum Constant CheckCard

CAT_MEDIA_UNSPECIFIED PaymentMedia enum Constant Unspecified
CAT_MEDIA_NONDEFINE PaymentMedia No_Equivalent_Defined
CAT_MEDIA_CREDIT PaymentMedia enum Constant Credit
CAT_MEDIA_DEBIT PaymentMedia enum Constant Debit

ECAT_CENTERERROR Cat System.Int32 ExtendedErrorCenterError
ECAT_COMMANDERROR Cat System.Int32 ExtendedErrorCommandError
ECAT_RESET Cat System.Int32 ExtendedErrorReset
ECAT_COMMUNICATIONERROR Cat System.Int32 ExtendedErrorCommunicationError
ECAT_DAILYLOGOVERFLOW Cat System.Int32 ExtendedErrorDailyLogOverflow

Unified POS, v1.15.1 Beta1 C - 9

ClassName Parameter
Type Name

CAT_DL_NONE CatLogs enum Constant None
CAT_DL_REPORTING CatLogs enum Constant Reporting
CAT_DL_SETTLEMENT CatLogs enum Constant Settlement
CAT_DL_REPORTING_SETTLEMENT CatLogs enum Constant ReportingAndSettlement

CHAN_STATUS_OK CashChangerStatus enum Constant OK
CHAN_STATUS_EMPTY CashChangerStatus enum Constant Empty
CHAN_STATUS_NEAREMPTY CashChangerStatus enum Constant NearEmpty
CHAN_STATUS_EMPTYOK CashChangerStatus No_Equivalent_Defined

No_Equivalent_Defined CashChangerFullStatus enum Constant OK
CHAN_STATUS_FULL CashChangerFullStatus enum Constant Full
CHAN_STATUS_NEARFULL CashChangerFullStatus enum Constant NearFull
CHAN_STATUS_FULLOK CashChangerFullStatus No_Equivalent_Defined

CHAN_STATUS_JAM CashChangerStatus enum Constant Jam
CHAN_STATUS_JAMOK CashChangerStatus No_Equivalent_Defined

CHAN_STATUS_ASYNC CashChanger System.Int32 StatusAsync

CHAN_STATUS_DEPOSIT_START CashDepositStatus enum Constant Start
CHAN_STATUS_DEPOSIT_END CashDepositStatus enum Constant End
CHAN_STATUS_DEPOSIT_NONE CashDepositStatus enum Constant None
CHAN_STATUS_DEPOSIT_COUNT CashDepositStatus enum Constant Count
CHAN_STATUS_DEPOSIT_JAM CashDepositStatus enum Constant Jam

CHAN_DEPOSIT_CHANGE CashDepositAction enum Constant Change
CHAN_DEPOSIT_NOCHANGE CashDepositAction enum Constant NoChange
CHAN_DEPOSIT_REPAY CashDepositAction enum Constant Repay

CHAN_DEPOSIT_PAUSE CashDepositPause enum Constant Pause
CHAN_DEPOSIT_RESTART CashDepositPause enum Constant Restart

ECHAN_OVERDISPENSE CashChanger System.Int32 ExtendedErrorOverDispense

CHK_CCL_MONO CheckColors enum Constant Mono
CHK_CCL_GRAYSCALE CheckColors enum Constant GrayScale
CHK_CCL_16 CheckColors enum Constant Color16
CHK_CCL_256 CheckColors enum Constant Color256
CHK_CCL_FULL CheckColors enum Constant Full

CHK_CIF_NATIVE CheckImageFormats enum Constant Native
CHK_CIF_TIFF CheckImageFormats enum Constant Tiff
CHK_CIF_BMP CheckImageFormats enum Constant Bmp
CHK_CIF_JPEG CheckImageFormats enum Constant Jpeg
CHK_CIF_GIF CheckImageFormats enum Constant Gif

CHK_CL_MONO CheckColors enum Constant Mono
CHK_CL_GRAYSCALE CheckColors enum Constant GrayScale
CHK_CL_16 CheckColors enum Constant Color16
CHK_CL_256 CheckColors enum Constant Color256
CHK_CL_FULL CheckColors enum Constant Full

CHK_IF_NATIVE CheckImageFormats enum Constant Native
CHK_IF_TIFF CheckImageFormats enum Constant Tiff
CHK_IF_BMP CheckImageFormats enum Constant Bmp
CHK_IF_JPEG CheckImageFormats enum Constant Jpeg
CHK_IF_GIF CheckImageFormats enum Constant Gif

CHK_IMS_EMPTY ImageMemoryStatus enum Constant Empty
CHK_IMS_OK ImageMemoryStatus enum Constant OK
CHK_IMS_FULL ImageMemoryStatus enum Constant Full

CHK_MM_DOTS MapMode enum Constant Dots
CHK_MM_TWIPS MapMode enum Constant Twips
CHK_MM_ENGLISH MapMode enum Constant English
CHK_MM_METRIC MapMode enum Constant Metric

CHK_CLR_ALL CheckImageClear enum Constant All
CHK_CLR_BY_FILEID CheckImageClear enum Constant FileId
CHK_CLR_BY_FILEINDEX CheckImageClear enum Constant FileIndex
CHK_CLR_BY_IMAGETAGDATA CheckImageClear enum Constant ImageTagData

C - 10 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

CHK_CROP_AREA_ENTIRE_IMAGE CheckScanner System.Int32 CropEntireImage
CHK_CROP_AREA_RESET_ALL CheckScanner System.Int32 CropResetAll
CHK_CROP_AREA_RIGHT CheckScanner System.Int32 CropRight
CHK_CROP_AREA_BOTTOM CheckScanner System.Int32 CropBottom

CHK_LOCATE_BY_FILEID CheckImageLocate enum Constant FileId
CHK_LOCATE_BY_FILEINDEX CheckImageLocate enum Constant FileIndex
CHK_LOCATE_BY_IMAGETAGDATA CheckImageLocate enum Constant ImageTagData

CHK_SUE_SCANCOMPLETE CheckScannerStatus enum Constant ScanComplete

ECHK_NOCHECK CheckScanner System.Int32 ExtendedErrorNoCheck
ECHK_CHECK CheckScanner System.Int32 ExtendedErrorCheck
ECHK_NOROOM CheckScanner System.Int32 ExtendedErrorNoRoom

COIN_STATUS_OK CoinDispenserStatus enum Constant OK
COIN_STATUS_EMPTY CoinDispenserStatus enum Constant Empty
COIN_STATUS_NEAREMPTY CoinDispenserStatus enum Constant NearEmpty
COIN_STATUS_JAM CoinDispenserStatus enum Constant Jam

DISP_CB_NOBLINK DisplayBlink enum Constant None
DISP_CB_BLINKALL DisplayBlink enum Constant All
DISP_CB_BLINKEACH DisplayBlink enum Constant Each

DISP_CCS_NUMERIC CharacterSetCapability enum Constant Numeric
DISP_CCS_ALPHA CharacterSetCapability enum Constant Alpha
DISP_CCS_ASCII CharacterSetCapability enum Constant Ascii
DISP_CCS_KANA CharacterSetCapability enum Constant Kana
DISP_CCS_KANJI CharacterSetCapability enum Constant Kanji
DISP_CCS_UNICODE CharacterSetCapability enum Constant Unicode

DISP_CCT_NONE DisplayCursors enum Constant None
DISP_CCT_FIXED DisplayCursors enum Constant Fixed
DISP_CCT_BLOCK DisplayCursors enum Constant Block
DISP_CCT_HALFBLOCK DisplayCursors enum Constant HalfBlock
DISP_CCT_UNDERLINE DisplayCursors enum Constant Underline
DISP_CCT_REVERSE DisplayCursors enum Constant Reverse
DISP_CCT_OTHER DisplayCursors enum Constant Other
DISP_CCT_BLINK DisplayCursors enum Constant Blink

DISP_CRB_NONE DisplayReadBack enum Constant None
DISP_CRB_SINGLE DisplayReadBack enum Constant Single

DISP_CR_NONE DisplayReverse enum Constant None
DISP_CR_REVERSEALL DisplayReverse enum Constant All
DISP_CR_REVERSEEACH DisplayReverse enum Constant Each

DISP_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
DISP_CS_ASCII PosCommon System.Int32 CharacterSetAscii
DISP_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
DISP_CS_ANSI PosCommon System.Int32 CharacterSetAnsi
DISP_CT_NONE DisplayCursors enum Constant None

DISP_CT_FIXED DisplayCursors enum Constant Fixed
DISP_CT_BLOCK DisplayCursors enum Constant Block
DISP_CT_HALFBLOCK DisplayCursors enum Constant HalfBlock
DISP_CT_UNDERLINE DisplayCursors enum Constant Underline
DISP_CT_REVERSE DisplayCursors enum Constant Reverse
DISP_CT_OTHER DisplayCursors enum Constant Other
DISP_CT_BLINK DisplayCursors enum Constant Blink

DISP_MT_NONE DisplayMarqueeType enum Constant None
DISP_MT_UP DisplayMarqueeType enum Constant Up
DISP_MT_DOWN DisplayMarqueeType enum Constant Down
DISP_MT_LEFT DisplayMarqueeType enum Constant Left
DISP_MT_RIGHT DisplayMarqueeType enum Constant Right
DISP_MT_INIT DisplayMarqueeType enum Constant Init

DISP_MF_WALK DisplayMarqueeFormat enum Constant Walk
DISP_MF_PLACE DisplayMarqueeFormat enum Constant Place

DISP_DT_NORMAL DisplayTextMode enum Constant Normal
DISP_DT_BLINK DisplayTextMode enum Constant Blink
DISP_DT_REVERSE DisplayTextMode enum Constant Reverse
DISP_DT_BLINK_REVERSE DisplayTextMode enum Constant BlinkReverse

Unified POS, v1.15.1 Beta1 C - 11

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

DISP_ST_UP DisplayScrollText enum Constant Up
DISP_ST_DOWN DisplayScrollText enum Constant Down
DISP_ST_LEFT DisplayScrollText enum Constant Left
DISP_ST_RIGHT DisplayScrollText enum Constant Right

DISP_SD_OFF DisplaySetDescriptor enum Constant Off
DISP_SD_ON DisplaySetDescriptor enum Constant On
DISP_SD_BLINK DisplaySetDescriptor enum Constant Blink

DISP_BM_ASIS LineDisplay System.Int32 DisplayBitmapAsIs
DISP_BM_LEFT LineDisplay System.Int32 DisplayBitmapLeft
DISP_BM_CENTER LineDisplay System.Int32 DisplayBitmapCenter
DISP_BM_RIGHT LineDisplay System.Int32 DisplayBitmapRight
DISP_BM_TOP LineDisplay System.Int32 DisplayBitmapTop
DISP_BM_BOTTOM LineDisplay System.Int32 DisplayBitmapBottom
EDISP_TOOBIG LineDisplay System.Int32 ExtendedErrorTooBig
EDISP_BADFORMAT LineDisplay System.Int32 ExtendedErrorBadFormat

FPTR_S_JOURNAL FiscalPrinterStations enum Constant Journal
FPTR_S_RECEIPT FiscalPrinterStations enum Constant Receipt
FPTR_S_SLIP FiscalPrinterStations enum Constant Slip
FPTR_S_JOURNAL_RECEIPT FiscalPrinterStations enum Constant JournalReceipt
No_Equivalent_Defined FiscalPrinterStations enum Constant JournalSlip
No_Equivalent_Defined FiscalPrinterStations enum Constant ReceiptSlip

FPTR_AC_BRC FiscalCurrency enum Constant BrazilianCruceiro
FPTR_AC_BGL FiscalCurrency enum Constant BulgarianLev
FPTR_AC_EUR FiscalCurrency enum Constant Euro
FPTR_AC_GRD FiscalCurrency enum Constant GreekDrachma
FPTR_AC_HUF FiscalCurrency enum Constant HungarianForint
FPTR_AC_ITL FiscalCurrency enum Constant ItalianLira
FPTR_AC_PLZ FiscalCurrency enum Constant PolishZloty
FPTR_AC_ROL FiscalCurrency enum Constant RomanianLeu
FPTR_AC_RUR FiscalCurrency enum Constant RussianRouble
FPTR_AC_TRL FiscalCurrency enum Constant TurkishLira

FPTR_CID_FIRST FiscalContractorId enum Constant First
FPTR_CID_SECOND FiscalContractorId enum Constant Second
FPTR_CID_SINGLE FiscalContractorId enum Constant Single

FPTR_CC_BRAZIL FiscalCountryCodes enum Constant Brazil
FPTR_CC_GREECE FiscalCountryCodes enum Constant Greece
FPTR_CC_HUNGARY FiscalCountryCodes enum Constant Hungary
FPTR_CC_ITALY FiscalCountryCodes enum Constant Italy
FPTR_CC_POLAND FiscalCountryCodes enum Constant Poland
FPTR_CC_TURKEY FiscalCountryCodes enum Constant Turkey
FPTR_CC_RUSSIA FiscalCountryCodes enum Constant Russia
FPTR_CC_BULGARIA FiscalCountryCodes enum Constant Bulgaria
FPTR_CC_ROMANIA FiscalCountryCodes enum Constant Romania

FPTR_DT_CONF FiscalDateType enum Constant Configuration
FPTR_DT_EOD FiscalDateType enum Constant EndOfDay
FPTR_DT_RESET FiscalDateType enum Constant Reset
FPTR_DT_RTC FiscalDateType enum Constant RealTimeClock
FPTR_DT_VAT FiscalDateType enum Constant VatChange

FPTR_EL_NONE FiscalErrorLevel enum Constant None
FPTR_EL_RECOVERABLE FiscalErrorLevel enum Constant Recoverable
FPTR_EL_FATAL FiscalErrorLevel enum Constant Fatal
FPTR_EL_BLOCKED FiscalErrorLevel enum Constant Blocked

FPTR_PS_MONITOR FiscalPrinterState enum Constant Monitor
FPTR_PS_FISCAL_RECEIPT FiscalPrinterState enum Constant FiscalReceipt
FPTR_PS_FISCAL_RECEIPT_TOTAL FiscalPrinterState enum Constant FiscalReceiptTotal
FPTR_PS_FISCAL_RECEIPT_ENDIN
G

FiscalPrinterState enum Constant FiscalReceiptEnding

FPTR_PS_FISCAL_DOCUMENT FiscalPrinterState enum Constant FiscalDocument
FPTR_PS_FIXED_OUTPUT FiscalPrinterState enum Constant FixedOutput
FPTR_PS_ITEM_LIST FiscalPrinterState enum Constant ItemList
FPTR_PS_LOCKED FiscalPrinterState enum Constant Locked
FPTR_PS_NONFISCAL FiscalPrinterState enum Constant NonFiscal
FPTR_PS_REPORT FiscalPrinterState enum Constant Report

FPTR_RS_RECEIPT FiscalReceiptStation enum Constant Receipt
FPTR_RS_SLIP FiscalReceiptStation enum Constant Slip

C - 12 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

FPTR_RT_CASH_IN FiscalReceiptType enum Constant CashIn
FPTR_RT_CASH_OUT FiscalReceiptType enum Constant CashOut
FPTR_RT_GENERIC FiscalReceiptType enum Constant Generic
FPTR_RT_SALES FiscalReceiptType enum Constant Sales
FPTR_RT_SERVICE FiscalReceiptType enum Constant Service
FPTR_RT_SIMPLE_INVOICE FiscalReceiptType enum Constant SimpleInvoice

FPTR_MT_ADVANCE FiscalMessageType enum Constant Advance
FPTR_MT_ADVANCE_PAID FiscalMessageType enum Constant AdvancePaid
FPTR_MT_AMOUNT_TO_BE_PAID FiscalMessageType enum Constant AmountToBePaid
FPTR_MT_AMOUNT_TO_BE_PAID_B
ACK

FiscalMessageType enum Constant AmountToBePaidBack

FPTR_MT_CARD FiscalMessageType enum Constant Card
FPTR_MT_CARD_NUMBER FiscalMessageType enum Constant CardNumber
FPTR_MT_CARD_TYPE FiscalMessageType enum Constant CardType
FPTR_MT_CASH FiscalMessageType enum Constant Cash
FPTR_MT_CASHIER FiscalMessageType enum Constant Cashier
FPTR_MT_CASH_REGISTER_NUMBE
R

FiscalMessageType enum Constant CashRegisterNumber

FPTR_MT_CHANGE FiscalMessageType enum Constant Change
FPTR_MT_CHEQUE FiscalMessageType enum Constant Cheque
FPTR_MT_CLIENT_NUMBER FiscalMessageType enum Constant ClientNumber
FPTR_MT_CLIENT_SIGNATURE FiscalMessageType enum Constant ClientSignature
FPTR_MT_COUNTER_STATE FiscalMessageType enum Constant CounterState
FPTR_MT_CREDIT_CARD FiscalMessageType enum Constant CreditCard
FPTR_MT_CURRENCY FiscalMessageType enum Constant Currency
FPTR_MT_CURRENCY_VALUE FiscalMessageType enum Constant CurrencyValue
FPTR_MT_DEPOSIT FiscalMessageType enum Constant Deposit
FPTR_MT_DEPOSIT_RETURNED FiscalMessageType enum Constant DepositReturned
FPTR_MT_DOT_LINE FiscalMessageType enum Constant DotLine
FPTR_MT_DRIVER_NUMB FiscalMessageType enum Constant DriverNumber
FPTR_MT_EMPTY_LINE FiscalMessageType enum Constant EmptyLine
FPTR_MT_FREE_TEXT FiscalMessageType enum Constant FreeText
FPTR_MT_FREE_TEXT_WITH_DAY_L
IMIT

FiscalMessageType enum Constant FreeTextWithDayLimit

FPTR_MT_GIVEN_DISCOUNT FiscalMessageType enum Constant GivenDiscount
FPTR_MT_LOCAL_CREDIT FiscalMessageType enum Constant LocalCredit
FPTR_MT_MILEAGE_KM FiscalMessageType enum Constant MileageKilometers
FPTR_MT_NOTE FiscalMessageType enum Constant Note
FPTR_MT_PAID FiscalMessageType enum Constant Paid
FPTR_MT_PAY_IN FiscalMessageType enum Constant PayIn
FPTR_MT_POINT_GRANTED FiscalMessageType enum Constant PointGranted
FPTR_MT_POINTS_BONUS FiscalMessageType enum Constant PointsBonus
FPTR_MT_POINTS_RECEIPT FiscalMessageType enum Constant PointsReceipt
FPTR_MT_POINTS_TOTAL FiscalMessageType enum Constant PointsTotal
FPTR_MT_PROFITED FiscalMessageType enum Constant Profited
FPTR_MT_RATE FiscalMessageType enum Constant Rate
FPTR_MT_REGISTER_NUMB FiscalMessageType enum Constant RegisterNumber
FPTR_MT_SHIFT_NUMBER FiscalMessageType enum Constant ShiftNumber
FPTR_MT_STATE_OF_AN_ACCOUNT FiscalMessageType enum Constant StateOfAnAccount
FPTR_MT_SUBSCRIPTION FiscalMessageType enum Constant Subscription
FPTR_MT_TABLE FiscalMessageType enum Constant Table
FPTR_MT_THANK_YOU_FOR_LOYAL
TY

FiscalMessageType enum Constant ThankYouForLoyalty

FPTR_MT_TRANSACTION_NUMB FiscalMessageType enum Constant TransactionNumber
FPTR_MT_VALID_TO FiscalMessageType enum Constant ValidTo
FPTR_MT_VOUCHER FiscalMessageType enum Constant Voucher
FPTR_MT_VOUCHER_PAID FiscalMessageType enum Constant VoucherPaid
FPTR_MT_VOUCHER_VALUE FiscalMessageType enum Constant VoucherValue
FPTR_MT_WITH_DISCOUNT FiscalMessageType enum Constant WithDiscount
FPTR_MT_WITHOUT_UPLIFT FiscalMessageType enum Constant WithoutUplift

FPTR_SS_FULL_LENGTH FiscalSlipSelection enum Constant FullLength
FPTR_SS_VALIDATION FiscalSlipSelection enum Constant Validation

FPTR_TT_DOCUMENT FiscalTotalizerType enum Constant Document
FPTR_TT_DAY FiscalTotalizerType enum Constant Day
FPTR_TT_RECEIPT FiscalTotalizerType enum Constant Receipt
FPTR_TT_GRAND FiscalTotalizerType enum Constant Grand

Unified POS, v1.15.1 Beta1 C - 13

UnifiedPOS Name
POS for .NET

ClassNam
e

Parameter
Type Name

FPTR_GD_CURRENT_TOTAL FiscalData enum Constant CurrentTotal
FPTR_GD_DAILY_TOTAL FiscalData enum Constant DailyTotal
FPTR_GD_RECEIPT_NUMBER FiscalData enum Constant ReceiptNumber
FPTR_GD_REFUND FiscalData enum Constant Refund
FPTR_GD_NOT_PAID FiscalData enum Constant NotPaid
FPTR_GD_MID_VOID FiscalData enum Constant NumberOfVoidedReceipts
FPTR_GD_Z_REPORT FiscalData enum Constant ZReport
FPTR_GD_GRAND_TOTAL FiscalData enum Constant GrandTotal
FPTR_GD_PRINTER_ID FiscalData enum Constant PrinterId
FPTR_GD_FIRMWARE FiscalData enum Constant Firmware
FPTR_GD_RESTART FiscalData enum Constant Restart
FPTR_GD_REFUND_VOID FiscalData enum Constant RefundVoid
FPTR_GD_NUMB_CONFIG_BLOCK FiscalData enum Constant NumberOfConfigurationBlocks
FPTR_GD_NUMB_CURRENCY_BLOCK FiscalData enum Constant NumberOfCurrencyBlocks
FPTR_GD_NUMB_HDR_BLOCK FiscalData enum Constant NumberOfHeaderBlocks
FPTR_GD_NUMB_RESET_BLOCK FiscalData enum Constant NumberOfResetBlocks
FPTR_GD_NUMB_VAT_BLOCK FiscalData enum Constant NumberOfVatBlocks
FPTR_GD_FISCAL_DOC FiscalData enum Constant FiscalDocument
FPTR_GD_FISCAL_DOC_VOID FiscalData enum Constant FiscalDocumentVoid
FPTR_GD_FISCAL_REC FiscalData enum Constant FiscalReceipt
FPTR_GD_FISCAL_REC_VOID FiscalData enum Constant FiscalReceiptVoid
FPTR_GD_NONFISCAL_DOC FiscalData enum Constant NonFiscalDocument
FPTR_GD_NONFISCAL_DOC_VOID FiscalData enum Constant NonFiscalDocumentVoid
FPTR_GD_NONFISCAL_REC FiscalData enum Constant NonFiscalReceipt
FPTR_GD_SIMP_INVOICE FiscalData enum Constant SimplifiedInvoice
FPTR_GD_TENDER FiscalData enum Constant Tender
FPTR_GD_LINECOUNT FiscalData enum Constant LineCount
FPTR_GD_DESCRIPTION_LENGTH FiscalData enum Constant DescriptionLength

FPTR_PDL_CASH FiscalPrinter System.Int32 PaymentDescriptionCash
FPTR_PDL_CHEQUE FiscalPrinter System.Int32 PaymentDescriptionCheque
FPTR_PDL_CHITTY FiscalPrinter System.Int32 PaymentDescriptionChitty
FPTR_PDL_COUPON FiscalPrinter System.Int32 PaymentDescriptionCoupon
FPTR_PDL_CURRENCY FiscalPrinter System.Int32 PaymentDescriptionCurrency
FPTR_PDL_DRIVEN_OFF FiscalPrinter System.Int32 PaymentDescriptionDrivenOff
FPTR_PDL_EFT_IMPRINTER FiscalPrinter System.Int32 PaymentDescriptionEftImprinter
FPTR_PDL_EFT_TERMINAL FiscalPrinter System.Int32 PaymentDescriptionEftTerminal
FPTR_PDL_TERMINAL_IMPRINTER FiscalPrinter System.Int32 PaymentDescriptionTerminalImprinter
FPTR_PDL_FREE_GIFT FiscalPrinter System.Int32 PaymentDescriptionFreeGift
FPTR_PDL_GIRO FiscalPrinter System.Int32 PaymentDescriptionGiro
FPTR_PDL_HOME FiscalPrinter System.Int32 PaymentDescriptionHome
FPTR_PDL_IMPRINTER_WITH_ISSUER FiscalPrinter System.Int32 PaymentDescriptionImprinterWithIssuer
FPTR_PDL_LOCAL_ACCOUNT FiscalPrinter System.Int32 PaymentDescriptionLocalAccount
FPTR_PDL_LOCAL_ACCOUNT_CARD FiscalPrinter System.Int32 PaymentDescriptionLocalAccountCard
FPTR_PDL_PAY_CARD FiscalPrinter System.Int32 PaymentDescriptionPayCard
FPTR_PDL_PAY_CARD_MANUAL FiscalPrinter System.Int32 PaymentDescriptionPayCardManual
FPTR_PDL_PREPAY FiscalPrinter System.Int32 PaymentDescriptionPrepay
FPTR_PDL_PUMP_TEST FiscalPrinter System.Int32 PaymentDescriptionPumpTest
FPTR_PDL_SHORT_CREDIT FiscalPrinter System.Int32 PaymentDescriptionShortCredit
FPTR_PDL_STAFF FiscalPrinter System.Int32 PaymentDescriptionStaff
FPTR_PDL_VOUCHER FiscalPrinter System.Int32 PaymentDescriptionVoucher

FPTR_LC_ITEM FiscalPrinter System.Int32 LineCountItem
FPTR_LC_ITEM_VOID FiscalPrinter System.Int32 LineCountItemVoid
FPTR_LC_DISCOUNT FiscalPrinter System.Int32 LineCountDiscount
FPTR_LC_DISCOUNT_VOID FiscalPrinter System.Int32 LineCountDiscountVoid
FPTR_LC_SURCHARGE FiscalPrinter System.Int32 LineCountSurcharge
FPTR_LC_SURCHARGE_VOID FiscalPrinter System.Int32 LineCountSurchargeVoid
FPTR_LC_REFUND FiscalPrinter System.Int32 LineCountRefund
FPTR_LC_REFUND_VOID FiscalPrinter System.Int32 LineCountRefundVoid
FPTR_LC_SUBTOTAL_DISCOUNT FiscalPrinter System.Int32 LineCountSubtotalDiscount
FPTR_LC_SUBTOTAL_DISCOUNT_VOID FiscalPrinter System.Int32 LineCountSubtotalDiscountVoid
FPTR_LC_SUBTOTAL_SURCHARGE FiscalPrinter System.Int32 LineCountSubtotalSurcharge
FPTR_LC_SUBTOTAL_SURCHARGE_VO
ID

FiscalPrinter System.Int32 LineCountSubtotalSurchargeVoid

FPTR_LC_COMMENT FiscalPrinter System.Int32 LineCountComment
FPTR_LC_SUBTOTAL FiscalPrinter System.Int32 LineCountSubtotal
FPTR_LC_TOTAL FiscalPrinter System.Int32 LineCountTotal

C - 14 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

FPTR_DL_ITEM FiscalPrinter System.Int32 DescriptionLengthItem
FPTR_DL_ITEM_ADJUSTMENT FiscalPrinter System.Int32 DescriptionLengthItemAdjustment
FPTR_DL_ITEM_FUEL FiscalPrinter System.Int32 DescriptionLengthItemFuel
FPTR_DL_ITEM_FUEL_VOID FiscalPrinter System.Int32 DescriptionLengthItemFuelVoid
FPTR_DL_NOT_PAID FiscalPrinter System.Int32 DescriptionLengthNotPaid
FPTR_DL_PACKAGE_ADJUSTMENT FiscalPrinter System.Int32 DescriptionLengthPackageAdjustment
FPTR_DL_REFUND FiscalPrinter System.Int32 DescriptionLengthRefund
FPTR_DL_REFUND_VOID FiscalPrinter System.Int32 DescriptionLengthRefundVoid
FPTR_DL_SUBTOTAL_ADJUSTMENT FiscalPrinter System.Int32 DescriptionLengthSubtotalAdjustment
FPTR_DL_TOTAL FiscalPrinter System.Int32 DescriptionLengthTotal
FPTR_DL_VOID FiscalPrinter System.Int32 DescriptionLengthVoid
FPTR_DL_VOID_ITEM FiscalPrinter System.Int32 DescriptionLengthVoidItem

FPTR_GT_GROSS FiscalTotalizer enum Constant Gross
FPTR_GT_NET FiscalTotalizer enum Constant Net
FPTR_GT_DISCOUNT FiscalTotalizer enum Constant Discount
FPTR_GT_DISCOUNT_VOID FiscalTotalizer enum Constant DiscountVoid
FPTR_GT_ITEM FiscalTotalizer enum Constant Item
FPTR_GT_ITEM_VOID FiscalTotalizer enum Constant ItemVoid
FPTR_GT_NOT_PAID FiscalTotalizer enum Constant NotPaid
FPTR_GT_REFUND FiscalTotalizer enum Constant Refund
FPTR_GT_REFUND_VOID FiscalTotalizer enum Constant RefundVoid
FPTR_GT_SUBTOTAL_DISCOUNT FiscalTotalizer enum Constant SubtotalDiscount
FPTR_GT_SUBTOTAL_DISCOUNT_VOID FiscalTotalizer enum Constant SubtotalDiscountVoid
FPTR_GT_SUBTOTAL_SURCHARGES FiscalTotalizer enum Constant SubtotalSurcharges
FPTR_GT_SUBTOTAL_SURCHARGES_VOID FiscalTotalizer enum Constant SubtotalSurchargesVoid
FPTR_GT_SURCHARGE FiscalTotalizer enum Constant Surcharge
FPTR_GT_SURCHARGE_VOID FiscalTotalizer enum Constant SurchargeVoid
FPTR_GT_VAT FiscalTotalizer enum Constant Vat
FPTR_GT_VAT_CATEGORY FiscalTotalizer enum Constant VatCategory

FPTR_AT_AMOUNT_DISCOUNT FiscalAdjustment enum Constant AmountDiscount
FPTR_AT_AMOUNT_SURCHARGE FiscalAdjustment enum Constant AmountSurcharge
FPTR_AT_PERCENTAGE_DISCOUNT FiscalAdjustment enum Constant PercentageDiscount
FPTR_AT_PERCENTAGE_SURCHARGE FiscalAdjustment enum Constant PercentageSurcharge

FPTR_RT_ORDINAL FiscalReport enum Constant Ordinal
FPTR_RT_DATE FiscalReport enum Constant Date

FPTR_SC_EURO FiscalCurrency enum Constant Euro

FPTR_SUE_COVER_OPEN PrinterStatus enum Constant CoverOpen
FPTR_SUE_COVER_OK PrinterStatus enum Constant CoverOK
FPTR_SUE_JRN_COVER_OPEN PrinterStatus enum Constant JournalCoverOpen
FPTR_SUE_JRN_COVER_OK PrinterStatus enum Constant JournalCoverOK
FPTR_SUE_REC_COVER_OPEN PrinterStatus enum Constant ReceiptCoverOpen
FPTR_SUE_REC_COVER_OK PrinterStatus enum Constant ReceiptCoverOK
FPTR_SUE_SLP_COVER_OPEN PrinterStatus enum Constant SlipCoverOpen
FPTR_SUE_SLP_COVER_OK PrinterStatus enum Constant SlipCoverOK

FPTR_SUE_JRN_EMPTY PrinterStatus enum Constant JournalEmpty
FPTR_SUE_JRN_NEAREMPTY PrinterStatus enum Constant JournalNearEmpty
FPTR_SUE_JRN_PAPEROK PrinterStatus enum Constant JournalPaperOK

FPTR_SUE_REC_EMPTY PrinterStatus enum Constant ReceiptEmpty
FPTR_SUE_REC_NEAREMPTY PrinterStatus enum Constant ReceiptNearEmpty
FPTR_SUE_REC_PAPEROK PrinterStatus enum Constant ReceiptPaperOK

FPTR_SUE_SLP_EMPTY PrinterStatus enum Constant SlipEmpty
FPTR_SUE_SLP_NEAREMPTY PrinterStatus enum Constant SlipNearEmpty
FPTR_SUE_SLP_PAPEROK PrinterStatus enum Constant SlipPaperOK

FPTR_SUE_IDLE PrinterStatus enum Constant Idle

Unified POS, v1.15.1 Beta1 C - 15

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

EFPTR_COVER_OPEN FiscalPrinter System.Int32 ExtendedErrorCoverOpen
EFPTR_JRN_EMPTY FiscalPrinter System.Int32 ExtendedErrorJournalEmpty
EFPTR_REC_EMPTY FiscalPrinter System.Int32 ExtendedErrorReceiptEmpty
EFPTR_SLP_EMPTY FiscalPrinter System.Int32 ExtendedErrorSlipEmpty
EFPTR_SLP_FORM FiscalPrinter System.Int32 ExtendedErrorSlipForm
EFPTR_MISSING_DEVICES FiscalPrinter System.Int32 ExtendedErrorMissingDevices
EFPTR_WRONG_STATE FiscalPrinter System.Int32 ExtendedErrorWrongState
EFPTR_TECHNICAL_ASSISTANCE FiscalPrinter System.Int32 ExtendedErrorTechnicalAssistance
EFPTR_CLOCK_ERROR FiscalPrinter System.Int32 ExtendedErrorClockError
EFPTR_FISCAL_MEMORY_DISCONN
ECTED

FiscalPrinter System.Int32 ExtendedErrorMemoryDisconnected

EFPTR_FISCAL_MEMORY_FULL FiscalPrinter System.Int32 ExtendedErrorMemoryFull
EFPTR_FISCAL_TOTALS_ERROR FiscalPrinter System.Int32 ExtendedErrorTotalsError
EFPTR_BAD_ITEM_QUANTITY FiscalPrinter System.Int32 ExtendedErrorBadItemQuantity
EFPTR_BAD_ITEM_AMOUNT FiscalPrinter System.Int32 ExtendedErrorBadItemAmount
EFPTR_BAD_ITEM_DESCRIPTION FiscalPrinter System.Int32 ExtendedErrorBadItemDescription
EFPTR_RECEIPT_TOTAL_OVERFLO
W

FiscalPrinter System.Int32 ExtendedErrorReceiptTotalOverflow

EFPTR_BAD_VAT FiscalPrinter System.Int32 ExtendedErrorBadVat
EFPTR_BAD_PRICE FiscalPrinter System.Int32 ExtendedErrorBadPrice
EFPTR_BAD_DATE FiscalPrinter System.Int32 ExtendedErrorBadDate
EFPTR_NEGATIVE_TOTAL FiscalPrinter System.Int32 ExtendedErrorNegativeTotal
EFPTR_WORD_NOT_ALLOWED FiscalPrinter System.Int32 ExtendedErrorWordNotAllowed
EFPTR_BAD_LENGTH FiscalPrinter System.Int32 ExtendedErrorBadLength
EFPTR_MISSING_SET_CURRENCY FiscalPrinter System.Int32 ExtendedErrorMissingSetCurrency

KBD_ET_DOWN KeyboardEventType enum Constant Down
KBD_ET_DOWN_UP KeyboardEventType enum Constant DownUp

KBD_KET_KEYDOWN KeyEvent enum Constant Down
KBD_KET_KEYUP KeyEvent enum Constant Up

LOCK_KP_ANY Keylock System.Int32 PositionAny
LOCK_KP_LOCK Keylock System.Int32 PositionLocked
LOCK_KP_NORM Keylock System.Int32 PositionNormal
LOCK_KP_SUPR Keylock System.Int32 PositionSupervisor

MICR_CT_PERSONAL CheckType enum Constant Personal
MICR_CT_BUSINESS CheckType enum Constant Business
MICR_CT_UNKNOWN CheckType enum Constant Unknown

MICR_CC_USA CheckCountryCode enum Constant Usa
MICR_CC_CANADA CheckCountryCode enum Constant Canada
MICR_CC_MEXICO CheckCountryCode enum Constant Mexico
MICR_CC_UNKNOWN CheckCountryCode enum Constant Unknown Check Font E-13B
MICR_CC_CMC7 CheckCountryCode enum Constant Unknown Check Font CMC-7
MICR_CC_OTHER CheckCountryCode enum Constant Unknown Check Font OCR-A or OCR_B

EMICR_NOCHECK Micr System.Int32 ExtendedErrorNoCheck
EMICR_CHECK Micr System.Int32 ExtendedErrorCheck
EMICR_BADDATA Micr System.Int32 ExtendedErrorBadData
EMICR_NODATA Micr System.Int32 ExtendedErrorNoData
EMICR_BADSIZE Micr System.Int32 ExtendedErrorBadSize
EMICR_JAM Micr System.Int32 ExtendedErrorJam
EMICR_CHECKDIGIT Micr System.Int32 ExtendedErrorCheckDigit
EMICR_COVEROPEN Micr System.Int32 ExtendedErrorCoverOpen

MOTION_M_PRESENT MotionSensor System.Int32 StatusMotionPresent
MOTION_M_ABSENT MotionSensor System.Int32 StatusMotionAbsent

MSR_TR_1 MsrTracks enum Constant Track1
MSR_TR_2 MsrTracks enum Constant Track2
MSR_TR_3 MsrTracks enum Constant Track3
MSR_TR_4 MsrTracks enum Constant Track4
MSR_TR_1_2 MsrTracks enum Constant Tracks12
MSR_TR_1_3 MsrTracks enum Constant Tracks13
MSR_TR_1_4 MsrTracks enum Constant Tracks14
MSR_TR_2_3 MsrTracks enum Constant Tracks23
MSR_TR_2_4 MsrTracks enum Constant Tracks24
MSR_TR_3_4 MsrTracks enum Constant Tracks34
MSR_TR_1_2_3 MsrTracks enum Constant Tracks123
MSR_TR_1_2_4 MsrTracks enum Constant Tracks124
MSR_TR_1_3_4 MsrTracks enum Constant Tracks134
MSR_TR_2_3_4 MsrTracks enum Constant Tracks234
MSR_TR_1_2_3_4 MsrTracks enum Constant Tracks1234

C - 16 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

MSR_ERT_CARD MsrErrorReporting enum Constant Card
MSR_ERT_TRACK MsrErrorReporting enum Constant Track

No_Equivalent_Defined Msr System.Int32 ExtendedErrorSuccess
No_Equivalent_Defined Msr System.Int32 ExtendedErrorFailure
EMSR_START Msr System.Int32 ExtendedErrorStart
EMSR_END Msr System.Int32 ExtendedErrorEnd
EMSR_PARITY Msr System.Int32 ExtendedErrorParity
EMSR_LRC Msr System.Int32 ExtendedErrorLrc

No_Equivalent_Defined CharacterSetCapability enum Constant Numeric
PCRW_CCS_ALPHA CharacterSetCapability enum Constant Alpha
PCRW_CCS_ASCII CharacterSetCapability enum Constant Ascii
PCRW_CCS_KANA CharacterSetCapability enum Constant Kana
PCRW_CCS_KANJI CharacterSetCapability enum Constant Kanji
PCRW_CCS_UNICODE CharacterSetCapability enum Constant Unicode

PCRW_STATE_NOCARD PointCardState enum Constant NoCard
PCRW_STATE_REMAINING PointCardState enum Constant Remaining
PCRW_STATE_INRW PointCardState enum Constant Inserted

PCRW_TRACK1 PointCardRWTracks enum Constant Track1
PCRW_TRACK2 PointCardRWTracks enum Constant Track2
PCRW_TRACK3 PointCardRWTracks enum Constant Track3
PCRW_TRACK4 PointCardRWTracks enum Constant Track4
PCRW_TRACK5 PointCardRWTracks enum Constant Track5
PCRW_TRACK6 PointCardRWTracks enum Constant Track6

PCRW_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
PCRW_CS_ASCII PosCommon System.Int32 CharacterSetAscii
PCRW_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
PCRW_CS_ANSI PosCommon System.Int32 CharacterSetAnsi

PCRW_MM_DOTS MapMode enum Constant Dots
PCRW_MM_TWIPS MapMode enum Constant Twips
PCRW_MM_ENGLISH MapMode enum Constant English
PCRW_MM_METRIC MapMode enum Constant Metric

EPCRW_READ PointCardRW System.Int32 ExtendedErrorRead
EPCRW_WRITE PointCardRW System.Int32 ExtendedErrorWrite
EPCRW_JAM PointCardRW System.Int32 ExtendedErrorJam
EPCRW_MOTOR PointCardRW System.Int32 ExtendedErrorMotor
EPCRW_COVER PointCardRW System.Int32 ExtendedErrorCover
EPCRW_PRINTER PointCardRW System.Int32 ExtendedErrorPrinter
EPCRW_RELEASE PointCardRW System.Int32 ExtendedErrorRelease
EPCRW_DISPLAY PointCardRW System.Int32 ExtendedErrorDisplay
EPCRW_NOCARD PointCardRW System.Int32 ExtendedErrorNoCard

No_Equivalent_Defined PointCardReadWriteState enum Constant Success
EPCRW_START PointCardReadWriteState enum Constant Start
EPCRW_END PointCardReadWriteState enum Constant End
EPCRW_PARITY PointCardReadWriteState enum Constant Parity
EPCRW_ENCODE PointCardReadWriteState enum Constant Encode
EPCRW_LRC PointCardReadWriteState enum Constant LrcError
EPCRW_VERIFY PointCardReadWriteState enum Constant Verify
No_Equivalent_Defined PointCardReadWriteState enum Constant Failure

PCRW_RP_NORMAL PrintRotation enum Constant Normal
PCRW_RP_RIGHT90 PrintRotation enum Constant Right90
PCRW_RP_LEFT90 PrintRotation enum Constant Left90
PCRW_RP_ROTATE180 PrintRotation enum Constant Rotate180

PCRW_SUE_NOCARD PointCardRW System.Int32 StatusNoCard
PCRW_SUE_REMAINING PointCardRW System.Int32 StatusRemaining
PCRW_SUE_INRW PointCardRW System.Int32 StatusInserted

No_Equivalent_Defined PointCardKinds enum Constant PrintingArea
No_Equivalent_Defined PointCardKinds enum Constant MagneticTracks
No_Equivalent_Defined PointCardKinds enum Constant PrintingAreaAndMagneticTracks

PPAD_DISP_UNRESTRICTED PinPadDisplay enum Constant Unrestricted
PPAD_DISP_PINRESTRICTED PinPadDisplay enum Constant PinRestricted
PPAD_DISP_RESTRICTED_LIST PinPadDisplay enum Constant RestrictedList
PPAD_DISP_RESTRICTED_ORDER PinPadDisplay enum Constant RestrictedOrder
PPAD_DISP_NONE PinPadDisplay enum Constant None

Unified POS, v1.15.1 Beta1 C - 17

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

PPAD_MSG_ENTERPIN PinPadMessage enum Constant EnterPin
PPAD_MSG_PLEASEWAIT PinPadMessage enum Constant PleaseWait
PPAD_MSG_ENTERVALIDPIN PinPadMessage enum Constant EnterValidPin
PPAD_MSG_RETRIESEXCEEDED PinPadMessage enum Constant RetriesExceeded
PPAD_MSG_APPROVED PinPadMessage enum Constant Approved
PPAD_MSG_DECLINED PinPadMessage enum Constant Declined
PPAD_MSG_CANCELED PinPadMessage enum Constant Canceled
PPAD_MSG_AMOUNTOK PinPadMessage enum Constant AmountOK
PPAD_MSG_NOTREADY PinPadMessage enum Constant NotReady
PPAD_MSG_IDLE PinPadMessage enum Constant Idle
PPAD_MSG_SLIDE_CARD PinPadMessage enum Constant SlideCard
PPAD_MSG_INSERTCARD PinPadMessage enum Constant InsertCard
PPAD_MSG_SELECTCARDTYPE PinPadMessage enum Constant SelectCardType
PPAD_LANG_NONE PinPadLanguage enum Constant None
PPAD_LANG_ONE PinPadLanguage enum Constant One
PPAD_LANG_PINRESTRICTED PinPadLanguage enum Constant PinRestricted
PPAD_LANG_UNRESTRICTED PinPadLanguage enum Constant Unrestricted

PPAD_TRANS_DEBIT EftTransactionType enum Constant Debit
PPAD_TRANS_CREDIT EftTransactionType enum Constant Credit
PPAD_TRANS_INQ EftTransactionType enum Constant Inquiry
PPAD_TRANS_RECONCILE EftTransactionType enum Constant Reconcile
PPAD_TRANS_ADMIN EftTransactionType enum Constant Admin

PPAD_EFT_NORMAL EftTransactionControl enum Constant Normal
PPAD_EFT_ABNORMAL EftTransactionControl enum Constant Abnormal

PPAD_SUCCESS PinEntryStatus enum Constant Success
PPAD_CANCEL PinEntryStatus enum Constant Cancel
No_Equivalent_Defined PinEntryStatus enum Constant Timeout
No_Equivalent_Defined PinEntryStatus enum Constant BadKey
No_Equivalent_Defined PinPadSystem enum Constant MasterSession
No_Equivalent_Defined PinPadSystem enum Constant Dukpt
No_Equivalent_Defined PinPadSystem enum Constant Apacs40
No_Equivalent_Defined PinPadSystem enum Constant AS2805
No_Equivalent_Defined PinPadSystem enum Constant Hgepos
No_Equivalent_Defined PinPadSystem enum Constant Jdebit2

EPPAD_BAD_KEY PinPad System.Int32 ExtendedErrorBadKey

No_Equivalent_Defined PrinterStation enum Constant None
PTR_S_JOURNAL PrinterStation enum Constant Journal
PTR_S_RECEIPT PrinterStation enum Constant Receipt
PTR_S_SLIP PrinterStation enum Constant Slip

PTR_S_JOURNAL_RECEIPT FiscalPrinterStations enum Constant JournalReceipt
PTR_S_JOURNAL_SLIP FiscalPrinterStations enum Constant JournalSlip
PTR_S_RECEIPT_SLIP FiscalPrinterStations enum Constant ReceiptSlip

PTR_TWO_RECEIPT_JOURNAL PrinterStation enum Constant TwoReceiptJournal
PTR_TWO_SLIP_JOURNAL PrinterStation enum Constant TwoSlipJournal
PTR_TWO_SLIP_RECEIPT PrinterStation enum Constant TwoSlipReceipt

No_Equivalent_Defined CharacterSetCapability enum Constant Numeric
PTR_CCS_ALPHA CharacterSetCapability enum Constant Alpha
PTR_CCS_ASCII CharacterSetCapability enum Constant Ascii
PTR_CCS_KANA CharacterSetCapability enum Constant Kana
PTR_CCS_KANJI CharacterSetCapability enum Constant Kanji
PTR_CCS_UNICODE CharacterSetCapability enum Constant Unicode

PTR_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
PTR_CS_ASCII PosCommon System.Int32 CharacterSetAscii
PTR_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
PTR_CS_ANSI PosCommon System.Int32 CharacterSetAnsi

PTR_EL_NONE PrinterErrorLevel enum Constant None
PTR_EL_RECOVERABLE PrinterErrorLevel enum Constant Recoverable
PTR_EL_FATAL PrinterErrorLevel enum Constant Fatal

PTR_MM_DOTS MapMode enum Constant Dots
PTR_MM_TWIPS MapMode enum Constant Twips
PTR_MM_ENGLISH MapMode enum Constant English
PTR_MM_METRIC MapMode enum Constant Metric

C - 18 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

No_Equivalent_Defined PrinterColors enum Constant None
PTR_COLOR_PRIMARY PrinterColors enum Constant Primary
PTR_COLOR_CUSTOM1 PrinterColors enum Constant Custom1
PTR_COLOR_CUSTOM2 PrinterColors enum Constant Custom2
PTR_COLOR_CUSTOM3 PrinterColors enum Constant Custom3
PTR_COLOR_CUSTOM4 PrinterColors enum Constant Custom4
PTR_COLOR_CUSTOM5 PrinterColors enum Constant Custom5
PTR_COLOR_CUSTOM6 PrinterColors enum Constant Custom6
PTR_COLOR_CYAN PrinterColors enum Constant Cyan
PTR_COLOR_MAGENTA PrinterColors enum Constant Magenta
PTR_COLOR_YELLOW PrinterColors enum Constant Yellow
PTR_COLOR_FULL PrinterColors enum Constant Full

PTR_CART_UNKNOWN PrinterCartridgeStates enum Constant Unknown
PTR_CART_OK PrinterCartridgeStates enum Constant OK
PTR_CART_REMOVED PrinterCartridgeStates enum Constant Removed
PTR_CART_EMPTY PrinterCartridgeStates enum Constant Empty
PTR_CART_NEAREND PrinterCartridgeStates enum Constant NearEnd
PTR_CART_CLEANING PrinterCartridgeStates enum Constant Cleaning
PTR_CN_DISABLED PrinterCartridgeNotify enum Constant Disabled
PTR_CN_ENABLED PrinterCartridgeNotify enum Constant Enabled

PTR_CP_FULLCUT PosPrinter System.Int32 PrinterCutPaperFullCut
PTR_BC_LEFT PosPrinter System.Int32 PrinterBarCodeLeft
PTR_BC_CENTER PosPrinter System.Int32 PrinterBarCodeCenter
PTR_BC_RIGHT PosPrinter System.Int32 PrinterBarCodeRight

PTR_BC_TEXT_NONE BarCodeTextPosition enum Constant None
PTR_BC_TEXT_ABOVE BarCodeTextPosition enum Constant Above
PTR_BC_TEXT_BELOW BarCodeTextPosition enum Constant Below

No_Equivalent_Defined BarCodeSymbology enum Constant Unknown
PTR_BCS_UPCA BarCodeSymbology enum Constant Upca
PTR_BCS_UPCE BarCodeSymbology enum Constant Upce
PTR_BCS_JAN8 BarCodeSymbology enum Constant EanJan8
PTR_BCS_EAN8 BarCodeSymbology enum Constant No_Equivalent_Defined
PTR_BCS_JAN13 BarCodeSymbology enum Constant EanJan13
PTR_BCS_EAN13 BarCodeSymbology enum Constant No_Equivalent_Defined
PTR_BCS_TF BarCodeSymbology enum Constant TF
PTR_BCS_ITF BarCodeSymbology enum Constant Itf
PTR_BCS_Codabar BarCodeSymbology enum Constant Codabar
PTR_BCS_Code39 BarCodeSymbology enum Constant Code39
PTR_BCS_Code93 BarCodeSymbology enum Constant Code93
PTR_BCS_Code128 BarCodeSymbology enum Constant Code128
PTR_BCS_UPCA_S BarCodeSymbology enum Constant Upcas
PTR_BCS_UPCE_S BarCodeSymbology enum Constant Upces
PTR_BCS_UPCD1 BarCodeSymbology enum Constant Upcd1
PTR_BCS_UPCD2 BarCodeSymbology enum Constant Upcd2
PTR_BCS_UPCD3 BarCodeSymbology enum Constant Upcd3
PTR_BCS_UPCD4 BarCodeSymbology enum Constant Upcd4
PTR_BCS_UPCD5 BarCodeSymbology enum Constant Upcd5
PTR_BCS_EAN8_S BarCodeSymbology enum Constant Ean8S
PTR_BCS_EAN13_S BarCodeSymbology enum Constant Ean13S
PTR_BCS_EAN128 BarCodeSymbology enum Constant Ean128
PTR_BCS_OCRA BarCodeSymbology enum Constant Ocra
PTR_BCS_OCRB BarCodeSymbology enum Constant Ocrb
PTR_BCS_Code128_Parsed BarCodeSymbology enum Constant Code128 Parsed
PTR_BCS_RSS14 BarCodeSymbology enum Constant Rss14 – Deprecated v1.12
PTR_BCS_RSS_EXPANDED BarCodeSymbology enum Constant RssExpanded – Deprecated v1.12
PTR_BCS_GS1DATABAR BarCodeSymbology enum Constant GS1 DataBar Omnidirectional
PTR_BCS_GS1DATABAR_S BarCodeSymbology enum Constant GS1 DataBar Stacked Omnidirectional
PTR_BCS_GS1DATABAR_E BarCodeSymbology enum Constant GS1 DataBar Expanded
PTR_BCS_GS1DATABAR_E_S BarCodeSymbology enum Constant GS1 DataBar Expanded Stacked
No_Equivalent_Defined BarCodeSymbology enum Constant Cca
No_Equivalent_Defined BarCodeSymbology enum Constant Ccb
No_Equivalent_Defined BarCodeSymbology enum Constant Ccc
PTR_BCS_PDF417 BarCodeSymbology enum Constant Pdf417
PTR_BCS_MAXICODE BarCodeSymbology enum Constant Maxicode
PTR_BCS_DATAMATRIX BarCodeSymbology enum Constant Data Matrix
PTR_BCS-QRCODE BarCodeSymbology enum Constant QR Code
PTR_BCS_UQRCODE BarCodeSymbology enum Constant Micro QR Code
PTR_BCS_AZTEC BarCodeSymbology enum Constant Aztec
PTR_BCS_UPDF417 BarCodeSymbology enum Constant Micro Pdf417
PTR_BCS_OTHER BarCodeSymbology enum Constant Other

Unified POS, v1.15.1 Beta1 C - 19

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

PTR_BM_ASIS PosPrinter System.Int32 PrinterBitmapAsIs
PTR_BM_LEFT PosPrinter System.Int32 PrinterBitmapLeft
PTR_BM_CENTER PosPrinter System.Int32 PrinterBitmapCenter
PTR_BM_RIGHT PosPrinter System.Int32 PrinterBitmapRight

PTR_RP_NORMAL PrintRotation enum Constant Normal
PTR_RP_RIGHT90 PrintRotation enum Constant Right90
PTR_RP_LEFT90 PrintRotation enum Constant Left90
PTR_RP_ROTATE180 PrintRotation enum Constant Rotate180
PTR_RP_BARCODE PrintRotation enum Constant Barcode
PTR_RP_BITMAP PrintRotation enum Constant Bitmap

PTR_L_TOP PrinterLogoLocation enum Constant Top
PTR_L_BOTTOM PrinterLogoLocation enum Constant Bottom

PTR_TP_TRANSACTION PrinterTransactionControl enum Constant Transaction
PTR_TP_NORMAL PrinterTransactionControl enum Constant Normal

No_Equivalent_Defined PrinterMarkFeeds enum Constant None
PTR_MF_TO_TAKEUP PrinterMarkFeeds enum Constant Takeup
PTR_MF_TO_CUTTER PrinterMarkFeeds enum Constant Cutter
PTR_MF_TO_CURRENT_TOF PrinterMarkFeeds enum Constant CurrentTopOfForm
PTR_MF_TO_NEXT_TOF PrinterMarkFeeds enum Constant NextTopOfForm

PTR_PS_UNKNOWN PrinterSide enum Constant Unknown
PTR_PS_SIDE1 PrinterSide enum Constant Side1
PTR_PS_SIDE2 PrinterSide enum Constant Side2
PTR_PS_OPPOSITE PrinterSide enum Constant Opposite

PTR_SUE_COVER_OPEN PrinterStatus enum Constant CoverOpen
PTR_SUE_COVER_OK PrinterStatus enum Constant CoverOK
PTR_SUE_JRN_EMPTY PrinterStatus enum Constant JournalEmpty
PTR_SUE_JRN_NEAREMPTY PrinterStatus enum Constant JournalNearEmpty
PTR_SUE_JRN_PAPEROK PrinterStatus enum Constant JournalPaperOK
PTR_SUE_REC_EMPTY PrinterStatus enum Constant ReceiptEmpty
PTR_SUE_REC_NEAREMPTY PrinterStatus enum Constant ReceiptNearEmpty
PTR_SUE_REC_PAPEROK PrinterStatus enum Constant ReceiptPaperOK
PTR_SUE_SLP_EMPTY PrinterStatus enum Constant SlipEmpty
PTR_SUE_SLP_NEAREMPTY PrinterStatus enum Constant SlipNearEmpty
PTR_SUE_SLP_PAPEROK PrinterStatus enum Constant SlipPaperOK
PTR_SUE_JRN_CARTRIDGE_EMPTY PrinterStatus enum Constant JournalCartridgeEmpty
PTR_SUE_JRN_CARTRIDGE_NEAREMPTY PrinterStatus enum Constant JournalCartridgeNearEmpty
PTR_SUE_JRN_HEAD_CLEANING PrinterStatus enum Constant JournalHeadCleaning
PTR_SUE_JRN_CARTRIDGE_OK PrinterStatus enum Constant JournalCartridgeOK
PTR_SUE_REC_CARTRIDGE_EMPTY PrinterStatus enum Constant ReceiptCartridgeEmpty
PTR_SUE_REC_CARTRIDGE_NEAREMPTY PrinterStatus enum Constant ReceiptCartridgeNearEmpty
PTR_SUE_REC_HEAD_CLEANING PrinterStatus enum Constant ReceiptHeadCleaning
PTR_SUE_REC_CARTRIDGE_OK PrinterStatus enum Constant ReceiptCartridgeOK
PTR_SUE_SLP_CARTRIDGE_EMPTY PrinterStatus enum Constant SlipCartridgeEmpty
PTR_SUE_SLP_CARTRIDGE_NEAREMPTY PrinterStatus enum Constant SlipCartridgeNearEmpty
PTR_SUE_SLP_HEAD_CLEANING PrinterStatus enum Constant SlipHeadCleaning
PTR_SUE_SLP_CARTRIDGE_OK PrinterStatus enum Constant SlipCartridgeOK
PTR_SUE_JRN_COVER_OPEN PrinterStatus enum Constant JournalCoverOpen
PTR_SUE_JRN_COVER_OK PrinterStatus enum Constant JournalCoverOK
PTR_SUE_REC_COVER_OPEN PrinterStatus enum Constant ReceiptCoverOpen
PTR_SUE_REC_COVER_OK PrinterStatus enum Constant ReceiptCoverOK
PTR_SUE_SLP_COVER_OPEN PrinterStatus enum Constant SlipCoverOpen
PTR_SUE_SLP_COVER_OK PrinterStatus enum Constant SlipCoverOK
PTR_SUE_IDLE PrinterStatus enum Constant Idle

EPTR_COVER_OPEN PosPrinter System.Int32 ExtendedErrorCoverOpen

EPTR_JRN_EMPTY PosPrinter System.Int32 ExtendedErrorJrnEmpty
EPTR_REC_EMPTY PosPrinter System.Int32 ExtendedErrorRecEmpty
EPTR_SLP_EMPTY PosPrinter System.Int32 ExtendedErrorSlpEmpty
EPTR_SLP_FORM PosPrinter System.Int32 ExtendedErrorSlpForm
EPTR_TOOBIG PosPrinter System.Int32 ExtendedErrorTooBig
EPTR_BADFORMAT PosPrinter System.Int32 ExtendedErrorBadFormat

C - 20 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

EPTR_JRN_CARTRIDGE_REMOVED PosPrinter System.Int32 ExtendedErrorJrnCartridgeRemoved
EPTR_JRN_CARTRIDGE_EMPTY PosPrinter System.Int32 ExtendedErrorJrnCartridgeEmpty
EPTR_JRN_HEAD_CLEANING PosPrinter System.Int32 ExtendedErrorJrnHeadCleaning
EPTR_REC_CARTRIDGE_REMOVED PosPrinter System.Int32 ExtendedErrorRecCartridgeRemoved
EPTR_REC_CARTRIDGE_EMPTY PosPrinter System.Int32 ExtendedErrorRecCartridgeEmpty
EPTR_REC_HEAD_CLEANING PosPrinter System.Int32 ExtendedErrorRecHeadCleaning
EPTR_SLP_CARTRIDGE_REMOVED PosPrinter System.Int32 ExtendedErrorSlpCartridgeRemoved
EPTR_SLP_CARTRIDGE_EMPTY PosPrinter System.Int32 ExtendedErrorSlpCartridgeEmpty
EPTR_SLP_HEAD_CLEANING PosPrinter System.Int32 ExtendedErrorSlpHeadCleaning

PWR_UPS_FULL UpsChargeStates enum Constant Full
PWR_UPS_WARNING UpsChargeStates enum Constant Warning
PWR_UPS_LOW UpsChargeStates enum Constant Low
PWR_UPS_CRITICAL UpsChargeStates enum Constant Critical

PWR_SUE_UPS_FULL PosPower System.Int32 StatusUpsFull
PWR_SUE_UPS_WARNING PosPower System.Int32 StatusUpsWarning
PWR_SUE_UPS_LOW PosPower System.Int32 StatusUpsLow
PWR_SUE_UPS_CRITICAL PosPower System.Int32 StatusUpsCritical
PWR_SUE_FAN_STOPPED PosPower System.Int32 StatusFanStopped
PWR_SUE_FAN_RUNNING PosPower System.Int32 StatusFanRunning
PWR_SUE_TEMPERATURE_HIGH PosPower System.Int32 StatusTemperatureHigh
PWR_SUE_TEMPERATURE_OK PosPower System.Int32 StatusTemperatureOK
PWR_SUE_SHUTDOWN PosPower System.Int32 StatusShutDown

ROD_UID_1 DeviceUnits enum Constant nit1
ROD_UID_2 DeviceUnits enum Constant Unit2
ROD_UID_3 DeviceUnits enum Constant Unit3
ROD_UID_4 DeviceUnits enum Constant Unit4
ROD_UID_5 DeviceUnits enum Constant Unit5
ROD_UID_6 DeviceUnits enum Constant Unit6
ROD_UID_7 DeviceUnits enum Constant Unit7
ROD_UID_8 DeviceUnits enum Constant Unit8
ROD_UID_9 DeviceUnits enum Constant Unit9
ROD_UID_10 DeviceUnits enum Constant Unit10
ROD_UID_11 DeviceUnits enum Constant Unit11
ROD_UID_12 DeviceUnits enum Constant Unit12
ROD_UID_13 DeviceUnits enum Constant Unit13
ROD_UID_14 DeviceUnits enum Constant Unit14
ROD_UID_15 DeviceUnits enum Constant Unit15
ROD_UID_16 DeviceUnits enum Constant Unit16
ROD_UID_17 DeviceUnits enum Constant Unit17
ROD_UID_18 DeviceUnits enum Constant Unit18
ROD_UID_19 DeviceUnits enum Constant Unit19
ROD_UID_20 DeviceUnits enum Constant Unit20
ROD_UID_21 DeviceUnits enum Constant Unit21
ROD_UID_22 DeviceUnits enum Constant Unit22
ROD_UID_23 DeviceUnits enum Constant Unit23
ROD_UID_24 DeviceUnits enum Constant Unit24
ROD_UID_25 DeviceUnits enum Constant Unit25
ROD_UID_26 DeviceUnits enum Constant Unit26
ROD_UID_27 DeviceUnits enum Constant Unit27
ROD_UID_28 DeviceUnits enum Constant Unit28
ROD_UID_29 DeviceUnits enum Constant Unit29
ROD_UID_30 DeviceUnits enum Constant Unit30
ROD_UID_31 DeviceUnits enum Constant Unit31
ROD_UID_32 DeviceUnits enum Constant Unit32

ROD_ATTR_BLINK VideoAttributes enum Constant Blink
ROD_ATTR_BG_BLACK VideoAttributes enum Constant BackgroundBlack
ROD_ATTR_BG_BLUE VideoAttributes enum Constant BackgroundBlue
ROD_ATTR_BG_GREEN VideoAttributes enum Constant BackgroundGreen
ROD_ATTR_BG_CYAN VideoAttributes enum Constant BackgroundCyan
ROD_ATTR_BG_RED VideoAttributes enum Constant BackgroundRed
ROD_ATTR_BG_MAGENTA VideoAttributes enum Constant BackgroundMagenta
ROD_ATTR_BG_BROWN VideoAttributes enum Constant BackgroundBrown
ROD_ATTR_BG_GRAY VideoAttributes enum Constant BackgroundGray
ROD_ATTR_INTENSITY VideoAttributes enum Constant ntensity
ROD_ATTR_FG_BLACK VideoAttributes enum Constant ForegroundBlack
ROD_ATTR_FG_BLUE VideoAttributes enum Constant ForegroundBlue
ROD_ATTR_FG_GREEN VideoAttributes enum Constant ForegroundGreen
ROD_ATTR_FG_CYAN VideoAttributes enum Constant ForegroundCyan
ROD_ATTR_FG_RED VideoAttributes enum Constant ForegroundRed
ROD_ATTR_FG_MAGENTA VideoAttributes enum Constant ForegroundMagenta
ROD_ATTR_FG_BROWN VideoAttributes enum Constant ForegroundBrown
ROD_ATTR_FG_GRAY VideoAttributes enum Constant ForegroundGray

Unified POS, v1.15.1 Beta1 C - 21

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

ROD_BDR_SINGLE BorderType enum Constant Single
ROD_BDR_DOUBLE BorderType enum Constant Double
ROD_BDR_SOLID BorderType enum Constant Solid

ROD_CLK_START ClockFunction enum Constant Start
ROD_CLK_PAUSE ClockFunction enum Constant Pause
ROD_CLK_RESUME ClockFunction enum Constant Resume
ROD_CLK_MOVE ClockFunction enum Constant Move
ROD_CLK_STOP ClockFunction enum Constant Stop

ROD_CRS_LINE VideoCursorType enum Constant Line
ROD_CRS_LINE_BLINK VideoCursorType enum Constant LineBlink
ROD_CRS_BLOCK VideoCursorType enum Constant Block
ROD_CRS_BLOCK_BLINK VideoCursorType enum Constant BlockBlink
ROD_CRS_OFF VideoCursorType enum Constant Off

ROD_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
ROD_CS_ASCII PosCommon System.Int32 CharacterSetAscii
ROD_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
ROD_CS_ANSI PosCommon System.Int32 CharacterSetAnsi

ROD_TD_TRANSACTION RemoteOderDisplayTransaction enum Constant Transaction
ROD_TD_NORMAL RemoteOderDisplayTransaction enum Constant Normal

ROD_UA_SET VideoAttributeCommand enum Constant Set
ROD_UA_INTENSITY_ON VideoAttributeCommand enum Constant IntensityOn
ROD_UA_INTENSITY_OFF VideoAttributeCommand enum Constant IntensityOff
ROD_UA_REVERSE_ON VideoAttributeCommand enum Constant ReverseOn
ROD_UA_REVERSE_OFF VideoAttributeCommand enum Constant ReverseOff
ROD_UA_BLINK_ON VideoAttributeCommand enum Constant BlinkOn
ROD_UA_BLINK_OFF VideoAttributeCommand enum Constant BlinkOff

ROD_DE_TOUCH_DOWN RemoteOrderDisplayEventTypes enum Constant TouchDown
ROD_DE_TOUCH_MOVE RemoteOrderDisplayEventTypes enum Constant TouchMove
ROD_DE_TOUCH_UP RemoteOrderDisplayEventTypes enum Constant TouchUp

EROD_BADCLK RemoteOrderDisplay System.Int32 ExtendedErrorBadClock
EROD_NOCLOCKS RemoteOrderDisplay System.Int32 ExtendedErrorNoClocks
EROD_NOREGION RemoteOrderDisplay System.Int32 ExtendedErrorNoRegion
EROD_NOROOM RemoteOrderDisplay System.Int32 ExtendedErrorNoRoom
EROD_NOBUFFERS RemoteOrderDisplay System.Int32 ExtendedErrorNoBuffers

SCAL_WU_GRAM WaitUnit enum Constant Gram
SCAL_WU_KILOGRAM WaitUnit enum Constant Kilogram
SCAL_WU_OUNCE WaitUnit enum Constant Ounce
SCAL_WU_POUND WaitUnit enum Constant Pound

ESCAL_OVERWEIGHT Scale System.Int32 ExtendedErrorOverWeight

SCAN_SDT_UNKNOWN BarCodeSymbology enum Constant Unknown
SCAN_SDT_UPCA BarCodeSymbology enum Constant Upca
SCAN_SDT_UPCE BarCodeSymbology enum Constant Upce
SCAN_SDT_JAN8 BarCodeSymbology enum Constant EanJan8
SCAN_SDT_EAN8 BarCodeSymbology enum Constant No_Equivalent_Defined
SCAN_SDT_JAN13 BarCodeSymbology enum Constant EanJan13
SCAN_SDT_EAN13 BarCodeSymbology enum Constant No_Equivalent_Defined
SCAN_SDT_TF BarCodeSymbology enum Constant TF
SCAN_SDT_ITF BarCodeSymbology enum Constant Itf
SCAN_SDT_Codabar BarCodeSymbology enum Constant Codabar
SCAN_SDT_Code39 BarCodeSymbology enum Constant Code39
SCAN_SDT_Code93 BarCodeSymbology enum Constant Code93
SCAN_SDT_Code128 BarCodeSymbology enum Constant Code128
SCAN_SDT_UPCA_S BarCodeSymbology enum Constant Upcas
SCAN_SDT_UPCE_S BarCodeSymbology enum Constant Upces
SCAN_SDT_UPCD1 BarCodeSymbology enum Constant Upcd1
SCAN_SDT_UPCD2 BarCodeSymbology enum Constant Upcd2
SCAN_SDT_UPCD3 BarCodeSymbology enum Constant Upcd3
SCAN_SDT_UPCD4 BarCodeSymbology enum Constant Upcd4
SCAN_SDT_UPCD5 BarCodeSymbology enum Constant Upcd5
SCAN_SDT_EAN8_S BarCodeSymbology enum Constant Ean8S
SCAN_SDT_EAN13_S BarCodeSymbology enum Constant Ean13S
SCAN_SDT_EAN128 BarCodeSymbology enum Constant Ean128

C - 22 Unified POS, v1.15.1 Beta1

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

SCAN_SDT_OCRA BarCodeSymbology enum Constant Ocra
SCAN_SDT_OCRB BarCodeSymbology enum Constant Ocrb
SCAN_SDT_RSS14 BarCodeSymbology enum Constant Rss14 – Deprecated v1.12
SCAN_SDT_RSS_EXPANDED BarCodeSymbology enum Constant RssExpanded – Deprecated b1.12
SCAN_SDT_GS1DATABAR BarCodeSymbology enum Constant GS1DataBar Omnidirectional
SCAN_SDT_GS1DATABAR_E BarCodeSymbology enum Constant GS1 DataBar Expanded
SCAN_SDT_CCA BarCodeSymbology enum Constant Cca
SCAN_SDT_CCB BarCodeSymbology enum Constant Ccb
SCAN_SDT_CCC BarCodeSymbology enum Constant Ccc
SCAN_SDT_PDF417 BarCodeSymbology enum Constant Pdf417
SCAN_SDT_MAXICODE BarCodeSymbology enum Constant Maxicode
SCAN_SDT_OTHER BarCodeSymbology enum Constant Other

SC_CMODE_TRANS SmartCardInterfaceModes enum Constant Transaction
SC_CMODE_BLOCK SmartCardInterfaceModes enum Constant Block
SC_CMODE_APDU SmartCardInterfaceModes enum Constant Apdu
SC_CMODE_XML SmartCardInterfaceModes enum Constant Xml
SC_CMODE_ISO SmartCardIsoEmvModes enum Constant Iso
SC_CMODE_EMV SmartCardIsoEmvModes enum Constant Emv

SC_CTRANS_PROTOCOL_T0 SmartCardTransactionProtocols enum Constant T0
SC_CTRANS_PROTOCOL_T1 SmartCardTransactionProtocols enum Constant T1

SC_MODE_TRANS SmartCardInterfaceModes enum Constant Transaction
SC_MODE_BLOCK SmartCardInterfaceModes enum Constant Block
SC_MODE_APDU SmartCardInterfaceModes enum Constant Apdu
SC_MODE_XML SmartCardInterfaceModes enum Constant Xml
SC_MODE_ISO SmartCardIsoEmvModes enum Constant Iso
SC_MODE_EMV SmartCardIsoEmvModes enum Constant Emv

SC_TRANS_PROTOCOL_T0 SmartCardTransactionProtocols enum Constant T0
SC_TRANS_PROTOCOL_T1 SmartCardTransactionProtocols enum Constant T1

SC_READ_DATA SmartCardReadAction enum Constant ReadData
SC_READ_PROGRAM SmartCardReadAction enum Constant ReadProgram
SC_EXECUTE_AND_READ_DATA SmartCardReadAction enum Constant ExecuteAndReadData
SC_XML_READ_BLOCK_DATA SmartCardReadAction enum Constant XmlReadBlockData
SC_STORE_DATA SmartCardWriteAction enum Constant StoreData
SC_STORE_PROGRAM SmartCardWriteAction enum Constant StoreProgram
SC_EXECUTE_DATA SmartCardWriteAction enum Constant ExecuteData
SC_XML_BLOCK_DATA SmartCardWriteAction enum Constant XmlBlockData
SC_SECURITY_FUSE SmartCardWriteAction enum Constant SecurityFuse
SC_RESET SmartCardWriteAction enum Constant Reset

SC_SUE_NO_CARD No_Equivalent_Defined No_Equivalent_Defin
ed

SC_SUE_CARD_PRESENT No_Equivalent_Defined No_Equivalent_Defin
ed

ESC_READ SmartCardRW System.Int32 ExtendedErrorRead
ESC_WRITE SmartCardRW System.Int32 ExtendedErrorWrite
ESC_TORN SmartCardRW System.Int32 ExtendedErrorTorn
ESC_NO_CARD SmartCardRW System.Int32 ExtendedErrorNoCard

ETOT_NOROOM HardTotals System.Int32 ExtendedErrorNoRoom
ETOT_VALIDATION HardTotals System.Int32 ExtendedErrorValidation

STAT_BarcodePrintedCount PosPrinter System.String StatisticBarcodePrintedCount
STAT_BumpCount BumpBar System.String StatisticBumpCount
STAT_CommunicationErrorCount PosCommon System.String StatisticCommunicationErrorCount
No_Equivalent_Defined PosCommon System.String StatisticDeviceCategory
STAT_DrawerFailedOpenCount CashDrawer System.String StatisticDrawerFailedOpenCount
STAT_DrawerGoodOpenCount CashDrawer System.String StatisticDrawerGoodOpenCount
STAT_FailedDataParseCount Micr System.String StatisticFailedDataParseCount
STAT_FailedPaperCutCount PosPrinter System.String StatisticFailedPaperCutCount
STAT_FailedPrintSideChangeCount PosPrinter System.String StatisticFailedPrintSideChangeCount
STAT_FailedReadCount Micr System.String StatisticFailedReadCount
No_Equivalent_Defined Msr System.String StatisticFailedReadCount
STAT_FailedSignatureReadCount SignatureCapture System.String StatisticFailedSignatureReadCount
No_Equivalent_Defined PosCommon System.String StatisticFirmwareRevision
STAT_FormInsertionCount PosPrinter System.String StatisticFormInsertionCount
STAT_GoodReadCount Micr System.String StatisticGoodReadCount
No_Equivalent_Defined Msr System.String StatisticGoodReadCount
STAT_GoodScanCount Scanner System.String StatisticGoodScanCount
STAT_GoodSignatureReadCount SignatureCapture System.String StatisticGoodSignatureReadCount
STAT_GoodWeightReadCount Scale System.String StatisticGoodWeightReadCount
STAT_HomeErrorCount PosPrinter System.String StatisticHomeErrorCount
STAT_HoursPoweredCount PosCommon System.String StatisticHoursPoweredCount

Unified POS, v1.15.1 Beta1 C - 23

C.6.2 Structures

POS for .NET defines structure types to aggregate data values that are returned by method calls. This is required
since parameters in POS for .NET are In only. On the other hand, structure types are used in POS for .NET to
provide a more type-safe handling for aggregated data. Structural strings containing several data values that are
returned by a UnifiedPOS property or method are broken into members of a new defined structure type.

Structures are like classes. However, structures have value semantics and they do not require heap allocation. The
language concept of structures is described in the MSDN Library documentation.

The following structures are defined in POS for .NET.

CashCount Structure
The structure CashCount contains the dispensing cash units and counts.

 Structure Properties

UnifiedPOS Name
POS for .NET

ClassName Parameter
Type Name

No_Equivalent_Defined PosCommon System.String StatisticInstallationDate
No_Equivalent_Defined PosCommon System.String StatisticInterface
STAT_InvalidPINEntryCount PinPad System.String StatisticInvalidPINEntryCount
STAT_JournalCharacterPrintedCount PosPrinter System.String StatisticJournalCharacterPrintedCount
No_Equivalent_Defined PosPrinter System.String StatisticJournalCoverOpenCount
STAT_JournalLinePrintedCount PosPrinter System.String StatisticJournalLinePrintedCount
STAT_KeyPressedCount PosKeyBoard System.String StatisticKeyPressedCount
STAT_LockPositionChangeCount Keylock System.String StatisticLockPositionChangeCount
No_Equivalent_Defined PosCommon System.String StatisticManufactureDate
No_Equivalent_Defined PosCommon System.String StatisticManufacturerName
STAT_MaximumTempReachedCount PosPrinter System.String StatisticMaximumTempReachedCount
No_Equivalent_Defined PosCommon System.String StatisticMechanicalRevision
No_Equivalent_Defined PosCommon System.String StatisticModelName
STAT_MotionEventCount MotionSensor System.String StatisticMotionEventCount
STAT_NVRAMWriteCount PosPrinter System.String StatisticNVRAMWriteCount
STAT_OnlineTransitionCount LineDisplay System.String StatisticOnlineTransitionCount
STAT_PaperCutCount PosPrinter System.String StatisticPaperCutCount
STAT_PrinterFaultCount PosPrinter System.String StatisticPrinterFaultCount
STAT_PrintSideChangeCount PosPrinter System.String StatisticPrintSideChangeCount
STAT_ReceiptCharacterPrintedCount PosPrinter System.String StatisticReceiptCharacterPrintedCount
STAT_ReceiptCoverOpenCount PosPrinter System.String StatisticReceiptCoverOpenCount
STAT_ReceiptLineFeedCount PosPrinter System.String StatisticReceiptLineFeedCount
STAT_ReceiptLinePrintedCount PosPrinter System.String StatisticReceiptLinePrintedCount
No_Equivalent_Defined PosCommon System.String StatisticSerialNumber
STAT_SlipCharacterPrintedCount PosPrinter System.String StatisticSlipCharacterPrintedCount
STAT_SlipCoverOpenCount PosPrinter System.String StatisticSlipCoverOpenCount
STAT_SlipLineFeedCount PosPrinter System.String StatisticSlipLineFeedCount
STAT_SlipLinePrintedCount PosPrinter System.String StatisticSlipLinePrintedCount
STAT_StampFiredCount PosPrinter System.String StatisticStampFiredCount
STAT_ToneSoundedCount ToneIndicator System.String StatisticToneSoundedCount
No_Equivalent_Defined PosCommon System.String StatisticUnifiedPOSVersion
STAT_UnreadableCardCount Msr System.String StatisticUnreadableCardCount
STAT_ValidPINEntryCount PinPad System.String StatisticValidPINEntryCount

Name Description
Count Holds the number bills or coins.
NominalValue Holds the face value.
Type Defines whether the currency is bills or coins.

C - 24 Unified POS, v1.15.1 Beta1

Used by
• CashChanger.DepositCounts Property as item type of the returned array, the POS for .NET

method has the following signature:
public abstract CashCount[] DepositCounts

• CashChanger.DispenseCash Method parameter array item type for the parameter
CashCounts, the POS for .NET method has the following signature:

 public abstract void DispenseCash(CashCount[] cashCounts)

CashCounts Structure
The structure CashCounts aggregates an array of items of type CashCount whether a cash discrepancy is given
or not.

Structure Properties

Used by
• CashChanger.ReadCashCounts Method as return value type, the POS for .NET method has

the following signature:

 public abstract CashCounts ReadCashCounts()

CashUnits Structure
Holds the cash units supported in the CashChanger. The cash units are stored in two separate String arrays for
bills and coins.

Name Description
Counts Holds the CashCount data.

Discrepancy If TRUE, there is some cash that could not be included in
a CashCount; otherwise FALSE.

Unified POS, v1.15.1 Beta1 C - 25

Structure Properties

Used by
• CashChanger.DepositCashList Property as return value type, the POS for .NET method has

the following signature:
 public abstract CashUnits DepositCashList

• CashChanger.CurrenyCashList Property as return value type, the POS for .NET method has
the following signature:
 public abstract CashUnits CurrencyCashList

• CashChanger.ExitCashList Property as return value type, the POS for .NET method has the
following signature:
 public abstract CashUnits ExitCashList

DirectIOData Structure
The structure DirectIOData aggregates values that are returned by the DirectIO method.

Structure Properties

Used by
• PosCommon.DirectIO Method as return value type, the POS for .NET method has the

following signature:
 public abstract DirectIOData DirectIO(int command, int data, object obj)

FiscalDataItem Structure
The structure FiscalDataItem aggregates values that are returned by the GetData method of the FiscalPrinter
category.

Structure Properties

Name Description
Bills Holds the number of each type of bill.
Coins Holds the number of each type of coin.

Name Description
Data Specific values vary by Command and Service Object.
Object Specific object vary by Command and Service Object.

Name Description
Data Character string describing data.

ItemOption
Optional additional parameter. Consult the Service Object
vendor's documentation for more information about how
to use this argument.

C - 26 Unified POS, v1.15.1 Beta1

Used by
• FiscalPrinter.GetData Method as return value type, the POS for .NET method has the

following signature:
 public abstract FiscalDataItem GetData(FiscalData dataItem, int itemOption)

TotalsFileInfo Structure
The structure TotalsFileInfo aggregates file information for the HardTotals device category.

Structure Properties

Used by
• Totals.Find Method as return value type, the POS for .NET method has the following

signature:
 public abstract TotalsFileInfo Find(string fileName)

VatInfo Structure
The structure VatInfo aggregates VAT information used in the FiscalPrinter category.

Structure Properties

Used by
• FiscalPrinter.PrintRecPackageAdjustVoid Method as array item type of the parameter

vatAdjustments, the POS for .NET method has the following signature:

public abstract void PrintRecPackageAdjustVoid(FiscalAdjustmentType adjustmentType, VatInfo[]
vatAdjustments)

• FiscalPrinter.PrintRecPackageAdjustment Method array item type of the parameter
vatAdjustments, the POS for .NET method has the following signature:

public abstract void PrintRecPackageAdjustment(FiscalAdjustmentType adjustmentType, string
description, VatInfo[] vatAdjustments)

VideoMode Structure
The structure VideoMode holds the video modes supported for the video unit used by the RemoteOrderDisplay
device category.

Name Description
Handle Handle to the totals file.
Size Totals file size.

Name Description
Amount Indicates the VAT amount.
Id VAT identifier.

Unified POS, v1.15.1 Beta1 C - 27

Structure Properties

Used by
• RemoteOrderDisplay.VideoModesList Property as item type of the returned array, the POS

for .NET method has the following signature:
 public abstract VideoMode[] VideoModesList

C.6.3 Complete Class Libraries Provided

Interface Classes
• Interface libraries provide no code functionality. They represent the interface to the device class

only. There are Interface classes for each of the device classes defined within UnifiedPOS.
• The interfaces meet or provide extensions to the UnifiedPOS specification standards.
• The interface classes define all the constants needed for management of device statistics, status

reporting via events, and standard error conditions.
• The interface classes define all the enumerations needed for all device classes.

Basic Classes
• Basic classes inherit from the Interface classes and implement the common functionality across

device classes. For example, the Basic classes implement the Open(), Claim(), and Release()
methods. There are Basic classes for each of the device classes defined within UnifiedPOS.

• The Basic classes not only manage all common properties and methods, they manage event
delivery to the application, retrieval and storage of device statistics, manage error handling for
all classes of errors, and provide functionality for notifying the Service Object of hardware state
change conditions.

Base Classes
• Base classes inherit from Basic classes and implement device class specific functionality across

device classes. The Device Service Object provider is left to implement only the hardware-
specific functionality.

Name Description
Colors The number of colors.
Columns The number of columns.
IsColor TRUE if video is color; otherwise, FALSE
Rows The number of rows.

C - 28 Unified POS, v1.15.1 Beta1

• Base classes build on the basic class functionality by providing implementations for all event
types (as well as managing event delivery), increment and manage all device statistics, manage
validation of property and parameter values (and deliver errors, as needed, to the application),
update all device-specific properties according to specification guidelines as part of delivering
data events to the application, plus provide a flexible structure of protected methods and helper
classes that the application can use if it chooses to provide its own hardware-specific
functionality.

Return Values
Many POS for .NET API calls return a value. For example, the common method

string CheckHealth (HealthCheckLevel level);

returns a string describing the health level. Parameters in POS for .NET are In only.

Returning Properties
Often, an application method call will result in the change of a property value or the method will
return some status value as defined within the UnifiedPOS specification.
For example, assume the following case:
An ISV calls a method that may change the value of a specific property. Further processing is
dependent upon the new value of the property. In the OPOS implementation of UnifiedPOS, the
ISV would first make a method call and then call another method that would return the value of the
property.

MethodThatChangesAProperty()
Dim MyProperty as Property
GetPropertyValue(MyProperty)
//GetPropertyValue has a
// byref parameter
Select MyProperty
case ….

In POS for .NET, the ISV would call the method and test the returned value as follows (Visual
Basic .NET):

Select MethodThatChangesAProperty()
Case ….

Returning Lists
Often, a method will return a list of values. In OPOS, methods that return lists do so by returning
strings that are comma-delimited (regardless of the data type of the list item). The application must
construct the string and do any necessary conversion of the data items to a string, adding commas
as delimiters.
The application will have to parse the string and cast the data items into the type associated by the
list. Example:

CHAR nChar = “,”;
int x;
int y = 0;
CHAR* pMyElements[];

Unified POS, v1.15.1 Beta1 C - 29

CHAR* psCurrent;
for(x=0;x<len(sReturn);x++)
{

if(sReturn[x] == nChar)
{

pMyElements[y] = psCurrent;
y++;

}
psCurrent += sReturn[x];

}
//assumes all return types should be strings if not,
//cast to appropriate data type is required

In POS for .NET, arrays are native data types. There is no need to cast the data elements to a
coerced type. Further, arrays provide their own iterate functions to allow easy access to any and all
items in the list.
//use each item as needed
SomeMethod(ReturnedArray[0]);
SomeOtherMethod(ReturnedArray[1]);

NOTE:
From the SO, the following code demonstrates returning a clone – necessary to preserve data
safety.

return SomeArrary.Clone();

The reasons to return arrays instead of compound strings are as follows:
• Arrays are native data types in .NET and they can be enumerated with a FOR EACH statement.
• Building and parsing delimited strings introduces more code that must be maintained and

increases the chance of introducing bugs.
• Clarity of intent of the code is clearer when arrays are used.
EXAMPLE:
To further illustrate the differences between UnifiedPOS, OPOS, and POS for .NET, refer to the
property PosPrinter.CharacterSetList. This property has the following signature in UnifiedPOS:

CharacterSetList: string { read-only, access after open }

The property in UnifiedPOS returns a string with a comma separated list of code page numbers.
The application program has to parse the string to extract the code page numbers and has to convert
them to integer values if needed. In POS for .NET, the property PosPrinter.CharacterSetList has
the following method signature:

public abstract int[] CharacterSetList

This returns the list of code page numbers as an integer array. There is no need for parsing a string
and converting code page numbers to integer values. This approach is more type safe and easier to
handle for application programmers.

C.7 Key Parameter Differences
POS for .NET makes use of enumerations versus OPOS use of constants. POS for .NET makes use
of array data typing versus OPOS use of compound strings. POS for .NET makes use of native
integer types. POS for .NET makes use of “right-sizing” variables (using variables that match the
type of data they represent) rather than OPOS use of data types for values that require more bytes
than would ever be necessary to contain the proper meaning and expected range.

C - 30 Unified POS, v1.15.1 Beta1

POS for .NET divides a UnifiedPOS method into multiple POS for .NET methods if it contains a
parameter that can contain only 2 or 3 values. E.g., the FiscalPrinter method printReport has the
following signature under UnifiedPOS:

printReport(reportType: int32, startNum: string, endNum: string): void

The parameter reportType can have only one of the following values - FPTR_RT_ORDINAL or
FPTR_RT_DATE. For FPTR_RT_DATE the two following parameters have to be interpreted as
date strings otherwise both values have to be used as integer values.

In POS for .NET the reportType parameter is omitted. Instead two new methods have been
introduced defining printReport() with different signatures. These are more type safe.

void PrintReport(DateTime startDate, DateTime endDate)
 void PrintReport(int startNumber, int endNumber)

The following table lists the method/parameter differences in POS for .NET compared to the
corresponding UnifiedPOS method/parameters. Methods differing only by the usage of an
Enumeration type are not listed.

UnifiedPOS Method POS for .NET
CashChanger
dispenseCash(cashCounts: string): void void DispenseCash(CashCount[] cashCounts)

FiscalPrinter
getData(dataItem: int32, inout optArgs: int32, inout data: string): void FiscalDataItem GetData(FiscalData dataItem, int

 itemOption)
printPeriodicTotalsReport(date1: string, date2: string): void void PrintPeriodicTotalsReport(DateTime

startingDate, DateTime endingDate)
printRecItem(description: string, price: currency, quantity: int32,
vatInfo: int32, unitPrice: currency, unitName: string): void

void PrintRecItem(string description, decimal
price, decimal quantity, int vatId, decimal
unitPrice, string unitName)

printRecPackageAdjustment(adjustmentType: int32, description:
string, vatAdjustment: string): void

void PrintRecPackageAdjustment(
FiscalAdjustmentType adjustmentType, string
description, VatInfo[] vatAdjustments)

printRecPackageAdjustVoid(adjustmentType: int32, vatAdjustment:
string): void

void PrintRecPackageAdjustVoid(
FiscalAdjustmentType adjustmentType, VatInfo[]
vatAdjustments)

printReport(reportType: int32, startNum: string, endNum: string): void void PrintReport(DateTime startDate, DateTime
endDate)

printReport(reportType: int32, startNum: string, endNum: string): void void PrintReport(int startNumber, int endNumber)
printReport(reportType: int32, startNum: string, endNum: string): void void PrintReport(int startNumber)
setDate(date: string): void void SetDate(DateTime newDate)
setVatValue(vatID: int32, vatValue: string): void void SetVatValue(int vatId, decimal vatRate)

Unified POS, v1.15.1 Beta1 C - 31

C.8 Key Property Signature Differences
There are several properties which have different POS for .NET signatures compared to
UnifiedPOS. They use arrays or structures instead of comma separated lists inside strings. The
following table shows these properties.

More Information
Samples are available in the POS for .NET Software Development Kit (SDK) which is available for
download at https://aka.ms/p4dn-dl.

C.9 PosExplorer API
PosExplorer is used by applications to acquire a list of installed POS devices, open—or create instances of—
service objects for those devices, and receive Plug-n-Play events when the devices are connected or disconnected
from the system.

UnifiedPOS Property POS for .NET Signature
CashChanger

CurrencyCodeList public abstract string[] CurrencyCodeList
CurrencyCashList public abstract CashUnits CurrencyCashList
DepositCodeList public abstract string[] DepositCodeList
DepositCounts public abstract CashCount[] DepositCounts
ExitCashList public abstract CashUnits ExitCashList

CheckScanner
QualityList public abstract int[] QualityList

FiscalPrinter
PredefinedPaymentLines public abstract string[] PredefinedPaymentLines

POSPrinter
CharacterSetList public abstract int[] CharacterSetList
FontTypefaceList public abstract string[] FontTypefaceList
RecBarCodeRotationList public abstract Rotation[] RecBarCodeRotationList

RecBitmapRotationList public abstract Rotation[] RecBitmapRotationList
SlpBarCodeRotationList public abstract Rotation[] SlpBarCodeRotationList
SlpBitmapRotationList public abstract Rotation[] SlpBitmapRotationList

RemoteOrderDisplay
VideoModesList public abstract VideoMode[] VideoModesList

www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/results.aspx?pocid=&freetext=POS%20for%20.NET%20SDK&displaylang=en
www.microsoft.com/downloads/results.aspx?pocid=&freetext=POS%20for%20.NET%20SDK&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en

C - 32 Unified POS, v1.15.1 Beta1

C.9.1 PosExplorer Properties

PosRegistryKey Property
Syntax public static string PosRegistryKey {read-only}
Remarks Holds the POS for .NET configuration root registry key relative to HKEY_LOCAL_MACHINE.

StatisticsFile Property
Syntax public static string StatisticsFile {read-only}
Remarks Holds the path to the file in which device statistics is persisted.

SynchronizingObject Property
Syntax public ISynchronizeInvoke SynchronizingObject {read-write}
Remarks Sets or holds the ISynchronizeInvoke object.

C.9.2 PosExplorer Methods

CreateInstance Method
Syntax public PosDevice CreateInstance(DeviceInfo device)
Remarks Instantiates the device based on the information supplied by the property values of the DeviceInfo object.

Parameter Description
device An object that describes the device you want to create an instance of, and

which is an instance of the DeviceInfo class. DeviceInfo contains properties
such as Compatibility, Description, HardwareID, and so on, for the device.

GetDevice Method (string)
Syntax public DeviceInfo GetDevice(string type)
Remarks Retrieves a device of the specified type.

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by the

DeviceType helper class.
There must be only one device of that type currently in the system, or if there is more than one, one
must have been configured as the default device. If there is more than one device of the specified type
and no device has been configured as the default device, a PosLibraryException will be thrown.

This signature of GetDevice represents the simplest case for retrieving and instantiating a device in the
POS for .NET system. To retrieve one device and instantiate its service object, the application must
only:

• Create an instance of PosExplorer;
• Call GetDevice using the above method signature; and
• Call CreateInstance.

POS for .NET initializes the device of the type specified or, if there is more than one device of that type,
the pre-configured default device for that type.

Unified POS, v1.15.1 Beta1 C - 33

GetDevice Method (string, string)
Syntax public DeviceInfo GetDevice(string type, string logicalName)

Remarks Retrieves a device of the specified type and name (or alias).

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by the

DeviceType helper class.
logicalName The logical name or alias of the device.

GetDevices Method
Syntax public DeviceCollection GetDevices()

Remarks Retrieves all POS devices currently installed in the system.

GetDevices Method (DeviceCompatibilities)
Syntax public DeviceCollection GetDevices(DeviceCompatibilities compatibility)

Remarks Retrieves all POS devices currently installed in the system, based on a compatibility level.

Parameter Description
compatibility DeviceCompatibilities enumeration that indicates compatibility level.

GetDevices Method (string)
Syntax public DeviceCollection GetDevices(string type)

Remarks Retrieves all POS devices of the specified type.

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by

the DeviceType helper class.

GetDevices Method (string, DeviceCompatibilities)
Syntax public DeviceCollection GetDevices(string type, DeviceCompatibilities compatibility)

Remarks Retrieves all POS devices of the specified type, based on a compatibility level.

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by

the DeviceType helper class.

compatibility DeviceCompatibilities enumeration that indicates compatibility level.

Refresh Method
Syntax public void Refresh()

Remarks Re-enumerates the list of attached POS devices and rebuilds the internal data structures.

C - 34 Unified POS, v1.15.1 Beta1

C.9.3 PosExplorer Events

DeviceAddedEvent Event
Syntax public event DeviceChangedEventHandler DeviceAddedEvent;

Remarks Notifies the application when a POS device has been added to the system.

DeviceAddedEvent only notifies for POS devices for which there is a service object installed.

The event handler receives an argument of type DeviceChangedEventArgs which contains a
DeviceInfo object for the added device.

DeviceRemovedEvent Event
Syntax public event DeviceChangedEventHandler DeviceRemovedEvent;

Remarks Notifies the application when a POS device has been removed from the system.

DeviceRemovedEvent only notifies for POS devices for which there is a service object installed.

The event handler receives an argument of type DeviceChangedEventArgs which contains a
DeviceInfo object for the removed device.

C.9.4 Global Configuration

PosExplorer reads the global configuration file (config.xml), which enables application developers to specify
aliases for Plug-n-Play and non Plug-n-Play devices, and to define physical devices for non Plug-n-Play Service
Objects.

The global configuration file also enables application developers to define more than one physical device
associated with a non Plug-n-Play Service Object and to assign aliases and device paths (such as COM ports) to
them. This enables Application Developers to target non Plug-n-Play Service Objects to specific physical
devices.

C.10 Service Object Registry
In OPOS, configuration information for Service Objects is stored in the registry. In POS for .NET, configuration
information is stored in Config.xml. POS for .NET enables seamless access to registry information for COM
Service Objects through PosExplorer; the Common Control Library does the work of gathering registry
configuration information.

Unified POS, v1.15.1 Beta1 C - 35

C.11 Consuming Service Objects

C.11.1 OPOS

Control Objects represent the application interface to its matching Service Object. The UnifiedPOS standard does
not provide any code for Control Objects. However, it does suggest that the OPOS Control objects located at
http://monroecs.com/oposccos.htm (or https://github.com/kunif/OPOS-CCO) be used or at the very least tested
against. In addition, the site holds an ActiveX® Control that is an aggregation of all device classes. This is
commonly referred to as the Common Controls Objects.

Under OPOS it is customary practice for IHVs, ISVs, and OEMs to create their own versions of Control Objects
and to not use or test the referenced Common Control Objects. This has lead to compatibility issues between
hardware, services, and application code.

The OPOS implementation consists of the following steps:

• Instantiate an instance of the Control Object

• Call the Control Objects:
•Open to load the Service Object by name
•Claim
•Enable

Note that on a device-by-device basis, there may be properties that must be read or set before interacting with the
device for device-specific functionality.

C.11.2 POS for .NET

To instantiate a Service Object in POS for .NET, do the following:

• Instantiate the PosExplorer object.

• Use the PosExplorer.GetDevice or GetDevices method to obtain a list of one or more DeviceInfo objects that
represent devices attached to the machine.

• Call PosExplorer.CreateInstance, passing in the DeviceInfo for the device you want to load.

• Call methods/properties on the Service Object returned by the previous step.

The supplied PosExplorer tool is a helper class that acts as a Service Object Factory. The developer will
instantiate:
Sample POSExplorer.GetDevice(…);

This approach provides the following benefits:

• Achieves infrastructure required to support feature set (see POS for .NET features).

• Simplifies an application: One section of code can be used to dynamically instantiate a Service Object.

• For most cases it eliminates the need for detailed knowledge of the specific brand of hardware peripheral.

• An application can easily get a list of available POS peripherals actually attached to the device (Available for Plug-
n-Play).

• For an application there is no difference between .NET SOs and OPOS SOs.

http://www.monroecs.com/oposccos.htm
http://www.monroecs.com/oposccos.htm
http://www.monroecs.com/oposccos.htm

C - 36 Unified POS, v1.15.1 Beta1

C.12 Writing Service Objects

C.12.1 POS for .NET

There are three different approaches available:

• Derive the Service Object from the Interface class

• Derive the Service Object from the Basic class

• Derive the Service Object from the Base class

There are various levels of work required for the Service Object writer for each approach. For example, deriving
from the Interface class requires the most amount of code to be implemented by the service application yet gives
it the most control over the operation of the Service Object. By deriving from the Basic class, the service
application only must implement the core functionality of the device. The Basic class already provides the
common functionality. Deriving from the Base class leaves the service application with only having to implement
the specific hardware functionality; the basic functionality of the device class has already been provided.

C.13 Status, State Model, and Exceptions
The status, error code, and state models are built around several common enumerations, events, and a property,
described below:

StatusUpdateEvent
An event fired when some class-specific state or status variable has changed.

ControlState
An enumeration containing the current state. Possible values are:
• Closed
• Idle
• Busy
• Error

Exceptions
Every POS for .NET method invocation and property access may throw a PosControlException
upon failure, except for accesses to the properties DeviceControlVersion,
DeviceControlDescription, and State. No other types of exceptions will be thrown.

PosControlException is defined in the namespace Microsoft.PointOfService, and extends
System.Exception.

Unified POS, v1.15.1 Beta1 C - 37

Public Properties

The constructor variations are defined as follows:

PosControlException (string message, ErrorCode errorCode)

PosControlException (string message, ErrorCode errorCode, Exception innerException)

PosControlException (string message, ErrorCode errorCode, int errorCodeExtended)

 PosControlException (string message, ErrorCode errorCode, int
 errorCodeExtended, Exception innerException)

The parameters are defined as follows:

Parameter Description
errorCode The POS for .NET error code. Access is through the ErrorCode getter

method.
errorCodeExtended May contain an extended error code. If not provided by the selected

constructor, then is set to zero. Access is through the
ErrorCodeExtended getter method.

message A text description of the error. If not provided by the selected
constructor, then one is formed from the errorCode and
errorCodeExtended parameters. Access is through the superclass’ getter
method Message or method ToString.

innerException Original exception. If the POS for .NET Service caught a non-POS for
.NET exception, then an appropriate errorCode is selected and the
original exception is referenced by this parameter. Otherwise, it is set to
null. Access is through the inherited getter method InnerException.

Name Description

ErrorCode ErrorCode causing the error exception. See the list of
Error Codes.

ErrorCodeExtended Extended Error Code causing the error exception. This
may contain a Service-specific value.

http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCode.asp
http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCodeExtended.asp

C - 38 Unified POS, v1.15.1 Beta1

C.14 Device Sharing Model
The POS for .NET device sharing model supports devices that are to be used exclusively by one application at a
time, as well as devices that may be partially or fully shared by multiple applications. All POS for .NET service
objects may be opened by more than one application at a given time. Some or many of the activities that an
application can perform with the service object, however, may be restricted to an application that claims access
to the device.

Exclusive-Use Devices
The most common device type is called an “exclusive-use device”. An example is the POSPrinter. Due to
physical or operational characteristics, this device can only be used by one application at a time. The application
must call the Claim method to gain exclusive access to the device before most methods, properties, or events are
legal. Until the device is claimed, calling methods or setting properties cause an Illegal error, and events are not
fired to the application.

Should two closely cooperating applications want to treat an exclusive-use device in a shared manner, then one
application may claim the device for a short sequence of operations, then release it so that the other application
may use it.

When the Claim method is called again, settable device characteristics are restored to their condition at Release.
Examples of restored characteristics are the LineDisplay's brightness, the MSR's tracks to read, and the
POSPrinter's characters per line. State characteristics are not restored, such as the POSPrinter's sensor properties.
Instead, these are updated to their current values.

Sharable Devices
Some devices are “sharable devices.” An example is the Keylock. A sharable device allows multiple applications
to call its methods and access its properties. Also, it may fire its events to all applications that have opened it. A
sharable device may still limit access to some methods or properties to an application that has claimed it, or may
fire some events only to this application.

Unified POS, v1.15.1 Beta1 C - 39

C.15 Events Updated in Release 1.12
POS for .NET implements UnifiedPOS events as standard .NET events with multicast delegates.

The events inform an application of various activities or changes with a device, or when a device is added or
removed. The event types are as follows:

The Service Object queues events as they occur. Queued events are delivered to the application when conditions
are correct. Conditions that delay the delivery of events include:

• The application has set the property FreezeEvents to TRUE.

• The event type is DataEvent or an input ErrorEvent, but the property DataEventEnabled is FALSE.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents
property.

Note: The following event terminology is used in this document.
Queue When the Service Object determines that an event needs to be fired to the

application, it queues the event on an internal event queue.
Deliver When the event queue is non-empty and all conditions are met for the top event

on the queue, this event is removed from the queue and delivered to the
application.

Fire The combination of queuing and delivering an event. Sometimes, the term is
used more loosely and may only refer to one of these steps. The reader should
differentiate these cases by context.

Rules on the management of the queue of events are:

• The Service Object can only queue new events while the device is enabled.

• The Service Object can deliver queued events until the application calls the Release method (for exclusive-use
devices) or the Close method (for any device), at which time any remaining events are deleted.

• For input devices, the ClearInput method clears data and input error events. While within an event handler, the
application may access properties and call methods. However, the application must not call the Release or Close
methods from an event handler, because Release may shut down event handling (possibly including a thread that
caused the event to be delivered) and Close must shut down event handling before returning.

Event Description

DataEvent Input data has been placed into device
class-specific properties

ErrorEvent An error has occurred during event-driven
input or asynchronous output.

StatusUpdateEvent Reports a change in the device’s status.

OutputCompleteEvent An asynchronous output has successfully
completed.

DirectIOEvent
This event may be defined by a Service
Object provider for purposes not covered
by the specification.

C - 40 Unified POS, v1.15.1 Beta1

C.16 Input Model Updated in Release 1.12
The POS for .NET input model supports event-driven input. Event-driven input allows input data to be received
after DeviceEnabled is set to TRUE. Received data is queued as a DataEvent, which is delivered to the
application when preconditions are correct. If the AutoDisable property is TRUE when data is received, then the
control will automatically disable itself, setting DeviceEnabled to FALSE. This will inhibit the Service Object
from queuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the device, it sets the DataEventEnabled property to TRUE.
Then, when input is received (usually as a result of a hardware interrupt), the Control enqueues and delivers a
DataEvent. (If input has already been enqueued, the DataEvent will be delivered.) This event may include input
status information through a numeric parameter. The Control places the input data plus other information as
needed into device-specific properties just before the event is fired.

Just before delivering this event, the Control disables further data events by setting the DataEventEnabled
property to FALSE. This causes subsequent input data to be enqueued by the Control while the application
processes the current input and associated properties. When the application has finished the current input and is
ready for more data, it re-enables events by setting DataEventEnabled to TRUE.

If the input device is an exclusive-use device, the application must both claim and enable the device before the
device begins reading input.

For sharable input devices, one or more applications must open and enable the device before the device begins
reading input. An application must call the Claim method to request exclusive access to the device before the
Control will send data to it using the DataEvent. If event-driven input is received, but no application has claimed
the device, then the input is buffered until an application claims the device (and the DataEventEnabled property
is TRUE). This behavior allows orderly sharing of the device between multiple applications, effectively passing
the input focus between them.

If the Control encounters an error while gathering or processing event-driven input, then the Control changes its
state to Error, and enqueues one or two ErrorEvents to alert the application of the error condition. This event (or
events) is not delivered until the DataEventEnabled property is TRUE, so that orderly application sequencing
occurs.

Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it leaves the
DataEventEnabled property value at TRUE. Note that the application may set DataEventEnabled to FALSE
within its event handler if subsequent input events need to be disabled for a period of time.

Error events are delivered with the following loci:

InputData – Only queued if the error occurred while one or more DataEvent events are queued. It is enqueued
ahead of all DataEvents. This event gives the application the ability to immediately clear the input, or to
optionally alert the user to the error and process the buffered input.

The latter case may be useful with a Scanner Control. The user can be immediately alerted to the error so that no
further items are scanned until the error is resolved. Any previously scanned items can then be successfully
processed before error recovery is performed.

Input – Delivered when an error has occurred and there is no data available. (A typical implementation would
place it at the tail of the event queue.) If some input data was already enqueued when the error occurred, then an
ErrorEvent with the locus InputData was queued and delivered first, and then this error event is delivered after
all DataEvents have been fired. (If an “InputData” event was delivered and the application event handler
responded with a “Clear”, then this “Input” event is not delivered.)

Unified POS, v1.15.1 Beta1 C - 41

The Control exits the Error state when one of the following occurs:

• The application returns from the Input ErrorEvent.

• The application returns from the InputData ErrorEvent with a Clear ErrorResponse.

• The application calls the ClearInput method.

For some Controls, the Application must call a method to begin event-driven input. After the input is received by
the Control, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property can be read to obtain the number of DataEvents queued by the Control.

All input queued by a Control can be deleted by calling the ClearInput method. ClearInput can be called after
Open for sharable devices and after Claim for exclusive-use devices.

The general event-driven input model does not specifically rule out the definition of device classes containing
methods or properties that return input data directly. Some device classes will define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input
is sometimes called “synchronous input.”

C - 42 Unified POS, v1.15.1 Beta1

C.17 Output Model
The POS for .NET output model consists of two output types: synchronous and asynchronous. A device class can
support one or both types, or neither type.

C.17.1 Synchronous Output

This type of output is preferred when device output can be performed quickly. Its merit is simplicity.

The application calls a class-specific method to perform output. The service object does not return until the
output is completed.

C.17.2 Asynchronous Output Updated in Release 1.12

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, because the application can perform other work while the device is performing the output.

The application calls a class-specific method to start the output. The Service Object buffers the request in
program memory, for delivery to the Physical Device as soon as the Physical Device can receive and process it,
sets the OutputId property to an identifier for this request, and returns as soon as possible. When the device
completes the request successfully, POS for .NET fires an OutputCompleteEvent. A parameter of this event
contains the OutputId of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is fired. The application’s event
handler can either retry the outstanding output or clear it. The Service Object is in the Error state while the
ErrorEvent is in progress. (Note that if the condition causing the error was not corrected, then the Service
Object can immediately reenter the Error state and fire another ErrorEvent.) Asynchronous output is performed
on a first-in, first-out basis. All buffered output data, including all asynchronous output, can be deleted by calling
ClearOutput. OutputCompleteEvents are not fired for cleared output. This method also stops any output that
may be in progress (when possible).

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules in Chapter 1). No further asynchronous output will occur until the event has been delivered to the
application. If the ErrorResponse is Clear, then outstanding asynchronous output is cleared. If the
ErrorResponse is Retry, then output is retried; note that if several outputs were simultaneously in progress at the
time that the error was detected, then the Service may need to retry all of these outputs.

Unified POS, v1.15.1 Beta1 C - 43

C.18 Device Power Reporting Model
Applications frequently need to know the power state of the devices they use. This state is managed by the
PowerState enumeration.

Note: This model is not intended to report PC or POS Terminal power conditions (such as “on battery” and
“battery low”). Reporting of these conditions is now managed by the PosPower enumeration.

C.18.1 Model

POS for .NET segments device power into four states:

Online The device is powered on and ready for use. This is the “operational” state.

Off The device is powered off or detached from the terminal. This is a “non-operational” state.

Offline The device is powered on but is either not ready or not able to respond to requests. It may need to be
placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational”
state.

In addition, one combination state is defined:

OffOfflineThe device is either off or offline, and the Service Object cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

Note – Enabled/Disabled vs. Power States

These states are different and usually independent. POS for .NET defines “disabled” / “enabled” as a logical
state, whereas the power state is a physical state. A device may be logically “enabled” but physically “offline”.
It may also be logically “disabled” but physically “online”. Regardless of the physical power state, POS for
.NET only reports the state while the device is enabled. (This restriction is necessary because a Service Object
typically can only communicate with the device while enabled.) If a device is “offline”, then a Service Object
may choose to fail an attempt to “enable” the device. However, once enabled, the Service Object may not disable
a device based on its power state.

C - 44 Unified POS, v1.15.1 Beta1

C.19 Power Reporting Properties
The POS for .NET device power reporting model adds the following common elements across all device classes:

CapPowerReporting property: Identifies the reporting capabilities of the device. This property is a
PowerReporting enumeration value:

NoneThe Service Object cannot determine the state of the device. Therefore, no power reporting is possible.

StandardThe Service Object can determine and report two of the power states – OffOffline (that is, off or
offline) and Online.

AdvancedThe Service Object can determine and report all three power states – Online, Offline, and Off.

PowerState enumeration: Maintained by the Service Object at the current power condition, if it can be
determined. This value can be one of:

• Unknown

• Online

• Off

• Offline

• OffOffline

PowerNotify property: The Application can set this property to enable power reporting via StatusUpdateEvents
and the PowerState enumeration. This property can only be set before the device is enabled (that is, before
DeviceEnabled is set to TRUE). This restriction allows simpler implementation of power notification with no
adverse effects on the application. The application is either prepared to receive notifications or does not want
them, and has no need to switch between these cases. This property returns a PowerNotification enumeration,
the value of which is either Disabled or Enabled.

C.19.1 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when CapPowerReporting is not None, and PowerNotify
is Enabled:

When the Control changes from DeviceEnabled FALSE to TRUE, then begin monitoring the power state:

If the device is Online, then:

• PowerState is set to Online.

• A StatusUpdateEvent is fired with StatusUpdateEventArgs.Status property set to Online.

If the device power state is Off, Offline, or OffOffline, then the Control can choose to fail the enable, throwing a
PosControlException and setting ErrorCode to NoHardware or OffLine.

However, if there are no other conditions that cause the enable to fail, and the Control chooses to return success
for the enable, then:

• PowerState is set to Off, Offline, or OffOffline.

• A StatusUpdateEvent is fired with the StatusUpdateEventArgs.Status property set to PowerOff, Offline, or
OffOffline.

Unified POS, v1.15.1 Beta1 C - 45

C.20 Device Information Reporting Model
POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s serial number, firmware version, and connection type. Examples
of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running, Number of
paper cuts, and so on. Examples of usage data for the Scanner device are the Number of scans, Number of Hours
Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the Claim method and by setting DeviceEnabled to TRUE
when access to a device is required and then setting DeviceEnabled to FALSE and using the Release method
when access to the device is no longer needed. Coordination of device access via this mechanism is the
responsibility of the applications themselves.

C.20.1 Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
CapStatisticsReporting is FALSE, then no statistical data regarding the device is available. This is equivalent to
Services compatible with prior versions of the specification. When CapStatisticsReporting is TRUE, then some
statistical data for the device is available.

CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by the
application. This property is only valid if CapStatisticsReporting is TRUE. When CapUpdateStatistics is
FALSE, then none of the statistical data can be reset/updated by the application. Otherwise, when
CapUpdateStatistics is TRUE, then (some of) the statistical data can be reset/updated by the application.

ResetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are TRUE.
This method resets one, some, or all of the resettable device statistics to zero.

RetrieveStatistics method. Can only be called if CapStatisticsReporting is TRUE. This method retrieves one,
some, or all of the accumulated statistics for the device.

UpdateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
TRUE. This method updates one, some, or all of the resettable device statistics to the supplied values.

C - 46 Unified POS, v1.15.1 Beta1

C.21 POS for .NET Component Descriptions

C.21.1 POS for .NET Data Types Updated in Release 1.11

The parameter and return types specified in the POS for .NET descriptions are as follows:

C# Type VB.NET Type .NET Framework Type Description UnifiedPOS
Type

bool Boolean System.Boolean A Boolean value (TRUE or
FALSE). boolean

byte Byte System.Byte Arbitrary binary data. byte

byte[] Byte() System.Array with array
element type System.Byte Arbitrary binary data array. binary

decimal Decimal System.Decimal A currency value. currency
int Integer System.Int32 Signed 32-bit integer. int32

int[] Integer()
System.Array with array
element type Sys-
tem.Int32

Signed 32-bit integer array. int32 array

CultureInfo CultureInfo
System.
Globalization.
CultureInfo

Provides information about a
specific culture, such as the
names of the culture, the
writing system, the calendar
used, and how to format
dates and sort strings.

nls

object Object System.Object

An object reference. This will
usually be a subclass to the
root of the class hierarchy to
provide a Device Service-
specific parameter for
directIO or DirectIOEvent.

object

Point[] Point()

System.Array with array
element type
System.Drawing.
Point

An array of ordered pairs of
integer x- and y-coordinates
that define a point in a two-
dimensional plane.

array of points

string String System.String An immutable, fixed-length
string of Unicode characters. string

Unified POS, v1.15.1 Beta1 C - 47

C.21.2 POS for .NET Common Properties, Methods, Events, Statistics, and Constants

Common Properties Updated in Release 1.11

Name Type
AutoDisable bool
CapCompareFirmwareVersion bool
CapPowerReporting PowerReporting
CapStatisticsReporting bool
CapUpdateFirmware bool
CapUpdateStatistics bool
CheckHealthText string
Claimed bool
Compatibility DeviceCompatibilities
DataCount int
DataEventEnabled bool
DeviceDescription string
DeviceEnabled bool
DeviceName string
DevicePath string
FreezeEvents bool
OutputId int
PowerNotify PowerNotification
PowerState PowerState
ServiceObjectDescription string
ServiceObjectVersion System.version
State ControlState
SynchronizingObject System.ComponentModel.ISynchronizeInvoke

C - 48 Unified POS, v1.15.1 Beta1

The common properties are explained in detail further below.

Common Methods Updated in Release 1.11
The following are POS for .NET implementation-specific definitions of Common Methods:

CheckHealth (HealthCheckLevel level);
Claim (int timeout);
ClearInput ();
ClearInputProperties ();
ClearOutput ();
Close ();
CompareFirmwareVersion (string filename);
DeleteConfigurationProperty (string propertyName);
DirectIO (int command, int data, object obj);
GetConfigurationProperty (string propertyName);
Invoke (Delegate method, object[] args);
Open ();
Release ();
ResetStatistics ();
ResetStatistics (StatisticCategories statistics);
ResetStatistics (string[] statistics);
RetrieveStatistics (StatisticCategories statistics);
RetrieveStatistics (string[] statistics);
RetrieveStatistic (string statistic);
UpdateFirmware (string filename);
UpdateStatistic (string name, object value);
UpdateStatistics (Statistic[] statistics);
UpdateStatistics (StatisticCategories statistics, object value);

The common methods are explained in detail further below.

Common Events
Events in the .NET Framework are based on the delegate model. For more information about the
delegate model, on how to consume events in applications, and how to raise events from a class,
see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconevents.asp.

The following are POS for .NET implementation-specific definitions of Common Events:

DataEventHandler DataEvent;
DirectIOEventHandler DirectIOEvent;
DeviceErrorEventHandler ErrorEvent;
OutputCompleteEventHandler OutputCompleteEvent;
StatusUpdateEventHandler StatusUpdateEvent;

The common events are explained in detail further below.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconevents.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconevents.asp

Unified POS, v1.15.1 Beta1 C - 49

Common Statistics
StatisticUnifiedPOSVersion = “UnifiedPOSVersion”;

StatisticDeviceCategory = “DeviceCategory”;

StatisticManufacturerName = “ManufacturerName”;

StatisticModelName = “ModelName”;

StatisticSerialNumber = “SerialNumber”;

StatisticManufactureDate = “ManufactureDate”;

StatisticMechanicalRevision = “MechanicalRevision”;

StatisticFirmwareRevision = “FirmwareRevision”;

StatisticInterface = “Interface”;

StatisticInstallationDate = “InstallationDate”;

StatisticHoursPoweredCount = “HoursPoweredCount”;

StatisticCommunicationErrorCount = “CommunicationErrorCount”;

Common Constants
int WaitForever = -1;

int StatusPowerOnline= 2001;

int StatusPowerOff= 2002;

int StatusPowerOffline= 2003;

int StatusPowerOffOffline= 2004;

int ExtendedErrorStatistics= 280;

C - 50 Unified POS, v1.15.1 Beta1

C.22 Common Properties

AutoDisable Property
Type bool

Remarks If true, the Service will set DeviceEnabled to false after it receives and enqueues data as a
DataEvent. Before any additional input can be received, the application must set DeviceEnabled
to true.

If false, the Service does not automatically disable the device when data is received.
This property provides the application with an additional option for controlling the receipt of input
data. If an application wants to receive and process only one input, or only one input at a time, then
this property should be set to true. This property applies only to event-driven input devices.
This property is initialized to false by the open method.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

CapCompareFirmwareVersion Property Added in Release 1.11

Type bool

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical
device against that of a firmware file.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

CapPowerReporting Property
Type PowerReporting

Remarks Identifies the reporting capabilities of the device. Possible values are defined by the
PowerReporting enumeration.

The service object should then set PowerReporting based on the capabilities of the device.

The power reporting values are:

Value Meaning
None The Service Object cannot determine the state of the device. Therefore,

no power reporting is possible.
Standard The Service Object can determine and report two of the power states –

OffOffLine (that is, off or offline) and Online.
Advanced The Service Object can determine and report all three power states – Off,

OffLine, and OnLine.

Errors None.

Unified POS, v1.15.1 Beta1 C - 51

CapStatisticsReporting Property
Type bool

Remarks If set to TRUE, the device accumulates and can provide various statistics regarding usage. The
information accumulated is device-specific, and can be retrieved using the RetrieveStatistic(s)
method.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

CapUpdateFirmware Property Added in Release 1.11
Type bool

Remarks If true, then the device’s firmware can be updated via the UpdateFirmware method.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

CapUpdateStatistics Property
Type bool

Remarks If set to TRUE, some or all of the device statistics can be reset to 0 (zero) using the ResetStatistic(s)
methods, or updated using the UpdateStatistic(s) methods.

If the CapStatisticsReporting property is set to FALSE, CapUpdateStatistics will always be
FALSE.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

CheckHealthText Property
Type string

Remarks Contains text indicating the health of the device. Updated by the service object when the application
calls the CheckHealth method.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

Claimed Property
Type bool

Remarks If TRUE, the device is claimed for exclusive access. If FALSE, the device is released for sharing
with other applications.

Exclusive use devices must be claimed using the Claim method before the service object will
allow access to many of its methods and properties, and before the service object will fire events to
the application.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

C - 52 Unified POS, v1.15.1 Beta1

Compatibility Property
Type DeviceCompatibilities

Remarks Indicates the compatibility level of a device.

This property has one of the following values:

Member Name Description
CompatibilityLevel1 Indicates compatibility with any .NET service object.
Opos Indicates compatibility with any COM service object.
OposAndCompatibilityLevel1

Indicates compatibility with any .NET or COM service object.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

DataCount Property
Type int
Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a
device, but has not yet been delivered because of other application processing, freezing of events,
or other causes.
This property is initialized to zero by the open method.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

DataEventEnabled Property
Type bool
Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some

input data is already queued, then a DataEvent is delivered immediately. (Note that other
conditions may delay “immediate” delivery: if FreezeEvents is true or another event is already
being processed at the application, the DataEvent will remain queued at the Service until the
condition is corrected.)
If false, input data is enqueued for later delivery to the application. Also, if an input error occurs,
the ErrorEvent is not delivered while this property is false.
This property is initialized to false by the open method.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

DeviceDescription Property
Type string
Remarks Contains text identifying the device and any pertinent information about it. A sample of the text

might be:
“NCR 7192-0184 Printer, Japanese Version”

This property is initialized when the application calls the Open method.
Errors None.

Unified POS, v1.15.1 Beta1 C - 53

DeviceEnabled Property
Type bool
Remarks When TRUE, the device has been placed in an operational state. If changed to TRUE, then the

device is brought to an operational state.
When FALSE, the device has been disabled. If changed to FALSE, then the device is physically
disabled when possible. Any subsequent input will be discarded, and output operations are
disallowed.
Changing DeviceEnabled usually does not physically affect output devices. For consistency,
however, the application must set DeviceEnabled to TRUE before using output devices.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

DeviceName Property
Type string
Remarks Contains a short string identifying the device and any pertinent information about it.

This is a short version of DeviceDescription and should be limited to 30 characters.
DeviceName will typically be used to identify the device in an application message box, where the
full description is too verbose. A sample DeviceName string is:

“NCR 7192 Printer, Japanese”
Errors None.

DevicePath Property Updated in Release 1.13
Type string
Remarks Contains the hardware path of a device. Note: This is a common property for .NET service objects

but it is only intended for usage between the .NET service object and the POS for .NET system. The
Application should not access this property. A .NET service object that attempts to change this non-
public DevicePath property to public will result in an exception error.
The PosExplorer class attempts to initialize DevicePath to the hardware path of the physical
device using the following algorithm:
• If the physical hardware supports Plug and Play and the service object is mapped to a specific

hardware ID via the HardwareId custom attribute or a configuration XML file, PosExplorer
class will set DevicePath to the HardwarePath of the physical device. Service objects can
typically use this DevicePath to directly access the device.

• If the device does not support Plug and Play, but has been configured via Posdm.exe or WMI,
DevicePath will be set to the path specified when the device was configured.

• If the device does not support Plug and Play and has not been configured via Posdm.exe or
WMI, DevicePath will be set to empty string (“”) and must be set by the service object before
the Open method in the base/basic class can be called.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

C - 54 Unified POS, v1.15.1 Beta1

FreezeEvents Property Updated in Release 1.12
Type bool
Remarks When set to TRUE, the application has requested that the service object not deliver events. Events

will be queued by the service object but not delivered until the application changes FreezeEvents to
FALSE.
When set to FALSE, the application allows events to be delivered. If some events have been held
while events were frozen and all other conditions are correct for delivering the events, changing
FreezeEvents to FALSE will allow these events to be delivered.
An application can choose to freeze events for a specific sequence of code where interruption by an
event is not desirable.
Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

OutputId Property
Type int

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Service assigns an identifier to
the request. When the output completes, an OutputCompleteEvent will be enqueued with this
output ID as a parameter.

The output ID numbers are assigned by the Service and are guaranteed to be unique among the set
of outstanding asynchronous outputs. No other facts about the ID should be assumed.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

PowerNotify Property
Type PowerNotification

Remarks Contains the type of power notification selection made by the application. Possible values are
defined by the PowerNotification enumeration.

PowerNotify can only be set while the device is disabled, that is, while the DeviceEnabled
property is set to FALSE.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

Unified POS, v1.15.1 Beta1 C - 55

PowerState Property
Type PowerState

Remarks Contains the current power condition. Possible values are defined by the PowerState enumeration.

When PowerNotify is set to enabled and DeviceEnabled is TRUE, PowerState is updated as the
service object detects power condition changes. When the power state changes, the service object
updates PowerState and queues a StatusUpdateEvent event, notifying the application.

Errors None.

ServiceObjectDescription Property
Type string

Remarks Contains a string identifying the service object supporting the device and the company that
produced it.

A sample ServiceObjectDescription string is:

“TM-T88IV Printer POS for .Net Service Driver, (C) 2005 Epson”

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

ServiceObjectVersion Property
Type System.version

Remarks ServiceObjectVersion holds the service object version number. Version numbers consist of two to
four integers, Major, Minor, Build, and Revision. Build and Revision are optional, but Revision is
optional only if Build is not specified.

The Major and Minor version numbers correspond to the UnifiedPOS version implemented by the
service object. A service object that implements the UnifiedPOS 1.8 specification would set
Major=1 and Minor=8. The Build and Revision version numbers are optional and can be used by
the service object to track its internal version.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

State Property
Type ControlState

Remarks Contains the current state of the device. Possible values are defined by the ControlState
enumeration.

State is set to ControlState.Idle by the Open method and is always readable, regardless of the state
of the device.

Errors None.

C - 56 Unified POS, v1.15.1 Beta1

SynchronizingObject Property
Type System.ComponentModel.ISynchronizeInvoke

Remarks Contains an instance of the ISynchronizeInvoke class. Applications can use this property to
specify the thread events that are to be delivered on. If SynchronizingObject is set to null, events
are delivered on an internal thread owned by the service object. Applications using Windows Forms
should set SynchronizationObject to the this pointer of the main Form class so that events are
delivered on the main application thread ... as required by the Form class.

Errors A PosControlException may be thrown when this property is accessed. For further information,
see “Status, State Model, and Exceptions” on page 36.

C.23 Common Methods

CheckHealth Method
Syntax string CheckHealth (HealthCheckLevel level);

Remarks The application calls CheckHealth to test the state of a device. CheckHealth is always performed
synchronously. The service object returns a string indicating the health level and updates the
CheckHealthText property.

The level parameter indicates the type of health check to be performed on the device. Possible
values are defined by the HealthCheckLevel enumeration.

Value Meaning
Internal Perform a health check that does not physically change the device. The

device is tested by internal tests to the extent possible.
External Perform a more thorough test that may change the device. For example, a

pattern may be printed on the printer.
Interactive Perform an interactive test of the device. The supporting Service Object

will typically display a modal dialog box to present test options and
results.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

CheckHealth may throw the following PosControlException:

ErrorCode Value Description

Illegal The specified health check level is not supported by the
service object.

Unified POS, v1.15.1 Beta1 C - 57

Claim Method
Syntax void Claim (int timeout);

Remarks The application calls Claim to request exclusive access to the device. Many devices require an
application to claim them before they can be used.
If the timeout parameter is set to 0 (zero), the method attempts to claim the device, then returns the
appropriate status immediately. If timeout is set to WaitForever (-1), Claim waits until exclusive
access is satisfied.
An application can claim a device more than once without generating an error. When Claim is
successful, the Claimed property is set to TRUE.
The timeout parameter contains the maximum number of milliseconds to wait for exclusive access
to be satisfied.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

Claim may throw the following PosControlExceptions:

ClearInput Method
Syntax void ClearInput ();

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

ClearInputProperties Method Added in Release 1.11
Syntax void ClearInputProperties ();

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back
to their default values. This does not reset the DataCount or State properties.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The device cannot currently be claimed for exclusive
access; or a value of less than -1 has been specified for the
timeout parameter.

Timeout
Another application has exclusive access to the device
and did not relinquish control before timeout milliseconds
expired.

C - 58 Unified POS, v1.15.1 Beta1

ClearOutput Method
Syntax void ClearOutput ();

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts
outputs that are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to be set to false –
are also cleared.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

Close Method
Syntax void Close ();
Remarks The application calls Close to release the device and its resources.

If the DeviceEnabled property is set to TRUE, the device will be disabled. If the Claimed
property is set to TRUE, the device will be released.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

Close may throw the following PosControlExceptions:

CompareFirmwareVersion Method Added in Release 1.11
Syntax CompareFirmwareResult CompareFirmwareVersion (

string firmwareFileName);

Remarks This method determines whether the version of the firmware contained in the specified file is newer
than, older than, or the same as the version of the firmware in the physical device.
The Service should check that the specified firmware file exists and that its contents are valid for
this device before attempting to perform the comparison operation.
The result of the comparison is returned in the enumeration CompareFirmwareResult and will be
one of the following values:

ErrorCode Value Description

Busy
The State property is set to ControlState.Busy,
indicating that the device is currently in use and cannot be
shut down.

Closed The device is already closed.

Parameter Description

firmwareFileName
Specifies either the name of the file containing the firmware or a file
containing a set of firmware files whose versions are to be compared
against those of the device.

Unified POS, v1.15.1 Beta1 C - 59

Value Meaning
Older Indicates that the version of one or more of the firmware files is
 older than the firmware in the device and that none of the firm
ware files is newer than the firmware in the device.
Same Indicates that the versions of all of the firmware files are the same

as the firmware in the device.
Newer Indicates that the version of one or more of the firmware files is

newer than the firmware in the device and that none of the
firmware files is older than the firmware in the device.

Different Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
•The chronological relationship cannot be determined, or
•The relationship is inconsistent -- one or more are older while

one or more are newer.
Unknown Indicates that a relationship between the two firmware versions

could not be determined.

A possible reason for this enumeration could be an attempt to compare Japanese and US versions
of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

CompareFirmwareVersion may throw the following PosControlExceptions:

ErrorCode Value Description
Illegal CapCompareFirmwareVersion is false.

NoExist
The file specified by firmwareFileName does not exist or, if firm-
wareFileName specifies a file list, one or more of the component
firmware files are missing.

Extended
ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either
not in the correct format or are corrupt.

C - 60 Unified POS, v1.15.1 Beta1

DirectIO Method
Syntax DirectIOData DirectIO (int command, int data, object obj);
Remarks The application calls DirectIO to communicate directly with the service object.

Using DirectIO allows a service object to provide functionality to the application that is not
otherwise supported by the standard service interface for its device class. Depending on the service
object’s definition of the command, DirectIO may be asynchronous or synchronous.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

DirectIO returns an instance of the DirectIOData structure.

Open Method
Syntax void Open ();
Remarks The application calls Open to open a device for subsequent input/output processing. Open

initializes the values of numerous properties, including DataEventEnabled, FreezeEvents,
AutoDisable, Claimed, and so on.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

Open may throw the following PosControlException:

Release Method
Syntax void Release ();
Remarks The application calls Release to release exclusive access to the device.

If the DeviceEnabled property is set to TRUE, and the device is an exclusive-use device, the
device is first disabled. (Release does not change the device-enabled state of sharable devices.) If
Release is successful, it sets the Claimed property to FALSE.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

Parameter Description

command The command number. Specific values are assigned by
the service object.

data Additional numeric data. Specific values vary by
command and the service object.

obj
Additional data supplied by the service object. Specific
values vary by command and by what the service object
chooses to transmit.

ErrorCode Value Description
Illegal The device is already opened

Unified POS, v1.15.1 Beta1 C - 61

Release may throw the following PosControlExceptions:

ResetStatistic Method (string)
Syntax void ResetStatistic (string statistic);
Remarks statistic specifies the statistic that is to be reset.

The application calls ResetStatistic to reset the specified statistic to 0 (zero). For ResetStatistic to
be successful, both the CapStatisticsReporting and CapUpdateStatistics properties must be set
to TRUE.

ResetStatistic is always executed synchronously.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

ResetStatistic may throw the following PosControlExceptions:

ErrorCode Value Description
Busy The device is in use.

Illegal
One of the following conditions has occurred:
The application does not have exclusive access to the device; or the
device is not claimed.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
Either the CapStatisticsReporting or CapUpdateStatistics property is
set to FALSE;
The statistic parameter is null; or
The specified statistic does not exist.

Extended ExtendedErrorStatistics. The specified statistic cannot be reset.

C - 62 Unified POS, v1.15.1 Beta1

ResetStatistics Method ()
Syntax void ResetStatistics ();
Remarks Resets all statistics associated with a device to 0 (zero).

For ResetStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

ResetStatistics is always executed synchronously.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

ResetStatistics may throw the following PosControlExceptions:

ResetStatistics Method (StatisticsCategories)
Syntax void ResetStatistics (StatisticCategories statistics);
Remarks Resets all statistics for a specified category to 0 (zero).

For ResetStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

ResetStatistics is always executed synchronously.

The statistics parameter contains the category of statistics the application wants to reset for the
device. Possible categories are defined by the StatisticsCategories enumeration.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

ResetStatistics may throw the following PosControlExceptions:

ErrorCode Value Description

Illegal The CapStatisticsReporting or
CapUpdateStatistics property is set to FALSE.

Extended ExtendedErrorStatistics. At least one of the specified statistics
could not be reset.

ErrorCode Value Description

Illegal
One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or the specified statistics category is not valid.

Extended ExtendedErrorStatistics. At least one of the specified statistics
could not be reset.

Unified POS, v1.15.1 Beta1 C - 63

ResetStatistics Method (String[])
Syntax void ResetStatistics (string [] statistics);
Remarks Resets the specified statistics to 0 (zero).

For ResetStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

ResetStatistics is always executed synchronously.

The statistics parameter contains a comma-separated string of statistics.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

ResetStatistics may throw the following PosControlExceptions:

RetrieveStatistic Method (string)
Syntax string RetrieveStatistic (string statistic);
Remarks The application calls RetrieveStatistic to retrieve the specified device statistic.

RetrieveStatistic is always executed synchronously.

The statistic parameter specifies the statistic that is to be retrieved.

RetrieveStatistic returns and XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

RetrieveStatistic may throw the following PosControlException:

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or
One of the specified statistics is not defined.

Extended ExtendedErrorStatistics. At least one of the specified statistics
could not be reset.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting property is set to FALSE, indicating
that the device does not support statistics reporting;
The statistic parameter is null or has a length of 0 (zero); or the spec-
ified statistic does not exist.

C - 64 Unified POS, v1.15.1 Beta1

RetrieveStatistics Method ()
Syntax string RetrieveStatistics ();
Remarks The application calls RetrieveStatistics to retrieve all device statistics.

RetrieveStatistics is always executed synchronously.

RetrieveStatistics returns an XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

RetrieveStatistics may throw the following PosControlException:

RetrieveStatistics Method (StatisticCategories)
Syntax string RetrieveStatistics (StatisticCategories statistics);
Remarks Retrieves the statistics for the specified category.

RetrieveStatistics is always executed synchronously.

The statistics parameter contains the category of statistics the application wants to retrieve.
Possible values are defined by the StatisticCategories enumeration.

RetrieveStatistics returns an XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

RetrieveStatistics may throw the following PosControlException:

ErrorCode Value Description

Illegal The CapStatisticsReporting property is set to FALSE, indicating
that the device does not support statistics reporting.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting property is set to FALSE, indicating that
the device does not support statistics reporting;
The statistics parameter is null or has a length of 0 (zero); or the
specified statistics category is invalid.

Unified POS, v1.15.1 Beta1 C - 65

RetrieveStatistics Method (String[])
Syntax string RetrieveStatistics (string [] statistics);
Remarks Retrieves the statistics for the specified category.

RetrieveStatistics is always executed synchronously.

The statistics parameter contains a comma-separated string of statistics. Retrieves the specified
string of statistics.

RetrieveStatistics returns an XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

RetrieveStatistics may throw the following PosControlException:

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting property is set to FALSE, indicating
that the device does not support statistics reporting;
The statistics parameter is null or has a length of 0 (zero); or, one or
more of the specified statistics do not exist.

C - 66 Unified POS, v1.15.1 Beta1

UpdateFirmware Method Added in Release 1.11
Syntax UpdateFirmware (string firmwareFileName);

Remarks This method updates the firmware of a device with the version of the firmware contained or defined
in the file specified by the firmwareFileName parameter regardless of whether that firmware’s
version is newer than, older than, or the same as the version of the firmware already in the device.
If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware file exists and
that its contents are valid for this device. If so, this method should return immediately and the
remainder of the update firmware process should continue asynchronously.
The Service should notify the application of the status of the update firmware process by firing
StatusUpdateEvents with values of SUE_UF_PROGRESS + an integer between 1 and 100
indicating the completion percentage of the update firmware process. For application convenience,
the StatusUpdateEvent value SUE_UF_COMPLETE is defined to be the same value as
SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been
downloaded into the physical device, any necessary physical device reset has completed, and the
Service and the physical device have been returned to the state they were in before the update
firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete
progress completion percentage (i.e. a percentage between 1 and 99), even if the device cannot
physically report the progress of the update firmware process. If the update firmware process
completes successfully, the Service must fire a StatusUpdateEvent with a progress of 100 or use
the special constant SUE_UF_COMPLETE, which has the same value. These Service requirements
allow applications using this method to be designed to always expect some level of progress
notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the
following StatusUpdateEvents will be fired:

Parameter Description

firmwareFileName
Specifies either the name of the file containing the firmware or a file
containing a set of firmware files that are to be downloaded into the
device.

Unified POS, v1.15.1 Beta1 C - 67

Value Meaning
SUE_UF_FAILED_DEV_OK The update firmware process failed but the device is still
 operational.
SUE_UF_FAILED_DEV_UNRECOVERABLE

The update firmware process failed and the device is neither
usable nor recoverable through software. The device requires
service to be returned to an operational state.

SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

UpdateFirmware may throw the following PosControlExceptions:

UpdateStatistic Method
Syntax void UpdateStatistic (string name, object value);
Remarks The application calls UpdateStatistic to update the value of a specified device statistic.

 For UpdateStatistic to be successful, both the CapStatisticsReporting and CapUpdateStatistics
 properties must be set to TRUE.

 UpdateStatistic is always executed synchronously.

ErrorCode Value Description
Illegal CapUpdateFirmware is false.

NoExist
The file specified by firmwareFileName does not exist or, if firm-
wareFileName specifies a file list, one or more of the component
firmware files are missing.

Extended
ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either
not in the correct format or are corrupt.

Parameter Description
name Name of the statistic to be updated.
value Value to which the statistic should be set.

C - 68 Unified POS, v1.15.1 Beta1

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

UpdateStatistic may throw the following PosControlExceptions:

UpdateStatistics Method (Statistic[])
Syntax void UpdateStatistics (Statistic [] statistics);
Remarks Updates a list of statistics with the corresponding specified values.

For UpdateStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

UpdateStatistics is always executed synchronously.
The statistics parameter contains an array of Statistic class instances (name-value pairs).

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.
UpdateStatistics may throw the following PosControlExceptions:

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is
set to FALSE; or
The specified statistic does not exist.

Extended ExtendedErrorStatistics. The specified statistic could not be updat-
ed.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property
is set to FALSE; or
The statistics parameter is null; or
One or more of the specified statistics does not exist.

Extended ExtendedErrorStatistics. At least one of the specified
statistics could not be updated.

Unified POS, v1.15.1 Beta1 C - 69

UpdateStatistics Method (StatisticCategories, Object)
Syntax void UpdateStatistics (StatisticCategories statistics, object value);

Remarks Updates the specified category of statistics with the specified value.

For UpdateStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

UpdateStatistics is always executed synchronously.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 36.

UpdateStatistics may throw the following PosControlExceptions:

Parameter Description

statistics
Contains the category of statistics the application wants
to update. Possible categories are defined by the
StatisticCategories enumeration.

value Contains the value to be used to update the statistics in
the specified category.

ErrorCode Value Description

Illegal
One of the following conditions has occurred: The
CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or The specified statistics category is invalid.

Extended ExtendedErrorStatistics. At least one of the specified statistics
could not be updated.

C - 70 Unified POS, v1.15.1 Beta1

C.24 Common Events

DataEvent Event
Remarks Fired to present input data from the device to the application. The DataEventEnabled property is

changed to FALSE, so that no further data events will be generated until the application sets this
property back to TRUE. The actual input data is placed in one or more device-specific properties.
If DataEventEnabled is FALSE at the time that data is received, then the data is queued in an
internal buffer, the device-specific input data properties are not updated, and the event is not
delivered. (When this property is subsequently changed back to TRUE, the event will be delivered
immediately if input data is queued and FreezeEvents is FALSE.)

DirectIOEvent Event
Remarks Fired by the service object to communicate information directly to the application. DirectIOEvent

provides a means for a service object to communicate information in the form of an event to the
application that would not otherwise be supported by other events or properties defined for the
device. Use of this event may restrict the application from being used with other vendor’s devices
which may not have any knowledge of the service object’s need for this event.

ErrorEvent Event Updated in Release 1.12
Remarks Fired when an error is detected and the service object's State transitions into the error state.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper
application sequencing occurs.
Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it
leaves the DataEventEnabled property value at TRUE. Note that the application may set
DataEventEnabled to FALSE within its event handler if subsequent input events need to be
disabled for a period of time.

OutputCompleteEvent Event
Remarks Fired when a previously started asynchronous output request completes successfully. The

OutputID property indicates the ID number of the asynchronous output request that is complete.

StatusUpdateEvent Event
Remarks Fired when the service object needs to alert the application of a device status change.

Examples are a change in the cash drawer position (open vs. closed), a change in a POS printer
sensor (form present vs. absent), or a change in the power state of the device.
When a device is enabled, the service object may fire initial StatusUpdateEvents to inform the
application of the device state. This behavior, however, is not required.

Unified POS, v1.15.1 Beta1 C - 71

C.25 POS for .NET vs. UnifiedPOS Members
POS for .NET class member names sometimes vary from those in the UnifiedPOS specification. In many cases,
the variance is only in case (.NET uses the Pascal naming convention for methods, properties, and events). For
example, the common property OutputID in the UnifiedPOS specification is OutputId in POS for .NET.

For some devices, POS for .NET introduces several properties and methods not found in the UnifiedPOS
specification.

The table below has examples of some of the property names that vary from the UnifiedPOS specification:

The table below includes some of the method names that vary from the UnifiedPOS specification:

UnifiedPOS Property Corresponding POS for .NET Property
CapMACCalculation CapMacCalculation
DeviceServiceDescription ServiceObjectDescription
DeviceServiceVersion ServiceObjectVersion
OutputID OutputId
POSKeyData PosKeyData
POSKeyEventType PosKeyEventType
PhysicalDeviceDescription DeviceDescription
PhysicalDeviceName DeviceName
N/A Compatibility
N/A DevicePath
N/A SynchronizingObject

UnifiedPOS Method Corresponding POS for .NET Method
beginEFTTransaction BeginEftTransaction
checkHealth CheckHealth
claim Claim
computeMAC ComputeMac
DeviceServiceVersion ServiceObjectVersion
directIO DirectIO
enablePINEntry EnablePinEntry
endEFTTransaction EndEftTransaction
read Read
resetStatistics ResetStatistics
verifyMAC VerifyMac
N/A ResetStatistic
N/A RetrieveStatistic
N/A UpdateStatistic

C - 72 Unified POS, v1.15.1 Beta1

The table below includes event names that vary from the UnifiedPOS specification:

C.26 Interim Procedure Available For Legacy OPOS Services...
Shim Code Usage Updated in Release 1.11

The .NET architecture allows for new features and functions that can be invoked using current and future
Windows operating systems. In order to benefit from all the .NET architecture has to offer, new service objects
should be written. However, in order to more quickly leverage existing OPOS service object source code in the
.NET environment, OPOS-Japan (OPOS-J) has created a translation middle layer of software, referred to as the
“Shim”. The “Shim” is a module to develop (or implement) a .NET Service Object by utilizing existing OPOS
based service object naming methodologies. It is freely available for service object providers to use when porting
their existing OPOS service objects to POS for .NET. Some of the reasons behind the strategy in using the Shim
are as follows:

• POS for .NET extends the definitions for the UnifiedPOS methods and requires modifications in the OPOS service
objects to handle these extensions. The Shim handles these extensions and masks any changes that would
otherwise be required to be made to an existing OPOS service object.

• POS for .NET requires enumeration types in its usage, a feature that was not specified in an OPOS service object
implementation. The Shim provides a mechanism to map constants of the parameters to an enumeration type
without changing the name from the existing OPOS service object source code.

• It is important to note that the usage of the Shim does not require any changes to the .NET application; the Shim
hides any OPOS and POS for .NET service object differences from the application. When a POS for .NET service
object is available, it should be able to replace the Shim/OPOS service object with no required changes to the
application.

• The development of the POS Application should be in accordance with the reference material outlined earlier in
this appendix. The only difference is in the development of the service object used to support a UnifiedPOS, POS
for .NET environment. Potentially, usage of the Shim allows for faster generation of POS for .NET service objects
by allowing for greater re-usability of existing OPOS service object source code.

UnifiedPOS Event Attribute Corresponding POS for .NET EventArg
Class Property

OutputID OutputId
N/A public DateTime TimeStamp {get; }

Unified POS, v1.15.1 Beta1 C - 73

C.27 Architecture Structures Added in Release 1.11
The following diagram shows the structures of the OPOS, POS for .NET, and Shim-POS for .NET architectures.

WePOS (WindowsXP Embedded for POS) Operational Environment

OPOS
CO/CCO

WePOS Subsystem

CCL

InterOp Layer

OLE OPOS SO POS for .NET SO

.NET Framework

Win32 Application .NET Application

a dc

I/F Class (24)

Basic Class (24)

Base Class (8)

b

a b c d

Notes:
Route a: Current OLE POS path between Win32 application and OLE OPOS SO
Route b: .NET application and current OLE OPOS SO
Route c: .NET application and POS for .NET SO (Microsoft’s Implementation)
Route d: .NET application and POS for .NET SO (OPOS-J’s SOs w/Shim)

POSExplorer
will be used
instead of
CO & SO

Current
OPOS
Structure

POS for .NET SO

Shim

C - 74 Unified POS, v1.15.1 Beta1

C.28 Method of Implementation
Shim Code Naming rules

The Shim code extends the POS for .NET Basic class as described below:

Microsoft.PointOfService.BasicServiceObjects NameSpace.

The names of the Shim classes comply with the following rule:

<DeviceCategoryName>+ShimBasic

For example:
PosPrinterShimBasic
LineDisplayShimBasic

The file name that defines the Shim class complies with the following rule:

<Class Name>.cs

For example:
PosPrinterShimBasic.cs
LineDisplayShimBasic.cs

The shim class is defined in the following NameSpace:

Opos.PointOfService.BasicShimServiceObjects.

The file that defines the specific enumeration type is specified in a separate file associated with its
device category. The file name that defines this takes the same name as the header file of the OPOS
Common Control Object (CCO).

For example:
 Constants definition for POS Printer,
 OposPtr.cs

Constants definition for LineDisplay
OposDisp.cs

The enumeration type name is derived from the name associated with the function parameter that
uses the constants.

For example, the alignment parameter that is used with the PrintBarCode function supported by a
POS Printer would map as follows:

OposPtr.cs
Enum BarCodeAlignment
{

Left = -1,
Center = -2,
Right = -3

}

The enumeration type is defined in the following NameSpace:

Opos.PointOfService

Unified POS, v1.15.1 Beta1 C - 75

Shim Method Redefinition Rules
As noted earlier in this appendix, POS for .NET method calls are handled differently than
UnifiedPOS OPOS implementations. For instance, under POS for .NET return values are used
instead of OPOS requiring a separate method call to obtain the information. The Shim provides the
translation code to allow for the mapping of these operational differences.

The functions of the UnifiedPOS specification that are implemented differently between POS for
.NET and OPOS are redefined using an abstract attribute at the protected level.

For example, the DirectIO method would map as follows:

public override DirectIOData DirectIO (int command, int data, object obj)
{

;
}

protected abstract void DirectIO (int command, ref int data, ref object obj);

Note that the abstract function that UnifiedPOS defined, DirectIO, is called in a way that is
consistent with the POS for .NET Application implementation requirements. However, the Shim
code performs the necessary functions to process the OPOS DirectIO method and any other
method calls to obtain the method functionality and data exchange. The Shim code then responds
back to the POS for .NET Application with the functionality and result codes that are consistent
with what it is expecting to see. Continuing with the example:

public override DirectIOData DirectIO (int command, int data, object obj)
{

this.DirectIO (command, ref data, ref obj);
return new DirectIOData (data, obj);

}
/** The abstract function implements it with Service Object that extends the Shim
class.**/

It is possible that the implementation of the function regarded as the object of the translation could
be implemented by the Shim class. In order to prevent that from happening, the sealed attribute is
added to prevent the override in Service Object.

For example:
public sealed override DirectIOData DirectIO (int command, int data, object obj)

Shim Code Rules For In/Out Parameters
Any OPOS parameter that is defined with an In/Out attribute in the UnifiedPOS specification is
handled differently under a POS for .NET implementation. POS for .NET is expecting the data to
be provided as return values. The Shim code facilitates this mapping by using the “ref” attribute to
the In/Out parameter. This translation is handled automatically by the Shim code and is transparent
to the calling application.

C - 76 Unified POS, v1.15.1 Beta1

C.29 Method of Administration
The source for the Shim components is managed by the OPOS-J Committee. The Shim source code is currently
available to the public from the following web site:

http://monroecs.com/posfordotnet/shim.htm.
 https://github.com/kunif/OPOS-CCO

C.29.1 Shim Code File Names

The following is a list of the files that are currently available with the Shim Code. The naming convention has
been chosen to provide as much intuitive device usage as possible. As new devices are released, the Shim Code
will be updated to reflect the new devices. In addition, bug fixes and other support issues will be handled by
OPOS-J.

Shim file list
Shim class files Description
CashChangerShimBasic.cs Shim class of CashChanger
CashDrawerShimBasic.cs Shim class of CashDrawer
CatShimBasic.cs Shim class of Cat
CheckScannerShimBasic.cs Shim class of CheckScanner
CoinDispenserShimBasic.cs Shim class of CoinDispenser
HardTotalsShimBasic.cs Shim class of HardTotals
KeylockShimBasic.cs Shim class of Keylock
LineDisplayShimBasic.cs Shim class of LineDisplay
MicrShimBasic.cs Shim class of Micr
MsrShimBasic.cs Shim class of Msr
PinPadShimBasic.cs Shim class of PinPad
PointCardRWShimBasic.cs Shim class of PointCardRW
PosKeyboardShimBasic.cs Shim class of PosKeyboard
PosPowerShimBasic.cs Shim class of PosPower
PosPrinterShimBasic.cs Shim class of PosPrinter
ScaleShimBasic.cs Shim class of Scale
ScannerShimBasic.cs Shim class of Scanner
SmartCardRWShimBasic.cs Shim class of SmartCardRW
ToneIndicatorShimBasic.cs Shim class of ToneIndicator
Enumeration type definition files Description
OposCash.cs Enumeration type for CashDrawer
OposCat.cs Enumeration type for Cat
OposChan.cs Enumeration type for CashChanger

http://www.monroecs.com/posfordotnet/shim.htm
http://www.monroecs.com/posfordotnet/shim.htm

Unified POS, v1.15.1 Beta1 C - 77

OposChk.cs Enumeration type for CheckScanner
OposCoin.cs Enumeration type for CoinDispenser
OposDisp.cs Enumeration type for LineDisplay
OposKbd.cs Enumeration type for PosKeyBoard
OposLock.cs Enumeration type for Keylock
OposMicr.cs Enumeration type for Micr
OposMsr.cs Enumeration type for Msr
OposPcrw.cs Enumeration type for PointCardRW
OposPpad.cs Enumeration type for PinPad
OposPtr.cs Enumeration type for PosPrinter
OposPwr.cs Enumeration type for PosPower
OposScal.cs Enumeration type for Scale
OposScan.cs Enumeration type for Scanner
OposScrw.cs Enumeration type for SmartCardRW
OposTone.cs Enumeration type for ToneIndicator
OposTot.cs Enumeration type for HardTotals
Project files Description
AssemblyInfo.cs Assembly information file
Opos.PointOfService.BasicShimServiceObjects.csproj Project file

Class Diagrams
Interface Class

public abstract DirectIOData DirectIO(int command, int data, object obj)
public abstract void ResetStatistic(string statistic)
public abstract void ResetStatistics()
public abstract void ResetStatistics(StatisticCategories statistics)
public abstract void ResetStatistics(string[] statistics)
public abstract string RetrieveStatistic(string statistic)
public abstract string RetrieveStatistics()
public abstract string RetrieveStatistics(StatisticCategories statistics)
public abstract string RetrieveStatistics(string[] statistics)
public abstract void UpdateStatistic(string name, object value)
public abstract void UpdateStatistics(Statistic[] statistics)

C - 78 Unified POS, v1.15.1 Beta1

public abstract void UpdateStatistics(StatisticCategories statistics, object value)
:
:

Basic Class

public override void ResetStatistic(string statistic)
public override void ResetStatistics()
public override void ResetStatistics(StatisticCategories statistics)
public override void ResetStatistics(string[] statistics)
public override string RetrieveStatistic(string statistic)
public override string RetrieveStatistics()
public override string RetrieveStatistics(StatisticCategories statistics)
public override string RetrieveStatistics(string[] statistics)
public override void UpdateStatistic(string name, object value)
public override void UpdateStatistics(Statistic[] statistics)
public override void UpdateStatistics(StatisticCategories statistics, object value)

:
:

Shim Class

public sealed override DirectIOData DirectIO(int command, int data, object obj)
public sealed override void ResetStatistic(string statistic)
public sealed override void ResetStatistics()
public sealed override void ResetStatistics(StatisticCategories statistics)
public sealed override void ResetStatistics(string[] statistics)
public sealed override string RetrieveStatistic(string statistic)
public sealed override string RetrieveStatistics()
public sealed override string RetrieveStatistics(StatisticCategories statistics)

Unified POS, v1.15.1 Beta1 C - 79

public sealed override string RetrieveStatistics(string[] statistics)
public sealed override void UpdateStatistic(string name, object value)
public sealed override void UpdateStatistics(Statistic[] statistics)
public sealed override void UpdateStatistics(StatisticCategories statistics, object value)

protected abstract void DirectIO(int command, ref int data, ref object obj)
protected abstract void ResetStatistics(string statistics)
protected abstract void RetrieveStatistics(ref string statistics)
protected abstract void UpdateStatistics(string statistics)

:
:

Service Class

protected override void DirectIO(int command, ref int data, ref object obj)
protected override void ResetStatistics(string statistics)
protected override void RetrieveStatistics(ref string statistics)
protected override void UpdateStatistics(string statistics)

:
:

C - 80 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 D - 1

Annex D

XMLPOS - XML POS Mapping Reference

D.1 Overview
This annex was added in Release 1.12 of this specification and extensively updated in Release 1.13.

UnifiedPOS is providing a component of the architecture to include Web technologies based on XML. This XML
mapping is called XMLPOS.

XMLPOS essentially extends UnifiedPOS to enable Enterprise Applications access to remote peripherals by
mapping (as much as possible) the UML Property/Method/Event parameters of UnifiedPOS directly into XML
elements, inside XML documents. There are two pieces to XMLPOS, first the mapping of the UnifiedPOS
Property/Method/Events into equivalent XML Tag Names, then grouping these tag names into appropriate W3C
XML Schemata following ARTS, ARTS-XML Best Practices.

D.1.1 XMLPOS requirements

• Application support for remote input devices (e.g., Scanner)

• Application support for remote output devices (e.g., Printer)

• Share output peripherals between multiple applications.

• Minimize changes to existing UnifiedPOS-compliant Applications

• <*Optionally*> Minimize changes to existing UnifiedPOS-compliant Device Services

• Heterogeneous Platform Connectivity

• Interoperability between Enterprise Applications and devices

• Must be (relatively) transparent to existing applications, device services

• Must provide adequate performance despite device remoteness

• No “per device type” translation required

• Efficiently operate in the web services arena

• Efficiently operate in a browser.

• Needs to work in both the single command and aggregated command environments. That is, to issue a single
command in one message or issue a set of commands with one message.

D.1.2 Out of Scope

• Non-universal extensions.

D - 2 Unified POS, v1.15.1 Beta1

D.2 Referenced Documents
• ARTS-XML Data Dictionary

• UnifiedPOS, Retail Peripheral Architecture V1.13 or beyond

• ARTS, ARTS-XML Best Practices V2.1.0 or beyond

• [ISO 2382]ISO/IEC 2382-14:1997 Information technology - Vocabulary - Part 14 Reliability, Maintainability and
Availability

D.3 Taxonomy for Conversion from UnifiedPOS to XML
 Updated in Version 1.14.1

This section describes the rules for converting a Property, Method or Event Name to an XML Tag Name.

• Convert all Property, Methods and Event Names to Upper Camel Case following ARTS, “ARTS-XML Best
Practices”.

• To keep consistent, enumerations will follow the existing upper case pattern identified in the UnifiedPOS
Specification.

• Following the pattern set in WAMPOS, buffers and UnifiedPOS objects are passed as repeatable XML elements in
XMLPOS.

• Binary data shall be encoded and decoded using ARTSBinary as defined in “ARTS-XML Best Practices.”

D.4 Changes to XMLPOS Updated in Version 1.13
When creating XMLPOS, first included in Version 1.12 and pending an implementation, UnifiedPOS followed
the XML messaging standards from the ARTS XML committee. The Open Foodservice Systems Consortium
(OFSC) and OPOS-J implemented a proof of concept and discovered several issues that drove modifying the
XMLPOS architecture in Version 1.13.

• The use of attributes limits the ability to reuse an attribute in one message. For example a message might like to set
DeviceEnabled to “true” at the start of the message and reset it to “false” at the end of a message. This drove the
need to migrate all attributes to elements.

• Applications need to be able to issue properties and methods in the order required and in any cardinality to solve a
particular problem. This drove the need to embed all the elements within a repeatable <choice> XML particle.

• In order to reuse the UnifiedPOS common properties, methods and events and still satisfy 1 & 2 above required the
move to the use of <group> XML model group and accessing it with the ref type code.

• Modern programming practices recommend using get and set methods for accessing embedded properties. This
coupled with the need to keep the property names consistent with UnfiedPOS V1.13 drove the need to enclose the
properties in both a <GetProperty> and <SetProperty> node. All Device Schemas were changed as a result.

Unified POS, v1.15.1 Beta1 D - 3

D.5 XMLPOS Architecture Overview Updated in Release 1.14

D.5.1 UnifiedPOS XML Requirements

To be consistent across ARTS standards, UnifiedPOS has chosen to follow the ARTS-XML Best Practices in
developing XMLPOS. The ARTS-XML Best Practices document identifies the Venetian Blind Design
Methodology for creation of ARTS-XML schemas. Basically, this is a node based methodology where individual
nodes are aggregated as building blocks in the creation of the schema.

For example:
<DirectIO>

<Command>0</Command>
<Data>0</Data>
<Object>String</Object>

</DirectIO>

Converting UnifiedPOS Methods and Events
The method to convert UnifiedPOS Methods and Events to XMLPOS Embedded is to:

• Convert the UnifiedPOS Method/Event Name to an XML Tag name following the Upper Camel Case best
practice.

• The ARTS-XML Data Dictionary is the definition source for these tag names.

• The XML element names use the convention of Upper Camel Case (Pascal style). The ARTS XML committee
developed a set of best practices for use in creating ARTS XML schemas. In the "CR Best Practices V2.1.0
20070515.doc", under the best practice on Taxonomy section 3.1, the recommendation is to use Upper Camel Case
for all XML elements and attributes.

• Properties may be included in the Event XMLPOS schema. The current UnifiedPOS Event model issues an event
and leaves it up to the receiving application to query those properties that have information about the event. This
works fine for a typical local based POS application but in a remote application this can take some time. So as a
part of the WS-POS standard’s effort, events are allowed to send applicable properties as a part of the event
handling process. The Event XML schema supports both types of methodologies… query for the properties or
directly return the properties as part of the event handling process within the device Event Schema.

• The XMLPOS Schemas make use of the "xs:nil". This is a mechanism to indicate an element should be accepted as
valid even if the content is empty and the content type does not allow this condition. ARTS Standards use this
capability to indicate a request to the service to return a value for the referenced property.

• Element definitions may be found in multiple places in the documentation which at first glance may appear to be a
problem. However, the ARTS dictionary committee decided that they need to provide definitions for every
element, complex type and root element levels that all the ARTS standards contain. This allows a search of the
dictionary to return all the places a particular definition is used.

• Events use XXXPropertiesType and not XXXPropertyGroup. The reason for this requirement is that
XXXPropertyGroup defines the specific properties for a particular device. The XXXPropertyGroup combines with
the UnfiedPOS common properties to form the XXXPropertiesType.

Note: The following XML examples include “namespace references”. These are not actual file locations but
placeholders for the appropriate namespace where the support files can be found.

D - 4 Unified POS, v1.15.1 Beta1

For example, in the XMLPOS references to file locations shown...
“http://www.omg.org/UnifiedPOS/namespace/” are not actual locations for the support files. You must replace these
references with actual locations.

In summary, when an application uses the XMLPOS schema examples as a basis for their code, it is necessary to
replace the placeholders with valid namespace locations.

D.5.2 UnifiedPOS Synchronous XML Communications

Figure 1: Synchronous Communications

A synchronous environment is characterized by both ends of the connection having knowledge of each others’
communication requirements. By establishing a session, only commands (representing UnifiedPOS Properties
and Methods) and responses need traverse the connection. In the XML world, each individual command and
response is a message.

To create these XML messages, the tags as defined in the ARTS XML Data Dictionary, and the schemas, as
derived from the UnifiedPOS specification, are brought together in conjunction with the necessary tools to
convert them to well formed XML messages. This conversion of UnifiedPOS Properties, Methods, and Events to
XMLPOS Messages involves wrapping the XMLPOS Embedded Tags in a well formed XML header.

<?xml version=”1.0” encoding=”UTF-8”?>
<DirectIO xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://www.w3.org/
2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/
\DirectIOV1.14.1.xsd”>

<Command>0</Command>
<Data>0</Data>
<Object>String</Object>

</DirectIO>

D.5.3 UnifiedPOS Asynchronous XML Communications

Asynchronous communications are characterized by messages arriving from an application without prior
knowledge of the source and timing requirements of the message, i.e. a direct connection. Figures 2 and 3 show
examples of how the UnifiedPOS Common Properties, Methods, and Events translate into XML messages using
XMLPOS.

Application Driver<?xml version ="1.0" encoding="UTF-8"?>
<DirectIO xmlns="http://www.nrf-arts.org/
UnifiedPOS/namespace /" xmlns:xsi="http://
www.w3.org/2001 /XMLSchema -instance "
xsi:schemaLocation ="http://www.nrf-arts.org/
UnifiedPOS/namespace / \DirectIOV1.0.0.xsd">

<Command>0</Command>
<Data>0</Data>
<Object>String</Object>

</DirectIO>

Unified POS, v1.15.1 Beta1 D - 5

XMLPOS Common Properties Schema Architecture

Figure 2: XML Common Properties Schema Architecture Sample

D - 6 Unified POS, v1.15.1 Beta1

XMLPOS Common Methods Schema Architecture

Figure 3: XML Common Methods Schema Architecture Sample

NOTE: @ - represents XPath nomenclature for an attribute

This Domain View represents the UnifiedPOS common methods. It is implemented in each device specific XML
schema by the XML Schema methodology of derivation by extension. Conceptually this is very similar to an
abstract base class.

• Create a common data complex type schema which contains the elements from the common Property, Methods,
and Events XML Tag Names.

• Create a node for each UnifiedPOS API for each device that is derived by extension from the common data
complex type schema, XMLPOSCommonData.

Single Commands

Figure 4: Asynchronous Example
In the first example of sending an asynchronous command, the application transmits multiple
individual XML messages. This is an extension of the synchronous model but requires additional
support information identifying the source of the message with each message transmitted.

Application

Middleware Driver

Application

Unified POS, v1.15.1 Beta1 D - 7

Command Sets

Figure 5: Asynchronous with Intelligent Controller Example
In order to more efficiently utilize the available bandwidth, transmission of a series of aggregated
messages can be utilized. This more complex methodology requires an Intelligent Controller to be
located between the application and the peripheral device driver. It incorporates either using a
single more complex UnifiedPOS command or a collection of simple and/or more complex
UnifiedPOS commands in a single XML message. The Intelligent Controller parses out the
message into its individual UnifiedPOS commands and applies them in the proper order to the
appropriate Peripheral Device Driver.

Application
Intelligent
Controller

Driver

Application Driver

D - 8 Unified POS, v1.15.1 Beta1

The following is an example of creating a single XMLPOS Message Command Set to incorporate
multiple UnifiedPOS commands.

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerDevice xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://

www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/
UnifiedPOS/namespace/ \CashDrawerDeviceV1.14.1.xsd” MessageType=”Request”>

<MessageID>12412341234</MessageID>
<DateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</DateTime>
<RequestID Name=”String” Timestamp=”2001-12-17T09:30:47.0Z”>String

</RequestID>
<LogicalDeviceName>String</LogicalDeviceName>
<CheckHealth Level=”CH_INTERNAL”/>
<ClaimType Timeout=”0”/>
<ClearInput/>
<ClearOutput/>
<Close/>
<CompareFirmwareVersion Result=”Text” FirmwareFileName=”Text”/>
<DirectIO Command=”0” Object=”String” Data=”0”/>
<Open LogicalDeviceName=”String”/>
<Release/>
<ResetStatistics StatisticsBuffer=”String”/>
<RetrieveStatistics StatisticsBuffer=”String”/>
<UpdateFirmware FirmwareFileName=”String”/>
<UpdateStatistics StatisticsBuffer=”String”/>
<CashDrawerID>String</CashDrawerID>
<OpenDrawer/>
<WaitForDrawerClose BeepFrequency=”0” BeepTimeout=”0” BeepDuration=”0”

BeepDelay=”0”/>
<ClearInputProperties/>

</CashDrawerDevice>

D.6 UnifiedPOS XML Errors

D.6.1 Device Error Codes and Message Severity Codes

It is not a requirement to have a direct mapping between Device Error Codes and Message Severity Codes.
Device Error Codes originate from the Peripheral device or the service to communicate an accessing or operation
problem. Message Severity Codes are assigned to each individual XML Message and describe how the message
should be handled by creating an implicit handling priority. For example, a printer cover open can generate a
Device Error Code. The XML Message which originally delivers this error can have a Message Severity Code of
“Information.” This is just to inform the receiver of the printer condition. After some period of time the Message
can escalate the Device Error to be a Message Severity of “Error” saying the equipment has failed and needs
immediate attention.

Following this logic, most messages transmitting a Device Error Code will start out with one Message Severity
Code then over time escalate to indicate attention is needed if not handled in a timely manner. There is one class
of codes, the Device Failure Codes, which will always start out at a higher Message Severity Code level. Some
examples are shown in the table below.

Unified POS, v1.15.1 Beta1 D - 9

Message Severity Codes
The key ISO standard for maintenance activity definitions is section 14 of Information Technology - Vocabulary
- Reliability, Maintainability, and Availability [ISO2382-14]. The following definitions come from that
specification.

Severity Codes identify the priority of the message. Basically there are three types of Severity Codes. They
characterize the effect of normal operation of a piece of equipment. It either has an effect … that is; it results in
a change of state of the equipment, or it can stay in the same state but predict imminent problems that result in
reduced functionality. The final category is simple information, that is neither an error nor a warning but
information about the state of equipment.

• A fatal error that forces a change in state of a piece of equipment. This is often a major or fatal error that results in
the equipment or part of the equipment being inoperative.

• A fault that produces a warning of imminent failure or a breakdown of some functional component that is not
essential to the functionality of the device.

• And finally there is simple information, e.g., chiller temperature, freezer temperature.

These three types can be categorized as a severity, i.e., Error, Warning or Information.

A generic “Severity Code” identifies faults. Each Generic Severity Code can have zero or more manufacturer
specific fault codes, each with their own (optional) description. Although the common name is “Error of Fault
code” in fact this should be the error identification information.

D - 10 Unified POS, v1.15.1 Beta1

D.6.2 Standard Error Codes to Severity Codes

Value Severity Meaning
E_CLOSED Warning An attempt was made to access a closed Device

E_CLAIMED Information

An attempt was made to access a Physical Device that is
claimed by another Control instance. The other Control
must release the Physical Device before this access may be
made. For exclusive-use devices, the application will also
need to claim the Physical Device before the access is legal

E_NOTCLAIMED Information

An attempt was made to access an exclusive-use device that
must be claimed before the method or property set action
can be used. If the Physical Device is already claimed by
another Control instance, then the status E_CLAIMED is
returned instead.

E_NOSERVICE Warning The Control cannot communicate with the Service,
normally because of a setup or configuration error.

E_DISABLED Information Cannot perform this operation while the Device is disabled.

E_ILLEGAL Error
An attempt was made to perform an illegal or unsupported
operation with the Device, or an invalid parameter value
was used.

E_NOHARDWARE Error The Physical Device is not connected to the system or is not
powered on.

E_OFFLINE Warning The Physical Device is off-line.
E_NOEXIST Error The file name (or other specified value) does not exist.
E_EXISTS Error The file name (or other specified value) already exists.

E_FAILURE Warning
The Device cannot perform the requested procedure, even
though the Physical Device is connected to the system,
powered on, and on-line.

E_TIMEOUT Error
The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

E_BUSY Warning
The current Service state does not allow this request. For
example, if asynchronous output is in progress, certain
methods may not be allowed.

E_DEPRECATED Error The requested operation can not be performed since it has
been deprecated.

E_CLOSED Information The device must be opened.

E_CLAIMED Warning The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.

Unified POS, v1.15.1 Beta1 D - 11

D.6.3 Standard Status Codes to Severity Codes

D.6.4 UnifiedPOS Synchronous XML Errors

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerDevice xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://

E_NOTCLAIMED Information The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E_DISABLED Information The device is opened and claimed (if this is an exclusive
use device), but not enabled.

Value Severity Meaning
SUE_POWER_ONLINE Information The device is powered on and ready for use.
SUE_POWER_OFF Information The device is off or detached from the terminal.

SUE_POWER_OFFLINE Warning The device is powered on but is either not ready or
not able to respond to requests.

SUE_POWER_OFF_OFFLINE Warning The device is either off or offline.
SUE_UF_PROGRESS + 1 to
100 Information The update firmware process has successfully

completed 1 to 100 percent of the total operation.

SUE_UF_COMPLETE Information
The update firmware process has completed
successfully. The value of this constant is identical
to SUE_UF_PROGRESS + 100.

SUE_UF_COMPLETE_
DEV_NOT_RESTORED Warning

The update firmware process succeeded, however
the Service and/or the physical device cannot be
returned to the state they were in before the update
firmware process started. The Service has restored
all properties to their default initialization values.
To ensure consistent Service and physical device
states, the application needs to close the Service,
then open, claim, and enable again, and also
restore all custom application settings.

SUE_UF_FAILED_DEV_OK Error The update firmware process failed but the device
is still operational.

SUE_UF_FAILED_DEV_
UNRECOVERABLE Error

The update firmware process failed and the device
is neither usable nor recoverable through software.
The device requires service to be returned to an
operational state.

SUE_UF_FAILED_DEV_
NEEDS_FIRMWARE Error

The update firmware process failed and the device
will not be operational until another attempt to
update the firmware is successful.

SUE_UF_FAILED_DEV_
UNKNOWN Error The update firmware process failed and the device

is in an indeterminate state.

D - 12 Unified POS, v1.15.1 Beta1

www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/
UnifiedPOS/namespace/ ..\CashDrawerDeviceV1.14.1.xsd”>

<Error TypeCode=”E_CLOSED”/>
</CashDrawerDevice>

D.6.5 UnifiedPOS Asynchronous XML Errors

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerDevice xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://

www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/
UnifiedPOS/namespace/ ..\CashDrawerDeviceV1.14.1.xsd” MessageType=”Response”>

<MessageID>1242341234</MessageID>
<DateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</DateTime>
<RequestID Name=”String” Timestamp=”2001-12-17T09:30:47.0Z”>String</RequestID>
<Response ResponseCode=”OK”>

<RequestID>String</RequestID>
<ResponseTimestamp>2001-12-17T09:30:47.0Z</ResponseTimestamp>
<ResponseDescription Language=”eng”>String</ResponseDescription>
<BusinessError Severity=”Information”>

<ErrorID>String</ErrorID>
<Code>String</Code>
<Description Language=”eng”>String</Description>
<RelatedErrorID>String</RelatedErrorID>

</BusinessError>
<ResponderID/>

</Response>
<LogicalDeviceName>String</LogicalDeviceName>
<Error TypeCode=”E_CLOSED”/>

</CashDrawerDevice>

Unified POS, v1.15.1 Beta1 D - 13

D.7 XMLPOS Common Events

Figure 6: UnifiedPOS XML Events

The process for getting UnifiedPOS Events involves an application first receiving the event and then querying
for which property(s) caused the event.

In order to reduce the time to respond to an event, WAMPOS introduced an alternative way to get the properties.
WAMPOS introduced the idea of having the properties, which changed as a result of the event, be sent with the
event. This results in the reduction of the number of steps to retrieve and respond to an event.

Depending on the needs of the system, XMLPOS is designed to support either alternative.

D - 14 Unified POS, v1.15.1 Beta1

D.7.1 UnifiedPOS Synchronous XML Events

<?xml version=”1.0” encoding=”UTF-8”?>
<”DeviceSpecific” Event xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”..\XMLPOSEventV1.14.1.xsd” Severity=”Information”
Mode=”Production” Priority=”-0”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS=”Scanner”>0</SensorID>
<DirectIOEvent EventNumber=”0” Obj=”String” Data=”0”/>

</”DeviceSpecific”Event>

D.7.2 UnifiedPOS Asynchronous XML Events

Single Events
<?xml version=”1.0” encoding=”UTF-8”?>
<”DeviceSpecific”Event xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”..\XMLPOSEventV1.14.1.xsd” Severity=”Information”
Mode=”Production” Priority=”-0”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</EventDateTime>
<EventDescription>String</EventDescription>
<SourceName>String</SourceName>
<SourceURI>String</SourceURI>
<Instance>String</Instance>
<BusinessUnit TypeCode=”RetailStore” Name=”String”>String</BusinessUnit>
<OrganizationalHierarchy ID=”String” Level=”Corporation”>String</OrganizationalHierarchy>
<DirectIOEvent EventNumber=”0” Obj=”String” Data=”0”/>

</”DeviceSpecific”Event>
Event Sets
<?xml version=”1.0” encoding=”UTF-8”?>
<”DeviceSpecific”Event xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”..\XMLPOSEventV1.14.1.xsd” Severity=”Information”
Mode=”Production” Priority=”-0”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</EventDateTime>
<EventDescription>String</EventDescription>
<SourceName>String</SourceName>
<SourceURI>String</SourceURI>
<Instance>String</Instance>
<BusinessUnit TypeCode=”RetailStore” Name=”String”>String</BusinessUnit>
<OrganizationalHierarchy ID=”String” Level=”Corporation”>String</OrganizationalHierarchy>
<DataEvent Status=”0”/>
<DirectIOEvent EventNumber=”0” Obj=”String” Data=”0”/>
<ErrorEvent ErrorLocus=”EL_INPUT” ErrorResponse=”ER_RETRY” ErrorCode=”0”

ErrorCodeExtended=”0”/>
<StatusUpdateEvent Status=”0”/>
<OutputCompleteEvent OutputID=”0”/>

</”DeviceSpecific”Event>

Unified POS, v1.15.1 Beta1 D - 15

D.8 XMLPOS Common Properties

Figure 7: UnifiedPOS XMLPOS Common Properties

XMLPOS Common Properties complex type encapsulates the set of UnifiedPOS properties used by all device
categories. It can then be instantiated by each individual device category using the standard XML schema
extension mechanism. Because of its common nature and to reduce complexity, this complex type is represented
by a box in each individual device domain drawings.

D - 16 Unified POS, v1.15.1 Beta1

D.9 XMLPOS Common Data

Figure 8: UnifiedPOS XMLPOS Common Data

XMLPOS Common Data brings together the XMLPOS Common Properties and ARTS Common Data while
adding in UnifiedPOS Common Methods. Because of its common nature this complex type is also represented by
a box in each individual device domain drawings.

Unified POS, v1.15.1 Beta1 D - 17

D.10 ARTS Common Data

Figure 9: ARTS Common Data

ARTS XML has identified a common set of elements and attributes used across all ARTS XML schemas. This
common header is comprised of a set of complex types and handles situations like a standard request/response
and business error reporting mechanisms. Because of its common nature this complex type is represented by a
box in each individual device domain drawings.

D - 18 Unified POS, v1.15.1 Beta1

D.11 UnifiedPOS Devices
Each Device Category’s domain view is represented in the following diagram. The “Device Category” is
replaced by a specific device schema containing the device specific properties and methods.

In the sections that follow describing the details of the Domain View of each Device Category, only the
Properties, Methods, and Events Domain Views specific to each device are depicted.

Figure 10: “Device Category” Domain View

D.11.1 Belt

Belt ExampleV1.1

Move Belt Forward

<?xml version="1.0" encoding="UTF-8"?>
<Belt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Belt/ BeltV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
Belt/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Request">
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Belt">POS1belt</SensorID>

</ARTSHeader>
<BeltBody>

XMLPOS
Common
Data

XMLPOS
Common
Properties

ARTS
Common
Data

"Device Category"

Specific Methods

Specific Properties

Unified POS, v1.15.1 Beta1 D - 19

<MoveForward>
<Speed>10</Speed>
</MoveForward>

</BeltBody>
</Belt>

Belt Domain View

Figure 11: Belt Domain View

D - 20 Unified POS, v1.15.1 Beta1

Belt Properties

Figure 12: Belt Properties Domain View

Belt Methods

Figure 13: Belt Methods Domain View

Unified POS, v1.15.1 Beta1 D - 21

Belt Events

Figure 14: Belt Events Domain View

Device Error Codes to Message Severity Codes
This device only has common errors as defined in “Device Error Codes and Message Severity Codes.”

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status Codes to
Severity Codes.”

Method Value Severity Meaning

N/A

D - 22 Unified POS, v1.15.1 Beta1

Device Specific Status Messages

D.11.2 Bill Acceptor

Bill Acceptor Example
 SetRealTimeDataEvents to true
<?xml version="1.0" encoding="UTF-8"?>
<BillAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillAcceptor/
BillAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/BillAcceptor/"
MajorVersion="1" MinorVersion="14"FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID>123412341234143</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillAcceptor">1</SensorID>

</ARTSHeader>
<BillAcceptorBody>

<GetProperty>
RealTimeDataEnabled>true</RealTimeDataEnabled>

</GetProperty>
</BillAcceptorBody>

</BillAcceptor>
:BeginDeposit()
<?xml version="1.0" encoding="UTF-8"?>
<BillAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillAcceptor/
BillAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/BillAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>asdf2345sdfg</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillAcceptor">1</SensorID>

</ARTSHeader>
<BillAcceptorBody>

<BeginDeposit/>
</BillAcceptorBody>

</BillAcceptor>

Value Severity Meaning

Unified POS, v1.15.1 Beta1 D - 23

Cash is accepted

 DataEvent is fired
<?xml version=”1.0” encoding=”UTF-8”?>
<BillAcceptorEvent xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/BillAcceptorEvents/ ../
BillAcceptorEventV1.14.1.xsd” xmlns=”http://www.omg.org/UnifiedPOS/
BillAcceptorEvents/” MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity=”Information”>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS=”BillAcceptor”>1</SensorID>
<Status>0</Status>

</DataEvent>
</BillAcceptorEvent>
 EndDeposit()
<?xml version="1.0" encoding="UTF-8"?>
<BillAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillAcceptor/
BillAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/BillAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>asdf2345sdfg</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillAcceptor">1</SensorID>

</ARTSHeader>
<BillAcceptorBody>

<EndDeposit>
<Success>BACC_DEPOSIT_COMPLETE</Success>

</EndDeposit>
</BillAcceptorBody>

</BillAcceptor>

D - 24 Unified POS, v1.15.1 Beta1

Bill Acceptor Domain

Figure 15: Bill Acceptor Domain View

Bill Acceptor Properties

Figure 16: Bill Acceptor Properties Domain View

Unified POS, v1.15.1 Beta1 D - 25

Bill Acceptor Methods

Figure 17: Bill Acceptor Methods Domain View

D - 26 Unified POS, v1.15.1 Beta1

Bill Acceptor Events

Figure 18: Bill Acceptor Events Domain View

Unified POS, v1.15.1 Beta1 D - 27

Device Error Codes to Message Severity Codes
This device only has common errors as defined in “Device Error Codes and Message Severity
Codes.”

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes.”

Device Specific Status Messages

D.11.3 Bill Dispenser

Bill Dispenser Example
DispenseCash(“;100:4”)Dispense 4 $1.00 bills
<?xml version="1.0" encoding="UTF-8"?>
<BillDispenser xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillDispenser/
BillDispenserV1.14.1.xsd"xmlns="http://www.omg.org/UnifiedPOS/BillDispenser/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>123421342134</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillDispenser">100</SensorID>

</ARTSHeader>
<BillDispenserBody>

<DispenseCash>
<CashCounts Denomination="100">4</CashCounts>
</DispenseCash>

</BillDispenserBody>
</BillDispenser>

Method Value Severity Meaning
N/A

Value Severity Meaning
BACC_STATUS_FULL Warning Some cash slots are full
BACC_STATUS_NEARFULL Warning Some cash slots are nearly full
BACC_STATUS_FULLOK Information No cash slots are either full or nearly full.
BACC_STATUS_JAM Error A mechanical fault has occurred.
BACC_STATUS_JAMOK Information A mechanical fault has recovered.

D - 28 Unified POS, v1.15.1 Beta1

Bill Dispenser Domain

Figure 19: Bill Dispenser Domain View

Bill Dispenser Properties

Figure 20: Bill Dispenser Properties Domain View

Unified POS, v1.15.1 Beta1 D - 29

Bill Dispenser Methods

Figure 21: Bill Dispenser Methods Domain View

Bill Dispenser Events

Figure 22: Bill Dispenser Events Domain View

D - 30 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

Device Specific Status Messages
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

D.11.4 Biometrics

Biometrics Example
 SetDataEventEnabled to true
<?xml version="1.0" encoding="UTF-8"?>
<Biometrics xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Biometrics/ BiometricsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/Biometrics/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

 <ARTSHeader MessageType="Request" ActionCode="Update">
 <MessageID>123412341234</MessageID>
 <DateTime>2001-12-17T09:30:47.0Z</DateTime>
 <SensorID UnifiedPOS="Biometrics">001</SensorID>
 </ARTSHeader>
 <BiometricsBody>
 <SetProperty>
 <DataEventEnabled>true</DataEventEnabled>
 </SetProperty>
 </BiometricsBody>
</Biometrics>

Method Value Severity Meaning

dispenseCash EBDSP_OVERDISPENSE Warning
The specified cash cannot be
dispensed because of a cash
shortage.

Value Severity Meaning
BDSP_STATUS_EMPTY Warning Some cash slots are empty.
BDSP_STATUS_NEAREMPTY Warning Some cash slots are nearly empty

BDSP_STATUS_EMPTYOK Information No cash slots are either empty or
nearly empty

BDSP_STATUS_JAM Error A mechanical fault has occurred.
BDSP_STATUS_JAMOK Information A mechanical fault has recovered

BDSP_STATUS_ASYNC Information Asynchronously performed method
has completed.

Unified POS, v1.15.1 Beta1 D - 31

:BeginEnrollCapture()
<?xml version="1.0" encoding="UTF-8"?>
<Biometrics xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Biometrics/ BiometricsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/Biometrics/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Request">
 <MessageID>12341234</MessageID>
 <DateTime>2001-12-17T09:30:47.0Z</DateTime>
 <SensorID UnifiedPOS="Biometrics">1</SensorID>
</ARTSHeader>
<BiometricsBody>

<BeginEnrollCapture>
<ReferenceBIR/>
<Payload/>

</BeginEnrollCapture>
</BiometricsBody>

</Biometrics>

Capture Biometric Data

 Data Event is fired
<?xml version="1.0" encoding="UTF-8"?>
<Biometrics xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Biometrics/ BiometricsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/Biometrics/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<DataEvent Severity="Information">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="Biometrics">1</SensorID>
<Status>BIO_DATA_VERIFY</Status>

</DataEvent>
</BiometricsEvent>

D - 32 Unified POS, v1.15.1 Beta1

Biometrics Domain

Figure 23: Biometrics Domain View

Biometrics Properties

Figure 24: Biometric Properties Domain View

Unified POS, v1.15.1 Beta1 D - 33

Biometrics Methods

Figure 25: Biometric Methods Domain View

Biometrics Events

Figure 26: Biometrics Events Domain View

D - 34 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
beginEnrollCapture E_FAILURE Warning referenceBIR could not be adapted.
endCapture E_ILLEGAL Warning Biometrics capture was not in progress.
identify E_FAILURE Error referenceBIRPopulation was not valid.
identifyMatch E_FAILURE Error referenceBIRPopulation was not valid.
processPrematchData E_FAILURE Error sampleBIR was not valid.
verify E_FAILURE Error referenceBIRPopulation was not valid.
verifyMatch E_FAILURE Error referenceBIRPopulation was not valid.

Value Severity Meaning
BIO_SUE_RAW_DATA Information Raw image data is available
BIO_SUE_MOVE_LEFT Warning The position was too far to the right.
BIO_SUE_MOVE_RIGHT Warning The position was too far to the left
BIO_SUE_MOVE_DOWN Warning The position was too high
BIO_SUE_MOVE_UP Warning The position was too low
BIO_SUE_MOVE_CLOSER Warning The position was too far away
BIO_SUE_MOVE_AWAY Warning The position was too near (close)
BIO_SUE_MOVE_BACKWARD Warning The position was too far forward
BIO_SUE_MOVE_FORWARD Warning The position was too far backward
BIO_SUE_MOVE_SLOWER Warning The motion was too fast, move slower.
BIO_SUE_MOVE_FASTER Warning The motion was too slow, move faster.
BIO_SUE_SENSOR_DIRTY Information The sensor is dirty and requires cleaning
BIO_SUE_FAILED_READ Warning Unable to capture data from sensor
BIO_SUE_SENSOR_READY Information The sensor is ready to scan an object
BIO_SUE_SENSOR_COMPLETE Information The object scan has completed

Unified POS, v1.15.1 Beta1 D - 35

D.11.5 Bump Bar

Bump Bar Example
 Set AutoToneDuration to 3000 milliseconds
<?xml version="1.0" encoding="UTF-8"?>
<BumpBar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/BumpBar/ BumpBarV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/BumpBar/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BumpBar">1</SensorID>

</ARTSHeader>
<BumpBarBody>

<SetProperty>
<AutoToneDuration>3000</AutoToneDuration>

</SetProperty>
</BumpBarBody>

</BumpBar>

Bump Bar Domain

Figure 27: Bump Bar Domain View

D - 36 Unified POS, v1.15.1 Beta1

Bump Bar Properties

Figure 28: Bump Bar Properties Domain View

Bump Bar Methods

Figure 29: Bump Bar Methods Domain View

Unified POS, v1.15.1 Beta1 D - 37

Bump Bar Events

Figure 30: Bump Bar Events Domain View

D - 38 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

D.11.6 Cash Changer

Cash Changer Example
 SetDataEventEnabled to true
<?xml version=”1.0” encoding=”UTF-8”?>
<CashChanger xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashChanger/
CashChangerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashChanger/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID Timestamp="2001-12-17T09:30:47.0Z">1234123

 </MessageID>

Method Value Severity Meaning

bumpBarSound

E_ILLEGAL Error

One of the following errors occurred:
numberOfCycles is neither a positive, non-
zero value nor FOREVER.
numberOfCycles is FOREVER when
AsyncMode is false.
A negative interSoundWait was specified.
units is zero or a non-existent unit was
specified.
A unit in units does not support the
CapTone capability.

setKeyTranslation

E_ILLEGAL Error

One of the following errors occurred:
scanCode or logicalKey are out of range.
units is zero or a non-existent unit was
specified.

Value Severity Meaning

N/A

Unified POS, v1.15.1 Beta1 D - 39

<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CashChanger">1</SensorID>

</ARTSHeader>
<CashChangerBody>

<SetProperty>
<DataEventEnabled>true</DataEventEnabled>

</SetProperty>
</CashChangerBody>

</CashChanger>

:BeginDeposit()

<?xml version=”1.0” encoding=”UTF-8”?>
<CashChanger xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashChanger/
CashChangerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashChanger/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1243124</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CashChanger">1</SensorID>

</ARTSHeader>
<CashChangerBody>

<BeginDeposit/>
</CashChangerBody>

</CashChanger>

Cash Changer Domain

Figure 31: Cash Changer Domain View

D - 40 Unified POS, v1.15.1 Beta1

Cash Changer Properties

Figure 32: Cash Changer Properties Domain View

Cash Changer Methods

Figure 33: Cash Changer Methods Domain View

Unified POS, v1.15.1 Beta1 D - 41

Cash Changer Events

Figure 34: Cash Changer Events Domain View

D - 42 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning

beginDeposit

E_ILLEGAL Error
Either the Cash Changer does not support
cash acceptance, or the call sequence is not
correct.

dispenseCash

E_BUSY Warning Cash cannot be dispensed because an
asynchronous method is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The cashCounts parameter value was illegal
for the current exit.
• Cash could not be dispensed because cash
acceptance was in progress.

E_EXTENDED Error
ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed
because of a cash shortage.

dispenseChange

E_BUSY Warning
The specified change cannot be dispensed
because an asynchronous method is in
progress.

E_ILLEGAL Error

One of the following errors occurred:
• A negative or zero amount was specified.
• The amount could not be dispensed based
on the values specified in ExitCashList for
the current exit.
• Change could not be dispensed because
cash acceptance was in progress.

E_EXTENDED Error
ECHAN_OVERDISPENSE:
The specified change cannot be dispensed
because of a cash shortage.

endDeposit

E_ILLEGAL Error

One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit
and fixDeposit must be called in sequence
before calling this method.

Unified POS, v1.15.1 Beta1 D - 43

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

fixDeposit

E_ILLEGAL Error

One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit
must be called before calling this method.

pauseDeposit

E_ILLEGAL Error

One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit
must be called before calling this method.
• The deposit process is already paused and
control is set to CHAN_DEPOSIT_PAUSE,
or the deposit process is not paused and
control is set to
CHAN_DEPOSIT_RESTART.

readCashCounts

E_BUSY Information Cash units and counts cannot be read because
an asynchronous method is in process.

Value Severity Meaning
CHAN_STATUS_EMPTY Error Some cash slots are empty

CHAN_STATUS_NEAREMPTY Warning Some cash slots are nearly empty.

CHAN_STATUS_EMPTYOK Information
No cash slots are either empty or nearly
empty.

CHAN_STATUS_FULL Information Some cash slots are full

CHAN_STATUS_NEARFULL Information Some cash slots are nearly full.

CHAN_STATUS_FULLOK Warning No cash slots are either full or nearly full.

CHAN_STATUS_JAM Error A mechanical fault has occurred

CHAN_STATUS_JAMOK Information A mechanical fault has recovered.

CHAN_STATUS_ASYNC Information
Asynchronously performed method has
completed.

D - 44 Unified POS, v1.15.1 Beta1

D.11.7 Cash Drawer

Cash Drawer Example
openDrawer()
<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashDrawer/
CashDrawerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashDrawer/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1243124</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CashDrawer">1</SensorID>

</ARTSHeader>
<CashDrawerBody>

<OpenDrawer/>
</CashDrawerBody>

</CashDrawer>

 StatusUpdateEvent fired

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashDrawerEvents/
CashDrawerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashDrawerEvents/
" MajorVersion="1" MinorVersion="14" FixVersion="1">

<StatusUpdateEvent Severity="Information">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="CashDrawer">1</SensorID>
<Status>CASH_SUE_DRAWEROPEN</Status>

</StatusUpdateEvent>
</CashDrawerEvent>

Unified POS, v1.15.1 Beta1 D - 45

Cash Drawer Domain

Figure 35: Cash Drawer Domain View

Cash Drawer Properties

Figure 36: Cash Drawer Properties Domain View

D - 46 Unified POS, v1.15.1 Beta1

Cash Drawer Methods

Figure 37: Cash Drawer Methods Domain View

Cash Drawer Events

Figure 38: Cash Drawer Events Domain View

Unified POS, v1.15.1 Beta1 D - 47

Device Error Codes to Message Severity Codes
This device only has common errors and they are defined in “Device Error Codes and Message
Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

D.11.8 CAT

CAT Example
set PaymentMedia
<?xml version="1.0" encoding="UTF-8"?>
<CAT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/CAT/ CATV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/CAT/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID>1234234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CAT">2</SensorID>

</ARTSHeader>
<CATBody>

<SetProperty>
<PaymentMedia>CAT_MEDIA_CREDIT</PaymentMedia>

</SetProperty>
</CATBody>

</CAT>

AuthorizeSales

<?xml version="1.0" encoding="UTF-8"?>
<CAT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/CAT/ CATV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/CAT/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2431243</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CAT">100</SensorID>

</ARTSHeader>

Method Value Severity Meaning
N/A

Value Severity Meaning
CASH_SUE_DRAWERCLOSED Information The drawer is closed.
CASH_SUE_DRAWEROPEN Information The drawer is open.

D - 48 Unified POS, v1.15.1 Beta1

<CATBody>
<AuthorizeSales>

<SequenceNumber>1</SequenceNumber>
<Amount>100</Amount>
<TaxOthers>4</TaxOthers>
<Timeout>10</Timeout>

</AuthorizeSales>
</CATBody>

</CAT>

CAT Domain

Figure 39: CAT Domain View

Unified POS, v1.15.1 Beta1 D - 49

CAT Properties

Figure 40: CAT Properties Domain View

CAT Methods

Figure 41: CAT Methods Domain View

D - 50 Unified POS, v1.15.1 Beta1

CAT Events

Figure 42: CAT Events Domain View

Unified POS, v1.15.1 Beta1 D - 51

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
accessDailyLog

E_ILLEGAL Error
Invalid or unsupported type or timeout
parameter was specified, or
CapDailyLog is false.

E_TIMEOUT Error
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Warning The CAT device cannot accept any
commands now.

authorizeCompletion

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapAuthorizeCompletion is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

authorizePreSales

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapAuthorizePreSales is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

authorizeRefund

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapAuthorizeRefund is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

authorizeSales
E_ILLEGAL Error Invalid timeout parameter was specified.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

D - 52 Unified POS, v1.15.1 Beta1

authorizeVoid

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapAuthorizeVoid is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

authorizeVoidPreSales

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapAuthorizeVoidPreSales is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

cashDeposit

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapCashDeposit is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

cashCheck

E_ILLEGAL Error Invalid timeout parameter was specified,
or CapCheckCard is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information The CAT device cannot accept any
commands now.

lockTerminal

E_ILLEGAL Information The Electronic Money Device does not
have a security lock function.

E_BUSY Information The CAT device cannot accept any
commands now.

unlockTerminal

E_ILLEGAL Information The Electronic Money Device does not
have a security lock function.

E_BUSY Information The CAT device cannot accept any
commands now.

Unified POS, v1.15.1 Beta1 D - 53

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

D.11.9 Check Scanner

Check Scanner Example
beginInsertion
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<BeginInsertion>
<Timeout>10</Timeout>

</BeginInsertion>
</CheckScannerBody>

</CheckScanner>

endInsertion
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">Front Counter<

 /SensorID>
</ARTSHeader>
<CheckScannerBody>

<EndInsertion/>
</CheckScannerBody>

</CheckScanner>

Value Severity Meaning
CAT_LOGSTATUS_OK Information DealingLog is enough capacity
CAT_LOGSTATUS_NEARFULL Warning DealingLog is nearly full.
CAT_LOGSTATUS_FULL Error DealingLog is full

D - 54 Unified POS, v1.15.1 Beta1

 fire StatusUpdateEvent (check detected)
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScannerEvents/
CheckScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
CheckScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<StatusUpdateEvent>
<SequenceNumber>4</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>
<Status>CHK_SUE_SCANCOMPLETE</Status>

</StatusUpdateEvent>
</CheckScannerEvent>

retrieveImage
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>34563456</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<RetrieveImage>
<CropAreaID>2</CropAreaID>

</RetrieveImage>
</CheckScannerBody>

</CheckScanner>

fire DataEvent
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScannerEvents/
CheckScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
CheckScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information" Mode="Production" Priority="-0">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode="Message">2001-12-17T09:30:47.0Z<

 /EventDateTime>
<EventDescription>String</EventDescription>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>
<Status>0</Status>

</DataEvent>
</CheckScannerEvent>

 Retrieve Image
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

Unified POS, v1.15.1 Beta1 D - 55

<ARTSHeader MessageType="Response" ActionCode="Read">
<MessageID>12431234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<Response>

<RequestID>34563456</RequestID>
<ResponderID>1</ResponderID>

</Response>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<GetProperty><ImageData>\u005b\u0029\u003e\u001e\u0030
\u0000\u001d\u0030\u0030\u0030\u0031\u001d\u0032\u001d
\u0033\u001d\u0031\u0032\u0033</ImageData>

</GetProperty>
</CheckScannerBody>

</CheckScanner>

beginRemoval
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>124379</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<BeginRemoval>
<Timeout>10</Timeout>

</BeginRemoval>
</CheckScannerBody>

</CheckScanner>

endRemoval
<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>45675674567</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<EndRemoval/>
</CheckScannerBody>

</CheckScanner>

D - 56 Unified POS, v1.15.1 Beta1

Check Scanner Domain

Figure 43: Check Scanner Domain View

Check Scanner Properties

Figure 44: Check Scanner Properties Domain View

Unified POS, v1.15.1 Beta1 D - 57

Check Scanner Methods

Figure 45: Check Scanner Methods Domain View

Check Scanner Events

Figure 46: Check Scanner Events Domain View

D - 58 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
beginInsertion

E_BUSY Information
If the Check Scanner is a
combination device, the peer
device may be busy.

E_ILLEGAL Error An invalid timeout parameter was
specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
inserted.

beginRemoval

E_BUSY Information
If the Check Scanner is a
combination device, the peer
device may be busy.

E_ILLEGAL Error An invalid timeout parameter was
specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
removed.

clearImage

E_ILLEGAL Error

One of the following errors
occurred:
• Device does not support stored
images
• Device does not support clearing
one image

E_NOEXIST Error Image was not found.
endInsertion

E_ILLEGAL Warning The device is not in check
insertion mode.

ECHK_NOCHECK Warning
The device was taken out of
insertion mode without a check
being inserted.

endRemoval

E_ILLEGAL Warning The device is not in check
removal mode.

ECHK_CHECK Warning
The device was taken out of
removal mode while a check is
still present.

retrieveImage

E_ILLEGAL Error
The following error has occurred:
• Cropped area that is specified by
cropAreaID parameter is invalid.

Unified POS, v1.15.1 Beta1 D - 59

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

retrieveMemory

E_ILLEGAL Error

One of the following errors
occurred:
• by parameter is invalid.
• The image data file could not be
located due to an invalid value
stored in either the FileID,
FileIndex, or ImageTagData
properties that was being used
with the by value.

storeImage

E_EXIST Warning
Image already exists in the store
location specified by the
FileIndex property.

E_ILLEGAL Error

One of the following errors
occurred:
• Device does not support storing
images
• Cropped area that is specified by
cropAreaID parameter is invalid.

E_FAILURE Error Internal error storing image.

ECHK_NOROOM Error There is no more room for the
image in memory.

Value Severity Meaning

CHK_SUE_SCANCOMPLETE Information The process of scanning a document image
has been successfully completed

D - 60 Unified POS, v1.15.1 Beta1

D.11.10 Coin Acceptor

Coin Acceptor Example

 SetRealTimeDataEvents to true
<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAcceptor/
CoinAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID>asf1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>

</ARTSHeader>
<CoinAcceptorBody>

<SetProperty>
<RealTimeDataEnabled>true</RealTimeDataEnabled>

</SetProperty>
</CoinAcceptorBody>

</CoinAcceptor>
:BeginDeposit()
<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAcceptor/
CoinAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234568</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>

</ARTSHeader>
<CoinAcceptorBody>

<BeginDeposit/>
</CoinAcceptorBody>

</CoinAcceptor>
Cash is accepted
 DataEvent is fired
<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptorEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAccpetorEvents/
CoinAcceptorEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
CoinAccpetorEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information">
<SequenceNumber>1</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>
<Status>0</Status>

</DataEvent>
</CoinAcceptorEvent>

Unified POS, v1.15.1 Beta1 D - 61

 EndDeposit()
<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAcceptor/
CoinAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2134568</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>

</ARTSHeader>
<CoinAcceptorBody>

<EndDeposit>
<Success>CACC_DEPOSIT_COMPLETE</Success>

</EndDeposit>
</CoinAcceptorBody>

</CoinAcceptor>

Coin Acceptor Domain

Figure 47: Coin Acceptor Domain View

D - 62 Unified POS, v1.15.1 Beta1

Coin Acceptor Properties

Figure 48: Coin Acceptor Properties Domain View

Coin Acceptor Methods

Figure 49: Coin Acceptor Methods Domain View

Unified POS, v1.15.1 Beta1 D - 63

Coin Acceptor Events

Figure 50: Coin Acceptor Events Domain View

D - 64 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
beginDeposit

E_ILLEGAL Error The call sequence is not
correct.

endDeposit

E_ILLEGAL Error

One of the following errors
occurred:
• The call sequence is invalid.
beginDeposit and fixDeposit
must be called in sequence
before calling this method.

fixDeposit

E_ILLEGAL Error

One of the following errors
occurred:
• The call sequence is invalid.
beginDeposit must be called
before calling this method.

pauseDeposit

E_ILLEGAL Error

One of the following errors
occurred:
• The call sequence is invalid.
beginDeposit must be called
before calling this method.
• The deposit process is already
paused and control is set to
CACC_DEPOSIT_PAUSE, or
the deposit process is not
paused and control is set to
CACC_DEPOSIT_RESTART.

Value Severity Meaning
CACC_STATUS_FULL Error Some cash slots are full.
CACC_STATUS_NEARFULL Warning Some cash slots are nearly full
CACC_STATUS_FULLOK Information No cash slots are either full or nearly full
CACC_STATUS_JAM Error A mechanical fault has occurred.
CACC_STATUS_JAMOK Error A mechanical fault has recovered

Unified POS, v1.15.1 Beta1 D - 65

D.11.11 Coin Dispenser

Coin Dispenser Example
DispenseChange(“92”)
<?xml version="1.0" encoding="UTF-8"?>
<CoinDispenser xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinDispenser/
CoinDispenserV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinDispenser/
"MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinDispenser">1</SensorID>

</ARTSHeader>
<CoinDispenserBody>

<DispenseChange>
<Amount>92</Amount>
</DispenseChange>

</CoinDispenserBody>
</CoinDispenser>

Coin Dispenser Domain

Figure 51: Coin Dispenser Domain View

D - 66 Unified POS, v1.15.1 Beta1

Coin Dispenser Properties

Figure 52: Coin Dispenser Properties Domain View

Coin Dispenser Methods

Figure 53: Coin Dispenser Methods Domain View

Unified POS, v1.15.1 Beta1 D - 67

Coin Dispenser Events

Figure 54: Coin Dispenser Events Domain View

D - 68 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
dispenseChange

E_ILLEGAL Error

An amount parameter value
of zero was specified, or the
amount parameter
contained a negative value
or a value greater than the
device can dispense.

Value Severity Meaning

COIN_STATUS_OK Information
Ready to dispense coinage.
This value is also set when
the dispenser is unable to
detect an error condition

COIN_STATUS_EMPTY Error
Cannot dispense coinage
because the dispenser is
empty.

COIN_STATUS_NEAREMPTY Warning
Can still dispense coinage,
but the dispenser is nearly
empty.

COIN_STATUS_JAM Error A mechanical fault has
occurred.

Unified POS, v1.15.1 Beta1 D - 69

D.11.12 Electronic Journal

Electronic Journal Example

queryContent(“data.bin”, 1, 2)
<?xml version="1.0" encoding="UTF-8"?>
<ElectronicJournal xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicJournal/
ElectronicJournalV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ElectronicJournal/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ElectronicJournal">EJ1</SensorID>

</ARTSHeader>
<ElectronicJournalBody>

<QueryContent>
<FileName>data.bin</FileName>
<FromMarker>1</FromMarker>
<ToMarker>2</ToMarker>
</QueryContent>

</ElectronicJournalBody>
</ElectronicJournal>
 DataEvent fired
<?xml version="1.0" encoding="UTF-8"?>
<ElectronicJournalEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicJournalEvents/
ElectronicJournalEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicJournalEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="ElectronicJournal">EJ1</SensorID>
<Status>0</Status>
</DataEvent>

</ElectronicJournalEvent>

D - 70 Unified POS, v1.15.1 Beta1

Electronic Journal Domain

Figure 55: Electronic Journal Domain View

Electronic Journal Properties

Figure 56: Electronic Journal Properties Domain View

Unified POS, v1.15.1 Beta1 D - 71

Electronic Journal Methods

Figure 57: Electronic Journal Method Domain View

Electronic Journal Events

Figure 58: Electronic Journal Events Domain View

D - 72 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
addMarker

E_ILLEGAL Error Characters that cannot be used
as marker are included, or the
character string is too long to
be used as the marker.

E_BUSY Warning Request cannot be performed
while output is in progress.
(This includes when the
POSPrinter or FiscalPrinter is
busy printing.)

EEJ_EXISTING Error The marker name is already
specified in current medium.

EEJ_MEDIUM_-
FULL

Error There is not enough free space
to add a marker in current
medium.

eraseMedium
E_FAILURE Error Failed to erase data.

initializeMedium
E_BUSY Warning Cannot perform while output is

in progress. (This includes
when the POSPrinter or
FiscalPrinter is busy printing.)

printContentFile
E_BUSY Warning Cannot perform while output is

in progress. (This includes
when the POSPrinter or
FiscalPrinter is busy printing.)

E_ILLEGAL Error fileName contains invalid
characters.

E_EXISTS Error The file defined in fileName
already exists.

retrieveCurrentMarker
E_ILLEGAL Error The parameter markerType

contains an invalid value.
E_NOEXIST Error A marker does not exist for the

specified marker type.
retrieveMarker

E_ILLEGAL Error One of the parameters is
invalid. Either the value in
markerType does not exist.

Unified POS, v1.15.1 Beta1 D - 73

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_NOEXIST Error A marker does not exist for the
specified parameter values.

retrieveMarkerByDateTime
E_ILLEGAL Error One of the parameters is

invalid. The value in
markerType does not exist,
dateTime is invalid, or the
markerNumber does not exist
for the specified time period.

E_NOEXIST Error A marker does not exist for the
specified time period.

EEJ_MULTI-
PLE_MARKER

Error More than one marker exists
for the specified time period.

Value Severity Meaning

EJ_SUE_MEDIUM_NEAR_FULL Warning The medium is nearly full (i.e., its free space is
low

EJ_SUE_MEDIUM_FULL Error Storage medium is full.
EJ_SUE_MEDIUM_REMOVED Information Medium was removed from the device.
EJ_SUE_MEDIUM_INSERTED Information Medium was inserted into the device.
EJ_SUE_SUSPENDED Warning Data printing or transfer was suspended

D - 74 Unified POS, v1.15.1 Beta1

D.11.13 Electronic Value Reader / Writer

Electronic Value Reader / Writer Example

beginDetection
<?xml version="1.0" encoding="UTF-8"?>
<ElectronicValueRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicValueRW/
ElectronicValueRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicValueRW/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ElectronicValueReaderWriter">EVR1

 </SensorID>
</ARTSHeader>
<ElectronicValueRWBody>

<BeginDetection Type="EVRW_BD_ANY">
<Timeout>30000</Timeout>

</BeginDetection>
</ElectronicValueRWBody>

</ElectronicValueRW>

endDetection
<?xml version="1.0" encoding="UTF-8"?>
<ElectronicValueRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicValueRW/
ElectronicValueRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicValueRW/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ElectronicValueReaderWriter">EVR1

 </SensorID>
</ARTSHeader>
<ElectronicValueRWBody>

<EndDetection/>
</ElectronicValueRWBody>

</ElectronicValueRW>
set DataEventEnabled to true
<?xml version="1.0" encoding="UTF-8"?>
<ElectronicValueRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicValueRW/
ElectronicValueRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicValueRW/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID Timestamp="2001-12-17T09:30:47.0Z">1234

 </MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z

 </DateTime>
<SensorID UnifiedPOS="ElectronicValueReaderWriter">EVR1

 </SensorID>

Unified POS, v1.15.1 Beta1 D - 75

</ARTSHeader>
<ElectronicValueRWBody>

<SetProperty>
<DataEventEnabled>true</DataEventEnabled>

</SetProperty>
</ElectronicValueRWBody>

</ElectronicValueRW>

Electronic Value Reader / Writer Domain

Figure 59: Electronic Value Reader / Writer Domain View

D - 76 Unified POS, v1.15.1 Beta1

Electronic Value Reader / Writer Properties

Figure 60: Electronic Value Reader / Writer Properties Domain View

Unified POS, v1.15.1 Beta1 D - 77

Electronic Value Reader / Writer Methods

Figure 61: Electronic Value Reader / Writer Methods Domain View

D - 78 Unified POS, v1.15.1 Beta1

Electronic Value Reader / Writer Events

Figure 62: Electronic Value Reader / Writer Events Domain View

Unified POS, v1.15.1 Beta1 D - 79

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

D.11.14 Fiscal Printer

Fiscal Printer Example
Open Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xs:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xs="http://www.w3.org/2001/
XMLSchema-instance">

<ARTSHeader MessageType="Request">
<RequestID Name="FiscalPrinterOpen" Timestamp="2001-12-

 17T09:30:45.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM

 </LogicalDeviceName>
<MessageID>0</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:45.0Z

 </DateTime>
</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState xs:nil="true"/>
<DeviceEnabled>true</DeviceEnabled>
<DayOpened>true</DayOpened>

</GetProperty>
<Claim Timeout="3000"/>
<Open LogicalDeviceName="WN_FPTR_THF_COM"/>

</FiscalPrinterBody>

Method Value Severity Meaning

Value Severity Meaning

D - 80 Unified POS, v1.15.1 Beta1

</FiscalPrinter>
Response to Open Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

<ARTSHeader MessageType="Response">
RequestID Name="FiscalPrinterOpen" Timestamp="2001-12-

 17T09:30:45.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM

 </LogicalDeviceName>
<MessageID>1</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:46.0Z

 </DateTime>
</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState>FPTR_PS_MONITOR</PrinterState>
<DayOpened>true</DayOpened>
<State>S_BUSY</State>

</GetProperty>
<Open LogicalDeviceName="WN_FPTR_THF_COM"/>

</FiscalPrinterBody>
</FiscalPrinter>
Print Receipt Header Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xs:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xs="http://www.w3.org/2001/
XMLSchema-instance">

<ARTSHeader MessageType="Request">
<RequestID Name="FiscalReceiptHeader" Timestamp="2001-12

 -17T09:30:48.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM

 </LogicalDeviceName>
<MessageID>2</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:48.0Z

 </DateTime>
</ARTSHeader>
<FiscalPrinterBody>

<BeginFiscalReceipt PrintHeader="false"/>
<GetProperty>

<PrinterState xs:nil="true"/>
</GetProperty>

</FiscalPrinterBody>
</FiscalPrinter>
Response to Print Receipt Header Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

Unified POS, v1.15.1 Beta1 D - 81

<ARTSHeader MessageType="Response">
<RequestID Name="FiscalReceiptHeader" Timestamp="2001-12-

 17T09:30:48.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>3</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:49.0Z
</DateTime>

</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState>FPTR_PS_FISCAL_RECEIPT
</PrinterState>

</GetProperty>
</FiscalPrinterBody>

</FiscalPrinter>
Print Receipt Body Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:schemaLocation="http://

www.omg.org/UnifiedPOS/FiscalPrinter/ FiscalPrinterV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/FiscalPrinter/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Request">
<RequestID Name="FiscalReceiptBody" Timestamp="2001-12-

 17T09:30:50.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>4</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:50.0Z
</DateTime>

</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState xs:nil="true"/>

</GetProperty>
<PrintRecItem>

<Description>item1</Description>
<Price>100000</Price>
<!-- means 10.00 currency units-->
<Quantity>1000</Quantity>
<!-- means one piece -->
<VatInfo>1</VatInfo>
<UnitPrice>100000</UnitPrice>
<UnitName>pcs</UnitName>

</PrintRecItem>
<PrintRecItem>

<Description>item2</Description>
<Price>200000</Price>
<!-- means 10.00 currency units-->
<Quantity>2000</Quantity>
<!-- means one piece -->
<VatInfo>1</VatInfo>
<UnitPrice>100000</UnitPrice>
<UnitName>pcs</UnitName>

D - 82 Unified POS, v1.15.1 Beta1

</PrintRecItem>
<PrintRecTotal>

<Total>300000</Total>
<Payment>300000</Payment>
<Description>cash</Description>

</PrintRecTotal>
</FiscalPrinterBody>

</FiscalPrinter>
Response to Print Receipt Body Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/
FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response">
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>5</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:51.0Z
</DateTime>
<Response>

<RequestID>4</RequestID>
<ResponderID>WN_FPTR_THF_COM</ResponderID>

</Response>
</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState>FPTR_PS_FISCAL_RECEIPT_TOTAL
</PrinterState>

</GetProperty>
</FiscalPrinterBody>

</FiscalPrinter>
Print Receipt Footer Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/
FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>3456</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:52.0Z
</DateTime>

</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<!-- PROPERTIES REQUEST -->
<PrinterState xsi:nil="true"/>

Unified POS, v1.15.1 Beta1 D - 83

Fiscal Printer Domain

Figure 63: Fiscal Printer Domain View

D - 84 Unified POS, v1.15.1 Beta1

Fiscal Printer Properties

Figure 64: Fiscal Printer Properties Domain View

Unified POS, v1.15.1 Beta1 D - 85

Fiscal Printer Methods

Figure 65: Fiscal Printer Methods Domain View

D - 86 Unified POS, v1.15.1 Beta1

Fiscal Printer Events

Figure 66: Fiscal Printer Events Domain View

Unified POS, v1.15.1 Beta1 D - 87

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
beginFiscalDocument

E_ILLEGAL Error
The slip station does not exist or the printer
does not support fiscal output to the slip
station

EFPTR_WRONG_STATE Error The printer’s current state does not allow this
state transition.

EFPTR_SLP_EMPTY Error There is no paper in the slip station
EFPTR_BAD_ITEM_AM
OUNT Error The documentAmount parameter is invalid.

EFPTR_MISSING_SET_
CURRENCY Error

The new receipt cannot be opened. the Fiscal
Printer is expecting the current currency to be
changed by calling setCurrency method.

EFPTR_DAY_END_REQ
UIRED Error

The completion of the fiscal day is required
by calling printZReport. No further fiscal
receipts or documents can be started before
this is done.

beginFiscalReceipt
E_ILLEGAL Error An invalid receipt type was specified.

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

EFPTR_MISSING_SET_
CURRENCY Error

The new receipt cannot be opened, the Fiscal
Printer is expecting the current currency to be
changed by calling setCurrency method.

EFPTR_DAY_END_REQ
UIRED Error

The completion of the fiscal day is required
by calling printZReport. No further fiscal
receipts or documents can be started before
this is done.

beginFixedOutput

E_ILLEGAL Error

One of the following errors occurred:
• Station does not exist
• Fiscal Printer does not support fixed output.
• station parameter is invalid.
• documentType is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

EFPTR_SLP_EMPTY Error There is no paper in the slip station
beginInsertion

E_ILLEGAL Error The slip station does not exist or an invalid
timeout parameter was specified.

E_TIMEOUT Warning The specified time has elapsed without the
form being properly inserted

beginItemList

D - 88 Unified POS, v1.15.1 Beta1

E_ILLEGAL Error
The Fiscal Printer does not support an item
list report or the Fiscal Printer does not
support VAT tables

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_BAD_VAT Error The vatID parameter is invalid
beginNonFiscal

E_ILLEGAL Error The Fiscal Printer does not support non-fiscal
output

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

beginRemoval

E_ILLEGAL Error
The Fiscal Printer does not have a slip station
or an invalid timeout parameter was
specified.

E_TIMEOUT Warning The specified time has elapsed without the
form being properly removed.

beginTraining

E_ILLEGAL Error The Fiscal Printer does not support training
mode

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

clearError
E_FAILURE Error Error recovery failed.

endFiscalDocument

E_ILLEGAL Error The Fiscal Printer does not support fiscal
output to the slip station

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Document state

endFiscalReceipt

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt Ending state

endFixedOutput

E_ILLEGAL Error The Fiscal Printer does not support fixed
output

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt Ending state

endInsertion

E_ILLEGAL Error The Fiscal Printer is not in slip insertion
mode.

EFPTR_COVER_OPEN Error The device was taken out of insertion mode
while the Fiscal Printer cover was open.

EFPTR_SLP_EMPTY Error The device was taken out of insertion mode
without a form being inserted.

endItemList

Unified POS, v1.15.1 Beta1 D - 89

E_ILLEGAL Error
The Fiscal Printer does not support fixed
output or the Fiscal Printer does not support
VAT tables

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

endNonFiscal

E_ILLEGAL Error The Fiscal Printer does not support non-fiscal
output

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the Non-
Fiscal Receipt Ending state

endRemoval

E_ILLEGAL Error The Fiscal Printer is not in slip removal
mode.

EFPTR_SLP_FORM Error The device was taken out of removal mode
while a form was still present.

endTraining

E_ILLEGAL Error The Fiscal Printer does not support training
mode

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Training state.

getData
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The dataItem, optArgs or ContractorId
specified is invalid.

getDate

E_ILLEGAL Warning Retrieval of the date and time is not valid at
this time.

getTotalizer

E_ILLEGAL Error
One of the following errors occurred:
• The vatID parameter is invalid, or
• The ContractorId property is invalid, or
• The specified totalizer is not available.

getVatEntry

E_ILLEGAL Error The vatID parameter is invalid, or
CapHasVatTable is false.

printDuplicateReceipt
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
The Fiscal Printer does not support duplicate
receipts or there is no buffered transaction to
print

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Monitor state

EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

printFiscalDocumentLine

D - 90 Unified POS, v1.15.1 Beta1

E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support fiscal
documents

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Document state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printFixedOutput
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support fixed
output or the lineNumber is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not in the Fixed Output
state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper.

EFPTR_REC_EMPTY Error The receipt station was specified but is out of
paper.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printNormal
E_ILLEGAL Error The specified station does not exist.
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the Non-
Fiscal state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open

EFPTR_JRN_EMPTY Error The journal station was specified but is out of
paper

EFPTR_REC_EMPTY Error The receipt station was specified but is out of
paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printPeriodicTotalsReport

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper
EFPTR_BAD_DATE Error One of the date parameters is invalid.

printPowerLossReport

E_ILLEGAL Error The Fiscal Printer does not support power
loss reports

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper

Unified POS, v1.15.1 Beta1 D - 91

EFPTR_REC_EMPTY Error The receipt station is out of paper
printRecCash

E_BUSY Error Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support this
method.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printRecItem
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_QU
ANTITY Error The quantity is invalid.

EFPTR_BAD_PRICE Error The unit price is invalid.
EFPTR_BAD_ITEM_DES
CRIPTION Error The discount description is too long or

contains a reserved word.
EFPTR_BAD_VAT Error The VAT parameter is invalid
EFPTR_RECEIPT_TOTA
L_OVERFLOW Error The receipt total has overflowed

printRecItemAdjustment
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support fixed
amount adjustments
• The Fiscal Printer does not support
percentage discounts
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

D - 92 Unified POS, v1.15.1 Beta1

FPTR_BAD_ITEM_AMO
UNT Error The discount amount is invalid.

EFPTR_BAD_ITEM_DES
CRIPTION Error The discount description is too long or

contains a reserved word
EFPTR_BAD_VAT Error The VAT parameter is invalid

printRecItemAdjustmentVoid
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support fixed
amount adjustments
• The Fiscal Printer does not support
percentage discounts
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

FPTR_BAD_ITEM_AMO
UNT Error The discount amount is invalid.

EFPTR_BAD_ITEM_DES
CRIPTION Error The discount description is too long or

contains a reserved word
EFPTR_BAD_VAT Error The VAT parameter is invalid

printRecItemFuel
E_BUSY Warning Cannot perform while output is in progress.
E_ILLEGAL Error This method is not supported.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_QU
ANTITY Error The quantity is invalid

EFPTR_BAD_PRICE Error The unit price is invalid
EFPTR_BAD_ITEM_DES
CRIPTION Error The discount description is too long or

contains a reserved word
EFPTR_BAD_VAT Error The VAT parameter is invalid
EFPTR_RECEIPT_TOTA
L_OVERFLOW Error The receipt total has overflowed

printRecItemFuelVoid
E_BUSY Warning Cannot perform while output is in progress.

Unified POS, v1.15.1 Beta1 D - 93

E_ILLEGAL Error This method is not supported.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_PRICE Error The price is invalid
EFPTR_BAD_ITEM_DES
CRIPTION Error The discount description is too long or

contains a reserved word.
EFPTR_BAD_VAT Error The VAT parameter is invalid

printRecItemVoid
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
Cancelling is not allowed at this ticket state.
May be because no item has been sold
previously.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT Error The price is invalid.

EFPTR_BAD_ITEM_QU
ANTITY Error The quantity is invalid.

EFPTR_BAD_VAT Error The VAT information is invalid.
EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
EFPTR_NEGATIVE_TOT
AL Error The computed total is less than zero

printRecMessage
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not in the Fiscal Receipt
Ending state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION Error The message is too long or contains a

reserved word.

D - 94 Unified POS, v1.15.1 Beta1

printRecNotPaid
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error
The Fiscal Printer is not currently in either
the Fiscal Receipt or Fiscal Receipt Total
state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
EFPTR_BAD_ITEM_AM
OUNT Error The amount is invalid.

printRecPackageAdjustment
E_BUSY Warning Cannot perform while output is in progress

E_ILLEGAL Error
The Fiscal Printer does not support package
adjustments or the adjustmentType
parameter is invalid

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
printRecPackageAdjustVoid

E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
The Fiscal Printer does not support package
adjustments, or the adjustmentType
parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word.
printRecRefund

E_BUSY Warning Cannot perform while output is in progress.

Unified POS, v1.15.1 Beta1 D - 95

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
EFPTR_BAD_ITEM_AM
OUNT Error The amount is invalid.

EFPTR_BAD_VAT Error The VAT information is invalid
printRecRefundVoid

E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
EFPTR_BAD_ITEM_AM
OUNT Error The VAT information is invalid

printRecSubtotal
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT Error

The subtotal from the application does not
match the subtotal computed by the Fiscal
Printer.

EFPTR_NEGATIVE_TOT
AL Error The total computed by the Fiscal Printer is

less than zero.
printRecSubtotalAdjustment

E_BUSY Warning Cannot perform while output is in progress.

D - 96 Unified POS, v1.15.1 Beta1

E_ILLEGAL Error

One of the following errors occurred:
• Fixed amount discounts are not supported.
• Percentage discounts are not supported
• Surcharges are not supported
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_AM
OUNT Error The discount amount is invalid

EFPTR_BAD_ITEM_DES
CRIPTION Error The discount description is too long or

contains a reserved word
printRecSubtotalAdjustVoid

E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
One of the following errors occurred:
• Fixed amount discounts are not supported.
• Percentage discounts are not supported.
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_AM
OUNT Error The discount amount is invalid

printRecTaxID
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support printing
tax identifications.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt Ending state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printRecTotal
E_BUSY Warning Cannot perform while output is in progress.

Unified POS, v1.15.1 Beta1 D - 97

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT Error

• The application computed total does not
match the Fiscal Printer computed total, or
• the total parameter is invalid, or
• the payment parameter is invalid

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
EFPTR_NEGATIVE_TOT
AL Error The computed total is less than zero

EFPTR_WORD_NOT_AL
LOWED Error The description contains the reserved word.

printRecVoid
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
printRecVoidItem

E_BUSY Warning Cannot perform while output is in progress

E_ILLEGAL Error

One of the following errors occurred:
• Fixed amount adjustments are not
supported, or
• Percentage discounts are not supported, or
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT Error The amount is invalid

D - 98 Unified POS, v1.15.1 Beta1

EFPTR_BAD_ITEM_QU
ANTITY Error The quantity is invalid

EFPTR_BAD_VAT Error The VAT information is invalid
EFPTR_BAD_ITEM_DES
CRIPTION Error The description is too long or contains a

reserved word
EFPTR_NEGATIVE_TOT
AL Error The computed total is less than zero

printReport
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The reportType parameter is invalid, or
• One or both of startNum and endNum are
invalid, or
• startNum > endNum

EFPTR_WRONG_STATE Error The Fiscal Printer's current state does not
allow this state transition

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

printXReport
E_ILLEGAL Error The Fiscal Printer does not support X reports

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

printZReport

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

setCurrency

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support this
method, or
• The Fiscal Printer has already begun the
fiscal day, or
• the specified newCurrency value is not
valid.

setDate

E_ILLEGAL Warning The Fiscal Printer has already begun the
fiscal day

EFPTR_BAD_DATE Error One of the entries of the date parameters is
invalid.

Unified POS, v1.15.1 Beta1 D - 99

setHeaderLine

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
header lines, or
• The Fiscal Printer has already begun the
fiscal day, or
• the lineNumber parameter was invalid

EFPTR_BAD_ITEM_DES
CRIPTION Error The text parameter is too long or contains a

reserved word.
setPOSID

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
the POS Identifier, or
• The printer has already begun the fiscal day,
or
• Either the POSID or cashierID parameter
is invalid.

setStoreFiscalID

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
the store fiscal identifier, or
• The Fiscal Printer has already begun the
fiscal day, or
• The ID parameter was invalid.

setTrailerLine

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
the receipt trailer lines, or
• The Fiscal Printer has already begun the
fiscal day, or
• the lineNumber parameter was invalid.

EFPTR_BAD_ITEM_DES
CRIPTION Error The text parameter is too long or contains a

reserved word.
setVatTable

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support VAT
tables or their setting, or
• The Fiscal Printer has already begun the
fiscal day

setVatValue

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support VAT
tables, or
• The Fiscal Printer has already begun the
fiscal day, or
• The Fiscal Printer does not support
changing an existing VAT value

verifyItem

D - 100 Unified POS, v1.15.1 Beta1

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_ILLEGAL Error The Fiscal Printer does not support VAT
tables

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the Item
List state.

EFPTR_BAD_ITEM_DES
CRIPTION Error The item name is too long or contains a

reserved word.
EFPTR_BAD_VAT Error The VAT parameter is invalid.

Value Severity Meaning
FPTR_SUE_COVER_OPEN Error Fiscal Printer cover is open
FPTR_SUE_COVER_OK Information Fiscal Printer cover is closed
FPTR_SUE_JRN_EMPTY Error No journal paper.
FPTR_SUE_JRN_NEAREMPTY Warning Journal paper is low
FPTR_SUE_JRN_PAPEROK Information Journal paper is ready
FPTR_SUE_REC_EMPTY Error No receipt paper
FPTR_SUE_REC_NEAREMPTY Warning Receipt paper is low
FPTR_SUE_REC_PAPEROK Information Receipt paper is ready

FPTR_SUE_SLP_EMPTY Warning No slip form is inserted, and no slip form has
been detected at the entrance to the slip station.

FPTR_SUE_SLP_NEAREMPTY Warning Almost at the bottom of the slip form
FPTR_SUE_SLP_PAPEROK Information Slip form is inserted

FPTR_SUE_IDLE Information
All asynchronous output has finished, either
successfully or because output has been
cleared.

FPTR_SUE_JRN_COVER_OPEN Error Journal station cover is open
FPTR_SUE_JRN_COVER_OK Information Journal station cover is closed.
FPTR_SUE_REC_COVER_OPEN Error Receipt station cover is open.
FPTR_SUE_REC_COVER_OK Information Receipt station cover is closed.
FPTR_SUE_SLP_COVER_OPEN Error Slip station cover is open.
FPTR_SUE_SLP_COVER_OK Information Slip station cover is closed

Unified POS, v1.15.1 Beta1 D - 101

D.11.15 Gate

Gate Example
<?xml version="1.0" encoding="UTF-8"?>
<Gate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Gate/ GateV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Gate/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Gate">Front Gate</SensorID>

</ARTSHeader>
<GateBody>

<OpenGate/>
</GateBody>

</Gate>

Gate Domain

Figure 67: Gate Domain View

D - 102 Unified POS, v1.15.1 Beta1

Gate Properties

Figure 68: Gate Properties Domain View

Gate Methods

Figure 69: Gate Methods Domain View

Unified POS, v1.15.1 Beta1 D - 103

Gate Events

Figure 70: Gate Events Domain View

D - 104 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This device only has common errors as defined in “Device Error Codes and Message Severity
Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

D.11.16 Hard Totals

Hard Totals Example
 write(1, data, 100, 256)
<?xml version="1.0" encoding="UTF-8"?>
<HardTotals xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/HardTotals/ HardTotalsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/HardTotals/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234235423452345</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="HardTotals">HT1</SensorID>

</ARTSHeader>
<HardTotalsBody>

<Write>
<HTotalsFile>1</HTotalsFile>
<Data>\u005b\u0029\u003e\u001e\u0030\u0000\u001d

 \u0030\u0030\u0030\u0031\u001d\u0032
 \u001d\u0033\u001d\u0031\u0032\u0033
 </Data>

<Offset>100</Offset>
<Count>256</Count>

</Write>
</HardTotalsBody>

</HardTotals>

Method Value Severity Meaning
N/A

Value Severity Meaning

Unified POS, v1.15.1 Beta1 D - 105

Hard Totals Domain

Figure 71: Hard Totals Domain View

Hard Totals Properties

Figure 72: Hard Totals Properties Domain View

D - 106 Unified POS, v1.15.1 Beta1

Hard Totals Methods

Figure 73: Hard Totals Methods Domain View

Unified POS, v1.15.1 Beta1 D - 107

Hard Totals Events

Figure 74: Hard Totals Events Domain View

D - 108 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
beginTrans

E_ILLEGAL Error Transactions are not supported by this
device.

claim
E_ILLEGAL Error An invalid timeout parameter was specified.

E_TIMEOUT Warning
Another application has exclusive access to
the device or one or more of its files and did
not relinquish control before timeout
milliseconds expired.

claimFile

E_ILLEGAL Error The handle is invalid, or an invalid timeout
parameter was specified.

E_TIMEOUT Warning
The timeout value expired before another
application released exclusive access of
either the requested totals file or the entire
totals area.

commitTrans

E_ILLEGAL Error Transactions are not supported by this
device, or no transaction is in progress.

create

E_CLAIMED Warning Cannot create because the entire totals file
area is claimed by another application.

E_ILLEGAL Error The fileName is too long or contains invalid
characters

E_EXISTS Error fileName already exists.

ETOT_NOROOM Error There is insufficient room in the totals area
to create the file.

delete

E_CLAIMED Warning
Cannot delete because either the totals file
or the entire totals area is claimed by another
application.

E_ILLEGAL Error The fileName is too long or contains invalid
characters.

E_NOEXIST Error fileName was not found.
find

E_CLAIMED Warning Cannot find because the entire totals file
area is claimed by another application.

E_ILLEGAL Error The fileName contains invalid characters.
E_NOEXIST Error fileName was not found.

findByIndex

Unified POS, v1.15.1 Beta1 D - 109

E_CLAIMED Warning Cannot find because the entire totals file
area is claimed by another application.

E_ILLEGAL Error The index is greater than the largest file
index that is currently defined

read

E_CLAIMED Warning
Cannot read because either the totals file or
the entire totals area is claimed by another
application.

E_ILLEGAL Error
The handle is invalid, part of the data range
is outside the bounds of the totals file, or
data array length is less than count

ETOT_VALIDATION Error A validation error has occurred while
reading data.

recalculateValidationData

E_CLAIMED Warning
Cannot recalculate because either the totals
file or the entire totals area is claimed by
another application.

E_ILLEGAL Error
The handle is invalid, or advanced error
detection is either not supported by the
Service or by this file

release

E_ILLEGAL Warning The application does not have exclusive
access to the device.

releaseFile

E_ILLEGAL Error The handle is invalid, or the specified file is
not claimed by this application.

rename

E_CLAIMED Error
Cannot rename because either the totals file
or the entire totals area is claimed by another
application.

E_ILLEGAL Error
The handle is invalid, the fileName contains
invalid characters, or the CapSingleFile
property is true.

E_EXISTS Error fileName already exists.
rollback

E_ILLEGAL Error Transactions are not supported by this
device, or no transaction is in progress.

setAll

E_CLAIMED Warning
Cannot set because either the totals file or
the entire totals area is claimed by another
application.

E_ILLEGAL Error The handle is invalid.
validateData

E_CLAIMED Warning
Cannot validate because either the totals file
or the entire totals area is claimed by another
application.

D - 110 Unified POS, v1.15.1 Beta1

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_ILLEGAL Error
The handle is invalid, or advanced error
detection is either not supported by the
Service or by this file.

write

E_CLAIMED Warning
Cannot write because either the totals file or
the entire totals area is claimed by another
application.

E_ILLEGAL Error
The handle is invalid, or part of or all of the
data range is outside the bounds of the totals
file.

ETOT_NOROOM Error
Cannot write because a transaction is in
progress, and there is not enough free space
to prepare for the transaction commit.

ETOT_VALIDATION Error A validation error has occurred while
reading data.

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 111

D.11.17 Image Scanner

Image Scanner Example
 set ImageMode to IMG_STILL_ONLY
<?xml version="1.0" encoding="UTF-8"?>
<ImageScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScanner/
ImageScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ImageScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>asdfasfsdf</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

</ARTSHeader>
<ImageScannerBody>

<SetProperty>
<ImageMode>IMG_STILL_ONLY</ImageMode>

</SetProperty>
</ImageScannerBody>

</ImageScanner>

 set DeviceEnabled to true
<?xml version="1.0" encoding="UTF-8"?>
<ImageScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScanner/
ImageScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ImageScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>sdhgdfg</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

</ARTSHeader>
<ImageScannerBody>

<SetProperty>
<DeviceEnabled>false</DeviceEnabled>

</SetProperty>
</ImageScannerBody>

</ImageScanner>

(acquire image)

 fire DataEvent
<?xml version="1.0" encoding="UTF-8"?>
<ImageScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScannerEvents/
ImageScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ImageScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

D - 112 Unified POS, v1.15.1 Beta1

<Status>0</Status>
</DataEvent>

</ImageScannerEvent>

Application services event
Request:
<?xml version="1.0" encoding="UTF-8"?>
<ImageScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScanner/
ImageScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ImageScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

</ARTSHeader>
<ImageScannerBody>

<GetProperty>
<FrameData xsi:nil="true"/>
<FrameType xsi:nil="true"/>
<ImageHeight xsi:nil="true"/>
<ImageType xsi:nil="true"/>
<ImageWidth xsi:nil="true"/>

</GetProperty>
</ImageScannerBody>

</ImageScanner>

Unified POS, v1.15.1 Beta1 D - 113

Image Scanner Domain

Figure 75: Image Scanner Domain View

Image Scanner Properties

Figure 76: Image Scanner Properties Domain View

D - 114 Unified POS, v1.15.1 Beta1

Image Scanner Methods

Figure 77: Image Scanner Methods Domain View

Image Scanner Events

Figure 78: Image Scanner Events Domain View

Unified POS, v1.15.1 Beta1 D - 115

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
startSession

E_ILLEGAL Error
An attempt was made to call
the startSession method when
the CapHostTriggered
property is false.

stopSession

E_ILLEGAL Error
An attempt was made to call
the stopSession method when
the CapHostTriggered
property is false.

Value Severity Meaning
N/A

D - 116 Unified POS, v1.15.1 Beta1

D.11.18 Item Dispenser

Item Dispenser Example
<?xml version="1.0" encoding="UTF-8"?>
<ItemDispenser xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ItemDispenser/
ItemDispenserV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ItemDispenser/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID/>
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="ItemDispenser">100</SensorID>

</ARTSHeader>
<ItemDispenserBody>

<DispenseItem>
<NumItem>4</NumItem>
<SlotNumber>2</SlotNumber>
</DispenseItem>

</ItemDispenserBody>
</ItemDispenser>

Item Dispenser Domain

Figure 79: Item Dispenser Domain View

Unified POS, v1.15.1 Beta1 D - 117

Item Dispenser Properties

Figure 80: Item Dispenser Properties Domain View

Item Dispenser Methods

Figure 81: Item Dispenser Methods Domain View

D - 118 Unified POS, v1.15.1 Beta1

Item Dispenser Events

Figure 82: Item Dispenser Events Domain View

Unified POS, v1.15.1 Beta1 D - 119

Device Error Codes to Message Severity Codes
This device only has common errors as defined in “Device Error Codes and Message Severity
Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
N/A

Value Severity Meaning

D - 120 Unified POS, v1.15.1 Beta1

D.11.19 Keylock

Keylock Example

 waitForKeylockChange(LOCK_KP_LOCK, 30000)
<?xml version="1.0" encoding="UTF-8"?>
<Keylock xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Keylock/ KeylockV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Keylock/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1241234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Keylock">1</SensorID>

</ARTSHeader>
<KeylockBody>

<WaitForKeylockChange>
<KeyPosition>LOCK_KP_LOCK</KeyPosition>
<Timeout>30000</Timeout>
</WaitForKeylockChange>

</KeylockBody>
</Keylock>

Keylock Domain

Figure 83: Keylock Domain View

Unified POS, v1.15.1 Beta1 D - 121

Keylock Properties

Figure 84: Keylock Properties Domain View

Keylock Methods

Figure 85: Keylock Methods Domain View

Keylock Events

Figure 86: Keylock Events Domain View

D - 122 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
waitForKeylockChange

E_ILLEGAL Error An invalid parameter value was
specified.

E_TIMEOUT Warning
The timeout period expired
before the requested keylock
positioning occurred.

Value Severity Meaning
LOCK_KP_ELECTRONIC Information Electronic Keylock value.

LOCK_KP_LOCK Information Keylock is in the “locked”
position.

LOCK_KP_NORM Information Keylock is in the “normal”
position

LOCK_KP_SUPR Information Keylock is in the “supervisor”
position.

Unified POS, v1.15.1 Beta1 D - 123

D.11.20 Lights

Lights Example
<?xml version="1.0" encoding="UTF-8"?>
<Lights xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Lights/ LightsV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Lights/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="Light">Front Door</SensorID>

</ARTSHeader>
<LightsBody>

<SwitchOn>
<LightNumber>10</LightNumber>
<BlinkOnCycle>1</BlinkOnCycle>
<BlinkOffCycle>1</BlinkOffCycle>
<Color>LGT_COLOR_PRIMARY</Color>
<Alarm>0</Alarm>

</SwitchOn>
</LightsBody>

</Lights>

Lights Domain

Figure 87: Lights Domain View

D - 124 Unified POS, v1.15.1 Beta1

Lights Properties

Figure 88: Lights Properties Domain View

Lights Methods

Figure 89: Lights Methods Domain View

Lights Events

Figure 90: Lights Events Domain View

Unified POS, v1.15.1 Beta1 D - 125

Device Error Codes to Message Severity Codes
This device only has common errors as defined in “Device Error Codes and Message Severity
Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
N/A

Value Severity Meaning

D - 126 Unified POS, v1.15.1 Beta1

D.11.21 Line Display

Line Display Example

 displayText(“Hello, World”, DISP_DP_NORMAL)
<?xml version="1.0" encoding="UTF-8"?>
<LineDisplay xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/LineDisplay/
LineDisplayV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/LineDisplay/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>asdf1234asfd</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="LineDisplay">1</SensorID>

</ARTSHeader>
<LineDisplayBody>

<DisplayText>
<Data>Hello World</Data>
<Attribute>DISP_DT_NORMAL</Attribute>

</DisplayText>
</LineDisplayBody>

</LineDisplay>

Line Display Domain

Figure 91: Line Display Domain View

Unified POS, v1.15.1 Beta1 D - 127

Line Display Properties

Figure 92: Line Display Properties Domain View

Line Display Methods

Figure 93: Line Display Methods Domain View

D - 128 Unified POS, v1.15.1 Beta1

Line Display Events

Figure 94: Line Display Events Domain View

Unified POS, v1.15.1 Beta1 D - 129

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
clearDescriptors

E_ILLEGAL Error The device does not support descriptors.
clearText

E_ILLEGAL Error In Marquee On Mode
createWindow

E_ILLEGAL Error
One or more parameters are out of their
valid ranges, or all available windows
are already in use.

defineGlyph

E_ILLEGAL Error
CapCustomGlyph is false, or
glyphCode is an unsupported character
code for glyph definition.

destroyWindow

E_ILLEGAL Error The current window is 0. This window
may not be destroyed.

displayBitmap

E_ILLEGAL Error

One of the following errors occurred:
• The LineDisplay does not support
bitmap display.
• The width parameter is invalid or too
big.
• The alignmentX / alignmentY
parameter is invalid or too big.
• The window is not in Immediate
Mode.
• The window size does not match its
viewport size.
• The bitmap is too large to display at
the requested location.

E_NOEXIST Error The fileName was not found.

EDISP_TOO
BIG Error

The bitmap is either too wide to display
without transformation, or it is too big
to transform.

EDISP_BAD
FORMAT Error The specified file is either not a bitmap

file or it is an unsupported format.
displayText

E_ILLEGAL Error attribute is illegal, or the display is in
Marquee On Mode.

displayTextAt

E_ILLEGAL Error row or column are out or range, attribute
is illegal, or in Marquee On Mode.

D - 130 Unified POS, v1.15.1 Beta1

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

readCharacterAtCursor
E_ILLEGAL Error CapReadBack is DISP_CRB_NONE.

refreshWindow

E_ILLEGAL Error
window is larger than DeviceWindows
or has not been created, or in Marquee
On Mode.

scrollText

E_ILLEGAL Error direction is illegal, or in Teletype Mode
or Marquee Mode.

setBitmap

E_ILLEGAL Error

One of the following errors occurred:
• The bitmapNumber parameter is
invalid.
• The LineDisplay does not support
bitmap display.
• The width parameter is invalid or too
big.
• The alignmentX or alignmentY
parameter is invalid or too big.

E_NOEXIST Error The fileName was not found.

EDISP_TOO
BIG Error

The bitmap is either too wide to display
without transformation, or it is too big
to transform.

EDISP_BAD
FORMAT Error The specified file is either not a bitmap

file or it is an unsupported format.
setDescriptor

E_ILLEGAL Error
The device does not support descriptors,
or one of the parameters contained an
illegal value.

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 131

D.11.22 MICR

MICR Example
beginInsertion
<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1243234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<BeginInsertion>
<Timeout>100</Timeout>

</BeginInsertion>
</MICRBody>

</MICR>
endInsertion
<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>986968</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<EndInsertion/>
</MICRBody>

</MICR>
fire DataEvent
<?xml version="1.0" encoding="UTF-8"?>
<MICREvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http:/

/www.omg.org/UnifiedPOS/MICREvents/ MICREventV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/MICREvents/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>
<Status>0</Status>

</DataEvent>
</MICREvent>

D - 132 Unified POS, v1.15.1 Beta1

beginRemoval
<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>asdfsdf</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<BeginRemoval>
<Timeout>0</Timeout>

</BeginRemoval>
</MICRBody>

</MICR>
endRemoval
<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>asdfqwrasfd</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<EndRemoval/>
</MICRBody>

</MICR>

Unified POS, v1.15.1 Beta1 D - 133

MICR Domain

Figure 95: MICR Domain View

MICR Properties

Figure 96: MICR Properties Domain View

D - 134 Unified POS, v1.15.1 Beta1

MICR Methods

Figure 97: MICR Methods Domain View

MICR Events

Figure 98: MICR Events Domain View

Unified POS, v1.15.1 Beta1 D - 135

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
beginInsertion

E_BUSY Warning
If the MICR is a combination
device, the peer device may be
busy

E_ILLEGAL Error An invalid timeout parameter
was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
inserted.

beginRemoval

E_BUSY Warning
If the MICR is a combination
device, the peer device may be
busy.

E_ILLEGAL Error An invalid timeout parameter
was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
removed.

endInsertion

E_ILLEGAL Error The device is not in check
insertion mode.

EMICR_NOCHECK Warning
The device was taken out of
insertion mode without a check
being inserted.

endRemoval

E_ILLEGAL Error The device is not in check
removal mode.

EMICR_CHECK Warning
The device was taken out of
removal mode while a check is
still present.

Value Severity Meaning
N/A

D - 136 Unified POS, v1.15.1 Beta1

D.11.23 Motion Sensor

Motion Sensor Example
waitForMotion(30000)
<?xml version="1.0" encoding="UTF-8"?>
<MotionSensor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/MotionSensor/
MotionSensorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/MotionSensor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12431234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MotionSensor">MS1</SensorID>

</ARTSHeader>
<MotionSensorBody>

<WaitForMotion>
<Timeout>30000</Timeout>
</WaitForMotion>

</MotionSensorBody>
</MotionSensor>

Motion Sensor Domain

Figure 99: Motion Sensor Domain View

Unified POS, v1.15.1 Beta1 D - 137

Motion Sensor Properties

Figure 100: Motion Sensor Properties Domain View

Motion Sensor Methods

Figure 101: Motion Sensor Methods Domain View

Motion Sensor Events

Figure 102: Motion Sensor Events Domain View

D - 138 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
waitForMotion

E_TIMEOUT Warning The timeout period expired
before motion was detected.

Value Severity Meaning

MOTION_M_PRESENT Information Motion Sensor has detected
someone is present.

MOTION_M_ABSENT Information
Motion Sensor has detected no
one has been present for the
number of milliseconds
specified in Timeout.

Unified POS, v1.15.1 Beta1 D - 139

D.11.24 MSR

MSR Example
fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<MSREvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MSREvents/ MSREventV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/MSREvents/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="MagneticStripeReader">MSR1
</SensorID>
<Status>0</Status>

</DataEvent>
</MSREvent>

get Track1Data

<?xml version="1.0" encoding="UTF-8"?>
<MSR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MSR/ MSRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MSR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>123123123</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MagneticStripeReader">MSR1
</SensorID>

</ARTSHeader>
<MSRBody>

<GetProperty>
<Track1Data>\u005b\u0029\u003e\u001e\u0030\u0000\u001d\u0030

\u0030\u0030\u0031\u001d\u0032\u001d\u0033\u001d\u0031\u0032\u0033
</Track1Data>

</GetProperty>
</MSRBody>

</MSR>

D - 140 Unified POS, v1.15.1 Beta1

MSR Domain

Figure 103: MSR Domain View

Unified POS, v1.15.1 Beta1 D - 141

MSR Properties

Figure 104: MSR Properties Domain View

MSR Methods

Figure 105: MSR Methods Domain View

D - 142 Unified POS, v1.15.1 Beta1

MSR Events

Figure 106: MSR Events Domain View

Unified POS, v1.15.1 Beta1 D - 143

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
writeTracks

E_ILLEGAL Error

The data to be written exceeds
the EncodingMaxLength
property for the selected
TracksToWrite, or
CapWritableTracks is set to
MSR_TR_NONE.

E_FAILURE Error
A card was swiped within the
allotted timeout, but that card
or track specified by
TracksToWrite is not writable

E_TIMEOUT Warning A card was not swiped within
the allotted timeout period

Value Severity Meaning
N/A

D - 144 Unified POS, v1.15.1 Beta1

D.11.25 PIN Pad

PIN Pad Example
 beginEFTTransaction
<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<BeginEFTTransaction>
<PINPadSystem>M/S</PINPadSystem>
<TransactionHost>0</TransactionHost>

</BeginEFTTransaction>
</PINPadBody>

</PINPad>
enablePINEntry
<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1235</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<EnablePINEntry/>
</PINPadBody>

</PINPad>
 fire DataEvent
<?xml version=”1.0” encoding=”UTF-8”?>
<PINPadEvent xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/PINPadEvents/ ../
PINPadEventV1.14.1.xsd” xmlns=”http://www.omg.org/UnifiedPOS/PINPadEvents/”
MajorVersion="1" MinorVersion="14" FixVersion="1"”>

<DataEvent>
<SequenceNumber>1236</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS=”PINPad”>PP1</SensorID>
<Status>PPAD_SUCCESS</Status>

</DataEvent>
</PINPadEvent>
 computeMAC(in, out)
<?xml version="1.0" encoding="UTF-8"?>

Unified POS, v1.15.1 Beta1 D - 145

<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1237</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<ComputeMAC>
<InMsg>in</InMsg>
<OutMsg>\u005b\u0029\u003e\u001e\u0030\u0000\u001d\u0030\u0030

\u0030\u0031\u001d\u0032\u001d\u0033\u001d\u0031\u0032\u0033
</OutMsg>

</ComputeMAC>
</PINPadBody>

</PINPad>
 verifyMAC(message)
<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1238</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<VerifyMAC>
<Message>message</Message>

</VerifyMAC>
</PINPadBody>

</PINPad>
endEFTTransaction(PPA_EFT_NORMAL)
<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1239</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<EndEFTTransaction>
<CompletionCode>PPAD_EFT_NORMAL
</CompletionCode>

</EndEFTTransaction>
</PINPadBody>

</PINPad>

D - 146 Unified POS, v1.15.1 Beta1

PIN Pad Domain

Figure 107: PIN Pad Domain View

PIN Pad Properties

Figure 108: PIN Pad Properties Domain View

Unified POS, v1.15.1 Beta1 D - 147

PIN Pad Methods

Figure 109: PIN Pad Methods Domain View

PIN Pad Events

Figure 110: PIN Pad Events Domain View

D - 148 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
beginEFTTransaction

E_ILLEGAL Error

The requested PIN Pad Management
System is not supported by the Control,
or the requested EFT Transaction Host
is an illegal value for the selected PIN
Pad Management System.

E_BUSY Warning The PIN Pad is already performing an
EFT transaction.

computeMAC

E_DISABLED Warning A beginEFTTransaction method has not
been performed

E_BUSY Warning
PINEntryEnabled is true. The PIN Pad
cannot perform a MAC calculation
during PIN Entry.

enablePINEntry

E_DISABLED Warning A beginEFTTransaction method has not
been performed.

updateKey

E_ILLEGAL Error

One of the following conditions
occurred.
* The selected PIN Pad Management
System does not support this function.
* The keyNum specifies an
unacceptable key number.
* The key contains a bad key (not Hex-
ASCII or wrong length or bad parity).

verifyMAC

E_BUSY Warning
PINEntryEnabled is true. The PIN Pad
cannot perform a MAC verification
during PIN Entry

E_DISABLED Warning A beginEFTTransaction method has not
been performed.

E_FAILURE Error The Service failed to verify the MAC
value in message.

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 149

D.11.26 Point Card Reader/Writer

Point Card Reader Example
beginInsertion
<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
<PointCardRWBody>

<BeginInsertion>
<Timeout>30000</Timeout>

</BeginInsertion>
</PointCardRWBody>

</PointCardRW>
endInsertion
<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
<PointCardRWBody>

<EndInsertion/>
</PointCardRWBody>

</PointCardRW>
set DataEventEnabled to true
<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID Name="String"

 Timestamp="2001-12-17T09:30:47.0Z">12341234
</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>

D - 150 Unified POS, v1.15.1 Beta1

<PointCardRWBody>
<SetProperty>

<DataEventEnabled>true</DataEventEnabled>
</SetProperty>

</PointCardRWBody>
</PointCardRW>
fire DataEvent
<?xml version="1.0" encoding="UTF-8"?>
<PointCardRWEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PoinCardEvents/
PointCardRWEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PoinCardEvents/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>4</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>
<Status>0</Status>

</DataEvent>
</PointCardRWEvent>
printWrite(1, 0, 0, “1000 points”)
<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>5</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
<PointCardRWBody>

<PrintWrite>
<Kind>Print</Kind>
<HPosition>0</HPosition>
<VPosition>0</VPosition>
<Data>1000 points</Data>

</PrintWrite>
</PointCardRWBody>

</PointCardRW>

Unified POS, v1.15.1 Beta1 D - 151

Point Card Reader Domain

Figure 111: Point Card RW Domain View

D - 152 Unified POS, v1.15.1 Beta1

Point Card Reader Properties

Figure 112: Point Card RW Properties Domain View

Point Card Reader Methods

Figure 113: Point Card RW Methods Domain View

Unified POS, v1.15.1 Beta1 D - 153

Point Card Reader Events

Figure 114: Point Card RW Events Domain View

D - 154 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
beginInsertion

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The Point Card Reader Writer does
not exist or an invalid timeout
parameter was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the point card being properly
inserted.

beginRemoval

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The Point Card Reader Writer does
not exist or an invalid timeout
parameter was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the point card being properly
inserted.

cleanCard

E_ILLEGAL Error The Point Card Reader Writer does
not exist or CapCleanCard is false.

clearPrintWrite

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

endInsertion

E_ILLEGAL Warning The Point Card Reader Writer is not
in point card insertion mode.

E_FAILURE Warning A card is not inserted in the Point
Card Reader Writer.

endRemoval

E_ILLEGAL Error The Point Card Reader Writer is not
in point card removal mode.

E_FAILURE Warning There is a card in the Point Card
Reader Writer.

printWrite

E_ILLEGAL Warning There is no card in the Point Card
Reader Writer.

rotatePrint

Unified POS, v1.15.1 Beta1 D - 155

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error The Point Card Reader Writer does
not support the specified rotation.

validateData

E_ILLEGAL Warning
Some of the data is not precisely
supported by the device, but the
Control can select valid alternatives.

E_FAILURE Error Some of the data is not supported. No
alternatives can be selected.

E_EXTENDED
EPCRW_READ Error There was a read error
EPCRW_WRITE Error There was a write error
EPCRW_JAM Error There was a card jam
EPCRW_MOTOR Error There was a conveyance motor error

EPCRW_COVER Error The conveyance motor cover was
open

EPCRW_PRINTER Error The printer has an error

EPCRW_RELEASE Warning There is a card remaining in the
entrance

EPCRW_DISPLAY Error There was a display indicator error
EPCRW_NOCARD Warning There is no card in the reader

Value Severity Meaning

PCRW_SUE_NOCARD Warning No card or card sensor position
indeterminate

PCRW_SUE_REMAINING Warning Card remaining in the entrance
PCRW_SUE_INRW Warning There is a card in the device

D - 156 Unified POS, v1.15.1 Beta1

D.11.27 POS Keyboard

POS Keyboard Example

 fire DataEvent
<?xml version="1.0" encoding="UTF-8"?>
<POSKeyboardEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/POSKeyboardEvents/
POSKeyboardEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
POSKeyboardEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="POSKeyboard">KBD1</SensorID>
<Status>0</Status>

</DataEvent>
</POSKeyboardEvent>

POS Keyboard Domain

Figure 115: POS Keyboard Domain View

Unified POS, v1.15.1 Beta1 D - 157

POS Keyboard Properties

Figure 116: POS Keyboard Properties Domain View

POS Keyboard Methods

Figure 117: POS Keyboard Methods Domain View

POS Keyboard Events

Figure 118: POS Keyboard Events Domain View

D - 158 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
N/A

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 159

D.11.28 POS Power

POS Power Example

 set PowerNotify to true
<?xml version="1.0" encoding="UTF-8"?>
<POSPower xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/POSPower/ POSPowerV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/POSPower/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="POSPower">Power1</SensorID>

</ARTSHeader>
<POSPowerBody>

<SetProperty>
<PowerNotify>PN_ENABLED</PowerNotify>

</SetProperty>
</POSPowerBody>

</POSPower>
 fire StatusUpdateEvent (power low)
<?xml version="1.0" encoding="UTF-8"?>
<POSPowerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/POSPowerEvents/
POSPowerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/POSPowerEvents/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<StatusUpdateEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</EventDateTime>
<SensorID UnifiedPOS="POSPower">Pwr1</SensorID>
<Status>PWR_SUE_UPS_LOW</Status>

</StatusUpdateEvent>
</POSPowerEvent>

D - 160 Unified POS, v1.15.1 Beta1

POS Power Domain

Figure 119: POS Power Domain View

POS Power Properties

Figure 120: POS Power Properties Domain View

Unified POS, v1.15.1 Beta1 D - 161

POS Power Methods

Figure 121: POS Power Methods Domain View

POS Power Events

Figure 122: POS Power Events Domain View

D - 162 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
restartPOS

E_ILLEGAL Error This method is not supported
shutdownPOS

E_ILLEGAL Error This method is not supported
standbyPOS

E_ILLEGAL Error This method is not supported
suspendPOS

E_ILLEGAL Error This method is not supported

Value Severity Meaning

PWR_SUE_UPS_FULL UPS Information
battery is near full charge. Can be returned if
CapUPSChargeState contains
PWR_UPS_FULL

PWR_SUE_UPS_WARNING Warning
UPS battery is near 50% charge. Can be
returned if CapUPSChargeState contains
PWR_UPS_WARNING

PWR_SUE_UPS_LOW Warning

UPS battery is near empty. Application
shutdown should be started to ensure that it
can be completed before the battery charge
is depleted. A minimum of 2 minutes of
normal system operation can be assumed
when this state is entered unless this is the
first charge state reported upon entering the
“Off” state. Can be returned if
CapUPSChargeState contains
PWR_UPS_LOW.

PWR_SUE_UPS_CRITICAL Warning
UPS is in critical state, and will in short time
be disconnected. Can be returned if
CapUPSChargeState contains
PWR_UPS_CRITICAL

PWR_SUE_FAN_STOPPED Error The CPU fan is stopped. Can be returned if
CapFanAlarm is true.

PWR_SUE_FAN_RUNNING Information The CPU fan is running. Can be returned if
CapFanAlarm is true.

PWR_SUE_TEMPERATURE_HIGH Error The CPU is running on high temperature.
Can be returned if CapHeatAlarm is true.

PWR_SUE_TEMPERATURE_OK Information The CPU is running on normal temperature.
Can be returned if CapHeatAlarm is true.

Unified POS, v1.15.1 Beta1 D - 163

PWR_SUE_SHUTDOWN Error The system will shutdown immediately

PWR_SUE_BAT_LOW Warning
The system remaining battery capacity is at
or below the low battery threshold and the
system is operating from the battery

PWR_SUE_BAT_CRITICAL Error
The system remaining battery capacity is at
or below the critically low battery threshold
and the system is operating from the battery.

PWR_SUE_BAT_CAPACITY_REM
AINING Information The BatteryCapacityRemaining property

has been updated
PWR_SUE_RESTART Warning The system will restart immediately.

PWR_SUE_STANDBY Information The system is requesting a transition to the
Standby state

PWR_SUE_USER_STANDBY Information The system is requesting a transition to the
Standby state as a result of user input.

PWR_SUE_SUSPEND Information The system is requesting a transition to the
Suspend state.

PWR_SUE_USER_SUSPEND Information The system is requesting a transition to the
Suspend state as a result of user input

PWR_SUE_PWR_SOURCE Information The PowerSource property has been updated
PWR_SUE_SHUTDOWN Error The system will shutdown immediately

PWR_SUE_BAT_LOW Warning
The system remaining battery capacity is at
or below the low battery threshold and the
system is operating from the battery

PWR_SUE_BAT_CRITICAL Error
The system remaining battery capacity is at
or below the critically low battery threshold
and the system is operating from the battery.

PWR_SUE_BAT_CAPACITY_REM
AINING Information The BatteryCapacityRemaining property

has been updated
PWR_SUE_RESTART Warning The system will restart immediately.

PWR_SUE_STANDBY Information The system is requesting a transition to the
Standby state

PWR_SUE_USER_STANDBY Information The system is requesting a transition to the
Standby state as a result of user input.

PWR_SUE_SUSPEND Information The system is requesting a transition to the
Suspend state.

PWR_SUE_USER_SUSPEND Information The system is requesting a transition to the
Suspend state as a result of user input

PWR_SUE_PWR_SOURCE Information The PowerSource property has been updated

D - 164 Unified POS, v1.15.1 Beta1

D.11.29 POS Printer

POS Printer Example
 changePrintSide(PTR_PS_SIDE1)
<?xml version="1.0" encoding="UTF-8"?>
<POSPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/POSPrinter/ POSPrinterV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/POSPrinter/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="POSPrinter">PTR1</SensorID>

</ARTSHeader>
<POSPrinterBody>

<ChangePrintSide>
<Side>PTR_PS_SIDE1</Side>

</ChangePrintSide>
</POSPrinterBody>

</POSPrinter>

 printNormal(PTR_S_SLIP, “Some String Data”)

<?xml version="1.0" encoding="UTF-8"?>
<POSPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/POSPrinter/ POSPrinterV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/POSPrinter/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>587689</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="POSPrinter">Prt1</SensorID>

</ARTSHeader>
<POSPrinterBody>

<PrintNormal>
<Station>PTR_S_SLIP</Station>
<Data>Some String Data</Data>

</PrintNormal>
</POSPrinterBody>

</POSPrinter>

Unified POS, v1.15.1 Beta1 D - 165

POS Printer Domain

Figure 123: POS Printer Domain View

D - 166 Unified POS, v1.15.1 Beta1

POS Printer Properties

Figure 124: POS Printer Properties Domain View

POS Printer Methods

Figure 125: POS Printer Methods Domain View

Unified POS, v1.15.1 Beta1 D - 167

POS Printer Events

Figure 126: POS Printer Events Domain View

D - 168 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
beginInsertion

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error The slip station does not exist or an
invalid timeout parameter was specified.

E_TIMEOUT Warning The specified time has elapsed without
the form being properly inserted

beginRemoval

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Information
The Fiscal Printer does not have a slip
station or an invalid timeout parameter
was specified.

E_TIMEOUT Warning The specified time has elapsed without
the form being properly removed.

changePrintSide

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error

One of the following errors occurred:
* The slip station does not exist
* the printer does not support both sides
printing
* an invalid side parameter was specified

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip station cartridge is empty.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip station cartridge has been

removed.
EPTR_SLP_HEAD_CL
EANING Warning A slip station head is being cleaned.

cutPaper

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error

An invalid percentage was specified, the
receipt station does not exist, the receipt
printer does not have paper cutting
ability, or Page Mode for the receipt
station is active.

EPTR_COVER_OPEN Error The printer cover is open.
EPTR_REC_EMPTY Error The receipt station is out of paper.

Unified POS, v1.15.1 Beta1 D - 169

endInsertion

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Warning The Fiscal Printer is not in slip insertion
mode.

EPTR_COVER_OPEN Warning The device was taken out of insertion
mode while the Printer cover was open.

EPTR_SLP_EMPTY Warning The device was taken out of insertion
mode without a form being inserted.

endRemoval

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Warning The Printer is not in slip removal mode.

EFPTR_SLP_FORM Warning The device was taken out of removal
mode while a form was still present.

markFeed

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error
The receipt print station does not support
the given mark sensed paper handling
function.

EPTR_COVER_OPEN Error The printer cover is open.
EPTR_REC_EMPTY Error The receipt paper is empty.

pageModePrint

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error

The specified PageModeStation does not
exist, or CapxxxPageMode is false, or
the specified
PageModeStation is not in Page Mode
and control is
set to PTR_PM_NORMAL,
PTR_PM_PRINT_SAVE,
or PTR_PM_CANCEL

printBarCode

E_BUSY Warning Cannot perform request while output is
in progress.

D - 170 Unified POS, v1.15.1 Beta1

E_ILLEGAL Error

One of the following parameter errors
occurred:
* station does not exist
* station does not support bar code
printing
* height or width is zero or too big
* symbology is not supported
* not all characters in data are supported
by symbology
* alignment is invalid or too big
* Code Set is not specified for
PTR_BCS_Code128_Parsed at start of
data
* textPosition is invalid, or
* the RotateSpecial rotation is not
supported

EPTR_COVER_OPEN Error The printer cover is open.
EPTR_REC_EMPTY Error The receipt paper is empty.
EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

printBitmap

E_BUSY Warning Cannot perform while output is in
progress.

E_ILLEGAL Warning
The Fiscal Printer does not support
duplicate receipts or there is no buffered
transaction to print

EFPTR_WRONG_STA
TE Warning The Fiscal Printer is not currently in the

Monitor state
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

printFiscalDocumentLine

E_BUSY Warning Cannot perform while output is in
progress.

Unified POS, v1.15.1 Beta1 D - 171

E_ILLEGAL Error

One of the following parameter errors
occurred:
* station does not exist
* station does not support bitmap
printing
* width parameter is invalid or too big
* alignment is invalid or too big

EPTR_TOOBIG Error
The bitmap is either too wide to print
without transformation, or it is too big to
transform

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_BADFORMAT Error The specified file is either not a bitmap
file, or it is in an unsupported format.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

printImmediate

E_ILLEGAL Error
The specified station does not exist, or
the station is in Page Mode and the
device does not support direct printing in
Page Mode.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING Warning A journal cartridge head is being cleaned

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper

D - 172 Unified POS, v1.15.1 Beta1

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

printMemoryBitmap

E_BUSY Warning Cannot perform while output is in
progress.

E_ILLEGAL Error

One of the following parameter errors
occurred:
* station does not exist
* station does not support bitmap
printing
* width parameter is invalid or too big
* alignment is invalid or too big

EPTR_TOOBIG Error
The bitmap is either too wide to print
without transformation, or it is too big to
transform.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_BADFORMAT Error The specified file is either not a bitmap
file, or it is in an unsupported format.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

Unified POS, v1.15.1 Beta1 D - 173

printNormal
E_ILLEGAL Error The specified station does not exist.

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING Warning A journal cartridge head is being

cleaned.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

printTwoNormal

E_ILLEGAL Error
The specified stations do not support
concurrent printing, or Page Mode is
active for either station specified in
stations.

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING Warning A journal cartridge head is being

cleaned.

D - 174 Unified POS, v1.15.1 Beta1

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

rotatePrint

E_ILLEGAL Error
The specified station does not exist, or
the station does not support the specified
rotation

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

setBitmap

Unified POS, v1.15.1 Beta1 D - 175

E_ILLEGAL Error

One of the following errors occurred:
* bitmapNumber is invalid
* station does not exist
* station does not support bitmap
printing
* width is too big
* alignment is invalid or too big

E_NOEXIST Error fileName was not found.

EPTR_TOOBIG Error
The bitmap is either too wide to print
without transformation, or it is too big to
transform.

EPTR_BADFORMAT Error The specified file is either not a bitmap
file, or it is in an unsupported format.

setLogo
E_ILLEGAL Error An invalid location was specified

transactionPrint

E_ILLEGAL Error The specified station does not exist, or
CapTransaction is false.

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING Warning A journal cartridge head is being

cleaned.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Error The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING Warning A slip cartridge head is being cleaned.

validateData

D - 176 Unified POS, v1.15.1 Beta1

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_ILLEGAL Error

Some of the data is not precisely
supported by the printer station, but the
Service can select valid alternatives. This
exception can also be thrown if an escape
sequence is not supported while either
Page Mode or rotate sideways is active.

E_FAILURE Error Some of the data is not supported. No
alternatives can be selected.

Value Severity Meaning
PTR_SUE_COVER_OPEN Error Printer cover is open.
PTR_SUE_COVER_OK Error Printer cover is closed.
PTR_SUE_JRN_EMPTY Error No journal paper
PTR_SUE_JRN_NEAREMPTY Warning Journal paper is low
PTR_SUE_JRN_PAPEROK Information Journal paper is ready
PTR_SUE_REC_EMPTY Error No receipt paper.
PTR_SUE_REC_NEAREMPTY Warning Receipt paper is low
PTR_SUE_REC_PAPEROK Information Receipt paper is ready.

PTR_SUE_SLP_EMPTY Error
No slip form is inserted, and no
slip form has been detected at the
entrance to the slip station.

PTR_SUE_SLP_NEAREMPTY Warning Almost at the bottom of the slip
form.

PTR_SUE_SLP_PAPEROK Information Slip form is inserted

PTR_SUE_IDLE Information
All asynchronous output has
finished, either successfully or
because output has been cleared.

PTR_SUE_JRN_CARTRIDGE_EMPTY Warning
A journal cartridge needs to be
replaced. Cartridge is empty or
not present.

PTR_SUE_JRN_HEAD_CLEANING Information A journal cartridge has begun
cleaning.

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY Warning A journal cartridge is near end

PTR_SUE_JRN_CARTRIDGE_OK Information
All journal cartridges are ready. It
gives no indication of the amount
of media in the cartridge

PTR_SUE_REC_CARTRIDGE_EMPTY Warning
A receipt cartridge needs to be
replaced. Cartridge is empty or
not present.

PTR_SUE_REC_HEAD_CLEANING Information A receipt cartridge has begun
cleaning.

PTR_SUE_REC_CARTRIDGE_NEAREMPTY Warning A receipt cartridge is near end.

Unified POS, v1.15.1 Beta1 D - 177

PTR_SUE_REC_CARTRIDGE_OK Information
All receipt cartridges are ready. It
gives no indication of the amount
of media in the cartridge

PTR_SUE_SLP_CARTRIDGE_EMPTY Warning
A slip cartridge needs to be
replaced. Cartridge is empty or
not present

PTR_SUE_SLP_HEAD_CLEANING Information A slip cartridge has begun
cleaning.

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY Warning A slip cartridge is near end.

PTR_SUE_SLP_CARTRIDGE_OK Information
All slip cartridges are ready. It
gives no indication of the amount
of media in the cartridge.

PTR_SUE_JRN_COVER_OPEN Error Journal station cover is open
PTR_SUE_JRN_COVER_OK Information Journal station cover is closed
PTR_SUE_REC_COVER_OPEN Error Receipt station cover is open.
PTR_SUE_REC_COVER_OK Information Receipt station cover is closed
PTR_SUE_SLP_COVER_OPEN Error Slip station cover is open
PTR_SUE_SLP_COVER_OK Information Slip station cover is closed.

D - 178 Unified POS, v1.15.1 Beta1

D.11.30 Remote Order Display

Remote Order Display Example
Display Data (Medium Hamburger) on the Grill Kitchen Display
<?xml version="1.0" encoding="UTF-8"?>
<RemoteOrderDisplay xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RemoteOrderDisplay/
RemoteOrderDisplayV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
RemoteOrderDisplay/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="RemoteOrderDisplay">

 Grill Kitchen Display
</SensorID>

</ARTSHeader>
<RemoteOrderDisplayBody>

<DisplayData>
<Units>1</Units>
<Row>1</Row>
<Column>1</Column>
<Attribute>0</Attribute>
<Data>\u0048\u0061\u006d\u0062\u0065\u0067\u0065\u0072

</Data>
</DisplayData>

</RemoteOrderDisplayBody>
</RemoteOrderDisplay>

Unified POS, v1.15.1 Beta1 D - 179

Remote Order Display Domain

Figure 127: Remote Order Display Domain View

Remote Order Display Properties

Figure 128: Remote Order Display Properties Domain View

D - 180 Unified POS, v1.15.1 Beta1

Remote Order Display Methods

Figure 129: Remote Order Display Methods Domain View

Unified POS, v1.15.1 Beta1 D - 181

Remote Order Display Events

Figure 130: Remote Order Display Events Domain View

D - 182 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
checkHealth

EROD_NOUNITS Error The CurrentUnitID property is zero.

E_FAILURE Error An error occurred while communicating with the
video unit indicated in CurrentUnitID property.

clearInput
EROD_NOUNITS Error The CurrentUnitID property is zero

clearOutput
EROD_NOUNITS Error The CurrentUnitID property is zero

clearVideoRegion

E_FAILURE Error
An error occurred while communicating with
one of the video units indicated in units. The
ErrorUnits and ErrorString properties are
updated.

controlClock

EROD_BADCLK Error

A ROD_CLK_PAUSE, ROD_CLK_RESUME,
ROD_CLK_START, ROD_CLK_MOVE
command was requested and the specified
clockId has not been initialized by the
ROD_CLK_START command.

EROD_NOCLOCKS Error The ROD_CLK_START failed because the
number of SystemClocks has been reached.

E_FAILURE Error
An error occurred while communicating with
one of the video units indicated in the units
parameter. The ErrorUnits and ErrorString
properties are updated.

E_BUSY Warning
When a ROD_CLK_START command is
requested but the specified clockId is in use. The
ErrorUnits and ErrorString properties are
updated.

controlCursor

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

copyVideoRegion

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

displayData

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

drawBox

Unified POS, v1.15.1 Beta1 D - 183

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

freeVideoRegion

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

resetVideo

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

restoreVideoRegion

EROD_NOREGION Error The bufferId does not contain a previously saved
video region

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

saveVideoRegion

E_ILLEGAL Error
bufferId, row, column, height, or width is out of
range. The ErrorUnits and ErrorString properties
are updated.

EROD_NOBUFFERS Error Requested buffer exceeds the number of
SystemVideoSaveBuffers.

EROD_NOROOM Error
All the buffer memory has been allocated for a
specific unit. The ErrorUnits and ErrorString
properties are updated.

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

selectCharacterSet

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

setCursor

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

transactionDisplay

E_BUSY Warning
Cannot perform while output is in progress for
one of the video units indicated in units. The
ErrorUnits and ErrorString properties are
updated.

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

updateVideoRegionAttribute

D - 184 Unified POS, v1.15.1 Beta1

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

videoSound

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 185

D.11.31 RFID Scanner

RFID Scanner Example
Retrieve CapMultipleProtocols Property Response
<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response" ActionCode="Read">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<Response ResponseCode="OK">

<RequestID>98765</RequestID>
<ResponseTimestamp>2001-12-17T09:30:47.0Z
</ResponseTimestamp>

</Response>
<SensorID UnifiedPOS="RFIDScanner">String</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<GetProperty>
<CapMultipleProtocols>RFID_CMP_EPC0
</CapMultipleProtocols>
<CapMultipleProtocols>RFID_CMP_0PLUS
</CapMultipleProtocols>

</GetProperty>
</RFIDScannerBody>

</RFIDScanner>

Set ProtocolMask Property

<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<SetProperty>
<ProtocolMask>RFID_SDT_EPC0</ProtocolMask>

</SetProperty>
</RFIDScannerBody>

</RFIDScanner>
RFID Scanner Data Event
<?xml version="1.0" encoding="UTF-8"?>
<RFIDScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScannerEvents/
RFIDScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
RFIDScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1"
ActionCode="Begin">

D - 186 Unified POS, v1.15.1 Beta1

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SourceName>POS1Scanner</SourceName>
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner</SensorID>
<Status>0</Status>
<Properties>

<CheckHealthText>String</CheckHealthText>
<DataCount>0</DataCount>
<CurrentTagID>\u005b\u0029\u003e\u001e\u0030\u0000

 </CurrentTagID>
<CurrentTagIDLength>0</CurrentTagIDLength>
<CurrentTagProtocol>0</CurrentTagProtocol>
<CurrentTagUserData>
\u005b\u0029\u003e\u001e\u0030\u0000\u001d\u0030

 \u0030\u0030\u0031\u001d\u0032\u001d\u0033
 \u001d\u0031\u0032\u0033
 </CurrentTagUserData>

</Properties>
</DataEvent>

</RFIDScannerEvent>
Read Tags Request
<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Initiate">
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<ReadTags>
<Cmd>RFID_RT_ID</Cmd>
<FilterID>

\u005b\u0029\u003e\u001e\u0030\u0000
</FilterID>
<FilterMask>

\u0029\u003e\u001e\u0030\u0000\u005b
</FilterMask>
<Start>0</Start>
<Length>0</Length>
<Timeout>0</Timeout>
<Password>

\u005b\u0029\u003e\u001e\u0030\u0000
</Password>

</ReadTags>
</RFIDScannerBody>

</RFIDScanner>
Write Tags Request
<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

Unified POS, v1.15.1 Beta1 D - 187

<ARTSHeader MessageType="Request" ActionCode="Begin">
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner
</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<WriteTagData>
<TagID>

\u0029\u003e\u001e\u0030\u0000\u005b
 </TagID>

<UserData>
\u005b\u0029\u003e\u001e\u0030\u0000

 </UserData>
<Start>0</Start>
<Timeout>0</Timeout>
<Password>

\u022b\u0029\u003e\u001e\u0030\u0000
 </Password>

</WriteTagData>
</RFIDScannerBody>

</RFIDScanner>

D - 188 Unified POS, v1.15.1 Beta1

RFID Scanner Domain

Figure 131: RFID Scanner Domain View

RFID Scanner Properties

Figure 132: RFID Scanner Properties Domain View

Unified POS, v1.15.1 Beta1 D - 189

RFID Scanner Methods

Figure 133: RFID Scanner Methods Domain View

RFID Scanner Events

Figure 134: RFID Scanner Events Domain View

D - 190 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
disableTag

E_TIMEOUT Error Allowed execution time has expired.

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 191

D.11.32 Scale

Scale Example
Service initializes AsyncMode = False
<?xml version="1.0" encoding="UTF-8"?>
<Scale xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scale/ ScaleV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scale/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scale">Grocery1</SensorID>

</ARTSHeader>
<ScaleBody>

<SetProperty>
<AsyncMode>false</AsyncMode>

</SetProperty>
</ScaleBody>

</Scale>
User places item on scale

User commands terminal to request weight (keypad press)

Application sends readWeight method call to the service via control
<?xml version="1.0" encoding="UTF-8"?>
<Scale xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:schemaLocation="http://

www.omg.org/UnifiedPOS/Scale/ ScaleV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scale/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scale">Grocery1</SensorID>

</ARTSHeader>
<ScaleBody>

<ReadWeight>
<WeightData xs:nil="true"/>
<Timeout>30</Timeout>

</ReadWeight>
</ScaleBody>

</Scale>
Service sends device specific weight request to the scale

Scale responds with scale weight “15034” on scale interface

Service returns the weight value in weightData parameter “15034”
<?xml version="1.0" encoding="UTF-8"?>

D - 192 Unified POS, v1.15.1 Beta1

<Scale xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
www.omg.org/UnifiedPOS/Scale/ ScaleV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scale/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scale">Grocery1</SensorID>

</ARTSHeader>
<ScaleBody>

<ReadWeight>
<WeightData>15034</WeightData>
<Timeout>30</Timeout>

</ReadWeight>
</ScaleBody>

</Scale>

Application reads the weight (15.034 lbs) as returned in weightData

Scale Domain

Figure 135: Scale Domain View

Unified POS, v1.15.1 Beta1 D - 193

Scale Properties

Figure 136: Scale Properties Domain View

Scale Methods

Figure 137: Scale Methods Domain View

D - 194 Unified POS, v1.15.1 Beta1

Scale Events

Figure 138: Scale Events Domain View

Unified POS, v1.15.1 Beta1 D - 195

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
displayText

E_ILLEGAL Error

An invalid text was specified -- the text
contains more characters than
MaxDisplayTextChars, or CapDisplayText
is false.

readWeight
E_ILLEGAL Error An invalid timeout parameter was specified.
E_BUSY Warning An asynchronous readWeight is in progress.

E_TIMEOUT Error A stable non-zero weight was not available
before timeout milliseconds elapsed

ESCAL_OVERWEIGHT Error The weight was over MaximumWeight.

ESCAL_UNDER_ZERO Error
The scale is reporting a weight that is less
than zero due to a calibration error. The
scale should be recalibrated.

ESCAL_SAME_WEIGHT Warning

The scale is reporting that the item/weight
on the scale is identical to the previously
reported item/weight; i.e., the item has not
been removed from the scale.

zeroScale
E_ILLEGAL Error CapZeroScale is false.
E_BUSY Warning An asynchronous readWeight is in progress.

Value Severity Meaning

SCAL_SUE_STABLE_WEIGHT Information
Scale weight is stable. The
ScaleLiveWeight property is updated
before event delivery

SCAL_SUE_WEIGHT_UNSTABLE Warning Scale weight is unstable.
SCAL_SUE_WEIGHT_ZERO Warning Scale weight is zero
SCAL_SUE_WEIGHT_OVERWEIGHT Warning Scale weight is overweight
SCAL_SUE_NOT_READY Warning Scale is not ready to weigh
SCAL_SUE_WEIGHT_UNDER_ZERO Warning Scale weight is under zero

D - 196 Unified POS, v1.15.1 Beta1

D.11.33 Scanner Device

Scanner Device Example
Application sets DecodeData = True
<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<SetProperty>
<DecodeData>true</DecodeData>

</SetProperty>
< /ScannerBody>
</Scanner>
Application sets DataEventEnabled = True
<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<SetProperty>
<DataEventEnabled>false</DataEventEnabled>

</SetProperty>
</ScannerBody>

</Scanner>
User scans bar code with data “5000174289657<CR>”

Scanner decodes bar code, sends data to scanner service

Scanner service sets ScanData property = “5000174289657”

Scanner service sets ScanDataType = “SCAN_SDT_EAN13”

Unified POS, v1.15.1 Beta1 D - 197

Scanner service notifies application (through control) of asynchronous data event
<?xml version="1.0" encoding="UTF-8"?>
<ScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ScannerEvents/
ScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ScannerEvents/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>3</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>
<Status>0</Status>

</DataEvent>
</ScannerEvent>
Application services event (reads ScanData or ScanDataLabel, and ScanDataType)
Request
<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<GetProperty>
<ScanData/>
<ScanDataLabel/>

</GetProperty>
</ScannerBody>

</Scanner>
Response
<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response" ActionCode="Read">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<GetProperty>
<ScanData>\u005b\u0029\u003e\u001e\u0030\u0000

 </ScanData>
<ScanDataType>SCAN_SDT_EAN13</ScanDataType>

</GetProperty>
</ScannerBody>

</Scanner>

D - 198 Unified POS, v1.15.1 Beta1

Scanner Domain

Figure 139: Scanner Domain View

Scanner Properties

Figure 140: Scanner Properties Domain View

Scanner Methods

Figure 141: Scanner Methods Domain View

Unified POS, v1.15.1 Beta1 D - 199

Scanner Events

Figure 142: Scanner Events Domain View

D - 200 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.
Device Specific Status Messages

Method Value Severity Meaning
N/A

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 201

D.11.34 Signature Capture

Signature Capture Example
 beginCapture(formName)
<?xml version="1.0" encoding="UTF-8"?>
<SignatureCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCapture/
SignatureCaptureV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SignatureCapture/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>

</ARTSHeader>
<SignatureCaptureBody>

<BeginCapture>
<FormName>formName</FormName>

</BeginCapture>
</SignatureCaptureBody>

</SignatureCapture>
 fire DataEvent
<?xml version="1.0" encoding="UTF-8"?>
<SignatureCaptureEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCaptureEvents/
SignatureCaptureEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
SignatureCaptureEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>2</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>
<Status>0</Status>

</DataEvent>
</SignatureCaptureEvent>
 get PointArray
Request
<?xml version="1.0" encoding="UTF-8"?>
<SignatureCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCapture/
SignatureCaptureV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SignatureCapture/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>3</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>

</ARTSHeader>
<SignatureCaptureBody>

<GetProperty>
<PointArray/>

</GetProperty>
</SignatureCaptureBody>

</SignatureCapture>

D - 202 Unified POS, v1.15.1 Beta1

Response
<?xml version="1.0" encoding="UTF-8"?>
<SignatureCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCapture/
SignatureCaptureV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SignatureCapture/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<Response>

<RequestID>3</RequestID>
<ResponderID>SigCap003</ResponderID>

</Response>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>

</ARTSHeader>
<SignatureCaptureBody>

<GetProperty>
<PointArray>

<Point>
<LowX>127</LowX>
<HighX>127</HighX>
<LowY>127</LowY>
<HighY>127</HighY>

</Point>
</PointArray>

</GetProperty>
</SignatureCaptureBody>

</SignatureCapture>

Unified POS, v1.15.1 Beta1 D - 203

Signature Capture Domain

Figure 143: Signature Capture Domain View

Signature Capture Properties

Figure 144: Signature Capture Properties Domain View

D - 204 Unified POS, v1.15.1 Beta1

Signature Capture Methods

Figure 145: Signature Capture Methods Domain View

Signature Capture Events

Figure 146: Signature Capture Events Domain View

Unified POS, v1.15.1 Beta1 D - 205

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
beginCapture

E_NOEXIST Error formName was not found.
endCapture

E_ILLEGAL Warning Signature capture was not in
progress

Value Severity Meaning
N/A

D - 206 Unified POS, v1.15.1 Beta1

D.11.35 Smart Card Reader / Writer

Smart Card Reader / Writer Example
beginInsertion
<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<BeginInsertion>
<Timeout>30000</Timeout>

</BeginInsertion>
</SmartCardRWBody>

</SmartCardRW>
endInsertion
<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">2</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<EndInsertion/>
</SmartCardRWBody>

</SmartCardRW>
fire DataEvent
<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRWEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardEvents/
SmartCardRWEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
SmartCardEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information" Mode="Production" Priority="-0">
<SequenceNumber>3</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>
<Status>0</Status>

</DataEvent>
</SmartCardRWEvent>
readData
Request
<?xml version="1.0" encoding="UTF-8"?>

Unified POS, v1.15.1 Beta1 D - 207

<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<ReadData>
<Action>SC_READ_DATA</Action>
<Count/>
<Data/>

</ReadData>
</SmartCardRWBody>

</SmartCardRW>
Response
<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<ReadData>
<Action>SC_READ_DATA</Action>
<Count>10</Count>
<Data>1234568790</Data>

</ReadData>
</SmartCardRWBody>

</SmartCardRW>
beginRemoval
<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>5</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<BeginRemoval>
<Timeout>30000</Timeout>

</BeginRemoval>
</SmartCardRWBody>

</SmartCardRW>

D - 208 Unified POS, v1.15.1 Beta1

endRemoval
<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>6</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<EndRemoval/>
</SmartCardRWBody>

</SmartCardRW>

Smart Card Reader Domain

Figure 147: Smart Card Reader Domain View

Unified POS, v1.15.1 Beta1 D - 209

Smart Card Reader Properties

Figure 148: Smart Card Reader Properties Domain View

Smart Card Reader Methods

Figure 149: Smart Card Reader Methods Domain View

D - 210 Unified POS, v1.15.1 Beta1

Smart Card Reader Events

Figure 150: Smart Card Reader Events Domain View

Unified POS, v1.15.1 Beta1 D - 211

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Method Value Severity Meaning
beginInsertion

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The SCR/W does not exist or an
invalid timeout parameter was
specified.

E_TIMEOUT Error
The specified time has elapsed
without the smart card being properly
inserted.

beginRemoval

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The SCR/W does not exist or an
invalid timeout parameter was
specified.

E_TIMEOUT Warning
The specified time has elapsed
without the smart card being properly
inserted.

endInsertion

E_ILLEGAL Warning The SCR/W is not in smart card
insertion mode.

E_FAILURE Warning A card is not inserted in the SCR/W.
endRemoval

E_ILLEGAL Warning The SCR/W is not in smart card
removal mode.

E_FAILURE Warning There is a card in the SCR/W.
readData

E_CLAIMED Warning
Cannot read because the smart card
present in the SCR/W is claimed by
another application.

E_ILLEGAL Error
The action is not valid for the type of
smart card present in the SCR/W or
the count value is not valid for the
smart card present in the SCR/W.

writeData

E_CLAIMED Warning
Cannot read because the smart card
present in the SCR/W is claimed by
another application.

D - 212 Unified POS, v1.15.1 Beta1

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

E_ILLEGAL Error
The action is not valid for the type of
smart card present in the SCR/W or
the count value is not valid for the
smart card present in the SCR/W.

E_EXTENDED
ESC_READ Error There was a read error
ESC_WRITE Error There was a write error

ESC_TORN Warning
The smart card was prematurely
removed from the SCR/W
unexpectedly.

ESC_NO_CARD Warning There is no card detected in the SCR/
W but a card was expected

Value Severity Meaning

SC_SUE_NO_CARD Warning No card detected in the SCR/W
Device.

SC_SUE_CARD_PRESENT Information There is a card in the device.

Unified POS, v1.15.1 Beta1 D - 213

D.11.36 Tone Indicator

Tone Indicator Example
 set Tone1Frequency
<?xml version="1.0" encoding="UTF-8"?>
<ToneIndicator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ToneIndicator/
ToneIndicatorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ToneIndicator/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Begin">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ToneIndicator">Buzzer1</SensorID>

</ARTSHeader>
<ToneIndicatorBody>

<SetProperty>
<Tone1Pitch>1000</Tone1Pitch>

</SetProperty>
</ToneIndicatorBody>

</ToneIndicator>
 Sound(3, 100)
<?xml version="1.0" encoding="UTF-8"?>
<ToneIndicator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ToneIndicator/
ToneIndicatorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ToneIndicator/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ToneIndicator">Buzzer1</SensorID>

</ARTSHeader>
<ToneIndicatorBody>

<Sound>
<NumberOfCycles>3</NumberOfCycles>
<InterSoundWait>100</InterSoundWait>

</Sound>
</ToneIndicatorBody>

</ToneIndicator>

D - 214 Unified POS, v1.15.1 Beta1

Tone Indicator Domain

Figure 151: Tone Indicator Domain View

Tone Indicator Properties

Figure 152: Tone Indicator Properties Domain View

Unified POS, v1.15.1 Beta1 D - 215

Tone Indicator Methods

Figure 153: Tone Indicator Methods Domain View

Tone Indicator Events

Figure 154: Tone Indicator Events Domain View

D - 216 Unified POS, v1.15.1 Beta1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error
Codes and Message Severity Codes” on page 8.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 11.

Device Specific Status Messages

Method Value Severity Meaning
sound

E_CLAIMED Warning

Indicates that another application
has claimed the device and has
taken over the tone device causing
the sound from this method to be
interrupted

E_ILLEGAL Error

One of the following errors
occurred:
• numberOfCycles is neither a
positive, non-zero value nor
FOREVER.
• numberOfCycles is FOREVER
when AsyncMode is false.
• A negative interSoundWait was
specified
• A negative interToneWait was
specified

Value Severity Meaning
N/A

Unified POS, v1.15.1 Beta1 D - 217

D.12 NAFEM Protocol
The XMLPOS Common Data components are used in the ProCon interface to National Association of Food Equipment
Manufacturers (NAFEM) Hardware.

D.12.1 Administration Enterprise Group

Figure 155: Administrative Enterprise Group Domain View

D - 218 Unified POS, v1.15.1 Beta1

D.12.2 Asset Management Enterprise Group

Figure 156: Asset Management Enterprise Group Domain View

Unified POS, v1.15.1 Beta1 D - 219

D.12.3 Bulk Transfer Enterprise Group

Figure 157: Bulk Transfer Enterprise Group Domain View

D - 220 Unified POS, v1.15.1 Beta1

D.12.4 Clock Calendar Enterprise Group

Figure 158: Clock Calendar Enterprise Group Domain View

Unified POS, v1.15.1 Beta1 D - 221

D.12.5 Inventory Management Enterprise Group

Figure 159: Inventory Management Enterprise Group Domain View

D - 222 Unified POS, v1.15.1 Beta1

D.12.6 Maintenance Enterprise Group

Figure 160: Maintenance Enterprise Group Domain View

Unified POS, v1.15.1 Beta1 D - 223

D.12.7 Monitor Enterprise Group

Figure 161: Monitor Enterprise Group Domain View

D - 224 Unified POS, v1.15.1 Beta1

D.12.8 Notification Enterprise Group

Figure 162: Notification Enterprise Group Domain View

Unified POS, v1.15.1 Beta1 D - 225

D.12.9 Security Enterprise Group

Figure 163: Security Enterprise Group Domain View

D - 226 Unified POS, v1.15.1 Beta1

D.12.10 Utility Enterprise Group

Figure 164: Utility Enterprise Group Domain View

Unified POS, v1.15.1 Beta1 D - 227

D.13 Distributed Files
The following is a list of the XSD Schema files that are provided to support the XMLPOS environment.

BeltEventV1.14.1.xsd KeylockEventV1.14.1.xsd
BeltV1.14.1.xsd KeylockV1.14.1.xsd
BillAcceptorEventV1.14.1.xsd LightsEventV1.14.1.xsd
BillAcceptorV1.14.1.xsd LightsV1.14.1.xsd
BillDispenserEventV1.14.1.xsd LineDisplayEventV1.14.1.xsd
BillDispenserV1.14.1.xsd LineDisplayV1.14.1.xsd
BiometricsEventV1.14.1.xsd MICREventV1.14.1.xsd
BiometricsV1.14.1.xsd MICRV1.14.1.xsd
BumpBarEventV1.14.1.xsd MotionSensorEventV1.14.1.xsd
BumpBarV1.14.1.xsd MotionSensorV1.14.1.xsd
CashChangerEventV1.14.1.xsd MSREventV1.14.1.xsd
CashChangerV1.14.1.xsd MSRV1.14.1.xsd
CashDrawerEventV1.14.1.xsd PINPadEventV1.14.1.xsd
CashDrawerV1.14.1.xsd PINPadV1.14.1.xsd
CATEventV1.14.1.xsd PointCardRWEventV1.14.1.xsd
CATV1.14.1.xsd PointCardRWV1.14.1.xsd
CheckScannerEventV1.14.1.xsd POSKeyboardEventV1.14.1.xsd
CheckScannerV1.14.1.xsd POSKeyboardV1.14.1.xsd
CoinAcceptorEventV1.14.1.xsd POSPowerEventV1.14.1.xsd
CoinAcceptorV1.14.1.xsd POSPowerV1.14.1.xsd
CoinDispenserEventV1.14.1.xsd POSPrinterEventV1.14.1.xsd
CoinDispenserV1.14.1.xsd POSPrinterV1.14.1.xsd
ElectronicJournalEventV1.14.1.xsd RemoteOrderDisplayEventV1.14.1.xsd
ElectronicJournalV1.14.1.xsd RemoteOrderDisplayV1.14.1.xsd
ElectronicValueRWEventV1.14.1.xsd RFIDScannerEventV1.14.1.xsd
ElectronicValueRWV1.14.1.xsd RFIDScannerV1.14.1.xsd
FiscalPrinterEventV1.14.1.xsd ScaleEventV1.14.1.xsd
FiscalPrinterV1.14.1.xsd ScaleV1.14.1.xsd
GateEventV1.14.1.xsd ScannerEventV1.14.1.xsd
GateV1.14.1.xsd ScannerV1.14.1.xsd
HardTotalsEventV1.14.1.xsd SignatureCaptureEventV1.14.1.xsd
HardTotalsV1.14.1.xsd SignatureCaptureV1.14.1.xsd
ImageScannerEventV1.14.1.xsd SmartCardRWEventV1.14.1.xsd
ImageScannerV1.14.1.xsd SmartCardRWV1.14.1.xsd
ItemDispenserEventV1.14.1.xsd ToneIndicatorEventV1.14.1.xsd
ItemDispenserV1.14.1.xsd ToneIndicatorV1.14.1.xsd

D - 228 Unified POS, v1.15.1 Beta1

D.14 Glossary

Term Definition

Unified POS, v1.15.1 Beta1 E - 1

Annex E

Change History

E.1 Release Version 1.4
Version 1.4 is the first release of the UnifiedPOS standard, and was issued on February 25, 1999. It derives its
release version number from the corresponding OPOS and JavaPOS standard version numbers 1.4. In an attempt
to prevent confusion, all peripheral device classifications that are present in the version 1.4 standard of OPOS
and JavaPOS are “grandfathered” into this first release of UnifiedPOS standard.

The Chapters that are shown in this standard shall be used as guidelines for future peripheral device
classifications to be included in subsequent versions of the standards. Therefore, one can be assured that if they
have version 1.4 of the UnifiedPOS standard it will be the basis for the version 1.4 of the OPOS or JavaPOS
standard. This cross-linking of standard version numbers will be maintained in the future.

E.2 Release Version 1.5
Version 1.5 of this specification, issued on September 24, 2000, contains several new chapters (devices) and
updates to existing chapters that provide clarifications and corrections to Version 1.4. These are detailed below,
with links to the corresponding pages and/or chapters as appropriate.

• Updated the Version and issue date on the front page.

• Updated the Table of Contents to reflect additional chapters and headings.

• Updated the “Table of extensions to UML for UnifiedPOS.”

• Updated the Package Diagram.

• Added another condition that causes the Device to exit the Error state.

• Updated the Power State Diagram.

• Updated the Device State Diagram.

• Updated, throughout the specification, the mutability of the DirectIOEvent attributes Data and Obj to reflect the
fact that they are read-write.

• Updated, throughout the specification, the mutability of the ErrorEvent attribute ErrorResponse to reflect the fact
that it is read-write.

• Updated the case of the first letter of all Properties, and Event Attributes to uppercase to make consistent
throughout the specification.

• Added the Base Control Class Diagram.

• Updated the Event Interfaces Diagram.

• Updated the Bump Bar chapter header to remove the “example” status.

• Updated the Bump Bar Class Diagram.

• Updated the Bump Bar State Diagram.

E - 2 Unified POS, v1.15.1 Beta1

• Added a new chapter describing the Cash Changer, including 1.5 specific updates. See Chapter 8.

• Added a new chapter describing the Cash Drawer, including 1.5 specific updates. See Chapter 9.

• Added a new chapter describing the CAT, including 1.5 specific updates. See Chapter 10.

• Added a new chapter describing the MSR. See Chapter 26.

• Updated the MSR chapter to include Track 4 handling for JIS-II type cards. See various additions within the MSR
chapter.

• Updated the MSR chapter to include a typical usage sequence diagram. See “MSR Sequence Diagram.”

• Added a new chapter describing the PIN Pad, including 1.5 specific updates. See Chapter 27.

• Added a new chapter describing the Point Card Reader Writer. See Chapter 28.

• Added a new chapter describing the POS Power. See Chapter 30.

• Added a new chapter describing the POS Printer. See Chapter 31.

• Updated the POS Printer chapter to include “both sides printing” support, including a new Property, Method, and
sequence diagram. See “Both sides printing” sequence diagram,” “CapSlpBothSidesPrint Property,”
“changePrintSide Method.”

• Added a new Annex describing Hardware References. See Annex G.

• Made minor typographical and formatting changes as necessary.

E.3 Release Version 1.6
Version 1.6 of this specification, issued on July 15, 2001, contains several new/completed chapters (not new
devices) and updates to existing chapters that provide updates, clarifications, and corrections to Version 1.5.
These are detailed below, with links to the corresponding pages and/or chapters as appropriate.

• Updated the Version and issue date on the front.

• Updated the Table of Contents to reflect additional chapters and headings.

• Completed the chapter describing the Coin Dispenser device. See Chapter 13.

• Completed the chapter describing the Fiscal Printer device. See Chapter 16.

• Added the CapAdditionalHeader, CapAdditionalTrailer, CapChangeDue, CapEmptyReceiptIsVoidable,
CapFiscalReceiptStation, CapFiscalReceiptType, CapMultiContractor, CapOnlyVoidLastItem,
CapPackageAdjustment, CapPostPreLine, CapSetCurrency, CapTotalizerType, ActualCurrency,
AdditionHeader, AdditionalTrailer, ChangeDue, ContractorId, DateType, FiscalReceiptStation,
FiscalReceiptType, MessageType, PostLine, PreLine, and TotalizerType properties.

• Changed the descriptions of the following properties to indicate that initialization takes place when the device is
first enabled following the open method call:

•CountryCode, ErrorOutID, PrinterState, QuantityDecimalPlaces, and QuantityLength.
•Added the setCurrency, printRecCash, printRecItemFuel, printRecItemFuelVoid,

printRecPackageAdjustment, printRecPackageAdjustVoid, printRecRefundVoid,
printRecSubtotalAdjustVoid, and printRecTaxID methods.

• Added country support for Bulgaria and Romania.

• Many updates in the General Information section.

• Clarified the description of the CapPositiveAdjustment property.

Unified POS, v1.15.1 Beta1 E - 3

• Updated the CountryCode, DayOpened, and DescriptionLength properties to reflect additions to the
specification.

• Updated the endFiscalReceipt, getData, getDate, printRecItem, printRecMessage, printRecNotPaid,
printRecRefund, printRecSubtotal, printRecSubtotalAdjustment, printRecTotal, printRecVoid,
printRecVoidItem, printZReport, and setHeaderLine methods to reflect additions to the specification.

• Updated ErrorEvent to reflect additions to the specification.

• Completed the chapter describing the Hard Totals device. See Chapter 18.

• Completed the chapter describing the Keylock device. See Chapter 21.

• Completed the chapter describing the Line Display device. See Chapter 23.

• Added CapBlinkRate, CapCursorType, CapCustomGlyph, CapReadBack, CapReverse, BlinkRate,
CursorType, CustomGlyphList, GlyphHeight, and GlyphWidth properties.

•Added defineGlyph and readCharacterAtCursor methods.
•Updated the displayText and displayTextAt methods to support new attributes for reverse video,

DISP_DT_REVERSE and DISP_DT_BLINK_REVERSE.

• Completed the chapter describing the MICR device. See Chapter 24.

• Completed the chapter describing the POS Keyboard device. See Chapter 29.

• Completed the chapter describing the Remote Operator Display device. See Chapter 32.

• Completed the chapter describing the Scale device. See Chapter 34.

• Changed the descriptions of the following properties to indicate that initialization takes place when the device is
first enabled following the open method call:

SalesPrice, TareWeight, and UnitPrice.

• Completed the chapter describing the Scanner device. See Chapter 35.

• Completed the chapter describing the Signature Capture device. See Chapter 36.

• Completed the chapter describing the Tone Indicator device. See Chapter 38.

• Changed the descriptions of the following properties to indicate that initialization takes place when the device is
first enabled following the open method call:

AsyncMode, InterToneWait, Tone1Duration, Tone1Pitch, Tone1Volume, Tone2Duration,
Tone2Pitch, and Tone2Volume.

• Reformatted the Tables in the Summary sections of each chapter and included the original version in which the
Properties, Methods, and Events were supported.

• Moved Annexes A, B, and C to be Annexes C, D, and E to make room for the OPOS and JavaPOS annexes.

E.4 Release Version 1.7
Version 1.7 of this specification, released on July 24, 2002, includes chapters describing two new devices, Check
Scanner and Motion Sensor, and contains several updates to the existing chapters that provide enhancements,
clarifications, and corrections to Version 1.6. These changes are detailed below, with links to the corresponding
pages and/or chapters as appropriate. However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front .

• Added the NRF Copyright notice.

• Added the NRF Disclaimer notice.

E - 4 Unified POS, v1.15.1 Beta1

• Updated the Table of Contents to reflect additional sections.

• Expanded the wording in several chapters to clarify the meaning of “Buffers the request.” to be “Buffers the
request in program memory, for delivery to the Physical Device as soon as the Physical Device can receive and
process it.”, or similar wording. The following chapters incorporate this change:

•Introduction and Architecture
•Bump Bar
•Fiscal Printer
•Point Card Reader/Writer
•POS Printer
•Remote Order Display
•Tone Indicator
•Annex A - OPOS
•Annex B - JavaPOS

• Expanded/clarified the definition in several chapters of the ER_CLEAR ErrorResponse to an ErrorEvent. The
following chapters incorporate this change:

•Common Properties, Methods, and Events
•Bump Bar
•Fiscal Printer
•Point Card Reader/Writer
•POS Printer
•Remote Order Display
•Tone Indicator
•Annex A - OPOS (also SOError)
•Annex B - JavaPOS

• Expanded/clarified the definition in several chapters of the function of the clearOutput method. The following
chapters incorporate this change:

•Common Properties, Methods, and Events
•Bump Bar
•Remote Order Display
•Annex A - OPOS
•Annex B - JavaPOS

• Used a consistent description of “XxxxxxEvent being delivered to the application” in the following chapters:
•MICR, Scanner, and SignatureCapture devices.

• Reworded the Dependencies section to reference Annexes A and B as the implementation reference, see Chapter 1.

• Reworded the application’s requirements for Event registration, see Chapter 1.

• Added OPOS and JavaPOS verbiage, listed the OPOS-specific Common Property names, and cross reference links
to the language specific Common Properties Summary Tables from the Common Properties Summary Table, see
Chapter 1.

• Added clarification of the initial value of the PowerNotify property after the open method call, see “PowerNotify
Property” in Chapter 2.

Unified POS, v1.15.1 Beta1 E - 5

• Added a sequence diagram to the open method description. See Chapter 2.

• Updated the Common DirectIOEvent Obj attribute to reference the OPOS BinaryConversion property, see
Chapter 2.

• Expanded the meaning of the ER_RETRY ErrorResponse attribute of the ErrorEvent, see Chapter 2.

• Corrected the values for ErrorEvent ErrorLocus and ErrorResponse attributes from E_EL_XXX and
E_ER_XXX to EL_XXX and ER_XXX, see Chapter 2.

• Added a Sequence Diagram to the Cash Changer device chapter. This diagram replaces the “processing flow”
diagram.

• Added a Sequence Diagram to the Cash Drawer device chapter.

• Changed the chapter heading for CAT to be “CAT - Credit Authorization Terminal” for consistency.

• Added a Sequence Diagram to the CAT device chapter.

• Updated the CAT property AdditionalSecurityInformation to reference the OPOS BinaryConversion property,
see Chapter 10.

• Updated the CAT property SlipNumber to be consistently defined as a string in the Summary and Properties
section of the chapter, see Chapter 10.

• Reworded some of the descriptions in the CAT, ErrorEvent, Attributes section, see Chapter 10.

• Added the chapter describing the Check Scanner device. See Chapter 11. The chapters following have been
renumbered accordingly.

• Added a Sequence Diagram to the CoinDispenser device chapter, see Chapter 13.

• Removed two blank (headings only) pages from the FiscalPrinter chapter that were to contain diagrams, namely,
the Fiscal Printer State Diagram and the Fiscal Printer PrinterState Diagram.

• Updated the FiscalPrinter printNormal method data parameter to reference the OPOS BinaryConversion
property, see Chapter 16.

• Made the following changes to Chapter 18:
•Added a Sequence Diagram to the HardTotals device chapter.
•Corrected the ErrorCode value for commitTrans to E_ILLEGAL.
•Updated the HardTotals read method data parameter to reference the OPOS BinaryConversion property.
•Added the ErrorCode value of E_ILLEGAL to the setAll method.
•Updated the HardTotals write method data parameter to reference the OPOS BinaryConversion property.

• Updated/corrected the Class Diagram of the Keylock device chapter, see Chapter 21.

• Added a Sequence Diagram to the Keylock device chapter, see Chapter 21.

• Made the following changes to Chapter 23:
•Deleted the last (redundant) bullet of the Capabilities section in the LineDisplay device chapter.
•Updated the Class Diagram of the LineDisplay device chapter.
•Added a Sequence Diagram to the LineDisplay device chapter.
•Added a Data Characters and Escape Sequence section to the LineDisplay device chapter.
•Updated the LineDisplay DeviceColumns property to reflect the impact of changing ScreenMode.
•Updated the LineDisplay DeviceRows property to reflect the impact of changing ScreenMode.
•Updated the LineDisplay device to support CodePage mapping:
•Added the following properties: CapMapCharacterSet and MapCharacterSet.

E - 6 Unified POS, v1.15.1 Beta1

• Updated the LineDisplay device to support various screen modes:
• Added the following properties: CapScreenMode, ScreenMode, and ScreenModeList.

• Updated the LineDisplay device to support the displaying of bitmaps:
•Added the following properties: CapBitmap, MaximumX, and MaximumY.
•Added the following methods: displayBitmap, setBitmap.

• Updated the LineDisplay clearText method to clarify the lifetime of bitmaps.
• Updated the LineDisplay defineGlyph method glyph parameter to reference the OPOS BinaryConversion

property.
• Updated the LineDisplay displayText method data parameter to reference the OPOS BinaryConversion

property.
• Updated the LineDisplay displayText method to reference the use of escape sequences and the placement

of text and bitmaps.
• Updated the LineDisplay displayTextAt method data parameter to reference the OPOS BinaryConversion

property.
• Updated the LineDisplay scrollText method to clarify that bitmaps are also scrolled.

• Changed the chapter heading for MICR to be “MICR - Magnetic Ink Character Recognition Reader” for
consistency.

• Added a Sequence Diagram to the MICR device chapter.

• Expanded the description of the check removal processing under the Model section.

• Expanded the description of event firing after the endInsertion processing is successfully completed, see Chapter
24.

• Added additional ErrorCodeExtended values to the MICR ErrorEvent, see Chapter 24.

• Added the chapter describing the Motion Sensor device. See Chapter 25. The chapters following have been
renumbered accordingly.

• Changed the chapter heading for MSR to be “MSR - Magnetic Stripe Reader” for consistency.

• Added a Sequence Diagram to the MSR device chapter, see Chapter 26.

• Added a Sequence Diagram to the PINPad device chapter, see Chapter 27.

• Updated the PINPad computeMAC method inMsg and outMsg parameters to reference the OPOS
BinaryConversion property, see Chapter 27.

• Made the following changes to Chapter 28:
•Added a new ESC sequence to the Point Card Reader Writer device chapter providing for more reliable

handling of pass through data.
•Added a Sequence Diagram to the Point Card Reader Writer device chapter.
•Updated the Point Card Reader Writer device to support CodePage mapping by adding the

CapMapCharacterSet and MapCharacterSet properties.
•Updated the Point Card Reader Writer printWrite method data parameter to reference the OPOS

BinaryConversion property.
•Updated the Point Card Reader Writer validateData method data parameter to reference the OPOS

BinaryConversion property.

• Added a Sequence Diagram to the POS Keyboard device chapter, see Chapter 29.

• Added a Sequence Diagram to the POS Power device chapter, see Chapter 30.

Unified POS, v1.15.1 Beta1 E - 7

• Updated/clarified the text in the various diagrams in the POS Power Chapter.

• Added clarification of the pixel handling capability of the POS Printer.

• Made the following changes to Chapter 31:
• Updated the Class Diagram of the POS Printer device chapter.
• Added a new ESC sequence to the POS Printer device chapter providing for more reliable handling of pass

through data.
• Updated the POS Printer device to support CodePage mapping by adding the CapMapCharacterSet and

MapCharacterSet properties.
• Updated the POS Printer device to add support for printing Barcodes and Bitmaps to rotatePrint by adding

the RecBitmapRotationList and SlpBitmapRotationList properties, and updating the
SlpBarCodeRotationList property.

• Added additional meaning for the E_ILLEGAL error in the printBarCode method of the POS Printer.
• Clarified the format of the file referenced by the fileName parameter of the printBitmap method of the

POS Printer for the OPOS environment, and clarified the interaction between mixed text and bitmap
printing.

• Updated the following POS Printer methods/parameter to reference the OPOS BinaryConversion property:
• printBarCode data
• printImmediate data
• printNormal dat
• printTwoNormal data1/data2
• setLogo data
• validateData data

• Expanded the allowable values of the bitmapNumber parameter of the setBitmap method of the POS
Printer.

• Clarified the format of the file referenced by the fileName parameter of the setBitmap method of the POS
Printer for the OPOS environment, and clarified the interaction between mixed text and bitmap printing.

• Updated the Remote Order Display device to support CodePage mapping by adding the CapMapCharacterSet
and MapCharacterSet properties. in Chapter 32.

• Updated the Remote Order Display displayData method data parameter to reference the OPOS
BinaryConversion property, see Chapter 32.

• Added a Sequence Diagram to the Scale device chapter, see Chapter 34.

• Updated the Scale displayText method data parameter to reference the OPOS BinaryConversion property, see
Chapter 34.

• Added a Sequence Diagram to the Scanner device chapter, see Chapter 35.

• Updated the Scanner ScanData and ScanDataLabel properties to reference the OPOS BinaryConversion
property in Chapter 35.

• Added a Sequence Diagram to the Signature Capture device chapter, see Chapter 36.

• Updated the Signature Capture PointArray and RawData properties to reference the OPOS BinaryConversion
property in Chapter 36.

• Added a Sequence Diagram to the Tone Indicator device chapter, see Chapter 38.

• Made the following changes to Annex A:

E - 8 Unified POS, v1.15.1 Beta1

• Made the OPOS Windows operating Systems supported a more general statement, and added the exclusion
of Windows 3.x, removed reference to the deliverable of the CPG.

• Added an Event Registration Sequence Diagram.
• Added a language specific Common Properties Summary Table to the OPOS Annex.
• Added a language specific Programmatic Names Table to the OPOS Annex.
• Added table to the BinaryConversion property description to define the affected devices and properties/

methods.
• Added CapStatusMultiDrawerDetect to the two tables describing the Cash Drawer Properties Operations.
• Added an asterisk to identify OpenDrawer as required for basic operations to the two tables describing the

Cash Drawer Properties Operations.
• Added Check Scanner and Motion Sensor to the Device Class Keys list.
• Added Check Scanner and Motion Sensor to the Header Files list.
• Added Code Page technical information regarding the Mapping of CharacterSet.
• Added the original OPOS Application Programmers Guide Change History for Revisions 1.01 through 1.6.
• Added the OPOS Control Programmers Guide as Section 8.
• Added an Event Registration Sequence Diagram.

• Made the following changes to Annex B:
• Updated the JavaPOS Package Structure descriptions, also added CheckScanner and MotionSensor devices.
• Added a language specific Common Properties Summary Table to the JavaPOS Annex.
• Added a language specific Class Names Table to the JavaPOS Annex.
• Added clarification of the initial value of the PowerNotify property after the open method call.
• Added CapStatusMultiDrawerDetect to the table describing the Cash Drawer Properties Operations.
• Added an asterisk to identify openDrawer as required for basic operations to the tables describing the

Cash Drawer Properties Operations.
•Added Code Page technical information regarding the Mapping of CharacterSet.
•Added the original JavaPOS Programming Guide Change History for Revisions 1.3 through 1.6.

• Added reference detailing 2nd USB PlusPower connector, reworded the description of the PlusPower connectors,
and added information on the IBM patents, see See Annex F.

• Made minor typographical and formatting changes throughout the document as necessary.

E.5 Release Version 1.8
Version 1.8 of this specification, released on June 30, 2003, includes a new chapter describing the Smart Card
Reader Writer device, additions for the support of Device Statistics that affect every device/chapter, and contains
several updates to the existing chapters that provide enhancements, clarifications, and corrections to Version 1.7.
These changes are detailed below, with links to the corresponding sections, pages, or chapters as appropriate.
However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Added new company names to the Member list.

• Updated the Table of Contents to reflect additional sections.

• Added the Device Statistics information to the Introduction and Architecture Chapter, Common PME Chapter, all

Unified POS, v1.15.1 Beta1 E - 9

the device Chapters in the Summary Tables, and the OPOS and JavaPOS Appendices also in the Summary Tables,
and Properties and Methods Sections.

• Updated several Sequence Diagrams in order to more closely depict the sequence of the Service processing of
event firing and the decrement of DataCount. Updated diagrams are in the MICR, MSR, POSKeyboard, Scanner,
and SignatureCapture chapters.

• Reworded the handling of Workstation or POS terminal power loss support under the Device Power Reporting
Model, see Chapter 1, Annex A, and Annex B.

• Corrected minor typographical error in and reformatted the layout of the CashChanger State Diagram, see Chapter
8.

• Corrected the Summary section definition of parameters of the Cash Drawer openDrawer and
waitForDrawerClose methods, see Chapter 9.

• Corrected the ErrorResponse type of the CAT ErrorEvent to read-write, see Chapter 10.

• Made the following changes to Chapter 16:
• Added various enhancements to the Model discussion for the Fiscal Printer.
• Updated the Fiscal Receipt and Fiscal Receipt Ending descriptions of the Fiscal Printer to allow use of

the printRecMessage method in these states.
• Updated the Message Lines description of the Fiscal Printer Receipt Layouts.
• Updated the CapAdditionalLines property of the Fiscal Printer.
• Expanded the description of PTR_SUE_SLP_EMPTY status of the Fiscal Printer StatusUpdateEvent.
• Added support for multiple covers in the Fiscal Printer StatusUpdateEvent.

• Clarified the wording of the claimFile method in the HardTotals device, see Chapter 18.

• Added DISP_CCT_BLINK to the LineDisplay CapCursorType capability, see Chapter 23.

• Added DISP_CT_BLINK to the LineDisplay CursorType property, see Chapter 23.

• Corrected the wording in the PINPad Features not Supported section, last bullet, to remove the word “not”, see
Chapter 27.

• Corrected the type of the PINPad device’s Amount property from int32 to currency in both the Summary and
Properties sections, see Chapter 27.

• Corrected the ErrorResponse type of the PINPad ErrorEvent to read-write, see Chapter 27.

• Made the following changes to Chapter 31:
• Clarified the pixel-level addressing for the POSPrinter.
• Added various enhancements to the Model discussion for the POSPrinter.
• Added clarification in POSPrinter describing cartridge statuses.
• Added discussion in POSPrinter describing actions of partial line printing.
• Corrected the ESC sequence for Feed and Paper Cut in the POSPrinter device.
• Updated the four POSPrinter Low Level state diagrams.
• Added clarification to the handling and printing of the PTR_BCS_Code128 barcode format supported by

the POSPrinter device, printBarCode method.
• Added additional RSS barcode formats supported by the POSPrinter device printBarCode method.
• Added clarification of status of RotateSpecial and usage of PTR_RP_BARCODE under rotatePrint in

POSPrinter.
• Expanded the description of PTR_SUE_SLP_EMPTY status of the POSPrinter StatusUpdateEvent.

E - 10 Unified POS, v1.15.1 Beta1

• Added support for multiple covers in the POSPrinter StatusUpdateEvent.
• Clarified the check digit handling for the ScanDataLabel property supported by the Scanner device.

• Added additional RSS ScanDataType formats supported by the Scanner device, see Chapter 35.

• Added the chapter describing the Smart Card Reader Writer device. See Chapter 37. The chapters following have
been renumbered accordingly.

• Moved the Tone Indicator chapter from 24 to 25 to make room for the Smart Card Reader Writer chapter that is
added in this release.

• Made the wording consistent in the OPOS Annex Methods (except Open), Return section.

• Made the following changes to Annex A:
• Added Smart Card Reader Writer to the OPOS Programmatic Names list.
• Added Smart Card Reader Writer to the Device Class Keys list.
• Added Smart Card Reader Writer to the Header Files list and corrected MotionSensor file name to match

released file name.
• Added Smart Card Reader Writer to the Internal Header Files list and corrected MotionSensor file name to

match released file name.

• Updated the JavaPOS Package Structure descriptions, also added the Smart Card Reader Writer device, see Annex
B.

• Corrected the package names for PointCardRWService15 through PointCardRWService17 and
POSPowerService15 through POSPowerService17, see Annex B.

• Added Smart Card Reader Writer to the JavaPOS Class Names, see Annex B.

E.6 Release Version 1.9
Version 1.9 of this specification, released on January 16, 2005, includes a reference to the addition of the POS for
.NET Annex, additions for the support of updating firmware for all device categories, and contains several
updates to the existing chapters that provide enhancements, clarifications, and corrections to Version 1.8. These
changes are detailed below, with links to the corresponding sections, pages, or chapters as appropriate. However,
any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Added BearingPoint company name to the Member list and split into Members and Contributors sections.

• Updated the Table of Contents to reflect additional sections.

• Added minor text updates throughout the Introduction and Architecture chapter to include references to Annex C
as the POS for .NET Reference Implementation.

• Added an update firmware capability that applies to all device categories. This added two Common Properties:
CapCompareFirmwareVersion and CapUpdateFirmware, and two Common Methods: updateFirmware and
compareFirmwareVersion. Also, six additional statuses are added to the StatusUpdateEvent. These updates
apply to all device categories and to all implementation references.

• Added the type byte to the UnifiedPOS Data Types and JavaPOS Data Types, to provide the definition of the type
of the value parameter of the HardTotals’ setAll method. See Chapter 1 and Annex B.

• Corrected the wording in the ErrorEvent to define that only input error events are delayed depending on the
setting of the DataEventEnabled property. See Chapter 2.

Unified POS, v1.15.1 Beta1 E - 11

• Added Electronic Money Device enhancements to the CAT device with the addition of Balance,
CapCashDeposit, CapLockTerminal, CapLogStatus, CapUnlockTerminal, LogStatus, and SettledAmount
properties and cashDeposit, lockTerminal, unlockTerminal methods. See additions in Chapter 10.

• Added a contrast enhancement to the CheckScanner device with the addition of CapAutoContrast,
CapContrast, and Contrast properties. See additions in Chapter 11.

• Corrected the Remarks section of the FiscalPrinter device’s ErrorEvent section, by deleting an erroneous
sentence that referenced the DataEventEnabled property. See Chapter 16.

• Corrected the “use after...” clauses of the resetStatistics, retrieveStatistics, and updateStatistics methods of the
Keylock device to be “open, enable.” See Chapter 21.

• Corrected the PPAD_LANG_UNRESTRICTED value name (was originally
PPAD_DISP_RESTRICTED_ORDER) of the CapLanguage property of the PINPad. See Chapter 27.

• Corrected the description under Errors of the MerchantID PINPad property to reference beginEFTTransaction
instead of enablePINEntry. See Chapter 27.

• Corrected the description under the Remarks section of the verifyMAC PINPad method to state that a
UposException will be thrown if it cannot verify the message. Also added an E_FAILURE exception under the
Errors section to cover this scenario. See Chapter 27.

• Added enhancements to support Battery Powered POS devices to the POSPower device with the addition of the
BatteryCapacityRemaining, BatteryCriticallyLowThreshold, BatteryLowThreshold,
CapBatteryCapacityRemaining, CapRestartPOS, CapStandbyPOS, CapSuspendPOS,
CapVariableBatteryCriticallyLowThreshold, CapVariableBatteryLowThreshold, and PowerSource
properties and the restartPOS, standbyPOS, and suspendPOS methods. See additions in Chapter 30.

• Added a Page Mode print enhancement to the POSPrinter device with the addition of
CapConcurrentPageMode, CapRecPageMode, CapSlpPageMode, PageModeArea, PageModeDescriptor,
PageModeHorizontalPosition, PageModePrintArea, PageModePrintDirection, PageModeStation, and
PageModeVerticalPosition properties and clearPrintArea and pageModePrint methods. See additions in
Chapter 31.

• Clarified the initial value of JrnCurrentCartridge, RecCurrentCartridge, and SlpCurrentCartridge of the
POSPrinter device when the corresponding station is not present. See Chapter 31.

• Corrected the Errors section of the changePrintSide POSPrinter method to include three previously omitted
E_EXTENDED values. See Chapter 31.

• Corrected the Remarks section of the POSPrinter device’s ErrorEvent section, by deleting an erroneous sentence
that referenced the DataEventEnabled property. See Chapter 31.

• Added a “live weight” enhancement to the Scale device with the addition of CapStatusUpdate,
ScaleLiveWeight, and StatusNotify properties and updates to the readWeight method and StatusUpdateEvent.
See additions in Chapter 34.

• Corrected the Remarks section of the ToneIndicator device’s ErrorEvent section, by deleting an erroneous
sentence that referenced the DataEventEnabled property. See Chapter 38.

• Updated the JavaPOS Package Structure descriptions for Version 1.9, and corrected verbiage on Version 1.8
updated contents. See Annex B.

• Corrected the wording in the JavaPOS ErrorEvent to define that only input error events are delayed depending
on the setting of the DataEventEnabled property. See Annex B.

• Moved this Appendix to be Annex D to allow insertion of the POS for .NET Appendix as Annex C. Annexes D
and E are also moved to be Annexes E and F respectively.

E - 12 Unified POS, v1.15.1 Beta1

E.7 Release Version 1.10
Version 1.10 of this specification, released on February 10, 2006, includes the full incorporation of the POS for
.NET Reference Implementation in Annex C, new chapters describing the Biometrics and Electronic Journal
device categories, additions for the support of clearing input properties for all device categories, and contains
several updates to the existing chapters that provide enhancements, clarifications, and corrections to Version 1.9.
These changes are detailed below, with links to the corresponding sections, pages, or chapters as appropriate.
However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Updated the ARTS/NRF Copyright and Disclaimer notices.

• Added to the Members and Contributors sections.

• Updated the Table of Contents to reflect additional sections.

• Clarified the property handling of the EL_INPUT ErrorLocus of the ErrorEvent, see Chapter 2.

• Corrected three occurrences of ER_CONTINUE_INPUT - should be ER_CONTINUEINPUT - in the
Introduction and Architecture chapter, in the ErrorEvent section of Chapter 36, the SmartCardRW device
category, and in the JavaPOS Annex.

• Added the clearInputProperties method to the Common Properties, Methods, and Events chapter. Also added this
method to all device categories Summary and Model sections as appropriate, and to the OPOS and JavaPOS
Implementation References.

• Added ESTATS_DEPENDENCY ErrorCodeExtended to the resetStatistics and updateStatistics Common
Methods, see Chapter 2.

• Clarified the EL_INPUT description of the ErrorEvent to include “No previously buffered input data is
available.” instead of “No input data is available.” in the Common Properties, Methods, and Events chapter. This
change was also applied to the ErrorEvent of all the appropriate input device categories as well as the OPOS (2)
and JavaPOS Appendices.

• Added the chapter describing the Biometrics device. See Chapter 6. The chapters following have been renumbered
accordingly.

• Re-instated the missing CAT_TRANSACTION_CHECKCARD value to the TransactionType property of the
CAT device category, see Chapter 10.

• Added the chapter describing the Electronic Journal device. See Chapter 14. The chapters following have been
renumbered accordingly.

• Replaced references to ‘Newline’ with ‘Line Feed’ in the FiscalPrinter, LineDisplay, and POSPrinter device
categories. Also replaced references to ‘\n’ and ‘\r’ with ‘10 decimal’ and ‘13 decimal’ respectively.

• Added the range of valid values “Range 1000 and above - Code page; matches one of the standard values” to the
CharacterSet property of the LineDisplay, POSPrinter, and RemoteOrderDisplay device categories. Also
added a reference to the “Mapping of CharacterSet” section in the Annexes.

• Added support for writing tracks to the MSR device category, adding new capabilities, and updates to the Model
section, as well as the supporting Properties and Methods and updated diagrams. See Chapter 26.

• Added clarifications to the ErrorReportingType and ErrorEvent of the MSR device category, see Chapter 26.

• Replaced the reference to “Range 1000 and higher - Windows code page; matches one of the standard values.”
with “Range 1000 and above - Code page; matches one of the standard values” in the CharacterSet property of
the PointCardReaderWriter device category. Also added a reference to the “Mapping of CharacterSet” section
in the Annexes.

Unified POS, v1.15.1 Beta1 E - 13

• Corrected the definition of the restartPOS method of the POSPower device category in the Class Diagram
section to match the definition in the Method (UML operations) section, see Chapter 30.

• Made the following changes to Chapter 31:

• Clarified the description in Synchronous Printing of the POSPrinter device category.

• Added an ESC sequence to the POSPrinter device category to allow the in-line printing of barcodes.

• Extended several ESC sequences of the POSPrinter device category to allow individual unsetting thereof.
 Added a new ESC sequence to support ‘Left justify’.

• Added the printMemoryBitmap method to the POSPrinter device category to allow the printing of bitmaps
 from a memory image.

• Clarified/corrected which print methods can be used for the various settings of the rotation parameter of the
 rotatePrint method of the POSPrinter device category.

• Clarified that in the data parameter of the setLogo method of the POSPrinter device category escape
 sequences excludes other logos.

• Added clarifications/corrections to the Scale device category. Defined the ScaleLiveWeight, TareWeight, and
UnitPrice properties as accessible after ‘open-claim-enable’ to match the definitions in the summary section, and
added the E_BUSY status to the readWeight and zeroScale methods. See Chapter 34.

• Corrected/changed the names of the constants for the StatusNotify property and StatusUpdateEvent of the
Scale device category to maintain consistency. Values are changed from SCL_XXX to SCAL_XXX. See Chapter
34.

• Clarified the conditions under which a check digit should be calculated for the ScanDataLabel property of the
Scanner device category, see Chapter 35.

• Clarified the Input Model description of how data is made available and the interaction of the readData and
DataEvent processing of the SmartCardRW device category, see Chapter 37.

• Made the following changes to Annex A:
• Refreshed the URLs that provide links to the OPOS Common Controls.
• Added some explanatory footnotes that were “lost in migration” from the original OPOS specification.
• Corrected the second parameter of the CompareFirmwareVersion method in the OPOS Common

Methods table to match the definition in the Methods section.
• Added Biometrics and Electronic Journal to the OPOS Programmatic Names list.
• Updated the table in the BinaryConversion property to include information and links relative to the impact

on the binary properties and method parameters of the Biometrics Device Category.
• Added Biometrics and Electronic Journal to the OPOS Device Class Keys list.
• Added Biometrics and Electronic Journal to the OPOS Header Files list.
• Added the ‘omitted’ new method interfaces that were added in versions 1.8 and 1.9 into the OPOS Annex.
• Added Biometrics and Electronic Journal to the OPOS Internal Header Files list.
• Added a reference to the “Mapping of CharacterSet” section in the OPOS and JavaPOS Implementation

Reference Appendices to the effect that “In the Windows environment, setting CharacterSet to a value in
the range 1000 and higher, matches one of the standard Windows operating system code page values.”

• Updated the JavaPOS Package Structure descriptions for Version 1.10. See Annex B.

• Added Biometrics and Electronic Journal to the JavaPOS Class Names, see Annex B.

• Added the POS for .NET Appendix detailed information to Annex C.

E - 14 Unified POS, v1.15.1 Beta1

E.8 Release Version 1.11
Version 1.11 of this specification, released on January 15, 2007, includes the full incorporation of the POS for
.NET Reference Implementation in Annex C, new chapters describing the BillAcceptor, BillDispenser,
CoinAcceptor, and ImageScanner device categories, the introduction of element deprecation, and contains
several updates to the existing chapters that provide enhancements, clarifications, and corrections to Version
1.10. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Updated the ARTS/NRF Copyright and Disclaimer notices.

• Updated the Members and Contributors sections, including changing Symbol Inc. to Motorola, Inc.

• Updated the Table of Contents to reflect additional sections.

• Added data type definitions “array of binary”, “int32 array”, and “int32 array by reference” and updated the
definition of “binary by reference” to support the BIR structure and other parameters used in the Biometrics and
MSR device categories. See Chapter 1.

• Expanded the section on Initialization to include Initialization and Error Reporting guidelines. See Chapter 1.

• Added a new error code E_DEPRECATED to “Error Codes.”

• Added a new section describing Deprecation, see “Deprecation Handling.”

• Added a new section describing Hydra Device Considerations.

• Corrected the Error description of CapPowerReporting and PowerState common properties to state that an
exception can be thrown on errors. See Chapter 2.

• Added the chapter describing the BillAcceptor device category. See Chapter 4. The chapters following have been
renumbered accordingly.

• Added the chapter describing the BillDispenser device category. See Chapter 5. The chapters following have been
renumbered accordingly.

• Made the following changes to Chapter 6:
• Cross-referenced the CapPrematchData property with the processPrematchData method in the

Biometrics device category.
• Corrected the spelling of constants *_KEYSTROKE_DYNAMICS in the CapSensorType and

SensorType properties of the Biometrics device category.
• Added/corrected the E_ILLEGAL description of the SensorColor, SensorOrientation, and SensorType

properties of the Biometrics device category.
• Changed E_FAILURE on the ErrorCode of the Biometrics device category’s methods where this was

referencing a parameter error, to be E_ILLEGAL.
• Added E_ILLEGAL to all the Biometrics device category’s methods except endCapture as the ErrorCode

if a capture is already in progress when the method is called. Also added E_TIMEOUT to the identify and
verify methods.

• Modified the referenceBIRPopulation and candidateRanking parameters of the identify and
identifyMatch methods of the Biometrics device category to be “array of binary” instead of binary and
“int32 array” instead of binary respectively.

• Added the missing Remarks clarification paragraph to the Biometrics ErrorEvent.

Unified POS, v1.15.1 Beta1 E - 15

• Added three new stati to the StatusUpdateEvent of the Biometrics device category,
BIO_SUE_MOVE_SLOWER, BIO_SUE_MOVE_FASTER, and BIO_SUE_SENSOR_DIRTY.

• Updated the chapter describing the CashChanger device category to support the new cash management devices.
See Chapter 8.

• Added clarifications to the CheckScanner device category regarding the usage/contents of the ImageTagData
property and associated properties and methods. See Chapter 11.

• Added the chapter describing the CoinAcceptor device category. See Chapter 12. The chapters following have
been renumbered accordingly.

• Updated the chapter describing the CoinDispenser device category to support the new cash management devices.
See Chapter 13.

• Added cross-referencing in the ElectronicJournal device category for the CapMediumIsAvailable,
CapPrintContent, and CapPrintContentFile properties to their corresponding property/methods. Made all
references to POSPrinter also reference FiscalPrinter. Clarified some wording in the Model section and
queryContent method.

• Corrected the wording of the description of the toMarker parameter of the printContent and queryContent
methods of the ElectronicJournal device category, see Chapter 14.

• Made the following changes to Chapter 16:
• Added several additions/corrections to the FiscalPrinter device category. See ActualCurrency (new

currencies), CapCheckTotal (restriction on CheckTotal), CapPositiveSubtotalAdjustment (new
capability), CheckTotal, CountryCode (new countries), DateType (new value), FiscalReceiptType (new
receipt type), beginFiscalDocument (removed restriction, added error code), beginFiscalReceipt (added
error code), getVatEntry (corrected Capability reference), printRecItemAdjustment (added coupons),
printRecItemAdjustmentVoid (added coupons), printRecMessage (relaxed restriction),
printRecSubtotalAdjustment (allowed surcharges and added coupons), setVatTable (added capability
check), setVatValue (added capability check), and ErrorEvent (added new ErrorCodeExtended value).

• Added methods printRecItemVoid and printRecItemAdjustmentVoid to the FiscalPrinter device
category.

• Deprecated the CapAmountNotPaid property and the printRecVoidItem method of the FiscalPrinter
device category.

• Updated the printRecNotPaid method of the FiscalPrinter device category to reference the
CapReceiptNotPaid property instead of the CapAmountNotPaid property which is deprecated.

• Added an new definition (FPTR_RT_EOD_ORDINAL) and clarified an existing definition
(FPTR_RT_ORDINAL) of the printReport method of the FiscalPrinter device category.

• Added the chapter describing the ImageScanner device category. See Chapter 19. The chapters following have
been renumbered accordingly.

• Added support for an electronic Keylock to the Keylock device category including an updated Class Diagram. See
Chapter 21.

• Corrected the omission of the format of the ExpirationDate property of the MSR device category. See Chapter
26.

• Changed the data parameter of the writeTracks method of the MSR device category from string to ‘array of
binary’ to facilitate implementation. See Chapter 26.

• Added printMemoryBitmap to the list of methods supported by the pageModePrint method of the POSPrinter
device category. See Chapter 31.

E - 16 Unified POS, v1.15.1 Beta1

• Clarified the wording of the rotation parameter of the rotatePrint method of the POSPrinter device category. See
Chapter 31.

• Corrected the type of the AsyncMode property and the syntax definition of the AutoToneDuration property of
the RemoteOrderDisplay device category.

• Added new 2D Symbologies to the ScanDataType property of the Scanner device category. See Chapter 35.

• Added the missing Remarks clarification paragraph to the SignatureCapture ErrorEvent that was apparently
dropped during the transition to UnifiedPOS, see Chapter 36.

• Made the following changes to Annex A:
• Added OPOS_E_DEPRECATED to the list of ResultCode values.
• Updated the table of OPOS Data Types.
• Updated the list of OPOS Programmatic Names.
• Updated the entries in the BinaryConversion table to reference the FrameData property of the

ImageScanner device category.
• Added OPOS_E_DEPRECATED to the ResultCode values.
• Updated the list of OPOS Device Class Keys.
• Updated the list of OPOS Application Header Files.
• Updated the list of OPOS Internal Header Files.

• Made the following changes to Annex B:
• Updated the table of JavaPOS Data Types.
• Added JPOS_E_DEPRECATED to the ErrorCode values.
• Updated the list of JavaPOS Packages.
• Updated the JavaPOS Class Names.
• Removed the duplicate Data Types table, and added a cross-reference link to the table.

• Made the following changes to Annex C:
• Updated that section describes the POS for .NET Reference Implementation to support the current

release level of the specification. This includes updating to support the latest level of the Common PMEs.
• Clarified the “Shim” descriptions.
• Replaced many hyperlinks that reference non-static URLs with static URLs.
• Added a new table describing the Device Category support level and initial supported version information.
• Updated the tables describing the mapping of POS for .NET enumerations.
• Updated the table of POS for .NET Data Types and added a column for VB.NET types.
• Updated the table defining the POS for .NET Common Properties. Added the definitions for

CapCompareFirmwareVersion and CapUpdateFirmware properties.
• Updated the list defining the POS for .NET Common Methods. Added the definitions for the

ClearInputProperties, CompareFirmwareVersion, and UpdateFirmware methods.
• Clarified the descriptions in the Shim section.
• Added an architecture diagram to the Shim.

• Added a new Annex G describing Deprecation History.

Unified POS, v1.15.1 Beta1 E - 17

E.9 Release Version 1.12
Version 1.12 of this specification, released on January 14, 2008, includes new chapters describing the Belt,
ElectronicValueRW, Gate, ItemDispenser, Lights, and RFIDScanner device categories, new Appendices
describing the XMLPOS Mapping Reference, Systems Management Information, and Device Statistics, and
contains several updates to the existing chapters that provide enhancements, clarifications, and corrections to
Version 1.11. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Updated the ARTS/NRF Copyright and Disclaimer notices.

• Updated the Members and Contributors sections, including changing PSC Inc. to Datalogic Scanning, Inc.

• Updated the Table of Contents to reflect additional sections.

• Added the List of Figures to cross-reference figures in new section(s).

• Added clarification throughout the document where the usage of NULL/null is inconsistent/wrong. This affected
these chapters (CashChanger, CAT, CheckScanner, ElectronicJournal, and RFIDScanner), and one annex -
POS for .NET.

• Updated the “About this Document” section with descriptions of the various annexes.

• Added mutability clarifications to the Data Types table.

• Added clarification of the operation of FreezeEvents and properties that are kept current while a device is enabled.

• Added clarification of the handling of DataEventEnabled during the firing of input ErrorEvents.

• Added clarification to the Asynchronous Output processing.

• Added the chapter describing the Belt device category.

• Corrected the invalid examples in BillAcceptor (DepositCounts, adjustCashCounts, and readCashCounts),
BillDispenser (adjustCashCounts) and readCashCounts, and CoinAcceptor (DepositCashList) to only use
valid Yen currency values and to correctly use the ‘;’ for delineating coin and notes. Also corrected the ‘Version’
supported for clearOutput in the BillDispenser Summary section to indicate “Not supported.”

• Added clarifications and cross-referencing to various properties and clarifications to methods descriptions and
method parameters of the Biometrics device category. See CapRawSensorData, CapRealTimeData,
RawSensorData, RealTimeDataEnabled, identify, identifyMatch, verify, and verifyMatch.

• Added new status to the StatusUpdateEvent of the Biometrics device category, see Chapter 6.

• Corrected the Sequence Diagram of the CashDrawer device category, see Chapter 9.

• Added a new status to the StatusUpdateEvent of the ElectronicJournal device category, see Chapter 14.

• Made the following changes to Chapter 15: Added the chapter describing the ElectronicValue Reader/Writer
device category. The chapters following have been renumbered accordingly.

• Made the following changes to Chapter 16:
• Added the State Diagram to the FiscalPrinter device category.
• Added new methods printRecItemRefund and printRecItemRefundVoid to the FiscalPrinter device

category. Updated the Model section, Ordering of Fiscal Receipt Print Requests, the getData method,
printRecRefund method, and printRecRefundVoid method with references to these new methods.
Updated the Error Model and ErrorEvent sections with missing static. Also added Sweden (see
CountryCode as a supported country with Krona as its currency (see ActualCurrency).

E - 18 Unified POS, v1.15.1 Beta1

• Added the chapter describing the Gate device category. See Chapter 17. The chapters following have been
renumbered accordingly.

• Removed “Bar Code Scanner” from the title and headings of the ImageScanner device category, see Chapter 19.

• Added the chapter describing the ItemDispenser device category. The chapters following have been renumbered
accordingly.

• Removed the (now) erroneous sentence from the Keylock Sequence Diagram heading text, see Chapter 21.

• Added the chapter describing the Lights device category. The chapters following have been renumbered
accordingly.

• Made the following changes to Chapter 26:
• Added new item to the Capabilities section, updated Class Diagram, new properties CardPropertyList,

CardType, CardTypeList, and WriteCardType, and method retrieveCardProperty to the MSR device
category to support AAMVA cards (e.g., Driver’s Licence and ID Cards). Also updated the DecodeData
property, and the writeTracks method, to identify the card format/type. Added a cross-reference from the
writeTracks method data parameter, to the BinaryConversion table in Annex A.

• Added support for data encryption, card and device authentication to the MSR device category. This update
added 4 new Capabilities (CapCardAuthentication, CapDataEncryption, CapDeviceAuthentication,
CapTrackDataMasking), 14 new Properties (AdditionalSecurityInformation, CardAuthenticationData,
CardAuthenticationDataLength, DataEncryptionAlgorithm, DeviceAuthenticated, DeviceAuthenticationProtocol,
Track1EncryptedData, Track1EncryptedDataLength, Track2EncryptedData, Track2EncryptedDataLength,
Track3EncryptedData, Track3EncryptedDataLength, Track4EncryptedData, Track4EncryptedDataLength), 4 new
Methods (authenticateDevice, deauthenticateDevice, retrieveDeviceAuthenticationData, updateKey), and 2 status values
to the StatusUpdateEvent (SUE_DEVICE_AUTHENTICATED, SUE_DEVICE_DEAUTHENTICATED), as well as
textual updates to most of the chapter, including updates to (most of the) existing Properties and Methods.
Also added an updated Class Diagram and new Authentication Sequence Diagram.

• Corrected the attribute to ‘read-only’ in the syntax of the PINEntryEnabled property of the PINPad device
category to match the Summary section, see Chapter 27.

• Added the ESC sequence definition to the POSPrinter device category to support strike-through printing. Added
the standard termination character to the Underline printing sequence. Also added clarifications to the syntax in the
tables and descriptions. See Chapter 31.

• Replaced the RSS constants with GS1 definitions in the printBarCode method of the POSPrinter device
category. Old definitions are deprecated. See Chapter 31.

• Added a cross-reference from the printMemoryBitmap method data parameter of the POSPrinter device
category, see Chapter 31, to the BinaryConversion table in Annex A.

• Added the chapter describing the RFIDScanner device category. See Chapter 33. The chapters following have
been renumbered accordingly.

• Updated the Class Diagram of the Scale device category to correct the weightData parameter of the readWeight
method, see Chapter 34.

• Replaced the RSS constants with GS1 definitions in the ScanDataType property of the Scanner device category.
Old definitions are deprecated. See Chapter 35.

• Added minor mutability clarifications to the Annex A OPOS Data Types section.

• Updated various tables and file lists in Appendix A in support of the new Belt, ElectronicValueRW, Gate,
ItemDispenser, Lights, and RFIDScanner device categories.

Unified POS, v1.15.1 Beta1 E - 19

• Updated the entries in the BinaryConversion table to reference the applicable properties and method parameters
of the new device categories. See Annex A.

• Updated/added in Annex A the URL of the location of the OPOS header files and internal header files.

• Updated various tables and file lists in Annex B in support of the new Belt, ElectronicValueRW, Gate,
ItemDispenser, Lights, and RFIDScanner device categories.

• Added a clarification for the handling on binary data inside a Java string, see Annex B.

• Updated the Device Category table in Annex C in support of the new Belt, ElectronicValueRW, Gate,
ItemDispenser, Lights, and RFIDScanner device categories.

• Updated the enumeration table in Annex C, POS for .NET with the “RSS to GS1” updates to symbology for the
POSPrinter and the Scanner device categories.

• Added a new Annex D describing the XMLPOS Mapping Reference. The appendices following have been
renumbered accordingly.

• Added Scanner and POSPrinter deprecated RSS symbology definitions to the deprecated items table, see Annex
H.

• Added a new Annex I providing System Management Information.

• Added a new Annex J describing the Device Statistics. The was previously released as a separate document, but is
now included as an Annex.

• Added new device statistics for the RFIDScanner device category and for the MSR device category in support of
card and device authentication, see Annex J.

E.10 Release Version 1.13
Version 1.13 of this specification, released in 2009, includes updates that reflect feedback from device service
developers and application development programmers as a result of using Version 1.12 and previous versions of
this standard. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. However, any minor typographical changes are not listed below.

Title Pages
• Added changes to UnifiedPOS Technical Committee Members and Technical Committee Contributors to reflect

current status of active committee membership.

Introduction and Architecture
• Added updated footnote “b” to clarify that leading or trailing spaces should not be used in comma delimited string

data, see Chapter 1.

• Added clarification paragraph to Device Input Model description to clarify the situation of a driver receiving data
from an input device when the application believes the device is disabled, see Chapter 1.

• Clarify the event ID delivered from OutputCompleteEvent does not have to be sequential, but it has to be unique,
see Chapter 1.

Common Properties, Methods, Events
• Added clarification to the ErrorEvent for the ER_RETRY, ER_CLEAR, and ER_CONTINUEINPUT error

response codes.

• Added additional “See Also, reference” for OutputCompleteEvent.

E - 20 Unified POS, v1.15.1 Beta1

Biometrics
• Added to Biometrics device two new values for StatusUpdateEvent, BIO_SUE_STATUS_SENSOR_READY

and BIO_SUE_STATUS_SENSOR_COMPLETE, see Chapter 6.

Cash Drawer
• Updated Cash Drawer, StatusUpdateEvent description and status value meanings, see Chapter 9.

Check Scanner
See Chapter 11 for these changes:

• Updated the Remarks section in the Check Scanner for the FileIndex property to clarify its usage.

• Added example to Check Scanner for XML data structure using CDATA to transfer the XML ImageData.

• In the Check Scanner the MapMode property, under the Remarks, additional definition was added to clarify its
default value.

• The remarks section under the Check Scanner storeImage method was clarified.

Fiscal Printer
See Chapter 16 for these changes:

• The ErrorCode Extended, EFPTR_SLP_FORM, was added in the Error Model description.

• In the Ordering of Fiscal Receipt Print Requests the printRecMessage method was added to the list of available
fiscal print methods.

• Updated the Fiscal Printer by adding reference for printRecMessage method and clarifications.

• Edit definition for CapAdditionalLines property.

• Updated the Fiscal Printer by adding reference for printRecMessage method in the PrinterState property.

• Add clarification and change the description to E_ILLEGAL to endItemList method for Fiscal Printer.

• Updated the Fiscal Printer by adding clarifications for the printRecMessage method.

• Added clarification to verifyItem method for ErrorCodeExtended value E_ILLEGAL.

• Added ErrorCodeExtended, EFPTR_SLP_FORM, to Fiscal Printer errorEvent method.

Lights
• Corrected switchOn method under See Also to include the reference to CapAlarm property, see Chapter 22.

MICR
See Chapter 24 for these changes:

• Updated and added definitions for the MICR Character Substitution and clarification to CMC-7 support.

• Added additional Country Codes to the MICR CountryCode properties.

• Updated the MICR RawData Property remarks and added a sample definition for the CMC-7 coding.

MSR
See Chapter 26 for these changes:

• Added a section to describe the MSR Encryption and Authentication, for MSR devices and/or services that support
that functionality.

Unified POS, v1.15.1 Beta1 E - 21

• Added additional wording to clarify masking requirements for the MSR AcountNumber property.

• Added additional wording to clarify CapTrackDataMasking for the MSR device.

• Clarified the remarks for CardAuthenticationDataLength, and DecodeData.

• Added clarification example for MSR ErrorReporting property.

• Clarified the remarks for:
Track1EncryptedDataLength
Track2EncryptedDataLength
Track3EncryptedDataLength
Track4EncryptedDataLength
to indicate the value for the length is determined before encryption takes place.

• Corrected the type for value from “inout” to “out” in the retrieveCardProperty method; clarified the Description
for the value parameter.

POS Keyboard
• Added clarification for POS Keyboard Keyboard Translations requirements, see Chapter 29.

POS Printer
See Chapter 31 for these changes:

• In POS Printer Property Summary List added properties for CapRecRuledLine; CapSlpRuledLine.

• In POS Printer Method Summary List added drawRuledLine method.

• Added description for alternative way to handle escape code sequences that contain variable length data, “Data
Characters and Escape Sequences.”

• In POS Printer Commands table added entry to describe in-line ruled line escape sequence to be used.

• Added further description for Ruled Line Drawing in the POS Printer.

• Added in the POS Printer Properties the description for the capability property CapRecRuledLine.

• Added in the POS Printer Properties the description for the capability property CapSlpRuledLine.

• In POS Printer, added drawRuledLine method.

• Removed the ErrorCodeExtended note “(Can only apply if AsyncMode is false)” for the printImmediate method
on basis that this method is synchronous only and note is not applicable.

• Added additional two dimensional symbologies (Data Matrix, QR Code, Micro QR Code, Aztec, Micro PDF 417)
to the printBarCode method.

Scale
See Chapter 34 for these changes:

• Added Scale property, ZeroValid, in the properties summary table which allows for reporting a “0” weight as a
valid weight.

• In Scale device, added a description of the changes put into this release for reporting a zero weight as a valid
weight.

• Added the description of the ZeroValid property.

• For the readWeight method call for the Scale, changes to description added to allow for receipt of zero weight if
ZeroValid = true.

E - 22 Unified POS, v1.15.1 Beta1

Tone Indicator
See Chapter 38 for these changes:

• In Tone Indicator added CapMelody, MelodyType, MelodyVolume to Properties Table.

• In Tone Indicator Model, added description for new “melody” tones that may be supported.

• In Tone Indicator Model section, the description for when “melody” can be selected and affect of Tone properties
is documented.

• Added the Properties for the Tone Indicator CapMelody, MelodyType, MelodyVolume.

• Updated the sound method, Remarks section, to provide the “siren” and “melody” tone duration descriptions.

Java For Retail POS--JavaPOS Implementation Reference
See Annex B for these changes:

• Added new Java Interfaces for existing device classes for Release 1.13.

• Corrected Common Methods to “Updated in Release 1.10” version reference (not Release 1.9 as previously
shown).

• Corrected the Change History, Release 1.7 problem where change log was incorrectly called out as Annex D and
should be Annex E.

POS For .Net Implementation Reference
See Annex C for these changes:

• Updated web links for location of P4DN SDK software.

• Updated the Enumeration Table with corrections to the cells to properly display the content; added entry of “No
Equivalent Defined” in cell locations where no translations are available.

• Removed invalid web link for “Structures” information from MSDN and require search MSDN for further
information.

• Added a warning note to the POS4DN implementation documentation for the DevicePath property to note it is not
intended for Application usage.

XMLPOS--XML For POS Mapping Reference
See Annex D for these changes:

• The introduction of the usage of Group and Choice for the Common and Device Specific Properties, Methods, and
Events in the XML Complex Type Definitions for each of the device types required the updating of all of XML
examples used in this section. In addition this required the updating of all of the Figures associated with each
Device Class for the Domain View, Properties DomainView, Methods Domain View, and Events Domain View.
Any new Properties, Methods, or Events that were added to the device classifications as a result of changes in
Version 1.13 were added and highlighted in the respective figures.

• Globally replaced “Device Specific Stati” with the more grammatically correct “Device Specific Status Messages”
in the document, especially frequently found in XMLPOS Annex with this instance an example.

Systems Management Information
See Annex I for these changes:

• Throughout the Systems Management Information Annex extensive grammar, spelling and other editorial changes
were made to the clean up the content. In addition each peripheral device section that describes the Peripheral

Unified POS, v1.15.1 Beta1 E - 23

Interfaces along with their respective class diagrams was corrected.

• The data type int8 was added to the Utilized CIM Data Types table.

• The Properties for each of the peripheral device sections were reviewed and changed as required to reflect the
correct Properties spelling and naming for the specific definitions.

E.11 Release Version 1.14
Version 1.14 of this specification, released in 2013, includes updates that reflect feedback from device service
developers and application development programmers as a result of using Version 1.13 and previous versions of
this standard. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. Additional extensive changes were added to the Scale device and the Electronic Value Reader/Writer
device. However, any minor typographical changes are not listed below.

Note: It was the decision of the UnifiedPOS Committee to freeze the major version of this standard to V1.14
and include only minor bug fixes and clarifications to this standard. The reason for this is the Committee, as of
this writing, working on a vastly updated version of the standard, UnifiedPOS Version 2 which builds upon the
UnifiedPOS 1.X functionality but incorporates newer hardware and software technologies not envisioned when
V1.x versions were created.

Common Properties, Methods, and Events
See Chapter 2 for these changes:

• Clarified the CapCompareFirmwareVersion property is initialized by the open method.

• Clarified the CapUpdateFirmware property is initialized by the open method

Cash Changer
See Chapter 8 for these changes:

• Corrected the FullStatus property in the property description to reflect access is valid after open, claim, enable.

• Corrected the ServiceCount property in the property description to reflect access is valid after open.

• Corrected the ServiceIndex property in the property description to reflect access is valid after open.

Cash Drawer
See Chapter 9 for these changes:

• Corrected the DrawerOpened property in the property description to reflect access is valid after open, enable.

Electronic Value Reader/Writer
See Chapter 15 for these changes:

• Updated the Summary section to include new Properties, Methods, and Events reflected in the 1.14 in the Version
column.

• Updated the General section to identify what has been added to this version of the device.

• Updated the Class diagram to reflect changes.

• Updated the Sequence diagram to reflect changes.

• Updated the State diagram to reflect changes.

E - 24 Unified POS, v1.15.1 Beta1

• Updated AccountNumber Property.

• Updated Amount Property.

• Updated Balance Property.

• Updated BalanceOf Point Property.

• Added CapPINDevice Property.

• Added CapTrainingMode Property.

• Updated ExpirationDate Property.

• Updated LastUsedDate Property.

• Updated MediumID Property.

• Added PINEntry Property.

• Updated Point Property.

• Updated SettledAmount Property.

• Added TrainingModeState Property.

• Updated VoucherID Property.

• Updated VoucherIDList Property.

• Added clearParameterInformation method.

• Added queryLastSuccessfulTransactionResult method.

• Added retrieveResultInformation method.

• Added setParemeterInformation method.

• Added TransitionEvent event. Note, this is the first time that the events have been expanded since Version 1.0 of
the standard. This event is only to be used for this device because of its unique features that require special
notification by the application to the device to determine operation modes and status.

Fiscal Printer
• Corrected the printRecTotal method where parameters “total” and “payment” should be type currency not int32

as previously denoted, see Chapter 16.
MSR
• Clarified the paragraph two of topic MSR Encryption and Authentication in the General Information section that

describes the security capabilities to provide Transaction Encryption and MSR Reader Authentication, see Chapter
26 for MSR devices and/or services that support that functionality.

PINPad
• Added additional note about additional string values for beginEFTTransaction method’s PINPadSystem value

to allow for other Management systems, see Chapter 27.

POS Printer
• Added note about additional scanner codes added to Scanner (Bar Code Scanner) but not included in POS Printer,

see Chapter 31.

Scale
See Chapter 33 for these changes:

Unified POS, v1.15.1 Beta1 E - 25

• Updated the Summary section, to include new Properties, Methods, and Events reflected in the 1.14 in the Version
column.

• Updated the General section to identify what has been added to this version of the device.

• Updated the Class diagram to reflect changes.

• Updated the Sequence diagram to reflect changes.

• Added CapFreezeValue Property.

• Added CapReadLiveWeightWithTare Property.

• Added CapSetPriceCalculationMode Property.

• Added CapSetUnitPriceWithWeightUnit Property.

• Added CapSpecialTare Property.

• Added CapTarePriority Property.

• Added MinimumWeight Property.

• Updated ScaleLiveWeight Property.

• Updated TareWeight Property.

• Updated UnitPrice Property.

• Added doPriceCalculating Method.

• Added freezeValue Method.

• Added readLiveWeightWithTare Method.

• Added setPriceCalculationMode Method.

• Added setSpecialTare Method.

• Added setTarePriority Method.

• Added setUnitPriceWithWeightUnit Method.

Scanner (Bar Code Reader)
See Chapter 35 for these changes:

• Added new One Dimensional Symbologies.

• Added a new Composite Symbology.

• Added new Two Dimensional Symbologies.

• Added new Postal Code Symbologies.

XMLPOS Mapping Reference
• Annex D: The following note was added to add clarification to the developer to not use the examples without

provided valid namespace references:
“Note: The following XML examples include “namespace references”. These are not actual file locations but
placeholders for the appropriate namespace where the support files can be found.

For example, in the XMLPOS references to file locations shown...
“http://www.omg.org/UnifiedPOS/namespace/” are not actual locations for the the support files. You must replace

E - 26 Unified POS, v1.15.1 Beta1

these references with actual locations.

In summary, when an application uses the XMLPOS schema examples as a basis for their code, it is necessary to
replace the placeholders with valid namespace locations.”

Systems Management Information
• Chapter 2: The DeviceID property was corrected for which version it was introduced into the standard and

matches the DeviceID property description on the following page.

E.12 Release Version 1.14.1
Version 1.14.1, released in 2014, represents a “bug fix” of this specification includes updates that reflect
feedback from device service developers and application development programmers as a result of using
“Electronic Value Reader / Writer” device classification. The changes are detailed below, with links to the
corresponding sections, pages, or chapters as appropriate. No other changes to other sections of the standard were
made and remain the same as in Version 1.14.

Note: It was the decision of the UnifiedPOS Committee to freeze the major version of this standard to V1.14 and
include only minor bug fixes and clarifications to this standard. The reason for this is the Committee, as of this
writing, working on a vastly updated version of the standard, UnifiedPOS Version 2 which builds upon the
UnifiedPOS 1.X functionality but incorporates newer hardware and software technologies not envisioned when
V1.x versions were created.

Electronic Value Reader/Writer
See Chapter 15 for these changes:

• Addition of a description of the Life cycle of a Sub-Service.

• Addition of description of the variations of the service dependent upon behavior of a store or a location.

• Addition of description of how the EVR/W device interacts with a payment center.

• Added an updated Error model that more completely describes the EVR/W error conditions and reporting
structure.

• Added the new CapMembershipCertificate capability.

• Updated the CardServiceList property variations description.

• Updated the CurrentService property variations description.

• Updated the ReaderWriterServiceList property variations description.

• Added the ServiceType property.

• Added the accessData method.

• Updated the accessLog method consistency information.

• Added the activateEVService method.

• Added the checkServiceRegistrationToMedium method.

• Added the closeDailyEVService method.

• Added the deactivateEVService method.

• Updated the lockTerminal method with changes to its Remarks section.

Unified POS, v1.15.1 Beta1 E - 27

• Added the openDailyEVService method.

• Added the registerServiceToMedium method.

• Updated the retrieveResultInformation method by additional tags and values and enumeration tag values.

• Updated the unlockTerminal method with changes to the Remarks section.

• Added the unregisterServiceToMedium method.

• Added the updateData method.

• Updated the updateKey method.

• Updated the TransitionEvent by adding two new event type identifiers and added a note in the description section
about its data dependence upon BinaryConversion in an OPOS environment.

• Corrected formatting issues throughout the chapter.

OLE for Retail POS -- OPOS Implementation Reference
• Annex A: Added the following additional entries to the BinaryConversion table “Properties, Methods, and Event

Names” to reflect updates that were added in UnifiedPOS versions 1.12 through 1.14, but inadvertently left out of
the OPOS Annex table.

Device Category Property/Method/Event Name Reference

Common PME directIO See Chapter 2

CAT DailyLog See Chapter 10

ElectronicValueRW AdditionalSecurityInformation
TransitionEvent See Chapter 15

MSR

AdditionalSecurityInformation
CardAuthenticationData
Track1Data
Track1DiscretionaryData
Track1EncryptedData
Track2Data
Track2DiscretionaryData
Track2EncryptedData
Track3Data
Track3EncryptedData
Track4Data
Track4EncryptedData
authenticateDevice
deauthenticateDevice
retrieveDeviceAuthenticationData

See Chapter 26

PINPad
Track1Data
Track2Data
Track3Data
Track4Data

See Chapter 27

SmartCardRW readData
writeData See Chapter 36

E - 28 Unified POS, v1.15.1 Beta1

• Added an informational additional note about the XMLPOS use of ARTSBinary to transfer binary data, see Annex
A.

XMLPOS
See Annex D for these changes:

• Added the note regarding conversion of binary data to XML data structure “Binary data shall be encoded and
decoded using ARTSBinary as defined in ‘ARTS-XML Best Practices.’”

• Added changes to XML examples for devices that utilize BinaryConversion to reflect new way to transmit binary
data accurately, for example “BIR Property Returned Example”, GetProperty for BIR.

• Updated the Electronic Value Reader / Writer properties and methods drawings to reflect new properties and
methods added.

E.13 Release Version 1.15
Version 1.15, released in 2018, represents a only a migration of this specification from the National Retail
Federation (NRF) to the Object Management Group (OMG) through an extensive agreement. All Copyright
ownership is transfered to OMG under this agreement.

This version includes the replacement of the copyright statements and minor text edits to accommodate this
transition.

The general document changes, in addition to several technical changes, were made as noted below:

• Updated the Version and issue date on the front.

• Updated the Copyright and Disclaimer notices.

• Updated the Table of Contents to reflect additional sections.

• Updated URL from www.nrf-arts.org to retail.omg.org

• Updated URL for UML Documentation

• Updated Chapter 15 EVRW added new capabilities as needed for OPOS-J.

• Updated Chapter 16 Fiscal Printer to include Germany, and ticket Start and End date/time elements.

• Updated Chapter 33 Scale such that the Minimum and Maximum weights must be processed considering the
WeightUnit property.

• Updated Annex C POS for .Net to include elements updates for changes to version 1.15.

E.14 Release Version 1.15.1
Version 1.15 .1 of this specification, released in 2024, includes updates that reflect feedback from device service
developers and application development programmers as a result of using Version 1.15 and previous versions of
this standard.

Table of Contents
• Updated the Table of Contents and corrected the chapter numbering for the Annex A to J.

Introduction and Architecture

Unified POS, v1.15.1 Beta1 E - 29

• Event chapter section number was changed from 1.3.6.3 to 1.3.7 and following section numbers were changed
from 1.3.8 to 1.3.23 accordingly. See Chapter 1.

CAT - Credit Authorization Terminal
• Updated DailyLog, PaymentDeatil property description. See Chapter 10.

Electronic Journal
• Updated MediumSize, MedimunFreeSpace property description. See Chapter 14.

Electronic Value Reader/Writer
• Updated duplicated CapAuthorizedPreSales description from CapAuthrizedPreSales to

CapAuthorizedVoidPreSales. See Chapter 15.

• Updated CapDailyLog property “Mutability” and “May Use after”. See Chapter15.

• Updated the Electric Value Reder Writer device sequence diagrams that were mistakenly copy-pasted descriptions.
See Chapter 15.

• Updated ServiceType property description. See Chapter 15.

• Updated State Diagram of Electric Value Reader Writer. See Chapter 15.

• Updated the readValue method behavior description. See Chapter 15.

• Updated the transactionAccess, readValue, setParameterInformation method behavior description. See
Chapter 15.

• Updated the retireveResultInformation method behavior description. See Chapter 15.

• Updated setParameterInformation method behavior description. See Chapter 15.

• Updated DailyLog, PaymentDetail property description. See Chapter 15.
Fiscal Printer
• Updated the getData method behavior description. See Chapter 16.

• Updated the Currency Amount and Percentage Amount descriptions. See Chapter 16.

• Updated the printRecPackageAdjustment method description. See Chapter 16.

• Updated the printRecPackageAdjustVoid method description. See Chapter 16.
Pin Pad
• Updated MinmumPINLength property description. See Chapter 27.

Point Card Reader/Writer
• Updated Point Card Reader/Writer State Diagram. See Chapter 28.

• Updated the Point Card Reader/Writer section number, since CapCharacterSet Propery section number was
missing.

• And CapCharacterSet property section number was newly assigned 28.4.3 and following section numbers were
changed from 28.4.4 to 28.4.52 accordingly. See Chapter 28.

• Updated CapCardEntranceSensor property description. See Chapter 28.
POS Printer
• Added the BarCode of GS1-128 which is replaced the EAN-128 and EAN-128 related values are deprecated. See

chapter 31.

E - 30 Unified POS, v1.15.1 Beta1

Scanner (Bar Code Reader)
• Added the BarCode of GS1-128 which is replaced the EAN-128 and EAN-128 related values are deprecated. See

chapter 35.

• Added the Digital Watermarking as Scanner Symbology. See Chapter 35.

• Added the Dotcode as 2D Symbology. See Chapter 35.
Smart Card Reader/Writer
• Added the endRemoval method missing section number and changed followed chapter number accordingly.

• See Chapter 37

• Updated the readData method behavior as device input mode model and related card insertion diagram,
sequence diagrams and state diagram accordingly. See Chapter 37.

Tone Indicator
• Update the AsyncMode Property initialization behavior to indicate the initialization takes pace when the device is

first opened. And this property is initialized to false by the open method. See chapter 38.

• Updated the InterToneWait?MelodyType, MelodyVolume, Tone1Duration, Tone1Pitch, Tone1Volume,
Tone2Duration, Tone2Pitch, Tone2Volume property behavior description. Those properties are initialized to
zero when the device is first enabled following the open method. See Chapter 38.

Annex C
• Updated the typo of Key Programming Construct Differences Table description in C6.1. See chapter Annex C.

Unified POS, v1.15.1 Beta1 F - 1

Annex F

Additional Software References

F.1 General
This appendix contains a list of additional material that may prove helpful for the understanding of the
UnifiedPOS software environment.

F.2 UML References
The following is a list of additional material that may prove helpful for the understanding of the Unified
Modeling Language which is used for the basis of peripheral device modeling in this standard. They are listed in
alphabetical order and not according to a ranking on usefulness.

Web Location References
Official On-line UML Documentation at Object Management Group:

http://www.omg.org/spec/UML/About-UML/

Reading Material References
1) [Booch98] Booch, G. et al, Unified Modeling Language User Guide, Addisson Wesley
Longman, Inc., 1998, ISBN 0201571684

2) Eriksson, H. and Penker, M., UML Toolkit, John Wiley & Sons, Inc., 1997, ISBN 0471191612

3) Fowler, M. and Scott, K., UML Distilled: Applying the Standard Object Modeling Language,
 Addisson Wesley Longman, Inc., 1997, ISBN 0201325632

4) Harmon, P. and Watson, M., Understanding UML: The Developer’s Guide, Morgan Kaufmann
 Pubs., Inc., 1997, ISBN 1558604650

5) Muller, P., Instant UML, Wrox Press Ltd., 1997, ISBN 1861000871

6) Quatrani, T., foreword by Booch, G., Visual Modeling with Rational Rose & UML, Addison
 Wesley Longman, Inc., 1997, ISBN 0201310163

7) Rumbaugh, J. et al, The Unified Modeling Language Reference Manual, Addisson Wesley
 Longman, Inc., 1998, ISBN 020130998X

8) Si Alhir, S., UML In a Nutshell, O'Reilly & Associates, Inc., 1998, ISBN 1565924487

9) Warmer, J. and Kleppe, A., The Object Constraint Language: Precise Modeling with UML,
 Addisson Wesley Longman, Inc., 1998, ISBN 0201379406

http://www.omg.org/spec/UML/About-UML/
http://www.omg.org/spec/UML/About-UML/

F - 2 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 G - 1

Annex G

Additional Hardware References

G.1 General
This annex contains a list of additional material that may prove helpful for the understanding of the UnifiedPOS
hardware environment.

G.2 USB PlusPower Connector

G.2.1 Overview

USB, or the Universal Serial Bus, is a communications attachment standard that includes power in the cable
connection to the peripheral device. One of the limitations of USB is the amount of +5 volt current available to
supply attached peripherals. Normally, 500 milliamp is available at each host port and each powered external hub
port. This amount of current is sufficient for most PC type peripherals like mice and keyboards. When the power
requirements exceed the 500 milliamp limitation, external peripherals require the use of an external power supply
(brick) to supply the necessary power requirements. This limitation takes away from the true “plug-n-play” idea
conceived for USB peripherals.

The PlusPower USB connector provides a single cable connection that supplies both the standard USB
communication signals and two additional wire pairs for extra power.

G.2.2 Host Side Connector

The host connector incorporates an “A” type socket that allows compatibility of standard USB peripherals. The
connector itself is unique in that it provides the additional benefit of a locking mechanism for the cable
connector. The host connector's four power pins (two ground and two voltage) are keyed to a specific voltage
available at that port.

The following voltage keying options are available:

• +5 volts DC at a maximum rating of 6 amps per connector

• +12 volts DC at a maximum rating of 6 amps per connector

G - 2 Unified POS, v1.15.1 Beta1

• +24 volts DC at a maximum rating of 6 amps per connector

G.2.3 Cable

The cable end is also keyed to match the voltage type and is color coded to simplify voltage identification.

• +5 volts (ivory)

• +12 volts (teal)

• +24 volts (red)

G.2.4 Peripheral Side Connection

The peripheral side connection is loosely defined and generally left to the specific user's physical space
requirements. The Series B connector as supplied by FCI/Berg is the recommended connector but not mandatory.

G.2.5 Web Location References - USB connector EIA approval

• Approved March 2000 as EIA standard.

• Defines 12 and 24 volt key connectors.

• EIA 700BAAD number assigned.

Official On-line Documentation for the USB PlusPower connector is available at:

http://www.ecianow.org/

http://www.tiaonline.org/standards/search_n_order.cfm

G.2.6 Reading Material References

1) EIA-700BAAD, Detail Specification for Shielded Rectangular Connector(s) For Universal
Serial Bus PlusPower Connector(s) Series “A”, EIA Engineering Publications Office, 2500 Wilson
Boulevard, Arlington, Virginia, 22201.

2) EIA-700BAAE, Detail Specification for Shielded Rectangular Connector(s) For Universal
Serial Bus PlusPower Connector(s) Series “B”, EIA Engineering Publications Office, 2500 Wilson
Boulevard, Arlington, Virginia, 22201.

http://www.ecianow.org/
http://www.tiaonline.org/standards/search_n_order.cfm

Unified POS, v1.15.1 Beta1 G - 3

G.2.7 ARTS Standard Endorsement

ARTS has adopted the Powered USB connectors (as defined in EIA Standard EIA-700BAAD and EIA-
700BAAE) as a retail standard for attachment of point-of-sale I/O devices. This is in keeping with the following
ARTS objectives:

• Provide the retail community with a widely available connection standard that increases options and function while
reducing cost

• Protect the retail community from legal actions or restrictions that might hinder operations, limit future options, or
increase costs

In response to this endorsement of technology which includes an IBM patent, IBM is pleased to offer a royalty
free license for Point-Of-Sale usage of the powered USB connector as described in the following statement:

“IBM will make available to retail point-of-sale vendors, a non-exclusive fully paid-up license under U.S. Patent
No.: 6,086,430 (and any corresponding patents of other countries) to use Powered USB connectors (as defined in
EIA Standard EIA-700BAAD and EIA-700BAAE) in Retail point-of-sale terminals, upon the signing of a license
agreement and payment of a nominal fee.”

The fee referenced is $5,000 per ARTS member as the one time charge for the patent.

For the patent license please contact:

Director of Licensing

International Business Machines Corporation

North Castle Drive

Armonk, New York 10504-1785

The agreement provides a license to products which are considered a Point-of-Sale Device or a peripheral device
designed primarily for attaching to a Point-of-Sale Device; and, which contain connectors which conform to and
operate in compliance with specifications for a Supported Standard. A Point-of-Sale Device means a device
designed primarily for use in retail stores for recording sales data and handling on-site customer transactions at
the time a sale is made. A Supported Standard is defined as the Detail Specification for Shielded Rectangular
Connectors for Universal Serial Bus Plus Power Connectors Series “B” (ANSI/EIA-700BAAE-00) (Published:
May 9, 2000) and/or Detail Specification for Shielded Rectangular Connectors for Universal Serial Bus Plus
Power Connectors Series “A” (ANSI/EIA-700BAAD-00) (Published: May 10, 2000). This is a limited field of
use licensing arrangement, available for a one time fee of $5000 from IBM, for applications determined by IBM
to be compliant with the license definitions referenced above. All other uses of these patents, in support of
specifications or standards, are available from IBM under non-exclusive, non-discriminatory, reasonable terms
and conditions, in accordance with IBM's normal licensing policies. The license is available to Point-of-Sale
manufacturers, value added resellers, and systems integrators.

G - 4 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 H - 1

Annex H

Deprecation History

H.1 General
This annex was added in Release 1.11 of this specification and contains a history of Properties, Methods,
Constants, etc., (Elements) that have been deprecated from the Specification. Details are provided of the release
level when the deprecation was introduced and the release level at which the element is no longer supported.

Device Category Element Name
Release
Marked

Deprecated

Release
Support
Removed

FiscalPrinter CapAmountNotPaid 1.11

FiscalPrinter printRecVoidItem 1.11

POSPrinter/
printBarCode

PTR_BCS_RSS14 and
PTR_BCS_RSS_EXPANDED 1.12

Scanner/
ScanDataType

SCAN_SDT_RSS14 and
SCAN_SDT_RSS_EXPANDED 1.12

H - 2 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 I - 1

Annex I

Systems Management Information

I.1 What is Systems Management?
Systems Management refers to a means of managing and administering a distributed computer system from an
enterprise-wide level. These computer systems do not only include the base units but the attached peripherals as
well.

I.2 How is UnifiedPOS involved in Systems Management?
The goals of UnifiedPOS is to define a set of common properties, methods and events that would be of interest
to a systems management solution. The various implementations of the UnifiedPOS drivers are uniquely
positioned to communicate with the POS peripheral and collect pertinent systems management information. In
this appendix, the goal is to:

• Define the common properties, methods, and events to be used by systems management for each type of device
specified in the UnifiedPOS standard,

• Define a mapping of the UnifiedPOS properties and statistics to the systems management properties,

• Provide information on how the various device services and device controls can provide this information to
systems management.

The model will utilize the Common Information Model (CIM) from the Distributed Management Task Force
(DMTF). This model is selected because it is broadly adopted by several systems management solutions and is
supported on multiple environments and operating systems. Additionally, CIM is extensible, so vendors may
provide information beyond the common model.

Deliverables available for UnifiedPOS model for CIM are:

• UnifiedPOS Programmer’s Guide – this document: For application developers and hardware providers.

• Model Object Format (MOF) files that provide the common device models for the UnifiedPOS devices.

Common Information Model reference:
http://www.dmtf.org/standards/cim/

ARTS OMG Retail Domain Task Force Standards Body:
http://retail.omg.org/

I.3 Who Should Read This Section
This Section is targeted at a systems management solution developer who requires access to POS-specific device
information. It is also targeted to the system developer who will provide device information from within the
device services he provided. This guide assumes that the reader is familiar with the following:

http://monroecs.com/opos.htm
http://retail.omg.org/

I - 2 Unified POS, v1.15.1 Beta1

• The UnifiedPOS Device chapters in this document.

• General characteristics of POS peripheral devices.

• The Common Information Model

I.4 UnifiedPOS Device Information Reporting Model
In order to expedite and encourage the broadest acceptance of supporting the UnifiedPOS device information, the
information is provided using the Common Information Model. According to the Distributed Management Task
Force,

CIM provides a common definition of management information for systems, networks, applications and services, and
allows for vendor extensions. CIM’s common definitions enable vendors to exchange semantically rich management
information between systems throughout the network.

Examples of information provided in this CIM model are the device’s Serial Number, Firmware Version, and
Connection Type. Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of
Hours Running, Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of
scans, Number of Hours Running, etc. Examples of usage data for the MSR device are the Number of successful
swipes, Number of swipes resulting in errors, Number of Hours Running, etc.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

I.4.1 CIM Structure

CIM is an object-oriented model with classes used to represent the various types of elements to be managed.
Class definitions can be inherited from other classes, and vendors are free to expand upon existing classes. For
the UnifiedPOS model, a class called UPOS_LogicalDevice is specified. This class contains all the properties
and methods common to all the UnifiedPOS devices to be represented for systems management. This class
inherits elements from the CIM_LogicalDevice class specified in CIM Core Device model. CIM_LogicalDevice
is the base class in CIM from which all other device classes are derived. It is therefore the class from which
UnifiedPOS will also derive its base class and all other device classes.

Unified POS, v1.15.1 Beta1 I - 3

I - 4 Unified POS, v1.15.1 Beta1

Unified POS, v1.15.1 Beta1 I - 5

I.5 Architectural Overview
The UnifiedPOS drivers are well positioned to communicate with the POS peripherals to gather operational and
statistical information about the devices they are communicating with. In order for the driver to help provide
systems management information, as well as perform the operations it is originally intended for, there are three
basic limitations they must overcome.

I.5.1 Exclusive Use

UnifiedPOS specifies a concept of exclusive use for a device. In many device classes, it is a requirement. The
purpose of the concept is to ensure that one and only one application is trying to access a particular logical
device at a time. This is to ensure that device is not overrun with requests from multiple sources, such as two
applications trying to print a receipt on the same POS Printer at the same time. While this makes sense for POS
applications, locking access to a device puts the onus of device statistics gathering on the POS application
instead granting access to a systems management package. Therefore, a systems management interface must be
created to bypass this restriction. When one instance of the driver has the device classes, it should not limit the
availability of systems management information.

I.5.2 Multiple Instances

UnifiedPOS also allows for multiple applications to instantiate instances of the same device services. This
introduces the possibility that multiple interfaces are monitored by the system management application, creating
confusion and undue overhead.

I.5.3 Limited Lifetime

The lifetime of a device service or device control is controlled by the POS application that instantiates the
classes. This is not the most desirable situation for a systems management solution. However, the initial goal is
to provide some level of systems management for these devices, and using the UnifiedPOS devices drivers is a
logical place to start. The assumption is that these drivers will be instantiated for most of the time that the POS
device is running.

I.5.4 Solution Creation

The solution then appears to be the creation of a UnifiedPOS Management Services component. This component
would be responsible for mapping the properties between the two models, resolving multiple instances and
negotiating contention with exclusive use devices.

To support the enablement of this component, the Device Controls and Services would require the addition of a
CIM Object interface. The device control would allow for a base level of systems management. If extended
services are provided, they could be exposed through an interface in the Device Service.

UPOS Management Services will present an implementation of UPOS_LogicalDevice for every Device Service
it detects to the CIM Object Monitor (CIMOM). If a Device Service registers an object implementation with the
Management Service then the Service will replace the instance of UPOS_LogicalDevice with a proxy to the
provided object form the Device Service. This allows legacy devices to be seen although on a limited basis, and
it does not limit the creation of object extensions by the Device Services vendors.

I - 6 Unified POS, v1.15.1 Beta1

A Proxy object queue will maintain a list of all instances of a given device service, but only use the currently
active device service as the active proxy object. If/When a different device service becomes the active device
service, then the proxy will change its relationship. When there are multiple instances of a sharable device
service, the proxy will use the first active device service in the list. Should the current device service shutdown,
the proxy will switch to the next object in the list.

Device
ServiceCIM Object

Device
ServiceCIM Object

Device
ServiceCIM Object

POS Application

UPOS Device
Control

Device
ServiceCIM Object

CIM Object

U
P

O
S

 M
a

na
g

em
en

t S
e

rv
ic

e
s Proxy Object

Mgmt. Application

CIMOM

Enabled

Disabled

Disabled

Disabled

Device
ServiceCIM Object
Device
ServiceCIM Object

Device
ServiceCIM Object
Device
ServiceCIM Object

Device
ServiceCIM Object
Device
ServiceCIM Object

POS Application

UPOS Device
Control

Device
ServiceCIM Object
Device
ServiceCIM Object

CIM Object

U
P

O
S

 M
a

na
g

em
en

t S
e

rv
ic

e
s Proxy Object

Mgmt. Application

CIMOM

Enabled

Disabled

Disabled

Disabled

Unified POS, v1.15.1 Beta1 I - 7

Additionally, two other things should be considered when providing this information from within the device
service. First, systems management should not interfere with the operation of the device. The device service
needs to take special steps to prioritize the requests. For example, if a systems management solution is repeatedly
requesting the value of a property, such as ReceiptCharacterPrintedCount from the POS Printer, the service
should not repeatedly poll the hardware every time. This could degrade the performance of the driver and the
device. The driver could isolate the request and respond with a cached value. The driver can then request the
value from the hardware at a less intrusive time or interval. Many systems management values, such as
thresholds, do not require “real-time” data.

Secondly, many drivers do not “touch” the hardware until DeviceEnabled is set to true. However, systems
management solutions may request values as soon as the driver is opened. Therefore, it may be wise to hold a set
of values from device on the system unit so they can be reported before communications with the hardware is
initiated. This information could be stored by serial number or logical name and should be refreshed once
communication is initiated.

I.6 Utilized CIM Data Types Updated in Release 1.13
The parameter and return types specified in the CIM model are as follows:

Type Meaning
boolean A variable with the legal values TRUE (non-zero) and FALSE (zero).
dateTime A CIM internal date/time class.
int8 An integer with a size of 8 bits
int16 An integer with a size of 16 bits.
int32 An integer with a size of 32 bits.
int64 An integer with a size of 64 bits.
string A character string.
uint32 An unsigned integer with a size of 32 bits.
uint64 An unsigned integer with a size of 64 bits.

I - 8 Unified POS, v1.15.1 Beta1

I.7 Common Properties, Methods, and Events Updated in Release 1.14
UnifiedPOS Systems Management implementation specific definitions of the Common Properties.

Properties

Name Type UnifiedPOS
Property

 Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.13
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

MANAGEDSYSTEMELEMENT

InstallDate dateTime Installa-
tion Date

1.12

Name string DeviceID 1.13

Unified POS, v1.15.1 Beta1 I - 9

I.8 Common Methods
UnifiedPOS Systems Management implementation specific definitions of the Common Methods.

I.9 Properties Updated in Release 1.13

DeviceID Property
Syntax string DeviceID;

Remarks String used to uniquely identify the device. Generated using the logical name and the
DeviceCategory of the device, such as “SerialPrinterUPOS POSPrinter” and “HardTotalsUPOS
HardTotals.”

See Also DeviceCategory property.

I.10 Peripheral Interfaces
Nearly all of the devices have additional properties or methods beyond the common set found in the previous
chapter. The following device descriptions will list those properties and methods unique to each device and
provide an explanation for each one.

MANAGEDELEMENT

Caption string DeviceControlDescription 1.12
Description string DeviceServiceDescription 1.12

 Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

 Statistic
Version

UnifiedPOS
Version

I - 10 Unified POS, v1.15.1 Beta1

I.10.1 Belt Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Belt Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 11

Specific

CapLightBarrierBackward: boolean -Same- 1.12

CapLightBarrierForward: boolean -Same- 1.12

CapSecurityFlapBackward: boolean -Same- 1.12

CapSecurityFlapForward: boolean -Same- 1.12

MotionStatus: int32 -Same- 1.12

SecurityFlapBackwardOpened: boolean -Same- 1.12

SecurityFlapForwardOpened: boolean -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult

);
1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
resetBelt (); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 12 Unified POS, v1.15.1 Beta1

Belt Class Diagram
The following diagram shows the relationships between the Belt classes.

I.10.2 Bill Acceptor Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Bill Acceptor Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 13

DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 14 Unified POS, v1.15.1 Beta1

Specific

CapDiscrepancy: boolean -Same- 1.12

CapFullSensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearFullSensor: boolean -Same- 1.12

CapPauseDeposit: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CurrencyCode: string -Same- 1.12

DepositCashList: string -Same- 1.12

DepositCodeList: string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 15

Bill Acceptor Class Diagram
The following diagram shows the relationships between the Bill Acceptor classes.

I.10.3 Bill Dispenser Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Bill Dispenser Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12

I - 16 Unified POS, v1.15.1 Beta1

DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 17

Specific

CapDiscrepancy: boolean -Same- 1.12

CapEmptySensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearEmptySensor: boolean -Same- 1.12

CurrencyCashList: string -Same- 1.12

CurrencyCode: string -Same- 1.12

CurrencyCodeList: string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult

);
1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 18 Unified POS, v1.15.1 Beta1

Bill Dispenser Class Diagram
The following diagram shows the relationships between the Bill Dispenser classes.

Unified POS, v1.15.1 Beta1 I - 19

I.10.4 Biometrics Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Biometrics Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.1
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Specific
SuccessfulMatchCount uint64 -Same- 1.13
UnsuccessfulMatchCount uint64 -Same- 1.13
AverageFAR uint32 -Same- 1.13
AverageFRR uint32 -Same- 1.13

I - 20 Unified POS, v1.15.1 Beta1

Biometrics Class Diagram
The following diagram shows the relationships between the Biometrics classes.

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Unified POS, v1.15.1 Beta1 I - 21

I.10.5 Bump Bar Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Bump Bar Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 22 Unified POS, v1.15.1 Beta1

Bump Bar Class Diagram
The following diagram shows the relationships between the Bump Bar classes.

Specific

BumpCount: boolean -Same- 1.12

CapTone: boolean -Same- 1.12
UnitsOnline: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 23

I.10.6 Cash Changer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Cash Changer Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 24 Unified POS, v1.15.1 Beta1

Specific

CapDiscrepancy: boolean -Same- 1.12

CapFullSensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearFullSensor: boolean -Same- 1.12

CapPauseDeposit: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CurrencyCode: string -Same- 1.12

DepositCashList: string -Same- 1.12

DepositCodeList: string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 25

Cash Changer Class Diagram
The following diagram shows the relationships between the Cash Changer classes.

I - 26 Unified POS, v1.15.1 Beta1

I.10.7 Cash Drawer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Cash Drawer Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 27

Cash Drawer Class Diagram
The following diagram shows the relationships between the Cash Drawer classes.

Specific
CapStatus: boolean -Same- 1.12
CapStatusMultiDrawerDetect: boolean -Same- 1.12

DrawerFailedOpenCount: uint64 -Same- 1.12

DrawerGoodOpenCount: uint64 -Same- 1.12

DrawerOpened: boolean -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 28 Unified POS, v1.15.1 Beta1

I.10.8 Credit Authorization Terminal Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Credit Authorization Terminal
Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 29

Credit Authorization Terminal Class Diagram
The following diagram shows the relationships between the Credit Authorization Terminal classes.

Specific
CapCashDeposit: boolean -Same- 1.12
CapLockTerminal: boolean -Same- 1.12
CapUnlockTerminal: boolean -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 30 Unified POS, v1.15.1 Beta1

I.10.9 Check Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Check Scanner Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 31

Specific
CapAutoContrast: boolean -Same- 1.12
CapAutoGenerateFileID: boolean -Same- 1.12
CapAutoGenerateImageTagData: boolean -Same- 1.12
CapAutoSize: boolean -Same- 1.12
CapColor: uint64 -Same- 1.12
CapConcurrentMICR: boolean -Same- 1.12
CapContrast: boolean -Same- 1.12
CapDefineCropArea: boolean -Same- 1.12
CapImageFormat: int32 -Same- 1.12
CapImageTagData: boolean -Same- 1.12
CapMICRDevice: boolean -Same- 1.12
CapStoreImageFiles: boolean -Same- 1.12
CapValidationDevice: boolean -Same- 1.12
ChecksScannedCount uint64 -Same- 1.13
Color: int32 -Same- 1.12
ConcurrentMICR: boolean -Same- 1.12
ImageFormat: int32 -Same- 1.12
ImageMemoryStatus: int32 -Same- 1.12
MaxCropAreas: int32 -Same- 1.12
Quality: int32 -Same- 1.12
QualityList: string -Same- 1.12
RemainingImagesEstimate: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 32 Unified POS, v1.15.1 Beta1

Check Scanner Class Diagram
The following diagram shows the relationships between the Check Scanner classes.

Unified POS, v1.15.1 Beta1 I - 33

I.10.10 Coin Acceptor Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Coin Acceptor Device Category.

Properties

Name Type UnifiedPOS
 Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 34 Unified POS, v1.15.1 Beta1

Specific

CapDiscrepancy: boolean -Same- 1.12

CapFullSensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearFullSensor: boolean -Same- 1.12

CapPauseDeposit: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CurrencyCode: string -Same- 1.12

DepositCashList: string -Same- 1.12

DepositCodeList: string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Unified POS, v1.15.1 Beta1 I - 35

Coin Acceptor Class Diagram
The following diagram shows the relationships between the Coin Acceptor classes.

I - 36 Unified POS, v1.15.1 Beta1

I.10.11 Coin Dispenser Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Coin Dispenser Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 37

Specific

CapEmptySensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearEmptySensor: boolean -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

I - 38 Unified POS, v1.15.1 Beta1

Coin Dispenser Class Diagram
The following diagram shows the relationships between the Coin Dispenser classes.

Unified POS, v1.15.1 Beta1 I - 39

I.10.12 Electronic Journal Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Electronic Journal Device
Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 40 Unified POS, v1.15.1 Beta1

Specific

CapErasableMedium: boolean -Same- 1.12

CapInitializeMedium: boolean -Same- 1.12

CapMediumIsAvailable: boolean -Same- 1.12

CapPrintContent: boolean -Same- 1.12

CapPrintContentFile: boolean -Same- 1.12

CapStation: int32 -Same- 1.12

CapStorageEnabled: boolean -Same- 1.12

CapWaterMark: boolean -Same- 1.12

EraseCount uint64 -Same- 1.13

FailedWriteCount unit64 -Same- 1.13

MediumFreeSpace uint64 -Same- 1.13

MediumID: string -Same- 1.12

MediumIsAvailable: boolean -Same- 1.12

MediumRemoveCount uint64 -Same- 1.13

MediumSize: currency -Same- 1.12

Station: int32 -Same- 1.12

StorageEnabled: boolean -Same- 1.12

WriteCount uint64 -Same- 1.13

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 41

Electronic Journal Class Diagram
The following diagram shows the relationships between the Electronic Journal classes.

I - 42 Unified POS, v1.15.1 Beta1

I.10.13 Electronic Value Reader/Writer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Electronic Value Reader/Writer
Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Unified POS, v1.15.1 Beta1 I - 43

Electronic Value Reader/Writer Class Diagram
The following diagram shows the relationships between the Electronic Value Reader/Writer classes.

I - 44 Unified POS, v1.15.1 Beta1

I.10.14 Fiscal Printer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Fiscal Printer Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 45

Specific

BarcodePrintedCount uint64 -Same- 1.12

CapCoverSensor boolean -Same- 1.12

CapJournalEmptySensor boolean CapJrnEmptySensor 1.12

CapJournalNearEndSensor boolean CapJrnNearEndSensor 1.12

CapJournalPresent boolean CapJrnPresent 1.13

CapReceiptEmptySensor boolean CapRecEmptySensor 1.13

CapReceiptNearEndSensor boolean CapRecNearEndSensor 1.13

CapReceiptPresent boolean CapRecPresent 1.13

CapSlipEmptySensor boolean CapSlpEmptySensor 1.13

CapSlipFullSlip boolean CapSlpFullSlip 1.13

CapSlipNearEndSensor boolean CapSlpNearEndSensor 1.13

CapSlipPresent boolean CapSlpPresent 1.13

CountryCode int32 -Same- 1.12

FailedPaperCutCount uint64 -Same- 1.12

FailedPrintSideChangeCount uint64 -Same- 1.12

FormInsertionCount uint64 -Same- 1.12

HomeErrorCount uint64 -Same- 1.12

JournalCharacterPrintedCount uint64 -Same- 1.12

JournalEmpty boolean JrnEmpty 1.13

JournalLinePrintedCount uint64 -Same- 1.12

JournalNearEnd boolean JrnNearEnd 1.13

MaximumTempReachedCount uint64 -Same- 1.12

NVRAMWriteCount uint64 -Same- 1.12

PaperCutCount uint64 -Same- 1.12

PrinterFaultCount uint64 -Same- 1.12

PrintSideChangeCount uint64 -Same- 1.12

ReceiptCharacterPrintedCount uint64 -Same- 1.12

ReceiptCoverOpenCount uint64 -Same- 1.12

ReceiptEmpty boolean RecEmpty 1.13

ReceiptLineFeedCount uint64 -Same- 1.12

ReceiptLinePrintedCount uint64 -Same- 1.12

ReceiptNearEnd boolean RecNearEnd 1.13

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 46 Unified POS, v1.15.1 Beta1

SlipCharacterPrintedCount uint64 -Same- 1.12

SlipCoverOpenCount uint64 -Same- 1.12

SlipLineFeedCount uint64 -Same- 1.12

SlipLinePrintedCount uint64 -Same- 1.12

SlipEmpty boolean SlpEmpty 1.13

SlipNearEnd boolean SlpNearEnd 1.13

StampFiredCount uint64 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 47

Fiscal Printer Class Diagram
The following diagram shows the relationships between the Fiscal Printer classes.

I - 48 Unified POS, v1.15.1 Beta1

I.10.15 Gate Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Gate Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Unified POS, v1.15.1 Beta1 I - 49

Gate Class Diagram
The following diagram shows the relationships between the Gate classes.

I - 50 Unified POS, v1.15.1 Beta1

I.10.16 Hard Totals Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Hard Totals Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 51

Specific
CapErrorDetection: boolean -Same- 1.12
CapSingleFile: boolean -Same- 1.12
CapTransactions: boolean -Same- 1.12
TotalsSize: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 52 Unified POS, v1.15.1 Beta1

Hard Totals Class Diagram
The following diagram shows the relationships between the Hard Totals classes.

Unified POS, v1.15.1 Beta1 I - 53

I.10.17 Image Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Image Scanner Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

I - 54 Unified POS, v1.15.1 Beta1

Image Scanner Class Diagram
The following diagram shows the relationships between the Image Scanner classes.

Unified POS, v1.15.1 Beta1 I - 55

I.10.18 Item Dispenser Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Item Dispenser Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 56 Unified POS, v1.15.1 Beta1

Specific
DispenserStatus: int32 -Same- 1.12
MaxSlots: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific
readItemCount (inout int32 itemCount, int32 slotNumber); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 57

Item Dispenser Class Diagram
The following diagram shows the relationships between the Item Dispenser classes.

I - 58 Unified POS, v1.15.1 Beta1

I.10.19 Keylock Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Keylock Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 59

Specific
CapKeylockType: int32 -Same- 1.12
KeyPosition: int32 -Same- 1.12
LockPositionChangeCount: uint64 -Same- 1.12
PositionCount: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 60 Unified POS, v1.15.1 Beta1

Keylock Class Diagram
The following diagram shows the relationships between the Keylock classes.

Unified POS, v1.15.1 Beta1 I - 61

I.10.20 Lights Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Lights Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 62 Unified POS, v1.15.1 Beta1

Specific
MaxLights: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 63

Lights Class Diagram
The following diagram shows the relationships between the Lights classes.

I - 64 Unified POS, v1.15.1 Beta1

I.10.21 Line Display Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Line Display Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 65

Specific
BlinkRate: int32 -Same- 1.12
CapBitmap: boolean -Same- 1.12
CapBlink: int32 -Same- 1.12
CapBlinkRate: boolean -Same- 1.12
CapBrightness: boolean -Same- 1.12
CapCharacterSet: int32 -Same- 1.12
CapCursorType: int32 -Same- 1.12
CapCustomGlyph: boolean -Same- 1.12
CapDescriptors: boolean -Same- 1.12
CapHMarquee: boolean -Same- 1.12
CapICharWait: boolean -Same- 1.12
CapMapCharacterSet: boolean -Same- 1.12
CapReadBack: int32 -Same- 1.12
CapReverse: int32 -Same- 1.12
CapScreenMode: boolean -Same- 1.12
CapVMarquee: boolean -Same- 1.12
CharacterSet: int32 -Same- 1.12
CharacterSetList: string -Same- 1.12
Columns: int32 -Same- 1.12
CustomGlyphList: string -Same- 1.12
DeviceBrightness: int32 -Same- 1.12
DeviceColumns: int32 -Same- 1.12
DeviceDescriptors: int32 -Same- 1.12
DeviceRows: int32 -Same- 1.12
DeviceWindows: int32 -Same- 1.12
GlyphHeight: int32 -Same- 1.12
GlyphWidth: int32 -Same- 1.12
MarqueeFormat: int32 -Same- 1.12
MarqueeRepeatWait: int32 -Same- 1.12
MaximumX: int32 -Same- 1.12
MaximumY: int32 -Same- 1.12
OnlineTransactionCount: uint64 -Same- 1.12
Rows: int32 -Same- 1.12
ScreenMode: int32 -Same- 1.12
ScreenModeList: string -Same- 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 66 Unified POS, v1.15.1 Beta1

Line Display Class Diagram
The following diagram shows the relationships between the Line Display classes

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Unified POS, v1.15.1 Beta1 I - 67

I.10.22 MICR Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the MICR Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 68 Unified POS, v1.15.1 Beta1

Specific

CapValidationDevice: boolean -Same- 1.13

FailedReadCount: uint64 -Same- 1.12

FailedDataParseCount: uint64 -Same- 1.12

GoodReadCount: uint64 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 69

MICR Class Diagram
The following diagram shows the relationships between the MICR classes.

I - 70 Unified POS, v1.15.1 Beta1

I.10.23 Motion Sensor Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Motion Sensor Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12
Specific

MotionEventCount: uint64 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Unified POS, v1.15.1 Beta1 I - 71

Motion Sensor Class Diagram
The following diagram shows the relationships between the Motion Sensor classes.

I - 72 Unified POS, v1.15.1 Beta1

I.10.24 MSR Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the MSR Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPO
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 73

Specific
CapISO: boolean -Same- 1.12
CapJISOne: boolean -Same- 1.12
CapJISTwo: boolean -Same- 1.12
CapTransmitSentinels: boolean -Same- 1.12
CapWritableTracks: int32 -Same- 1.12
DecodeData: boolean -Same- 1.12
EncodingMaxLength: int32 -Same- 1.12
ErrorReportingType: int32 -Same- 1.12
FailedReadCount uint64 -Same- 1.12
FailedWriteCount uint64 -Same- 1.12
GoodReadCount uint64 -Same- 1.12
GoodWriteCount uint64 -Same- 1.12
MissingStartSentinelTrack1Count uint64 -Same- 1.12
MissingStartSentinelTrack2Count uint64 -Same- 1.12
MissingStartSentinelTrack3Count uint64 -Same- 1.12
MissingStartSentinelTrack4Count uint64 -Same- 1.12
ParityLRCErrorTrack1Count uint64 -Same- 1.12
ParityLRCErrorTrack2Count uint64 -Same- 1.12
ParityLRCErrorTrack3Count uint64 -Same- 1.12
ParityLRCErrorTrack4Count uint64 -Same- 1.12
ParseDecodeData: boolean -Same- 1.12
TracksToRead: int32 -Same- 1.12
TracksToWrite: int32 -Same- 1.12
TransmitSentinels: boolean -Same- 1.12
UnreadableCardCount uint64 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPO
Version

I - 74 Unified POS, v1.15.1 Beta1

MSR Class Diagram
The following diagram shows the relationships between the MSR classes.

Unified POS, v1.15.1 Beta1 I - 75

I.10.25 PINPad Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the PINPad Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12
Specific

InvalidPINEntryCount: uint64 -Same- 1.12

ValidPINEntryCount: uint64 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

I - 76 Unified POS, v1.15.1 Beta1

PINPad Class Diagram
The following diagram shows the relationships between the PINPad classes.

Unified POS, v1.15.1 Beta1 I - 77

I.10.26 Point Card Reader/Writer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Point Card Reader/Writer Device
Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 78 Unified POS, v1.15.1 Beta1

Specific
CapCardEntranceSensor: boolean -Same- 1.12
CapCharacterSet: int32 -Same- 1.12
CapCleanCard: boolean -Same- 1.12
CapClearPrint: boolean -Same- 1.12
CapMapCharacterSet: boolean -Same- 1.12
CapPrint: boolean -Same- 1.12
CapPrintMode: boolean -Same- 1.12
CapTracksToRead: int32 -Same- 1.12
CapTracksToWrite: int32 -Same- 1.12
CardState: int32 -Same- 1.12
CharacterSet: int32 -Same- 1.12
CharacterSetList: string -Same- 1.12
FontTypeFaceList: string -Same- 1.12
LineChars: int32 -Same- 1.12
LineCharsList: string -Same- 1.12
LineHeight: int32 -Same- 1.12
LineSpacing: int32 -Same- 1.12
LineWidth: int32 -Same- 1.12
MapCharacterSet: boolean -Same- 1.12
MaxLine: int32 -Same- 1.12
PrintHeight: int32 -Same- 1.12
ReadState1: int32 -Same- 1.12
ReadState2: int32 -Same- 1.12
RecvLength1: int32 -Same- 1.12
RecvLength2: int32 -Same- 1.12
SidewaysMaxChars: int32 -Same- 1.12
SidewaysMaxLines: int32 -Same- 1.12
TracksToRead: int32 -Same- 1.12
TracksToWrite: int32 -Same- 1.12
WriteState1: int32 -Same- 1.12
WriteState2: int32 -Same- 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 79

Point Card Reader/Writer Class Diagram
The following diagram shows the relationships between the Point Card Reader/Writer classes.

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

I - 80 Unified POS, v1.15.1 Beta1

I.10.27 POS Keyboard Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the POSKeyboard Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 81

Specific
CapKeyUp: boolean -Same- 1.12
EventTypes: int32 -Same- 1.12
KeyPressedCount: int64 -Same- 1.12
NumberOfPOSKeys: int32 1.12
POSKeyData: int32 -Same- 1.12
POSKeyEventType: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12
Specific
int32 getPOSKeyValues (inout array of int32 KeyValues); 1.12
iint32 setPOSKeyValue (int32 KeyNumber, uint64 NewValue); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 82 Unified POS, v1.15.1 Beta1

POS Keyboard Class Diagram
The following diagram shows the relationships between the POS Keyboard classes.

Unified POS, v1.15.1 Beta1 I - 83

Properties (UML attributes)

NumberOfPOSKeys Property

Syntax NumberOfPOSKeys: int32

Remarks Holds the number of POS Keys

Methods (UML operations)

getPOSKeyValues Method

Syntax getPOSKeyValues (inout keyValues: array of int64)

Remarks Gets the values of the key.

setPOSKeyValue Method
Syntax setPOSKeyValue (KeyNumber: int32, NewValue: uint64)

Parameter Description
KeyNumber Number of the key to set the value for..
NewValue New value for the specified key..

Remarks Sets the value of a specific key.

I - 84 Unified POS, v1.15.1 Beta1

I.10.28 POS Power Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the POS Power Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Unified POS, v1.15.1 Beta1 I - 85

POS Power Class Diagram
The following diagram shows the relationships between the POS Power classes.

I - 86 Unified POS, v1.15.1 Beta1

I.10.29 POS Printer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the POS Printer Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

Unified-
POS

Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 87

Specific
BarcodePrintedCount uint64 -Same- 1.12
CapBothSidesPrint boolean CapSlipBothSidesPrint 1.12

CapCharacterSet int32 -Same- 1.12
CapConcurrentJrnRec boolean -Same- 1.12
CapConcurrentJrnSlp boolean -Same- 1.12
CapConcurrentPageMode boolean -Same- 1.12
CapConcurrentRecSlp boolean -Same- 1.12
CapCoverSensor boolean -Same- 1.12
CapFullSlip boolean CapSlipFullslip 1.13

CapJournalCartridgeSensor: int32 CapJrnCartridgeSensor 1.12

CapJournalEmptySensor boolean CapJrnEmptySensor 1.12

CapJournalNearEndSensor boolean CapJrnNearEndSensor 1.12

CapJournalPresent boolean CapJrnPresent 1.12

CapMapCharacterSet boolean -Same- 1.12
CapMarkFeed int32 CapRecMarkFeed 1.13

CapPapercut boolean CapRecPapercut 1.13

CapReceiptCartridgeSensor int32 CapRecCartridgeSensor 1.12

CapReceiptEmptySensor boolean CapRecEmptySensor 1.12

CapReceiptNearEndSensor boolean CapRecNearEndSensor 1.12

CapReceiptPageMode boolean CapRecPageMode 1.12

CapReceiptPresent boolean CapRecPresent 1.12

CapSlipCartridgeSensor int32 CapSlpCartridgeSensor 1.12

CapSlipEmptySensor boolean CapSlpEmptySensor 1.12

CapSlipNearEndSensor boolean CapSlpNearEndSensor 1.12

CapSlipPageMode boolean CapSlpPageMode 1.12

CapSlipPresent boolean CapSlpPresent 1.12

CapStamp boolean CapRecStamp 1.13

CartridgeNotify int32 -Same- 1.12
CharacterSet int32 -Same- 1.12
CharacterSetList string -Same- 1.12
CoverOpen boolean -Same- 1.12
FailedPaperCutCount uint64 -Same- 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

Unified-
POS

Version

I - 88 Unified POS, v1.15.1 Beta1

FailedPrintSideChangeCount uint64 -Same- 1.12
FontTypefaceList string -Same- 1.12
FormInsertionCount uint64 -Same- 1.12
HomeErrorCount uint64 -Same- 1.12
JournalCartridgeState int32 JrnCartridgeState 1.12

JournalCharacterPrintedCount uint64 -Same- 1.12

JournalCurrentCartridge int32 JrnCurrentCartridge 1.12

JournalEmpty boolean JrnEmpty 1.12

JournalLetterQuality boolean JrnLetterQuality 1.12

JournalLineChars int32 JrnLineChars 1.12

JournalLineCharsList string JrnLineCharsList 1.12

JournalLineHeight int32 JrnLineHeight 1.12

JournalLinePrintedCount uint64 -Same- 1.12
JournalLineSpacing int32 JrnLineSpacing 1.12

JournalLineWidth int32 JrnLineWidth 1.12

JournalNearEnd boolean JrnNearEnd 1.12

MapCharacterSet boolean -Same- 1.12
MapMode int32 -Same- 1.12
MaximumTempReachedCount uint64 -Same- 1.12
NVRAMWriteCount uint64 -Same- 1.12
PaperCutCount uint64 -Same- 1.12
PrinterFaultCount uint64 -Same- 1.12
PrintSideChangeCount uint64 -Same- 1.12
ReceiptCartridgeState int32 RecCartridgeState 1.12

ReceiptCharacterPrintedCount uint64 -Same- 1.12
ReceiptCoverOpenCount uint64 -Same- 1.12
ReceiptCurrentCartridge int32 RecCurrentCartridge 1.12

ReceiptEmpty boolean RecEmpty 1.12

ReceiptLetterQuality boolean RecLetterQuality 1.12

ReceiptLineChars int32 RecLineChars 1.12

ReceiptLineCharsList string RecLineCharsList 1.12

ReceiptLineFeedCount uint64 -Same- 1.12

ReceiptLineHeight int32 RecLineHeight 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

Unified-
POS

Version

Unified POS, v1.15.1 Beta1 I - 89

ReceiptLinePrintedCount uint64 -Same- 1.12

ReceiptLineSpacing int32 RecLineSpacing 1.12

ReceiptLineWidth int32 RecLineWidth 1.12

ReceiptNearEnd boolean RecNearEnd 1.12

ReceiptPageModeArea string PageModeArea
PageModeStation

1.12

ReceiptPageModeDescriptor int32 PageModeDescriptor
PageModeStation

1.12

ReceiptSidewaysMaxChars int32 RecSidewaysMaxChars 1.12

ReceiptSidewaysMaxLines int32 RecSidewaysMaxLines 1.12

SlipCartridgeState int32 SlpCartridgeState 1.12

SlipCharacterPrintedCount uint64 -Same- 1.12
SlipCoverOpenCount uint64 -Same- 1.12
SlipCurrentCartridge int32 SlpCurrentCartridge 1.13

SlipEmpty boolean SlpEmpty 1.12

SlipLetterQuality boolean SlpLetterQuality 1.12

SlipLineChars int32 SlpLineChars 1.12

SlipLineCharsList string SlpLineCharsList 1.12

SlipLineFeedCount uint64 -Same- 1.12
SlipLineHeight int32 SlpLineHeight 1.12

SlipLinePrintedCount uint64 -Same- 1.12

SlipLineSpacing int32 SlpLineSpacing 1.12

SlipLineWidth int32 SlpLineWidth 1.12

SlipNearEnd boolean SlpNearEnd 1.12

SlipPageModeArea string PageModeArea
PageModeStation

1.12

SlipPageModeDescriptor int32 PageModeDescriptor
PageModeStation

1.12

SlipSidewaysMaxChars int32 SlpSidewaysMaxChars 1.12

SlipSidewaysMaxLines int32 SlpSidewaysMaxLines 1.12

StampFiredCount uint64 -Same- 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

Unified-
POS

Version

I - 90 Unified POS, v1.15.1 Beta1

POS Printer Class Diagram
The following diagram shows the relationships between the POS Printer classes.

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12
Specific
int32 cleanHead (int32 station); 1.12

Unified POS, v1.15.1 Beta1 I - 91

I.10.30 Remote Order Display Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Remote Order Display Device
Category.

Properties

Name Type UnifiedPOS
Property

 Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 92 Unified POS, v1.15.1 Beta1

Specific
CapMapCharacterSet: boolean -Same- 1.12
SystemClocks: int32 -Same- 1.12
SystemVideoSaveBuffers: int32 -Same- 1.12
Timeout: int32 -Same- 1.12
UnitsOnline: int32 -Same- 1.12
VideoMode: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

 Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 93

Remote Order Display Class Diagram
The following diagram shows the relationships between the Remote Order Display classes.

I - 94 Unified POS, v1.15.1 Beta1

I.10.31 RFID Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the RFID Scanner Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12
SPECIFIC
TagReadCount uint64 -Same- 1.13
GoodTagWriteCount uint64 -Same- 1.13
FailedTagWriteCount uint64 -Same- 1.13
GoodTagLockCount uint64 -Same- 1.13
FailedTagLockCount uint64 -Same- 1.13
GoodTagDisableCount uint64 -Same- 1.13
FailedTagDisableCount uint64 -Same- 1.13

Unified POS, v1.15.1 Beta1 I - 95

RFID Scanner Class Diagram
The following diagram shows the relationships between the RFID Scanner classes.

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

I - 96 Unified POS, v1.15.1 Beta1

I.10.32 Scale Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Scale Device Category.

Properties

Name Type UnifiedPOS
Property

 Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 97

Specific
CalibrationCount: uint64 1.13
CapDisplay: boolean -Same- 1.12
CapDisplayText: boolean -Same- 1.12
CapPriceCalculating: boolean -Same- 1.12
CapTareWeight: boolean -Same- 1.12
CapZeroScale: boolean -Same- 1.12
GoodWeightReadCount: uint64 -Same- 1.12
MaxDisplayTextChars: int32 -Same- 1.12
MaximumWeight: int32 -Same- 1.12
RezeroCount: uint64 1.13
WeightUnit: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12
Specific Version
int32 setWeightsUnit (uint64 NewWtValue); 1.12
int32 setDisplayText (string NewText); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

 Statistic
Version

UnifiedPOS
Version

I - 98 Unified POS, v1.15.1 Beta1

Scale Class Diagram
The following diagram shows the relationships between the Scale classes.

Methods (UML operations)

setWeightUnit Method

Syntax setWeightUnit (NewValue: uint64)

Parameter Description

NewValue The value of the weight unit.

Remarks Sets the scale to operate in the weight unit specified in NewValue.

See Also WeightUnit Property.

Unified POS, v1.15.1 Beta1 I - 99

I.10.33 Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Scanner Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 100 Unified POS, v1.15.1 Beta1

Specific

BeeperFrequency: int32 1.12

BeeperVolume: int32 1.12

BeepOnGoodRead: 1.12

GoodScanCount: int32 -Same- 1.12

UPCA: boolean 1.12

UPCE: boolean 1.12

EAN8: boolean 1.12

EAN13: boolean 1.12

CODE39: boolean 1.12

I25: boolean 1.12

D25: boolean 1.12

CODABAR: boolean 1.12

CODE93: boolean 1.12

CODE128: boolean 1.12

UCCEAN128: boolean 1.12

UPC_2DIGIT_SUPPLEMENTALS: boolean 1.12

UPC_5DIGIT_SUPPLEMENTALS: boolean 1.12

CODE128_SUPPLEMENTALS: boolean 1.12

UPCA_CHECKDIGIT: boolean 1.12

UPCE_CHECKDIGIT: boolean 1.12

CODE39_CHECKDIGIT: boolean 1.12

I25_CHECKDIGIT: boolean 1.12

CONVERT_UPCA_13: boolean 1.12

CONVERT_UPCE_13: boolean 1.12

CONVERT_UPCE_UPCA: boolean 1.12

DECODE_SECURITY_LEVEL: int8 1.12

SameSymbolTimeout: int32 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 101

Scanner Class Diagram
The following diagram shows the relationships between the Scanner classes.

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

I - 102 Unified POS, v1.15.1 Beta1

Properties (UML attributes)

BeeperFrequency Property Updated in Release 1.13
Syntax BeeperFrequency: int32

Remarks Holds the frequency of the Beeper used to indicate a decode. It is one of the following values:

Value Meaning
SCAN_BF_LOWEST Lowest available frequency (value=0)

SCAN_BF_LOW Low frequency (value=1)

SCAN_BF_MEDIUM Medium frequency (value=2)

SCAN_BF_HIGH High frequency (value=3)

BeeperVolume Property Updated in Release 1.13
Syntax BeeperVolume: int32

Remarks Holds the volume of the Beeper used to indicate a decode. It is one of the following values:

Value Meaning
SCAN_BV_LOWEST Lowest available volume (value=0)

SCAN_BV_LOW Low volume (value=1)

SCAN_BV_MEDIUM Medium volume (value=2)

SCAN_BV_HIGH High volume (value=3)

BeepOnGoodRead Property
Syntax BeepOnGoodRead: boolean

Remarks Enable/Disable Beep indication on a good read.

GoodScanCount Property
Syntax GoodScanCount: int32

Remarks Number of successful scans

Unified POS, v1.15.1 Beta1 I - 103

SameSymbolTimeout Property Updated in Release 1.13
Syntax SameSymbolTimeout:int32

Remarks Holds the timeout before a scanner may reread the same barcode. It is one of the following values:

Value Meaning
SCAN_ST_SHORT Short timeout (value=0)
SCAN_ST_MEDIUM Medium timeout (value=1)
SCAN_ST_LONG Long timeout (value=3)

UPCA Property
Syntax UPCA: Boolean

Remarks Enable/disable UPC-A decoding.

UPCE Property
Syntax UPCE: boolean

Remarks Enable/disable UPC-E decoding.

EAN8 Property
Syntax EAN8: boolean

Remarks Enable/disable EAN-8 decoding.

EAN13 Property
Syntax EAN13: boolean

Remarks Enable/disable EAN-13 decoding.

Code39 Property
Syntax CODE39: boolean

Remarks Enable/disable Code 39 decoding.

I - 104 Unified POS, v1.15.1 Beta1

I25 Property
Syntax I25: boolean

Remarks Enable/disable Interleaved 2 of 5 decoding.

D25 Property
Syntax D25: boolean

Remarks Enable/disable Discrete 2 0F 5 decoding.

CODABAR Property
Syntax CODABAR: boolean

Remarks Enable/disable Codabar decoding.

CODE93 Property
Syntax CODE93: boolean

Remarks Enable/disable Code 93 decoding.

CODE128 Property
Syntax CODE128: boolean

Remarks Enable/disable Code 128 decoding.

UCCEAN128 Property
Syntax UCCEAN128: boolean

Remarks Enable/disable UUC/EAN 128 decoding.

UPC_2DIGIT_SUPPLEMENTALS Property
Syntax UPC_2DIGIT_SUPPLEMENTALS: boolean

Remarks Enable/disable the decoding of UPC 2-digit supplemental characters.

Unified POS, v1.15.1 Beta1 I - 105

UPC_5DIGIT_SUPPLEMENTALS Property
Syntax UPC_5DIGIT_SUPPLEMENTALS: boolean

Remarks Enable/disable the decoding of UPC 5-digit supplemental characters.

CODE128_SUPPLEMENTALS Property
Syntax CODE128_SUPPLEMENTALS: boolean

Remarks Enable/disable the decoding of Code 128 supplemental characters.

UPCA_CHECKDIGIT Property
Syntax UPCA_CHECKDIGIT: boolean

Remarks Enable/disable UPC-A Check Digit

UPCE_CHECKDIGIT Property
Syntax UPCE_CHECKDIGIT: boolean

Remarks Enable/disable UPC-E CheckDigit

CODE39_CHECKDIGIT Property
Syntax CODE39_CHECKDIGIT: boolean

Remarks Enable/disable Code 39 CheckDigit

I25_CHECKDIGIT Property
Syntax I25_CHECKDIGIT: boolean

Remarks Enable/disable Interleave 2 of 5 CheckDigit

CONVERT_UPCA_13 Property
Syntax CONVERT_UPCA_13: boolean

Remarks Enable/disable the conversion (expansion) of UPC-A to EAN-13.

I - 106 Unified POS, v1.15.1 Beta1

CONVERT_UPCE_13 Property
Syntax CONVERT_UPCE_13: boolean

Remarks Enable/disable the conversion (expansion) of UPC-E to EAN-13.

CONVERT_UPCE_UPCA Property
Syntax CONVERT_UPCA_13: boolean

Remarks Enable/disable the conversion (expansion) of UPC-E to UPC-A.

DECODE_SECURITY_LEVEL Property
Syntax DECODE_SECURITY_LEVEL: int8

Remarks Holds the Security/Integrity level for in-store barcode labels. It is one of the following values:

Value Meaning
SCAN_SL_LOW Low security level (value=0)
SCAN_SL_MEDIUM Medium security level (value=1)
SCAN_SL_HIGH High security level (value=2)
SCAN_SL_HIGHEST Highest security level (value=3)

Unified POS, v1.15.1 Beta1 I - 107

I.10.34 Signature Capture Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Signature Capture Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 108 Unified POS, v1.15.1 Beta1

Specific
CapDisplay: boolean -Same- 1.12
CapRealTimeData: boolean -Same- 1.12
CapUserTerminated: boolean -Same- 1.12
FailedSignatureReadCount uint64 -Same- 1.12
GoodSignatureReadCount uint64 -Same- 1.12
MaximumX: int32 -Same- 1.12
MaximumY: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 109

Signature Capture Class Diagram
The following diagram shows the relationships between the Signature Capture classes.

I - 110 Unified POS, v1.15.1 Beta1

I.10.35 Smart Card Reader/Writer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Smart Card Reader/Writer Device
Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

Unified POS, v1.15.1 Beta1 I - 111

Specific:
CapCardErrorDetection: boolean -Same- 1.12
CapInterfaceMode: int32 -Same- 1.12
CapIsoEmvMode: int32 -Same- 1.12
CapSCPresentSensor: int32 -Same- 1.12
CapSCSlots: int32 -Same- 1.12
CapTransmissionProtocol: int32 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

I - 112 Unified POS, v1.15.1 Beta1

Smart Card Reader/Writer Class Diagram
The following diagram shows the relationships between the Smart Card Reader/Writer classes.

Unified POS, v1.15.1 Beta1 I - 113

I.10.36 Tone Indicator Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Tone Indicator Device Category.

Properties

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12
CapCompareFirmwareVersion boolean -Same- 1.12
CapPowerReporting int32 -Same- 1.12
CapUpdateFirmware boolean -Same- 1.12
CommunicationErrorCount uint64 -Same- 1.13
DeviceCategory string -Same- 1.12
DeviceControlVersion string -Same- 1.12
DeviceID string 1.12
DeviceServiceVersion string -Same- 1.12
FirmwareRevision string -Same- 1.12
HoursPoweredCount uint64 -Same- 1.12
ManufactureDate string -Same- 1.12
ManufacturerName string -Same- 1.12
MechanicalRevision string -Same- 1.12
ModelName string -Same- 1.12
PhysicalDeviceName string -Same- 1.12
PhysicalDeviceDescription string -Same- 1.12
PowerNotify int32 -Same- 1.12
PowerState int32 -Same- 1.12
SerialNumber string -Same- 1.12
UnifiedPOSVersion string -Same- 1.12

I - 114 Unified POS, v1.15.1 Beta1

Specific
CapPitch: boolean -Same- 1.12
CapVolume: boolean -Same- 1.12
ToneSoundedCount: uint64 -Same- 1.12

Methods (UML operations)
Name Version
int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12
int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type UnifiedPOS
Property

Statistic
Version

UnifiedPOS
Version

Unified POS, v1.15.1 Beta1 I - 115

Tone Indicator Class Diagram
The following diagram shows the relationships between the Tone Indicator classes.

I - 116 Unified POS, v1.15.1 Beta1

I.11 Technical Details

I.11.1 MOF Files

The UnifiedPOS Technical Committee distributes Model Object Format (MOF) files containing all of the
specified UnifiedPOS Systems Management model information. These files are provided so that the model
information can be added to a target system. The format of these files is specified in the CIM standard.

To add the Model on a Windows system:
mofcomp <installdir>\UPOSMgmtSrvProv.mof

To add the Model on a Linux system running Pegasus:

/opt/tog-pegasus/bin/cimmof -nroot/cimv2 /usr/share/cmpi/mof/
UPOSMgmtSrv.mof

/opt/tog-pegasus/bin/cimmof -nroot/PG_InterOp /usr/share/cmpi/mof/
UPOSMgmtSrvR.mof

Unified POS, v1.15.1 Beta1 J - 1

Annex J

Device Statistics

J.1 General
This annex contains the definitions of the statistics that are defined for each device category as well as the
common device statistics that are part of every device category.

J.2 Device Category Names
Since some of the POS Device Category programmatic names in the UnifiedPOS specification may not be
recognizable outside the Retail POS environment where the Defined Statistics data are being processed, an
alternate “long programmatic name” has been assigned where necessary. The correlations of UnifiedPOS
programmatic names and alternate long names are defined in the following table.

UnifiedPOS Device
Programmatic Names Alternate Device Name

Belt Belt
BillAcceptor BillAcceptor
BillDispenser BillDispenser
Biometrics Biometrics
BumpBar BumpBar
CashChanger CashChanger
CashDrawer CashDrawer
CAT CreditAuthorizationTerminal
CheckScanner CheckScanner
CoinAcceptor CoinAcceptor
CoinDispenser CoinDispenser
ElectronicJournal ElectronicJournal
ElectronicValueRW ElectronicValueReaderWriter
FiscalPrinter FiscalPrinter
Gate Gate
HardTotals HardTotals
ImageScanner ImageScanner
ItemDispenser ItemDispenser
Keylock Keylock
Lights Lights

J - 2 Unified POS, v1.15.1 Beta1

J.2.1 Common Statistics for All Device Categories

The following table contains the definitions of the information contained in the UnifiedPOS defined
DeviceInformation section covering all device categories.

LineDisplay LineDisplay
MICR MagneticInkCharacterRecognitionReader
MotionSensor MotionSensor
MSR MagneticStripeReader
PINPad PINPad
PointCardRW PointCardReaderWriter
POSKeyboard POSKeyboard
POSPower POSPower
POSPrinter POSPrinter
RemoteOrderDisplay RemoteOrderDisplay
RFIDScanner RFIDScanner
Scale Scale
Scanner BarCodeScanner
SignatureCapture SignatureCapture
SmartCardRW SmartCardReaderWriter
ToneIndicator ToneIndicator

<DeviceInformation>
XML Definition Name

Definition description

UnifiedPOSVersion Version of the UnifiedPOS specification
supported

DeviceCategory Device category (e.g., POSPrinter)

ManufacturerName Device manufacturer’s name

ModelName Device model name

SerialNumber Device serial number

ManufactureDate Device manufacture date

MechanicalRevision Device hardware revision

FirmwareRevision Device firmware revision

Interface Device hardware interface (e.g., serial, USB)

InstallationDate Device installation date

UnifiedPOS Device
Programmatic Names Alternate Device Name

Unified POS, v1.15.1 Beta1 J - 3

The following table contains the definitions of the UnifiedPOS defined statistics for all device categories.

J.2.2 XML definitions for Biometrics Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Biometrics device
category.

J.2.3 XML definitions for BumpBar Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the BumpBar device
category.

J.2.4 XML definitions for CashDrawer Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the CashDrawer device
category.

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

HoursPoweredCount Number of hours powered on
CommunicationErrorCount Number of communication errors

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

SuccessfulMatchCount Number of successful biometric matches
UnsuccessfulMatchCount Number of unsuccessful biometric matches
AverageFAR Average False Accept Rate achieved
AverageFRR Average False Reject Rate achieved

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

BumpCount Number of times bump bar pressed

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

DrawerGoodOpenCount Drawer open successes
DrawerFailedOpenCount Drawer open failures

J - 4 Unified POS, v1.15.1 Beta1

J.2.5 XML definitions for CheckScanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the CheckScanner device
category.

J.2.6 XML definitions for ElectronicJournal Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the ElectronicJournal
device category.

J.2.7 XML definitions for FiscalPrinter Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the FiscalPrinter device
category.

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

ChecksScannedCount Number of checks scanned

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

WriteCount Number of writes to the recording medium

FailedWriteCount Number of failed writes to the recording medi-
um

EraseCount Number of times data was erased
MediumRemovedCount Number of times medium was removed
MediumSize Amount of storage in bytes
MediumFreeSpace Free space of storage in bytes

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

BarcodePrintedCount Number of Barcodes printed

FormInsertionCount Number of forms inserted into the document/
slip station

HomeErrorCount Number of home errors

JournalCharacterPrintedCount Number of Journal characters printed

JournalLinePrintedCount Number of Journal lines printed

MaximumTempReachedCount Number of times Maximum temperature
reached

NVRAMWriteCount Number of times NVRAM is written to

Unified POS, v1.15.1 Beta1 J - 5

J.2.8 XML definitions for ImageScanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the ImageScanner device
category.

J.2.9 XML definitions for Keylock Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Keylock device category.

PaperCutCount Number of paper cuts

FailedPaperCutCount Number of failed paper cuts

PrinterFaultCount Number of Printer faults

PrintSideChangeCount Number of print side changes (check flips)
performed

FailedPrintSideChangeCount Number of print side changes (check flips)
failures

ReceiptCharacterPrintedCount Number of receipt characters printed

ReceiptCoverOpenCount Number of times the receipt cover was opened

ReceiptLineFeedCount Number of receipt line feeds performed

ReceiptLinePrintedCount Number of receipt lines printed

SlipCharacterPrintedCount Number of document/slip characters printed

SlipCoverOpenCount Number of times the document/slip station
cover opened

SlipLineFeedCount Number of document/slip line feeds performed

SlipLinePrintedCount Number of document/slip lines printed

StampFiredCount Number of Stamps fired

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

GoodReadCount
Number of still images acquired that resulted in
a decode of bar code data. (Not including video
frames)

NoReadCount
Number of still images acquired that did not re-
sult in a decode of bar code data. (Not including
video frames)

SessionCount Number of sessions executed

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

LockPositionChangeCount Number of lock position changes

J - 6 Unified POS, v1.15.1 Beta1

J.2.10 XML definitions for LineDisplay Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the LineDisplay device
category.

J.2.11 XML definitions for MICR Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the MICR device category.

J.2.12 XML definitions for MotionSensor Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the MotionSensor device
category.

J.2.13 XML definitions for MSR Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the MSR device category.

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

OnlineTransitionCount Number of online transitions (on after screen
blanking)

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

GoodReadCount Number of successful reads
FailedReadCount Number of failed reads
FailedDataParseCount Number of failed data parses

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

MotionEventCount Number of motion occurrences

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

GoodReadCount Number of successful reads
FailedReadCount Number of failed reads
UnreadableCardCount Number of unreadable cards
GoodWriteCount Number of successful writes

Unified POS, v1.15.1 Beta1 J - 7

J.2.14 XML definitions for PINPad Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the PINPad device category.

J.2.15 XML definitions for POSKeyboard Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the POSKeyboard device
category.

FailedWriteCount Number of failed writes

MissingStartSentinelTrack1Count Number of errors with missing start sentinel on
track 1 (possible empty track)

ParityLRCErrorTrack1Count Number of Parity or LRC errors on track 1

MissingStartSentinelTrack2Count Number of errors with missing start sentinel on
track 2 (possible empty track)

ParityLRCErrorTrack2Count Number of Parity or LRC errors on track 2

MissingStartSentinelTrack3Count Number of errors with missing start sentinel on
track 3 (possible empty track)

ParityLRCErrorTrack3Count Number of Parity or LRC errors on track 3

MissingStartSentinelTrack4Count Number of errors with missing start sentinel on
track 4 (possible empty track)

ParityLRCErrorTrack4Count Number of Parity or LRC errors on track 4

GoodCardAuthenticationDataCount Number of successful card authentication data
reads

FailedCardAuthenticationDataCount Number of failed card authentication data reads

ChallengeRequestCount Number of successful calls to the
retrieveDeviceAuthenticationData method

GoodDeviceAuthenticationCount Number of successful device authentication
attempts

FailedDeviceAuthenticationCount Number of failed device authentication at-
tempts

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

ValidPINEntryCount Number of valid PIN entries
InvalidPINEntryCount Number of invalid PIN entries

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

KeyPressedCount Number of keys pressed

J - 8 Unified POS, v1.15.1 Beta1

J.2.16 XML definitions for POSPrinter Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the POSPrinter device
category.

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

BarcodePrintedCount Number of Barcodes printed

FormInsertionCount Number of forms inserted into the document/
slip station

HomeErrorCount Number of home errors

JournalCharacterPrintedCount Number of Journal characters printed

JournalLinePrintedCount Number of Journal lines printed

MaximumTempReachedCount Number of times Maximum temperature
reached

NVRAMWriteCount Number of times NVRAM is written to

PaperCutCount Number of paper cuts

FailedPaperCutCount Number of failed paper cuts

PrinterFaultCount Number of Printer faults

PrintSideChangeCount Number of print side changes (or check flips)
performed

FailedPrintSideChangeCount Number of print side changes (or check flips)
failures

ReceiptCharacterPrintedCount Number of receipt characters printed

ReceiptCoverOpenCount Number of times the receipt cover was opened

ReceiptLineFeedCount Number of receipt line feeds performed

ReceiptLinePrintedCount Number of receipt lines printed

SlipCharacterPrintedCount Number of document/slip characters printed

SlipCoverOpenCount Number of times the document/slip station
cover opened

SlipLineFeedCount Number of document/slip line feeds performed

SlipLinePrintedCount Number of document/slip lines printed

StampFiredCount Number of Stamps fired

Unified POS, v1.15.1 Beta1 J - 9

J.2.17 XML definitions for RFIDScanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the RFIDScanner device
category.

J.2.18 XML definitions for Scale Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Scale device category.

J.2.19 XML definitions for Scanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Scanner device category.

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

TagReadCount Total number of tags read
GoodTagWriteCount Number of successfully written tags
FailedTagWriteCount Number of unsuccessfully written tags
GoodTagLockCount Number of successfully locked tags
FailedTagLockCount Number of unsuccessfully locked tags
GoodTagDisableCount Number of successfully disabled (killed) tags

FailedTagDisableCount Number of unsuccessfully disabled (killed)
tags

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

GoodWeightReadCount Number of successful weight reads

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

GoodScanCount Number of successful scans

J - 10 Unified POS, v1.15.1 Beta1

J.2.20 XML definitions for SignatureCapture Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the SignatureCapture
device category.

J.2.21 XML definitions for ToneIndicator Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the ToneIndicator device
category.

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

GoodSignatureReadCount Number of successful signature reads
FailedSignatureReadCount Number of unsuccessful signature reads

<UnifiedPOSStatisticsContext>
XML Definition Name Definition description

ToneSoundedCount Number of tones played

	Unified POS Retail Peripheral Architecture
	Version 1.15.1 Beta1
	1 Introduction and Architecture
	1.1 What is Unified POS?
	1.1.1 About This Documentation Updated in Release 1.12
	1.1.2 Goals
	1.1.3 Dependencies
	1.1.4 UnifiedPOS Relationship to Conforming Platform Mappings
	1.1.5 Who Should Read This Document

	1.2 Conformance
	1.2.1 Unified POS

	1.3 Architectural Overview
	1.3.1 General
	1.3.2 Architectural Components
	1.3.3 Use of UML
	1.3.4 Data Types Updated in Release 1.13
	1.3.5 Device Behavior Models
	1.3.6 Device Sharing Model
	1.3.7 Events Updated in Release 1.12
	1.3.8 Errors
	1.3.9 Error Codes Updated in Release 1.11
	1.3.10 Device Input Model Updated in Release 1.13
	1.3.11 Device Output Models
	1.3.12 Device Power Reporting Model Updated in Release 1.8
	1.3.13 Power State Diagram
	1.3.14 Power Properties
	1.3.15 Power Reporting Requirements for DeviceEnabled
	1.3.16 Device Information Reporting Model Added in Release 1.8
	1.3.17 Update Firmware Device Model Added in Release 1.9
	1.3.18 Device States
	1.3.19 Device State Diagram
	1.3.20 Version Handling
	1.3.21 Deprecation Handling Added in Release 1.11
	1.3.22 Hydra Device Considerations Updated in Release 1.12
	1.3.23 Multi-Function (Hydra) Peripheral Devices

	2 Common Properties, Methods, and Events
	2.1 General
	2.2 Summary Updated in Release 1.10
	2.3 General Information
	2.3.1 Common PME Class Diagram Updated in Release 1.10

	2.4 Properties (UML attributes)
	2.4.1 AutoDisable Property
	2.4.2 CapCompareFirmwareVersion Property Revised in Release 1.14
	2.4.3 CapPowerReporting Property Updated in Release 1.11
	2.4.4 CapStatisticsReporting Property Added in Release 1.8
	2.4.5 CapUpdateFirmware Property Updated in Release 1.14
	2.4.6 CapUpdateStatistics Property Added in Release 1.8
	2.4.7 CheckHealthText Property
	2.4.8 Claimed Property
	2.4.9 DataCount Property
	2.4.10 DataEventEnabled Property
	2.4.11 DeviceControlDescription Property
	2.4.12 DeviceControlVersion Property
	2.4.13 DeviceEnabled Property
	2.4.14 DeviceServiceDescription Property
	2.4.15 DeviceServiceVersion Property
	2.4.16 FreezeEvents Property Updated in Release 1.12
	2.4.17 OutputID Property
	2.4.18 PowerNotify Property
	2.4.19 PowerState Property Updated in Release 1.11
	2.4.20 PhysicalDeviceDescription Property
	2.4.21 PhysicalDeviceName Property
	2.4.22 State Property

	2.5 Methods (UML operations)
	2.5.1 checkHealth Method
	2.5.2 claim Method Updated in Release 1.11
	2.5.3 clearInput Method
	2.5.4 clearInputProperties Method Added in Release 1.10
	2.5.5 clearOutput Method Updated in Release 1.7
	2.5.6 close Method
	2.5.7 compareFirmwareVersion Method Added in Release 1.9
	2.5.8 directIO Method
	2.5.9 open Method Updated in Release 1.7
	2.5.10 release Method
	2.5.11 resetStatistics Method Updated in Release 1.10
	2.5.12 retrieveStatistics Method Added in Release 1.8
	2.5.13 updateFirmware Method Added in Release 1.9
	2.5.14 updateStatistics Method Updated in Release 1.10

	2.6 Events (UML interfaces)
	2.6.1 DataEvent
	2.6.2 DirectIOEvent Updated in Release 1.7
	2.6.3 ErrorEvent Updated in Release 1.13
	2.6.4 OutputCompleteEvent Updated in Release 1.13
	2.6.5 StatusUpdateEvent Updated in Release 1.9

	3 Belt
	3.1 General
	3.2 Summary
	3.3 General Information
	3.3.1 Capabilities

	3.4 Belt Class Diagram
	3.5 Belt Sequence Diagram
	3.5.1 Model
	3.5.2 Device Sharing
	3.5.3 Belt State Diagram

	3.6 Properties (UML attributes)
	3.6.1 AutoStopBackward Property
	3.6.2 AutoStopBackwardDelayTime Property
	3.6.3 AutoStopBackwardItemCount Property
	3.6.4 AutoStopForward Property
	3.6.5 AutoStopForwardDelayTime Property
	3.6.6 AutoStopForwardItemCount Property
	3.6.7 CapAutoStopBackward Property
	3.6.8 CapAutoStopBackwardItemCount Property
	3.6.9 CapAutoStopForward Property
	3.6.10 CapAutoStopForwardItemCount Property
	3.6.11 CapLightBarrierBackward Property
	3.6.12 CapLightBarrierForward Property
	3.6.13 CapMoveBackward Property
	3.6.14 CapSecurityFlapBackward Property
	3.6.15 CapSecurityFlapForward Property
	3.6.16 CapSpeedStepsBackward Property
	3.6.17 CapSpeedStepsForward Property
	3.6.18 LightBarrierBackwardInterrupted Property
	3.6.19 LightBarrierForwardInterrupted Property
	3.6.20 MotionStatus Property
	3.6.21 SecurityFlapBackwardOpened Property
	3.6.22 SecurityFlapForwardOpened Property

	3.7 Methods (UML operations)
	3.7.1 adjustItemCount Method
	3.7.2 moveBackward Method
	3.7.3 moveForward Method
	3.7.4 resetBelt Method
	3.7.5 resetItemCount Method
	3.7.6 stopBelt Method

	3.8 Events (UML interfaces)
	3.8.1 DirectIOEvent
	3.8.2 StatusUpdateEvent

	4 Bill Acceptor
	4.1 General
	4.2 Summary
	4.3 General Information
	4.3.1 Capabilities

	4.4 Bill Acceptor Class Diagram
	4.4.1 Model
	4.4.2 Bill Acceptor Sequence Diagram
	4.4.3 Bill Acceptor State Diagram
	4.4.4 Device Sharing

	4.5 Properties (UML attributes)
	4.5.1 CapDiscrepancy Property
	4.5.2 CapFullSensor Property
	4.5.3 CapJamSensor Property
	4.5.4 CapNearFullSensor Property
	4.5.5 CapPauseDeposit Property
	4.5.6 CapRealTimeData Property
	4.5.7 CurrencyCode Property
	4.5.8 DepositAmount Property
	4.5.9 DepositCashList Property
	4.5.10 DepositCodeList Property
	4.5.11 DepositCounts Property Updated in Release 1.12
	4.5.12 DepositStatus Property
	4.5.13 FullStatus Property
	4.5.14 RealTimeDataEnabled Property

	4.6 Method (UML operations)
	4.6.1 adjustCashCounts Method Updated in Release 1.12 Syntax adjustCashCounts (cashCounts: string); void { raises-exception, use after open-claim-enable } Parameter Description cashCounts The cashCounts parameter contains cash types and amounts to be...
	4.6.2 beginDeposit Method
	4.6.3 endDeposit Method
	4.6.4 endDeposit Method
	4.6.5 fixDeposit Method
	4.6.6 pauseDeposit Method
	4.6.7 readCashCounts Method Updated in Release 1.12

	4.7 Events (UML interfaces)
	4.7.1 DataEvent
	4.7.2 DirectIOEvent
	4.7.3 StatusUpdateEvent

	5 Bill Dispenser
	5.1 General
	5.2 Summary
	5.3 General Information
	5.3.1 Capabilities
	5.3.2 Bill Dispenser Class Diagram
	5.3.3 Model
	5.3.4 Bill Dispenser Sequence Diagram
	5.3.5 Bill Dispenser State Diagram
	5.3.6 Device Sharing

	5.4 Properties (UML attributes)
	5.4.1 AsyncMode Property
	5.4.2 AsyncResultCode Property
	5.4.3 AsyncResultCodeExtended Property
	5.4.4 CapDiscrepancy Property
	5.4.5 CapEmptySensor Property
	5.4.6 CapJamSensor Property
	5.4.7 CapNearEmptySensor Property
	5.4.8 CurrencyCashList Property
	5.4.9 CurrencyCode Property
	5.4.10 CurrencyCodeList Property
	5.4.11 CurrentExit Property
	5.4.12 DeviceExits Property
	5.4.13 DeviceStatus Property
	5.4.14 ExitCashList Property

	5.5 Methods (UML operations)
	5.5.1 adjustCashCounts Method Updated in Release 1.12
	5.5.2 dispenseCash Method
	5.5.3 readCashCounts Method Updated in Release 1.12

	5.6 Events (UML interfaces)
	5.6.1 DirectIOEvent
	5.6.2 StatusUpdateEvent

	6 Biometrics
	6.1 General
	6.2 Summary
	6.3 General Information
	6.3.1 Capabilities
	6.3.2 Biometrics Class Diagram
	6.3.3 Model
	6.3.4 Device Sharing
	6.3.5 Biometrics Sequence Diagrams
	6.3.6 Biometrics State Diagram

	6.4 Properties (UML Attributes)
	6.4.1 Algorithm Property
	6.4.2 AlgorithmList Property
	6.4.3 BIR Property
	6.4.4 CapPrematchData Property Updated in Release 1.11
	6.4.5 CapRawSensorData Property Updated in Release 1.12
	6.4.6 CapRealTimeData Property Updated in Release 1.12
	6.4.7 CapSensorColor Property
	6.4.8 CapSensorOrientation Property
	6.4.9 CapSensorType Property Updated in Release 1.11
	6.4.10 CapTemplateAdaptation Property
	6.4.11 RawSensorData Property Updated in Release 1.12
	6.4.12 RealTimeDataEnabled Property Updated in Release 1.12
	6.4.13 SensorBPP Property
	6.4.14 SensorColor Property Updated in Release 1.11
	6.4.15 SensorHeight Property
	6.4.16 SensorOrientation Property Updated in Release 1.11
	6.4.17 SensorType Property Updated in Release 1.11
	6.4.18 SensorWidth Property

	6.5 Methods (UML operations)
	6.5.1 beginEnrollCapture Method Updated in Release 1.11
	6.5.2 beginVerifyCapture Method Updated in Release 1.11
	6.5.3 endCapture Method
	6.5.4 identify Method Updated in Release 1.12
	6.5.5 identifyMatch Method Updated in Release 1.12
	6.5.6 processPrematchData Method Updated in Release 1.11
	6.5.7 verify Method Updated in Release 1.12
	6.5.8 verifyMatch Method Updated in Release 1.12

	6.6 Events (UML Interfaces)
	6.6.1 DataEvent
	6.6.2 DirectIOEvent
	6.6.3 ErrorEvent Updated in Release 1.11
	6.6.4 StatusUpdateEvent Updated in Release 1.13

	7 Bump Bar
	7.1 General
	7.2 Summary
	7.3 General Information
	7.3.1 Capabilities
	7.3.2 Bump Bar Class Diagram
	7.3.3 Model
	7.3.4 Input – Bump Bar
	7.3.5 Output – Tone Updated in Release 1.7
	7.3.6 Device Sharing
	7.3.7 Bump Bar State Diagram

	7.4 Properties (UML attributes)
	7.4.1 AsyncMode Property
	7.4.2 AutoToneDuration Property
	7.4.3 AutoToneFrequency Property
	7.4.4 BumpBarDataCount Property
	7.4.5 CapTone Property
	7.4.6 CurrentUnitID Property
	7.4.7 DataCount Property
	7.4.8 ErrorString Property
	7.4.9 ErrorUnits Property
	7.4.10 EventString Property
	7.4.11 EventUnitID Property
	7.4.12 EventUnits Property
	7.4.13 Keys Property
	7.4.14 Timeout Property
	7.4.15 UnitsOnline Property

	7.5 Methods (UML operations)
	7.5.1 bumpBarSound Method
	7.5.2 checkHealth Method (Common)
	7.5.3 clearInput Method (Common)
	7.5.4 clearOutput Method (Common) Updated in Release 1.7
	7.5.5 setKeyTranslation Method

	7.6 Events (UML interfaces)
	7.6.1 DataEvent
	7.6.2 DirectIOEvent
	7.6.3 ErrorEvent Updated in Release 1.10
	7.6.4 OutputCompleteEvent
	7.6.5 StatusUpdateEvent

	8 Cash Changer
	8.1 General
	8.2 Summary
	8.3 General Information
	8.3.1 Capabilities Updated in Release 1.11
	8.3.2 Cash Changer Class Diagram Updated in Release 1.11
	8.3.3 Model Updated in Release 1.11
	8.3.4 Cash Changer Sequence Diagram Added in Release 1.7
	8.3.5 Cash Changer State Diagram Updated in Release 1.8
	8.3.6 Device Sharing

	8.4 Properties (UML attributes)
	8.4.1 AsyncMode Property
	8.4.2 AsyncResultCode Property
	8.4.3 AsyncResultCodeExtended Property
	8.4.4 CapDeposit Property Added in Release 1.5
	8.4.5 CapDepositDataEvent Property Added in Release 1.5
	8.4.6 CapDiscrepancy Property
	8.4.7 CapEmptySensor Property
	8.4.8 CapFullSensor Property
	8.4.9 CapJamSensor Property Added in Release 1.11
	8.4.10 CapNearEmptySensor Property
	8.4.11 CapNearFullSensor Property
	8.4.12 CapPauseDeposit Property
	8.4.13 CapRealTimeData Property Added in Release 1.11
	8.4.14 CapRepayDeposit Property Added in Release 1.5
	8.4.15 CurrencyCashList Property
	8.4.16 CurrencyCode Property
	8.4.17 CurrencyCodeList Property
	8.4.18 CurrentExit Property
	8.4.19 CurrentService Property Added in Release 1.11
	8.4.20 DepositAmount Property
	8.4.21 DepositCashList Property Added in Release 1.5
	8.4.22 DepositCodeList Property Added in Release 1.5
	8.4.23 DepositCounts Property Added in Release 1.5
	8.4.24 DepositStatus Property Added in Release 1.5
	8.4.25 DeviceExits Property
	8.4.26 DeviceStatus Property
	8.4.27 ExitCashList Property
	8.4.28 FullStatus Property Updated in Release 1.14
	8.4.29 RealTimeDataEnabled Property Added in Release 1.11
	8.4.30 ServiceCount Property Updated in Release 1.14

	8.5 Methods (UML operations)
	8.5.1 adjustCashCounts Method Added in Release 1.11
	8.5.2 beginDeposit Method Added in Release 1.5
	8.5.3 dispenseCash Method
	8.5.4 dispenseChange Method
	8.5.5 endDeposit Method Added in Release 1.5
	8.5.6 fixDeposit Method Added in Release 1.5
	8.5.7 pauseDeposit Method Added in Release 1.5
	8.5.8 readCashCounts Method

	8.6 Events (UML interfaces)
	8.6.1 DataEvent Updated in Release 1.11
	8.6.2 DirectIOEvent
	8.6.3 StatusUpdateEvent

	9 Cash Drawer
	9.1 General
	9.2 Summary
	9.3 General Information
	9.3.1 Capabilities
	9.3.2 Cash Drawer Class Diagram Updated in Release 1.8
	9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12
	9.3.4 Device Sharing

	9.4 Properties (UML attributes)
	9.4.1 CapStatus Property
	9.4.2 CapStatusMultiDrawerDetect Property Added in Release 1.5
	9.4.3 DrawerOpened Property Updated in Release 1.14

	9.5 Methods (UML operations)
	9.5.1 openDrawer Method
	9.5.2 waitForDrawerClose Method

	9.6 Events (UML interfaces)
	9.6.1 DirectIOEvent
	9.6.2 StatusUpdateEvent Updated in Release 1.13 << event >> upos::events::StatusUpdateEvent Status: int32 { read-only }

	10 CAT - Credit Authorization Terminal
	10.1 General
	10.2 Summary
	10.3 General Information
	10.3.1 Description of terms
	10.3.2 Capabilities
	10.3.3 CAT Class Diagram Updated in Release 1.9
	10.3.4 Model
	10.3.5 Device Sharing
	10.3.6 CAT Sequence Diagram Added in Release 1.7
	10.3.7 CAT State Diagram

	10.4 Properties (UML attributes)
	10.4.1 AccountNumber Property Updated in Release 1.9
	10.4.2 AdditionalSecurityInformation Property Updated in Release 1.7
	10.4.3 ApprovalCode Property Updated in Release 1.9
	10.4.4 AsyncMode Property
	10.4.5 Balance Property Added in Release 1.9
	10.4.6 CapAdditionalSecurityInformation Property
	10.4.7 CapAuthorizeCompletion Property
	10.4.8 CapAuthorizePreSales Property
	10.4.9 CapAuthorizeRefund Property
	10.4.10 CapAuthorizeVoid Property
	10.4.11 CapAuthorizeVoidPreSales Property
	10.4.12 CapCashDeposit Property Added in Release 1.9
	10.4.13 CapCenterResultCode Property
	10.4.14 CapCheckCard Property
	10.4.15 CapDailyLog Property
	10.4.16 CapInstallments Property
	10.4.17 CapLockTerminal Property Added in Release 1.9
	10.4.18 CapLogStatus Property Added in Release 1.9
	10.4.19 CapPaymentDetail Property
	10.4.20 CapTaxOthers Property
	10.4.21 CapTransactionNumber Property
	10.4.22 CapTrainingMode Property
	10.4.23 CapUnlockTerminal Property Added in Release 1.9
	10.4.24 CardCompanyID Property
	10.4.25 CenterResultCode Property
	10.4.26 DailyLog Property Updated in Release 1.15.1
	10.4.27 LogStatus Property Added in Release 1.9
	10.4.28 PaymentCondition Property Updated in Release 1.9
	10.4.29 PaymentDetail Property Updated in Release 1.15.1
	10.4.30 PaymentMedia Property Updated in Release 1.9
	10.4.31 SequenceNumber Property
	10.4.32 SettledAmount Property Added in Release 1.9
	10.4.33 SlipNumber Property Updated in Release 1.7
	10.4.34 TrainingMode Property
	10.4.35 TransactionNumber Property
	10.4.36 TransactionType Property Updated in Release 1.10

	10.5 Methods (UML operations)
	10.5.1 accessDailyLog Method Updated in Release 1.9
	10.5.2 authorizeCompletion Method
	10.5.3 authorizePreSales Method
	10.5.4 authorizeRefund Method
	10.5.5 authorizeSales Method
	10.5.6 authorizeVoid Method
	10.5.7 authorizeVoidPreSales Method
	10.5.8 cashDeposit Method Added in Release 1.9
	10.5.9 checkCard Method Updated in Release 1.9
	10.5.10 lockTerminal Method Added in Release 1.9
	10.5.11 unlockTerminal Method Added in Release 1.9

	10.6 Events (UML interfaces)
	10.6.1 DirectIOEvent
	10.6.2 ErrorEvent Updated in Release 1.9
	10.6.3 OutputCompleteEvent
	10.6.4 StatusUpdateEvent Updated in Release 1.9

	11 Check Scanner
	11.1 General
	11.2 Summary
	11.3 General Information
	11.3.1 Capabilities
	11.3.2 Check Scanner Class Diagram Updated in Release 1.9
	11.3.3 Model Updated in Release 1.11
	11.3.4 Device Sharing
	11.3.5 Check Scanner Sequence Diagram
	11.3.6 Check Scanner State Diagram

	11.4 Properties (UML attributes)
	11.4.1 CapAutoContrast Property Added in Release 1.9
	11.4.2 CapAutoGenerateFileID Property
	11.4.3 CapAutoGenerateImageTagData Property
	11.4.4 CapAutoSize Property
	11.4.5 CapColor Property
	11.4.6 CapConcurrentMICR Property
	11.4.7 CapContrast Property Added in Release 1.9
	11.4.8 CapDefineCropArea Property
	11.4.9 CapImageFormat Property
	11.4.10 CapImageTagData Property Updated in Release 1.11
	11.4.11 CapMICRDevice Property
	11.4.12 CapStoreImageFiles Property
	11.4.13 CapValidationDevice Property
	11.4.14 Color Property
	11.4.15 ConcurrentMICR Property
	11.4.16 Contrast Property Added in Release 1.9
	11.4.17 CropAreaCount Property
	11.4.18 DocumentHeight Property
	11.4.19 DocumentWidth Property
	11.4.20 FileID Property
	11.4.21 FileIndex Property Updated in Release 1.13
	11.4.22 ImageData Property
	11.4.23 ImageFormat Property
	11.4.24 ImageMemoryStatus Property
	11.4.25 ImageTagData Property Updated in Release 1.13
	11.4.26 MapMode Property Updated in Release 1.13
	11.4.27 MaxCropAreas Property
	11.4.28 Quality Property
	11.4.29 QualityList Property
	11.4.30 RemainingImagesEstimate Property

	11.5 Methods (UML operations)
	11.5.1 beginInsertion Method
	11.5.2 beginRemoval Method
	11.5.3 clearImage Method
	11.5.4 defineCropArea Method
	11.5.5 endInsertion Method
	11.5.6 endRemoval Method
	11.5.7 retrieveImage Method Updated in Release 1.11
	11.5.8 retrieveMemory Method Updated in Release 1.11
	11.5.9 storeImage Method Updated in Release 1.13

	11.6 Events (UML interfaces)
	11.6.1 DataEvent
	11.6.2 DirectIOEvent
	11.6.3 ErrorEvent
	11.6.4 StatusUpdateEvent

	12 Coin Acceptor
	12.1 General
	12.2 Summary
	12.3 General Information
	12.3.1 Capabilities
	12.3.2 Coin Acceptor Class Diagram
	12.3.3 Model
	12.3.4 Coin Acceptor Sequence Diagram
	12.3.5 Coin Acceptor State Diagram
	12.3.6 Device Sharing

	12.4 Properties (UML attributes)
	12.4.1 CapDiscrepancy Property
	12.4.2 CapFullSensor Property
	12.4.3 CapJamSensor Property
	12.4.4 CapNearFullSensor Property
	12.4.5 CapPauseDeposit Property
	12.4.6 CapRealTimeData Property
	12.4.7 CurrencyCode Property
	12.4.8 DepositAmount Property
	12.4.9 DepositCashList Property
	12.4.10 DepositCodeList Property
	12.4.11 DepositCounts Property
	12.4.12 DepositStatus Property
	12.4.13 FullStatus Property
	12.4.14 RealTimeDataEnabled Property

	12.5 Methods (UML operations)
	12.5.1 adjustCashCounts Method
	12.5.2 beginDeposit Method
	12.5.3 endDeposit Method
	12.5.4 fixDeposit Method
	12.5.5 pauseDeposit Method
	12.5.6 readCashCounts Method

	12.6 Events (UML interfaces)
	12.6.1 DataEvent
	12.6.2 DirectIOEvent
	12.6.3 StatusUpdateEvent

	13 Coin Dispenser
	13.1 General
	13.2 Summary
	13.3 General Information
	13.3.1 Capabilities Updated in Release 1.11
	13.3.2 Coin Dispenser Class Diagram Updated in Release 1.11
	13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7
	13.3.4 Coin Dispenser State Diagram Updated in Release 1.11
	13.3.5 Model Updated in Release 1.11
	13.3.6 Device Sharing

	13.4 Properties (UML attributes)
	13.4.1 CapEmptySensor Property
	13.4.2 CapJamSensor Property
	13.4.3 CapNearEmptySensor Property
	13.4.4 DispenserStatus Property

	13.5 Methods (UML operations)
	13.5.1 adjustCashCounts Method Added in Release 1.11
	13.5.2 dispenseChange Method
	13.5.3 readCashCounts Method Added in Release 1.11

	13.6 Events (UML interfaces)
	13.6.1 DirectIOEvent
	13.6.2 StatusUpdateEvent

	14 Electronic Journal
	14.1 General
	14.2 Summary
	14.3 General Information
	14.3.1 Capabilities
	14.3.2 Electronic Journal Class Diagram
	14.3.3 Model
	14.3.4 Device Sharing
	14.3.5 Electronic Journal Sequence Diagrams
	14.3.6 Electronic Journal State Diagram

	14.4 Properties (UML Attributes)
	14.4.1 AsyncMode Property
	14.4.2 CapAddMarker Property
	14.4.3 CapErasableMedium Property
	14.4.4 CapInitializeMedium Property
	14.4.5 CapMediumIsAvailable Property Updated in Release 1.11
	14.4.6 CapPrintContent Property Updated in Release 1.11
	14.4.7 CapPrintContentFile Property Updated in Release 1.11
	14.4.8 CapRetrieveCurrentMarker Property
	14.4.9 CapRetrieveMarker Property
	14.4.10 CapRetrieveMarkerByDateTime Property
	14.4.11 CapRetrieveMarkersDateTime Property
	14.4.12 CapStation Property
	14.4.13 CapStorageEnabled Property
	14.4.14 CapSuspendPrintContent Property
	14.4.15 CapSuspendQueryContent Property
	14.4.16 CapWaterMark Property
	14.4.17 FlagWhenIdle Property
	14.4.18 MediumFreeSpace Property Updated in Releae 1.15.1
	14.4.19 MediumID Property
	14.4.20 MediumIsAvailable Property Updated in Release 1.11
	14.4.21 MediumSize Property Updated in Release 1.15.1
	14.4.22 Station Property
	14.4.23 StorageEnabled Property Updated in Release 1.11
	14.4.24 Suspended Property
	14.4.25 WaterMark Property

	14.5 Methods (UML operations)
	14.5.1 addMarker Method
	14.5.2 cancelPrintContent Method
	14.5.3 cancelQueryContent Method
	14.5.4 eraseMedium Method
	14.5.5 initializeMedium Method
	14.5.6 printContent Method Updated in Release 1.11
	14.5.7 printContentFile Method Updated in Release 1.11
	14.5.8 queryContent Method Updated in Release 1.11
	14.5.9 resumePrintContent Method
	14.5.10 resumeQueryContent Method
	14.5.11 retrieveCurrentMarker Method
	14.5.12 retrieveMarker Method
	14.5.13 retrieveMarkerByDateTime Method
	14.5.14 retrieveMarkersDateTime Method
	14.5.15 suspendPrintContent Method
	14.5.16 suspendQueryContent Method

	14.6 Events (UML interfaces)
	14.6.1 DataEvent
	14.6.2 DirectIOEvent
	14.6.3 ErrorEvent
	14.6.4 OutputCompleteEvent
	14.6.5 StatusUpdateEvent Updated in Release 1.12

	15 Electronic Value Reader/Writer
	15.1 General
	15.2 Summary
	15.3 General Information
	15.3.1 Capabilities
	15.3.2 Added in Release 1.14
	15.3.3 Added in Release 1.14.1
	15.3.4 Added in Release 1.15
	15.3.5 EVRW Class Diagram
	15.3.6 Model
	15.3.7 Life Cycle of Sub-Service Added in Release 1.14.1
	15.3.8 The Service with Variations Added in Release 1.14.1
	15.3.9 The Connection Model of EVR/W Devices and Payment Center Added in Release 1.14.1
	15.3.10 Transaction Mode Support
	15.3.11 Device Sharing
	15.3.12 EVRW Sequence Diagram
	15.3.13 EVRW State Diagram
	15.3.14 Error Model　　　　　　　　　　　　　　　　　　Updated in Release 1.14.1　

	15.4 Properties (UML attributes)
	15.4.1 AccountNumber Property　　　　　　　　　　　　　　Updated in Release 1.14 Syntax 　 　AccountNumber: string { read-only, access after open }
	15.4.2 AdditionalSecurityInformation Property
	15.4.3 Amount Property　　　　　　　　　　　　　　　　　Updated in Release 1.14 Syntax 　　Amount: currency { read-write, access after open }
	15.4.4 ApprovalCode Property
	15.4.5 AsyncMode Property
	15.4.6 Balance Property　　　　　　　　　　　　　　　　　Updated in Release 1.14 Syntax 　　Balance: currency { read-only, access after open }
	15.4.7 BalanceOfPoint Property　　　　　　　　　　　　　　Updated in Release 1.14
	15.4.8 CapActivateService Property
	15.4.9 CapAdditionalSecurityInformation Property　　　　　　Added in Release 1.15
	15.4.10 CapAddValue Property
	15.4.11 CapAuthorizeCompletion Property　　　　　　　　　Added in Release 1.15
	15.4.12 CapAuthorizePreSales Property　　　　　　　　　　Added in Release 1.15
	15.4.13 CapAuthorizeRefund Property　　　　　　　　　　　Added in Release 1.15
	15.4.14 CapAuthorizeVoid Property　　　　　　　　　　　　Added in Release 1.15
	15.4.15 CapAuthorizeVoidPreSales Property　　　　　　　　Added in Release 1.15
	15.4.16 CapCancelValue Property
	15.4.17 CapCrdSensor Property
	15.4.18 CapCashDeposit Property Added in Release 1.15
	15.4.19 CapCenterResultCode Property Added in Release 1.15
	15.4.20 CapCheckCard Property Added in Release 1.15
	15.4.21 CapDailyLog Property Added in Release 1.14
	15.4.22 CapDetectionControl Property
	15.4.23 CapElectronicMoney Property
	15.4.24 CapEnumerateCardServices Property
	15.4.25 CapIndirectTransactionLog Property
	15.4.26 CapInstallments Property Added in Release 1.15
	15.4.27 CapLockTerminal Property
	15.4.28 CapLogStatus Property
	15.4.29 CapMediumID Property
	15.4.30 CapMembershipCertificate Property Added in Release 1.14.1
	15.4.31 CapPaymentDetail Property Added in Release 1.15
	15.4.32 CapPINDevice Property Added in Release 1.15
	15.4.33 CapPoint Property
	15.4.34 CapSubtractValue Property
	15.4.35 CapTaxOthers Property Added in Release 1.15
	15.4.36 CapTrainingMode Property Added in Release 1.14
	15.4.37 CapTransaction Property
	15.4.38 CapTransactionLog Property
	15.4.39 CapTransactionNumber Property Added in Release 1.15
	15.4.40 CapUnlockTerminal Property
	15.4.41 CapUpdateKey Property
	15.4.42 CapVoucher Property
	15.4.43 CapWriteValue Property
	15.4.44 CardCompanyID Property Added in Release 1.15
	15.4.45 CardServiceList Property Updated in Release 1.14.1
	15.4.46 CenterResultCode Property Added in Release 1.15
	15.4.47 CurrentService Property Updated in Release 1.14.1
	15.4.48 DailyLog Property Updated in Release 1.15.1
	15.4.49 DetectionControl Property
	15.4.50 DetectionStatus Property
	15.4.51 ExpirationDate Property Updated in Release 1.14
	15.4.52 LastUsedDate Property Updated in Release 1.14
	15.4.53 LogStatus Property
	15.4.54 MediumID Property Updated in Release 1.14
	15.4.55 PaymentCondition Property Updated in Release 1.15
	15.4.56 PaymentDetail Property Updated in Release 1.15.1
	15.4.57 PaymentMedia Property Added in Release 1.15
	15.4.58 PINEntry Property Added in Release 1.14
	15.4.59 Point Property Updated in Release 1.14
	15.4.60 ReaderWriterServiceList Property Updated in Release 1.14.1
	15.4.61 SequenceNumber Property
	15.4.62 ServiceType Property Updated in Release 1.15
	15.4.63 SettledAmount Property Updated in Release 1.14
	15.4.64 SettledPoint Property
	15.4.65 SlipNumber Property Added in Release 1.15
	15.4.66 TrainingModeState Property Added in Release 1.14
	15.4.67 TransactionLog Property
	15.4.68 TransactionNumber Property Added in Release 1.15
	15.4.69 TransactionType Property Added in Release 1.15
	15.4.70 VoucherID Property Updated in Release 1.14
	15.4.71 VoucherIDList Property Updated in Release 1.14

	15.5 Methods (UML operations)
	15.5.1 accessDailyLog Method Added in Release 1.15
	15.5.2 accessData Method Added in Release 1.14.1
	15.5.3 accessLog Method Updated in Release 1.14.1
	15.5.4 activateEVService Method Added in Release 1.14.1
	15.5.5 activateService Method
	15.5.6 addValue Method
	15.5.7 authorizeCompletion Method Added in Release 1.15
	15.5.8 authorizePreSales Method Added in Release 1.15
	15.5.9 authorizeRefund Method Added in Release 1.15
	15.5.10 authorizeSales Method Added in Release 1.15
	15.5.11 authorizeVoid Method Added in Release 1.15
	15.5.12 authorizeVoidPreSales Method Added in Release 1.15
	15.5.13 beginDetection Method
	15.5.14 beginRemoval Method
	15.5.15 cancelValue Method
	15.5.16 captureCard Method
	15.5.17 cashDeposit Method Added in Release 1.15
	15.5.18 checkCard Method Added in Release 1.15
	15.5.19 checkServiceRegistrationToMedium Method Added in Release 1.14.1
	15.5.20 clearParameterInformation Method Added in Release 1.14
	15.5.21 closeDailyEVService Method Added in Release 1.14.1
	15.5.22 deactivateEVService Method　　　　　　　　　　　Added in Release 1.14.1
	15.5.23 endDetection Method
	15.5.24 endRemoval Method
	15.5.25 enumerateCardServices Method
	15.5.26 lockTerminal Method　　　　　　　　　　　　　Updated in Release 1.14.1
	15.5.27 openDailyEVService Method　　　　　　　　　　　Added in Release 1.14.1
	15.5.28 queryLastSuccessfulTransactionResult Method　　　　Added in Release 1.14
	15.5.29 readValue Method Updated in Release 1.15.1
	15.5.30 registerServiceToMedium Method　　　　　　　　　Added in Release 1.14
	15.5.31 retrieveResultInformation Method　　　　　　　　　Updated in Release 1.15.1
	15.5.32 setParameterInformation Method　　　　　　　　　Updated in Release 1.15.1
	15.5.33 subtractValue Method
	15.5.34 transactionAccess Method Updated in Release 1.15.1
	15.5.35 unlockTerminal Method Updated in Release 1.14.1
	15.5.36 unregisterServiceToMedium Method Added in Release 1.14.1
	15.5.37 updateData Method Added in Release 1.14.1
	15.5.38 updateKey Method Updated in Version 1.14.1
	15.5.39 writeValue Method

	15.6 Events (UML interfaces)
	15.6.1 DataEvent
	15.6.2 DirectIOEvent
	15.6.3 ErrorEvent
	15.6.4 OutputCompleteEvent
	15.6.5 StatusUpdateEvent
	15.6.6 TransitionEvent Updated in Release 1.15

	16 Fiscal Printer
	16.1 General
	16.2 Summary
	16.3 General Information Updated in Release 1.15
	16.3.1 Fiscal Printer Class Diagram
	16.3.2 General Requirements
	16.3.3 Fiscal Printer Modes
	16.3.4 Model Updated in Release 1.12
	16.3.5 Error Model Updated in Release 1.13
	16.3.6 Release 1.8 Additional Model Clarifications
	16.3.7 Fiscal Printer States Updated in Release 1.8
	16.3.8 Fiscal Printer State Diagram Added in Release 1.12
	16.3.9 Document Printing
	16.3.10 Ordering of Fiscal Receipt Print Requests Updated in Release 1.13
	16.3.11 Fiscal Receipt Layouts Updated in Release 1.8
	16.3.12 Example of a Fiscal Receipt
	16.3.13 Totalizers and Fiscal Memory
	16.3.14 Counters
	16.3.15 VAT Tables
	16.3.16 Receipt Duplication
	16.3.17 Currency Amounts, Percentage Amounts, VAT Rates, and Quantity Amounts Updated in Release 1.15.1
	16.3.18 Currency Change
	16.3.19 Device Sharing

	16.4 Properties (UML attributes)
	16.4.1 ActualCurrency Property Updated in Release 1.12
	16.4.2 AdditionalHeader Property　　　　　　　　　　　　Added in Release 1.6
	16.4.3 AdditionalTrailer Property Added in Release 1.6
	16.4.4 AmountDecimalPlaces Property
	16.4.5 AsyncMode Property
	16.4.6 CapAdditionalHeader Property Added in Release 1.6
	16.4.7 CapAdditionalLines Property Updated in Release 1.13
	16.4.8 CapAdditionalTrailer Property Added in Release 1.6
	16.4.9 CapAmountAdjustment Property
	16.4.10 CapAmountNotPaid Property Deprecated in Release 1.11
	16.4.11 CapChangeDue Property Added in Release 1.6
	16.4.12 CapCheckTotal Property Updated in Release 1.11
	16.4.13 CapCoverSensor Property
	16.4.14 CapDoubleWidth Property
	16.4.15 CapDuplicateReceipt Property
	16.4.16 CapEmptyReceiptIsVoidable Property Added in Release 1.6
	16.4.17 CapFiscalReceiptStation Property Added in Release 1.6
	16.4.18 CapFiscalReceiptType Property Added in Release 1.6
	16.4.19 CapFixedOutput Property
	16.4.20 CapHasVatTable Property
	16.4.21 CapIndependentHeader Property
	16.4.22 CapItemList Property
	16.4.23 CapJrnEmptySensor Property
	16.4.24 CapJrnNearEndSensor Property
	16.4.25 CapJrnPresent Property
	16.4.26 CapMultiContractor Property Added in Release 1.6
	16.4.27 CapNonFiscalMode Property
	16.4.28 CapOnlyVoidLastItem Property Added in Release 1.6
	16.4.29 CapOrderAdjustmentFirst Property
	16.4.30 CapPackageAdjustment Property Added in Release 1.6
	16.4.31 CapPercentAdjustment Property
	16.4.32 CapPositiveAdjustment Property
	16.4.33 CapPositiveSubtotalAdjustment Property Added in Release 1.11
	16.4.34 CapPostPreLine Property Added in Release 1.6
	16.4.35 CapPowerLossReport Property
	16.4.36 CapPredefinedPaymentLines Property
	16.4.37 CapReceiptNotPaid Property
	16.4.38 CapRecEmptySensor Property
	16.4.39 CapRecNearEndSensor Property Updated in Release 1.15.1
	16.4.40 CapRecPresent Property
	16.4.41 CapRemainingFiscalMemory Property
	16.4.42 CapReservedWord Property
	16.4.43 CapSetCurrency Property Added in Release 1.6
	16.4.44 CapSetHeader Property
	16.4.45 CapSetPOSID Property
	16.4.46 CapSetStoreFiscalID Property
	16.4.47 CapSetTrailer Property
	16.4.48 CapSetVatTable Property
	16.4.49 CapSlpEmptySensor Property
	16.4.50 CapSlpFiscalDocument Property
	16.4.51 CapSlpFullSlip Property
	16.4.52 CapSlpNearEndSensor Property
	16.4.53 CapSlpPresent Property
	16.4.54 CapSlpValidation Property
	16.4.55 CapSubAmountAdjustment Property
	16.4.56 CapSubPercentAdjustment Property
	16.4.57 CapSubtotal Property
	16.4.58 CapTotalizerType Property Added in Release 1.6
	16.4.59 CapTrainingMode Property
	16.4.60 CapValidateJournal Property
	16.4.61 CapXReport Property
	16.4.62 ChangeDue Property Added in Release 1.6
	16.4.63 CheckTotal Property Updated in Release 1.11
	16.4.64 ContractorId Property Added in Release 1.6
	16.4.65 CountryCode Property Updated in Release 1.15
	16.4.66 CoverOpen Property
	16.4.67 DateType Property Updated in Release 1.15
	16.4.68 DayOpened Property Updated in Release 1.6
	16.4.69 DescriptionLength Property Updated in Release 1.6
	16.4.70 DuplicateReceipt Property
	16.4.71 ErrorLevel Property
	16.4.72 ErrorOutID Property Updated in Release 1.6
	16.4.73 ErrorState Property
	16.4.74 ErrorStation Property
	16.4.75 ErrorString Property
	16.4.76 FiscalReceiptStation Property Added in Release 1.6
	16.4.77 FiscalReceiptType Property Updated in Release 1.11
	16.4.78 FlagWhenIdle Property
	16.4.79 JrnEmpty Property
	16.4.80 JrnNearEnd Property
	16.4.81 MessageLength Property
	16.4.82 MessageType Property Added in Release 1.6
	16.4.83 NumHeaderLines Property
	16.4.84 NumTrailerLines Property
	16.4.85 NumVatRates Property
	16.4.86 PostLine Property Added in Release 1.6
	16.4.87 PredefinedPaymentLines Property
	16.4.88 PreLine Property Added in Release 1.6
	16.4.89 PrinterState Property Updated in Release 1.13
	16.4.90 QuantityDecimalPlaces Property Updated in Release 1.6
	16.4.91 QuantityLength Property Updated in Release 1.6
	16.4.92 RecEmpty Property
	16.4.93 RecNearEnd Property
	16.4.94 RemainingFiscalMemory Property
	16.4.95 ReservedWord Property
	16.4.96 SlpEmpty Property
	16.4.97 SlpNearEnd Property
	16.4.98 SlipSelection Property
	16.4.99 TotalizerType Property Added in Release 1.6
	16.4.100 TrainingModeActive Property

	16.5 Methods (UML operations)
	16.5.1 beginFiscalDocument Method Updated in Release 1.11
	16.5.2 beginFiscalReceipt Method Updated in Release 1.11
	16.5.3 beginFixedOutput Method
	16.5.4 beginInsertion Method
	16.5.5 beginItemList Method
	16.5.6 beginNonFiscal Method
	16.5.7 beginRemoval Method
	16.5.8 beginTraining Method
	16.5.9 clearError Method
	16.5.10 endFiscalDocument Method
	16.5.11 endFiscalReceipt Method Updated in Release 1.6
	16.5.12 endFixedOutput Method
	16.5.13 endInsertion Method
	16.5.14 endItemList Method Updated in Release 1.13
	16.5.15 endNonFiscal Method
	16.5.16 endRemoval Method
	16.5.17 endTraining Method
	16.5.18 getData Method Updated in Release 1.12
	16.5.19 getDate Method Updated in Release 1.6
	16.5.20 getTotalizer Method Updated in Release 1.6
	16.5.21 getVatEntry Method Updated in Release 1.11
	16.5.22 printDuplicateReceipt Method
	16.5.23 printFiscalDocumentLine Method
	16.5.24 printFixedOutput Method
	16.5.25 printNormal Method Updated in Release 1.7
	16.5.26 printPeriodicTotalsReport Method
	16.5.27 printPowerLossReport Method
	16.5.28 printRecCash Method Added in Release 1.6
	16.5.29 printRecItem Method Updated in Release 1.6
	16.5.30 printRecItemAdjustment Method Updated in Release 1.11
	16.5.31 printRecItemAdjustmentVoid Method Added in Release 1.11
	16.5.32 printRecItemFuel Method Added in Release 1.6
	16.5.33 printRecItemFuelVoid Method Added in Release 1.6
	16.5.34 printRecItemRefund Method Added in Release 1.12
	16.5.35 printRecItemRefundVoid Method Added in Release 1.12
	16.5.36 printRecItemVoid Method 　　　　　　　　　　Added in Release 1.11
	16.5.37 printRecMessage Method Updated in Release 1.13
	16.5.38 printRecNotPaid Method Updated in Release 1.11
	16.5.39 printRecPackageAdjustment Method Updated in Release 1.15.1
	16.5.40 printRecPackageAdjustVoid Method Updated in Release 1.15.1
	16.5.41 printRecRefund Method Updated in Release 1.12
	16.5.42 printRecRefundVoid Method　　　　　　　　　　Updated in Release 1.12
	16.5.43 printRecSubtotal Method Updated in Release 1.6
	16.5.44 printRecSubtotalAdjustment Method Updated in Release 1.11
	16.5.45 printRecSubtotalAdjustVoid Method Added in Release 1.6
	16.5.46 printRecTaxID Method Added in Release 1.6
	16.5.47 printRecTotal Method Updated in Release 1.14
	16.5.48 printRecVoid Method Updated in Release 1.6
	16.5.49 printRecVoidItem Method Deprecated in Release 1.11
	16.5.50 printReport Method Updated in Release 1.11
	16.5.51 printXReport Method
	16.5.52 printZReport Method Updated in Release 1.6
	16.5.53 resetPrinter Method
	16.5.54 setCurrency Method Added in Release 1.6
	16.5.55 setDate Method
	16.5.56 setHeaderLine Method Updated in Release 1.6
	16.5.57 setPOSID Method
	16.5.58 setStoreFiscalID Method
	16.5.59 setTrailerLine Method
	16.5.60 setVatTable Method
	16.5.61 setVatValue Method Updated in Release 1.11
	16.5.62 verifyItem Method Updated in Release 1.13

	16.6 Events (UML interfaces)
	16.6.1 DirectIOEvent
	16.6.2 ErrorEvent Updated in Release 1.13
	16.6.3 OutputCompleteEvent
	16.6.4 StatusUpdateEvent Updated in Release 1.8

	17 Gate
	17.1 General
	17.2 Summary
	17.3 General Information
	17.3.1 Capabilities
	17.3.2 Gate Class Diagram
	17.3.3 Gate Sequence Diagram
	17.3.4 Device Sharing

	17.4 Properties (UML attributes)
	17.4.1 CapGateStatus Property
	17.4.2 GateStatus Property

	17.5 Methods (UML operations)
	17.5.1 openGate Method
	17.5.2 waitForGateClose Method

	17.6 Events (UML interfaces)
	17.6.1 DirectIOEvent
	17.6.2 StatusUpdateEvent

	18 Hard Totals
	18.1 General
	18.2 Summary
	18.3 General Information
	18.3.1 Capabilities
	18.3.2 Hard Totals Class Diagram
	18.3.3 Hard Totals Sequence Diagram Added in Release 1.7
	18.3.4 Model
	18.3.5 Device Sharing

	18.4 Properties (UML attributes)
	18.4.1 CapErrorDetection Property
	18.4.2 CapSingleFile Property
	18.4.3 CapTransactions Property
	18.4.4 FreeData Property
	18.4.5 NumberOfFiles Property
	18.4.6 TotalsSize Property
	18.4.7 TransactionInProgress Property

	18.5 Methods (UML operations)
	18.5.1 beginTrans Method
	18.5.2 claim Method (Common)
	18.5.3 claimFile Method Updated in Release 1.8
	18.5.4 commitTrans Method
	18.5.5 create Method
	18.5.6 delete Method
	18.5.7 find Method
	18.5.8 findByIndex Method
	18.5.9 read Method Updated in Release 1.7
	18.5.10 recalculateValidationData Method
	18.5.11 release Method (Common)
	18.5.12 releaseFile Method
	18.5.13 rename Method
	18.5.14 rollback Method
	18.5.15 setAll Method Updated in Release 1.7
	18.5.16 validateData Method
	18.5.17 write Method Updated in Release 1.7

	18.6 Events (UML interfaces)
	18.6.1 DirectIOEvent
	18.6.2 StatusUpdateEvent

	19 Image Scanner
	19.1 General
	19.2 Summary
	19.3 General Information
	19.3.1 Capabilities
	19.3.2 Image Scanner Class Diagram
	19.3.3 Image Scanner Sequence Diagram 1
	19.3.4 Image Scanner Sequence Diagram 2
	19.3.5 Image Scanner Sequence Diagram 3
	19.3.6 Image Scanner Sequence Diagram 4
	19.3.7 Model
	19.3.8 Device Sharing
	19.3.9 Image Scanner State Diagram

	19.4 Properties (UML attributes)
	19.4.1 AimMode Property
	19.4.2 BitsPerPixel Property
	19.4.3 CapAim Property
	19.4.4 CapDecodeData Property
	19.4.5 CapHostTriggered Property
	19.4.6 CapIlluminate Property
	19.4.7 CapImageData Property
	19.4.8 CapImageQuality Property
	19.4.9 CapVideoData Property
	19.4.10 FrameData Property
	19.4.11 FrameType Property
	19.4.12 IlluminateMode Property
	19.4.13 ImageHeight Property
	19.4.14 ImageLength Property
	19.4.15 ImageMode Property
	19.4.16 ImageQuality Property
	19.4.17 ImageType Property
	19.4.18 ImageWidth Property
	19.4.19 VideoCount Property
	19.4.20 VideoRate Property

	19.5 Methods (UML operations)
	19.5.1 startSession Method
	19.5.2 stopSession Method

	19.6 Events (UML interfaces)
	19.6.1 DataEvent
	19.6.2 DirectIO Event
	19.6.3 ErrorEvent
	19.6.4 StatusUpdateEvent

	20 Item Dispenser
	20.1 General
	20.2 Summary
	20.3 General Information
	20.3.1 Capabilities
	20.3.2 Item Dispenser Class Diagram
	20.3.3 Item Dispenser Sequence Diagram
	20.3.4 Model
	20.3.5 Device Sharing
	20.3.6 Item Dispenser State Diagram

	20.4 Properties (UML attributes)
	20.4.1 CapEmptySensor Property
	20.4.2 CapIndividualSlotStatus Property
	20.4.3 CapJamSensor Property
	20.4.4 CapNearEmptySensor Property
	20.4.5 DispenserStatus Property
	20.4.6 MaxSlots Property

	20.5 Methods (UML operations)
	20.5.1 adjustItemCount Method
	20.5.2 dispenseItem Method
	20.5.3 readItemCount Method

	20.6 Events (UML interfaces)
	20.6.1 DirectIOEvent
	20.6.2 StatusUpdateEvent

	21 Keylock
	21.1 General
	21.2 Summary
	21.3 General Information
	21.3.1 Capabilities Updated in Release 1.11
	21.3.2 Keylock Class Diagram Updated in Release 1.11
	21.3.3 Keylock Sequence Diagram Updated in Release 1.12
	21.3.4 Model Updated in Release 1.11
	21.3.5 Device Sharing

	21.4 Properties (UML attributes)
	21.4.1 CapKeylockType Property Added in Release 1.11
	21.4.2 ElectronicKeyValue Property Added in Release 1.11
	21.4.3 KeyPosition Property Updated in Release 1.11
	21.4.4 PositionCount Property Updated in Release 1.11

	21.5 Methods (UML operations)
	21.5.1 waitForKeylockChange Method Updated in Release 1.11

	21.6 Events (UML interfaces)
	21.6.1 DirectIOEvent
	21.6.2 StatusUpdateEvent Updated in Release 1.11

	22 Lights
	22.1 General
	22.2 Summary
	22.3 General Information
	22.3.1 Capabilities
	22.3.2 Lights Class Diagram
	22.3.3 Lights Sequence Diagram
	22.3.4 Device Sharing

	22.4 Properties (UML attributes)
	22.4.1 CapAlarm Property
	22.4.2 CapBlink Property
	22.4.3 CapColor Property
	22.4.4 MaxLights Property

	22.5 Methods (UML operations)
	22.5.1 switchOff Method
	22.5.2 switchOn Method

	22.6 Events (UML interfaces)
	22.6.1 DirectIOEvent
	22.6.2 StatusUpdateEvent

	23 Line Display
	23.1 General
	23.2 Summary
	23.3 General Information
	23.3.1 Capabilities Updated in Version 1.7
	23.3.2 Line Display Class Diagram Updated in Release 1.7
	23.3.3 Line Display Sequence Diagram Added in Release 1.7
	23.3.4 Model Updated in Release 1.7
	23.3.5 Display Modes
	23.3.6 Data Characters and Escape Sequences Added in Release 1.7
	23.3.7 Device Sharing

	23.4 Properties (UML attributes)
	23.4.1 BlinkRate Property Added in Release 1.6
	23.4.2 CapBitmap Property Added in Release 1.7
	23.4.3 CapBlink Property
	23.4.4 CapBlinkRate Property Added in Release 1.6
	23.4.5 CapBrightness Property
	23.4.6 CapCharacterSet Property Updated in Release 1.5
	23.4.7 CapCursorType Property Updated in Release 1.8
	23.4.8 CapCustomGlyph Property Added in Release 1.6
	23.4.9 CapDescriptions Property
	23.4.10 CapHMarquee Property
	23.4.11 CapICharWait Property
	23.4.12 CapMapCharacterSet Property Added in Release 1.7
	23.4.13 CapReadBack Property Added in Release 1.6
	23.4.14 CapReverse Property Added in Release 1.6
	23.4.15 CapScreenMode Property Added in Release 1.7
	23.4.16 CapVMarquee Property
	23.4.17 CharacterSet Property Updated in Release 1.10
	23.4.18 CharacterSetList Property
	23.4.19 Columns Property
	23.4.20 CurrentWindow Property Updated in Release 1.6
	23.4.21 CursorColumn Property
	23.4.22 CursorRow Property
	23.4.23 CursorType Property Updated in Release 1.8
	23.4.24 CusorUpdate Property
	23.4.25 CustomGlyphList Property Added in Release 1.6
	23.4.26 DeviceBrightness Property
	23.4.27 DeviceColumns Property Updated in Release 1.7
	23.4.28 DeviceDescriptors Property
	23.4.29 DeviceRows Property Updated in Release 1.7
	23.4.30 DeviceWindows Property
	23.4.31 GlyphHeight Property Added in Release 1.6
	23.4.32 GlyphWidth Property Added in Release 1.6
	23.4.33 InterCharacterWait Property
	23.4.34 MapCharacterSet Property Added in Release 1.7
	23.4.35 MarqueeFormat Property
	23.4.36 MarqueeRepeatWait Property
	23.4.37 MarqueeType Property
	23.4.38 MarqueeUnitWait Property
	23.4.39 MaximumX Property Added in Release 1.7
	23.4.40 MaximumY Property Added in Release 1.7
	23.4.41 Rows Property
	23.4.42 ScreenMode Property Added in Release 1.7
	23.4.43 ScreenModeList Property Added in Release 1.7

	23.5 Methods (UML operations)
	23.5.1 clearDescriptors Method
	23.5.2 clearText Method Updated in Release 1.7
	23.5.3 createWindow Method Updated in Release 1.6
	23.5.4 defineGlyph Method Updated in Release 1.7
	23.5.5 destroyWindow Method
	23.5.6 displayBitmap Method Added in Release 1.7
	23.5.7 displayText Method Updated in Release 1.7
	23.5.8 displayTextAt Method Updated in Release 1.7
	23.5.9 readCharacterAtCursor Method Added in Release 1.6
	23.5.10 refreshWindow Method
	23.5.11 scrollText Method Updated in Release 1.7
	23.5.12 setBitmap Method Added in Release 1.7
	23.5.13 setDescriptor Method

	23.6 Events (UML interfaces)
	23.6.1 DirectIOEvent
	23.6.2 StatusUpdateEvent

	24 MICR - Magnetic Ink Character Recognition Reader
	24.1 General
	24.2 Summary
	24.3 General Information
	24.3.1 Capabilities
	24.3.2 MICR Class Diagram
	24.3.3 MICR Sequence Diagram Updated in Release 1.8
	24.3.4 Model
	24.3.5 Device Sharing
	24.3.6 MICR - Character Substitution Updated in Release 1.13

	24.4 Properties (UML attributes)
	24.4.1 AccountNumber Property
	24.4.2 Amount Property
	24.4.3 BankNumber Property
	24.4.4 CapValidationDevice Property
	24.4.5 CheckType Property
	24.4.6 CountryCode Property Updated in Release 1.13
	24.4.7 EPC Property
	24.4.8 RawData Property Updated in Release 1.13
	24.4.9 SerialNumber Property
	24.4.10 TransitNumber Property

	24.5 Methods (UML operations)
	24.5.1 beginInsertion Method
	24.5.2 beginRemoval Method
	24.5.3 endInsertion Method
	24.5.4 endRemoval Method

	24.6 Events (UML interfaces)
	24.6.1 DataEvent
	24.6.2 DirectIOEvent
	24.6.3 ErrorEvent Updated in Release 1.10
	24.6.4 StatusUpdateEvent

	25 Motion Sensor
	25.1 General
	25.2 Summary
	25.3 General Information
	25.3.1 Capabilities
	25.3.2 Motion Sensor Class Diagram
	25.3.3 Model
	25.3.4 Device Sharing
	25.3.5 Motion Sensor Sequence Diagram
	25.3.6 Motion Sensor State Diagram

	25.4 Properties (UML attributes)
	25.4.1 Motion Property
	25.4.2 Timeout Property

	25.5 Methods (UML operations)
	25.5.1 waitForMotion Method

	25.6 Events (UML interfaces)
	25.6.1 DirectIOEvent
	25.6.2 StatusUpdateEvent

	26 MSR - Magnetic Stripe Reader
	26.1 General
	26.2 Summary
	26.3 General Information
	26.3.1 Capabilities Updated in Release 1.12
	26.3.2 MSR Class Diagram Updated in Release 1.12
	26.3.3 Device Behavior Model Updated in Release 1.12
	26.3.4 MSR Encryption and Authentication Updated in Release 1.14
	26.3.5 Device Sharing
	26.3.6 MSR Sequence Diagram Updated in Release 1.8
	26.3.7 MSR Device Authentication Sequence Diagram Added in Release 1.12
	26.3.8 MSR State Diagrams

	26.4 Properties (UML attributes)
	26.4.1 AccountNumber Property Updated in Release 1.13
	26.4.2 AdditionalSecurityInformation Property Added in Release 1.12
	26.4.3 CapCardAuthentication Property Added in Release 1.12
	26.4.4 CapDataEncryption Property Added in Release 1.12
	26.4.5 CapDeviceAuthentication Property Added in Release 1.12
	26.4.6 CapISO Property
	26.4.7 CapJISOne Property
	26.4.8 CapJISTwo Property
	26.4.9 CapTrackDataMasking Property Updated in Release 1.13
	26.4.10 CapTransmitSentinels Property Added in Release 1.5
	26.4.11 CapWritableTracks Property Added in Release 1.10
	26.4.12 CardAuthenticationData Property Added in Release 1.12
	26.4.13 CardAuthenticationDataLength Property Updated in Release 1.13
	26.4.14 CardPropertyList Property Added in Release 1.12
	26.4.15 CardType Property Added in Release 1.12
	26.4.16 CardTypeList Property Added in Release 1.12
	26.4.17 DataEncryptionAlgorithm Property Added in Release 1.12
	26.4.18 DecodeData Property Updated in Release 1.13
	26.4.19 DeviceAuthenticated Property Added in Release 1.12
	26.4.20 DeviceAuthenticationProtocol Property Added in Release 1.12
	26.4.21 EncodingMaxLength Property Updated in Release 1.10
	26.4.22 ErrorReportingType Property Updated in Release 1.13
	26.4.23 ExpirationDate Property　　　　　　　　　　　　Updated in Release 1.12
	26.4.24 FirstName Property Updated in Release 1.12
	26.4.25 MiddleInitial Property Updated in Release 1.12
	26.4.26 ParseDecodeData Property Updated in Release 1.12
	26.4.27 ServiceCode Property Updated in Release 1.12
	26.4.28 Suffix Property Updated in Release 1.12
	26.4.29 Surname Property Updated in Release 1.12
	26.4.30 Title Property Updated in Release 1.12
	26.4.31 Track1Data Property Updated in Release 1.12
	26.4.32 Track1DiscretionaryData Property Updated in Release 1.12
	26.4.33 Track1EncryptedData Property Added in Release 1.12
	26.4.34 Track1EncryptedDataLenght Property Updated in Release 1.13
	26.4.35 Track2Data Property Updated in Release 1.12
	26.4.36 Track2DiscretionaryData Property Added in Release 1.12
	26.4.37 Track2EncryptedData Property Added in Release 1.12
	26.4.38 Track2EncryptedDataLength Property Updated in Release 1.13
	26.4.39 Track3Data Property Updated in Release 1.12
	26.4.40 Track3EncryptedData Property Added in Release 1.12
	26.4.41 Track3EncryptedDataLength Property Updated in Release 1.13
	26.4.42 Track4Data Property Updated in Release 1.12
	26.4.43 Track4EncryptedData Property Added in Release 1.12
	26.4.44 Track4EncryptedDataLength Property Updated in Release 1.13
	26.4.45 TracksToRead Property Updated in Release 1.5
	26.4.46 TracksToWrite Property Added in Release 1.10
	26.4.47 TransmitSentinels Property Added in Release 1.5
	26.4.48 WriteCardType Property Added in Release 1.12

	26.5 Methods (UML operations)
	26.5.1 authenticateDevice Method Added in Release 1.12
	26.5.2 deauthenticateDevice Method Added in Release 1.12
	26.5.3 retrieveCardProperty Method Updated in Release 1.13
	26.5.4 retrieveDeviceAuthenticationData Method Added in Release 1.12
	26.5.5 updateKey Method Added in Release 1.12
	26.5.6 writeTracks Method Updated in Release 1.12

	26.6 Events (UML interfaces)
	26.6.1 DataEvent Updated in Release 1.12
	26.6.2 DirectIOEvent
	26.6.3 ErrorEvent Updated in Release 1.10
	26.6.4 StatusUpdateEvent Updated in Release 1.12

	27 Pin Pad
	27.1 General
	27.2 Summary
	27.3 General Information
	27.3.1 Capabilities
	27.3.2 Pin Pad Class Diagram
	27.3.3 Pin Pad Sequence Diagram Added in Release 1.7
	27.3.4 Feature Not Supported
	27.3.5 Note on Terminology
	27.3.6 Model
	27.3.7 Device Sharing
	27.3.8 Pin Pad State Diagram

	27.4 Properties (UML attributes)
	27.4.1 AccountNumber Property
	27.4.2 AdditionalSecurityInformation Property
	27.4.3 Amount Property Corrected in Release 1.8
	27.4.4 AvailableLanguagesList Property
	27.4.5 AvailablePromptsList Property
	27.4.6 CapDisplay Property
	27.4.7 CapKeyboard Property
	27.4.8 CapLanguage Property Updated in Release 1.9
	27.4.9 CapMACCalculation Property
	27.4.10 CapTone Property
	27.4.11 EncryptedPIN Property
	27.4.12 MaximumPINLength Property
	27.4.13 MerchantID Property
	27.4.14 MinimumPINLength Property
	27.4.15 PINEntryEnabled Property Updated in Release 1.12
	27.4.16 Prompt Property
	27.4.17 PromptLanguage Property
	27.4.18 TerminalID Property
	27.4.19 Track1Data Property
	27.4.20 Track2Data Property
	27.4.21 Track3Data Property
	27.4.22 Track4Data Property Added in Release 1.5
	27.4.23 TransactionType Property

	27.5 Methods (UML operations)
	27.5.1 beginEFTTransaction Method Updated in Release 1.14
	27.5.2 computeMAC Method Updated in Release 1.7
	27.5.3 enablePINEntry Method
	27.5.4 endEFTTransaction Method
	27.5.5 updateKey Method
	27.5.6 verifyMAC Method Updated in Release 1.9

	27.6 Events (UML interfaces)
	27.6.1 DataEvent
	27.6.2 DirectIOEvent
	27.6.3 ErrorEvent
	27.6.4 StatusUpdateEvent

	28 Point Card Reader/Writer
	28.1 General
	28.2 Summary
	28.3 General Information
	28.3.1 Capabilities
	28.3.2 Point Card Reader/Writer Class Diagram
	28.3.3 Model
	28.3.4 Card Insertion Diagram
	28.3.5 Printing Capability
	28.3.6 Cleaning Capability
	28.3.7 Initialization of Magnetic Stripe Data
	28.3.8 Device Sharing
	28.3.9 Data Characters and Escape Sequences Updated in Release 1.7
	28.3.10 Point Card Reader Writer Sequence Diagram Added in Release 1.7
	28.3.11 Point Card Reader Writer State Diagram

	28.4 Properties (UML attributes)
	28.4.1 CapBold Property
	28.4.2 CapCardEntranceSensor Property
	28.4.3 CapCharacterSet Property
	28.4.4 CapCleanCard Property
	28.4.5 CapClearPrint Property
	28.4.6 CapDhigh Property
	28.4.7 CapDwide Property
	28.4.8 CapDwideDhigh Property
	28.4.9 CapItalic Property
	28.4.10 CapLeft90 Property
	28.4.11 CapMapCharacterSet Property Added in Release 1.7
	28.4.12 CapPrint Property
	28.4.13 CapPrintMode Property
	28.4.14 CapRight90 Property
	28.4.15 CapRotate180 Property
	28.4.16 CapTracksToRead Property
	28.4.17 CapTracksToWrite Property
	28.4.18 CardState Property
	28.4.19 CharacterSet Property Updated in Release 1.10
	28.4.20 CharacterSetList Property
	28.4.21 FontTypefaceList Property
	28.4.22 LineChars Property
	28.4.23 LineCharsList Property
	28.4.24 LineHeight Property
	28.4.25 LineSpacing Property
	28.4.26 LineWidth Property
	28.4.27 MapCharacterSet Property Added in Release 1.7
	28.4.28 MapMode Property Updated in Release 1.13
	28.4.29 MaxLine Property
	28.4.30 PrintHeight Property
	28.4.31 ReadState1 Property
	28.4.32 ReadState2 Property
	28.4.33 RecvLength1 Property
	28.4.34 RecvLength2 Property
	28.4.35 SidewaysMaxChars Property
	28.4.36 SidewaysMaxLines Property
	28.4.37 TracksToRead Property
	28.4.38 TracksToWrite Property
	28.4.39 Track1Data Property
	28.4.40 Track2Data Property
	28.4.41 Track3Data Property
	28.4.42 Track4Data Property
	28.4.43 Track5Data Property
	28.4.44 Track6Data Property
	28.4.45 WriteState1 Property
	28.4.46 WriteState2 Property
	28.4.47 Write1Data Property
	28.4.48 Write2Data Property
	28.4.49 Write3Data Property
	28.4.50 Write4Data Property
	28.4.51 Write5Data Property
	28.4.52 Write6Data Property

	28.5 Methods (UML operations)
	28.5.1 beginInsertion Method
	28.5.2 beginRemoval Method
	28.5.3 cleanCard Method
	28.5.4 clearPrintWrite Method
	28.5.5 endInsertion Method
	28.5.6 endRemoval Method
	28.5.7 printWrite Method Updated in Release 1.7
	28.5.8 rotatePrint Method
	28.5.9 validateData Method Updated in Release 1.7

	28.6 Events (UML Interfaces)
	28.6.1 DataEvent
	28.6.2 DirectIOEvent
	28.6.3 ErrorEvent Updated in Release 1.10
	28.6.4 OutputCompleteEvent
	28.6.5 StatusUpdateEvent

	29 POS Keyboard
	29.1 General
	29.2 Summary
	29.3 General Information
	29.3.1 Capabilities
	29.3.2 POS Keyboard Class Diagram
	29.3.3 POS Keyboard Sequence Diagram Updated in Release 1.8
	29.3.4 Model
	29.3.5 Device Sharing

	29.4 Properties (UML attributes)
	29.4.1 CapKeyUp Property
	29.4.2 EventTypes Property
	29.4.3 POSKeyData Property
	29.4.4 POSKeyEventType Property

	29.5 Events (UML interfaces)
	29.5.1 DataEvent
	29.5.2 DirectIOEvent
	29.5.3 ErrorEvent Updated in Release 1.10
	29.5.4 StatusUpdateEvent

	30 POS Power
	30.1 General
	30.2 Summary
	30.3 General Information Updated in Release 1.9
	30.3.1 Capabilities
	30.3.2 Device Sharing
	30.3.3 Model Updated in Release 1.9
	30.3.4 POSPower Class Diagram Updated in Release 1.10
	30.3.5 POSPower Sequence Diagram Added in Release 1.7
	30.3.6 POSPower Standby Sequence Diagram Added in Release 1.9
	30.3.7 POSPower State Diagram
	30.3.8 POSPower PowerState Diagram - Part 1
	30.3.9 POSPower PowerState Diagram - Part 2
	30.3.10 POSPower PowerState Diagram - Part 3
	30.3.11 POSPower State Chart Diagram for Fan and Temperature
	30.3.12 POSPower Battery State Diagram Added in Release 1.9
	30.3.13 POSPower Transitions State Diagram Added in Release 1.9

	30.4 Properties (UML attributes)
	30.4.1 BatteryCapacityRemaining Property Added in Release 1.9
	30.4.2 BatteryCriticallyLowThreshold Property Added in Release 1.9
	30.4.3 BatteryLowThreshold Property Added in Release 1.9
	30.4.4 CapBatteryCapacityRemaining Property Added in Release 1.9
	30.4.5 CapFanAlarm Property
	30.4.6 CapHeatAlarm Property
	30.4.7 CapQuickCharge Property
	30.4.8 CapRestartPOS Property Added in Release 1.9
	30.4.9 CapShutdownPOS Property
	30.4.10 CapStandbyPOS Property Added in Release 1.9
	30.4.11 CapSuspendPOS Property Added in Release 1.9
	30.4.12 CapUPSChargeState Property
	30.4.13 CapVariableBatteryCriticallyLowThreshold Property Added in Release 1.9
	30.4.14 CapVariableBatteryLowThreshold Property Added in Release 1.9
	30.4.15 EnforcedShutdownDelayTime Property
	30.4.16 PowerFailDelayTime Property
	30.4.17 PowerSource Property Added in Release 1.9
	30.4.18 QuickChargeMode Property
	30.4.19 QuickChargeTime Property
	30.4.20 UPSChargeState Property

	30.5 Methods (UML operations)
	30.5.1 restartPOS Method Added in Release 1.9
	30.5.2 shutdownPOS Method
	30.5.3 standbyPOS Method Updated in Release 1.10
	30.5.4 suspendPOS Method Updated in Release 1.10

	30.6 Events (UML interfaces)
	30.6.1 DirectIOEvent
	30.6.2 StatusUpdateEvent Updated in Release 1.9

	31 POS Printer
	31.1 General
	31.2 Summary
	31.3 General Information
	31.3.1 Capabilities Updated in Release 1.8
	31.3.2 POS Printer Class Diagram
	31.3.3 POS Printer Class Diagram Updates Updated in Release 1.10
	31.3.4 Model Updated in Release 1.13
	31.3.5 Device Sharing
	31.3.6 POS Printer State Diagram
	31.3.7 Page Mode Printing State Diagram Added in Release 1.9
	31.3.8 “Both sides printing” sequence Diagram
	31.3.9 Page Mode printing sequence Diagram Added in Release 1.9
	31.3.10 Data Characters and Escape Sequences Updated in Release 1.13
	31.3.11 POS Printer State Diagrams (Low Level)

	31.4 Properties (UML attributes)
	31.4.1 AsyncMode Property
	31.4.2 CapCharacterSet Property Updated in Release 1.5
	31.4.3 CapConcurrentJrnRec Property
	31.4.4 CapConcurrentJrnSlp Property
	31.4.5 CapConcurrentPageMode Property Added in Release 1.9
	31.4.6 CapConcurrentRecSlp Property
	31.4.7 CapCoverSensor Property
	31.4.8 CapJrn2Color Property
	31.4.9 CapJrnBold Property
	31.4.10 CapJrnCartridgeSensor Property Added in Release 1.5
	31.4.11 CapJrnColor Property Added in Release 1.5
	31.4.12 CapJrnDhigh Property
	31.4.13 CapJrnDwide Property
	31.4.14 CapJrnDwideDhigh Property
	31.4.15 CapJrnEmptySensor Property
	31.4.16 CapJrnItalic Property
	31.4.17 CapJrnNearEndSensor Property
	31.4.18 CapJrnPresent Property
	31.4.19 CapJrnUnderline Property
	31.4.20 CapMapCharacterSet Property Added in Release 1.7
	31.4.21 CapRec2Color Property
	31.4.22 CapRecBarCode Property
	31.4.23 CapRecBitmap Property
	31.4.24 CapRecBold Property
	31.4.25 CapRecCartridgeSensor Property Added in Release 1.5
	31.4.26 CapRecColor Property Added in Release 1.5
	31.4.27 CapRecDhigh Property
	31.4.28 CapRecDwide Property
	31.4.29 CapRecDwideDhigh Property
	31.4.30 CapRecEmptySensor Property
	31.4.31 CapRecItalic Property
	31.4.32 CapRecLeft90 Property
	31.4.33 CapRecMarkFeed Property Added in Release 1.5
	31.4.34 CapRecNearEndSensor Property
	31.4.35 CapRecPageMode Property Added in Release 1.9
	31.4.36 CapRecPapercut Property
	31.4.37 CapRecPresent Property
	31.4.38 CapRecRight90 Property
	31.4.39 CapRecRotate180 Property
	31.4.40 CapRecRuledLine Property Added in Release 1.13
	31.4.41 CapRecStamp Property
	31.4.42 CapRecUnderline Property
	31.4.43 CapSlp2Color Property
	31.4.44 CapSlpBarCode Property
	31.4.45 CapSlpBitmap Property
	31.4.46 CapSlpBold Property
	31.4.47 CapSlpBothSidesPrint Property Added in Release 1.5
	31.4.48 CapSlpCartridgeSensor Property Added in Release 1.5
	31.4.49 CapSlpColor Property Added in Release 1.5
	31.4.50 CapSlpDhigh Property
	31.4.51 CapSlpDwide Property
	31.4.52 CapSlpDwideDhigh Property
	31.4.53 CapSlpEmptySensor Property
	31.4.54 CapSlpFullslip Property
	31.4.55 CapSlpItalic Property
	31.4.56 CapSlpLeft90 Property
	31.4.57 CapSlpNearEndSensor Property
	31.4.58 CapSlpPageMode Property Added in Release 1.9
	31.4.59 CapSlpPresent Property
	31.4.60 CapSlpRight90 Property
	31.4.61 CapSlpRotate180 Property
	31.4.62 CapSlpRuledLine Property Added in Release 1.13
	31.4.63 CapSlpUnderline Property
	31.4.64 CapTransaction Property
	31.4.65 CartridgeNotify Property Added in Release 1.5
	31.4.66 CharacterSet Property Updated in Release 1.10
	31.4.67 CharacterSetList Property
	31.4.68 CoverOpen Property
	31.4.69 ErrorLevel Property
	31.4.70 ErrorStation Property
	31.4.71 ErrorString Property
	31.4.72 FlagWhenIdle Property
	31.4.73 FontTypefaceList Property
	31.4.74 JrnCartridgeState Property Added in Release 1.5
	31.4.75 JrnCurrentCartridge Property Updated in Release 1.9
	31.4.76 JrnEmpty Property
	31.4.77 JrnLetterQuality Property
	31.4.78 JrnLineChars Property
	31.4.79 JrnLineCharsList Property
	31.4.80 JrnLineHeight Property
	31.4.81 JrnLineSpacing Property
	31.4.82 JrnLineWidth Property
	31.4.83 JrnNearEnd Property
	31.4.84 MapCharacterSet Property Added in Release 1.7
	31.4.85 MapMode Property Updated in Release 1.13
	31.4.86 PageModeArea Property Added in Release 1.9
	31.4.87 PageModeDescriptor Property Added in Release 1.9
	31.4.88 PageModeHorizontalPosition Property Added in Release 1.9
	31.4.89 PageModePrintArea Property Added in Release 1.9
	31.4.90 PageModePrintDirection Property Added in Release 1.9
	31.4.91 PageModeStation Property Added in Release 1.9
	31.4.92 PageModeVerticalPosition Property Added in Release 1.9
	31.4.93 RecBarCodeRotationList Property Updated in Release 1.7
	31.4.94 RecBitmapRotationList Property Added in Release 1.7
	31.4.95 RecCartridgeState Property Added in Release 1.5
	31.4.96 RecCurrentCartridge Property Updated in Release 1.9
	31.4.97 RecEmpty Property
	31.4.98 RecLetterQuality Property
	31.4.99 RecLineChars Property
	31.4.100 RecLineCharsList Property
	31.4.101 RecLineHeight Property
	31.4.102 RecLineSpacing Property
	31.4.103 RecLinesToPaperCut Property
	31.4.104 RecLineWidth Property
	31.4.105 RecNearEnd Property
	31.4.106 RecSidewaysMaxChars Property
	31.4.107 RecSidewaysMaxLines Property
	31.4.108 RotateSpecial Property
	31.4.109 SlpBarCodeRotationList Property Updated in Release 1.7
	31.4.110 SlpBitmapRotationList Property Added in Release 1.7
	31.4.111 SlpCartridgeState Property Added in Release 1.5
	31.4.112 SlpCurrentCartridge Property Updated in Release 1.9
	31.4.113 SlpEmpty Property
	31.4.114 SlpLetterQuality Propert
	31.4.115 SlpLineChars Property
	31.4.116 SlpLineCharsList Property
	31.4.117 SlpLineHeight Property
	31.4.118 SlpLinesNearEndToEnd Property
	31.4.119 SlpLineSpacing Property
	31.4.120 SlpLineWidth Property
	31.4.121 SlpMaxLines Property
	31.4.122 SlpNearEnd Property
	31.4.123 SlpPrintSide Property Added in Release 1.5
	31.4.124 SlpSidewaysMaxChars Property
	31.4.125 SlpSidewaysMaxLines Property

	31.5 Methods (UML operations)
	31.5.1 beginInsertion Method
	31.5.2 beginRemoval Method
	31.5.3 changePrintSide Method Updated in Release 1.9
	31.5.4 clearPrintArea Method Added in Release 1.9
	31.5.5 cutPaper Method Updated in Release 1.9
	31.5.6 drawRuledLine Method Added in Release 1.13
	31.5.7 endInsertion Method
	31.5.8 endRemoval Method
	31.5.9 markFeed Method Added in Release 1.5
	31.5.10 pageModePrint Method Updated in Release 1.11
	31.5.11 printBarCode Method Updated in Release 1.15.1
	31.5.12 printBitmap Method Updated in Release 1.7
	31.5.13 printImmediate Method Updated in Release 1.13
	31.5.14 printMemoryBitmap Method Added in Release 1.12
	31.5.15 printNormal Method Updated in Release 1.7
	31.5.16 printTwoNormal Method Updated in Release 1.9
	31.5.17 rotatePrint Method Updated in Version 1.11
	31.5.18 setBitmap Method Updated in Release 1.7
	31.5.19 setLogo Method Updated in Release 1.10
	31.5.20 transactionPrint Method
	31.5.21 validateData Method Updated in Release 1.9

	31.6 Events (UML interfaces)
	31.6.1 DirectIOEvent
	31.6.2 ErrorEvent Updated in Release 1.9
	31.6.3 OutputCompleteEvent
	31.6.4 StatusUpdateEvent Updated in Release 1.8

	32 Remote Order Display
	32.1 General
	32.2 Summary
	32.3 General Information
	32.3.1 Capabilities
	32.3.2 Remote Order Display Class Diagram
	32.3.3 Model Updated in Release 1.7
	32.3.4 Device Sharing

	32.4 Properties (UML attributes)
	32.4.1 AsyncMode Property Updated in Release 1.11
	32.4.2 AutoToneDuration Property Updated in Release 1.11
	32.4.3 AutoToneFrequency Property
	32.4.4 CapMapCharacterSet Property Added in Release 1.7
	32.4.5 CapSelectCharacterSet Property
	32.4.6 CapTone Property
	32.4.7 CapTouch Property
	32.4.8 CapTransaction Property
	32.4.9 CharacterSet Property Updated in Release 1.10
	32.4.10 CharacterSetList Property
	32.4.11 Clocks Property
	32.4.12 Current UnitID Property
	32.4.13 DataCount Property (Common)
	32.4.14 ErrorString Property
	32.4.15 ErrorUnits Property
	32.4.16 EventString Property
	32.4.17 EventType Property
	32.4.18 EventUnitID Property
	32.4.19 EventUnits Property
	32.4.20 MapCharacterSet Property Added in Release 1.7
	32.4.21 SystemClocks Property
	32.4.22 SystemVideoSaveBuffers Property
	32.4.23 Timeout Property
	32.4.24 UnitsOnline Property
	32.4.25 VideoDataCount Property
	32.4.26 VideoMode Property
	32.4.27 VideoModesList Property
	32.4.28 VideoSaveBuffers Property

	32.5 Methods (UML operations)
	32.5.1 checkHealth Method (Common)
	32.5.2 clearInput Method (Common)
	32.5.3 clearOutput Method (Common) Updated in Release 1.7
	32.5.4 clearVideo Method
	32.5.5 clearVideoRegion Method
	32.5.6 controlClock Method
	32.5.7 controlCursor Method
	32.5.8 copyVideoRegion Method
	32.5.9 displayData Method Updated in Release 1.7
	32.5.10 drawBox Method
	32.5.11 freeVideoRegion Method
	32.5.12 resetVideo Method
	32.5.13 restoreVideoRegion Method
	32.5.14 saveVideoRegion Method
	32.5.15 selectCharacterSet Method
	32.5.16 setCursor Method
	32.5.17 transactionDisplay Method
	32.5.18 updateVideoRegionAttribute Method
	32.5.19 videoSound Method

	32.6 Events (UML interfaces)
	32.6.1 DataEvent
	32.6.2 DirectIOEvent
	32.6.3 ErrorEvent Updated in Release 1.10
	32.6.4 OutputCompleteEvent
	32.6.5 StatusUpdateEvent

	33 RFID Scanner
	33.1 General
	33.2 Summary
	33.3 General Information
	33.3.1 Capabilities
	33.3.2 RFID Scanner Class Diagram
	33.3.3 Model
	33.3.4 RFID Scanner Sequence Diagrams
	33.3.5 RFID Scanner State Diagram
	33.3.6 Device Sharing

	33.4 Properties (UML Attributes)
	33.4.1 CapContinuousRead Property
	33.4.2 CapDisableTag Property
	33.4.3 CapLockTag Property
	33.4.4 CapMultipleProtocols Property
	33.4.5 CapReadTimer Property
	33.4.6 CapWriteTag Property
	33.4.7 ContinuousReadMode Property
	33.4.8 CurrentTagID Property
	33.4.9 CurrentTagProtocol Property
	33.4.10 CurrentTagUserData Property
	33.4.11 ProtocolMask Property
	33.4.12 ReadTimerInterval Property
	33.4.13 TagCount Property

	33.5 Methods (UML operations)
	33.5.1 disableTag Method
	33.5.2 firstTag Method
	33.5.3 lockTag Method
	33.5.4 nextTag Method
	33.5.5 previousTag Method
	33.5.6 readTags Method
	33.5.7 startReadTags Method
	33.5.8 stopReadTags Method
	33.5.9 writeTagData Method
	33.5.10 writeTagID Method

	33.6 Events (UML Interfaces)
	33.6.1 DataEvent
	33.6.2 DirectIOEvent
	33.6.3 ErrorEvent
	33.6.4 OutputCompleteEvent
	33.6.5 StatusUpdateEvent

	34 Scale
	34.1 General
	34.2 Summary
	34.3 General Information
	34.3.1 Capabilities

	34.4 Scale Class Diagram Updated in Release 1.14
	34.5 Scale Sequence Diagram Added in Release 1.7
	34.5.1 Model
	34.5.2 Device Sharing

	34.6 Properties (UML attributes)
	34.6.1 AsyncMode Property Added in Release 1.3
	34.6.2 CapDisplay Property
	34.6.3 CapDisplayText Property Added in Release 1.3
	34.6.4 CapFreezeValue Property Added in Release 1.14
	34.6.5 CapPriceCalcuating Property Added in Release 1.3
	34.6.6 CapReadLiveWeightWithTare Property Added in Release 1.14
	34.6.7 CapSetPriceCalculationMode Property Added in Release 1.14
	34.6.8 CapSetUnitPriceWithWeightUnit Property Added in Release 1.14
	34.6.9 CapSpecialTare Property Added in Release 1.14
	34.6.10 CapStatusUpdate Property Added in Release 1.9
	34.6.11 CapTarePriority Property Added in Release 1.14
	34.6.12 CapTareWeight Property Added in Release 1.3
	34.6.13 CapZeroScale Property Added in Release 1.3
	34.6.14 MaxDisplayTextChars Property Added in Release 1.3
	34.6.15 MaximumWeight Property
	34.6.16 MinimumWeight Property Added in Release 1.14
	34.6.17 SalesPrice Property Updated in Release 1.6
	34.6.18 ScaleLiveWeight Property Updated in Release 1.14
	34.6.19 StatusNotify Property Updated in Release 1.10
	34.6.20 TareWeight Property Updated in Release 1.14
	34.6.21 UnitPrice Property Updated in Release 1.14
	34.6.22 WeightUnit Property
	34.6.23 ZeroValid Property Added in Release 1.13

	34.7 Methods (UML operations)
	34.7.1 displayText Method Updated in Release 1.7
	34.7.2 doPriceCalculating Method Added in Release 1.14
	34.7.3 freezeValue Method Added in Release 1.14
	34.7.4 readLiveWeightWithTare Method Added in Release 1.14
	34.7.5 readWeight Method
	34.7.6 setPriceCalculationMode Method Added in Release 1.14
	34.7.7 setSpecialTare Method Added in Release 1.14
	34.7.8 setTarePriority Method Added in Release 1.14
	34.7.9 setUnitPriceWithWeightUnit Method Added in Release 1.14
	34.7.10 zeroScale Method Updated in Release 1.10

	34.8 Events (UML interfaces)
	34.8.1 DataEvent Added in Release 1.3
	34.8.2 DirectIOEvent
	34.8.3 ErrorEvent Updated in Release 1.10
	34.8.4 StatusUpdateEvent Updated in Release 1.10

	35 Scanner (Bar Code Reader)
	35.1 General
	35.2 Summary
	35.3 General Information
	35.3.1 Capabilities
	35.3.2 Scanner Class Diagram
	35.3.3 Scanner Sequence Diagram Updated in Release 1.8
	35.3.4 Model
	35.3.5 Device Sharing

	35.4 Properties (UML attributes)
	35.4.1 DecodeData Property
	35.4.2 ScanData Property Updated in Release 1.7
	35.4.3 ScanDataLabel Property Updated in Release 1.10
	35.4.4 ScanDataType Property Updated in Release 1.15.1

	35.5 Events (UML interfaces)
	35.5.1 DataEvent
	35.5.2 DirectIOEvent
	35.5.3 ErrorEvent Updated in Release 1.10
	35.5.4 StatusUpdateEvent

	36 Signature Capture
	36.1 General
	36.2 Summary
	36.3 General Information
	36.3.1 Capabilities
	36.3.2 Signature Capture Class Diagram
	36.3.3 Signature Capture Sequence Diagram Updated in Release 1.8
	36.3.4 Model
	36.3.5 Device Sharing

	36.4 Properties (UML attributes)
	36.4.1 CapDisplay Property
	36.4.2 CapRealTimeData Property
	36.4.3 CapUserTerminated Property
	36.4.4 DeviceEnabled Property (Common)
	36.4.5 MaximumX Property
	36.4.6 MaximumY Property
	36.4.7 PointArray Property Updated in Release 1.7
	36.4.8 RawData Property Updated in Release 1.7
	36.4.9 RealTimeDataEnabled Property

	36.5 Methods (UML operations)
	36.5.1 beginCapture Method
	36.5.2 endCapture Method

	36.6 Events (UML interfaces)
	36.6.1 DataEvent
	36.6.2 DirectIOEvent
	36.6.3 ErrorEvent Updated in Release 1.11
	36.6.4 StatusUpdateEvent

	37 Smart Card Reader/Writer
	37.1 General
	37.2 Summary
	37.3 General Information
	37.3.1 Capabilities

	37.4 Smart Card Reader / Writer Class Diagram
	37.5 Model
	37.6 Card Insertion Diagram
	37.7 Device Sharing
	37.8 Data Transfer Modes
	37.9 Smart Card Reader / Writer Sequence Diagram
	37.10 Smart Card Reader / Writer State Diagram
	37.11 Properties (UML Attributes)
	37.11.1 CapCardErrorDetection Property
	37.11.2 CapInterfaceMode Property
	37.11.3 CapIsoEmvMode Property
	37.11.4 CapSCPresentSensor Property
	37.11.5 CapSCSlots Property
	37.11.6 CapTransmissionProtocol Property
	37.11.7 InterfaceMode Property
	37.11.8 IsoEmvMode Property
	37.11.9 SCPresentSensor Property
	37.11.10 SCSlot Property
	37.11.11 TransactionInProgress Property
	37.11.12 TransmissionProtocol Property

	37.12 Methods (UML operations)
	37.12.1 beginInsertion Method
	37.12.2 beginRemoval Method
	37.12.3 endInsertion Method
	37.12.4 endRemoval Method
	37.12.5 readData Method Updated in Release 1.10
	37.12.6 writeData Method

	37.13 Events (UML Interfaces)
	37.13.1 DataEvent Updated in Release 1.10
	37.13.2 DirectIOEvent
	37.13.3 ErrorEvent Updated in Release 1.10
	37.13.4 OutputCompleteEvent
	37.13.5 StatusUpdateEvent

	38 Tone Indicator
	38.1 General
	38.2 Summary
	38.3 General Information
	38.3.1 Capabilities
	38.3.2 Tone Indicator Class Diagram
	38.3.3 Tone Indicator Sequence Diagram Added in Release 1.7
	38.3.4 Model Updated in Release 1.13
	38.3.5 Device Sharing

	38.4 Properties (UML attributes)
	38.4.1 AsyncMode Property Updated in Release 1.6
	38.4.2 CapMelody Property Added in Release 1.13
	38.4.3 CapPitch Property
	38.4.4 CapVolume Property
	38.4.5 InterToneWait Property Updated in Release 1.6
	38.4.6 MelodyType Property Updated in Release 1.15.1
	38.4.7 MelodyVolume Property Updated in Release 1.15.1
	38.4.8 Tone1Duration Property Updated in Release 1.6
	38.4.9 Tone1Pitch Property Updated in Release 1.6
	38.4.10 Tone1Volume Property Updated in Release 1.6
	38.4.11 Tone2Duration Property Updated in Release 1.6
	38.4.12 Tone2Pitch Property Updated in Release 1.6
	38.4.13 Tone2Volume Property Updated in Release 1.6

	38.5 Methods (UML operations)
	38.5.1 sound Method Updated in Release 1.13
	38.5.2 soundImmediate Method

	38.6 Events (UML interfaces)
	38.6.1 DirectIOEvent
	38.6.2 ErrorEvent Updated in Release 1.9
	38.6.3 OutputCompleteEvent
	38.6.4 StatusUpdateEvent

	Annex A
	OLE for Retail POS - OPOS Implementation Reference
	A.1 What is OLE for Retail POS?
	A.2 Who Should Read This Section
	A.3 General OLE for Retail POS Control Model
	A.4 OPOS Definitions
	A.4.1 Device Class
	A.4.2 Control Object or CO
	A.4.3 Service Object or SO
	A.4.4 OPOS Control or Control

	A.5 How an Application Uses an OPOS Control
	A.6 When Methods and Properties May Be Accessed
	A.6.1 Methods
	A.6.2 Properties

	A.7 Status, Result Code, and State Model Updated in Release 1.11
	A.7.1 Status Model
	A.7.2 Result Code Model
	A.7.3 State Model Updated in Release 1.7

	A.8 Device Sharing Model
	A.8.1 Exclusive-Use Devices
	A.8.2 Sharable Devices

	A.9 Events Updated in Release 1.12
	A.10 OPOS Event Registration Sequence Diagram Added in Release 1.7
	A.11 Input Model Updated in Release 1.12
	A.12 Output Model
	A.13 Device Power Reporting Model Added in OPOS Release 1.3, Updated in Release 1.8
	A.13.1 Model
	A.13.2 Properties
	A.13.3 Power Reporting Requirements for DeviceEnabled

	A.14 Device Information Reporting Model Added in Release 1.8
	A.14.1 Statistics Reporting Properties and Methods

	A.15 Update Firmware Device Model Added in Release 1.9
	A.16 OPOS Component Descriptions
	A.17 Section 1: OPOS Data Types Updated in Release 1.12
	A.18 Section 2: OPOS Interface Descriptions
	A.19 OPOS Common Properties, Methods, and Events
	A.20 Common Properties Updated in Release 1.9
	A.21 Common Methods Updated in Release 1.10
	A.22 OPOS Programmatic Names Updated in Release 1.12
	A.23 Properties
	A.24 Methods
	A.25 Events
	A.26 Peripheral Interfaces
	A.27 OPOS: Cash Drawer
	A.28 OPOS: MICR
	A.29 Section 3: OPOS Registry Usage Updated in Release 1.12
	A.30 Section 4: OPOS Application Header Files Updated in Release 1.12
	A.31 Section 5: Technical Details
	A.31.1 System Strings (BSTR)
	A.31.2 System Strings and Binary Data
	A.31.3 Mapping of CharacterSet Updated in Release 1.10

	A.32 Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice
	A.33 Section 7: OPOS APG Change History 　　　　　　　　　　　　　　　　　　　　　　　　　　　　 　　　 Release 1.01
	A.34 Section 8: OPOS Control Programmer’s Guide
	A.34.1 Who Should Read This Section
	A.34.2 General OLE for Retail POS Control Model
	A.34.3 OPOS Definitions
	A.34.4 Interface Overview
	A.34.5 Methods
	A.34.6 Properties
	A.34.7 Events
	A.34.8 Control Object Responsibilities
	A.34.9 Methods
	A.34.10 Properties
	A.34.11 Events
	A.34.12 Service Object Responsibilities and Implementation
	A.34.13 Properties
	A.34.14 Events
	A.34.15 OPOS CPG Change History

	Annex B
	Java for Retail POS - JavaPOS Implementation Reference
	B.1 What is Java for Retail POS?
	B.2 Benefits
	B.3 Dependencies
	B.4 Relationship to OPOS
	B.5 Who Should Read This Section
	B.6 Appendix Overview
	B.7 Architectural Overview
	B.8 Architectural Components
	B.8.1 Additional Layers and APIs

	B.9 Device Behavior Models
	B.10 Introduction to Properties, Methods, and Events
	B.11 Device Initialization and Finalization
	B.11.1 Initialization
	B.11.2 Finalization
	B.11.3 Summary

	B.12 Device Sharing Model
	B.12.1 Exclusive-Use Devices
	B.12.2 Sharable Devices

	B.13 Data Types Updated in Release 1.11
	B.14 Exceptions
	B.14.1 ErrorCode Updated in Release 1.11
	B.14.2 ErrorCodeExtended

	B.15 Events Updated in Release 1.12
	B.15.1 Registering for Events
	B.15.2 Event Delivery

	B.16 JavaPOS Event Registration Sequence Diagram Added in Release 1.7
	B.17 Device Input Model
	B.18 Device Output Models
	B.18.1 Synchronous Output
	B.18.2 Asynchronous Output Updated in Release 1.12

	B.19 Device Power Reporting Model Added in JavaPOS Release 1.3, Updated in Release 1.8.
	B.19.1 Model
	B.19.2 Properties
	B.19.3 Power Reporting Requirements for DeviceEnabled

	B.20 Device Information Reporting Model Added in Release 1.8.
	B.20.1 Statistics Reporting Properties and Methods

	B.21 Update Firmware Device Model Added in Release 1.9
	B.22 Device States
	B.23 Threads
	B.24 Version Handling
	B.25 Classes and Interfaces
	B.26 Synopsis
	B.26.1 Application
	B.26.2 Device Control
	B.26.3 Device Service
	B.26.4 Helper Classes

	B.27 Sample Class and Interface Hierarchies
	B.27.1 Application Sample
	B.27.2 Device Control Sample
	B.27.3 Device Service Sample

	B.28 Sample Application Code
	B.29 Package Structure Updated in Release 1.13
	B.30 Device Controls
	B.31 Device Control Responsibilities
	B.32 Device Service Management
	B.32.1 jpos.config/loader (JCL) and JavaPOS Entry Registry (JER)
	B.32.2 jpos.config/loader (JCL) Characteristics

	B.33 Property and Method Forwarding
	B.34 Event Handling
	B.34.1 Event Listeners and Event Delivery
	B.34.2 Event Callbacks

	B.35 Device Control Version Handling
	B.36 Device Services
	B.37 Device Service Responsibilities
	B.38 Property and Method Processing
	B.39 Event Generation
	B.40 Physical Device Access
	B.41 API Mapping Rules
	B.42 JavaPOS Component Descriptions
	B.43 Section 1: JavaPOS Data Types
	B.44 Section 2: JavaPOS Interface Descriptions
	B.45 JavaPOS Common Properties, Methods, and Events
	B.45.1 Common Methods Updated in Release 1.10
	B.45.2 JavaPOS Class Names Updated in Version 1.12

	B.46 Properties
	B.47 Methods
	B.48 Events
	B.49 Peripheral Interfaces
	B.50 Section 3: Technical Details - OPOS and JavaPOS
	B.51 OPOS to JavaPOS - API Mapping Rules
	B.52 API Deviations
	B.53 Mapping of CharacterSet Updated in Release 1.10
	B.54 Handling Binary Data inside Strings Added in Release 1.12
	B.55 Section 4: JavaPOS Change History

	Annex C
	POS for .NET Implementation Reference
	C.1 What is POS for .NET? Updated in Release 1.15
	C.2 Who Should Read This Section Updated in Release 1.15
	C.3 Overview of POS for .NET
	C.4 POS for .NET Definitions
	C.4.1 Device Class
	C.4.2 Service Object or SO

	C.5 Key POS for .NET Features
	C.6 Key Programming Construct Differences from OPOS
	C.6.1 Naming Conventions
	C.6.2 Structures
	C.6.3 Complete Class Libraries Provided

	C.7 Key Parameter Differences
	C.8 Key Property Signature Differences
	C.9 PosExplorer API
	C.9.1 PosExplorer Properties
	C.9.2 PosExplorer Methods
	C.9.3 PosExplorer Events
	C.9.4 Global Configuration

	C.10 Service Object Registry
	C.11 Consuming Service Objects
	C.11.1 OPOS
	C.11.2 POS for .NET

	C.12 Writing Service Objects
	C.12.1 POS for .NET

	C.13 Status, State Model, and Exceptions
	C.14 Device Sharing Model
	C.15 Events Updated in Release 1.12
	C.16 Input Model Updated in Release 1.12
	C.17 Output Model
	C.17.1 Synchronous Output
	C.17.2 Asynchronous Output Updated in Release 1.12

	C.18 Device Power Reporting Model
	C.18.1 Model

	C.19 Power Reporting Properties
	C.19.1 Power Reporting Requirements for DeviceEnabled

	C.20 Device Information Reporting Model
	C.20.1 Statistics Reporting Properties and Methods

	C.21 POS for .NET Component Descriptions
	C.21.1 POS for .NET Data Types Updated in Release 1.11
	C.21.2 POS for .NET Common Properties, Methods, Events, Statistics, and Constants

	C.22 Common Properties
	C.23 Common Methods
	C.24 Common Events
	C.25 POS for .NET vs. UnifiedPOS Members
	C.26 Interim Procedure Available For Legacy OPOS Services... Shim Code Usage Updated in Release 1.11
	C.27 Architecture Structures Added in Release 1.11
	C.28 Method of Implementation
	C.29 Method of Administration
	C.29.1 Shim Code File Names

	Annex D
	XMLPOS - XML POS Mapping Reference
	D.1 Overview
	D.1.1 XMLPOS requirements
	D.1.2 Out of Scope

	D.2 Referenced Documents
	D.3 Taxonomy for Conversion from UnifiedPOS to XML Updated in Version 1.14.1
	D.4 Changes to XMLPOS Updated in Version 1.13
	D.5 XMLPOS Architecture Overview Updated in Release 1.14
	D.5.1 UnifiedPOS XML Requirements
	D.5.2 UnifiedPOS Synchronous XML Communications
	D.5.3 UnifiedPOS Asynchronous XML Communications

	D.6 UnifiedPOS XML Errors
	D.6.1 Device Error Codes and Message Severity Codes
	D.6.2 Standard Error Codes to Severity Codes
	D.6.3 Standard Status Codes to Severity Codes
	D.6.4 UnifiedPOS Synchronous XML Errors
	D.6.5 UnifiedPOS Asynchronous XML Errors

	D.7 XMLPOS Common Events
	D.7.1 UnifiedPOS Synchronous XML Events
	D.7.2 UnifiedPOS Asynchronous XML Events

	D.8 XMLPOS Common Properties
	D.9 XMLPOS Common Data
	D.10 ARTS Common Data
	D.11 UnifiedPOS Devices
	D.11.1 Belt
	D.11.2 Bill Acceptor
	D.11.3 Bill Dispenser
	D.11.4 Biometrics
	D.11.5 Bump Bar
	D.11.6 Cash Changer
	D.11.7 Cash Drawer
	D.11.8 CAT
	D.11.9 Check Scanner
	D.11.10 Coin Acceptor
	D.11.11 Coin Dispenser
	D.11.12 Electronic Journal
	D.11.13 Electronic Value Reader / Writer
	D.11.14 Fiscal Printer
	D.11.15 Gate
	D.11.16 Hard Totals
	D.11.17 Image Scanner
	D.11.18 Item Dispenser
	D.11.19 Keylock
	D.11.20 Lights
	D.11.21 Line Display
	D.11.22 MICR
	D.11.23 Motion Sensor
	D.11.24 MSR
	D.11.25 PIN Pad
	D.11.26 Point Card Reader/Writer
	D.11.27 POS Keyboard
	D.11.28 POS Power
	D.11.29 POS Printer
	D.11.30 Remote Order Display
	D.11.31 RFID Scanner
	D.11.32 Scale
	D.11.33 Scanner Device
	D.11.34 Signature Capture
	D.11.35 Smart Card Reader / Writer
	D.11.36 Tone Indicator

	D.12 NAFEM Protocol
	D.12.1 Administration Enterprise Group
	D.12.2 Asset Management Enterprise Group
	D.12.3 Bulk Transfer Enterprise Group
	D.12.4 Clock Calendar Enterprise Group
	D.12.5 Inventory Management Enterprise Group
	D.12.6 Maintenance Enterprise Group
	D.12.7 Monitor Enterprise Group
	D.12.8 Notification Enterprise Group
	D.12.9 Security Enterprise Group
	D.12.10 Utility Enterprise Group

	D.13 Distributed Files
	D.14 Glossary

	Annex E
	Change History
	E.1 Release Version 1.4
	E.2 Release Version 1.5
	E.3 Release Version 1.6
	E.4 Release Version 1.7
	E.5 Release Version 1.8
	E.6 Release Version 1.9
	E.7 Release Version 1.10
	E.8 Release Version 1.11
	E.9 Release Version 1.12
	E.10 Release Version 1.13
	E.11 Release Version 1.14
	E.12 Release Version 1.14.1
	E.13 Release Version 1.15
	E.14 Release Version 1.15.1

	Annex F
	Additional Software References
	F.1 General
	F.2 UML References

	Annex G
	Additional Hardware References
	G.1 General
	G.2 USB PlusPower Connector
	G.2.1 Overview
	G.2.2 Host Side Connector
	G.2.3 Cable
	G.2.4 Peripheral Side Connection
	G.2.5 Web Location References - USB connector EIA approval
	G.2.6 Reading Material References
	G.2.7 ARTS Standard Endorsement

	Annex H
	Deprecation History
	H.1 General

	Annex I
	Systems Management Information
	I.1 What is Systems Management?
	I.2 How is UnifiedPOS involved in Systems Management?
	I.3 Who Should Read This Section
	I.4 UnifiedPOS Device Information Reporting Model
	I.4.1 CIM Structure

	I.5 Architectural Overview
	I.5.1 Exclusive Use
	I.5.2 Multiple Instances
	I.5.3 Limited Lifetime
	I.5.4 Solution Creation

	I.6 Utilized CIM Data Types Updated in Release 1.13
	I.7 Common Properties, Methods, and Events Updated in Release 1.14
	I.8 Common Methods
	I.9 Properties Updated in Release 1.13
	I.10 Peripheral Interfaces
	I.10.1 Belt Updated in Release 1.13
	I.10.2 Bill Acceptor Updated in Release 1.13
	I.10.3 Bill Dispenser Updated in Release 1.13
	I.10.4 Biometrics Updated in Release 1.13
	I.10.5 Bump Bar Updated in Release 1.13
	I.10.6 Cash Changer Updated in Release 1.13
	I.10.7 Cash Drawer Updated in Release 1.13
	I.10.8 Credit Authorization Terminal Updated in Release 1.13
	I.10.9 Check Scanner Updated in Release 1.13
	I.10.10 Coin Acceptor Updated in Release 1.13
	I.10.11 Coin Dispenser Updated in Release 1.13
	I.10.12 Electronic Journal Updated in Release 1.13
	I.10.13 Electronic Value Reader/Writer Updated in Release 1.13
	I.10.14 Fiscal Printer Updated in Release 1.13
	I.10.15 Gate Updated in Release 1.13
	I.10.16 Hard Totals Updated in Release 1.13
	I.10.17 Image Scanner Updated in Release 1.13
	I.10.18 Item Dispenser Updated in Release 1.13
	I.10.19 Keylock Updated in Release 1.13
	I.10.20 Lights Updated in Release 1.13
	I.10.21 Line Display Updated in Release 1.13
	I.10.22 MICR Updated in Release 1.13
	I.10.23 Motion Sensor Updated in Release 1.13
	I.10.24 MSR Updated in Release 1.13
	I.10.25 PINPad Updated in Release 1.13
	I.10.26 Point Card Reader/Writer Updated in Release 1.13
	I.10.27 POS Keyboard Updated in Release 1.13
	I.10.28 POS Power Updated in Release 1.13
	I.10.29 POS Printer Updated in Release 1.13
	I.10.30 Remote Order Display Updated in Release 1.13
	I.10.31 RFID Scanner Updated in Release 1.13
	I.10.32 Scale Updated in Release 1.13
	I.10.33 Scanner Updated in Release 1.13
	I.10.34 Signature Capture Updated in Release 1.13
	I.10.35 Smart Card Reader/Writer Updated in Release 1.13
	I.10.36 Tone Indicator Updated in Release 1.13

	I.11 Technical Details
	I.11.1 MOF Files

	Annex J
	Device Statistics
	J.1 General
	J.2 Device Category Names
	J.2.1 Common Statistics for All Device Categories
	J.2.2 XML definitions for Biometrics Device Statistics
	J.2.3 XML definitions for BumpBar Device Statistics
	J.2.4 XML definitions for CashDrawer Device Statistics
	J.2.5 XML definitions for CheckScanner Device Statistics
	J.2.6 XML definitions for ElectronicJournal Device Statistics
	J.2.7 XML definitions for FiscalPrinter Device Statistics
	J.2.8 XML definitions for ImageScanner Device Statistics
	J.2.9 XML definitions for Keylock Device Statistics
	J.2.10 XML definitions for LineDisplay Device Statistics
	J.2.11 XML definitions for MICR Device Statistics
	J.2.12 XML definitions for MotionSensor Device Statistics
	J.2.13 XML definitions for MSR Device Statistics
	J.2.14 XML definitions for PINPad Device Statistics
	J.2.15 XML definitions for POSKeyboard Device Statistics
	J.2.16 XML definitions for POSPrinter Device Statistics
	J.2.17 XML definitions for RFIDScanner Device Statistics
	J.2.18 XML definitions for Scale Device Statistics
	J.2.19 XML definitions for Scanner Device Statistics
	J.2.20 XML definitions for SignatureCapture Device Statistics
	J.2.21 XML definitions for ToneIndicator Device Statistics

