An OMG® Unified POS Retail Peripheral Architecture Publication

OMG

Obiject
Management
Group™

Sept. 20 2024

Unified POS Retail Peripheral Architecture

Version 1.15.1 Beta1

OMG Document Number: dtc/24-09-12
Standard document URL: https://www.omg.org/spec/UPOS/

Normative Machine Readable Files:

UnifiedPOS XML Schema Files: dtc/24-08-40

Copyright © 2019-2024 Object Management Group

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of
this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LTABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

Trademarks

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this International Standard, but may not claim compliance or conformance with this International
Standard. In the event that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this International Standard may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page https://www.omg.org, under Documents, Report a Bug/Issue (https://issues.omg.org/issues/create-new-issue).

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http:/www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PDF format, may be obtained
from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
(https://issues.omg.org/issues/create-new-issue).

Unified POS, v1.15.1 Beta1

UnifiedPOS Technical Committee Members

Bizerba GmbH & Co. KG
Datalogic Scanning, Inc.
Epson America, Inc.
Fujitsu Frontech Limited
IBM Corporation
Microsoft Corporation
NCR Corporation
OPOS-Japan

Seiko Epson Corporation
Sorimachi Giken CO, LTD

Star Micronics, CO. LTD

Toshiba Global Commerce Solutions, Inc.

Wincor Nixdorf International GmbH.

Unified POS, v1.15.1 Beta1

UPOS Table of Contents

1 Preface ..., XVii
1 Introduction and Architectureccooiiiii i, 1-1
1.1 What is Unified POS? ... 1-1
1.2 CONFOIMANCEooeeeiiieeeee e e e e 1-5
1.3 Architectural OVErviEWooouuiiiiiiiie e 1-6
2 Common Properties, Methods, and Events 2-1
2.1 GENEIAl ..o 2-1
S T¥ | 0] o= oY 2-1
2.3 General Informationcccoooiii i 2-3
2.4 Properties (UML attributes)cccoovviiieiiiiiiiiicceis e 2-5
2.5 Methods (UML operations)cccoeeveiiiiiiiieiiicee e 2-15
2.6 Events (UML interfaces)uuueeeiiiiiiiiee e 2-26
3 Bell e, 3-1
3.1 GENEIAL .o 3-1
I 1 U 10 0] 0= S 3-1
3.3 Belt Class Diagramuuiiiieiiiiiiee e 3-5
3.4 Belt Sequence Diagramcoooiiiiiiiiiiiii e 3-6
3.5 Properties (UML attributes)ccoooeiiiiiiiii e 3-9
3.6 Methods (UML 0perations)ceeieeeeeeiiieieiieeeieeee e e e e ee e e e eeeeeananees 3-17
3.7 Events (UML interfaces)uuuuuiiiinieii e 3-20
4 Bill ACCEPION ..o 4-1
4.1 GENEIAl ..o 4-1
S U o1 0 = YU SRP 4-1
4.3 General Informationcccoooiiiii i 4-4

UPOS, v1.15.1 Beta1 i

4.4 Bill Acceptor Class Diagram.........couuueeeiiiiiineeeeeeeeeeeeisesne e 4-5

4.5 Properties (UML attributes)oooviuimiiiiiii e 4-9
4.6 Method (UML 0perations)ccceeeieieieieiniiiieiee e e 4-14
4.7 Events (UML interfaces)oooeiiiiiiiiiiiiiii e 4-19
O Bill DISPENSEr ... 5-1
.1 GENEIAl ... 5-1
5.2 SUMMAIY et e e e e e e e e e e e e e e e e e e e annan s 5-1
5.3 General INnformationo.vuiiiiiiiii s 5-4
5.4 Properties (UML attributes) ... 5-9
5.5 Methods (UML operations)ccccevieieeeeeieeeeiiiiiiisses e e e e eeeeeeeeeeaennens 5-14
5.6 Events (UML interfaces)oeeeiiiiiiiiiiiiieiciee e 5-17
B BIOMELriCS ..oeeieeeee e 6-1
6.1 GENEIAl ..o 6-1
5.2 SUMMAIY ... e e e et e e e e e e e e e e e e eaaan e e e e eees 6-1
6.3 General Information ... 6-5
6.4 Properties (UML AribUtes)coooeiiiiiiii e 6-14
6.5 Events (UML INterfaces)cccooveeeiiiiiiieeeecceee e 6-28
7 BUMP BAr ..o 7-1
4% B C 1= 1= - | P 7-1
7.2 SUMMANY i e e 7-1
7.3 General Informationccoooiiiiii i 7-4
7.4 Properties (UML attributes)cccooovviiiiiiiiicccees e 7-9
7.5 Methods (UML 0perations)cccceeeeieeeeiieiiiiiiiiicaes e 7-14
7.6 Events (UML IiNterfaces)eeeeeiiiiiiiei e 7-18
8 Cash Changer ..., 8-1
8.1 GENEIAI ..o 8-1

i UPOS, v1.15.1 Beta1

8.2 SUMMANY ettt e e et e e e et e e e e e e e e e e e e e e annnn s 8-1

8.3 General INnformationooooiiiiiiiiii e 8-5
8.4 Properties (UML attributes)ccoooviiiiiiiiiiii e 8-13
8.5 Methods (UML operations)ccooeeeiiiiiiiiiieieee e 8-26
8.6 Events (UML interfaces)uuuuuiiiiiiiiiiiiii e 8-32
O Cash Drawer ... 9-1
S B 1Y 1= = | PRSI 9-1
S IS U 10 0] 0= S 9-1
9.3 General INnformationooooiiiiiiiii e 9-4
9.4 Properties (UML attributes)cccoooiiiiiiiiiii e 9-7
9.5 Methods (UML operations)ooiiiiiiiiiiii i e 9-9
9.6 Events (UML interfaces)uuuuueiiiiiiiiiiiieiie e 9-10
10 CAT - Credit Authorization Terminal 10-1
O B 7= o =T | U UUUPPUPPP 10-1
T2 ¥ o1 = oY 10-1
10.3 General INformationcccooiiiiiiiii e 10-5
10.4 Properties (UML attributes) ..., 10-16
10.5 Methods (UML operations)cccoovvieiiiiiiiiiiiiiee e 10-35
10.6 Events (UML interfaces)ccceevveiiiiiiiiiiiiiiii e, 10-45
11 CheCKk Scanner ..., 11-1
I O B 7= o T | PP 11-1
(I U .01 = Y 11-1
11.3 General INformationcccooviiiiiii e 11-5
11.4 Properties (UML attributes) ..., 11-12
11.5 Methods (UML operations)c.cooovviiiiiiiiiiiiie e 11-26
11.6 Events (UML interfaces)ccceevvineiiiiiiiiiiei e, 11-35
12 COIN ACCEPLON ..oeeeeeeeeeeeeeee e 12-1
2 B 1= o T | U UURPPUPSP 12-1

UPOS, v1.15.1 Beta1 iiii

12.2 SUMMAIY ..eiiie e eeee et e e e e e e e e e eeeee e e e e e e e e e e eeeeeseeeennnnn s 12-1

12.3 General Information ..o 12-5
12.4 Properties (UML attributes)coooviieiiiiiiiiiiiiieeeeeeeee e 12-10
12.5 Methods (UML operations)ccooeiiiiiiiiiiiiiiiie e 12-15
12.6 Events (UML interfaces)cccoeeeeiiieiieiicccceeeee e 12-19
13 CoiN DISPENSEr ..ouneieeiie e 13-1
13.1 GENEIAl ... 13-1
13.2 SUMIMANY ettt 13-1
13.3 General Information ..o 13-4
13.4 Properties (UML attributes)oovvveeeiiiiiiiiii e 13-9
13.5 Methods (UML operations)ccooiiiiiiiiiiiiiiiiiee e 13-11
13.6 EVENES oo 13-13
14 Electronic Journalcccoooiiiiiiiii e, 14-1
(R B C 1= =T = P 14-1
2 101 o g =1 oYU 14-1
14.3 General Informationoeiiiiiiii 14-5
14.4 Properties (UML AbULES) ...cooeeeeeeeeeee e 14-12
14.5 Methods (UML operations)ccooiiiiiiiiiiiiiiiiin e 14-19
14.6 Events (UML interfaces)cccooeveeieiiieeiiicceeeeee e 14-28
15 Electronic Value Reader/Writercccoovvviiiiiiinennnn.n. 15-1
15.1 GENEIAl ... 15-1
15.2 SUMMAIY ..ooiiii e e e e e e ee e e e e e e e e e e e e e e aeeeennnnn s 15-1
15.3 General Informationooiiiiiiii 15-8
15.4 Properties (UML attributes)oooovvieiiiiiiiiiiii e 15-35
15.5 Methods (UML operations)ccooiiieiiiiiiiiiiiiee e 15-68
15.6 Events (UML interfaces)ccooeveeeeieiieiiiicceeeeee e 15-108

UPOS, v1.15.1 Beta1

16 FiISCAl Printer ..ot 16-1

16.1 GENEIAl ..o 16-1
16.2 SUMMAIY .ot e e e et e e e e e e e e e e e e eeenna e e e 16-1
16.3 General Informationccoooiiiiiii 16-5
16.4 Properties (UML attributes)ccccoeeeeiiiiiiiiiieccee e, 16-23
16.5 Methods (UML operations)cccooeeiiiiiiiiiiiice e 16-59
16.6 EVENES oot e 16-143
17 GaAle e 17-1
171 GENEIAl ..o e e 17-1
A 1U .01 0= oY 17-1
17.3 General INformation ..o 17-4
17.4 Properties (UML attributes)cccoooeviiiiiiiiiiicie e 17-8
17.5 Methods (UML operations)ccooovveviiiiiiiieeec e 17-9
17.6 Events (UML interfaces)cceeeeeeeieii i 17-10
18 Hard Totalscoovvniiei e, 18-1
18.1 GENEIAl ..o e 18-1
18.2 SUMMAIY .o e e e e e e e e e e e eeenn e e e 18-1
18.3 General INformationccooiiiiiiiii 18-5
18.4 Properties (UML attributes)ccceeeeeeiiiiiiiiieccee e, 18-10
18.5 Methods (UML operations)cccooeviiiiiiiiiiiiiiee e 18-12
18.6 Events (UML interfaces)cceeeeiiiiiieiiiiieeeeeeeie e, 18-22
19 Image SCanNer ..., 19-1
191 GENEIAl ..o e 19-1
19.2 SUMMAIY .ottt e e e e e e e e e e e eanan e e e 19-1
19.3 General INformation ..o 19-5
19.4 Properties (UML attributes)ccoeeeeeiiiiiiiiiiecicee e, 19-13
19.5 Methods (UML operations)cccoovviiiiiiiiiiiice e 19-22
19.6 Events (UML interfaces)ccceeeeiiieieeiieieeeeeeei e, 19-23

UPOS, v1.15.1 Beta1 \'

20 1tem DIiSPENSEr ..o, 20-1

20.1 GENEIAl ... 20-1
20.2 SUMMAIY ...oiieeiie et e e e e e e e e e e e e e e e e e aeraaa e e e 201
20.3 General Information.............oouuiiiiiiiiii 20-4
20.4 Properties (UML attributes)coooomiiiiiiii e 20-8
20.5 Methods (UML operations)ccoeuueiiiiiiiiiiiieeeeeeeee e 20-10
20.6 Events (UML interfaces)coooeeiiiiiiiiiieieiee e 20-2
21 KeYIOCK ..o, 21-1
211 GENEIAl ... 21-1
A I 181 =T U 21-1
21.3 General Information ... 214
21.4 Properties (UML attributes)coooomiiiiiii e 21-7
21.5 Methods (UML operations)ccoeeueeeiiiiiiiiiiiie e 21-9
21.6 Events (UML interfaces)cooveeiviiiiii i 21-10
22 Lights oo 22-1
221 GENEIAl ... 22-1
22.2 SUMMAIY et ee e eeee et e e e e e e e e eeeeeaaaee e e e e e eeeeeeeeeaeeeennnnn i es 22-1
22.3 General Information ... 22-4
22.4 Properties (UML attributes)ooooimiiiiiii e 22-7
22.5 Methods (UML operations)ccoeeueeeiiiiiiiiiiiiie e 22-9
22.6 Events (UML interfaces)ccooveeiiiiiiii i 22-11
23 Line Display ...c.ovvviiiieei i 23-1

Vi

23.1 GENEIAl . .coee 23-1
23.2 Summary
23.3 General Information
23.4 Properties (UML attributes)ccooovmiiiiiiie e, 23-12
23.5 Methods (UML operations)

UPOS, v1.15.1 Beta1

23.6 Events (UML interfaces)ccceeeiiieeiiiiiiiiiii e, 23-52

24 MICR - Magnetic Ink Character Recognition Reader ...24-1

g B T U= o PP 24-1
24.2 SUMMAIY oottt eeeee ettt s e e e e e e e e e e e e eeeeeaaaaa e e e e e e aaaeeeeeesnnnnns 24-1
24.3 General Informationuuiiiiiiiii e 24-4
24 .4 Properties (UML attributes) ..., 24-11
24.5 Methods (UML operations)cccooveiiiiiiiiiiiiiie e 24-15
24.6 Events (UML interfaces)cceeeeeeiiiiiiiiiiiiiie e, 24-19
25 MOLtION SENSOIeeieiiei e 25-1
25.1 GENETAl ..o 25-1
25.2 SUMMACY ...iiieiii ettt e e et e e e e e e e e e e e e e e e e e e e anaanaeeee s 25-1
25.3 General INformationuuiiiiiiiii e 25-4
25.4 Properties (UML attributes)cooooeiiiiiiiiiiiiiiiii e 25-8
25.5 Methods (UML operations)cccoovviiiiiiiiiiiiiiie e 25-9
25.6 Events (UML interfaces)ceeeeieiiiiiiiiiiiieeeee e, 25-10
26 MSR - Magnetic Stripe Readerccccoeevviiiiiiiinnennnn. 26-1
26.1 GENEIAl ..o 26-1
26.2 SUMMACY ...iiiiiiiiieeee et e et e e e e aeaa e e e e e eeeeaaa e e e eeessnan e e aeeannnnaeees 26-1
26.3 General Informationuuiiiiiiiiii e 26-5
26.4 Properties (UML attributes) ..., 26-17
26.5 Methods (UML operations)..........ccccovvueeiieiiiiiiiie e 26-43
26.6 Events (UML interfaces)cceeeeieeiiiiiiiiiiiiee e, 26-49
27 PINPAd ... 27-1
271 GENEIAl ..ot 27-1
27.2 SUMMACY ...ttt e e ettt e e e et e e e e e e e e eaaa e e e eeesnnan e eeeeaennnaeee s 27-1
27.3 General Informationuiiiiiiiiii e 27-5
27.4 Properties (UML attributes)cooooeiiiiiiiiiiiiiiiee e, 27-11
27.5 Methods (UML operations)ccooovviiiiiiiiiiiiiie e 27-22

UPOS, v1.15.1 Beta1 Vii

27.6 Events (UML interfaces)cccoveeeeeiiiiiiiiiicieeee e 27-26

28 Point Card Reader/Writercoooeviiiiiiiiiii e, 28-1
28.1 GENEIAl ... 28-1
28.2 SUMMAIY ..euiiiieeeeeeeeeeeeee e e e e e e e e e eeeeeaaaaa e e e eaeaeeeeeeeaeenennnnn s 28-1
28.3 General Information ... 28-6
28.4 Properties (UML attributes)coooviiriiiiiiiiiiiii e 28-17
28.5 Methods (UML operations)cccoeuveeiiiiiiiiiiiie e 28-38
28.6 Events (UML Interfaces) ..., 28-46

29 POS Keyboardoouiiiiiiiieeeeee e 29-1
29.1 GENEIAl ... 29-1
29.2 SUMMAIY .euuiiieeeeeeeee et e e e e e e e e e eeeeeaanaa e e eeaeeeeeeeeeaeeeennnnn s 29-1
29.3 General Information ... 29-4
29.4 Properties (UML attributes)ccooovviiiiiiiiicciiee e 29-7
29.5 Events (UML IiNterfaces)cooooveieiiiiiiiiiiiiicieee e 29-9

30 POS POWETr ..., 30-1
L0 g B 1= 1T = | PP 30-1
30.2 SUMMAIY .ottt e e e ettt e e e e e e e e e eeeeesnnnens 30-1
30.3 General INnformationuuviiiiiiiiie e 30- 4
30.4 Properties (UML attributes) ..., 30-16
30.5 Methods (UML 0perations)cccceeeeeeeiiiieeieeeeiiiiiccee e e e eeeee e 30-23
30.6 Events (UML interfaces)cceeeeeieeiiiiiiiiiiee e, 30-27

31 POS Printer ..., 31-1
311 GENEIAl ..o 31-1
31.2 SUMMAIY .. e e e e e e e e eeaaa e e e 31-1
31.3 General Information ... 31-9
31.4 Properties (UML attributes) ... 31-33

viii UPOS, v1.15.1 Beta1

31.5 Methods (UML 0perations)ccceeeeieeiiiiiiiieiiiiiieeee e 31-87

31.6 Events (UML interfaces)cooovvuiiiiiiiiiiiie e, 31-125
32 Remote Order Displayccooeveviiiiiiiiiiiiieee e, 32-1
32.1 GENEIAl .ooeeiieeeeeee e 32-1
32.2 SUMMANY .eeeiiiiiiieee et e e e e e e e e e e e et e e e e e e aaaanes 32-1
32.3 General Informationc.ooveiiiiiii i 32-6
32.4 Properties (UML attributes)coooeviiiiiiiiiiiiie e 32-12
32.5 Methods (UML 0perations)cccoeeeeeeiiiiiiiieiiiiiieeeeee e 32-23
32.6 Events (UML interfaces)cccuiiiiiiiiiiiii e 32-40
33 RFID Scanner ... 33-1
331 GENEIAl ..oeeiiieeeeee e 33-1
33.2 SUMIMAIY eeeeeeiiiiaeee e e e e et e e ettt e e e e e e eeeeeeeeeaensa e eeeeeaaaeeeeeesnnnnns 33-1
33.3 General Informationccooveiiiiii i 33-5
33.4 Properties (UML Attributes)ooeeiiiiiiiiiee e, 33-13
33.5 Methods (UML 0perations)ccceeeeeeeeiiiiiiieiiiiiieeeee e 33-18
33.6 Events (UML Interfaces)coouuiiiiiiiiiiiii e 33-26
34 SCale ... 34-1
341 GENEIAl ...ceeeeeeeeee e 34-1
34.2 SUMMANY .eeeiiiiiieece ettt e e e e e e e e e e e e e e e e aaaan s 34-1
34.3 General Information............coooviiiiiiiiiie e 34-5
34.4 Scale Class Diagramccooouiiiii i 34-7
34.5 Scale Sequence Diagram.............oooieeeiiiiiiiiiiiiie e 34-8
34.6 Properties (UML attributes)coooeeiiiiniiiiiiiiie e, 34-10
34.7 Methods (UML 0perations)ccceeeeeeeiiiiiiiieiiiiieeee e 34-20
34.8 Events (UML interfaces)coooiiiiiiiiiiiiii e 34-33
35 Scanner (Bar Code Reader)ccccooveeviiiiiiiiiiieciie, 35-1
35.1 GENEIAl ..oeeeiieieee e 35-1
35.2 SUMIMANY et e e e e e e e e et eee e e e e e e eeeeeeeeeennnnens 35-1

UPOS, v1.15.1 Beta1 ix

35.3 General INnformation.........o.oeee e e 35-4

35.4 Properties (UML attributes) ... 35-8
35.5 Events (UML interfaces)cceeeeeeiiiiiiiiiieeeeece e, 35-15
36 Signature Captureccoeeeiiiiiii i, 36-1
36.1T GENEIAl ... 36-1
36.2 SUMMAIY eeeiiiiiiies e e e e e eeeeeee et e s e e e e e e e e e e eeeeeeeannsaa e eeeeeaaeeeeeeesnnnnns 36-1
36.3 General Information.............ooouuiiiiiiii 36-4
36.4 Properties (UML attributes)ccoooeieiiiiiiii e 36-9
36.5 Methods (UML 0perations)ccocoeeeeeiiiiiiieieeiiiiicceeee e 36-13
36.6 Events (UML interfaces)ccceeeveeiiiiiiiiieeeeeeie e, 36-15
37 Smart Card Reader/Writercccoovviiiiiiiiiiiieieeeeee, 37-1
7.1 GENEIAI ... 37-1
37.2 SUMMAIY oeeiieiiiieeeeeeeeeeeeeee et e e ae e e e e e eeeeeeeeeeannna e eeaeeaaeeeeeeesnnnnns 37-1
37.3 General Informationcooouiiiiiiii 37-4
37.4 Smart Card Reader / Writer Class Diagramccccceevvvvvveennnnene 37-5
7.5 MOUAEI ...t 37-6
37.6 Card Insertion Diagramccceiiiieeeeeiieie e 37-8
37.7 Device Sharingccooo i 37-9
37.8 Data Transfer MOdesoueeiiiiiiiiieeeeeeeeeee e 37-10
37.9 Smart Card Reader / Writer Sequence Diagramcc.......... 37-11
37.10 Smart Card Reader / Writer State Diagramccevvvvvnnnnnns 37-12
37.11 Properties (UML ALtributes) ..o 37-13
37.12 Methods (UML 0perations)ccccoeveeiiiieeiiiiiiiii e eeeeeeeeee e 37-19
37.13 Events (UML Interfaces)cccooeeiriiiiiiiiiiiiiii e 37-24
38 Tone INdicatorcoooeveiiiiii 38-1
38.1 GENEIAl ..o 38-1
38.2 SUMMAIY ..ttt e e ettt e e e e e e e e e e eeeeeennnens 38-1

X UPOS, v1.15.1 Beta1

38.3 General INformationo.o.ooniii e 38-4

38.4 Properties (UML attributes)ccooooviimiiiiiiie e, 38-8

38.5 Methods (UML 0perations)ccceeeeieeiieiiiiiiiiiiiieeeee e 38-13

38.6 Events (UML interfaces)........ccouuuuiiiiiiiiiiiiieeeeeee e 38-15
A OLE for Retail POS - OPOS Implementation Referenceccccccueennn.. A-1
B Java for Retail POS - JavaPOS Implementation Reference.......................... B-1
C POS for .NET Implementation Reference..........ccccceeiiieiiiiii e C-1
D XMLPOS - XML POS Mapping Referencecccooovviviiiiiiiiiiiiieeeeeeen D-1
E Change HiStOrYoo oo E-1
F Additional Software References ..o F-1
G Additional Hardware References.............cooiiiiiiiiiiiiiiiiiiii e G-1
H Deprecation HiStOrycoooiiniiii e e H-1
| Systems Managwement Information ... -1
J DeViCe StatiStICS ... J-1

UPOS, v1.15.1 Beta1 Xi

Xii UPOS, v1.15.1 Beta1

1

1.1

1.11

Introduction and Architecture

What is Unified POS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural specification for application
interfaces to point-of-service devices that are used in the retail environment. This standard is both operating
system independent and language neutral and defines:

« An architecture for application interface to retail devices.

« A set of retail device behaviors sufficient to support a range of POS solutions.
The UnifiedPOS standard will include:

« The UnifiedPOS Retail Peripheral Architecture overview.

« Text descriptions of the interface to the functions of the device.

« UML terminology and diagrams for each device category, to describe:

* Relationships between classes/interfaces and objects in the system.
« Basis for creating C++, Java, IDL, or other OO technology to implement the UML design.

« Operational characteristics and details for implementations which are compliant to the UnifiedPOS
architecture. These were added in the Appendices for UnifiedPOS starting in Version 1.6. As new
Implementations become available, additional Appendices will be added in future versions of the standard.

The UnifiedPOS standard will net include:
« Specific language API specifications.

» Complete software components. Hardware providers, software providers, or third-party providers develop and
distribute these components.

« Certification mechanism; this must be handled by individual language standard committees (such as the OLE for
Retail POS (OPOS), POS for .NET, and Java for Retail POS (JavaPOS) committees).

About This Documentation Updated in Release 1.12

Since the release of UnifiedPOS Version 1.4, the Retail Standards’ committees had been maintaining three
separate standard documents, OPOS, JavaPOS and UnifiedPOS. The architecture and device characteristics are
identical in each of these documents. The addition of new device categories and/or enhancements to existing
chapters required consultation and agreement on the technical content for the each of the separate standards.
However, in addition to that technical work, there is a heavy administrative burden in generating the correct
documentation for three different versions of the standard’s specification. That process was inherently error
prone in that the same changes had to be maintained in multiple documents. Confusion has resulted in cases
where differences have inadvertently appeared in the documentation.

In order to simplify the process and bring a higher quality of review to ongoing modifications of the
documentation, the UnifiedPOS standard committee made a change in the process for documenting its
requirements. Beginning with UnifiedPOS Version 1.6, only the UnifiedPOS document was updated and the
structure of the documentation was changed. The main body of the documentation includes the abstracted generic

Unified POS, v1.15.1 Beta1 1-1

description of all device categories plus additional general design and utilization guidelines. Specific reference
platform requirements are now found in the included annexes that outline the implementation information for
each of the specific existing implementations, such as OPOS, JavaPOS and POS For Dot Net. (Note: OPOS-J,
the POS Standards body from Japan, has and plans to continue to maintain a translated Japanese version of the
OPOS documentation for their developer community.)

The documentation is arranged in such a fashion that allows the new user to gather a general education about the
UnifiedPOS Standard by reading the “Introduction and Architecture” section. This section is designed to give an
overview of the material covered in the entire standard and provide an outline of the design features that must be
adhered to for a developer to implement the standard. For a first time reader, this section should be read and
understood, as it will make the remaining chapters and appendices more beneficial. For a familiar user, this
section may serve as a “fall-back™ reference for clarification of the requirements when developing a Device
Service or usage of the Device Services by an Application.

Chapter 2 outlines the Properties, Methods, and Events that are Common to all peripheral devices. It is important
to understand this section and make reference to it when questions arise on the common functionality that apply
to all device classes.

The following chapters define each of the POS peripheral devices that are covered in the standard. The specific
Properties, Methods, and Events that are peculiar to the peripheral are defined. Any additional helpful
information relevant to the POS peripheral are also included. As new POS peripherals are added a new chapter
will be added to describe the devices unique requirements.

Following the chapters describing the POS peripheral devices, annexes are included that outline specific details
on implementation dependencies for each of the supported Operating Systems and/or language specific
development platforms.

“Annex A” includes the definition, goals, and deliverables for OPOS. There are explanations for the input/output
and device sharing for Microsoft’s COM model for the operation of the interface. Event and error handling
unique to this implementation is described. It concludes with a version change history that guides the user in
understanding the evolution of the OPOS implementation of the standard.

“Annex B” includes the definition, goals, and deliverables for JavaPOS. There are explanations for the input/
output and device sharing for the Java model for the operation of the interface. Event and error handling unique
to this implementation is included. It also concludes with a version change history that is helpful to the user to
understand the evolution of the JavaPOS implementation requirements.

“Annex C” includes the definition, goals, and deliverables for POS for .NET. There are explanations for the
input/output and device sharing for Microsoft’s .NET model for the operation of the interface and the differences
from the OPOS COM architecture that affect implementation. Event and error handling unique to this
implementation are described. It also includes a version change history section and brief clarifications of the
design philosophy.

“Annex D” is included to provide information on the usage of XML for peripheral message mapping. Future
versions of the UnifiedPOS standard will evolve to a greater dependence upon XML as the command and
interoperability infrastructure of choice. There is increasing interest and focus on using XML for communicating
with peripheral devices. It opens up many new possibilities for creating Device Services that, when coupled with
Universal Plug and Play hardware connection technologies such as USB, will provide for true language and
operating system independence.

Unified POS, V1.15.1 Beta1

1.1.2

1.1.3

“Annex E” incorporates an overall Change History for the documentation. It is highly recommended that the
experienced user refer to this section as an aide for understanding the version to version documentation changes
as a resource to help in the updating of the device support and/or implementation changes necessary to the
software for efficient usage.

“Annex F” provides some additional software reference material that may prove helpful to the understanding of
the principals and documentation constructs that the UnifiedPOS standard incorporates. The developer is
encouraged to check this section as additional resource material will be added as the standard evolves from
version to version.

“Annex G” includes additional hardware reference material that is pertinent to the hardware design for
compliance to the UnifiedPOS standard. The USB Plus Power connector recommendations are outlined in this
section as well.

“Annex H” provides information on functionality and changes that are documented in the UnifiedPOS standard
in a version that will cause a previously defined function to be deprecated. While every attempt is made to
minimize the use of Deprecation, the reader is highly encouraged to review this section to ensure a firm
understanding of direction the standard is evolving.

“Annex I” includes the definition, goals, and deliverables for Systems Management. Appendix I is targeted at a
systems management solution developer who requires access to POS-specific device information. It is also
targeted to the system developer who will provide device information from within the Services he provided.

“Annex J” includes the definitions and deliverables for UnifiedPOS Device Statistics. This information was
previously issued in a separate document, but starting with v1.12, the device statistics appendix was added as an
appendix to the specification

Goals

The goals of UnifiedPOS are to provide:
« Common device architecture that is international and extends across vendors, platforms, and retail format.
« Standards for application to device interfaces in an operating system independent and language neutral manner.

* Reduced implementation costs for vendors to support multiple (for example, Windows/COM, Windows/.NET, and
Java) platforms because they share the same architecture. This should produce speed to market for innovation.

« An environment avoiding competition between standards while encouraging competition among implementations.
Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard committees (such as JavaPOS and
OLE for Retail POS (OPOS) technical committees) to advance the architecture into platform specific
documentation, API definitions and implementations.

The specific technical implementations require:
« Platform specific implementation references. (See Annexes A, B, C, & D.)

« Source files, including:

* Definition files. Various interface and class files described in the standard.

Unified POS, v1.15.1 Beta1 1-3

11.4

1.1.5

» Example files. These will include a set of sample Control classes, to illustrate the interface presented to an
application.

UnifiedPOS Relationship to Conforming Platform Mappings

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by the
JavaPOS, OPOS, and POS for .NET standards, in an operating system independent and language neutral manner.
The first release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as conformant platform mappings of
the UnifiedPOS specification. In UnifiedPOS Version 1.6, appendices were added in order to document specific
implementation details for each of these platforms. JavaPOS will be recognized as the only UnifiedPOS
conformant, operating system neutral, Java language mapping (See Annex B). OPOS will be recognized as the
only UnifiedPOS conformant language neutral COM mapping (See Annex A). POS for .NET will be recognized
as the only UnifiedPOS conformant language neutral .NET mapping (See Annex C). Future UnifiedPOS
mappings to platforms other than Java, COM, and .NET will be included as appendices to the UnifiedPOS
specification as they become available.

This acceptance of the existing standards is based on their close conformance to a common design model.
Historically, the OPOS standards provided device interfaces for Win32-based terminals using ActiveX
technologies. The OPOS standard was used as the starting point for JavaPOS, due to:

« Similar purposes. Both standards involved developing device interfaces for a segment of the software community.

* Reuse of device models. The majority of the OPOS documentation specifies the properties, methods, events, and
constants used to model device behavior. These behaviors are in large part independent of programming language.

* Reduced learning curve. Many application and hardware vendors are already familiar with using and
implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write their code in conformance with
one or both of the JavaPOS or OPOS standards. The content of the UnifiedPOS specification, however, along
with the appropriate annex, will constitute the definition of how an application can be developed to meet the
UnifiedPOS standard. The standards committees do not intend to release future versions of the specific OPOS
and JavaPOS documents after the Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET implementation, which similarly adheres to
this common approach for the access and control of POS peripherals.

Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will provide the language specific
mapping and Programmer’s Guides. However, the application developer who will use POS devices, the system
developer who will write POS device code, and the suppliers of POS devices for retail may be interested in the
device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the following:
* General characteristics of POS peripheral devices.
* UnifiedPOS terminology and architecture.
* UML for reading the design.

Unified POS, V1.15.1 Beta1

1.2 Conformance

1.2.1 Unified POS

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by
JavaPOS, OPOS, and POS for .NET, which provide standard platform specific mappings of the UnifiedPOS
specification. JavaPOS, OPOS and POS for .NET also provide base classes and/or interfaces to be used for
implementations of UnifiedPOS conformant device interfaces. To be UnifiedPOS conformant POS applications
and device vendors have to provide implementation using an appropriate platform-specific mapping.

1.21.1 ARTS IP Policy

This specification was originally created under the ARTS IP Policy which can be found

here: https:// www.omg.org/cgi-bin/doc?retail/2017-12-01

Summary Points

1

. The Policy is applicable to all members of ARTS and acceptance of this Policy will be a condition of ARTS

membership. Non-members wishing to attend technical meetings must agree in writing to accept the Policy.

. The Policy is applicable to the Data Model, ARTS XML, UnifiedPOS and future technical committees established

by the ARTS Board to develop specifications.

. The Policy permits members that disclose intellectual property to reserve rights on how they will license its use.

. The Policy encourages members to immediately disclose upon discovery of intellectual property that maybe

embedded in ARTS specifications.

. No member is required to conduct patent searches to search for intellectual property within ARTS specification(s.)

. Members who participate in the development of ARTS specifications must assign representatives with reasonable

knowledge in the field of work.

. The Policy establishes defined periods for review of developing draft specifications for both technical accuracy

and intellectual property. A public review period is also provided.

. Members who do not disclose intellectual property within an ARTS specification before that specification is

approved by the ARTS Board, must provide a 12-month royalty-free license to all implementers, during which
time ARTS may modify the specification to remove the infringing IP and each implementer may make appropriate
resolution.

. There is a default reasonable and non-discriminatory (“RAND”) licensing obligation for members of Work teams

and Technical Committees with only limited exceptions.UnifiedPOS specification formalizes and documents the
underlying retail device.

Unified POS, v1.15.1 Beta1 1-5

http://www.omg.org/cgi-bin/doc?retail/2017-12-01

1.3 Architectural Overview

1.3.1 General

UnifiedPOS defines a multi-layered architecture in which a POS Application interacts with the Physical or
Logical Device through the UnifiedPOS Control layer.

POS Application

UnifiedPOS Device

Y
UnifiedPOS Control

#

UnifiedPOS Service

Y
Physical (or logical) Device

1.3.2 Architectural Components

The POS Application (or Application) is an Application that uses one or more UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such as Cash Drawer and POS
Printer.

Each UnifiedPOS Device is a combination of these components:

« Control for a device category. The Control class provides the interface between the Application and the device
category. It contains no graphical component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device category’s control will be compatible.

Therefore, the Control can be developed independently of the Service for the same device category (they can even be
developed by different companies).

1-6 Unified POS, V1.15.1 Beta1

« Service, which is a component called by the Control through the Service Interface. The Service is used by the
Control to implement UnifiedPOS-prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or peripheral) by calling the platform
specific APIs which conform to the UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and some Bar Code Scanners include
an integrated Scale. However with UnifiedPOS, an application treats each of these device categories as if it were
an independent Physical Device. The UnifiedPOS Device standard developer is responsible for presenting the
peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-exposed hardware, in which case it
is called a Logical Device.

1.3.3 Use of UML
The UnifiedPOS standard includes the use of UML terminology and diagrams to define device categories.
Following is a brief description of the extensions to UML to make it better fit the UnifiedPOS architecture (this
extension is expected and allowed by the UML, see Booch98 reference in the “UML References” in Annex D).
Should any discrepancies exist between the UML diagrams and the specification text, then the text takes
precedence.
Applies to UML .
Name Symbol Meaning
<<capability>> Class attribute stereotype which flags the attribute as a UnifiedPOS capability
<<prop>> Class attribute stereotype which flags the attribute as a UnifiedPOS property
stereotype to indicate that the class/interface will be mapped to a UnifiedPOS
<<event>> Class event which in turn is mapped to a JavaPOS event class or a COM event for
OPOS or a NET event
constraint that indicates this Device Service or Service Object follows the
exclusive-use Class exclusive-use behavior defined in the UnifiedPOS documentation in section
“Exclusive-Use Devices” in Chapter 1.
constraint that indicates this Device Service or Service Object follows the
sharable Class sharable behavior defined in the UnifiedPOS documentation in section
“Sharable Devices” in Chapter 1.
constraint that indicates the mutability of the attribute. For example, in
read-only JavaPOS, read-only attributes translate to having a getter method for the
. Class attribute attribute and read-write attributes have getter and setter methods for
read-write attributes

Unified POS, v1.15.1 Beta1

1-7

Applies to UML

Name Symbol Meaning
access after constraint that indicates this attribute is accessible when the service is in the
<open>| state indicated. For example {access after opened-claim-enable} indicates
X that the attribute is accessible when the service has been opened, claimed and
<open-claim>| enabled in the order indicated
Class attribute :

<open-enable>|

<open-claim-
enable>

raises-exception

Class operation

constraint that indicates this method can throw an exception if the
implementation language supports exception; otherwise, some mechanism is
used to notify the application that an invalid condition occurred. A value is
returned to indicate the error.

use after

<open>|
<open-claim>|
<open-enable>|

<open-claim-
enable>

Class operation

constraint that indicates this operation is accessible when the service is in the
state indicated. For example {use after open-claim-enable} indicates that the
method is accessible when the service has been opened, claimed and enabled
in the order indicated.

1.3.3.1 Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

|

upos

|

events

(from upos)

Note: This package diagram is included to give some logical structure to the interfaces in the UnifiedPOS
interfaces UML diagrams. Some implementations may have a corresponding equivalence for the packages and
some may not. Also, note that the name ‘upos’ may be replaced by an implementation specific prefix (e.g.,
JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

Unified POS, V1.15.1 Beta1

1.3.4 Data Types

Updated in Release 1.13

UnifiedPOS uses textual references to data types which will be defined for specific language usage:

POS for

UnifiedPOS JavaPOS OPOS NET UML UnifiedPOS text Usage
boolean boolean BOOL bool in boolean Boolean true or false.
boolean by boolean[1] BOOL* Not used inout hoolean Mutable boolean.
reference ok
binary byte[] BSTR byte[] in binary Immutable array of bytes.
binary by byte[1][] BSTR* Not used inout binary Mutable array of bytes. (Both its size
reference woH and contents may be modified.)
array of byte[][] SAFEARRAY Notused in binary[] Immutable array of array of bytes.
binary of BSTR ok
byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)
int32 int LONG int or in int32 32-bit integer.
enum
int32 array int[] SAFEARRAY int[] in int32 array Immutable array of 32-bit integers.
of LONG
int32 array int[1][] SAFEARRAY Notused inout int32 Mutable array of 32-bit integers.
by reference * wox array (Both its size and contents may be
of LONG modified.)
int32 by int[1] LONG* Notused inout int32 Mutable 32-bit integer.
reference *ok
currency long CURRENCY decimal in currency 64-bit integer. Sometimes used for
or CY currency values where 4 decimal
places are implied. E.g., if the integer
is “1234567”, then the currency value
is “123.4567”. See footnote?
currency by long[1] CURRENCY* Notused inout Mutable 64-bit integer.
reference or CY* *k currency
string String BSTR string in string Text character string. See footnote®
string by String[1] BSTR* Not used inout string Mutable text character string. (Both its
reference ok size and contents may be modified.)
array of Point[] BSTR Point[] inout point[] Immutable array of points. Used by
points Signature Capture.
object Object BSTR* object inout object An object. This will usually be
subclassed to provide a Service-
specific parameter.
nls String LONG Culturel in nls Operating System National Language
nfo Support data type.

Unified POS, v1.15.1 Beta1

1-9

a. Six decimal place precision is required for all computations in conversion between currencies but is not required for the
representation of the solution.

b. For data elements within comma delimited string data, no leading or trailing whitespace is permitted, unless that whitespace is
part of the data element. Comma delimited string data is typically used for a series of numbers, in which no whitespace should
be included in the string.

For Java:
The convention of #ype[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s primitive types, such as
int and boolean, are passed by value, and its primitive wrapper types, such as Integer and Boolean, do not support modification. For

strings and arrays, do not use a null value to report no information. Instead use an empty string (

(331}

) or an empty array (zero length). In

some chapters, an integer may contain a “bit-wise mask.” That is, the integer data may be interpreted one or more bits at a time. The
individual bits are numbered beginning with Bit 0 as the least significant bit.
** POS for .NET does not use “out” parameters, return values are used instead.

1.3.5

1.3.5.1

Device Behavior Models

Introduction to Properties, Methods, and Events

An application accesses a POS Device via platform specific APIs.
The three elements of UnifiedPOS standard for APIs are:

- Properties. Properties are device characteristics or settings. A type is associated with each property, such as
boolean or string. An application may retrieve a property’s value, and it may set a writable property’s value.

» Methods. An application calls a method to perform or initiate some activity at a device. Some methods require
parameters of specified types for sending and/or returning additional information.

« Events. A Device implementation may call back into the application via events. The application may need to
register for events. The mechanism to do this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the interface will be included in a table.
The properties are indicated as attributes. The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }
where:

visibility in this document is always public for application visible interfaces but is not explicitly
shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types defined in Intro-8.

default-value1 the default value of the attributes in UML, (optional)

1.Not used by UnifiedPOS standard

Unified POS, V1.15.1 Beta1

property-string property value to apply to the element. For attributes, we define two such strings:
read-only and read-write, which indicates the mutability of the attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }
Methods (UML Operations)
The generic UML pattern for methods is the following:

visibility name (parameter-list): return-type-expr { property string }
where:

parameter - list is a comma separated list of formal parameters using the following generic UML
naming pattern:

kind name: type-expression (= default—value)l

where:

kind is either: ‘in,” ‘out,” or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an additional property
string called ‘raises-exception’ is defined which means that this method can throw the exception if
the implementation language supports exception; otherwise, some mechanism is used to notify the
application that an invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }
Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes stereotyped with the event
stereotype. The generic UML pattern for events is a UML box with the stereotype <<event>> (class diagram)
with the event name and a list of the properties. This representation is different from Properties and Methods.

<<event>>
xxEvent

where:

XxxEvent stands for the UnifiedPOS event name and the second compartment of the box would contain a list of
attributes for the event.

1. default-value is not used by the UnifiedPOS standard

Unified POS, v1.15.1 Beta1 1-11

1.3.5.2 Device Initialization and Finalization Updated in Release 1.11

Initialization

The first actions that an application must take to use a Device are:
» Obtain a reference to a Control,

« Prepare Control for the events that the application needs to receive, if necessary.

To initiate activity with the Physical Device, an application calls the Control’s open method:

The logicalDeviceName parameter specifies a logical device to associate with the Device. The open method
performs the following steps:

« Creates and initializes an instance of the proper Service class for the specified name.

« Initializes many of the properties, including the descriptions and version numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same time. Therefore, after the
Device is opened, an application might need to call the claim method to gain exclusive access to it. Claiming the
Device ensures that other Control instances do not interfere with the use of the Device. An application can
release the Device to share it with another Control instance— for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to true. This value brings the
Physical Device to an operational state, while false disables it. For example, if a Scanner Device is disabled, the
Physical Device will be put into its non-operational state (when possible). Whether physically operational or not,
any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the initialization APIs - open, claim, and/
or DeviceEnabled=true. The following are recommendations for initialization-time error handling by Service
implementers. These guidelines are not mandated, however, because of the wide variation in some hardware
devices and their initialization requirements, and due to variations in already released Services.

open Primary purpose: Initialize the software stack, including the creation of the Service and initialization
of its supporting software components.

1. The Service must fail an open API call if software initialization fails.
Example: Supporting software components are not installed or available, so fail the API call.

2. If the Service must probe the device in order to correctly set open-time properties (such as capabilities), then the
Service should fail an open API call if it cannot access the device.
Example: A Service supports several line display models and sets the UnifiedPOS capabilities after
communicating with the device. If the device’s port is not available or the device does not respond, then the
Service cannot complete its open work and will need to fail the API call.

3. For other cases, the Service should succeed the open API call and report a failure (if needed) later.
Example: A Service cannot open an RS232 port during open. If the previous case (#2) above does not apply, then
the Service should succeed the open and report the port open failure during claim, if the port is still not available.

claimPrimary purpose: Acquire exclusive access to the device, for exclusive-use devices.

Unified POS, V1.15.1 Beta1

1. The Service must fail a claim API call if another process has claimed the device and the claim timeout expires.

2. If the device is not accessible, then the Service should fail a claim API call.
Examples: A required communications or I/O port cannot be opened or claimed. The Service determines that the
device is not present or is offline. For each of these cases, the Service should fail the API call.

For other cases, the Service should succeed the claim API call. This specifically includes cases where runtime
faults exist.

Examples: A POSPrinter receipt station is out-of-paper, or the POSPrinter receipt station detects a printer jam.
These are runtime faults that occur from time to time during operation, and are user correctable. The Service
should succeed the claim. POSPrinter runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and/or by exceptions from APIs such as printNormal.

DeviceEnabled = true Primary purpose: Final preparation for operation and application use.

1. Ifthe device is not accessible, then the Service should fail a DeviceEnabled= true API call. (Note that the device
may have been accessible at claim but is now inaccessible.)
Example: The Service determines that the device is not present or is offline, so the Service should fail the API call.

2. For other cases, the Service should succeed the DeviceEnabled=true API call. This specifically includes cases
where runtime faults exist.
Examples: See claim case (#3) above.

An application developer must be prepared for failures at any of the initialization points. With the variations in
hardware devices and in their Service implementations, a well-written application will respond predictably to the
widest range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of ports, including RS232, RS485,
Parallel, USB, Ethernet, and Wireless. In addition, devices may be powered directly by the terminal or by an
external power source. These guidelines may be applied to all of these devices. Two examples with typical
initialization follow.
Example 1: Hand-held scanner attached to a terminal's powered RS232 port.

* open: Succeed if software initialization is successful.

* claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

* DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

* While enabled: If the device is unplugged from the powered RS232 port, then detect the power state change and
report to the application. If the device is later plugged back in, then detect the power state change and report to the
application. For many devices, power state changes can be accomplished by monitoring the RS232 DSR signal.
(Note that hot unplugging and plugging in with this port type is probably not recommended by the hardware
vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a “brick.”
* open: Succeed if software initialization is successful.
* claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

* DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

Unified POS, v1.15.1 Beta1 1-13

» While enabled: If the device is unplugged from the USB port or from its power source, then detect the power state
change and report to the application. If the device is later plugged back in, then detect the power state change and
report to the application. An operating system-specific mechanism detects power state changes, such as an open,
write, or read failure with specific failure statuses.

Notice that the general initialization handling is very similar, even though the second example will typically
require somewhat more logic within the Service to monitor and re-initialize the device connection.

Finalization
After an application finishes using the Physical Device, it should call the close method. If the DeviceEnabled
property is true, close disables the Device. If the Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device resources in a timely manner.
Summary

In general, an application follows this general sequence to open, use, and close a Device:
Obtain a Control reference.
Prepare for events if necessary.
Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical Device. Required for
exclusive-use Devices; optional for some sharable Devices. (See “Device Sharing Model”
on page 14 for more information).

Set the DeviceEnabled property to true to make the Physical Device operational. (For
sharable Devices, the Device may be enabled without first claiming it.)

Use the device.
Set the DeviceEnabled property to false to disable the Physical Device.
Call the release method to release exclusive access to the Physical Device.
Call the close method to unlink the Service from the Control.
Release events receipt if necessary

Remove the reference to the Control

1.3.6 Device Sharing Model

Devices fall into two sharing categories:
« Devices that are to be used exclusively by one Control instance.

* Devices that may be partially or fully shared by multiple Control instances.
Any Physical Device may be open by more than one Control instance at a time. However, activities that an

application can perform with a Control may be restricted to the Control instance that has claimed access to the
Physical Device.

1-14 Unified POS, V1.15.1 Beta1

1.3.6.1

1.3.6.2

1.3.7

Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is the POS printer. Due to physical
or operational characteristics, an exclusive-use device can only be used by one Control at a time. An application
must call the Device’s claim method to gain exclusive access to the Physical Device before most methods,
properties, or events are legal. Until the Device is claimed and enabled, calling methods or accessing properties
may cause a failure condition to occur.

An application may in effect share an exclusive-use device by calling the Control’s claim method before a
sequence of operations, and then calling the release method when the device is no longer needed. While the
Physical Device is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform the sequence of close method
followed by open method on the device), some settable device characteristics are restored to their condition at
the release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and
the printer’s characters per line. However, state characteristics are not restored, such as the printer’s sensor
properties. Instead, these are updated to their current values.

Sharable Devices
Some devices are sharable devices. An example is the keylock. A sharable device allows multiple Control
instances to call its methods and access its properties. Also, it may deliver its events to multiple Controls. A

sharable device may still limit access to some methods or properties to the Control that has claimed it, or it may
deliver some events only to the Control that has claimed it.

Events Updated in Release 1.12

UnifiedPOS architecture uses events to inform the application of various activities or changes with the Device.
The five event types follow.

Event Class Description Supported When A Device
Category Supports...
DataEvent Input data has been placed into device class- Event-driven input
category properties.
ErrorEvent An error has occurred during event-driven input or Event-driven input
asynchronous output. -0r-
Asynchronous output
OutputCompleteEvent An asynchronous output has successfully Asynchronous output
completed.
StatusUpdateEvent A change in the Physical Device’s status has Status change notification
occurred.
Devices may be able to report device power state.
See “Device Power Reporting Model,” page 22.
DirectlOEvent This event may be defined by a Service provider Always, for Service-specific use
for purposes not covered by the specification.

Unified POS, v1.15.1 Beta1

1-15

1.3.8

1.3.9

The Service must enqueue these events on an internally created and managed queue. All events are delivered in
a first-in, first-out manner. (The only exception is that a special input error event is delivered early if some data
events are also enqueued. See “Device Input Model,” page 1-18.) Events are delivered by an internally created
and managed Service thread. The Service causes event delivery by calling an event firing callback method in the
Control, which then delivers the event to the application.

The following conditions cause event delivery to be delayed until the condition is corrected:
« The application has set the property FreezeEvents to true.

« The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled is false. (See “Device
Input Model,” page 1-18.)

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents

property.
Rules for event queue management are:
« The Device may only enqueue new events while the Device is enabled.

« The Device delivers enqueued events until the application calls the release method (for exclusive-use devices) or
the close method (for any device), at which time any remaining events are deleted.

« For input devices, the clearInput method clears data and input error events.

- For output devices, the clearQutput method clears data and output error events.
Errors
UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods (UML Operations)” on page

1-11 and explanation of exceptions:

« Errors that are “invalid or bad invocations” which are recognized by the Service validation of the request. Method
invocations and property accesses may be valid or invalid. If the action is invalid, an invalid condition is set and the
application is notified in a fashion appropriate to the platform. For specific implementations, OPOS would produce
a ResultCode other than OPOS_SUCCESS and JavaPOS would produce an exception.

« Errors that are caused by errant device behavior and produce error events.
Error Codes Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid condition occurs. In general,
the property and method descriptions in later chapters list error codes only when specific details or information
are added to these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning
E CLOSED An attempt was made to access a closed Device.

Unified POS, V1.15.1 Beta1

E CLAIMED

E NOTCLAIMED

E NOSERVICE

E _DISABLED
E_ILLEGAL

E_NOHARDWARE
E_OFFLINE
E_NOEXIST
E_EXISTS
E_FAILURE

E_TIMEOUT

E BUSY

E EXTENDED

E DEPRECATED

E CLOSED
E CLAIMED

E NOTCLAIMED

E DISABLED

Unified POS, v1.15.1 Beta1

An attempt was made to access a Physical Device that is claimed by
another Control instance. The other Control must release the Physical
Device before this access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device before the access
is legal.

An attempt was made to access an exclusive-use device that must be
claimed before the method or property set action can be used.

If the Physical Device is already claimed by another Control instance,
then the status E_ CLAIMED is returned instead.

The Control cannot communicate with the Service, normally because of
a setup or configuration error.

Cannot perform this operation while the Device is disabled.

An attempt was made to perform an illegal or unsupported operation
with the Device, or an invalid parameter value was used.

The Physical Device is not connected to the system or is not powered on.
The Physical Device is off-line.

The file name (or other specified value) does not exist.

The file name (or other specified value) already exists.

The Device cannot perform the requested procedure, even though the
Physical Device is connected to the system, powered on, and on-line.

The Service timed out waiting for a response from the Physical Device,
or the Control timed out waiting for a response from the Service.

The current Service state does not allow this request. For example, if
asynchronous output is in progress, certain methods may not be allowed.

A device category-specific error condition occurred. The error condition
code is held in an extended error code.

The requested operation can not be performed since it has been
deprecated.

When more than one error code is valid, the most descriptive code
should be selected. For example, the closed, claimed, not claimed, and
disabled errors must follow this order of error reporting precedence,
from higher to lower:

The device must be opened.

The device is opened but not claimed. Another application has the device
claimed, so it cannot be claimed at this time.

The device is opened but not claimed. No other application has the
device claimed, so it can and must be claimed.

The device is opened and claimed (if this is an exclusive-use device), but
not enabled.

1-17

Extended Error Code

The extended error code is set as follows:

» When the error code is E EXTENDED, the extended error code is set to a device category-specific value, and must
match one of the values given in this document under the appropriate device category chapter.

« When the error code is any other value, the extended error code may be set by the Service to any Service-specific
value. These values are only meaningful if an application adds Service-specific code to handle them.

1.3.10 Device Input Model Updated in Release 1.13

The standard UnifiedPOS input model for exclusive-use devices is event-driven input. Event-driven input allows
input data to be received after DeviceEnabled is set to true. Received data is enqueued as a DataEvent, which
is delivered to an application.

If the AutoDisable property is true when data is received, then the Device will automatically disable itself,
setting DeviceEnabled to false. This will inhibit the Device from enqueuing further input and, when possible,
physically disable the device.

When the application is ready to receive input from the Device, it sets the DataEventEnabled property to true.
Then, when input is received (usually as a result of a hardware interrupt), the Device delivers a DataEvent. (If
input has already been enqueued, the DataEvent will be delivered immediately after DataEventEnabled is set
to true.) The DataEvent may include input status information through its Status property. The Device places the
input data plus other information as needed into device category-specific properties just before the event is
delivered.

Just before delivering this event, the Device disables further data events by setting the DataEventEnabled
property to false. This causes subsequent input data to be enqueued by the Device while an application processes
the current input and associated properties. When an application has finished the current input and is ready for
more data, it enables data events by setting DataEventEnabled to true.

(Added in 1.13) If an application causes disabling of the device (by setting DeviceEnabled=false, or by setting
AutoDisable=true and a subsequent input event is enqueued), then it may need logic to ignore additional data
until it reenables the device. In particular, input that is already received and enqueued will continue to be
delivered (unless the clearInput, release or close API is called, at which time undelivered input is discarded).
As stated in the Events section, the application may control the input delivery by using the DataEventEnabled
or FreezeEvents properties.

Error Handling Updated in Release 1.12

If the Device encounters an error while gathering or processing event-driven input, then the Device:
« Changes its State to S ERROR.

« Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the error condition. This event is added to
the end of the queue

« If one or more DataEvents are already enqueued for delivery, an additional ErrorEvent with locus
EL INPUT_DATA is enqueued before the DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is true, so that orderly
application sequencing occurs.

Unified POS, V1.15.1 Beta1

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

ErrorLocus

Description

EL_INPUT DATA

Only delivered if the error occurred when one or more DataEvents are already enqueued.

This event gives the application the ability to immediately clear the input, or to optionally
alert the user to the error before processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of the error condition
quickly.

This locus was created especially for the Scanner: When this error event is received from
a Scanner Device, the operator can be immediately alerted to the error so that no further
items are scanned until the error is resolved. Then, the application can process any backlog
of previously scanned items before error recovery is performed.

EL INPUT

Delivered when an error has occurred and there is no data available.

If some input data was buffered when the error occurred, then an ErrorEvent with the
locus EL_INPUT_DATA was delivered first, and then this error event is delivered after
all DataEvents have been delivered.

If the Service has partial data that can be delivered with an ErrorEvent, the related data
properties should be filled in prior to delivery of the event with this ErrorLocus. If there
is no partial data to be delivered with the ErrorEvent, the data properties should be
cleared prior to delivery of this event.

Note: This EL_INPUT event is not delivered if: an EL_INPUT DATA event was
delivered and the application event handler responded with an ER_CLEAR error response.

The application can cause the ErrorResponse property to be set one of the following:

ErrorResponse

Description

ER_CLEAR

Clear the buffered DataEvents and ErrorEvents and exit the error state, changing
State to S_IDLE.

This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT

This response acknowledges the error and directs the Device to continue processing.
The Device remains in the error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all input has been delivered and
the DataEventEnabled property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.

This is the default response when the locus is EL_INPUT_DATA, and is legal only
with this locus.

ER_RETRY

This response directs the Device to retry the input. The error state is exited, and State
is changed to S_IDLE.

This response may only be selected when the device chapter specifically allows it and
when the locus is EL_INPUT. An example is the scale.

Unified POS, v1.15.1 Beta1

1-19

The Device exits the Error state when one of the following occurs:
« The application returns from the EL_INPUT ErrorEvent.
« The application calls the clearInput method.

« The application returns from the EL_ INPUT DATA ErrorEvent with ErrorResponse set to ER_ CLEAR.
Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven input. After the input is received by
the Device, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the Device.

Calling the clearInput method deletes all input enqueued by a Device. clearInput may be called after open for
sharable devices and after claim for exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device categories containing
methods or properties that return input data directly. Some device categories define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input
is sometimes called “synchronous input.”

1.3.11 Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and asynchronous. A device category
may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device does not return until the output
is completed; this means the physical device has performed the intended operation. For example the printer has
successfully transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively quickly. Its merit is simplicity.
Asynchronous Output Updated in Release 1.13

The application calls a category-specific method to start the output. The Device validates the method parameters
and produces an error condition immediately if necessary. If the validation is successful, the Device does the
following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device can
receive and process it.

2. Sets the OutputID property to a unique integer identifier for this request. (For more information about the
OutputID property, see Chapter 2.)

Unified POS, V1.15.1 Beta1

3. Returns as soon as possible.

When the Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery to the
application. A property of this event contains the output ID of the completed request. The application should
compare the returned OutputCompleteEvent property OutputID value with the OutputID value set by the
asynchronous process method call used to send the data in order to track what data has been successfully sent to
the device. If the request is terminated before completion, due to reasons such as the application calling the
clearOutput method or responding to an ErrorEvent with a ER_ CLEAR response, then no
OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules). No further asynchronous output will occur until the event has been delivered to the application.
If the response is ER_CLEAR, then outstanding asynchronous output is cleared. If the response is ER_RETRY,
then output is retried; note that if several outputs were simultaneously in progress at the time that the error was
detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.
1.3.12 Device Power Reporting Model Updated in Release 1.8

Applications frequently need to know the power state of the devices they use. Note: This model is not intended
to report Workstation or POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of
these conditions is now managed by the POSPower device category.

Model

UnifiedPOS architecture segments device power into three states:

« ONLINE. The device is powered on and ready for use. This is the “operational” state.

* OFF. The device is powered off or detached from the terminal. This is a “non-operational” state.

* OFFLINE. The device is powered on but is either not ready or not able to respond to requests. It may need to be
placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational”
state.

In addition, one combination state is defined:

* OFF_OFFLINE. The device is either off or offline, and the Service cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

Unified POS, v1.15.1 Beta1 1-21

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline.” It may also be logically “disabled” but
physically “online.” Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)

If a device is “offline,” then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

1.3.13 Power State Diagram

[Device is closed] -
PowerState Unknown -
PS_UNKNOWN T w
Deviceis c{losed]
T

| |

Known Powe‘rStates

[Device is Off or Offline] Off/Offline States

PowerState Online PowerState Standard Off/Offline
PS_ONLINE PS_OFF_OFFLINE

[Dem [CapPowerReportiLng == PR_ADVANCED]

Advanced Off/Offline States

PowerState Advanced Offline
PS_OFFLINE

|
[Device is Off] (> [Device is Offline]

PowerState Advanced Off
PS_OFF

1-22 Unified POS, V1.15.1 Beta1

1.3.14 Power Properties

The UnifiedPOS device power reporting model adds the following common elements across all device classes.

- CapPowerReporting property. Identifies the reporting capabilities of the device.
The UML pattern for the property is:
PR xxx :int32 { frozen }
This property may be one of:

* PR_NONE. The Service cannot determine the state of the device. Therefore, no power reporting is possible.

* PR_ STANDARD. The Service can determine and report two of the power states - OFF_OFFLINE (that is, off
or offline) and ONLINE.

* PR_ADVANCED. The Service can determine and report all three power states - ONLINE, OFFLINE, and
OFF.

» PowerState property. Maintained by the Service at the current power condition, if it can be determined.
The UML pattern for the property is:
PS_xxx : int32 { frozen }

This property may be one of:
* PS UNKNOWN
*PS ONLINE
*PS OFF
* PS_OFFLINE
«PS_OFF_OFFLINE

« PowerNotify property. The application may set this property to enable power reporting via StatusUpdateEvents and
the PowerState property. This property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation of power notification with no adverse
effects on the application. The application is either prepared to receive notifications or doesn't want them, and has no
need to switch between these cases. The UML pattern for the property is:

PN_xxx : int32 { frozen }

This property may be one of:
* PN _DISABLED
* PN ENABLED

1.3.15 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR NONE, and
PowerNotify is PN ENABLED:

» When the Control changes from DeviceEnabled false to true, then begin monitoring the power state:

« If the Physical Device is ONLINE, then PowerState is set to PS_ ONLINE. A StatusUpdateEvent is enqueued

Unified POS, v1.15.1 Beta1 1-23

with its Status property set to SUE_ POWER ONLINE.
» If the Physical Device’s power state is OFF, OFFLINE, or OFF OFFLINE, then the Service may choose to fail the
enable by notifying the application with error code E NOHARDWARE or E_ OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Service chooses to return success for
the enable, then PowerState is set to PS_ OFF, PS OFFLINE, or PS OFF OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to SUE POWER OFF, SUE POWER_OFFLINE, or
SUE POWER OFF OFFLINE.

» When the Device changes from DeviceEnabled true to false, UnifiedPOS assumes that the Device is no longer
monitoring the power state and sets the value of PowerState to PS UNKNOWN.

1.3.16 Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See below for examples of XML definitions of the
device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the claim method and by setting DeviceEnabled to true
when access to a device is required and then setting DeviceEnabled to false and using the release method when
access to the device is no longer needed. Coordination of device access via this mechanism is the responsibility
of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

- CapStatisticsReporting property. Identifies the reporting capabilities of the device. When CapStatisticsReporting
is false, then no statistical data regarding the device is available. This is equivalent to Services compatible with prior
versions of the specification. When CapStatisticsReporting is true, then some statistical data for the device is
available.

« CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by the
application. This property is only valid if CapStatisticsReporting is true. When CapUpdateStatistics is false, then
none of the statistical data can be reset/updated by the application. Otherwise, when CapUpdateStatistics is true,

Unified POS, V1.15.1 Beta1

then (some of) the statistical data can be reset/updated by the application.

- resetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true. This
method resets one, some, or all of the resettable device statistics to zero.

- retrieveStatistics method. Can only be called if CapStatisticsReporting is true. This method retrieves one, some,
or all of the accumulated statistics for the device.

« updateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true.
This method updates one, some, or all of the resettable device statistics to the supplied values.

XML Definitions for POS Device Statistics

The XML files containing the UnifiedPOS defined statistics for each device category are provided as downloads
from the web sites that also host this specification. These statistics can be referenced individually by name or as
a group using the “U_” string as (part of) the parameter to the statistics methods.

Manufacturers/Service providers can add their specific statistics in the provided “ManufacturerSpecific” section.
These statistics can be referenced individually by name or as a group using the “M_" string as (part of) the
parameter to the statistics methods.

The following table contains the definitions of the information contained in the UnifiedPOS defined
Devicelnformation section covering all device categories.

<DeviceInformation>

XML Definition Name Definition description
UnifiedPOSVersion Version of the UnifiedPOS specification supported
DeviceCategory Device category (e.g., POSPrinter)
ManufacturerName Device manufacturer’s name
ModelName Device model name
SerialNumber Device serial number
ManufactureDate Device manufacture date
MechanicalRevision Device hardware revision
FirmwareRevision Device firmware revision
Interface Device hardware interface (e.g., serial, USB)
InstallationDate Device installation date

The following is an example of the XML file that describes the “UnifiedPOS” defined statistics for the
CashDrawer device category.

<?xml version='1.0" 2>

Unified POS, v1.15.1 Beta1 1-25

1.3.17 Update Firmware Device Model

<UPOSStat version="”1.13.0” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance” xmlns="http://www.omg.org/UnifiedPOS/namespace/”

xsi:schemalocation="http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

<Event>
<Parameter>
<Name>DrawerGoodOpenCount</Name>
<Value>1353</Value>
</Parameter>
<Parameter>
<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>
</Parameter>
<ManufacturerSpecific>
<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasure>meters</unitofmeasure>
</ManufacturerSpecific>
</Event>
<Equipment>
<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevision>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>
</Equipment>
</UPOSStat>

The most up-to-date files defining the XML tag names that conform to the ARTS Data

Dictionary and example schemas for the statistics for all device categories can be
downloaded from the ARTS web site at http://retail.omg.org

Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the various POS devices that are

attached to the POS terminal. This model defines a consistent application interface for updating the firmware in

a device controlled by a UnifiedPOS control.
This model has the following capabilities:
« A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

« A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be compared
against the firmware version of the device.

Unified POS, V1.15.1 Beta1

http://www.nrf-arts.org
http://www.nrf-arts.org

» A method, updateFirmware, to perform an asynchronous update of the firmware in a device.

» A method, compareFirmwareVersion, to compare the firmware file’s version against the firmware version of the
device.

« Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not covered by this document, only
the means by which the update firmware process is started and progress is reported.

1.3.18 Device States

UnifiedPOS defines a property State with the following values:

S_CLOSED
S IDLE

S BUSY
S_ERROR

The State property is set as follows:
« State is initially S CLOSED.
« State is changed to S IDLE when the open method is successfully called.

« State is set to S BUSY when the Service is processing output. The State is restored to S IDLE when the output has
completed.

« The State is changed to S ERROR when an asynchronous output encounters an error condition, or when an error is
encountered during the gathering or processing of event-driven input.

After the Service changes the State property to S ERROR, it notifies the application of this error. The properties of
this event are the error code and extended error code, the locus of the error, and a mutable response to the error.

Unified POS, v1.15.1 Beta1 1-27

1.3.19 Device State Diagram

Closed
State == S_CLOSED

N

/closé

Opened
/open

/ [async output in progress]

Idle —
State == S_IDLE L ”

R

[async butput done]

input event error] [err

Error
State == S_ERROR

State == S_BUSY

event done and async output]

1.3.20 Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of some Devices. UnifiedPOS

imposes the following requirements on Control and Service versions:

« Control requirements. A Control for a device category must operate with any Service for that category, as long as
its major version number matches the Service's major version number. If they match, but the Control's minor version
number is greater than the Service’s minor version number, then the Control may support some new methods or
properties that are not supported by the Service’s release. If an application calls one of these methods or accesses
one of these properties, the application will be notified of an error condition (E NO_SERVICE).

« Service requirements. A Service for a device category must operate with any Control for that category, as long as
its major version number matches the Control's major version number. If they match, but the Service's minor version
number is greater than the Control's minor version number, then the Service may support some methods or

properties that cannot be accessed from the Control.

Unified POS, V1.15.1 Beta1

When an application wishes to take advantage of the enhancements of a version, it must first determine that the
Control and Service are at the proper major version and at or greater than the proper minor version. The versions
are reported by the properties DeviceControlVersion and DeviceServiceVersion.

1.3.21 Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the specification, a method of deprecation
is required in order to eliminate these items over time.

Deprecation can be applied to Properties and Methods, as well as parameters, constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to support the element’s
functionality for the following two minor releases of the standard. Starting with the third release of the standard
after an element has been marked as deprecated, usage of the element will result in an E DEPRECATED status.

When an element is marked as deprecated, then support for the element will be removed from the standard in the
next major release of the standard after it is marked as deprecated.

All deprecated elements and the related versions when they were first marked as deprecated are listed in Annex
H, Deprecation History on page H-1.

1.3.22 Hydra Device Considerations Updated in Release 1.12

Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that the most flexible methodology
would be to have an application be able to communicate to a peripheral through a two-layer process. Since the
Microsoft’s COM platform was the first supported architecture, Control Object and Service Object names were
chosen. Later when Java was defined and the technology used precluded the use of “objects” as defined in the
Windows world, the names were closely linked using the terminology Device Control and Device Service.
Functionality however at the higher, abstracted level, remained the same.

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what is commonly called “connecting the pipes”
wherein a communication port would be opened and a device name would be assigned so that the application is
able to communicate to the peripheral using that device name.

Service Object or Device Service (Service)

This incorporates usually vendor-specific code that interfaces with the peripheral device to allow for accessing,
monitoring, processing, all the functionality of the peripheral device and exposing it to a common set of
properties, methods, and events that an application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the most simplistic system one
instance of a Control is instantiated to connect to the Service. As example for a simple POSPrinter:

Note: only one physical connection port (RS-232 for example) is used in this example.

Unified POS, v1.15.1 Beta1 1-29

Application

Service

Service for Functionality of Peripheral
Device and supports Physical

Connection to the Peripheral Device

A

A 4

POS Receipt
Printer

Keeping things simple but adding another level of complexity is the case when more than one application needs
to use the device. In this case, another Control is instantiated to the peripheral Service and all applications need
to recognize that the peripheral is capable of being shared (for this example, assuming a shareable device) and

utilize the claim and release methodology that the standard provides. In the POSPrinter example, this would look
like...

Note: only one physical connection port (RS-232 for example) is used in this example.

Application One Application Two
A A
A 4
Control One Control Two
A A
A 4 A 4
Service

Service for Functionality of Peripheral Device and
supports Physical Connection to the Peripheral
Device

v i

POS Receipt
Printer

Unified POS, V1.15.1 Beta1

Note, that as far as each application is concerned, it is connected to the peripheral device and only one physical
connection to the device is required... via the RS-232 serial connection in this example. This served the needs of

device sharing where cooperating applications were utilized.

1.3.23 Multi-Function (Hydra) Peripheral Devices

peripheral devices.

The model needed to be expanded to cover the peripherals that include multiple device class
functionality in a single unit. An example of such a device is a POS printer that may have additional
functionality of being able to control a Customer Line Display, Cash Drawer, MICR, or other
devices. These peripherals are referred to as “Hydra” peripherals alluding to the Greek mythology of
a multi-headed animal that was connected to a single body interface.

In the interaction of POS peripherals, the interface to the Application needs to be agnostic in its
knowledge in either of the following cases...one where multiple physical peripheral devices are used
or the other where one physical peripheral device incorporates the functionality of multiple physical

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232 serial ports for instance) are

required...one for each of the physical peripheral devices.

In a Hydra peripheral only one “pipe” is required and it is used to communicate with all the various Device

peripheral functionality of the connected peripheral device.

For example, consider the cases where in one instance a separate POSPrinter device and a separate MICR device
is present; in another instance, a Hydra POSPrinter that has an incorporated MICR reader. The “look” to the

Application(s) has to be agnostic...it should not care nor should it have to know which type of hardware

device(s) are physically present. Ideally it should be able to use the same Application code to interact with either

of the two implementations. For example:

Note: Application interfacing with two distinct peripherals.

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control
A A
A4 A\ 4
MICR Service POSPrinter Service
Separate Physical Separate Physical
Device Device
RS-232 Port 1 RS-232 Port 2

Unified POS, v1.15.1 Beta1

1-31

Note that in this case the application running the MICR and the POSPrinter consumes two separate ports but as
far as the Application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the
fact that the two ports are used.

Note: Application interfacing with a Hydra peripheral.

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control

v t v i

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One
Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function

Note that in this case the application running the MICR and POSPrinter consumes only one port but as far as the
application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the fact that
only one port is used. It is up to the Hydra Service to control the port and route the functionality to and from the
proper interface.

Considerations

While the desire is to have both interconnection techniques work the same with regards to the Application
interface, problems do arise. In the Hydra case, an error state in one of the specific device functions may block
the usage of the other function. This would not happen in the non-Hydra case since each peripheral is truly
separate.

In our Printer and MICR Hydra case, the printer running out of paper might present a condition that would
prevent reading a MICR code for instance. An error condition of “Out of Paper” would be reported through the
POSPrinter interface but would not have any meaning to a route through the MICR interface. The Application
requesting a MICR read in the Hydra case would be presented with an error or status condition that it would not
get in the discrete MICR peripheral case. This presents a potential “hang up” condition or unresolved error
situation.

Obviously an error condition needs to be reported to the application that is using the MICR functionality to alert
it of a problem and allow for resolution. Rather than reporting a meaningless error of “Out of Paper” to the
MICR application, a general E_FAILURE error would be sent back to the MICR application to alert it of the
problem. The MICR application would then be responsible to go through an error recovery procedure to rectify
the situation. It would go through an error recover operation that would present a console message informing the
operator of an impending problem with usage of the MICR device.

Unified POS, V1.15.1 Beta1

Operator knowledge of the specific device would then be used to correct the problem. In this case knowing that
the MICR is part of the printer would focus the attention of the Operator to the “Paper Out” status indicator. The
resolution would be to replace the paper which would then clear the error condition for the MICR as well as the
Printer.

Notice that every attempt is made to make the interaction with the peripheral device or Hydra peripheral device
“look the same” to the application. Careful Service design needs to be used to make sure this is accomplished.
Device vendors should define any limitations and unusual error conditions that may exist when accessing such
hydra devices in their user documentation. Application developers should be aware of the possibility of discrete
and Hydra POS devices when crafting their software and plan their error resolution accordingly.

Unified POS, v1.15.1 Beta1 1-33

Unified POS, V1.15.1 Beta1

2

2.1

2.2

Common Properties, Methods, and Events

General

The following Properties, Methods, and Events are used for all device categories unless noted otherwise in the
Usage Notes table entry. For an overview of the general rules and guidelines, see “Device Behavior Models” on
page 1-10.

Summary Updated in Release 1.10

The following property list is a summary of the JavaPOS Common Properties. This list is used throughout the
main UnifiedPOS chapters. Further details may be found in Annex B.

The OPOS implementation adds the following Common Properties:
BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.
Also, the last six properties are replaced by:

ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription, ServiceObjectVersion,
DeviceDescription, and DeviceName.

Further details may be found in Annex A.

Properties (UML attributes)

Name Type Mutability Version (]{;:;‘3;
AutoDisable: boolean { read-write } 1.2 1
CapCompareFirmwareVersion: boolean { read-only } 1.9
CapPowerReporting: int32 { read-only } 1.3
CapStatisticsReporting: boolean { read-only } 1.8
CapUpdateFirmware: boolean { read-only } 1.9
CapUpdateStatistics: boolean { read-only } 1.8
CheckHealthText: string { read-only } 1.0

Claimed: boolean { read-only } 1.0

DataCount: int32 { read-only } 1.2 1
DataEventEnabled: boolean { read-write } 1.0 1
DeviceEnabled: boolean { read-write } 1.0
FreezeEvents: boolean { read-write } 1.0

OutputID: int32 { read-only } 1.0 2
PowerNotify: int32 { read-write } 1.3
PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0
DeviceControlDescription: string { read-only } 1.0

Unified POS, v1.15.1 Beta1 2-1

DeviceControlVersion: int32 { read-only } 1.0

DeviceServiceDescription: string { read-only } 1.0
DeviceServiceVersion: int32 { read-only } 1.0
PhysicalDeviceDescription: string { read-only } 1.0
PhysicalDeviceName: string { read-only } 1.0

Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

Methods (UML operations)

Name Version

open (logicalDeviceName: string): 1.0
void { raises-exception }

close (): 1.0
void { raises-exception }

claim? (timeout: int32): 1.0
void { raises-exception }

release? (): 1.0
void { raises-exception }

checkHealth (level: int32): 1.0
void { raises-exception }

clearInput (): 1.0
void { raises-exception }

clearInputProperties (): 1.10
void { raises-exception }

clearQutput (): 1.0

void { raises-exception }

directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

Unified POS, V1.15.1 Beta1

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively due to
Release being a reserved method used by Microsoft’s Component Object Model
(COM).

Events (UML interfaces)

- . Usage

Name Type Mutability Version Notes
upos::events::DataEvent 1.0 1

Status: int32 { read-only }
upos::events::DirectIOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent 1.0

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse: int32 { read-write }
upos::events::QutputCompleteEvent 1.0 2

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.0

Status: int32 { read-only }

Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

2.3 General Information

This section lists properties, methods, and events that are common to many of the peripheral devices covered in
this standard.

The summary section of each device category marks those common properties, methods, and events that do not
apply to that category as “Not Supported.” Items identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is required. Please see “Device
Behavior Models” on page 1-10 for additional information.

Unified POS, v1.15.1 Beta1 2-3

2.3.1

Common PME Class Diagram

The following diagram sh

ows the relationships between the Common classes.

<<Interface>>
BaseControl
(fromupos)

<<event>>
UposEvent
(fromevents)

fires

&i<<capability>> CapCompareFirmwareVersion : boolean
Zi<<capability>> CapPowerReporting : int32
£i<<capability>> CapStatisticsReporting : boolean
&i<<capability>> CapUpdateFirmware : boolean
gi<<capability>> CapUpdateStatistics : boolean
&<<prop>> AutoDisable : boolean

<<prop>> CheckHealthText : string
&<<prop>> Claimed : boolean

&<<prop>> DataCount : int32

&<<prop>> DataEventEnabled : boolean
£i<<prop>> DeviceEnabled : boolean
£i<<prop>> FreezeEvents : boolean
£<<prop>> OutputID : int32

£<<prop>> PowerNotify : int32

&<<prop>> PowerState : int32

L<<prop>> State : int32

£i<<prop>> De\viceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceSeniceDescription : string
<<prop>> DeviceSeniceVersion : int32
&<<prop>> PhysicalDeviceDescription : string
&<<prop>> PhysicalDeviceName : string

<<uses>>/

Sopen(logicalDeviceName : string) : woid

Sclose() : woid

Sclaim(timeout : int32) : void
ScompareFirmwareVersion(firmwareFileName : string, out result : int32) : wid
Srelease() : woid

WresetStatistics(statisticsBuffer : string) : wid

ScheckHealth(level : int32) : woid

Sclearinput() : wid

WclearinputProperties() : void

WclearOutput() : void

SdirectlO(command : int32, inout data : int32, inout obj : Object) : void
SretrieveStatistics(inout statisticsBuffer : string) : void
SupdateFirmware(firmwareFileName : string) : void
SupdateStatistics(statisticsBuffer : string) : void

<<utility>>

a4 b

Updated in Release 1.10

UposConst

(from upos)

<<uses>>/

<<sends>>

<<uses>>

<<uses>>

<<sends>>

<<Interface>>
BumpBarControl
(from upos)

<<Interface>>
MSRControl

(from upos)

\ <<sends>>
\

N

<<exception>>

UposException
(from upos)

\ /&<sends>>

<<Interface>>
POSPrinterControl
(from upos)

<<interface>>
<DevCat>Control
(from upos)

Notes:AutoDisable, DataCount, and DataEventEnabled are used only with Devices that have Event Driven

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...

Input. OutputID is used only with Asynchronous Output Devices.

Unified POS, V1.15.1 Beta1

2.4 Properties (UML attributes)

241

2.4.2

243

AutoDisable Property

Syntax AutoDisable: boolean { read-write }

Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives and enqueues data
as a DataEvent. Before any additional input can be received, the application must set
DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when data is received.
This property provides the application with an additional option for controlling the receipt of input
data. If an application wants to receive and process only one input, or only one input at a time, then
this property should be set to true. This property applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18.

CapCompareFirmwareVersion Property Revised in Release 1.14

Syntax CapCompareFirmwareVersion: boolean { read-only, access after open }

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical
device against that of a firmware file; initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also compareFirmwareVersion Method.

CapPowerReporting Property Updated in Release 1.11

Syntax CapPowerReporting: int32 { read-only }

Remarks Identifies the reporting capabilities of the Device. It has one of the following values:

Value Meaning

PR NONE The UnifiedPOS Service cannot determine the state of the device.
Therefore, no power reporting is possible.

PR_STANDARD The UnifiedPOS Service can determine and report two of the power states
- OFF _OFFLINE (that is, off or offline) and ONLINE.

PR_ADVANCED The UnifiedPOS Service can determine and report all three power states
- OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also “Device Power Reporting Model” on page 1-22, PowerState Property, PowerNotify Property.

Unified POS, v1.15.1 Beta1 2-5

24.4 CapStatisticsReporting Property Added in Release 1.8

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage; otherwise no
usage statistics are accumulated. The information accumulated and reported is device specific, and
is retrieved using the retrieveStatistics method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also retrieveStatistics Method.

245 CapUpdateFirmware Property Updated in Release 1.14

Syntax CapUpdateFirmware: boolean { read-only, access after open }

Remarks If true, then the device’s firmware can be updated via the updateFirmware method; initialized by
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also updateFirmware Method.

2.4.6 CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the resetStatistics
method, or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics Method.

Unified POS, V1.15.1 Beta1

2.4.7 CheckHealthText Property

Syntax

Remarks

Errors

See Also

CheckHealthText: string { read-only }

Holds the results of the most recent call to the checkHealth method. The following examples
illustrate some possible diagnoses:

* “Internal HCheck: Successful”

* “External HCheck: Not Responding”

* “Interactive HCheck: Complete”

This property is empty (“”’) before the first call to the checkHealth method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

checkHealth Method.

2.4.8 Claimed Property

Syntax

Remarks

Errors

See Also

Claimed: boolean { read-only }

If true, the device is claimed for exclusive access. If false, the device is released for sharing with
other applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will deliver events to the application.

This property is initialized to false by the open method.
A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Device Initialization and Finalization” on page 1-12, “Device Sharing Model” on page 1-14, claim
Method, release Method.

2.49 DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only }
Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a
device, but has not yet been delivered because of other application processing, freezing of events,
or other causes.

This property is initialized to zero by the open method.
A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Device Input Model” on page 1-18, DataEvent.

Unified POS, v1.15.1 Beta1 2-7

2.4.10 DataEventEnabled Property

Syntax

Remarks

Errors

See Also

DataEventEnabled: boolean { read-write }

Iftrue, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other
conditions may delay “immediate” delivery: if FreezeEvents is true or another event is already
being processed at the application, the DataEvent will remain queued at the UnifiedPOS Service
until the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs,
the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Events” on page 1-15, DataEvent.

2.4.11 DeviceControlDescription Property

Syntax

Remarks

Errors

See Also

DeviceControlDescription: string { read-only }
Holds an identifier for the UnifiedPOS Control and the company that produced it.

A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998 Epson”

This property is always readable.

None.

DeviceControlVersion Property.

Unified POS, V1.15.1 Beta1

2.4.12 DeviceControlVersion Property

Syntax

Remarks

Errors

See Also

DeviceControlVersion: int32 { read-only }
Holds the UnifiedPOS Control version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control developer. Updated
when corrections are made to the UnifiedPOS Control implementation.

A sample version number is: 1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the UnifiedPOS Control. This property is always readable.

None.

“Version Handling” on page 29, DeviceControlDescription Property.

2.413 DeviceEnabled Property

Syntax

Remarks

Errors

See Also

DeviceEnabled: boolean { read-write }

If true, the device is in an operational state. If changed to true, then the device is brought to an
operational state.

If false, the device has been disabled. If changed to false, then the device is physically disabled when
possible, any subsequent input will be discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For consistency, however,
the application must set this property to true before using output devices.

The Device’s power state may be reported while DeviceEnabled is true; See “Device Power
Reporting Model” on page 1-22 for details.

This property is initialized to false by the open method. Note that an exclusive use device must be
claimed before the device may be enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Device Initialization and Finalization” on page 1-12.

Unified POS, v1.15.1 Beta1 2-9

2.4.14 DeviceServiceDescription Property

Syntax

Remarks

Errors

DeviceServiceDescription: string { read-only }
Holds an identifier for the UnifiedPOS Service and the company that produced it.

A sample returned string is:
“TM-U950 Printer UnifiedPOS Compatible Service Driver, (C) 1998 Epson”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

2.4.15 DeviceServiceVersion Property

Syntax

Remarks

Errors

See Also

DeviceServiceVersion: int32 { read-only }
Holds the UnifiedPOS Service version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service developer. Updated
when corrections are made to the UnifiedPOS Service implementation.

A sample version number is:
1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version
2, build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Version Handling” on page 1-29, DeviceServiceDescription Property.

Unified POS, V1.15.1 Beta1

2.4.16 FreezeEvents Property Updated in Release 1.12

Syntax

Remarks

Errors

FreezeEvents: boolean { read-write }

If true, the UnifiedPOS Control will not deliver events. Events will be enqueued until this property
is set to false.

If false, the application allows events to be delivered. If some events have been held while events
were frozen and all other conditions are correct for delivering the events, then changing this
property to false will allow these events to be delivered. An application may choose to freeze events
for a specific sequence of code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of this
property.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

2.4.17 OutputiD Property

Syntax

Remarks

Errors

See Also

OutputlID: int32 { read-only }
Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns an identifier to
the request. When the output completes, an QutputCompleteEvent will be enqueued with this
output ID as a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are guaranteed to be unique
among the set of outstanding asynchronous outputs. No other facts about the ID should be assumed.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Device Output Models” on page 1-21, OutputCompleteEvent.

Unified POS, v1.15.1 Beta1 2-11

2.4.18 PowerNotify Property

Syntax PowerNotify: int32 { read-write }

Remarks Contains the type of power notification selection made by the Application. It has one of the
following values:

Value Meaning

PN DISABLED The UnifiedPOS Service will not provide any power notifications to the
application. No power notification StatusUpdateEvents will be fired,
and PowerState may not be set.

PN ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState, beginning when
DeviceEnabled is set to true. The level of functionality depends upon
CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is false.

This property is initialized to PN DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following occurred:

» The device is already enabled.

* PowerNotify = PN_ENABLED but CapPowerReporting =
PR_NONE.

See Also “Device Power Reporting Model” on page 1-22, CapPowerReporting Property, PowerState
Property.

2-12 Unified POS, V1.15.1 Beta1

2.4.19 PowerState Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

PowerState: int32 { read-only }

Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning
PS_ UNKNOWN Cannot determine the device’s power state for one of the following
reasons:

CapPowerReporting = PR_NONE; the device does not support power
reporting.

PowerNotify = PN _DISABLED; power notifications are disabled.

DeviceEnabled = false; Power state monitoring does not occur until the
device is enabled.)
PS_ONLINE The device 1s powered on and ready for use. Can be returned if

CapPowerReporting = PR_ STANDARD or PR_ ADVANCED.

PS_OFF The device is powered off or detached from the POS terminal. Can only
be returned if CapPowerReporting = PR ADVANCED.

PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting =
PR_ADVANCED.

PS_OFF OFFLINE The device is either off or off-line. Can only be returned if
CapPowerReporting = PR_ STANDARD.

This property is initialized to PS UNKNOWN by the open method. When PowerNotify is set to
enabled and DeviceEnabled is true, then this property is updated as the UnifiedPOS Service detects
power condition changes.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

“Device Power Reporting Model” on page 1-22, CapPowerReporting Property, PowerNotify
Property.

2.4.20 PhysicalDeviceDescription Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceDescription: string { read-only }
Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

PhysicalDeviceName Property.

Unified POS, v1.15.1 Beta1 2-13

2.4.21 PhysicalDeviceName Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceName: string { read-only }

Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application message box, where the
full description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

PhysicalDeviceDescription Property.

2.4.22 State Property

Syntax

Remarks

Errors

See Also

State: int32 { read-only }

Holds the current state of the Device. It has one of the following values:

Value Meaning

S CLOSED The Device is closed.

S IDLE The Device is in a good state and is not busy.

S BUSY The Device is in a good state and is busy performing output.

S _ERROR An error has been reported, and the application must recover the Device

to a good state before normal I/O can resume.

This property is always readable.

None.

“Device Information Reporting Model” on page 1-25.

Unified POS, V1.15.1 Beta1

2.5

2.5.1

2.5.2

Methods (UML operations)

checkHealth Method

Syntax

Remarks

Errors

See Also

checkHealth (level: int32): void { raises-exception }

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
CH_INTERNAL Perform a health check that does not physically change the device. The
device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device. For example, a
pattern may be printed on the printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting UnifiedPOS
Service will typically display a modal dialog box to present test options
and results.

Tests the state of a device.

A text description of the results of this method is placed in the CheckHealthText property. The
health of many devices can only be determined by a visual inspection of these test results.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The specified health check level is not supported by the UnifiedPOS
Service.

CheckHealthText Property.

claim Method Updated in Release 1.11

Syntax

Remarks

Errors

claim (timeout: int32): void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to
be satisfied. If zero, then immediately either returns (if successful) or throws an appropriate
exception. If FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Requests exclusive access to the device. Many devices require an application to claim them before
they can be used.

When successful, the Claimed property is changed to true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 2-15

2.5.3

254

See Also

Value Meaning
E ILLEGAL This device cannot be claimed for exclusive access, or an invalid timeout
parameter was specified.

E TIMEOUT Another application has exclusive access to the device, and did not
relinquish control before timeout milliseconds expired.

“Device Initialization and Finalization” on page 1-12, “Device Sharing Model” on page 1-14,
release Method.

clearlnput Method

Syntax clearInput (): void { raises-exception }

Remarks Clears all device input that has been buffered.
Any data events or input error events that are enqueued — usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18.

clearlnputProperties Method Added in Release 1.10

Syntax clearInputProperties (): void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back
to their default values. This does not reset the DataCount or State properties.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Input Model” on page 1-18.

Unified POS, V1.15.1 Beta1

2.5.5 clearOutput Method Updated in Release 1.7

Syntax clearOutput (): void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts
outputs that are in progress. Any output error events that are enqueued — usually waiting for
FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Output Models” on page 1-21.
2.5.6 close Method

Syntax close ():void { raises-exception }
Remarks Releases the device and its resources.
If the DeviceEnabled property is true, then the device is disabled.

If the Claimed property is true, then exclusive access to the device is released.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also “Device Initialization and Finalization” on page 1-12, open Method.

2.5.7 compareFirmwareVersion Method Added in Release 1.9
Syntax compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files whose versions are to be compared
against those of the device.

result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer
than, older than, or the same as the version of the firmware in the physical device.

The Service should check that the specified firmware file exists and that its contents are valid for
this device before attempting to perform the comparison operation.

The result of the comparison is returned in the result parameter and will be one of the following
values:

Unified POS, v1.15.1 Beta1 2-17

Errors

See Also

YValue Meaning

CFV_FIRMWARE OLDER Indicates that the version of one or more of the firmware files is
olderthan the firmware in the device and thatnone ofthe
firmware files is newer than the firmware in the device.

CFV_FIRMWARE SAME Indicates that the versions of all of the firmware files are the same
as the firmware in the device.

CFV_FIRMWARE NEWER Indicates that the version of one or more of the firmware files is
newer than the firmware in the device and that none of the
firmware files is older than the firmware in the device.

CFV_FIRMWARE DIFFERENT
Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:

» The chronological relationship cannot be determined, or
* The relationship is inconsistent -- one or more are older while
one or more are newer.

CFV_FIRMWARE UNKNOWN
Indicates that a relationship between the two firmware versions
could not be determined. A possible reason for this result could
be an attempt to compare Japanese and US versions of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapCompareFirmwareVersion is false.
E _NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

E EXTENDED ErrorCodeExtended = EFIRMWARE BAD FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

CapCompareFirmwareVersion Property.

Unified POS, V1.15.1 Beta1

2.5.8 directlO Method

2.5.9

Syntax

Remarks

Errors

See Also

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception }

Parameter Description
command Command number whose specific values are assigned by the UnifiedPOS
Service.

data An array of one mutable integer whose specific values or usage vary by
command and UnifiedPOS Service.

obj Additional data whose usage varies by command and UnifiedPOS
Service.

Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality to the application
that is not otherwise supported by the standard UnifiedPOS Control for its device category.
Depending upon the UnifiedPOS Service’s definition of the command, this method may be
asynchronous or synchronous.

Use of this method will make an application non-portable. The application may, however, maintain
portability by performing directIO calls within conditional code. This code may be based upon the
value of the DeviceServiceDescription, PhysicalDeviceDescription, or PhysicalDeviceName
property.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

DirectlIOEvent.

open Method Updated in Release 1.7

Syntax

Remarks

open (logicalDeviceName: string):
void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.

Opens a device for subsequent 1/0.

The device name specifies which of one or more devices supported by this UnifiedPOS Control
should be used. The logicalDeviceName must exist in the operating system’s reference locater
system (such as the JavaPOS Configurator/Loader (JCL) or the Window’s Registry) for this device
category so that its relationship to the physical device can be determined. Entries in the reference
locator’s system are created by a setup or configuration utility.

The following sequence diagram shows the details of what needs to happen during the open method
call processing to allow the creation of the Service and its binding to the Control.

Unified POS, v1.15.1 Beta1 2-19

platform. Note also, that some platform binding might have "easier" or "harder" API to accomplish the same task.

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular ﬁ

:ClientApp :<DevCat> :Config :Loader :<DevCat>
(registry of senvice properties) Senice

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the
senices that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories

1: open(logicalNameL 2: find properties of senice Lith logicalName

3: pass loader properties, and ask to %reate senice

\ 4: loader parses properties and loads the <De\,Cat>Servicre
/S R
\ / F 5: create and/or bind to service

- g
T ‘ 6: retum §§r\fce instancy(o control ‘
]

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.
However, logically the actions above are happening on the
system.

When this method is successful, it initializes the properties Claimed, DeviceEnabled,
DataEventEnabled, and FreezeEvents, as well as descriptions and version numbers of the
UnifiedPOS software layers. Additional category-specific properties may also be initialized.

Errors A UposException may be thrown when this method is invoked. For further information,
see “Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The UnifiedPOS Control is already open.

E NOEXIST The specified logicalDeviceName was not found.

E NOSERVICE Could not establish a connection to the corresponding UnifiedPOS
Service.

See Also “Device Initialization and Finalization” on page 1-12, “Version Handling” on page 1-29, close
Method.

Unified POS, V1.15.1 Beta1

2.5.10 release Method

Syntax

Remarks

Errors

See Also

release ():
void { raises-exception }

Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device, then the device is
also disabled (this method does not change the device enabled state of sharable devices).

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The application does not have exclusive access to the device.

“Device Sharing Model” on page 1-14, claim Method.

2.5.11 resetStatistics Method Updated in Release 1.10

Syntax

Remarks

Errors

resetStatistics (statisticsBuffer: s#ring):void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL resettable
statistics are to be reset, “‘U_" means all UnifiedPOS defined resettable statistics are to be reset,
“M_" means all manufacturer defined resettable statistics are to be reset, and “actual namel,
actual name2” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be reset.

Resets the defined resettable statistics in a device to zero. All the requested statistics must be
successfully reset in order for this method to complete successfully, otherwise an ErrorCode of
E_EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use
this method.

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1 2-21

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named
statistic is not defined/resettable.
E EXTENDED ErrorCodeExtended = ESTATS ERROR:

At least one of the specified statistics could not be reset.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be reset in addition to a requested

statistic.
See Also CapStatisticsReporting Property, CapUpdateStatistics Property.
2.5.12 retrieveStatistics Method Added in Release 1.8
Syntax retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }
Parameter Description
statistics Buffer The data buffer defining the statistics to be retrieved and in which the
retrieved statistics are placed.
This is a comma-separated list of name(s), where an empty string (“”’) means ALL statistics are to
be retrieved, “U_" means all UnifiedPOS defined statistics are to be retrieved, “M_" means all
manufacturer defined statistics are to be retrieved, and “actual namel, actual name2” (from the
XML file definitions) means that the specifically defined statistic(s) are to be retrieved.
Remarks Retrieves the requested statistics from a device.

CapStatisticsReporting must be true in order to successfully use this method.
This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version='1.0" 2>

<UPOSStat version="”1.13.0” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance” xmlns="http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation="http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

<Event>
<Parameter>
<Name>RequestedStatistic</Name>
<Value>1234</Value>
</Parameter>
</Event>
<Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>R8232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>

</UPOSStat>

Unified POS, V1.15.1 Beta1

If the application requests a statistic name that the device does not support, the <Parameter> entry
will be returned with an empty <value>. e.g.,

<Parameter>
<Name>RequestedStatistic</Name>
<Value></Value>

</Parameter>

All statistics that the device collects that are manufacturer specific (not defined in the schema) will
be returned in a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>
<Name>TheAnswer</Name>
<Value>42</Value>

</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter>
entry for every defined statistic for the device category as defined by the XML schema version
specified by the version attribute in the <UPOSStat> tag. If the device does not record any of the
statistics, the <value> tag will be empty.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http:/

retail.omg.org.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapStatisticsReporting is false or the named statistic is not defined.

See Also CapStatisticsReporting Property.

2.5.13 updateFirmware Method Added in Release 1.9
Syntax updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file
containing a set of firmware files that are to be downloaded into the
device.

Remarks This method updates the firmware of a device with the version of the firmware contained or defined
in the file specified by the firmwareFileName parameter regardless of whether that firmware’s
version is newer than, older than, or the same as the version of the firmware already in the device.
If the firmwareFileName parameter specifies a file list, all of the component firmware files should
reside in the same directory as the firmware list file. This will allow for distribution of the updated
firmware without requiring a modification to the firmware list file.

Unified POS, v1.15.1 Beta1 2-23

http://retail.omg.org
http://retail.omg.org
http://retail.omg.org
http://retail.omg.org

Errors

See Also

When this method is invoked, the Service should check that the specified firmware file exists and
that its contents are valid for this device. If so, this method should return immediately and the
remainder of the update firmware process should continue asynchronously.

The Service should notify the application of the status of the update firmware process by firing
StatusUpdateEvents with values of SUE_ UF PROGRESS + an integer between 1 and 100
indicating the completion percentage of the update firmware process. For application convenience,
the StatusUpdateEvent value SUE_UF_COMPLETE is defined to be the same value as
SUE_UF PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been
downloaded into the physical device, any necessary physical device reset has completed, and the
Service and the physical device have been returned to the state they were in before the update
firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete
progress completion percentage (i.c., a percentage between 1 and 99), even if the device cannot
physically report the progress of the update firmware process. If the update firmware process
completes successfully, the Service must fire a StatusUpdateEvent with a progress of 100 or use
the special constant SUE_UF_COMPLETE, which has the same value. These Service requirements
allow applications using this method to be designed to always expect some level of progress
notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the
following StatusUpdateEvents will be fired:

Value Meaning
SUE UF FAILED DEV_OK The update firmware process failed but the device is still
operational.

SUE UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the device is neither
usable nor recoverable through software. The device requires
service to be returned to an operational state.

SUE UF FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

SUE UF _FAILED DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapUpdateFirmware is false.
E _NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

E_EXTENDED ErrorCodeExtended = EFIRMWARE BAD FILE:
The specified firmware file or files exist, but one or more are either not
in the correct format or are corrupt.

CapUpdateFirmware Property.

Unified POS, V1.15.1 Beta1

2.5.14 updateStatistics Method Updated in Release 1.10

Syntax

Remarks

Errors

See Also

updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description
statistics Buffer The data buffer defining the statistics with values that are to be updated.

(13333}

This is a comma-separated list of name-value pair(s), where an empty string name (‘“““’=valuel”)
means ALL resettable statistics are to be set to the value “valuel,” “U_=value2” means all
UnifiedPOS defined resettable statistics are to be set to the value “value2,” “M_=value3” means all
manufacturer defined resettable statistics are to be set to the value “value3,” and

“actual namel=value4, actual name2=value5” (from the XML file definitions) means that the
specifically defined resettable statistic(s) are to be set to the specified value(s).

Updates the defined resettable statistics in a device. All the requested statistics must be successfully
updated in order for this method to complete successfully, otherwise an ErrorCode of
E _EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use
this method.

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named
statistic is not defined/updatable.

E EXTENDED ErrorCodeExtended = ESTATS ERROR:

At least one of the specified statistics could not be updated.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be updated in addition to a
requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

Unified POS, v1.15.1 Beta1 2-25

2.6 Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive a specific implementation
case. The UML event base control model and interfaces are shown below for the events.

upos::BaseControl

<<utility>>
UposConst
(from upos)

—7
////
// <<uses>>
///
<< >> . <<Interface>>
event fires
UposEvent BaseControl
(from events) (from upos)

. <<sends>>
N
N\

<<exception>>
UposException
(from upos)

2-26 Unified POS, V1.15.1 Beta1

upos::events interfaces

<<event>>
DataEvent

(from events)

g<<prop>> Status : int32

W

<<event>>
UposEvent

(from events)

<<event>>
OutputCompleteEvent

(from events)

T g<<prop>> OutputlD : int32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\“
<<event>> \ <<event>>
DirectlOEvent \ StatusUpdateEvent
(from events) | (from events)

|

g::prop:: gv?ntNutrgger 1 int32 \\ g<<prop>> Status : int32
&<<prop ata:in ‘
o o |
g<<prop>> Obj : object \‘
|
|
|
\\

<<event>>
ErrorEvent

(from events)

g<<prop>> ErrorCode : int32
&<<prop>> ErrorCodeExtended : int32
g<<prop>> ErrorLocus : int32

g<<prop>> ErrorResponse : int32

Unified POS, v1.15.1 Beta1

2.6.1

2.6.2

DataEvent

<<event>> upos::events::DataEvent

Status: int32 { read-only }

Description Notifies the application that input data is available from the device.

Attribute

Remarks

See Also

This event contains the following attribute:

Attribute Type Description
Status int32 The input status with its value dependent upon the device category; it may
describe the type or qualities of the input data.

When this event is delivered to the application, the DataEventEnabled property is changed to false,
so that no further data events will be delivered until the application sets DataEventEnabled back
to true. The actual byfe array input data is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is enqueued in an
internal buffer, the device-specific input data properties are not updated, and the event is not
delivered. When DataEventEnabled is subsequently changed back to true, the event will be
delivered immediately if input data is enqueued and FreezeEvents is false.

“Errors” on page 1-16, “Device Input Model” on page 1-18, DataEventEnabled Property,
FreezeEvents Property.

DirectlOEvent Updated in Release 1.7

<<event>> upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides UnifiedPOS Service information directly to the application. This event provides a means

Attributes

for a vendor-specific UnifiedPOS Service to provide events to the application that are not otherwise
supported by the UnifiedPOS Control.

This event contains the following attributes:

Attribute Type Description
EventNumber int32 Eventnumberwhose specific values are assigned by the Unified
POS Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the UnifiedPOS Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the
UnifiedPOS Service. This attribute is settable. !

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See Binary
Conversion property in Annex A.

Unified POS, V1.15.1 Beta1

2.6.3

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described as part of the UnifiedPOS standard. Use of this event may restrict the application program
from being used with other vendor’s devices which may not have any knowledge of the UnifiedPOS
Service’s need for this event.

See Also “Events” on page 1-15, directlO Method.

ErrorEvent Updated in Release 1.13

<<event>> upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is necessary to

Attributes

process the error condition.
This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes under
“Errors” on page 1-16.

ErrorCodeExtended
int32 Extended Error Code causing the error event. These values are device
category specific.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this attribute is settable). See values below.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL OUTPUT Error occurred while processing asynchronous output.
EL INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one of the following
values: (Updated in 1.13)

Unified POS, v1.15.1 Beta1 2-29

2.6.4

Remarks

See Also

Value Meaning

ER RETRY Retry sending the data. The error state is exited.
May be valid for some input devices when the locus is EL_INPUT, in
which case the input is retried and the error state is exited. Typically valid
for asynchronous output devices when the locus is EL_ OUTPUT, in
which case the asynchronous output is retried and the error state is exited.
This is the default response when the locus is EL_ OUTPUT.

ER_CLEAR Valid for all loci: EL_INPUT, EL_INPUT DATA, and EL_ OUTPUT.
Clear all buffered input or output data (including all asynchronous
output). The error state is exited. This is the default response when the
locus is EL_INPUT.

ER _CONTINUEINPUT
Only valid when the locus is EL_ INPUT DATA.
Acknowledges that a data error has occurred and directs the Device to
continue input processing. The Device remains in the error state and will
deliver additional DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered with locus
EL _INPUT.
This is the default response when the locus is EL_ INPUT _DATA.

This event is enqueued when an error is detected and the Device’s State transitions into the error
state. Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it
leaves the DataEventEnabled property value at true. Note that the application may set
DataEventEnabled to false within its event handler if subsequent input events need to be disabled
for a period of time.

“Device Input Model” on page 1-18, “Error Handling” on page 1-19, “Device Output Models” on
page 1-21.

OutputCompleteEvent Updated in Release 1.13

<<event>>

Description

Attribute

Remarks

See Also

upos::events::OQutputCompleteEvent
OutputlID: int32 { read-only }

Notifies the application that the qeued output request associated with the OutputID attribute has
completed successfully.

This event contains the following attribute:

Attribute Type Description
OutputlD int32 The ID number of the asynchronous output request that is complete.

This event is enqueued after the requested data has been both sent and the UnifiedPOS Service has
confirmation that is was processed by the device successfully.

“Device Output Models” on page 1-21, OutputID Property.

Unified POS, V1.15.1 Beta1

2.6.5 StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.

Attribute

This event contains the following attribute:

Attribute Type Description
Status int32 Device category-specific status, describing the type of status change.

Release 1.3 and later — Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning
SUE POWER ONLINE
The device is powered on and ready for use. Can be returned if
CapPowerReporting =PR_STANDARD or PR_ ADVANCED.
SUE_POWER_OFF The device is off or detached from the terminal. Can only be returned if
CapPowerReporting =PR ADVANCED.
SUE POWER OFFLINE
The device is powered on but is either not ready or not able to respond to
requests. Can only be returned
if CapPowerReporting = PR_ ADVANCED.
SUE POWER _OFF_OFFLINE
The device is either off or off-line. Can only be returned
if CapPowerReporting = PR STANDARD.

The common property PowerState is also maintained at the current power state of the device.

Unified POS, v1.15.1 Beta1 2-31

Remarks

See Also

Release 1.9 and later — Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:

Value Meaning

SUE UF PROGRESS + 1 to 100
The update firmware process has successfully completed 1 to 100 percent
of the total operation.

SUE UF COMPLETE The update firmware process has completed successfully. The value of
this constant is identical to SUE_UF_PROGRESS + 100.

SUE UF COMPLETE DEV_NOT RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the
update firmware process started. The Service has restored all properties to
their default initialization values.

To ensure consistent Service and physical device states, the application
needs to close the Service, then open, claim, and enable again, and also
restore all custom application settings.
SUE_UF_FAILED DEV_OK
The update firmware process failed but the device is still operational.
SUE UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned
to an operational state.
SUE _UF _FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

SUE UF FAILED DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

This event is enqueued when a Device needs to alert the application of a device status change.
Examples are a change in the cash drawer position (open vs. closed) or a change in a POS printer
sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the application of the device
state. This behavior, however, is not required.

“Events” on page 1-15, “Device Power Reporting Model” on page 1-22, CapPowerReporting
Property, CapUpdateFirmware Property, PowerNotify Property.

Unified POS, V1.15.1 Beta1

3

3.1

3.2

Belt

General

This Chapter defines the Belt device category.

Summary

Properties (UML attributes)
Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:
DeviceControlVersion:

DeviceServiceDescription:

Unified POS, v1.15.1 Beta1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }

Version
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

1.12
1.12
1.12

May Use After
Not supported
open
open
open
open
open
open
open
Not supported
Not supported
open & claim
open
Not supported
open

open

Properties (Continued)

Specific
CapAutoStopBackward:

CapAutoStopBackwardItemCount:

CapAutoStopForward:
CapAutoStopForwardItemCount:
CapLightBarrierBackward:
CapLightBarrierForward:
CapMoveBackward:
CapSecurityFlapBackward:
CapSecurityFlapForward:
CapSpeedStepsBackward:
CapSpeedStepsForward:

AutoStopBackward:
AutoStopBackwardDelayTime:
AutoStopBackwardItemCount:
AutoStopForward:
AutoStopForwardDelayTime:
AutoStopForwardItemCount:

LightBarrierBackwardInterrupted:

LightBarrierForwardInterrupted:
MotionStatus:
SecurityFlapBackwardOpened:
SecurityFlapForwardOpened:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32

int32

boolean
int32
int32
boolean
int32
int32
boolean
boolean
int32
boolean

boolean

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }

{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }

void { raises-exception, use after open }

claim (timeout: int32):

void { raises-exception, use after open }

Version
1.
L.
1.

12

12

12

12

12

12

12

12

—_ = = = e

—_

—_ = = e

—_ = = =

12
12
12

12

12

12

12

12
12
12
12
12
12
12

May Use After
open
open
open
open
open
open
open
open
open
open

open

open

open

open

open

open

open
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable

open, claim, & enable

Version
1.12

1.12

1.12

Unified POS, v1.15.1 Beta1

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, enable }

clearInput ():
void { }

clearInputProperties ():
void { }

clearOutput ():
void { }

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

Specific
Name

adjustItemCount (direction: int32, count: int32):
void { raises-exception, use after open, claim, enable }

moveBackward (speed: int32):
void { raises-exception, use after open, claim, enable }

moveForward (speed: int32):
void { raises-exception, use after open, claim, enable }

resetBelt ():
void { raises-exception, use after open, claim, enable }

resetitemCount (direction: int32):
void { raises-exception, use after open, claim, enable }

stopBelt ():
void { raises-exception, use after open, claim, enable }

Unified POS, v1.15.1 Beta1

1.12

1.12

Not supported

Not supported

Not supported

1.12

1.12

1.12

1.12

1.12

1.12

1.12
1.12

1.12

1.12

1.12

3.3

3.3.1

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not supported
upos::events::DirectlOEvent 1.12

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not supported
upos::events::OQutputCompleteEvent Not supported
upos::events::StatusUpdateEvent 1.12

Status: int32 { read-only }

General Information

The Belt programmatic name is “Belt”.
This device category was added to Version 1.12 of the specification.

Capabilities

The Belt Control has the following capability:
« Supports a command to move the belt in forward direction.
« Supports commands to stop and reset the belt.

The Belt may have several additional capabilities, these are moving in backward direction, moving with different
speeds, light barriers, security flap, controlling an automatic stop and emergency stop. See 3.5.1 Model and the
capabilities properties for specific information.

Unified POS, v1.15.1 Beta1

3.4 Belt Class Diagram

The following diagram shows the relationships between the Belt classes.

«exception»
UposException

«sends»

«sends» \/\

«firesy _ -~

«eventy
StatusUpdateEvent

+Status : int32

Unified POS, v1.15.1 Beta1

«interface»
BaseControl

«utility»

«uses» UposConst

«uses»

«interface»
BeltControl

+CapAutoStopBackward : boolean
+CapAutoStopBackwardltemCount : boolean
+CapAutoStopForward : boolean
+CapAutoStopForwardltemCount : boolean
+CapLightBarrierBackward : boolean
+CapLightBarrierForward : boolean
+CapMoveBackward : boolean
+CapSecurityFlapBackward : boolean
+CapSecurityFlapForward : boolean
+CapSpeedStepsBackward : int32
+CapSpeedStepsForward : int32
+AutoStopBackward : boolean
+AutoStopBackwardDelayTime : int32
+AutoStopBackwardltemCount : int32
+AutoStopForward : boolean
+AutoStopForwardDelayTime : int32
+AutoStopForwardltemCount : int32
+LightBarrierBackwardInterrupted : boolean
+LightBarrierForwardInterrupted : boolean
+MotionStatus : int32
+SecurityFlapBackwardOpened : boolean
+SecurityFlapForwardOpened : boolean

+adjustltemCount(direction : int32, count : int32) : void
+moveBackward(speed : int32) : void
+moveForward(speed : int32) : void

+resetBelt() : void

+resetltemCount(direction : int32) : void

+stopBelt() : void

T~ «fires»

«utility»
BeltConst

«eventy
DirectlOEvent

+EventNumber : int32
+Data : int32
+Obj : object

3.5 Belt Sequence Diagram

The following sequence diagram shows the typical usage of the Belt device during an automatic stop scenario.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. The belt should automatically stop after five items passing
the light barrier, that means CapAutoStopForward and CapAutoStopForwardltemCount are true.

Application Belt Control Belt Service Belt
| | | |
| | | |

A — L A

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)
3: connect or somehow have
access to the hardware

4: adjustlitemCount
(BELT_AIC_FORWARD, 5)

5: adjustitemCount
(BELT_AIC_FORWARD, 5)

6: setAutoStopForward(true)

7: setAutoStopForward(true)

8: moveForward(speed1)

9: moveForward(speed1)

10: moves the belt forward

Assume that five items passed the light barrier
and another one is detected. The belt stops.

11: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

11: notify client of new event

Application event handling
code takes appropriate action

3-6 Unified POS, v1.15.1 Beta1

The following sequence diagram shows the typical usage of the Belt device during an emergency stop
scenario caused by an open security flap.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. Emergency stop caused by an open security flap, that
means CapSecurityFlapForward is true.

Application Belt Control Belt Service Belt
i i i i
| | | |

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)
3: connect or somehow have
access to the hardware

4: moveForward(speed1)

5: moveForward(speed1)

6: moves the belt forward

Assume that an item opens the security flap.
The belt stops due to an emergency condition.

7: update MotionStatus to BELT_MT_EMERGENCY
and deliver SUE

8: notify client of new event

Application event handling code takes
appropriate action, calls for assistance
and the problem is finally fixed.

9: resetBelt()

10: resetBelt()

11: resets the belt

12: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

13: notify client of new event

Application goes on with
normal operation.

14: moveForward(speed1)

15: moveForward(speed1)

16: moves the belt forward

Unified POS, v1.15.1 Beta1

3.5.1

3.5.2

Model

The general model of a Belt is:
« After the belt is enabled an application can call moveForward and stopBelt in order to control the motion.
« If CapMoveBackward is true, the application may also call moveBackward.

» Moving forward and backward may be available in different speeds defined by CapSpeedStepsBackward and
CapSpeedStepsForward.

* Due to safety regulations a belt is usually equipped with security flaps at the end of the belt, at both ends if it can
move backwards. CapSecurityFlapBackward and CapSecurityFlapForward are defining the availability of
them.

» CapAutoStopBackward and CapAutoStopForward tell an application if the belt supports an automatic stop.
Whether the application wants to use this feature can be controlled by setting AutoStopBackward and
AutoStopForward properties. The belt is stopped if an automatic stop condition becomes true. Usually such a
condition is controlled by light barriers, but it can also correspond to an internal state of the device which is not
exposed. The condition is device specific and has to be explained in the device documentation.

« Light barriers may be available for handling an automatic stop feature. CapLightBarrierBackward and
CapLightBarrierForward define the availability of such barriers.

« If CapAutoStopForwardItemCount is true the application may control the automatic stop feature depending on a
number of items passing the light barrier or any other item counting mechanism in forward direction by calling
adjustltemCount and resetltemCount. In this case the belt is automatically stopped if
AutoStopForwardItemCount is zero and an additional item is detected. This feature may be also available for
backward direction.

« If CapAutoStopForward is true, an application may also delay automatic stop in forward direction by setting
AutoStopForwardDelayTime. The delay time starts when an automatic stop condition becomes true. The belt is
stopped when the delay time has expired. During delay time automatic stop is cancelled if the automatic stop
condition becomes false. This feature may be also available for backward direction.

« The application will be informed about any status change with a StatusUpdateEvent, also all corresponding status
properties will be updated before event delivery.

« An emergency stop will occur if one of the security flaps is open or the operator presses an emergency button. In this
case technical assistance is needed and the application has to reset the belt by calling resetBelt. A security stop will
occur if the belt has been stopped due to safety requirement regulations but no technical assistance is needed.

Device Sharing

Belt is an exclusive-use device. Its device sharing rules are:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties and methods, or receiving
events.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1

3.5.3 Belt State Diagram

The following diagram illustrates the various state transitions within the Belt device category.

open claim

{ Closed]/ /[Opened]/ /[Claimed)

close release

close release

moveForward motor fault
H Forward
stopBelt fire event
H Stop ’| Fire Events

moveBackward
H Backward
emergency stop

Enabled

emergency stop Emergency

Stop

fire
event done

done

automatic stop
pJemio4arow

fire
event

©

[0]

o
T

done

fire
event

done

automatic stop
piemyoegarow

Motor Fault

motor fault

3.6 Properties (UML attributes)

3.6.1 AutoStopBackward Property

Syntax

Remarks

Errors

See Also

AutoStopBackward: boolean { read-write, access after open }

If true, the automatic stop feature in backward direction is enabled. If false, it is disabled. The belt
will automatically stop if an automatic stop condition becomes true.

If CapAutoStopBackward is false, then this property is always false.
This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapAutoStopBackward Property.

Unified POS, v1.15.1 Beta1 3-9

3.6.2 AutoStopBackwardDelayTime Property

3.6.3

3.6.4

3-10

Syntax

Remarks

Errors

See Also

AutoStopBackwardDelayTime: int32 { read-write, access after open }

Specifies a delay time in milliseconds for an automatic stop in backward direction. The delay time
starts when an automatic stop condition becomes true. The delay time counting stops and automatic
stop is cancelled if the condition becomes false.

If CapAutoStopBackward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapAutoStopBackward Property.

AutoStopBackwardltemCount Property

Syntax

Remarks

Errors

See Also

AutoStopBackwardItemCount: in#32 { read-only, access after open }

Holds the actual item counter for an automatic stop in backward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter
mechanism detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be
reset to zero by calling the resetlitemCount method.

If CapAutoStopBackward or CapAutoStopBackwardItemCount is false, then this property has
no meaning.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapAutoStopBackward Property, CapAutoStopBackwardItemCount Property,
adjustltemCount Method, resetltemCount Method.

AutoStopForward Property

Syntax

Remarks

Errors

See Also

AutoStopForward: boolean { read-write, access after open }

If true, the automatic stop feature in forward direction is enabled. If false, it is disabled. The belt
will automatically stop if an automatic stop condition becomes true.

If CapAutoStopForward is false, then this property is always false.
This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapAutoStopForward Property.

Unified POS, v1.15.1 Beta1

3.6.5 AutoStopForwardDelayTime Property

3.6.6

3.6.7

Syntax

Remarks

Errors

See Also

AutoStopForwardDelayTime: int32 { read-write, access after open }

Specifies a delay time in milliseconds for an automatic stop in forward direction. The delay time
starts when an automatic stop condition becomes true. The delay time counting stops and automatic
stop is cancelled if the condition becomes false.

If CapAutoStopForward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapAutoStopForward Property.

AutoStopForwarditemCount Property

Syntax

Remarks

Errors

See Also

AutoStopForwardItemCount: int32 { read-only, access after open }

Holds the actual item counter for an automatic stop in forward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter
mechanism detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustIitemCount method and can be
reset to zero by calling the resetItemCount method.

If CapAutoStopForward or CapAutoStopForwardItemCount is false, then this property has no
meaning.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapAutoStopForward Property, CapAutoStopForwardItemCount Property, adjustitemCount
Method, resetltemCount Method.

CapAutoStopBackward Property

Syntax

Remarks

Errors

CapAutoStopBackward: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving backward, based on an automatic
stop condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 3-11

3.6.8 CapAutoStopBackwardlitemCount Property

3.6.9

Syntax

Remarks

Errors

See Also

CapAutoStopBackwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving backward depending on the
number of items specified by AutoStopBackwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AutoStopBackwardItemCount Property.

CapAutoStopForward Property

Syntax

Remarks

Errors

CapAutoStopForward: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward, based on an automatic
stop condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

3.6.10 CapAutoStopForwarditemCount Property

Syntax

Remarks

Errors

See Also

CapAutoStopForwardItemCount: boolean { read-only, access after open }

Iftrue, the device supports an automatic motor stop when moving forward depending on the number
of items specified by AutoStopForwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AutoStopForwardItemCount Property.

3.6.11 CapLightBarrierBackward Property

3-12

Syntax

Remarks

Errors

See Also

CapLightBarrierBackward: boolean { read-only, access after open }

If true, the device has a backward light barrier and LightBarrierBackwardInterrupted holds the
actual state of the light barrier.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

LightBarrierBackwardInterrupted Property.

Unified POS, v1.15.1 Beta1

3.6.12 CapLightBarrierForward Property

Syntax

Remarks

Errors

See Also

CapLightBarrierForward: boolean { read-only, access after open }

If true, the device has a forward light barrier and LightBarrierForwardInterrupted holds the
actual state of the light barrier.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

LightBarrierForwardInterrupted Property.

3.6.13 CapMoveBackward Property

Syntax

Remarks

Errors

CapMoveBackward: boolean { read-only, access after open }
If true, the belt can move backward.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

3.6.14 CapSecurityFlapBackward Property

Syntax

Remarks

Errors

See Also

CapSecurityFlapBackward: boolean { read-only, access after open }

If true, the device has a backward security flap and SecurityFlapBackwardOpened holds the
actual state of the flap.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

SecurityFlapBackwardOpened Property.

3.6.15 CapSecurityFlapForward Property

Syntax

Remarks

Errors

See Also

CapSecurityFlapForward: boolean { read-only, access after open }

If true, the device has a forward security flap and SecurityFlapForwardOpened holds the actual
state of the flap.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

SecurityFlapForwardOpened Property.

Unified POS, v1.15.1 Beta1 3-13

3.6.16 CapSpeedStepsBackward Property

Syntax

Remarks

Errors

See Also

CapSpeedStepsBackward: in#32 { read-only, access after open }

Defines how many speed steps the belt motor supports in backward direction, minimum is one (1).
This property is only valid if CapMoveBackward is true. If CapMoveBackward is false this
property is initialized to zero (0).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapMoveBackward Property.

3.6.17 CapSpeedStepsForward Property

Syntax

Remarks

Errors

CapSpeedStepsForward: int32 { read-only, access after open }
Defines how many speed steps the belt motor supports in forward direction, minimum is one (1).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on pagel-16.

3.6.18 LightBarrierBackwardinterrupted Property

Syntax

Remarks

Errors

See Also

LightBarrierBackwardInterrupted: boolean { read-only, access after open-claim-enable }

If true, the light barrier in backward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierBackward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapLightBarrierBackward Property.

3.6.19 LightBarrierForwardinterrupted Property

Syntax

Remarks

3-14

LightBarrierForwardInterrupted: boolean { read-only, access after open-claim-enable }

If true, the light barrier in forward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

Unified POS, v1.15.1 Beta1

Errors

See Also

If CapLightBarrierForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapLightBarrierForward Property.

3.6.20 MotionStatus Property

Syntax

Remarks

Errors

MotionStatus: inz32 { read-only, access after open-claim-enable }
Holds the current motion state of the device. It has one of the following values:

Value Meaning
BELT MT FORWARD The device is moving forward.

BELT MT BACKWARD
The device is moving backward.

BELT _MT STOPPED The device has stopped due to an automatic stop, security stop or motor
timeout stop.

BELT MT EMERGENCY
Emergency stop, either a security flap is open or the emergency button
was pressed. Technical assistance is needed in order to reactivate the belt
device.

BELT MT MOTOR FAULT
The device has stopped due to a motor failure like overheating or a
defective fuse. Technical assistance may be needed in order to reactivate
the motor.

This property is initialized and kept current while the device is enabled.
An appropriate StatusUpdateEvent indicating a status change will be enqueued.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on pagel-16.

3.6.21 SecurityFlapBackwardOpened Property

Syntax

Remarks

Errors

See Also

SecurityFlapBackwardOpened: boolean { read-only, access after open-claim-enable }

If true, the security flap in backward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued. If CapSecurityFlapBackward
is false, then this property is always false. This property is initialized and kept current while the
device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapSecurityFlapBackward Property.

Unified POS, v1.15.1 Beta1 3-15

3.6.22 SecurityFlapForwardOpened Property

Syntax SecurityFlapForwardOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, the security flap in forward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapSecurityFlapForward Property.

3-16 Unified POS, v1.15.1 Beta1

3.7 Methods (UML operations)

3.7.1 adjustitemCount Method

Syntax

Remarks

Errors

See Also

adjustIltemCount (direction: int32, count: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be adjusted. May be either
BELT AIC BACKWARD or BELT AIC_ FORWARD.

count The count parameter contains the number of items to be adjusted.

Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount
will be adjusted by count. It can be an increment or decrement depending on whether count is
positive or negative.

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
A possible value of the exception’s ErrorCode property is:

Value Meaning
E ILLEGAL adjustItemCount is not supported or an invalid direction was specified.

CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
resetItemCount Method.

3.7.2 moveBackward Method

Syntax

Remarks

Errors

See Also

moveBackward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsBackward.

Starts the belt motor to move backward with the specified speed.
This method is only valid if CapMoveBackward is true.
Subsequent calls to moveBackward will change the speed.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
A possible value of the exception’s ErrorCode property is:

Value Meaning
E ILLEGAL moveBackward is not supported or an invalid speed step was specified.

CapMoveBackward Property, CapSpeedStepsBackward Property.

Unified POS, v1.15.1 Beta1 3-17

3.7.3 moveForward Method

Syntax moveForward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsForward.

Remarks Starts the belt motor to move forward with the specified speed.
Subsequent calls to moveForward will change the speed.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CapSpeedStepsForward Property.

3.7.4 resetBelt Method

Syntax resetBelt ():
void { raises-exception, use after open-claim-enable }
Remarks Resets the belt after an emergency stop caused by an open security flap or a pressed emergency
button.
Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on pagel-16.

3-18 Unified POS, v1.15.1 Beta1

3.7.5

3.7.6

resetltemCount Method

Syntax

Remarks

Errors

See Also

resetltemCount (direction: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be reset. May be either
BELT RIC BACKWARD or BELT RIC FORWARD.

Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount
will be reset to zero (0).

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
A possible value of the exception’s ErrorCode property is:

Value Meaning
E ILLEGAL resetItemCount is not supported or an invalid direction was specified.

CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
adjustItemCount Method.

stopBelt Method

Syntax

Remarks

Errors

stopBelt ():
void { raises-exception, use after open-claim-enable }

Stops the belt motor.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1 3-19

3.8

3.8.1

3.8.2

Events (UML interfaces)

DirectlOEvent

<< event>> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: inf32 {read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for a vendor-
specific Belt Service to provide events to the application that are not otherwise supported by the
Control.

This event contains the following attributes:

Attribute Tvype Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Belt devices which may not have any knowledge of the Service’s need for this event.

“Events” on page 1-15, directlO Method.

StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent

Description

Attributes

Status: int32 { read-only }
Notifies the application when the status of the Belt changes.
This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Belt.

The Status attribute has one of the following values:

Value Description
BELT SUE _AUTO_STOP
The belt has automatically stopped.

BELT SUE _EMERGENCY_STOP
The belt has stopped caused by an emergency condition, either a security
flap is open or an emergency button has been pressed. Technical
assistance is needed.

Unified POS, v1.15.1 Beta1

BELT SUE SAFETY STOP
The belt has stopped for safety reasons. Technical assistance is not
needed.

BELT _SUE TIMEOUT STOP
The belt has stopped due to a hardware timeout protecting the motor
against overheating.

BELT SUE MOTOR_OVERHEATING
The belt has stopped due to a motor overheating.

BELT SUE MOTOR_FUSE DEFECT
The belt has stopped due to a defective fuse.

BELT _SUE LIGHT BARRIER BACKWARD INTERRUPTED
The light barrier in backward direction is interrupted.

BELT SUE LIGHT BARRIER BACKWARD OK
The light barrier in backward direction is no longer interrupted.

BELT SUE LIGHT BARRIER FORWARD INTERRUPTED
The light barrier in forward direction is interrupted.

BELT_SUE LIGHT BARRIER FORWARD OK
The light barrier in forward direction is no longer interrupted.

BELT SUE SECURITY _FLAP BACKWARD_ OPENED
The security flap in backward direction is open.

BELT SUE SECURITY FLAP BACKWARD CLOSED
The security flap in backward direction is closed.

BELT_SUE SECURITY _FLAP FORWARD OPENED
The security flap in forward direction is open.

BELT SUE SECURITY _FLAP FORWARD CLOSED
The security flap in forward direction is closed.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the belt. It depends on the capabilities of the device which
status changes can be reported.

See Also “Events” on page 1-15.

Unified POS, v1.15.1 Beta1 3-21

Unified POS, v1.15.1 Beta1

4

4.1

4.2

Bill Acceptor

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

This Chapter defines the Bill Acceptor device category.

Mutability
{read-write}
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}

{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

{read-only}

Version
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11

May Use After
Not supported
open
open
open
open
open
open
open
open
open
open & claim
open
Not supported
open
open

open
open
open

open

Properties (Continued)

Specific Type Mutability Version
CapDiscrepancy: boolean {read-only} 1.11
CapFullSensor: boolean {read-only} 1.11
CapJamSensor: boolean {read-only} 1.11
CapNearFullSensor: boolean {read-only} 1.11
CapPauseDeposit: boolean {read-only} 1.11
CapRealTimeData: boolean {read-only} 1.11
CurrencyCode: string {read-write} 1.11
DepositAmount: int32 {read-only} 1.11
DepositCashList: string {read-only} 1.11
DepositCodeList: string {read-only} 1.11
DepositCounts: string {read-only} 1.11
DepositStatus: int32 {read-only} 1.11
FullStatus: int32 {read-only} 1.11
RealTimeDataEnabled: boolean {read-write} 1.11

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

void { raises-exception, use after open }

claim (timeout: inz32):

void { raises-exception, use after open }

release ():

void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void { raises-exception, use after open, claim }

clearInputProperties ():
void { }

clearOutput ():
void { }

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):

void { raises-exception, use after open, claim, enable }

May Use After
open
open
open
open
open
open
open
open
open
open
open
open, claim, & enable
open, claim, & enable

open, claim & enable

Version
1.11

Not supported
Not supported
1.11

1.11

Unified POS, v1.15.1 Beta1

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }
Specific
Name
adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }
beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }
endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }
fixDeposit (): 1.11
void { raises-exception, use after open, claim, enable }
pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }
readCashCounts (inout cashCounts: string, inout discrepancy: 1.11
boolean):
void { raises-exception, use after open, claim, enable }
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.11
Status: int32 { read-only }
upos::events::DirectlOEvent 1.11
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Unified POS, v1.15.1 Beta1

Events (UML interfaces)

Name Type Mutability Version

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11
Status: int32 { read-only }

4.3 General Information

The Bill Acceptor programmatic name is “BillAcceptor”.
This device category was added to Version 1.11 of the specification.

4.3.1 Capabilities

The Bill Acceptor has the following capabilities:

« Reports the cash units and corresponding unit counts available in the Bill Acceptor.
« Reports jam conditions within the device.

« Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

* Reporting the levels of the Bill Acceptor’s cash units. Conditions which may be indicated include full, and near full
states.

« Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

« The money (bills) which are deposited into the device between the start and end of cash acceptance is reported to the
application. The contents of the report are cash units and cash counts.

4-4 Unified POS, v1.15.1 Beta1

4.4 Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)

\
<<sends>> <<utility>>
A BillAcceptorConst
<<Interfface>> (from upos)
<<event>> BillAcceptorControl <<Uses>>
DataEvent (from upos) -
(from events) | B <<capability>> CapDiscrepancy : boolean -7
S~ B¥<<capability>> CapFullSensor : boolean i

= B <<capability>> CapJamSensor : Boolean

~ _ |B¥<<capability>> CapNearFullSensor : boolean
<<fires>> [B¥}<<capability>> CapPauseDeposit : boolean
l%«capability» CapRealTimeData : Boolean
B<<prop>> CurrencyCode : string

<<ewent>> &;<<prop>> DepositAmount : int32
DirectiOEvent | |Bc<prop>> DepositCashList : string
(fomlevonts) [&<<prop>> DepositCodeList : string
l%«prop» DepositCounts : string
<<fires>> B<<prop>> DepositStatus : int32
E<<prop>> FullStatus : int32
- l%«prop» RealTimeDataEnabled : boolean
<<event>> “ WadjustCashCounts(cashCounts : string)
StatusUpdateEvent

<<fires>>| [®beginDeposit()

WendDeposit(amount : int32)

Bfix Deposit()

pauseDeposit(control : int32)

WreadCashCounts(cashCounts : string, discrepancy : boolean)

(from events)

Unified POS, v1.15.1 Beta1

441

Model

The general model of a Bill Acceptor is:

« Supports several bill denominations. The supported cash type for a particular currency is noted by the list of cash
units in the DepositCashList property.

« Consists of any combination of features to aid in the cash processing functions such as a cash entry holding bin, a
number of slots or bins which can hold the cash, and cash exits.

« The removal of cash from the device (for example, to empty deposited cash) is controlled by the adjustCashCounts
method, unless the device can determine the amount of cash on its own. The application can call readCashCounts
to retrieve the current unit count for each cash unit.

« Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there are one
or more full cash slots, then FullStatus is BACC_STATUS FULL.

« Cash acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

« The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method or
the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the pauseDeposit method is executed with a
parameter value of BACC DEPOSIT PAUSE, then the counting of the deposited cash is suspended and the current
amount of accumulated cash is also updated to the DepositCounts and DepositAmount properties. When

pauseDeposit method is executed with a parameter value of BACC DEPOSIT RESTART, counting of deposited
cash is resumed and added to the accumulated totals.

When the fixDeposit method is executed, the current amount of accumulated cash is updated in the DepositCounts
and DepositAmount properties, and the process remains static until the endDeposit method is invoked with a
BACC DEPOSIT COMPLETE parameter to complete the deposit.

* When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared. The
DepositCounts and DepositAmount properties remain set and are not cleared.

Unified POS, v1.15.1 Beta1

4.4.2 Bill Acceptor Sequence Diagram

Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp : BillAcceptorControl ‘ BillAcceptorSenice ‘ ‘ :DataEvent‘ ‘MAMOF

11 setRealTimeDataEvents(trul D D D

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the ﬁ

setRealTimeDataEvents (truq‘) Set so DepositAmount and
/u DepositCounts are updated for

" | each Data Event

3: beginDeposit()

]

T
|
|
|
|
|
|
|
|
|
|

4: beginDeposit() |

|

|
|
|
|
|
|
|
|
|
|
|
|
11:

5: initialize DepositAmount and DepositCouhts
| =1 |
| |
| |
| T 6: accept Cash
| | \
|
|
|
: 8: enqueug Data Event for delivery
| =1 |
: 9: update Deposi{tAmount and DepositCour]‘ts
! =— !
|
| 10: deliver Data Event
1: notify ClientApp of event|

L
| 12: fixDeposit() |

I

13: fixDeposit

P=—

15: endDeposit(int32)

J

I
16: endDeposit(int32) :

]]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

7: create Data Event : U
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i)

|
|
|
|
|
|
|
|
|
|
|
|
|
14: updateDeposjtAmount and DepositCour?ts
|
|
|
|
|
|
|
|
|
|

Unified POS, v1.15.1 Beta1 4-7

4.4.3 Bill Acceptor State Diagram

Claimed

clearlhput

Enabled clearlnput

readCashCo(ints

Clearinput processing ‘

entry/ empty data queue

endDepost learlnput

beginDeposit

‘ Fix Mode ‘

entry/ sync DepostAmount and DepositCount

Cash Acceptance

fixDeposi fixDeposit
entry/ DepositAmount = 0
entry/ DepositCount = 0
. Pause Mode
pauseDeposi - ST R S‘?RM)sync DepostAmount and DepositCount
has room
f h
pauseDeposit(BACCA OSIT_PAUSE)

<z

adjustCashCou remoweNcash

adjustCashCounts /

44.4 Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
or receiving events.

« See the “Summary” table for precise usage prerequisites.

4-8 Unified POS, v1.15.1 Beta1

4.5 Properties (UML attributes)

4.5.1 CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

readCashCounts Method.

4.5.2 CapFullSensor Property

Syntax

Remarks

Errors

See Also

CapFullSensor: boolean { read-only, access after open }
If true, the Bill Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

FullStatus Property, StatusUpdateEvent.

4.5.3 CapJamSensor Property

Syntax

Remarks

Errors

See Also

CapJamSensor: boolean { read-only, access after open }
If true, the bill acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

StatusUpdateEvent.

4.5.4 CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.15.1 Beta1

CapNearFullSensor: boolean { read-only, access after open }
If true, the Bill Acceptor can report the condition that some cash slots are nearly full.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

FullStatus Property, StatusUpdateEvent.

4.5.5 CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }
If true, the Bill Acceptor has the capability to suspend cash acceptance processing temporarily.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

pauseDeposit Method.

4.5.6 CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

RealTimeDataEnabled Property.

4.5.7 CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value is guaranteed to
be one of the set of currencies specified by the DepositCodeList property.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGALA value was specified that is not within DepositCodeList.

DepositCodeList Property.

Unified POS, v1.15.1 Beta1

4.5.8 DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }
The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,

after the call to the beginDeposit method, there would be 18,057 yen in the Bill Acceptor.
This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property.

4.5.9 DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Acceptor for the currency represented by the
CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the ASCII semicolon character
(™) followed by ASCII numeric comma delimited values for the bills that can be used with the Bill

b

Acceptor. The semicolon (“;”) is present to denote the start of bills when integrated within the bill
dispenser

Below are sample DepositCashList values in Japan.

* “1000,5000,10000” ---
1000, 5000, 10000 yen bill.

» This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property, DepositCodeList Property.

4.5.10 DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if
the string is “JPY,USD,” then the Bill Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property, DepositCashList Property.

Unified POS, v1.15.1 Beta1 4-1

4.5.11 DepositCounts Property Updated in Release 1.12

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the bill acceptor. Cash units inside the string are the same as
the DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:
*1000:80,5000:77,10000:0”

After the call to the beginDeposit method, there would be 80 one thousand yen bills and 77 five
thousand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property.

4.5.12 DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
BACC_STATUS DEPOSIT START
Cash acceptance started.
BACC_STATUS DEPOSIT END
Cash acceptance stopped.
BACC_STATUS DEPOSIT COUNT
Counting or repaying the deposited money.
BACC_STATUS DEPOSIT JAM
A mechanical fault has occurred.
This property is initialized and kept current while the device is enabled.
This property is set to BACC_STATUS DEPOSIT_END after initialization.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, v1.15.1 Beta1

4.5.13 FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }
Remarks Holds the current full status of the cash slots. It may be one of the following:

YValue Meaning
BACC STATUS OK All cash slots are neither nearly full nor full.
BACC STATUS FULL Some cash slots are full.
BACC_STATUS NEARFULL
Some cash slots are nearly full.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

4.5.14 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing. This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

Unified POS, v1.15.1 Beta1 4-13

4.6

4.6.1

4.6.2

Method (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be
initialized.

This method is called to set the initial amounts in the Bill Acceptor after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
*;1000:80,5000:77,10000:0”

as aresult of calling the adjustCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

readCashCounts Method.

beginDeposit Method

Syntax

Remarks

Errors

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

* The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called
while the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1

Value Meaning
E ILLEGAL The call sequence is not correct.

See Also DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method,
pauseDeposit Method.

4.6.3 endDeposit Method

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains
one of the following values:

Parameter Description
BACC DEPOSIT COMPLETE The deposit is accepted and the mode is complete.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

Unified POS, v1.15.1 Beta1 4-15

4.6.4 endDeposit Method

4.6.5

Syntax

endDeposit (success: int32):

void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of the

Remarks

Errors

See Also

following values:

Parameter Description
BACC _DEPOSIT _COMPLETE The deposit is accepted and the mode is complete.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

fixDeposit Method

Syntax

Remarks

Errors

fixDeposit ():

void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current values in the Bill
Acceptor.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on pagl-16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, v1.15.1 Beta1

See Also

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be called before
calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

4.6.6 pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }
The control parameter contains one of the following values:

Parameter Description
BACC _DEPOSIT PAUSE Cash acceptance is paused.
BACC _DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT PAUSE, the cash acceptance operation is paused. The deposit
process will remain paused until this method is called with control set to

BACC _DEPOSIT _RESTART. It is valid to call fixDeposit then endDeposit while the deposit
process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount properties are
updated to reflect the current state of the Bill Acceptor. The property values are not changed again
until the deposit process is resumed.

If control is BACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further information, see *
Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be called before
calling this method.
* The deposit process is already paused and control is set to
BACC _DEPOSIT PAUSE, or the deposit process is not paused and
control is set to BACC_DEPOSIT RESTART.

DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.

Unified POS, v1.15.1 Beta1 4- 17

4.6.7 readCashCounts Method Updated in Release 1.12

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):

void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which

was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
*;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill
Acceptor. There are some cases where a discrepancy may occur because of existing uncountable
cash in a Bill Acceptor. An example would be when a cash slot is “overflowing” such that the device
has lost its ability to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also DepositCashList Property.

4-18 Unified POS, v1.15.1 Beta1

4.7

4.7.1

4.7.2

Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent

Description

Attributes

Status: int32 { read-only }
Notifies the application when the Bill Acceptor has accepted a bill.
This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

DirectlOEvent

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Acceptor Service to provide events to the application that are not otherwise supported
by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and

Service. This property is settable.
This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Bill Acceptor devices which may not have any knowledge of the Service’s need for this
event.

“Events” on page 1-15, directlO Method.

Unified POS, v1.15.1 Beta1 4-19

4.7.3 StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Description

Attributes

Remarks

See Also

Status: int32 { read-only }
Notifies the application that there is a change in the power status of the Bill Acceptor device.
This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Acceptor status condition:

Value Meaning

BACC _STATUS FULL Some cash slots are full.

BACC STATUS NEARFULL Some cash slots are nearly full.

BACC STATUS FULLOK No cash slots are either full or nearly full.
BACC STATUS JAM A mechanical fault has occurred.

BACC STATUS JAMOK A mechanical fault has recovered.

Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full or near full states and the corresponding
capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

“Events” on page 1-15.

Unified POS, v1.15.1 Beta1

5

5.1

5.2

Bill Dispenser

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:
DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

This Chapter defines the Bill Dispenser device category.

Mutability
{read-write}
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}

{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

Version
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11

1.11
1.11
1.11
1.11
1.11

May Use After
Not supported
open
open
open
open
open
open
open
Not supported
Not supported
open & claim
open
Not supported
open
open

open
open
open

open

Properties (Continued)

Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapEmptySensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearEmptySensor: boolean {read-only} 1.11 open
AsyncMode: boolean {read-write} 1.11 open
AsyncResultCode: int32 {read-only} 1.11 open, claim, & enable
AsyncResultCodeExtended: int32 {read-only} 1.11 open, claim, & enable
CurrencyCashList: string {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
CurrencyCodeList: string {read-only} 1.11 open
CurrentExit: int32 {read-write} 1.11 open
DeviceExits: int32 {read-only} 1.11 open
DeviceStatus: int32 {read-only} 1.11 open, claim, & enable
ExitCashList: string {read-only} 1.11 open

Methods (UML operations)

Common
Name Version
open (logicalDeviceName: string): 1.11
void { raises-exception }
close (): 1.11
void { raises-exception, use after open }
claim (timeout: int32): 1.11
void { raises-exception, use after open }
release (): 1.11
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }
clearInput (): Not supported
void { raises-exception, use after open, claim }
clearInputProperties (): Not supported
void {}
clearOutput (): Not supported
void { }
directlO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

Unified POS, V1.15.1 Beta1

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: 1.11
boolean):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not supported
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not supported
upos::events::OutputCompleteEvent Not supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

Unified POS, v1.15.1 Beta1

5.3

5.3.1

General Information

The Bill Dispenser programmatic name is “BillDispenser.” This device category was added in Version 1.11 of the
specification.

Capabilities

The Bill Dispenser has the following capabilities:

* Reports the cash units and corresponding unit counts available in the Bill Dispenser.

« Dispenses a specified number of cash units from the device in bills into a user-specified exit.
* Reports jam conditions within the device.

« Supports more than one currency.

The Bill Dispenser may also have the following additional capabilities:

« Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions which may be indicated include empty
and near empty states.

« Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

Unified POS, V1.15.1 Beta1

5.3.2 Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N
N N T

. |

\
<<sends>> \ ‘

<<Interface>> |

BillDispenserControl <<utility>>
(from upos) BillDispenserConst
@«capabilﬂy» CapDiscrepancy: boolean <«<uses>> (from upos)
@«capabilﬂy» CapEmptySensor : boolean
@«capabilﬂy» CapJamSensor : Boolean 7
B<<capability>> CapNearEm ptySensor : boole an "

B<<prop>> AsyncMode : boolean
Bf<<prop>> AsyncRes ultCode : int32
B<<prop>> AsyncRes ultCodeExtended :int32
<<event>> BS<<prop>> CurrencyCashList : string
DirectlOEvent &<<prop>> CurrencyCode : string
(from events) < ~ = = = = = -{[Bj<<prop>> CurrencyCodeList : string
Bf<<prop>> CurrenfExit: int32
<<fires>> B<<prop>> DeviceExits : int32
Bf<<prop>> DeviceStalus : int32
_ | B<<prop>> ExitCashList : string

<<ewvent>> z- " : st
StatusUpdateEvent - :z:]qsg)ash(?twns(cashCounts : string)
res>> ginDeposit()
$dispenseCas h(cashCounts : string)
$dispenseChange(amount : int32)
$¥endDe posit(amount : int32)
SfixDeposit()
$¥pause Deposit(control : int32)
SreadCashCounts (cashCounts : string, discre pancy : boolean)

(from events)

5.3.3 Model

Unified POS, v1.15.1 Beta1

The general model of a Bill Dispenser is:

« Supports several bill denominations. The supported bill denomination for a particular currency is noted by the list of
cash units in the CurrencyCashList property.

« Consists of any combination of features to aid in the cash processing functions such as a number of slots or bins
which can hold the cash, and cash exits.

« This specification provides programmatic control only for the dispensing of cash. The accepting of cash by the
device (for example, to replenish cash) is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call readCashCounts to retrieve the current unit
count for each cash unit, but cannot control when or how cash is added to the device.

» May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses a
dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current exit are
indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary exit” which is
typically used during normal processing for dispensing cash to a customer following a retail transaction. When
CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit” typically is used for
special purposes such as dispensing quantities or types of cash not targeted for the “primary exit.”

« Dispenses cash into the exit specified by CurrentExit when dispenseCash is called. With dispenseCash, the
application specifies a count of each cash unit to be dispensed.

« Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense method
returns the completion status to the application.

When AsyncMode is true and no exception is thrown by dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with its Data property set to
BDSP_STATUS ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode and
ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one asynchronous method can be processed at a
time.

The readCashCounts method may not be called while an asynchronous method is being performed since doing so
could likely report incorrect cash counts.

» May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

« Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status. If
there are one or more empty cash slots, then DeviceStatus is BDSP_STATUS EMPTY.

Unified POS, V1.15.1 Beta1

5.3.4 Bill Dispenser Sequence Diagram

claimed and enabled the device

NOTE: We are assuming the clienApp has already successfully opened, ﬁ

::ClientApp . BillDispenserControl ::BillDispenserSenice : StatusUpdateEvent

* |

1: dispenseCash(string) |

U 2: dispenseCash(string)

Assume Bill
U' ~ ~ ~|Dispenser is
getting low

|

|

|

|

|

|

| 3: update deviceStatus to BDSP_STATUS_NEAREMPTY (CapNearEmptySensor = true)
| | |
|

|

|

|

|

|

|

pa—

|
4: create new SUE Event 1

5: deliver SUE to control w

6: notify ClientApp of new eyent

u

Unified POS, v1.15.1 Beta1

5.3.5 Bill Dispenser State Diagram

Claimed

releas: s¢tDeviceEnabled(false)

setDeviceEnabjed(trug’)

Enabled
setAsyncMode(false)

Near Empty

ynchronous

Asynchronous

ad%sh@

fire events

jams

@ J

5.3.6 Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
or receiving events.

« See the “Summary” table for precise usage prerequisites.

5-8 Unified POS, V1.15.1 Beta1

5.4 Properties (UML attributes)

5.4.1

5.4.2

5.4.3

Unified POS, v1.15.1 Beta1

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash method will be performed asynchronously. If false, this method will be
performed synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash
was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Starus value of
BDSP_STATUS ASYNC.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncMode Property, dispenseCash Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash
was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncMode Property, dispenseCash Method.

5.4.4 CapDiscrepancy Property

5.4.5

5.4.6

5.4.7

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

readCashCounts Method.

CapEmptySensor Property

Syntax

Remarks

Errors

See Also

CapEmptySensor: boolean { read-only, access after open }
If true, the Bill Dispenser can report the condition that some cash slots are empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
Errors” on page 1-16.

DeviceStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax

Remarks

Errors

See Also

CapJamSensor: boolean { read-only, access after open }
If true, the Bill Dispenser can report the occurrence of a mechanical fault in the Bill Dispenser.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }
If true, the Bill Dispenser can report the condition that some cash slots are nearly empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

DeviceStatus Property, StatusUpdateEvent.

Unified POS, V1.15.1 Beta1

5.4.8 CurrencyCashList Property

Syntax

Remarks

Errors

See Also

CurrencyCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Dispenser for the currency represented by the
CurrencyCode property.

The string consists of an ASCII semicolon character (“;”) followed by ASCII numeric comma
delimited units of bills that can be used with the Bill Dispenser. The semicolon (“;”) is present to
indicate the units are bills. This is used for merging multiple device services into the Cash Changer.

Below are sample CurrencyCashList values in Japan.
+ *1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property.

5.4.9 CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Bill Dispenser operations. This property is
initialized to an appropriate value by the open method. This value is guaranteed to be one of the set
of currencies specified by the CurrencyCodeList property.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within CurrencyCodeList.

CurrencyCodeList Property.

5.4.10 CurrencyCodelList Property

Syntax

Remarks

Errors

See Also

CurrencyCodelList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example,
if the string is “JPY,USD”, then the Bill Dispenser supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property.

Unified POS, v1.15.1 Beta1 5-1

5.4.11 CurrentExit Property

Syntax

Remarks

Errors

See Also

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit),
while values greater than 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

» Bill Dispenser supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = ““;1000,5000,10000”
DeviceExits =2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL An invalid CurrentExit value was specified.

CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

5.4.12 DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentExit Property.

Unified POS, V1.15.1 Beta1

5.4.13 DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS OK The current condition of the Bill Dispenser is satisfactory.
BDSP_STATUS EMPTY
Some cash slots are empty.
BDSP_STATUS NEAREMPTY
Some cash slots are nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition
is present, then the order of precedence starting at the highest is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

5.4.14 ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property.
The supported cash units are either the same as CurrencyCashList, or a subset of it. The string
format is identical to that of CurrencyCashList.

This property is initialized by the open method, and is updated when CurrencyCode or
CurrentExit is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

Unified POS, v1.15.1 Beta1 5-13

5.5

5.5.1

5.5.2

Methods (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be
initialized.

This method is called to set the initial amounts in the Bill Dispenser after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
*“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Dispenser.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash units and counts cannot be initialized because an asynchronous
method is outstanding.

readCashCounts Method.

dispenseCash Method

Syntax

Remarks

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format

of ““;cash unit:cash counts,, cash unit:cash counts.” Units must be preceded by “;” to represent
bills.

Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit. The cash
dispensed is specified by pairs of cash units and counts.

Unified POS, V1.15.1 Beta1

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

e ;1000:10”
Dispense 10 one thousand yen bills.

* “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash cannot be dispensed because an asynchronous method is in progress.
E ILLEGAL One of the following errors occurred:
The cashCounts parameter value was illegal for the current exit.
E EXTENDED ErrorCodeExtended = EBDSP_ OVERDISPENSE:

The specified cash cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.

5.5.3 readCashCounts Method Updated in Release 1.12

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which

was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

Remarks The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each
unit in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
*“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills
and 77 five thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill
Dispenser. There are some cases where a discrepancy may occur because of existing uncountable
cash in a Bill Dispenser. An example would be when a bill dispenser has diverted unusable bill to a
holding area.

Unified POS, v1.15.1 Beta1 5-15

Errors

See Also

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash units and counts cannot be read because an asynchronous method is
in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

Unified POS, V1.15.1 Beta1

5.6 Events (UML interfaces)

5.6.1 DirectlOEvent

<<event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Dispenser Service to provide events to the application that are not otherwise supported

by the Control
Attributes This event contains the following attributes:
Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Bill Dispenser devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directlO Method.

Unified POS, v1.15.1 Beta1 5-17

5.6.2 StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Dispenser device.

Attributes

Remarks

See Also

This event contains the following attribute:
Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Dispenser status condition:

Value Meaning

BDSP_STATUS EMPTY Some cash slots are empty.

BDSP _STATUS NEAREMPTY Some cash slots are nearly empty.
BDSP_STATUS _EMPTYOK No cash slots are either empty or nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

BDSP_STATUS JAMOK A mechanical fault has recovered.

BDSP STATUS ASYNC Asynchronously performed method has completed.

Fired when the Bill Dispenser detects a status change.

For changes in the fullness levels, the Bill Dispenser is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full, near full, empty, and/or near empty states and
the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode
and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on page 1-15.

Unified POS, V1.15.1 Beta1

6

6.1

6.2

Biometrics

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputlD:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

This Chapter defines the Biometrics device category.

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version

1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open

open & claim
open

Not supported
open

open

Properties (Continued)

Specific: Type Mutability Version
Algorithm: int32 { read-write } 1.10
AlgorithmList: string { read-only } 1.10
BIR: binary { read-only } 1.10
CapPrematchData: boolean { read-only } 1.10
CapRawSensorData: boolean { read-only } 1.10
CapRealTimeData: boolean { read-only } 1.10
CapSensorColor: int32 { read-only } 1.10
CapSensorOrientation: int32 { read-only } 1.10
CapSensorType: int32 { read-only } 1.10
CapTemplateAdaptation: boolean { read-only } 1.10
RawSensorData: binary { read-only } 1.10
RealTimeDataEnabled: boolean { read-write } 1.10
SensorBPP: int32 { read-only } 1.10
SensorColor: int32 { read-write } 1.10
SensorHeight: int32 { read-only } 1.10
SensorOrientation: int32 { read-write } 1.10
SensorType: int32 { read-write } 1.10
SensorWidth: int32 { read-only } 1.10

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():
void { raises-exception, use after open }

claim (timeout: int32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void { raises-exception, use after open, claim }

May Use After
open & claim
open
open & claim
open
open
open
open
open

open

open
open & claim
open
open
open
open
open, claim, & enable
open, claim, & enable

open

Version
1.10

1.10
1.10
1.10
1.10

1.10

Unified POS, V1.15.1 Beta1

clearInputProperties ():
void { raises-exception, use after open, claim }

clearOutput ():
void { }

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

SpecificUpdated in Release 1.11

Name

beginEnrollCapture (referenceBIR: binary, payload: binary):

void { raises-exception, use after open, claim, enable }
beginVerifyCapture ():

void { raises-exception, use after open, claim, enable }
endCapture ():

void { raises-exception, use after open, claim, enable }
identify (maxFARRequested: in/32, maxFRRRequested: inf32,
FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }
identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,

FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

processPrematchData (capturedBIR: binary, prematchDataBIR: binary,
inout processedBIR: binary):
void { raises-exception, use after open, claim, enable }

identifyMatch (maxFARRequested: int32, maxFRRRequested: in32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }
processPrematchData (capturedBIR: binary, prematchDataBIR: binary,

inout processedBIR: binary):
void { raises-exception, use after open, claim, enable }

Unified POS, v1.15.1 Beta1

1.10

Not supported
1.10
1.10
1.10
1.10

1.10

1.10

1.10

1.10

verify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR:
binary, inout result: boolean, inout FARAchieved: int32, inout
FRRACchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }
verifyMatch (maxFARRequested: in/32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: hoolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent
Status: int32 { read-only }

upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OQutputCompleteEvent Not supported

upos::events::StatusUpdateEvent
Status: int32 { read-only }

1.10

1.10

Version

1.10

1.10

1.10

1.10

Unified POS, V1.15.1 Beta1

6.3 General Information

6.3.1 Capabilities

All Biometric devices have the following capabilities:

« The device captures biometrics data from a biometrics sensor. The biometrics data is in the form of a Biometrics
Information Record (BIR) containing one or more Biometrics Data Blocks (BDB) which in turn contain one or more
biometric data samples or biometric templates.

This standard uses the term template (as adapted from the BioAPIl) to refer to the biometric enrollment data for a
user. The term biometric information record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for verification or identification, as well as
enrollment data. Typically, the only data stored persistently by the application is the BIR generated for enrollment
(i.e., the template). The format of the Opaque Biometric Data Block (BDB) is indicated by the Format field of the
Header. This may be a standard or proprietary format. The BDB may be encrypted. The digital signature is optional,
and may be used to ensure integrity of the data during transmission and storage. When present, it is calculated on the
Header + BDB. For standardized BIR formats, the signature will take a standard form (to be determined when the
format is standardized). For proprietary BIR formats (all that exists at the present time), the signature can take any
form that suits the Service. For this reason, there is no C structure definition of the signature. The BIR Data Type
indicates whether the BIR is signed and/or encrypted.

“Opaque” Digital
Header Biometric Data Block Signature
Format ID

Length Header | BIR Data

Clualit Purpose | Biometric Type
(Header + BDB) Version Type Cwner Type ¥ P s
4 Bl 1 2 2 1 1 4
< Product ID i .
Creation | Creation | Subtype | Index Index

Cwner ‘ Type Date Time Flag {(UUID)y

2 2 4 3 1 1 16

« The Device captures Biometric data for the purposes of enrollment. The notion of enrollment requires a higher level
of quality for the final BIR that is created. Generally, the BIR will be the aggregation of series of biometric captures.

1. BioAPI is defined by the BioAPI consortium (www.bioapi.org).

Unified POS, v1.15.1 Beta1 6-5

« The Device captures Biometric data for the purposes of verification. Verification does not require the same level of
quality as enrollment.

« The Device has the ability to determine if two BIRs match within the degree of error specified by the False Accept
Rate (FAR) and False Reject Rate (FRR). The FAR is the margin of percentage error acceptable that two non-
matching biometric samples will be falsely deemed to match. The FRR is the margin of percentage error acceptable
that two matching biometric samples will be falsely deemed not to match.

« The Device has the ability to compare a BIR against a sample population of BIRs and create a rank ordering of the
population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

« The Device Returns the raw biometric data in “real time” as it is captured by the device. If this capability is true and
has been enabled by application by setting the RealTimeDataEnabled property to true, then a series of
StatusUpdateEvents are enqueued, each as a raw image defined by SensorBPP, SensorColor, SensorHeight, and
SensorWidth representing a partial biometrics image capture.

Unified POS, V1.15.1 Beta1

6.3.2 Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

«exception»
UposException

«sends»

«event»
DataEvent

+Status : int32

Unified POS, v1.15.1 Beta1

«interface»
BaseControl

«uses»

«sends»

«utility»
UposConst

«utility»

BiometricsConstj

«uses»

«interface»
BiometricsControl

+Algorithm : int32
+AlgorithmList : string

+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary

+RealTimeDataEnabled : boolean

+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32

Note: Method parameters are
not listed due to space
limitations - refer to the
Methods section for details.

+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void
+identify() : void
+identifyMatch() : void
+processPrematchData() : void
+verify() : void

+verifyMatch() : void

«fires»

«fires»

I
«fires»
I
|

|
-
|
|
|
|
|

«event»
DirectlOEvent

«event»
ErrorEvent

+EventNumber : int32
+Data : int32
+ODbj : object

+ErrorCode : int32
+ErrorCodeExtended :
+ErrorLocus : int32

int32

+ErrorResponse : int32

«fires»

«event»
StatusUpdateEvent|

+Status : int32

6.3.3 Model

The Biometrics device usage model is:
« Open and claim the device.
« Enable the device and set the property DataEventEnabled to true.

« Begin capturing biometrics data by calling on of the following asynchronous methods beginVerifyCapture or
beginEnrollCapture. These methods activate the biometrics sensor to begin acquiring the biometrics data in the
relevant manner for the particular biometrics device. The result biometric data is stored in the BIR property. The
BIR data can be provided to the identifyMatch method and verifyMatch method for comparison and matching
purposes. The archival process of the BIR for future verification is application dependent.

« Perform synchronous biometric verifications through the verify method or synchronous biometric identifications
through the identify method.

« If the device is capable of supplying biometrics data in real time as the biometric sample is captured
(CapRealTimeData is true), and if RealTimeDataEnabled is true, the biometrics data is presented to the
application as a series of partial biometric data through the RawSensorData property and notified to the application
through StatusUpdateEvents until the biometric sample is fully acquired. RawSensorData is not queued rather it

is up to the application to capture the data upon receiving the StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-driven input:
» When input is received by the Service, it enqueues a DataEvent.
« If AutoDisable is true, then the Device automatically disables itself when a DataEvent is enqueued.

* A queued DataEvent can be delivered to the application when the property DataEventEnabled is true and other
event delivery requirements are met. Just before delivering this event, data is copied into properties, and further data
events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be enqueued while
the application processes the current input and associated properties. When the application has finished processing
the current input and is ready for more data, it re-enables events by setting DataEventEnabled to true.

« An ErrorEvent (or events) is enqueued if the an error occurs while gathering or processing input, and is delivered
to the application when DataEventEnabled is true and other event delivery requirements are met.

« The DataCount property may be read to obtain the number of queued DataEvents.

« All enqueued input may be deleted by calling clearInput. See the clearInput method description for more details.
Deviations from the general “Device Input Model” for event-driven input are:

* The capture of biometrics data begins when beginEnrollCapture or beginVerifyCapture is called.

« If biometrics capture is terminated by calling endCapture, then no DataEvent or ErrorEvent will be enqueued.

6-8 Unified POS, V1.15.1 Beta1

6.3.4 Device Sharing

The Biometrics is an exclusive-use device, as follows:
« The application must claim the device before enabling it.
« The application must claim and enable the device before accessing many of the Biometrics specific properties.

+ The application must claim and enable the device before calling methods that manipulate the device or before
changing some writable properties.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1

6.3.5 Biometrics Sequence Diagrams

The following diagram illustrates the enrollment sequence for the Biometrics device category.

N

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Service Hardware

I I Il I

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginEnrollCapture()

4: beginEnrollCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

\::; 13: BIR data persisted

—_—_——— - — — — — A

6-10 Unified POS, V1.15.1 Beta1

The following diagram illustrates the verify sequence for the Biometrics device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Service Hardware

Il 1 Il Il

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

The application provides a set of enroliment BIRs from which a match is to be found.

13: verify()

14: verify()

15: Hardware compares each enrollment BIR against the verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

Unified POS, v1.15.1 Beta1

The following diagram illustrates the verify - match sequence for the Biometrics device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application

Biometrics Control

I

1: setDataEventEnabled(true)

3: beginVerifyCapture()

2: setDataEventEnabled(true)

Biometrics Service

Il

8: Data Event delivered

4: beginVerifyCapture()

7: Create and fire a Data Event

5: Enable hardware capture

Hardware

I

6: Data captured and delivered

9: getBIR()

12: BIR data returned

10: getBIR()

11: BIR data returned

The

application provides the enrollment BIR of

the user to verify.

13: verifyMatch()

18: Return status and match data

14: verifyMatch()

17: Return status and match data

15: Hardware compares enrollment BIR against verify BIR

16: Hardware returns match data

—_— —

Unified POS, V1.15.1 Beta1

6.3.6 Biometrics State Diagram

The following diagram illustrates the various state transitions within the Biometrics device category.

/ close()
/ open() / claim()
Closed]/ / close() /[Opened]/ / release() /I Claimed
/ close() / release() / setDeviceEnabled(true

/ setDeviceEnabled(false)

Enroll Capture

/ beginEnroll Capture()
~
/ endCapture()
~—

/ beginVerifyCapture() Verify Capture
pture()

/ DataEvent fired

/ DataEvent fired

/ identify() / verifyMatch()

/ verify()

/ identifyMatcii() / processPrematchData()

Identify

Verify Matching

Identify Matching Preprocess Data

Unified POS, v1.15.1 Beta1 6-13

6.4

6.4.1

6.4.2

6.4.3

Properties (UML Attributes)

Algorithm Property

Syntax

Remarks

Errors

See Also

Algorithm: int32 { read-write, access after open-claim }

Contains the biometric algorithm currently in use for generating the biometrics template. The values
can be set to index the values contained in AlgorithmList. For example:

Value Meaning

0 Default value

1 First algorithm in AlgorithmList

2 Second algorithm in AlgorithmList, etc.

This property can only be updated when the device is opened and claimed, but not enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AlgorithmList Property.

AlgorithmList Property

Syntax
Remarks

Errors

See Also

AlgorithmList: string { read-only, access after open }
Contains the comma-delimited list of algorithms that are supported by the device.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Algorithm Property.

BIR Property 2

Syntax

Remarks

BIR: binary { read-only, access after open-claim-enable }3

This standard uses the term template to refer to the biometric enrollment data for a user. The term
biometric information record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for verification or identification,
as well as enrollment data. Typically, the only data stored persistently by the application is the BIR
generated for enrollment (i.e., the template). The format of the Opaque Biometric Data Block
(BDB) is indicated by the Format field of the Header. This may be a standard or proprietary format.
The BDB may be encrypted. The digital signature is optional, and may be used to ensure integrity
of the data during transmission and storage. When present, it is calculated on the Header + BDB.

2. Biometrics Information Record (BIR) was originally defined by the BioAPI consortium

(www.bioapi.org).

3. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion

property. See BinaryConversion property in Annex A.

Unified POS, V1.15.1 Beta1

For standardized BIR formats, the signature will take a standard form (to be determined when the
format is standardized). For proprietary BIR formats (all that exists at the present time), the
signature can take any form that suits the Service. For this reason, there is no C structure definition
of the signature. The BIR Data Type indicates whether the BIR is signed and/or encrypted.

Processed biometric data obtained through the methods beginEnrollCapture,
beginVerifyCapture, and verify are stored in this property upon successful completion.

Header “Opagque” Digital
Biometric Data Block Signature
Length Header | BIR Da Format 1D
ang eader ta i
(Heaer = B0E] Version Type Quality Purpose

Biometric Type
Owner Type
4 1 1 2 pd 1 1 4
< Product ID . .
Creation | Creation | Subtype | Index Index

Owner | Type Date Time Flag (UuIDy
2 2 4 3 1 1 18
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also beginEnrollCapture Method, beginVerifyCapture Method, verify Method.

6.4.4 CapPrematchData Property Updated in Release 1.11

Syntax CapPrematchData: boolean { read-only, access after open }

Remarks If true, the Service is capable of using MOC (Match-On-Card) SmartCard technology to generate a
processed BIR based on prematch data stored on a SmartCard.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also processPrematchData Method.

Unified POS, v1.15.1 Beta1 6-15

6.4.5 CapRawSensorData Property Updated in Release 1.12

6.4.6

6.4.7

Syntax CapRawSensorData: boolean { read-only, access after open }

Remarks If true, the Service is able to return unprocessed raw data from the biometrics sensor.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RawSensorData Property.

CapRealTimeData Property Updated in Release 1.12

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply raw biometrics data as the biometrics information is being
captured (“real time”). This property value will be false if CapRawSensorData is false, since real
time data is only delivered via the RawSensorData property which requires that
CapRawSensorData is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RawSensorData Property, Sensor BPP Property, SensorColor Property, SensorHeight Property,
SensorWidth Property.

CapSensorColor Property

Syntax CapSensorColor: int32 { read-only, access after open }

Remarks This capability indicates if this device supports image formats other than bi-tonal. CapSensorColor
is a logical OR combination of any of the following values:

Value Meaning
BIO_CSC_MONO Bi-tonal (B/W)
BIO CSC_GRAYSCALE Gray scale
BIO CSC _16 16 Colors
BIO_CSC 256 256 Colors
BIO CSC _FULL Full colors
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

Unified POS, V1.15.1 Beta1

6.4.8 CapSensorOrientation Property

Syntax CapSensorOrientation: int32 { read-only, access after open }

Remarks This capability indicates the ability of the sensor image to be rotated prior to processing.
CapSensorQOrientation is a logical OR combination of any of the following values:

Value Meaning
BIO_CSO _NORMAL 0°
BIO_CSO _RIGHT 90°
BIO_CSO _INVERTED 180°
BIO_CSO_LEFT 270°

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

6.4.9 CapSensorType Property Updated in Release 1.11

Syntax CapSensorType: int32 { read-only, access after open-claim-enable }

Remarks This capability indicates the types of biometrics data that can be captured by the attached sensor.
CapSensorType is a logical OR combination of any of the following values:

Value Meaning

BIO_CST FACIAL FEATURES Facial Features/Topography
BIO _CST VOICE Voice

BIO_CST FINGERPRINT Fingerprint

BIO_CST IRIS Iris

BIO _CST RETINA Retina

BIO CST HAND GEOMETRY Hand Geometry

BIO_CST SIGNATURE_DYNAMICS Signature
BIO_CST KEYSTROKE DYNAMICS Keystrokes
BIO_CST _LIP. MOVEMENT Lip Movement
BIO_CST THERMAL FACE IMAGE Face Image
BIO_CST THERMAL HAND IMAGE Hand Image

BIO _CST GAIT Gait/Stride
BIO CST PASSWORD Password
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also SensorType Property.

Unified POS, v1.15.1 Beta1 6-17

6.4.10 CapTemplateAdaptation Property

Syntax
Remarks

Errors

See Also

CapTemplateAdaptation: boolean { read-only, access after open }

If true, the Service is able to return an adapted BIR that is the result of updating a reference BIR
with information taken from a sample BIR or capture BIR. The purpose of this adaptation is to keep
the reference BIR current as biometric data shifts over time.

This capability must be populated after open, claim, and enable because it is dependent on the
selected Algorithm.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

6.4.11 RawSensorData Property Updated in Release 1.12

Syntax
Remarks

Errors

See Also

RawSensorData: binary { read-only, access after open-claim-enable }4

Holds the biometrics image data as raw pixel data scan lines from the top, left to the bottom, right.
SensorHeight and SensorWidth define the number of pixels. SensorBPP defines the number of
bits per pixel. SensorColor defines the interpretation of the pixel data. If CapRawSensorData is
false, then this property contains no meaningful value.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapRawSensorData Property, CapRealTimeData Property, RealTimeDataEnabled Property,
SensorBPP Property, SensorColor Property, SensorHeight Property, SensorWidth Property.

6.4.12 RealTimeDataEnabled Property Updated in Release 1.12

Syntax

Remarks

Errors

RealTimeDataEnabled: boolean { read-write, access after open }

If true, then StatusUpdateEvents will be fired as updated partial biometric data is captured until
biometric capture is completed. Otherwise, the captured biometric data is enqueued as a single
DataEvent when biometric capture is completed.

Setting RealTimeDataEnabled will not cause any change in system behavior until a subsequent
beginEnrollCapture or beginVerifyCapture method is performed. This prevents confusion
regarding what would happen if it were modified between a beginEnrollCapture - endCapture or
beginVerifyCapture - endCapture pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on pagel-16.

4. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion

property. See BinaryConversion property in Annex A.

Unified POS, V1.15.1 Beta1

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot set to true because CapRealTimeData is false.

CapRealTimeData Property, RawSensorData Property, SensorBPP Property, SensorColor
Property, SensorHeight Property, SensorWidth Property, beginEnrollCapture Method,
beginVerifyCapture Method, endCapture Method.

6.4.13 SensorBPP Property

Syntax
Remarks

Errors

SensorBPP: int32 { read-only, access after open }
Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

6.4.14 SensorColor Property Updated in Release 1.11

Syntax
Remarks

Errors

See Also

SensorColor: int32 { read-write, access after open }

This property is used to select the image capture mode for subsequent biometric capture operations.
Certain SensorType devices may not work with all the “colors” or color image type may not make
sense. Changing the SensorColor property will not affect any previously stored data currently
residing in the RawSensorData property or BIR property.

It may contain one of the following values:

Value Meaning
BIO_SC_MONO Bi-tonal (B/W)
BIO_SC _GRAYSCALE Gray scale
BIO _SC 16 16 Colors
BIO_SC 256 256 Colors
BIO_SC _FULL Full color

This property can only be set to a value if the value is defined in CapSensorColor.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on pagel-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Invalid sensor color specified. See CapSensorColor.

CapSensorColor Property, RawSensorData Property, SensorBPP Property, SensorHeight
Property, Sensor Width Property.

Unified POS, v1.15.1 Beta1 6-19

6.4.15 SensorHeight Property

Syntax SensorHeight: int32 { read-only, access after open }

Remarks Holds the height of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

6.4.16 SensorOrientation Property Updated in Release 1.11
Syntax SensorOrientation: int32 { read-write, access after open-claim }
Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR creation.
Value Meaning
BIO SO NORMAL 0°
BIO SO _RIGHT 90°
BIO SO _INVERTED 180°
BIO SO _LEFT 270°

This property can only be updated when the device is opened and claimed, but not enabled.
This property can only be set to a value if the value is defined in CapSensorOrientation.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Invalid sensor orientation specified. See
CapSensorOrientation.

See Also CapSensorQOrientation Property.

6-20 Unified POS, V1.15.1 Beta1

6.4.17 SensorType Property

Syntax

Remarks

Errors

See Also

Updated in Release 1.11

SensorType: int32 { read-write, access after open-claim-enable }

Holds the type of biometrics sensor being accessed.

Value

Meaning
BIO_ ST FACIAL FEATURES Facial Topography
BIO ST VOICE Voice
BIO_ST FINGERPRINT Fingerprint
BIO_ST IRIS Iris
BIO_ST RETINA Retina
BIO ST HAND GEOMETRY Hand Geometry
BIO_ST SIGNATURE DYNAMICS Signature
BIO ST KEYSTROKE DYNAMICS Keystrokes

BIO ST LIP MOVEMENT

BIO ST THERMAL FACE IMAGE
BIO ST THERMAL HAND IMAGE
BIO ST GAIT

BIO_ST PASSWORD

Lip Movement
Thermal Face Image
Thermal Hand Image
Gait/Stride

Password

This property can only be set to a value if the value is defined in CapSensorType.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Invalid sensor type specified. See CapSensorType.
CapSensorType Property.

6.4.18 SensorWidth Property

Syntax
Remarks

Errors

See Also

SensorWidth: int32 { read-only, access after open }

Holds the width of the RawSensorData in pixels.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

RawSensorData Property.

Unified POS, v1.15.1 Beta1

6.5

6.5.1

6.5.2

Methods (UML operations)

beginEnrollCapture Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description

referenceBIR’ Optional BIR to be adapted (updated). This parameter is ignored, if
EMPTY.

payload® Data that will be stored by the BSP. This parameter is ignored, if EMPTY.

Starts capturing biometrics data for purposes of enrollment. Although not required, enrollment
captures customarily result in a series of biometrics data captures whose aggregation form the final
BIR. Optionally if CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation
with the enrollment. If a payload is provided that data is added into the resulting BIR.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE referenceBIR could not be adapted.
E ILLEGAL Biometrics capture is already in progress.

BIR Property, CapTemplateAdaptation Property, endCapture Method.

beginVerifyCapture Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

beginVerifyCapture ():
void { raises-exception, use after open-claim-enable }

Starts capturing biometrics data for the purposes of verification. The resulting processed data is
stored in the BIR.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Biometrics capture is already in progress.

BIR Property, endCapture Method.

5. In the OPOS environment, the format of referenceBIR and payload depends upon the value of the

BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, V1.15.1 Beta1

6.5.3 endCapture Method

Syntax

Remarks

Errors

See Also

endCapture():
void { raises-exception, use after open-claim-enable }

Stops (terminates) capturing biometrics data.

If RealTimeDataEnabled is false and biometrics data was captured, then it is placed in the
properties BIR and RawSensorData. If no biometrics data was captured, then BIR and
RawSensorData are EMPTY.

If RealTimeDataEnabled is true and there is biometric data remaining which have not been
delivered to the application by a StatusUpdateEvent, then the remaining biometric data is placed
into the properties BIR and RawSensorData. If no biometrics data was captured or all biometric
data has been delivered to the application, then BIR and RawSensorData are EMPTY.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Biometrics capture was not in progress.

BIR Property, RawSensorData Property, RealTimeDataEnabled Property, beginEnrollCapture
Method, beginVerifyCapture Method, DataEvent.

6.5.4 identify Method Updated in Release 1.12

Syntax

identify (maxFARRequested: inf32, maxFRRRequested: inf32, FARPrecedence: boolean,
referenceBIRPopulation: array of binary,
inout candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO_ FAR PRECEDENCE (TRUE) indicates that

maxFARRequested takes precedence, BIO FRR_PRECEDENCE

(FALSE) indicates that maxFRRRequested takes precedence.
referenceBIRPopulation®

An array of BIRs against which the Identify match is performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank
order. The indices are zero-based.
timeout Maximum number of milliseconds to attempt a successful biometric

capture before failing.

6. In the OPOS environment, the format of reference BIR Population depends upon the value of the

BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6 -23

6.5.5

Remarks This function captures biometric data from the attached device within the allotted timeout, and
compares it against a set of referenceBIRPopulation. It then returns a rank ordered array of
referenceBIR Population indices in candidateRanking. If nothing matches, an array with zero
elements is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation
was not valid or Biometrics capture is in progress.
E TIMEOUT The specified timeout has elapsed before biometric data was captured.
identifyMatch Method Updated in Release 1.12

Syntax identifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence:
boolean, sampleBIR: binary, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes
precedence. BIO_ FAR PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO FRR_ PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

sampleBIR’ The BIR to be identified

referenceBIR Population '
An array of BIRs against which the Identify match is performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank
order. The indices are zero-based.

Remarks This function accepts a sampleBIR, and compares it against a set of referenceBIRPopulation. It then
returns a rank ordered array of referenceBIRPopulation indices in candidateRanking. If nothing
matches, an array with zero elements is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see

Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation
was not valid or Biometrics capture is in progress.

7. In the OPOS environment, the format of sampleBIR and referenceBIRPopulation depends upon the

value of the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, V1.15.1 Beta1

6.5.6 processPrematchData Method Updated in Release 1.11

Syntax processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout processedBIR:
binary)
void { raises-exception, use after open-claim-enable}
Parameter Description
sampleBIR® BIR to be processed
prematchDataBIR 8 BIR containing prematch data previously emitted by the associated MOC
Library.
processedBIR 8 The newly constructed processed BIR

Remarks This function creates processed biometric samples suitable for Match-on-Card (MOC). It enables
MOC implementations that require the retrieval of “prematch” data from the card prior to the
subsequent matching operation. Since smart cards generally do not have the capability to capture
and process biometric samples, the on-card MOC functionality needs a host to perform off-card
operations such as sample acquisition and feature extraction. In this case, the card needs the host to
perform an operation based on prematch data that is retrieved from the card.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL sampleBIR was not valid, Biometrics capture is in progress, or
CapPrematchData is false.

See Also CapPrematchData Property.

8. In the OPOS environment, the format of sampleBIR, prematchDataBIR, and processedBIR depends
upon the value of the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.15.1 Beta1 6-25

6.5.7 verify Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

verify(maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
referenceBIR: binary, inout adaptedBIR: binary, inout result: boolean, inout FARA chieved:
int32, inout FRRAchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO_ FAR PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO_ FRR PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

referenceBIR9 The BIR to be verified against.

adaptedBIR ? A pointer to the handle of the adapted BIR. This parameter can be
EMPTY (0x00) if an adapted BIR is not desired.

result A boolean value of true for a successful match or false for a failed match.

FARAchieved FAR Value indicating the closeness of the match.

FRRAchieved FRR Value indicating the closeness of the match.

payload 0 If a payload is associated with the referenceBIR, it is returned in an
allocated binary if a successful match was made.

timeout Maximum number of milliseconds to attempt a successful biometric

capture before failing.

This function captures biometric data from the attached device within the allotted timeout, and
compares it against the referenceBIR. If the match is successful as indicated by a positive result and
an adaptedBIR handle was provided, the Service will attempt to adapt the referenceBIR from
information take form the captured BIR.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid
or Biometrics capture is in progress.

E TIMEOUT The specified timeout has elapsed before biometric data was captured.

BIR Property, CapTemplateAdaptation Property.

9. In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload depends upon the

value of the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, V1.15.1 Beta1

6.5.8 verifyMatch Method Updated in Release 1.12

Syntax verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence:
boolean, sampleBIR: binary, referenceBIR: binary, inout adaptedBIR: binary, inout result:
boolean, inout FARAchieved: int32, inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes

precedence. BIO FAR PRECEDENCE (TRUE) indicates that
maxFARRequested takes precedence, BIO FRR PRECEDENCE
(FALSE) indicates that maxFRRRequested takes precedence.

sampleBIR" The BIR to be identified.

referenceBIRlO The BIR to be verified against.

adaptedBIR '° A pointer to the handle of the adapted BIR. This parameter can be
EMPTY (0x00) if an adapted BIR is not desired.

result A boolean value of true for a successful match or false for a failed match.

FARAchieved FAR Value indicating the closeness of the match.

FRRAchieved FRR Value indicating the closeness of the match.

payload '° If a payload is associated with the referenceBIR, it is returned in an

allocated binary if a successful match was made.

Remarks This function compares a sampleBIR against the referenceBIR. If the match is successful as
indicated by a positive result and an adaptedBIR handle was provided, the Service will attempt to
adapt the referenceBIR from information taken from the captured BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL maxFARRequested, or maxFRRRequested, or reference BIR was not valid
or Biometrics capture is in progress.

10.In the OPOS environment, the format of sampleBIR, referenceBIR, adaptedBIR, and payload
depends upon the value of the BinaryConversion property. See BinaryConversion property in Annex
A.

Unified POS, v1.15.1 Beta1 6 -27

6.6

6.6.1

6.6.2

Events (UML Interfaces)

DataEvent

<< event >> upos::events::DataEvent

Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:
Attributes Type Description
Status int32 BIO_DATA_ENROLL if enroll capture is completed.

BIO_DATA_VERIFY if verify capture is completed.

Remarks The properties BIR and RawSensorData are set to appropriate values prior to a DataEvent being
delivered to the application.

See Also “Events” on page 1-15, BIR Property, RawSensorData Property, beginEnrollCapture Method,
beginVerifyCapture Method, endCapture Method.

DirectlOEvent

<<event >> upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Description Provides Service information directly to the application. This event provides a means for a vendor-

Attributes

Remarks

See Also

specific Biometrics Capture Service to provide events to the application that are not otherwise
supported by the Control.

This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendors’ Biometric devices which may not have any knowledge of the Service’s need for this event.

“Events” on page 1-15, directlO Method.

Unified POS, V1.15.1 Beta1

6.6.3 ErrorEvent Updated in Release 1.11

<<event >> upos::events::ErrorEvent

Description

Attributes

Remarks

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a Biometrics device error has been detected and a suitable response by
the application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 1-17.
ErrorCodeExtended

int32 Extended Error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL _INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

EL INPUT DATA Error occurred while gathering or processing event-driven input, and
some previously buffered data is available. (Very unlikely - see
Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER CLEAR Clear all buffered input data. The error state is exited. Default when locus
is EL_INPUT.

ER CONTINUEINPUT
Used only when locus is EL_INPUT _DATA. Acknowledges the error
and directs the Service to continue processing. The Service remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL._INPUT. Default when locus is
EL_INPUT DATA.

Enqueued when an error is detected while trying to read biometric capture data. This event is not
delivered until DataEventEnabled is set to true and other event delivery requirements are met, so
that proper application sequencing occurs.

Unified POS, v1.15.1 Beta1 6-29

6.6.4

With proper programming, an ErrorEvent with locus EL INPUT DATA will not occur. This is
because each biometrics capture requires an explicit beginXxxxxxCapture method, which can
generate at most one DataEvent. The application would need to defer the DataEvent by setting
DataEventEnabled to false and request another capture before an EL_ INPUT DATA would be
possible.

See Also “Device Input Model” on page 1-18, “Device Information Reporting Model” on page 1-25,
StatusUpdateEvent Updated in Release 1.13
<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }
Description Notifies the application that there is a change in the status of a Biometric Capture device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a Biometrics device or reports a
requested user interaction with the Biometrics sensor to complete the
capture. In the case of the latter, the following directives can be issued:

Value Meaning

BIO SUE RAW DATA Raw image data is available.

BIO SUE MOVE _LEFT The position was too far to the right.
BIO_SUE MOVE RIGHT The position was too far to the left.
BIO_SUE MOVE_DOWN The position was too high.
BIO_SUE_MOVE _UP The position was too low.

BIO SUE MOVE CLOSER The position was too far away.

BIO SUE MOVE AWAY The position was too near (close).

BIO SUE MOVE BACKWARD The position was too far forward.
BIO SUE MOVE FORWARD The position was too far backward.

BIO SUE MOVE SLOWER The motion was too fast, move slower.

BIO_SUE MOVE FASTER The motion was too slow, move faster.

BIO SUE SENSOR DIRTY The sensor is dirty and requires cleaning.

BIO _SUE FAILED READ Unable to capture data from the sensor, please retry the
operation.

BIO SUE SENSOR READY (Added in Release 1.13)

The sensor is ready to scan a Biometric object
BIO_SUE_SENSOR_COMPLETE (Added in Release 1.13)
The sensor reports that the scan of a Biometric object is
complete.
Remarks Enqueued when the Biometric Capture device detects a power state change or user interaction.

See Also “Events” on page 1-15.

Unified POS, V1.15.1 Beta1

7

71

7.2

Bump Bar

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:

CapStatisticsReporting:

CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:
DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputlD:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:

DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

This Chapter defines the Bump Bar device category.

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.3
1.9
1.3
1.8
1.9
1.8
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3

1.3
1.3
1.3
1.3
13
1.3

May Use After
Not supported
open
open
open
open
open
open
open
open
open
open & claim
open
open
open

open

Properties (Continued)

Specific Type Mutability Version May Use After
AsyncMode: boolean { read-write } 1.3 open, claim, & enable
AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable
AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable
BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable
CapTone: boolean { read-only } 1.3 open, claim, & enable
CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable
ErrorString: string { read-only } 1.3 open
ErrorUnits: int32 { read-only } 1.3 open
EventString: string { read-only } 1.3 open & claim
EventUnitID: int32 { read-only } 1.3 open & claim
EventUnits: int32 { read-only } 1.3 open & claim
Keys: int32 { read-only } 1.3 open, claim, & enable
Timeout: int32 { read-write } 1.3 open
UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.3
void { raises-exception }

close (): 1.3
void { raises-exception, use after open }

claim (timeout: int32): 1.3
void { raises-exception, use after open }

release (): 1.3
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.3
void { raises-exception, use after open, claim, enable }

clearInput (): 1.3
void { raises-exception, use after open, claim }

clearInputProperties (): Not supported®
void { raises-exception, use after open, claim }

clearOutput (): 1.3

void { raises-exception, use after open, claim }

directlO (command: int32, inout data: int32, inout obj: object): 1.3
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

7-2 Unified POS, V1.15.1 Beta1

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific

Name

bumpBarSound (units: int32, frequency: int32, duration: int32, 1.3

numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open, claim, enable }

setKeyTranslation (units: int32, scanCodes: int32, logicalKey: int32): 1.3
void { raises-exception, use after open, claim, enable }

a. No sensitive information is generated or stored.

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.3
Status: int32 { read-only }
upos::events::DirectlOEvent 1.3
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.3
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }
upos::events::QutputCompleteEvent 1.3
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.3
Status: int32 { read-only }

Unified POS, v1.15.1 Beta1

7.3 General Information

7.3.1 Capabilities

The Bump Bar Control has the following minimal set of capabilities:

« Supports broadcast methods that can communicate with one, a range, or all bump bar units online.
« Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

« Supports bump bar enunciator output with frequency and duration.

« Supports tactile feedback via an automatic tone when a bump bar key is pressed.

7-4 Unified POS, V1.15.1 Beta1

7.3.2 Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

<<event>> <<utility>> <<utility>> << o> <<Interface>>
DataEvent BumpBarConst UposConst | uses BaseControl
(from events) (from upos) (from upos) - (from upos)
N\ ﬂ:\<<uses>> e /
\<<uses>> e
| |/, <<sends>>
/ \/
\ / <<exception>>
ires
<<event>> \ I UposException
DirectlOEvent \ | / (from upos)
(from events) \
\ / 7
/
fires \ / / <<sends>>
| |
<<Interface>>
BumpBarControl

(from upos)

g<<capability>> CapTone : boolean
&<<prop>> AsyncMode : boolean
<<prop>> Timeout : int32
&<<prop>> UnitsOnline : int32
&<<prop>> CurrentUnitID : int32
@<<prop>> AutoToneDuration : int32
&<<prop>> AutoToneFrequency : int32
@<<prop>> BumpBarDataCount : int32
&<<prop>> Keys : int32
g<<prop>> ErrorUnits : int32
&<<prop>> ErrorString : string
&<<prop>> EventUnitID : int32
g<<prop>> EventUnits : int32
g<<prop>> EventString : string

| ®bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void
%setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

fire ﬁ‘}es ires
V

<<event>> <<event>> <<event>>
ErrorEvent StatusUpdateEvent OutputCompleteEvent
(from events) (from events) (from events)

Unified POS, v1.15.1 Beta1

7.3.3 Model

734

The general model of a bump bar is:

« The bump bar device class is a subsystem of bump bar units. The initial targeted environment is food service, to
control the display of order preparation and fulfillment information. Bump bars typically are used in conjunction
with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage and control the entire subsystem of bump
bars. If applications on the same or other workstations and POS Terminals will need to access the subsystem, then this
application must act as a subsystem server and expose interfaces to other applications.

« All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of units or
all online units. The units parameter is an int32, with each bit identifying an individual bump bar unit. (One or more
of the constants BB_UID 1 through BB UID 32 are bitwise ORed to form the bitmask.) The Service will attempt
to satisfy the method for all unit(s) indicated in the units parameter. If an error is received from one or more units,
the ErrorUnits property is updated with the appropriate units in error. The ErrorString property is updated with a
description of the error or errors received. The method will then notify the application of the error condition. In the
case where two or more units encounter different errors, the Service should determine the most severe error to
report.

 The common methods checkHealth, clearInput, and clearOutput are not broadcast methods and use the unit ID
indicated in the CurrentUnitID property. (One of the constants BB_UID 1 through BB UID 32 are selected.) See
the description of these common methods to understand how the current unit ID property is used.

» When the current unit ID property is set by the application, all the corresponding properties are updated to reflect
the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-
initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The definitions range from BB _UID 1 to
BB _UID 32. These definitions are also used to create the bitwise parameter, units, used in the broadcast
methods.

Input - Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input with some differences:
« When input is received, a DataEvent is enqueued.

« This device does not support the AutoDisable property, so the device will not automatically disable itself when a
DataEvent is enqueued.

» An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the DataEventEnabled property to false. This causes
subsequent input data to be enqueued while the application processes the current input and associated properties.
When the application has finished the current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

» An ErrorEvent or events are enqueued if an error is encountered while gathering or processing input, and are
delivered to the application when the DataEventEnabled property is true and other event delivery requirements are

Unified POS, V1.15.1 Beta1

met.

» The BumpBarDataCount property may be read to obtain the number of bump bar DataEvents for a specific unit
ID enqueued. The DataCount property can be read to obtain the total number of data events enqueued.

* Queued input may be deleted by calling the clearInput method. See clearInput method description for more
details.

The Bump Bar Service provider must supply a mechanism for translating its internal key scan codes into user-
defined codes which are returned by the data event. Note that this translation must be end-user configurable. The
default translated key value is the scan code value.

7.3.5 Output — Tone Updated in Release 1.7

The bump bar follows the general “Device Output Model,” with some enhancements:

» The bumpBarSound method is performed either synchronously or asynchronously, depending on the value of the
AsyncMode property.

* When AsyncMode is false, then this method operates synchronously and the Device returns to the application after
completion. When operating synchronously, the application is notified of an error if the method could not complete
successfully.

» When AsyncMode is true, then this method operates as follows:

* The Device buffers the request in program memory, for delivery to the Physical Device as soon as the Physical
Device can receive and process it, sets the OutputID property to an identifier for this request, and returns as soon as
possible. When the device completes the request successfully, the EventUnits property is updated and an
OutputCompleteEvent is enqueued. A property of this event contains the output ID of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The EventUnits property
is set to the unit or units in error. The EventString property is also set.

Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a broadcast method, then
ErrorUnits and ErrorString are set instead.

The event handler may call synchronous bump bar methods (but not asynchronous methods), then can either retry
the outstanding output or clear it.

« Asynchronous output is performed on a first-in first-out basis.

« All output buffered may be deleted by setting the CurrentUnitID property and calling the clearOutput method. An
OutputCompleteEvent will not be enqueued for cleared output. This method also stops any output that may be in
progress (when possible).

7.3.6 Device Sharing
The bump bar is an exclusive-use device, as follows:
« The application must claim the device before enabling it.
« The application must claim and enable the device before accessing many bump bar specific properties.
« The application must claim and enable the device before calling methods that manipulate the device.

» When a claim method is called again, settable device characteristics are restored to their condition at release.

Unified POS, v1.15.1 Beta1 7-7

« See the “Summary” table for precise usage prerequisites.

7.3.7 Bump Bar State Diagram

Enabled

/setDeviceEnabled(true)

[AsyncMode == true]/bumpBarSound

7-8 Unified POS, V1.15.1 Beta1

7.4 Properties (UML attributes)

7.41 AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open-claim-enable }

If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

bumpBarSound Method, “Device Output Models” on page 1-21.

7.4.2 AutoToneDuration Property

Syntax

Remarks

Errors

See Also

AutoToneDuration: int32 { read-write, access after open-claim-enable }

Holds the duration (in milliseconds) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentUnitID Property.

7.4.3 AutoToneFrequency Property

Syntax

Remarks

Errors

See Also

AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Holds the frequency (in Hertz) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentUnitID Property.

Unified POS, v1.15.1 Beta1 7-9

7.4.4 BumpBarDataCount Property

7.4.5

7.4.6

Syntax

Remarks

Errors

See Also

BumpBarDataCount: int32 { read-only, access after open-claim-enable }

Holds the number of DataEvents enqueued for the bump bar unit specified by the CurrentUnitID
property.

The application may read this property to determine whether additional input is enqueued from a
bump bar unit, but has not yet been delivered because of other application processing, freezing of
events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentUnitID Property, DataEvent.

CapTone Property

Syntax

Remarks

Errors

See Also

CapTone: boolean { read-only, access after open-claim-enable }
If true, the bump bar unit specified by the CurrentUnitID property supports an enunciator.

This property is initialized when the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentUnitID Property.

CurrentUnitID Property

Syntax

Remarks

Errors

CurrentUnitlID: int32 { read-write, access after open-claim-enable }

Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar device. The unit
ID definitions range from BB_UID 1 to BB UID 32.

Setting this property will update other properties to the current values that apply to the specified
unit. The following properties and methods apply only to the selected bump bar unit ID:

* Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount, CapTone, and
Keys.

* Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID 1 when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, V1.15.1 Beta1

7.4.7 DataCount Property

Syntax

Remarks

Errors

DataCount: int32 { read-only, access after open }

Holds the total number of DataEvents enqueued. All units online are included in this value. The
number of enqueued events for a specific unit ID is stored in the BumpBarDataCount property.

The application may read this property to determine whether additional input is enqueued, but has
not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also BumpBarDataCount Property, DataEvent Event, “Device Input Model" on page 18.

7.4.8 ErrorString Property

Syntax

Remarks

Errors

See Also

ErrorString: string { read-only, access after open }

Holds a description of the error which occurred on the unit(s) specified by the ErrorUnits property,
when an error occurs for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the
property EventString instead.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

ErrorUnits Property.

7.4.9 ErrorUnits Property

Syntax

Remarks

Errors

See Also

ErrorUnits: int32 { read-only, access after open }

Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs for any method
that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the
property EventUnits instead.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

ErrorString Property.

Unified POS, v1.15.1 Beta1 7-11

7.4.10 EventString Property

Syntax

Remarks

Errors

See Also

EventString: string { read-only, access after open-claim }

Holds a description of the error which occurred to the unit(s) specified by the EventUnits property,
when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

EventUnits Property, ErrorEvent.

7.4.11 EventUnitID Property

Syntax

Remarks

Errors

See Also

EventUnitID: int32 { read-only, access after open-claim }

Holds the bump bar unit ID causing a DataEvent. This property is set just before a DataEvent is
delivered. The unit ID definitions range from BB_UID 1to BB_UID_ 32.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

DataEvent.

7.4.12 EventUnits Property

Syntax

Remarks

Errors

See Also

EventUnits: int32 { read-only, access after open-claim }

Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, ErrorEvent, or
StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

7.4.13 Keys Property

Syntax

Remarks

Errors

See Also

Keys: int32 { read-only, access after open-claim-enable }
Holds the number of keys on the bump bar unit specified by the CurrentUnitID property.

This property is initialized when the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentUnitID Property.

Unified POS, V1.15.1 Beta1

7.4.14 Timeout Property

Syntax

Remarks

Errors

See Also

Timeout: int32 { read-write, access after open }

Holds the timeout value in milliseconds used by the bump bar device to complete all output methods
supported. If the device cannot successfully complete an output method within the timeout value,
then the method notifies the application of the error.

This property is initialized to a Service dependent timeout following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncMode Property, ErrorString Property, bumpBarSound Method.

7.4.15 UnitsOnline Property

Syntax

Remarks

Errors

See Also

UnitsOnline: in#32 { read-only, access after open-claim-enable }

Bitwise mask indicating the bump bar units online, where zero or more of the unit constants
BB _UID 1 (bit 0 on) through BB_UID 32 (bit 31 on) are bitwise ORed. 32 units are supported.

This property is initialized when the device is first enabled following the open method. This
property is updated as changes are detected, such as before a StatusUpdateEvent is enqueued and
during the checkHealth method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

checkHealth Method, StatusUpdateEvent.

Unified POS, v1.15.1 Beta1 7-13

7.5

7.5.1

Methods (UML operations)

bumpBarSound Method

Syntax

Remarks

Errors

bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat continuously.
Else perform the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait
milliseconds before repeating the tone cycle (before playing the tone
again)

Sounds the bump bar enunciator for the bump bar(s) specified by the units parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

The duration of a tone cycle is:
duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be stopped by using the
clearQutput method. (When a numberOfCycles value of FOREVER was used to start the sound,
then the application must use clearOutput to stop the continuous sounding of tones.)

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value nor FOREVER.
numberOfCycles is FOREVER when AsyncMode is false.

A negative interSoundWait was specified.

units is zero or a non-existent unit was specified.

A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be updated before the
exception is thrown.

Unified POS, V1.15.1 Beta1

See Also

E FAILURE An error occurred while communicating with one of the bump bar units
specified by the units parameter. The ErrorUnits and ErrorString
properties are updated before the exception is thrown. (Can only occur if
AsyncMode is false.)

AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone Property,
clearQutput Method.

7.5.2 checkHealth Method (Common)

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
CH_INTERNAL Perform ahealth check that does not physically change the device. The
device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device.

CH_INTERACTIVE Perform an interactive test of the device. The Service will typically
display a modal dialog box to present test options and results.

When CH_INTERNAL or CH_EXTERNAL level is requested, the method will check the health of
the bump bar unit specified by the CurrentUnitID property. When the current unit ID property is
set to a unit that is not currently online, the device will attempt to check the health of the bump bar
unit and report a communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText property.
The UnitsOnline property will be updated with any changes before returning to the application.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE An error occurred while communicating with the bump bar unit specified
by the CurrentUnitID property.

CurrentUnitID Property, UnitsOnline Property.

Unified POS, v1.15.1 Beta1 7-15

7.5.3 clearlnput Method (Common)
Syntax clearInput ():
void { raises-exception, use after open-claim }
Remarks Clears the device input that has been buffered for the unit specified by the CurrentUnitID property.

Any data events that are enqueued — usually waiting for DataEventEnabled to be set to true and
FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property, “Device Input Model” on page 1-18.

7.5.4 clearOutput Method (Common) Updated in Release 1.7

Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered, including all asynchronous output, for the unit
specified by the CurrentUnitID property.

Any output complete and output error events that are enqueued — usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

See Also CurrentUnitID Property, “Device Output Models” on page 1-21.

7-16 Unified POS, V1.15.1 Beta1

7.5.5 setKeyTranslation Method

Syntax

Remarks

Errors

See Also

setKeyTranslation (units: inf32, scanCode: int32, logicalKey: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set key translation for.
scanCode The bump bar generated key scan code. Valid values 0-255.

logicalKey The translated logical key value. Valid values 0-255.

Assigns a logical key value to a device-specific key scan code for the bump bar unit(s) specified by
the units parameter. The logical key value is used during translation during the DataEvent.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:

scanCode or logicalKey are out of range.
units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated prior to
notifying the application of the error.

ErrorUnits Property, ErrorString Property, DataEvent.

Unified POS, v1.15.1 Beta1 7-17

7.6

7.6.1

Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent

Status: int32 {read-only }

Description Notifies the application when status from the bump bar is available.

Attributes

Remarks

See Also

This event contains the following attribute:

Attributes Tvyvpe Description
Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type, located in the low
word, the remaining 2 bytes will contain additional data. The diagram below indicates how the
Status property is divided:

High Word Low Word (Event Type)

High Byte Low Byte
Unused. Always zero. LogicalKeyCode BB DE KEY

Enqueued to present input data from a bump bar unit to the application. The low word contains the
Event Type. The high word contains additional data depending on the Event Type. When the Event
Type is BB_DE KEY, the low byte of the high word contains the LogicalKeyCode for the key
pressed on the bump bar unit. The LogicalKeyCode value is device independent. It has been
translated by the Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

“Device Input Model” on page 1-18, EventUnitID Property, DataEventEnabled Property,
FreezeEvents Property.

Unified POS, V1.15.1 Beta1

7.6.2 DirectlOEvent

7.6.3

<< event >> upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-

Attributes

Remarks

See Also

specific Bump Bar Service to provide events to the application that are not otherwise supported by
the Control.

This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Bump Bar devices which may not have any knowledge of the Service’s need for this event.

“Events” on page 1-15, directlO Method.

ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable response by the

Attributes

application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 2.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

Unified POS, v1.15.1 Beta1 7-19

The ErrorLocus property may be one of the following:

Value Meaning
EL OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and
some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error event listener may change ErrorResponse to one of the following values:

Value Meaning

ER RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_ OUTPUT.

ER _CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT
Use only when locus is EL_INPUT DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
Default when locus is EL_ INPUT DATA.

Remarks Enqueued when an error is detected while gathering data from or processing asynchronous output
for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

The EventUnits and EventString properties are updated before the event is delivered.

See Also “Device Output Models” on page 1-21, “Device Information Reporting Model” on page 1-25,
DataEventEnabled Property, EventUnits Property, EventString Property.

7-20 Unified POS, V1.15.1 Beta1

7.6.4 OutputCompleteEvent
<< event >> upos::events::QutputCompleteEvent
OutputID: in#32 { read-only }

Description Notifies the application that the queued output request associated with the Ou#putID attribute has
completed successfully.

Aftributes This event contains the following attribute:

Attributes Type Description
OutputlD int32 ThelDnumber ofthe asynchronous output request that is complete.
The EventUnits property is updated before delivering.

Remarks Enqueued when a previously started asynchronous output request completes successfully.
See Also EventUnits Property, “Device Output Models” on page 1-21.

7.6.5 StatusUpdateEvent
<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }
Description Notifies the application that the bump bar has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.
Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent” description in
Chapter 2)

* Before delivering the event, the EventUnits property is set to the units for which the new power
state applies.

* When the bump bar device is enabled, then a StatusUpdateEvent is enqueued to specify the
bitmask of online units.

* While the bump bar device is enabled, a StatusUpdateEvent is enqueued when the power state
of one or more units change. If more than one unit changes state at the same time, the Service
may choose to either enqueue multiple events or to coalesce the information into a minimal
number of events applying to EventUnits.

See Also EventUnits Property.

Unified POS, v1.15.1 Beta1 7-21

Unified POS, V1.15.1 Beta1

8 Cash Changer

8.1 General

This Chapter defines the Cash Changer device category.

8.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 12 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string {read-only} 1.2 open
Claimed: boolean {read-only} 1.2 open
DataCount: int32 {read-only} 1.5 open
DataEventEnabled: boolean {read-write} 1.5 open
DeviceEnabled: boolean {read-write} 1.2 open & claim
FreezeEvents: boolean {read-write} 1.2 open
OutputID: int32 {read-only} 1.2 Not Supported
PowerNotify: int32 {read-write} 1.3 open
PowerState: int32 {read-only} 1.3 open
State: int32 {read-only} 1.2 --
DeviceControlDescription: string {read-only} 1.2 --
DeviceControlVersion: int32 {read-only} 1.2 --
DeviceServiceDescription: string {read-only} 1.2 open
DeviceServiceVersion: int32 {read-only} 1.2 open
PhysicalDeviceDescription: string {read-only} 1.2 open
PhysicalDeviceName: string {read-only} 1.2 open

Unified POS, v1.15.1 Beta1

Properties (Continued)

Specific
CapDeposit:

CapDepositDataEvent:

CapDiscrepancy:
CapEmptySensor:
CapFullSensor:

CapJamSensor:

CapNearEmptySensor:

CapNearFullSensor:
CapPauseDeposit:
CapRealTimeData:
CapRepayDeposit:

AsyncMode:
AsyncResultCode:

AsyncResultCodeExtended:

CurrencyCashList:
CurrencyCode:
CurrencyCodeList:
CurrentExit:
CurrentService:
DepositAmount:
DepositCashList:
DepositCodeList:
DepositCounts:
DepositStatus:
DeviceExits:
DeviceStatus:
ExitCashList:
FullStatus:

RealTimeDataEnabled:

ServiceCount:

Servicelndex:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

boolean
int32
int32

string
string
string
int32
int32
int32
string
string
string
int32
int32
int32
string
int32
boolean
int32
int32

Mutability
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

{read-write}
{read-only}
{read-only}

{read-only}
{read-write}
{read-only}
{read-write}
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-only}

Version

1.5
1.5
1.2
1.2
1.2
1.11
1.2
1.2
1.5
1.11
1.5

1.2
1.2
1.2

1.2
1.2
1.2
1.2

1.5
1.5
1.5
1.5
1.5
1.2
1.2
1.2
1.2

1.11
1.11

May Use After
open
open
open
open
open
open
open
open
open
open

open

open
open, claim, & enable

open, claim, & enable

open
open
open
open
open
open
open
open
open
open, claim, & enable
open
open, claim, & enable
open
open, claim, & enable
open, claim & enable
open

open

Unified POS, V1.15.1 Beta1

Methods (UML operations)

Common
Name Version
open (logicalDeviceName: string): 1.2
void { raises-exception }
close (): 1.2
void { raises-exception, use after open }
claim (timeout: int32): 1.2
void { raises-exception, use after open }
release (): 1.2
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.2
void { raises-exception, use after open, claim, enable }
clearInput (): 1.5
void { raises-exception, use after open, claim }
clearInputProperties (): Not supported
void { }
clearOutput (): Not supported
void { }
directlO (command: int32, inout data: int32, inout obj: object): 1.2

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.5
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.2
void { raises-exception, use after open, claim, enable }

dispenseChange (amount: in#32): 1.2
void { raises-exception, use after open, claim, enable }

Unified POS, v1.15.1 Beta1 8-3

endDeposit (success: int32):

void { raises-exception, use after open, claim, enable }

fixDeposit ():

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name

upos::events::DataEvent

Status:
upos::events::DirectlOEvent

EventNumber:

Data:

Obj:
upos::events::ErrorEvent

upos::events::OQutputCompleteEvent

upos::events::StatusUpdateEvent

Status:

Type

int32

int32
int32
object

int32

Mutability

{ read-only }

{ read-only }
{ read-write }
{ read-write }

Not supported

Not supported

{ read-only }

1.5

L.5

Version

1.5

1.2

Unified POS, V1.15.1 Beta1

8.3 General Information

The Cash Changer programmatic name is “CashChanger.”
8.3.1 Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:

* Reports the cash units and corresponding unit counts available in the Cash Changer.

« Dispenses a specified amount of cash from the device in either bills, coins, or both into a user-specified exit.

* Dispenses a specified number of cash units from the device in either bills, coins, or both into a user-specified exit.
« Reports jam conditions within the device.

« Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

* Reporting the fullness levels of the Cash Changer’s cash units. Conditions which may be indicated include empty,
near empty, full, and near full states.

* Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts method.

Release 1.5 and later — Support for the cash acceptance is added as an option.

+ The money (bills and coins) which is deposited into the device between the start and end of cash acceptance is
reported to the application. The contents of the report are cash units and cash counts.

Release 1.11 and later — Support for the use of cash device sub-services

« The service can use sub-services for other cash devices to create a full-function cash changer service. Properties are
added for the extraction of information from the sub-services.

Unified POS, v1.15.1 Beta1 8-5

8.3.2 Cash Changer Class Diagram

Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

<<ewent>>
DataEvent

(from events)

fires

<<ewent>>
DirectlOEvent
fromeverts) | fires

(from events)

EmorEvent

(from events)

<<exception>>
UposException

(fomupos

N\ <<sends>>

\

<<utiity>>
UposConst

(from upos)

<<Interface>>
CashChangerControl
(from upos)

<<event>> fires
StatusUpdateEvent |«——

fires
Po— /

&% <<capability>> CapDeposit : boolean
&<<capability>> CapDepositDataE \ent : boolean
&<<capability>> CapDiscrepancy : boolean
&<<capability>> CapEnptySensor : boolean
&<<capability>> CapFullSensor : bodean
&<<capability>> CapJamSensor : Boolean
&<<capability>> CapNearEmptySensor : boolean
&<<capability>> CapNearFullSersor : boolean
&<<capability>> CapPauseDeposit : boolean
&<<capability>> CapRealTimeData : Boolean
& <<capability>> CapRepayDeposit : boolean
&5<<prop>> AsyncMode : boolean

& <<prop>> AsyncResultCode : int32

B <<prop>> AsyncResultCodeExtended : int32
& <<prop>> CurrencyCashList : string
&<<prop>> CurrencyCode : string
&<<prop>> CurrencyCodeList : string
&<<prop>> CurrentExit : int32

&<<prop>> CurrentSence : int32

& <<prop>> DepositAmourt : int32

& <<prop>> DepositCashlList : string

& <<prop>> DepositCodelList : string

&% <<prop>> DepositCounts : string
&<<prop>> DepositStatus : int32

& <<prop>> DeviceExits : int32

B<<prop>> DeviceStat s : int32

& <<prop>> ExitCashList : string

B<<prop>> FullStatus : int32

&<<prop>> RealTimeDataEnabled : boolean
& <<prop>> SeniceCount : int32

& <<prop>> Senicelndex : int32

<<utility>>
CashChangerConst

(from upos)

Z,
s
-

s
s <<uses>>
v

$adjustCashCounts(cashCounts : string)
$beginDeposit()
$dispenseCash(cashCaunts : sting)
®dispenseChange(amount : int32)
$endDeposit(amount : int32)

$fix Deposit()

®paus eDeposit(contra : int32)

$readCashCounts(cashCounts : string, discrepancy : boolean)

Unified POS, V1.15.1 Beta1

8.3.3 Model Updated in Release 1.11

The general model of a Cash Changer is:

« Supports several cash types such as coins, bills, and combinations of coins and bills. The supported cash type for a
particular currency is noted by the list of cash units in the CurrencyCashList property.

« Consists of any combination of features to aid in the cash processing functions such as a cash entry holding bin, a
number of slots or bins which can hold the cash, and cash exits.

« Prior to Release 1.5 this specification provides programmatic control only for the dispensing of cash. The accepting
or removing of cash by the device (for example, to replenish cash) is controlled by the adjustCashCounts method,
unless the device can determine the amount of cash on its own. The application can call readCashCounts to retrieve
the current unit count for each cash unit, but cannot control when or how cash is added to the device.

» May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses a
dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current exit are
indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary exit” which is
typically used during normal processing for dispensing cash to a customer following a retail transaction. When
CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit” typically is used for
special purposes such as dispensing quantities or types of cash not targeted for the “primary exit.”

« Dispenses cash into the exit specified by CurrentExit when either dispenseChange or dispenseCash is called.
With dispenseChange, the application specifies a total amount to be dispensed, and it is the responsibility of the
Cash Changer device or the Control to dispense the proper amount of cash from the various slots or bins. With
dispenseCash, the application specifies a count of each cash unit to be dispensed.

« Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense method
returns the completion status to the application.

When AsyncMode is true and no exception is thrown by either dispenseChange or dispenseCash, then the method
is performed asynchronously and its completion is indicated by a StatusUpdateEvent with its Data property set to
CHAN_STATUS ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode and
ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Cash Changer operations is illegal; only one asynchronous method can be processed at a
time.

The readCashCounts method may not be called while an asynchronous method is being performed since doing so
could likely report incorrect cash counts.

« May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

« Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status, and in
the FullStatus property to show full and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN _STATUS EMPTY, and if there are one or more full cash slots, then FullStatus is
CHAN STATUS FULL.

« After Release 1.5 — Support for cash acceptance is added as an option.
The cash acceptance model is as follows:

Unified POS, v1.15.1 Beta1 8-7

* Note that the AsyncMode property has no affect on methods that have been added for cash acceptance, since these
are treated as input methods.

« The dispensing of change function of this device is not dependent upon the availability of a “cash acceptance”
function option. Dispensing of change and collection of money are two independent functions.

« Receipt of cash (cash acceptance function) is an option that may be provided by the Cash Changer device. Cash
acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The previous
values of the properties DepositCounts and DepositAmount are initialized to zero.

« The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method or
the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the CapDepositDataEvent capability was
previously set to true, then a DataEvent is generated to inform the application that cash has been collected.

If the pauseDeposit method is executed with a parameter value of CHAN DEPOSIT PAUSE, then the counting of
the deposited cash is suspended and the current amount of accumulated cash is also updated to the DepositCounts
and DepositAmount properties. When pauseDeposit method is executed with a parameter value of

CHAN DEPOSIT RESTART, counting of deposited cash is resumed and added to the accumulated totals.

When the fixDeposit method is executed, the current amount of accumulated cash is updated in the DepositCounts
and DepositAmount properties, and the process remains static until an endDeposit method is executed. At this
point the “cash acceptance” mechanism is notified to stop accepting cash. If endDeposit method receives a
CHAN_DEPOSIT CHANGE parameter, then the mechanism will dispense cash change back to the user. If
endDeposit is invoked with a CHAN_DEPOSIT NOCHANGE parameter, then the mechanism will not dispense
cash change back to the user. Finally, if endDeposit is invoked with a CHAN_ DEPOSIT_REPAY parameter, then
all collected cash is returned back to the user by the mechanism.

 Two types of Cash Changer mechanisms are covered by this standard. In one case where CapRepayDeposit is true,
the bins that are used for collecting the cash are the same bins that are used for dispensing the cash as change. In the
other case where CapRepayDeposit is false, the bins that are used for collecting the cash are different from the bins
that are used for dispensing the change. In the first case, if a transaction is aborted for any reason, the same cash the
user input to the mechanism will be returned to the user. In the second case, it is up to the application to dispense an
equivalent amount of cash (not the same physical cash collected) back to the user for an aborted transaction.

« The Cash Changer mechanisms can only be used in one mode at a time. While the mechanism is collecting
deposited cash, it cannot dispense change at the same time. Therefore, while beginDeposit method is being
executed, no payment of change can occur. Only after an endDeposit method call can the proper amount of change
be determined (either by the application or by a “smart” Cash Changer) and dispensed to the user. Each Cash
Changer manufacturer must determine the amount of time it takes to process the received cash and place in storage
bins before it completes the endDeposit method.

» When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared. The
DepositCounts and DepositAmount properties remain set and are not cleared.

« After Release 1.11 — Support for the use of cash device sub-services.
The cash device sub-service model is as follows:

« Cash Changer service can utilize other cash device sub-services, such as coin dispensers, coin acceptors, bill
dispenser, bill acceptors and other cash changers to access device hardware, creating a full function cash changer
service. Each call to the cash changer service will invoke the corresponding call to the sub-services. Therefore, an
open call will call the open method of all of the sub-services, claim will call claim, and so forth. The same can be
said for the cash changer properties. Some properties are available for dispensers, while others are available only for
acceptors. It is up to the aggregating cash changer service to analyze and interpret the results of its communications
to the sub-services and report to the application. For example, if the open call fails for one of the sub services, the

Unified POS, V1.15.1 Beta1

exception should be passed up to the application. The mapping of the properties and methods from service to sub-
service is as follows:

Cash Coin Bill Coin Bill
Changer Dispenser Dispenser Acceptor Acceptor
CapDeposit
CapDepositDataEvent
CapDiscrepancy X X X X
CapEmptySensor X X
CapJamSensor X X X X
CapFullSensor X X
CapNearEmptySensor X X
CapNearFullSensor X X
CapPauseDeposit X X
CapRealTimeData X X
CapRepayDeposit
AsyncMode X
AsyncResultCode X
Cash Coin Bill Coin Bill
Changer Dispenser Dispenser Acceptor Acceptor
AsyncResultCodeExtended X
CurrencyCashList X
CurrencyCode X X X
CurrencyCodeList X
CurrentExit X
CurrentService
DepositAmount X X
DepositCashList X X
DepositCodeList X X
DepositCounts X X
DepositStatus X X
DeviceExits X
DeviceStatus Dispenser X
Status
ExitCashList X
FullStatus X X
ServiceCount
Servicelndex
RealTimeDataEnabled X X
beginDeposit() X X

Unified POS, v1.15.1 Beta1 8-9

dispenseCash() X

dispenseChange() X

endDeposit() X X
fixDeposit() X X
pauseDeposit() X X
readCashCounts() X X X X

* ServiceCount lists the number of sub-services used by the cash changer.
« ServiceIndex is a byte segmented property containing the index for each sub-service.

« If access to sub-service property and method information is desired, setting the CurrentService property to the
desired index will allow the application to request property information of the specified sub-service.

Coin Cash Changer Senice

<<Interface>> CashChangerSenvice
P,OS, CashChangerControl - - Bill Accentor
Application |- - - — — = > fromupoy | T~ B > : P
Senice
- 7
|
|
|
|
l
. . . | Bill Dispenser
Example of a Cash Changer Service using a coin cash changer --- Senice
service, a bill acceptor service and a bill dispenser service.

Unified POS, V1.15.1 Beta1

8.3.4 Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
ICashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp | :CashChanger | |:CashChangerService| | :Human Actor |

— register to receive Dataa/ent with Control

| |
| |
setDataEventEnabIedﬂrLe) !

T |
-

beginDeposit() | i DepositCounts and DepositAmount

= setDataEventEnabIed(t[ulel)

ubengepOSIt() property values are initialjzed
n | T: |

! ! | accepting cash E;l

! ! DepositCounts and DepositAmount
| | property values are Updated

I DataE
! eliver DataEvent E:l deliver DataEvent
pauseDeposit(Pause) ﬂ pauseDeposit(Pause)

while checL amount accepted

is < amounjt of sale

setDataEventEnabled(true)
|

setDataEventEnabledj rue)

pauseDeposit(Restart)

T

L, pauseDeposit(Restart)

accepting cash

DepositCounts and DepositAmount
property values are quated
L] !

IJ_deliver DataEvent |

eliver DataEvent

endloop T | |
~fixDeposit() e _ | DepositCounts and DepgsitAmount
J_' fixDeposit() | property values are finalized
endDeposit(Change/ .
Nochange/Repayment) endDeposit(Change/ ||

if there is ¢change ! !
dispenseChange() or
dispenseCash()

|
qw&w;m |
|
|

. dispenseChange() or

|
L i I
\T]dlspenseCash() m change E;l

endif [

Unified POS, v1.15.1 Beta1 8-11

8.3.5 Cash Changer State Diagram Updated in Release 1.8

’ close()

setDeviceEnabled(false

release() clearinput()
close

DepositCount == setDeviceEnabled(true)
DepositAmount =

Enabled Clearlnput Processing
beglnD po entry/ empty data queue

release()

ReceiptMoney
Wait endDEposit() endDeposit()
pauseDepesit(CHAN_DEPOSIT_RESTART)
clearinpy clearlnput()
done pauseDeposi CH \DEPOSIT_PAU
P Mod
auseiode ‘ FixMode
entry/ sync DepositCounts and DepositAmount

dispenseChange(), dispenseCash()

. Pay Money
done
[asyncMode == false] [asyncMode == true] Fire Events

Synchronous Pa
‘ y Y ‘ ‘ e fire event entry/ enqueue StatusUpdateEvents

8.3.6 Device Sharing

The Cash Changer is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or collecting,
or receiving events.

« See the “Summary” table for precise usage prerequisites.

8-12 Unified POS, V1.15.1 Beta1

8.4 Properties (UML attributes)

8.4.1 AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash and dispenseChange methods will be performed asynchronously. If
false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseChange Method,
dispenseCash Method.

8.4.2 AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS _ASYNC.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

8.4.3 AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

Unified POS, v1.15.1 Beta1 8-13

8.4.4 CapDeposit Property Added in Release 1.5

Syntax CapDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.5 CapDepositDataEvent Property Added in Release 1.5

Syntax CapDepositDataEvent: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report a cash acceptance event.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.
8.4.6 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }
Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on pagel-16.

See Also readCashCounts Method.

8-14 Unified POS, V1.15.1 Beta1

8.4.7 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report the condition that some cash slots are empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.
8.4.8 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also FullStatus Property, StatusUpdateEvent.
8.49 CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent.
8.4.10 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report the condition that some cash slots are nearly empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

See Also DeviceStatus Property, StatusUpdateEvent

Unified POS, v1.15.1 Beta1

8.4.11 CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: hoolean { read-only, access after open }
If true, the Cash Changer can report the condition that some cash slots are nearly full.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

FullStatus Property, StatusUpdateEvent.

8.4.12 CapPauseDeposit Property

Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing temporarily.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also pauseDeposit Method.

8.4.13 CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also RealTimeDataEnabled property.

Unified POS, V1.15.1 Beta1

8.4.14 CapRepayDeposit Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

CapRepayDeposit: boolean { read-only, access after open }
If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

endDeposit Method.

8.4.15 CurrencyCashList Property

Syntax

Remarks

Errors

See Also

CurrencyCashList: string { read-only, access after open }

Holds the cash dispensing units supported in the Cash Changer for the currency represented by the
CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the units of coins,
then the ASCII semicolon character (*‘;”) followed by ASCII numeric comma delimited units of
bills that can be used with the Cash Changer. If a semicolon (*;”) is absent, then all units represent
coins.

Below are sample CurrencyCashList values in Japan.
* “1,5,10,50,100,500” ---
1, 5,10, 50, 100, 500 yen coin.

e “1,5,10,50,100,500;1000,5000,10000” ---
1, 5,10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

+ “1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property.

Unified POS, v1.15.1 Beta1 8-17

8.4.16 CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Cash Changer operations. This property is
initialized to an appropriate value by the open method. This value is guaranteed to be one of the set
of currencies specified by the CurrencyCodeList property.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

CurrencyCodeList Property.

8.4.17 CurrencyCodelist Property

Syntax

Remarks

Errors

See Also

CurrencyCodeList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example,
if the string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property.

8.4.18 CurrentExit Property

Syntax

Remarks

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit),
while values greater then 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

Unified POS, V1.15.1 Beta1

Cash Changer supports coins; only one exit supported:
CurrencyCashList =“1,5,10,50,100,500”

DeviceExits = 1

CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

Cash Changer supports both coins and bills; an auxiliary exit is used for larger quantities
of bills:

CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”

DeviceExits =2

When CurrentExit = 1 : ExitCashList =“1,5,10,50,100,500;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

Cash Changer supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”

DeviceExits = 2

When CurrentExit = 1 : ExitCashList = “;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL An invalid CurrentExit value was specified.
See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

Unified POS, v1.15.1 Beta1

8.4.19 CurrentService Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

CurrentService: int32 { read-write, access after open }

Holds the current service. The value 0 represents the primary service, while values greater than 0
and less than or equal to ServiceCount are used to request information from the integrated services.
Legal values range from 0 to ServiceCount. The readCashCounts method and all of the properties,
common and specific, are accessible when the CurrentService is greater than 0. CurrentService,
ServiceCount and Servicelndex will always reflect the primary service.

Below are examples of a cash changer service using services for separate Coin Acceptor and
Dispenser and a bills only cash changer. A StatusUpdateEvent indicting a jam has been received
by the application. Only the bill changer and the coin dispenser can detect a jam.

* Checking the values of the primary service:
CurrentService =0
ServiceCount = 3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

+ Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”
* The coin dispenser looks ok. Check the bill changer:
CurrentService = 3
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL An invalid CurrentService value was specified.

ServiceCount Property, ServiceIndex Property.

Unified POS, V1.15.1 Beta1

8.4.20 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.
For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash Changer.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8.4.21 DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented by the
CurrencyCode property. It is set to an empty string when the cash acceptance process is not
supported.

It consists of ASCII numeric comma delimited values which denote the units of coins, then the
ASCII semicolon character (“;”) followed by ASCII numeric comma delimited values for the bills
that can be used with the Cash Changer. If the semicolon (*;”) is absent, then all units represent
coins.
Below are sample DepositCashList values in Japan.
+ “1,5,10,50,100,500” ---
1, 5,10, 50, 100, 500 yen coin.
+ “1,5,10,50,100,500;1000,5000,10000” ---
1, 5,10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.
+ 51000,5000,10000” ---
1000, 5000, 10000 yen bill.
This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

Unified POS, v1.15.1 Beta1 8-21

8.4.22 DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to an empty string when the cash
acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if
the string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

8.4.23 DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is the same as
cashCounts in the dispenseCash method. Cash units inside the string are the same as the
DepositCashList property, and are in the same order. It is set to an empty string when the cash
acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts property is set to
1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54
fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrencyCode Property.

Unified POS, V1.15.1 Beta1

8.4.24 DepositStatus Property Added in Release 1.5

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
CHAN _STATUS DEPOSIT START

Cash acceptance started.
CHAN_STATUS DEPOSIT END

Cash acceptance stopped.
CHAN_STATUS DEPOSIT NONE

Cash acceptance not supported.
CHAN_STATUS DEPOSIT COUNT

Counting or repaying the deposited money.
CHAN_STATUS DEPOSIT JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CHAN_STATUS DEPOSIT END after initialization, or to CHAN _STATUS DEPOSIT NONE
if the device does not support cash acceptance.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

8.4.25 DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrentExit Property.

8.4.26 DeviceStatus Property

Syntax

Remarks

DeviceStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN_STATUS OK The current condition of the Cash Changer is satisfactory.
CHAN_STATUS EMPTY

Some cash slots are empty.
CHAN_STATUS NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS JAM A mechanical fault has occurred.

Unified POS, v1.15.1 Beta1 8-23

Errors

This property is initialized and kept current while the device is enabled. If more than one condition
is present, then the order of precedence starting at the highest is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

8.4.27 ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property.
The supported cash units are either the same as CurrencyCashList, or a subset of it. The string
format is identical to that of CurrencyCashList.

This property is initialized by the open method, and is updated when CurrencyCode or
CurrentExit is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

8.4.28 FullStatus Property Updated in Release 1.14

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open, claim, enable }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CHAN _STATUS OK All cash slots are neither nearly full nor full.
CHAN _STATUS FULL Some cash slots are full.
CHAN_STATUS NEARFULL
Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, V1.15.1 Beta1

8.4.29 RealTimeDataEnabled Property Added in Release 1.11

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData property, DepositAmount property, DepositCounts property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

8.4.30 ServiceCount Property Updated in Release 1.14

Syntax Servicelndex: int32 { read-only, access after open }

Remarks The value is divided into four bytes indicating the service index for each of the integrated service
types.The diagram below indicates how the property is divided:

A value of zero means that no integrated services are utilized.
I High Word Low Word
High Byte Low Byte High Byte Low Byte
Bill Dispenser Bill Acceptor Coin Dispenser ~ Coin Acceptor
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CurrentService Property, ServiceCount Property.

Unified POS, v1.15.1 Beta1 8-25

8.5

8.5.1

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be
initialized.

This method is called to set the initial amounts in the cash changer after initial setup, or to adjust
cash counts after replenishment or removal, such as a paid in or paid out operation. This method is
called when needed for devices which cannot determine the exact amount of cash in them
automatically. If the device can determine the exact amount, then this method call is ignored. The
application would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the amount currently in
the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there
would be eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one
hundred yen coins, and eighty-seven five-hundred yen coins in the Cash Changer.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an asynchronous method is
in process.

readCashCounts Method.

Unified POS, V1.15.1 Beta1

8.5.2 beginDeposit Method Added in Release 1.5

8.5.3

Syntax

Remarks

Errors

See Also

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

* The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is reported by
DataEvents until fixDeposit is called while the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Either the Cash Changer does not support cash acceptance, or the call
sequence is not correct.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property, endDe-
posit Method, fixDeposit Method, pauseDeposit Method.

dispenseCash Method

Syntax

Remarks

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format
of “cash unit:cash counts, ..;.., cash unit:cash counts”. Units before “;” represent coins, and units

[T3%L}

after ““;” represent bills. If “;” is absent, then all units represent coins.

Dispenses the cash from the Cash Changer into the exit specified by CurrentExit. The cash
dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

+ “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five hundred yen
coins.

* “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand yen bills.

* “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Unified POS, v1.15.1 Beta1 8-27

Errors

See Also

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash cannot be dispensed because an asynchronous method is in progress.
E ILLEGAL One of the following errors occurred:

* The cashCounts parameter value was illegal for the current exit.
* Cash could not be dispensed because cash acceptance was in
progress.

E EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a cash shortage.

AsyncMode Property, CurrentExit Property.

8.5.4 dispenseChange Method

Syntax

Remarks

Errors

See Also

dispenseChange (amount: inf32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to the Cash Changer
to determine what combination of bills and coins will satisfy the tender requirements from its
available supply of cash.

Dispenses the specified amount of cash from the Cash Changer into the exit represented by
CurrentExit.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY The specified change cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* A negative or zero amount was specified.
* The amount could not be dispensed based on the values specified in
ExitCashList for the current exit.
* Change could not be dispensed because cash acceptance was in
progress.

E EXTENDED ErrorCodeExtended = ECHAN_ OVERDISPENSE:
The specified change cannot be dispensed because of a cash shortage.

AsyncMode Property, CurrentExit Property.

Unified POS, V1.15.1 Beta1

8.5.5 endDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

Unified POS, v1.15.1 Beta1

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one
of the following values:

Parameter Description

CHAN_DEPOSIT _CHANGE The deposit is accepted and the deposited amount is greater
than the amount required.

CHAN_DEPOSIT NOCHANGE The deposit is accepted and the deposited amount is equal to or
less than the amount required.

CHAN _DEPOSIT REPAY The deposit is to be repaid through the cash deposit exit or the
cash payment exit.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT _CHANGE. If the deposited amount is equal to or less than the amount required
then success is set to CHAN_DEPOSIT NOCHANGE.

If success is set to CHAN _DEPOSIT REPAY then the deposit is repaid through either the cash
deposit exit or the cash payment exit without storing the actual deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were deposited.
Depending on the actual device, the cash repaid may be the exact same bills and coins that were
deposited, or it may not.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
» Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property,
beginDeposit Method, fixDeposit Method, pauseDeposit Method.

8.5.6 fixDeposit Method Added in Release 1.5

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Cash
Changer.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:

» Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit must be called before
calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,

pauseDeposit Method.
8.5.7 pauseDeposit Method Added in Release 1.5
Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:
Parameter Description
CHAN_DEPOSIT PAUSE Cash acceptance is paused.
CHAN DEPOSIT RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.
If control is CHAN_DEPOSIT PAUSE, the cash acceptance operation is paused. The deposit
process will remain paused until this method is called with control set to
CHAN_ DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit while the deposit
process is paused.
When the deposit process is paused, the depositCounts and depositAmount properties are updated
to reflect the current state of the Cash Changer. The property values are not changed again until the
deposit process is resumed.
If control is CHAN_DEPOSIT RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1-16.

Unified POS, V1.15.1 Beta1

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
» Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit must be called before
calling this method.
* The deposit process is already paused and control is set to
CHAN_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to CHAN_ DEPOSIT RESTART.

CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount Property,
DepositCounts Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

8.5.8 readCashCounts Method

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which

was not able to be included in the counts reported in cashCounts;
otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each
unit in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five
yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Cash
Changer. There are some cases where a discrepancy may occur because of existing uncountable cash
in a Cash Changer. An example would be when a cash slot is “overflowing” such that the device has
lost its ability to accurately detect and monitor the cash.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash units and counts cannot be read because an asynchronous method is
in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

Unified POS, v1.15.1 Beta1 8-31

8.6

8.6.1

8.6.2

Events (UML interfaces)

DataEvent Updated in Release 1.11

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has accepted cash.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.
DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: in#32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Changer Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Cash Changer devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directlO Method.

Unified POS, V1.15.1 Beta1

8.6.3 StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash Changer device.

Attributes

Remarks

See Also

This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values below.
Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN STATUS EMPTY Some cash slots are empty.

CHAN_STATUS NEAREMPTY Some cash slots are nearly empty.

CHAN _STATUS EMPTYOK No cash slots are either empty or nearly empty.
CHAN _STATUS FULL Some cash slots are full.

CHAN_STATUS NEARFULL Some cash slots are nearly full.

CHAN _STATUS FULLOK No cash slots are either full or nearly full.
CHAN_STATUS JAM A mechanical fault has occurred.
CHAN_STATUS JAMOK A mechanical fault has recovered.
CHAN_STATUS ASYNC Asynchronously performed method has completed.

Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire StatusUpdateEvents when
the device has a sensor capable of detecting the full, near full, empty, and/or near empty states and
the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode
and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on page 1-15.

Unified POS, v1.15.1 Beta1 8-33

Unified POS, V1.15.1 Beta1

9

9.1

9.2

Cash Drawer

General

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:

DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.2
1.9
1.3
1.8
1.9
1.8
1.0
1.0
1.2
1.0
1.0
1.0
1.0
1.3
1.3
1.0

1.0
1.0
1.0
1.0
1.0
1.0

May Use After
Not supported
open
open
open
open
open
open
open
Not supported
Not supported
open
open
Not supported
open

open

Properties (Continued)

Specific Type Mutability Version
CapStatus: boolean { read-only } 1.0
CapStatusMultiDrawerDetect: boolean { read-only } 1.5
DrawerOpened: boolean { read-only } 1.0

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

void { raises-exception, use after open }
claim (timeout: int32):

void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note

clearInput ():
void { }

clearInputProperties ():
void { }

clearOutput ():
void { }

directIO (command: inz32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

May Use After
open
open

open & enable

Version

1.0
1.0

1.0
1.0
1.0

Not supported

Not supported

Not supported

1.0

1.9

1.8

1.8

1.9

1.8

Unified POS, V1.15.1 Beta1

Specific
Name

openDrawer ():

void { raises-exception, use after open, enable }

Note

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32):

void { raises-exception, use after open, enable }

Note

Note: Also requires that no other application has claimed the cash

Events (UML interfaces)

Name

upos::events::DataEvent
upos::events::DirectlOEvent

EventNumber:

Data:

Obj:
upos::events::ErrorEvent

upos::events::OQutputCompleteEvent

upos::events::StatusUpdateEvent
Status:

Unified POS, v1.15.1 Beta1

Type

int32
int32
object

int32

Mutability

Not supported

{ read-only }

{ read-write }

{ read-write }

Not supported

Not supported

{ read-only }

1.0

1.0

Version

1.0

1.0

9.3

9.3.1

Capabilities

General Information

The Cash Drawer programmatic name is “CashDrawer”.

The Cash Drawer Control has the following capability:

« Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

« Drawer status reporting of such a nature that the service can determine whether a particular drawer is open or
closed in environments where the drawer is the only drawer accessible via a hardware port.

« Drawer unique status reporting of such a nature that the service can determine whether a particular drawer is
open or closed in environments where more than one drawer is accessible via the same hardware port.

9.3.2 Cash Drawer Class Diagram

<<exception>>

<<Interface>>

Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

<<uses>> <<utility>> <<utility>>
UposException BaseControl UposConst CashDrawerConst
(from upos) (fromupos) e (from upos) j (from upos)
<<sends>>
N _
\ b <<yses>> /
<<sends>™ \ -~
/

<<Interface>>
CashDrawerControl
(from upos)

%«capability» CapStatus : boolean
%«capability» CapStatusMultiDrawerDetect : boolean
%«prop» DrawerOpened : boolean

WopenDrawer() : void

BwaitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

7

<<event>>

StatusUpdateEvent

(from events)

ga<<prop>> Status: int32

X‘ms

<<event>>
DirectlOEvent
(from events)
£i<<prop>> EventNumber : int32
gi<<prop>> Data : int32
g3<<prop>> Obj : object

Unified POS, V1.15.1 Beta1

9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of a Cash Drawer open() = setDeviceEnabled(true) =
getDrawerOpened() = openDrawer(); as well as showing the unique sharing model of the Cash Drawer device
when used with multiple control instances open on the same physical device but by different applications.

NOTE: we are assuming that the :ClientApp(s) already successfully opened the controls. This ﬁ

means that the platform specific loading/configuration/creation code y.
:ClientApp0 :ClientApp1 cd0:CashDrawe cd1:CashDrawer :StatusUpdateEvent :| :CashDrawer :CashDrawer Physical CD
i Statust vent | Service0 Servicet Device
‘ 1: setDeviceEnabled(true) ‘ 2: setDeviceEnabled(true) ‘ L
1 3: connedt or somehow have access to the hardware
\ i
Service retums
current state of
L 4: oplenDrawer() T 5: openDrawer() cash drawer
‘ 1 6: send command to open physical (CD
\ - 1)
If the command to open the physical CDD\ ™ CashDrawer AN
is successful then this will result in device is
T StatusUpdateEvent delivered to any assumed open
T registered listeners. Thisisnot shown in successfully and
this diagram for simplicity. DrawerOpened
property is now
7: setDeviceEnabled(true) \ true
8: setDeviceEnabled(true)
9: might commpunicate with
device (e.g. get current drawer
state)

10: openDrawer()

CashDrawer is now
open by call to cd1.
Assume that some
human actor closes
11: openDrawer() after open

12: send command to open drawer

Assume the CashDrawer
is successfully claimed
at this point by
:ClientApp1

13: claini(timeout) 4: claim(timeout)

Thiscall resultsin a

UposException since

U . the CashDrawer device
16: openDrawer() isclaimed by the cd1

- ~|instance that is used by

:ClientApp1

15: nDrawer()

17: throw UposExcep

[T
Assume that both
:ClientApp0 and :ClientApp1
registered to receive events
- not shown.

Thiscall is
successful and
CashDrawer device
18: openDrawer() _|isopen since cd1
claimed the device
successfully

19: openDrawer()

20: new

L 21: send command to open CD

22:

N

deliver SUE to control

23: deliver evept to all registered handlers

L

ZI StatusUpdateEvent is delivered

24: notify client of new event to all registered handlers, even

though, in the situation above,

25: new only :ClientApp1 isallowed to
call openDrawer() - since it

L | successfully claimed the CD.

26: deliver SUE to control—

27: deliver event to all registered handlers Service0 also detects the cash drawer is
P=— opened, either via a message from
Service1, a StatusUpdateEvent from
Service 1, or from a lower level interface

T | |

28: notify client of new event

Unified POS, v1.15.1 Beta1 9-5

9.3.4 Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

« After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

« If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. Status update events are delivered to all of these applications.

« If one application claims the cash drawer, then only that application may call openDrawer and
waitForDrawerClose. This feature provides a degree of security, such that these methods may effectively be
restricted to the main application if that application claims the device at startup.

« See the “Summary” table for precise usage prerequisites.

9-6 Unified POS, V1.15.1 Beta1

9.4 Properties (UML attributes)

9.4.1

9.4.2

CapStatus Property

Syntax

Remarks

Errors

CapStatus: boolean { read-only, access after open }

If true, the drawer can report status. If false, the Service is not able to determine whether the cash
drawer is open or closed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1-16.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

CapStatusMultiDrawerDetect: boolean { read-only, access after open }
If true, the status unique to each drawer in a multiple cash drawer configuration! can be reported.

If false, the following possibilities exist:
DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it might be the
particular drawer in question. This case can occur in multiple cash drawer configurations where only
one status is reported indicating either a) all drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or printer supports
opening more than one cash drawer independently via the same channel or hardware port. A typical
example is a configuration where a “Y” cable, connected to a single hardware printer port, has
separate drawer open signal lines but the drawer open status from each of the drawers is “wired-or”
together. It is not possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapStatus Property, DrawerOpened Property.

1. Multiple cash drawer configuration -- A hardware configuration where a printer or terminal controls

more than one cash drawer independently via the same channel or hardware port. A typical example is
a configuration with a “Y” cable connected to a single hardware port that controls two cash drawers.

Unified POS, v1.15.1 Beta1 9-7

9.4.3 DrawerOpened Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

DrawerOpened: boolean { read-only, access after open-enable }
If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status reporting, and this
property is always false.

Note: Ifthe capability CapStatusMultiDrawerDetect is false, then a DrawerOpened value of true
indicates at least one drawer is open, and it might be the particular drawer in question in a multiple
cash drawer configuration. See CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

CapStatus Property, CapStatusMultiDrawerDetect Property.

Unified POS, V1.15.1 Beta1

9.5

9.5.1

9.5.2

Methods (UML operations)

openDrawer Method

Syntax

Remarks

Errors

openDrawer ():
void { raises-exception, use after open-enable }

Opens the drawer.

A UposException may be thrown when this method is invoked. For further information, see “
Errors” on page 1-16.

waitForDrawerClose Method

Syntax

Remarks

Errors

See Also

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32, beepDuration: int32,
beepDelay: int32):
void { raises-exception, use after open-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert beeper.
beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be sounded.
beepDelay Number of milliseconds between the sounding of beeper tones.

Waits until the cash drawer is closed. If the drawer is still open after beep Timeout milliseconds, then
the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert beeper. However, by
setting these parameters the application will insure that the system alert beeper will be utilized if it
is present.

Unless a UposException is thrown, this method will not return to the application while the drawer
is open. In addition, in a multiple cash drawer configuration where the
CapStatusMultiDrawerDetect property is false, this method will not return to the application
while any of the drawers are open. When all drawers are closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this method will return
immediately.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1-16.

CapStatus Property, CapStatusMultiDrawerDetect Property.

Unified POS, v1.15.1 Beta1 9-9

9.6 Events (UML interfaces)

9.6.1 DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 {read-write}
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Drawer Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber
and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s Cash Drawer devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 1-15, directlO Method.

9-10 Unified POS, V1.15.1 Beta1

9.6.2 StatusUpdateEvent Updated in Release 1.13

<<event>> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes only while the device is

Attributes

Remarks

See Also

enabled. A StatusUpdateEvent may be enqueued when the device is enabled, to inform the
application of the initial or current state. However, this behavior is not required; the application must
not depend upon it.

This event contains the following attribute:

Attributes Type Description
Status int32 The status reported from the Cash Drawer.

The Status property has one of the following values:

Value Meaning

CASH_SUE DRAWERCLOSED
The Cash Drawer has been closed.
CASH _SUE _DRAWEROPEN

(Updated in Release 1.13) The Cash Drawer has been opened. Can only
be reported if the Cash Drawer is not locked (by Key or other locking
means).

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See description “StatusUpdateEvent' in Chapter 1.

If CapStatus is false, then the device does not support status reporting, and this event will never be
delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE_DRAWEROPEN value indicates
that at least one cash drawer is open and it might be the particular drawer in question for multiple
cash drawer configurations.

“Events” on page 1-15, CapStatus Property, CapStatusMultiDrawerDetect Property.

Unified POS, v1.15.1 Beta1 9-11

Unified POS, V1.15.1 Beta1

10 CAT - Credit Authorization Terminal

10.1 General

This Chapter defines the Credit Authorization Terminal device category.

10.2 Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.4
1.9
1.3
1.8
1.9
1.8
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4

1.4
1.4
1.4
1.4
1.4
1.4

May Use After
Not supported
open
open
open
open
open
open
open
Not supported
Not supported
open & claim
open
open
open

open

10 -1

10 -2

Properties (Continued)

Specific

AccountNumber:

AdditionalSecurityInformation:

ApprovalCode:
AsyncMode:

Balance:

CapAdditionalSecurityInformation:

CapAuthorizeCompletion:

CapAuthorizePreSales:
CapAuthorizeRefund:
CapAuthorizeVoid:

CapAuthorizeVoidPreSales:

CapCashDeposit:
CapCenterResultCode:
CapCheckCard:
CapDailyLog:
Caplnstallments:
CapLockTerminal:
CapLogStatus:
CapPaymentDetail:
CapTaxOthers:

CapTransactionNumber:

CapTrainingMode:
CapUnlockTerminal:
CardCompanyID:
CenterResultCode:
DailyLog:
LogStatus:
PaymentCondition:
PaymentDetail:
PaymentMedia:
SequenceNumber:
Settled Amount:
SlipNumber:
TrainingMode:
TransactionNumber:
TransactionType:

Type
string
string
string
boolean
currency
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
string
string
string
int32
int32
string
int32
int32
currency
string
boolean
string
int32

Mutability
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

Version
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.4
1.9
1.9
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.9
1.4
1.4
1.5
1.4
1.9
1.4
1.4
1.4
1.4

May Use After
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

Unified POS, V1.15.1 Beta1

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }
close ():
void { raises-exception, use after open }

claim (timeout: int32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void { }

clearInputProperties ():
void { }

clearOutput ():
void { raises-exception, use after open, claim }

directlO (command: int32, inout data: inz32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

Specific
Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizePreSales (sequenceNumber: inf32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:

currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

Unified POS, v1.15.1 Beta1

Version
1.4

1.4

1.4

1.4

1.4
Not supported
Not supported

1.4

1.4

1.9

1.8

1.8

1.9

1.8

1.4

1.4

1.4

1.4

10 -3

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers: 1.4
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers: 14
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoidPreSales (sequenceNumber: inf32, amount: currency, 1.4
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32): 1.9
void { raises-exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32): 1.4
void { raises-exception, use after open, claim, enable }

lockTerminal (): 1.9

void { raises-exception, use after open, claim, enable }

unlockTerminal (): 1.9
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not supported
upos::events::DirectlOEvent 1.4

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent 1.4

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent 1.4

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.4

Status: int32 { read-only }

Unified POS, V1.15.1 Beta1

10.3 General Information

The CAT programmatic name is “CAT”.
10.3.1 Description of terms

« Authorization method
Methods defined by this device class that have the Authorize prefix in their name. These methods require
communication with an approval agency.

« Authorization operation
The period from the invocation of an authorization method until the authorization is completed. This period differs
depending upon whether operating in synchronous or asynchronous mode.

* Credit Authorization Terminal (CAT) Device
A CAT device typically consists of a display, keyboard, magnetic stripe card reader, receipt printing device, and a
communications device. CAT devices are predominantly used in Japan where they are required by law. Essentially a
CAT device can be considered a device that shields the encryption, message formatting, and communication
functions of an electronic funds transfer (EFT) operation from an application.

* Purchase
The transaction that allows credit card or debit card payment at the POS. It is independent of payment methods (for
example, lump-sum payment, payment in installments, revolving payment, etc.).

« Cancel Purchase
The transaction to request voiding a purchase on the date of purchase.

 Refund Purchase
The transaction to request voiding a purchase after the date of purchase. This differs from cancel purchase in that a
cancel purchase operation can often be handled by updating the daily log at the CAT device, while the refund
purchase operation typically requires interaction with the approval agency.

« Authorization Completion
The state of a purchase when the response from the approval agency is “suspended”. The purchase is later completed
after a voice approval is received from the card company.

* Pre-Authorization
The transaction to reserve an estimated amount in advance of the actual purchase with customer's credit card
presentation and card entry at CAT.

« Cancel Pre-Authorization
The transaction to request canceling pre-authorization.

+ Card Check
The transaction to perform a negative card file validation of the card presented by the customer. Typically negative
card files contain card numbers that are known to fail approval. Therefore the Card Check operation removes the
need for communication to the approval agency in some instances.

* Daily log
The daily log of card transactions that have been approved by the card companies.

» Payment condition
Condition of payment such as lump-sum payment, payment by bonus, payment in installments, revolving payment,

Unified POS, v1.15.1 Beta1 10-5

and the combination of those payments. Debit payment is also available. See the PaymentCondition,
PaymentMedia, and PaymentDetail properties for details.

« Approval agency
The agency to decide whether or not to approve the purchase based on the card information, the amount of purchase,
and payment type. The approval agency is generally the card company.

10.3.2 Capabilities

The CAT control is capable of the following general mode of operation:

« This standard defines the application interface with the CAT control and does not depend on the CAT device
hardware implementation. Therefore, the hardware implementation of a CAT device may be as follows:

* Separate type (POS interlock)
The dedicated CAT device is externally connected to the POS (for instance, via an RS-232 connection).

* Built-in type
The hardware structure is the same as the separate type but is installed within the POS housing.

« The CAT device receives each authorization request containing a purchase amount and tax from CAT control.

« The CAT device generally requests the user to swipe a magnetic card when it receives an authorization request from
CAT control.

« Once a magnetic card is swiped at the CAT device, the device sends the purchase amount and tax to the approval
agency using the communications device.

« The CAT device returns the result from the approval agency to the CAT control. The returned data will be stored in
the authorization properties by the CAT control for access by applications.

10-6 Unified POS, V1.15.1 Beta1

Electronic Money Device: Added in Release 1.9
The CAT Device Category is extended to support an Electronic Money Device that has the following attributes.

» A CAT device typically consists of a display, keyboard, magnetic stripe reader, receipt printing device, and a
communications device. CAT devices are predominanly used in Japan where they are required by law. Essentially, a
CAT device can be considered a device that shields the encryption message formatting and communications
functions of an Electronic Funds Transfer (EFT) operation from an application.

« The Electronic Money Device receives the tendering information (amount of tender, tax, and other transaction based
information) from CAT control, and then starts the authorization processing.

» When the Electronic Money Device is required, a Credit Card swipe on the CAT device is generally required for
authorization.

* When a Card [Contact Type / Contactless Type] is input by the Electronic Money Device, it is formatted into the
authorization format with the transaction information and then communicated for authorization.

» When the authorization is completed, the Electronic Money Device sends the settlement result to CAT control. The
settlement result is stored by the CAT control and passed back to the calling application.

« The Electronic Money Device may save settlement result as DealingLog in the memory of the device. The device
may also send DealingLog to the Center by settlement processing.

Unified POS, v1.15.1 Beta1 10-7

10.3.3 CAT Class Diagram

10 -8

<<utility>>
UposConst
(from upos)

Updated in Release 1.9

<<exception>>
UposException
(from upos)

A
<<sends>>

<<Interface>>
CATControl
(from upos)

<<ewent>> <<uses>
ErrorEvent
(from events)
<<ewvent>> fires
OutputCompleteEvent

(from events)

<<ewvent>>
StatusUpdateEvent

(from events)

<<ewvent>>
DirectlOEvent

(from events)

B<<prop>> AccountNumber : string
¥ <<prop>> AdditionalSecurityInformation : string

[8<<prop>> ApprovalCode : string

B#<<prop>> AsyncMode : boolean
[&<<prop>> Balance : currency
<<capability>> CapAdditionalSecurityInformation : boolean
p Yy p y
B <<capability>> CapAuthorizeCompletion : boolean
<<capability>> CapAuthorizePreSales : boolean
p Yy p
B#<<capability>> CapAuthorizeRefund : boolean
& <<capability>> CapAuthorizeVoid : boolean
<<capability>> CapAuthorizeVoidPreSales : boolean
p Yy p
[&#<<capability>> CapCashDeposit : boolean
8 <<capability>> CapCenterResultCode : boolean
<<capability>> CapCheckCard : boolean
B<<capability p
B#<<capability>> CapDailyLog : int32
<<capability>> Caplnstallments : boolean
p Yy p
[&#<<capability>> CapLockTerminal : boolean
& <<capability>> CaplLogStatus : boolean
B#<<capability>> CapPaymentDetail : boolean
B <<capability>> CapTaxOthers : boolean
<<capability>> CapTransactionNumber : boolean
p Yy p

| B<<capability>> CapTrainingMode : boolean

8 <<capability>> CapUnlockTerminal : boolean
B#<<prop>> CardCompanyID : string
5 <<prop>> CenterResultCode : string
[8<<prop>> DailyLog : string
B#<<prop>> LogStatus : int32
B#<<prop>> PaymentCondition : int32
[<<prop>> PaymentDetail : string

B <<prop>> PaymentMedia : int32

B <<prop>> SequenceNumber : int32
B#<<prop>> SettledAmount : currency
B#<<prop>> SlipNumber : string
[B<<prop>> TrainingMode : boolean
B#<<prop>> TransactionNumber : string
E<<prop>> TransactionType : int32

WaccessdailyLog()
SauthorizeCompletion()
WauthorizePreSales()
SauthorizeRefund()
WauthorizeSales()
WauthorizeVoid()
SauthorizeVoidPreSales()
WcashDeposit()
ScheckCard()

Slock Terminal()
unlockTerminal()

Unified POS, V1.15.1 Beta1

10.3.4 Model

The general models for the CAT control are shown below:

« The CAT control basically follows the output device model. However, multiple methods cannot be issued for

asynchronous output; only one outstanding asynchronous request is allowed.

» The CAT control issues requests to the CAT device for different types of authorization by invoking the following

methods.
Function Method name Corresponding Cap property
Purchase authorizeSales None
Cancel Purchase authorizeVoid CapAuthorizeVoid
Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization

authorizeVoidPreSales

CapAuthorizeVoidPreSales

» The CAT control issues requests to the CAT device for special processing local to the CAT device by invoking the
following methods.

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

» The CAT control stores the authorization results in the following properties when an authorization operation

successfully completes:

Description

Property Name

Corresponding Cap Property

Credit Account number

AccountNumber

None

Additional information

AdditionalSecurityInformation

CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanyID None

g;e(ilecirom the approval CenterResultCode CapCenterResultCode
Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

« The accessDailyLog method sets the following property

Description

Property Name

Corresponding Cap Property

Daily log

DailyLog

CapDailyLog

Unified POS, v1.15.1 Beta1

10-9

10 -10

Electronic Money Device:

« The CAT Control requires the Electronic Money Device to track each settlement and closing in the DealingLog.

Added in Release 1.9

Function Method name Corresponding Cap property
Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

» When the CAT Control receives the settlement results from the Electronic Money Device it stores these results in

the following properties:

Description Property Name Corresponding Cap Property
Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation
Approval code ApprovalCode None

Settled amount Settled Amount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

« The accessDailyLog method sets the following property

Description

Property Name

Corresponding Cap Property

DealingLog

DailyLog

CapDailyLog

« Sequence numbers are used to validate that the properties set at completion of a method are indeed associated with
the completed method. An incoming SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method has completed. If the numbers do not
match, or if an application fails to identify the number, there is no guarantee that the values of the properties listed in
the two tables correspond to the completed method.

» The AsyncMode property determines if methods are run synchronously or asynchronously.

» When AsyncMode is false, methods will be executed synchronously and their corresponding properties will contain
data when the method returns.

* When AsyncMode is true, methods will return immediately to the application. When the operation associated with
the method completes, each corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be issued immediately after issuing a prior
method; only one outstanding asynchronous method is allowed at a time. However, clearOutput is an exception
because its purpose is to cancel an outstanding asynchronous method. The methods supported and their
corresponding properties vary depending on the CAT control implementation. Applications should verify that

Unified POS, V1.15.1 Beta1

particular Cap properties are supported before utilizing the capability dependent methods and properties.

« Results of synchronous calls to methods and writable properties will be stored in ErrorCode. Results of
asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Errorcode argament of
an ErrorEvent. If ErrorCode or the ErrorCode argument is E EXTENDED, detailed device specific information
may be stored to ErrorCodeExtended in synchronous mode and stored to ErrorEvent argument
ErrorCodeExtended in asynchronous mode. The error code from the approval agency will be stored in
CenterResultCode in either mode.

« Training mode occurs continually when TrainingMede is true. To discontinue training mode, set TrainingMode to
false.

 An outstanding asynchronous method can be canceled via the clearOutput method.

« The Daily log can be collected by the accessDailyL.og method. Collection will be run either synchronously or
asynchronously according to the value of AsyncMode.

Unified POS, v1.15.1 Beta1 10 - 11

« Following is the general usage sequence of the CAT control.
Synchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()
- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the authorizeSales()
sequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method
- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)
- release

- close

10 -12 Unified POS, V1.15.1 Beta1

10.3.5 Device Sharing

The CAT is an exclusive-use device, as follows:

« After opening the device, properties are readable.

« The application must claim the device before enabling it.

« The application must claim and enable the device before calling methods that manipulate the device.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 10 -13

10.3.6 CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the AuthorizeSales process of the CAT device.

:Client App :CAT :CAT Service :CAT Hardware

i open(logicalName) i i

open(logicalName) |

T claim(timeout) |
| |

claim(timeout)

I A

setDeviceEnabIed(true)T

setDeviceEnabled(true)

s ?DaymentMedia(mediaque)

setPaymentMedia()

SequenceNumber

AuthorizeSaIesI(sequenceNumber, amouFt, tax, timeout)

Definition of the argume%‘

B

E}

AuthorizeSales(sequenceNumber, amount, tax, timeout)

send commands to
physical CAT

After human actor swipes the card,
the device sends the purchase amount
and tax to approval agency using the
communications device.

|_|_l

—

1
]
Set properties on |
return from successful i
1
1

authorization.

on successful retur

Check properties ﬁ T
n. |
|

10 -14 Unified POS, V1.15.1 Beta1

10.3.7 CAT State Diagram

The following diagram depicts the CAT states.

close
open() claim()
.ﬁ[Closed J;j Opened C[Claimed]
close() release() /
release()

Iset DeviceEnabled (false) clearOutput

Logging Enabled
Processing

accessDailyLog(

viceEnabled (true)

Clear Output
Processing

Method processing

Done delivering even authorizeXyz(),
checkCard()

authorizeXyz(), [
SV":nhfgm“S checkCard() Async Mode
ode

ErrorEvent OutputCompleteEvent
Processing Processing

- J

Unified POS, v1.15.1 Beta1

10 -15

10.4 Properties (UML attributes)

10.4.1 AccountNumber Property Updated in Release 1.9

Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.
Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.2 AdditionalSecuritylnformation Property Updated in Release 1.7

Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before issuing an
authorization method. Also, data obtained from the CAT device and not stored in any other property
as the result of an authorization operation (for example, the account code for a loyalty program) can
be provided to an application by storing it in this property. Since the data stored here is device
specific, this should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapAdditionalSecurityInformation Property.
10.4.3 ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

Electronic Money Device: Approval Code for the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

10 -16 Unified POS, V1.15.1 Beta1

10.4.4 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.
If false, the authorization methods will run synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also Authorization Methods.

10.4.5 Balance Property Added in Release 1.9

Syntax Balance: currency { read-only, access after open }
Remarks Electronic Money Device: The balance of Credit Card.

Errors A UposException may be thrown when this property is accessed. For further information, see “
Errors” on page 1- 16.

10.4.6 CapAdditionalSecuritylnformation Property

Syntax CapAdditionalSecurityInformation: hoolean { read-only, access after open }
Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also AdditionalSecurityInformation Property.
10.4.7 CapAuthorizeCompletion Property

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also authorizeCompletion Method.

Unified POS, v1.15.1 Beta1 10 -17

10.4.8 CapAuthorizePreSales Property

Syntax

Remarks

Errors

See Also

CapAuthorizePreSales: boolean { read-only, access after open }

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

authorizePreSales Method.

10.4.9 CapAuthorizeRefund Property

Syntax

Remarks

Errors

See Also

CapAuthorizeRefund: boolean { read-only, access after open }

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on pagel-16.

authorizeRefund Method.

10.4.10 CapAuthorizeVoid Property

Syntax
Remarks

Errors

See Also

CapAuthorizeVoid: boolean { read-only, access after open }
If true, the authorizeVoid method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

authorizeVoid Method.

10.4.11 CapAuthorizeVoidPreSales Property

Syntax
Remarks

Errors

See Also

10 -18

CapAuthorizeVoidPreSales: boolean { read-only, access after open }

If true, the authorizePreSales method has been implemented; otherwise it is false.

If true, the authorizeRefund method has been implemented; otherwise it is false.

If true, the authorizeVoidPreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
authorizeVoidPreSales Method.

Unified POS, V1.15.1 Beta1

10.4.12 CapCashDeposit Property Added in Release 1.9

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Electronic Money Device: Show the device has charged method by cashDeposit method or not. If
true, the cashDeposit method is implemented, otherwise false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also cashDeposit Method.
10.4.13 CapCenterResultCode Property

Syntax CapCenterResultCode: boolean { read-only, access after open }
Remarks If true, the CenterResultCode property has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CenterResultCode Property.
10.4.14 CapCheckCard Property

Syntax CapCheckCard: boolean { read-only, access after open }

Remarks If true, the checkCard method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also checkCard Method.

10.4.15 CapDailyLog Property

Syntax CapDailyLog: int32 { read-only, access after open }
Remarks Shows the daily log ability of the device.
Value Meaning
CAT DL NONE The CAT device does not have the daily log functions.
CAT DL REPORTING The CAT device only has an intermediate total function which reads
the daily log but does not erase the log.
CAT DL _SETTLEMENT The CAT device only has the “final total” and “erase daily log”
functions.

CAT DL REPORTING SETTLEMENT
The CAT device has both the intermediate total function and the final
total and erase daily log function.

This property is initialized by the open method.

Unified POS, v1.15.1 Beta1 10 -19

Errors

See Also

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

DailyLog Property, accessDailyLog Method.

10.4.16 Caplinstallments Property

Syntax Caplnstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the result of
accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DailyLog Property.

10.4.17 CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device can set the lock
using the lockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also lockTerminal Method.

10.4.18 CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device can notify the condition of the log by the LogStatus
property, otherwise false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also LogStatus Property.

10.4.19 CapPaymentDetail Property

Syntax
Remarks

Errors

See Also

10 - 20

CapPaymentDetail: boolean { read-only, access after open }
If true, the device can notify the condition of the log by the LogStatus property, otherwise false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

PaymentDetail Property.

Unified POS, V1.15.1 Beta1

10.4.20 CapTaxOthers Property

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result of access
DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the authorization
methods. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also DailyLog Property.
10.4.21 CapTransactionNumber Property

Syntax CapTransactionNumber: boolean { read-only, access after open }
Remarks If true, the TransactionNumber property has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also TransactionNumber Property.
10.4.22 CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }
Remarks If true, the TrainingMode property has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also TrainingMode Property.
10.4.23 CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: hoolean { read-only, access after open }

Remarks Electoric Money Device: If true, the device has a security lock and the device can release the lock
using the unlockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also unlockTerminal Method.

Unified POS, v1.15.1 Beta1 10 - 21

10.4.24 CardCompanyID Property

Syntax

Remarks

Errors

CardCompanylD: string { read-only, access after open }

This property is updated when an authorization operation successfully completes. It shows credit
card company ID.

The length of the ID string varies depending upon the CAT device.
This property is initialized to an empty string by the open method

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.25 CenterResultCode Property

Syntax

Remarks

Errors

10 - 22

CenterResultCode: string { read-only, access after open }

Contains the code from the approval agency. Check the approval agency for the actual codes to be
stored.

This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

Unified POS, V1.15.1 Beta1

10.4.26 DailyLog Property Updated in Release 1.15.1

Syntax DailyLog: string { read-only, access after open }
Remarks Stores the result of the accessDailyL.og method. The data is delimited by CR(13 decimal)+LF(10
decimal) for each transaction and is stored in ASCII code. The detailed data of each transaction is
comma separated [i.e., delimited by “,” (44)].
The details of one transaction are shown as follows:
No Item Property Corresponding Cap Property
1 Card company ID CardCompanyID None
2 Transaction type TransactionType None
Transaction date None None
Note 1)
4 Transaction number | TransactionNumber CapTransactionNumber
Note 3)
5 Payment condition PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date None None
Note 5)
9 Account number AccountNumber None
10 Amount The argument Amount of the None
Note 4) authorization method or the amount
actually approved.
11 Tax/others The argument TaxOthers of the CapTaxOthers
Note 3) authorization method.
12 Installments None Caplnstallments
Note 3)
13 Additional data AdditionalSecurityInformation CapAdditionalSecurity
Note 2) Information
Notes from the previous table:
1) Format
Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

Some CAT devices may not support seconds by the internal clock. In that case, the seconds field
of the transaction date is filled with “00.”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables an application to
receive data other than that defined in this specification. The data stored here is vendor specific
and should not be used for development which places an importance on portability.

Unified POS, v1.15.1 Beta1 10 - 23

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data. In such instances,
the item cannot be displayed so the next comma delimiter immediately follows. For example,
if “Amount” is 1234 yen and “Tax/others” is missing and “Installments” is 2, the description
will be “1234,,2.” This makes the description independent of Cap property and makes the
position of each data item consistent.

4) Amount

Amount always includes “Tax/others” even if item 11 is present.

If the JPY is a currency and actual amount value is 12345 yen, then in case amount 64bit
integer value is “123450000” and its string values are “12345.00” or “12345.0000” or “12345”
or “123450000.

If the USD is a currency and actual amount value is 1234.56 USD, then in case amount 64bit
integer value is “12345600” and its string values are “1234.56” or “1234.5600” or “12345600”.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

Item Description Meaning

Card company 1D 102 JCB

Transaction type CAT TRANSACTION_SALES Purchase

Transact%on date 19980116134530 1/16/199813:45:30

Transaction nl}n.lber 123456 123456

Payment condition

. CAT PAYMENT INSTALLMENT 1 | Installment 1

Slip number

Approval code 12345 12345

Purchase date 0123456 0123456

Account number None None
1234123412341234 1234-1234-1234-1234

PY 12345.00 or 12345.0000 or 12345 12345 JPY

123450000

Amount

USD 12345.00 or 12345.0000 or 12345.00 USD

123450000

Tax/others None None

Number of payments 2 2

Additional data 12345678 Specific information

10 -24 Unified POS, V1.15.1 Beta1

The actual data stored in DailyLog will be as follows:

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,2,12345678[CR][LF]

Electronic Money Device: Setting DealinglLog which is a result of the Electronic Money Device
which does not have the communication module for closing processing done closing processing. It
may be the device which is enciphered DealingLog to everything except for Center.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also CapDailyLog Property, accessDailyLog Method.

Unified POS, v1.15.1 Beta1 10 - 25

10.4.27 LogStatus Property

Syntax
Remarks

Errors

See Also

Added in Release 1.9

LogStatus: int32 { read-only, access after open }
Electronic Money Device: This property shows the status of the DealingLog of the device.

Value

Meaning

CAT_LOGSTATUS_OK
CAT_LOGSTATUS_NEARFULL
CAT_LOGSTATUS_FULL

DealingLog has enough capacity.
DealingLog is nearly full.
DealingLog is full.

This property is initialized by the open method and kept current while the device is enabled.

If DealingLog becomes full, depending on the device, the settlement processing may not be able to

operate.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
StatusUpdateEvent Event.

10.4.28 PaymentCondition Property

10 - 26

Syntax
Remarks

Errors

See Also

Updated in Release 1.9

PaymentCondition: int32 { read-only, access after open }

Holds the payment condition of the most recent successful authorization operation.

This property will be set to one of the following values. See PaymentDetail for the detailed
payment string that correlates to the following PaymentCondition values.

Value

Meaning
CAT PAYMENT LUMP Lump-sum
CAT PAYMENT BONUS 1 Bonus 1
CAT PAYMENT BONUS 2 Bonus 2
CAT PAYMENT BONUS 3 Bonus 3
CAT PAYMENT BONUS 4 Bonus 4
CAT PAYMENT BONUS 5 Bonus 5

CAT PAYMENT INSTALLMENT 1
CAT PAYMENT INSTALLMENT 2
CAT PAYMENT INSTALLMENT 3

Installment 1
Installment 2
Installment 3

CAT PAYMENT BONUS COMBINATION 1

Bonus combination payments 1

CAT PAYMENT BONUS COMBINATION 2

Bonus combination payments 2

CAT PAYMENT BONUS COMBINATION 3

Bonus combination payments 3

CAT PAYMENT BONUS COMBINATION 4

CAT PAYMENT REVOLVING
CAT PAYMENT DEBIT
CAT PAYMENT ELECTRONIC_MONEY

Bonus combination payments 4
Revolving

Debit card

Electronic Money

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 1-16.
PaymentDetail Property.

Unified POS, V1.15.1 Beta1

10.4.29 PaymentDetail Property

Updated in Release 1.15.1

Syntax PaymentDetail: string { read-only, access after open }

Remarks

Contains payment condition details as the result of an authorization operation. Payment details vary

depending on the value of PaymentCondition. The data will be stored as comma separated ASCII
code. An empty string means that no data is stored and represents a string with zero length data.

PaymentCondition PaymentDetail
CAT PAYMENT LUMP An empty string
CAT_PAYMENT BONUS 1 An empty string
CAT_PAYMENT BONUS 2 Number of bonus payments

CAT PAYMENT BONUS 3

13! bonus month

CAT PAYMENT BONUS 4*

Number of bonus payments, 1°' bonus month, 2" bo-
nus month, 3" honus month, 4™ bonus month, 5t po-
nus month, 61 bonus month

CAT PAYMENT BONUS_5*

Number of bonus payments, 15 bonus month, 15 bo-
nus amount, 2" bonus month, 2" bonus amount, 3™
bonus month, 3" bonus amount, 4™ bonus month, 4th
bonus amount, 5% bonus month, 5" bonus amount, 6th
bonus month, 6 bonus amount

CAT_PAYMENT_INSTALLMENT 1

15 billing month, Number of payments

CAT PAYMENT _INSTALLMENT 2*

ISt lst

billing month, Number of payments, 1> amount,
2" amount, 3™ amount, 4™ amount, 5™ amount, 6
amount

CAT_PAYMENT INSTALLMENT 3

15 billing month, Number of payments, 15* amount

CAT PAYMENT BONUS_COMBINATION 1

15t billing month, Number of payments

CAT_PAYMENT_BONUS_COMBINATION_2

15 billing month, Number of payments, bonus amount

CAT_PAYMENT BONUS_COMBINATION_3*

13! billing month, Number of payments, number of bo-

nus payments, 1% bonus month, 2" honus month, 3"
bonus month, 4t bonus month, 5™ bonus month, 6th
bonus month

CAT_PAYMENT BONUS_COMBINATION_4*

15'billing month, Number of payments, number of bo-

15! bonus month, 15 bonus amount, 2"

nus payments,
3rd

bonus month, 2™ bonus amount, 3" bonus month,
bonus amount, 4t ponus month, 4™ ponus amount, 5th
bonus month, 5t honus amount, 6™ bonus month, 6th
bonus amount

CAT_PAYMENT REVOLVING An empty string
CAT PAYMENT DEBIT An empty string
CAT_PAYMENT _ELECTRONIC_MONEY An empty string

*Maximum 6 installments

Unified POS, v1.15.1 Beta1

10 - 27

10 - 28

The payment types and names vary depending on the CAT device. The following are the payment types and
terms available for CAT devices. Note that there are some differences between UnifiedPOS terms and those used

by the CAT devices. The goal of this table is to synchronize these terms.

) ° CAT CAT G-CAT JET-S SG-CAT Master-T
@ = Name (Old CAT)
S = Credit Not Not ICB VISA MASTER
g ;8 Card specified specified
£ E
z S .
A % 2 UnifiedPOS Card Company Terms
s 3=) Term
&} M A~
Lump- | (None) 10 Lump-sum | Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum
sum
Bonus | (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1
Numberof |22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2
bonus
payments
Bonus 23 Bonus 3 Bonus 3 Does not ex- | Does not ex- | Bonus 3 Bonus 3
month(s) ist. ist.
Numberof | 24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4 Bonus 4
bonus (Up to two
payments entries for
Bonus bonus
month (1) month)
Bonus
month (2)
Bonus
month (3)
Bonus
month (4)
Bonus
month (5)
Bonus
month (6)

Unified POS, V1.15.1 Beta1

Numberof
bonus
payments

Bonus
month (1)

Bonus
amount

M

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25

Bonus 5

Bonus 5

Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installm
ent

Payment
start
month

Numberof
payments

61

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Unified POS, v1.15.1 Beta1

10 - 29

10 - 30

Payment
start
month

Numberof
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62

Installment 2

Installment 2

Does not
exist.

Does not
exist.

Does not
exist.

Does not
exist.

Payment
start
month

Numberof
payments

Initial
amount

63

Installment 3

Installment 3

Installment 2

Installment 2

Does not
exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Numberof
payments

Bonus
amount

32

Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
exist.

Does not
exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

Unified POS, V1.15.1 Beta1

Payment
start
month

Numberof
payments

Numberof
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33

Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
exist.

Does not
exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

Unified POS, v1.15.1 Beta1

10 - 31

Payment
start
month

Numberof
payments

Numberof
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34

Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4
(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None)

80

Revolving

Revolving

Revolving

Revolving

Revolving

Revolving

Debit

(None)

110

Debit

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

Errors

See Also

10 - 32

A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 1-16.

CapPaymentDetail Property, DailyLog Property

Unified POS, V1.15.1 Beta1

10.4.30 PaymentMedia Property Updated in Release 1.9

Syntax
Remarks

Errors

PaymentMedia: int32 { read-write, access after open }
Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an approval method
call. “None specified” means that payment media will be determined by the CAT device, not by the
POS application.

Value Meaning

CAT MEDIA UNSPECIFIED None specified.
CAT MEDIA CREDIT Credit card.
CAT MEDIA DEBIT Debit card.

CAT MEDIA_ELECTRONIC MONEY
Electronic Money.

This property is initialized to CAT_MEDIA UNSPECIFIED by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.31 SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs to be checked by
an application to see if it matches with the argument sequenceNumber of the originating method.
If the “sequence number” returned from the CAT device is not numeric, the CAT control set this
property to zero. This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.32 SettledAmount Property Added in Release 1.9

Syntax SettledAmount: currency { read-only, access after open }

Remarks Electronic Money Device: Setting real amount of the settlement.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

See Also authorizeSales Method, cashDeposit Method.

Unified POS, v1.15.1 Beta1 10 -33

10.4.33 SlipNumber Property Updated in Release 1.7

Syntax

Remarks

Errors

SlipNumber: string { read-only, access after open }

Stores a “slip number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1-16.

10.4.34 TrainingMode Property

Syntax

Remarks

Errors

TrainingMode: boolean { read-write, access after open }

If true, each operation will be run in training mode; otherwise each operation will be run in normal
mode.

TrainingMode needs to be explicitly set to false by an application to exit from training mode,
because it will not automatically be set to false after the completion of an operation.

This property will be initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapTrainingMode is false.

10.4.35 TransactionNumber Property

Syntax

Remarks

Errors

10 - 34

TransactionNumber: string { read-only, access after open }
Stores a “transaction number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated when an
authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, V1.15.1 Beta1

10.4.36 TransactionType Property Updated in Release 1.10

Syntax TransactionType: int32 { read-only, access after open }
Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an authorization
operation successfully completes.

This property will be set to one of the following values.

Value Meaning

CAT TRANSACTION_SALES Sales

CAT TRANSACTION VOID Cancellation

CAT TRANSACTION_ REFUND Refund purchase

CAT _TRANSACTION_COMPLETION Purchase after approval
CAT TRANSACTION_ PRESALES Pre-authorization

CAT TRANSACTION_ CHECKCARD Card Check
CAT _TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
CAT TRANSACTION_CASHDEPOSIT Charge

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

Unified POS, v1.15.1 Beta1 10 - 35

10.5 Methods (UML operations)

10.5.1 accessDailyLog Method Updated in Release 1.9

10 - 36

Syntax

Remarks

Errors

See Also

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber The sequence number to get daily log.

type Specify whether the daily log is intermediate total or final total and erase.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Application must specify one of the following values for #ype for daily log type (either intermediate
total or adjustment). Legal values depend upon the CapDailyLog value.

Electronic Money Device: Gets the DealingL.og from the Electronic Money Device to send to the
Center. If the Electronic Money Device has communication capabilities, the DealingLog will be
sent from the Electronic Money Device to the Center and nothing is stored in the DailyLog.
Otherwise, the DealingLog is stored in the DailyLog Property.

Value Meaning
CAT DL REPORTING Intermediate total.

CAT DL SETTLEMENT Final total and erase.
Electronic Money Device: Closing DealingLog of the Electronic
Money device.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported type or timeout parameter was specified, or
CapDailyLog is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapDailyLog Property, DailyLog Property.

Unified POS, V1.15.1 Beta1

10.5.2 authorizeCompletion Method

Syntax

Remarks

Errors

See Also

authorizeCompletion (sequenceNumber: int32, amount: currency, taxQOthers: currency,
timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeCompletion Property.

Unified POS, v1.15.1 Beta1 10 - 37

10.5.3 authorizePreSales Method

Syntax

Remarks

Errors

See Also

10 - 38

authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Makes a pre-authorization.
Pre-authorization for amount and taxOthers is made as the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizePreSales is
false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizePreSales Property.

Unified POS, V1.15.1 Beta1

10.5.4 authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeRefund is
false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

Unified POS, v1.15.1 Beta1 10 -39

10.5.5 authorizeSales Method

Syntax

Remarks

Errors

10 - 40

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Unified POS, V1.15.1 Beta1

10.5.6 authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoid is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.

Unified POS, v1.15.1 Beta1 10 - 41

10.5.7 authorizeVoidPreSales Method

Syntax

Remarks

Errors

See Also

10 - 42

authorizeVoidPreSales (sequenceNumber: in#32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives
response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have not implemented
the pre-authorization approval cancellation. Refer to the documentation supplied with CAT device
and / or CAT control.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoidPreSales
is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeVoidPreSales Property.

Unified POS, V1.15.1 Beta1

10.5.8 cashDeposit Method Added in Release 1.9

Syntax cashDeposit (sequenceNumber: inf32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for charge.

amount Amount of money for charge.

timeout The maximum waiting time (in milliseconds) until the response is
received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Remarks Chargings.
The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait forever until the
Electronic Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapCashDeposit is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapCashDeposit Property.

Unified POS, v1.15.1 Beta1 10 -43

10.5.9 checkCard Method

10 - 44

Syntax

Remarks

Errors

See Also

Updated in Release 1.9

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the response is

Card Check is intended.

received from the CAT device. FOREVER (-1), 0 and positive values can
be specified.

Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The Balance will be

stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives

response from the CAT.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapCheckCard is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Balance Property, CapCheckCard Property.

Unified POS, V1.15.1 Beta1

10.5.10 lockTerminal Method Added in Release 1.9

Syntax lockTerminal ():
void { raises-exception, use after open-claim-enable }

Remarks Sets the security lock. When locked, the Electronic Money Device cannot accept any commands.
AdditionalSecurityInformation property is used when key information is required.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security lock function.
E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapLockTerminal Property.
10.5.11 unlockTerminal Method Added in Release 1.9

Syntax unlockTerminal ():
void { raises-exception, use after open-claim-enable }
Remarks Releases the security lock.

AdditionalSecurityInformation property is used when key information is required.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 1- 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security lock function.
E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapUnlockTerminal Property.

Unified POS, v1.15.1 Beta1 10 - 45

10.6 Events (UML interfaces)

10.6.1 DirectlOEvent

<< event >> upos::events::DirectlIOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-

specific CAT Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:
Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber and the Service.
This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described. Use of this event may restrict the application program from being used with other
vendor’s CAT devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 1- 15, directlO Method

10.6.2 ErrorEvent Updated in Release 1.9

10 - 46

<< event >> upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a CAT error has been detected and suitable response by the application

Attributes

is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 The code which caused the error event. See ErrorCode for the
values.

ErrorCodeExtended int32 The extended code which caused the error event. See
ErrorCodeExtended below for values.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred during
asynchronous action.

ErrorResponse int32 Pointer to the error event response. See ErrorResponse below for
values.

Unified POS, V1.15.1 Beta1

If ErrorCode is E EXTENDED, ErrorCodeExtended will be set to one of the following values:

Value Meaning

ECAT CENTERERROR
An error was returned from the approval agency. The detail error code is
defined in CenterResultCode.

ECAT _COMMANDERROR
The command sent to CAT is wrong. This error is never returned so long
as CAT control is working correctly.

ECAT RESET CAT was stopped during processing by CAT reset key (stop key) and so
on.

ECAT_COMMUNICATIONERROR
Communication error has occurred between the approval agency and
CAT.

ECAT DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has been stopped and
the value of DailyLog property is uncertain.
Electronic Money Device:
A failure will occur if the DealingLog on the device is full and the device
is attempting to be closed.

ECAT DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close settlement.

ECAT_ OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted that is over the
chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default value of
ER _RETRY. An application may set one of the following values.

Value Meaning
ER RETRY Retries the asynchronous processing. The error state is exited.
ER_CLEAR Clear the asynchronous processing. The error state is exited.

Remarks Fired when an error is detected while processing an asynchronous authorize group method or the
accessDailyLog method. The control's State transitions into the error state.

See Also “Device Output Models” on page 1- 21, “Device Information Reporting Model” on page 25.

Unified POS, v1.15.1 Beta1 10 - 47

10.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent

OutputID: int32 {read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has

completed successfully.

Attribute This event contains the following attribute:
Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.
Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation
that is was processed by the device successfully.
See Also “Device Output Models” on page 21.
10.6.4 StatusUpdateEvent Updated in Release 1.9

10 - 48

<< event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT device.

Attributes

Remarks

See Also

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the Electronic Money
Device.

This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description In Chapter 2.
Electronic Money Device:
The Status parameter contains the DealingLog status condition.

Value Meaning
CAT LOGSTATUS OK DealingLog is enough capacity.

CAT LOGSTATUS NEARFULL
DealingLog is nearly full.

CAT LOGSTATUS FULL DealingLog is full.
Enqueued when the CAT device detects a power state change.

“Events” on page 15.

Unified POS, V1.15.1 Beta1

11 Check Scanner

11.1 General

This Chapter defines the Check Scanner device category.

11.2 Summary

Properties (UML attributes)

Common
AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.15.1 Beta1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32
string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.7
1.9
1.3
1.8
1.9
1.8
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

May Use After
open
open
open
open
open
open
open
open
open
open

open & claim
open

Not supported
open

open

11 -1

1-2

Properties (Continued)

Specific
CapAutoContrast:

CapAutoGenerateFilelD:
CapAutoGeneratelmageTagData:

CapAutoSize:
CapColor:
CapConcurrentMICR:
CapContrast:
CapDefineCropArea:
CaplmageFormat:
CaplmageTagData:
CapMICRDevice:
CapStorelmageFiles:
CapValidationDevice:
Color:
ConcurrentMICR:
Contrast:
CropAreaCount:
DocumentHeight:
DocumentWidth:
FilelD:

FileIndex:
ImageData:
ImageFormat:
ImageMemoryStatus:
ImageTagData
MapMode:
MaxCropAreas:
Quality:

QualityList:

RemainingIlmagesEstimate:

Type
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
int32
boolean
int32
int32
int32
int32
string
int32
binary
int32
int32
string
int32
int32
int32
string
int32

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

Version
1.9
1.7
1.7
1.7
1.7
1.7
1.9
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.9
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

May Use After
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

open & enable
open
open
open
open
open
open
open

open & claim
open
open
open
open
open

open

Unified POS, V1.15.1 Beta1

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():
void { raises-exception, use after open }

claim (timeout: inz32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void { raises-exception, use after open, claim, enable }

clearInputProperties ():
void { raises-exception, use after open, claim }

clearOutput ():
void { }

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

Specific
beginlInsertion (timeout: int32):
void { raises-exception, use after open, claim, enable }

beginRemoval (timeout: inf32):

void { raises-exception, use after open, claim, enable }
clearImage (by: int32):

void { raises-exception, use after open, claim, enable }

defineCropArea (cropArealD: int32, x: int32,y: int32, cx: int32, cy: int32):

void { raises-exception, use after open, claim, enable }

endInsertion ():
void { raises-exception, use after open, claim, enable }

endRemoval ():
void { raises-exception, use after open, claim, enable }

Unified POS, v1.15.1 Beta1

Version

1.7
1.7
1.7
1.7
1.7
1.7
1.10
Not supported
1.7

1.9

1.8

1.8

1.9

1.8

1.7

1.7

1.7

1.7

1.7

1.7

11-3

11-4

retrievelmage (cropArealD: int32):
void { raises-exception, use after open, claim, enable }

retrieveMemory(by: int32):
void { raises-exception, use after open, claim, enable }

storelmage (cropArealD: int32):
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent
Status: int32 { read-only }

upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: . .
Obj: int32 { read-write }

object { read-write }

upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: .
ErrorLocus: int32 { read-only }

ErrorResponse: int32 { read-only }
int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent

Status: int32 { read-only }

1.7

1.7

1.7

Version

1.7

1.7

1.7

1.7

Unified POS, V1.15.1 Beta1

11.3 General Information

The Check Scanner programmatic name is “CheckScanner”.
11.3.1 Capabilities

The primary purpose of this device is to capture the image of a personal or business check for Electronic Check
Conversion. However, other documents (vouchers, signature receipts, etc.) may be scanned if they fall within the
capture size parameters of the Check Scanner. Therefore, in the description used in this standard the overall term
“document” may be used to indicate the multiplicity of uses of which the device may be capable. When the term
“check” is used, it should be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:
» Reads image data from a Check Scanner device.

» Has programmatic control of check insertion, reading, and removal. For some Check Scanner devices, this will
require no processing in the Control since the device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:
» The Check Scanner may store successive check images in its hardware memory.

« Cropping of areas of interest within the check image may be supported by the Check Scanner to aid in the
reduction of the memory needed to transmit or store the check image data.

» The retrievelmage data is deposited in the ImageData property in binary form.

» The Check Scanner may allow for retrieval of images stored in its hardware memory.

» The Check Scanner may support Image tag data information to identify the check image.

» The application reads the contents of ImageData property when it wants to further process the check image.

» The Check Scanner device may be physically attached to or incorporated into a check validation print device
and/or a MICR device. If this is the case, once a check is inserted via Check Scanner Control methods, the
check can still be used by the Printer and MICR Control prior to check removal.

Unified POS, v1.15.1 Beta1 11 -5

11.3.2 Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner classes.

<<sends>> =
<<exception>> <<Interface>> <<uses>> <<utility>> <<utility>>
UposException BaseControl UposConst CheckScannerConst
(from upos) (fromupos) I - (from upos) j (from upos)
<<uses>>
<<sends>>
<<ewent>> <<Interface>>
DataEvent CheckScannerControl
(from events) (from upos)
[<<prop>> Status : int32 <<capability>> CapAutoContrast : boolean
<<capability>> CapAutoGenerateFilelD : boolean
S <<capability>> CapAutoGeneratelmageTagData : boolean
<<fires>> <<capability>> CapAutoSize : boolean
<<capability>> CapColor : int32
<<capability>> CapConcurrentMICR : boolean
<<capability>> CapContrast : boolean
<<ewent>> <<capability>> CapDefineCropArea : boolean
DirectlOEvent <<capability>> CaplmageFormat : int32
(from events) <<capability>> CaplmageTagData : boolean
[Z<<prop>> EventNumber : int32 <<fites>> <<capability>> CapMICRDevice : boolean
[iG<<prop>> Data : int32 <<capability>> CapStorelmageFiles : boolean
[i<<prop>> Obj : object <<capability>> CapValidationDevice : boolean
<<prop>> Color : int32
<<prop>> ConcurrentMICR : boolean
<<prop>> Contrast : int32
<<prop>> CropAreaCount : int32
<<prop>> DocumentHeight : int32
<<prop>> DocumentWidth : int32
<<fires>> <<prop>> FilelD : string
<<ewent>> <<prop>> Filelndex : int32
ErrorEvent <<prop>> ImageData : binary
(from events) <<prop>> ImageFormat : int32
[<<prop>> ErrorCode : int32 <<prop>> ImageMemoryStatus : int32
[<<prop>> ErrorCodeExtended : int32 <<prop>> ImageTagData : string
[<<prop>> ErorLocus : int32 <<prop>> MapMode : int32
[Ki<<prop>> ErorResponse : int32 <<prop>> MaxCropAreas : int32
‘ <<prop>> Quality : int32
<<prop>> QualityList : string
<<fires>> &8 <<prop>> Remaining ImagesEstimate : int32
.beginlnsertion(timeout :int32) : void
®beginRemoval(timeout : int32) : void
Bclearimage(by : int32) : void
defineCropArea(cropArealD : int32, x : int32,y : int32, cx : int32, ¢y : int32) : void
SEEED Bendinsertion(: void
StatusUpdateEvent .endRemovaI() o vl
O evems,) .retrievelmage(cropAreaID :int32) : void
[B<<prop>> Status : int32 BretrieveMemory(by : int32) : void
\ storelmage(cropArealD : int32) : void

1-6 Unified POS, V1.15.1 Beta1

11.3.3 Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model.” One point of difference is that the Check Scanner
Control requires the execution of methods to insert and remove the check for processing. Therefore, this Control
requires more than simply setting the DataEventEnabled property to true in order to receive data. The basic
model is as follows:

.

The Check Scanner Control is opened, claimed, and enabled.

Starting with Version 1.9, the application has the ability to adjust the darkness of the scanned image for
devices that have the ability to adjust the scan mechanism so that it can darken or lighten the image. The
CapContrast property controls whether the device supports this feature.

When the beginInsertion method is called, the Check Scanner is ready to read the check within the specified
time as indicated by the time-out value. If the check is not inserted before the time-out value expires, a
UposException is raised.

In the event of a time-out, the Check Scanner device will remain in a state that allows a check to be inserted.
The application may provide an operator prompt which requests that a check be inserted. Following this
prompt, the application would then reissue the beginInsertion method and wait for the check to be inserted.

Once a check is inserted, the beginInsertion method returns and the application calls the endInsertion
method, which results in the Check Scanner device exiting the check insertion mode and causes the check
image to be captured.

» Following the endInsertion method, the scan image data is stored in a working buffer memory area and a
StatusUpdateEvent will occur to indicate that a successful scan image process has taken place. No
DataEvent is enqueued since data has not been transferred to the ImageData property at this point.

* The application must use the retrievelmage method to retrieve the current scan image data. However, if
the check image was not successfully captured by the device, the Control enqueues a ErrorEvent to
indicate the capture was not successful.

 Ifthe AutoDisable property is true, then the device is automatically disabled when the image is
successfully captured.

* An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is
true and other event delivery requirements are met. Just before delivering this event, the Control copies
data into specific properties, and disables further data events by setting the DataEventEnabled property
to false. This causes subsequent input data to be enqueued by the Control while the application processes
the current input and associated properties. When the application has finished the current input and is
ready for more data, it reenables events by setting DataEventEnabled to true.

+ If the CapAutoSize property is true, when the DataEvent is delivered, the height and width of the of
entire captured image are automatically stored in the corresponding DocumentHeight and
DocumentWidth properties. If the CapAutoSize property is false, the application must manually set the
DocumentHeight and the DocumentWidth property values prior to the beginInsertion method being
invoked.

+ If the application needs to retrieve the entire or a cropped portion of the captured image, the
retrievelmage method is called. The image data is sent from the device to the service and stored in the
ImageData property. When the corresponding DataEvent is delivered, the current image or cropped
image may be accessed by the application reading the image file contained in the ImageData property.

+ [f the CapStoreImageFiles property is true, then the current image, or cropped image, can be stored in
the memory by using the storelmage method.

Unified POS, v1.15.1 Beta1 11-7

1-8

* Any previously stored image may be retrieved by using the retrieveMemory method. The stored image
may be identified using the “by” parameter and requesting that the image be located by FileID, FileIndex,
or ImageTagData.

» If CapDefineCropArea is true, then the application can use the defineCropArea method to define crop
areas in the captured image.

* An ErrorEvent (or events) is (are) enqueued if the Control encounters an error while reading the check,
and is delivered to the application when the DataEventEnabled property is true and other event delivery
requirements are met.

+ All input data enqueued by the Control may be deleted by calling the clearInput method.

 All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to
their default values by calling the clearInputProperties method.

After processing the endInsertion DataEvent, the application may query the CapMICRDevice property to
determine if the device supports Magnetic Ink Character Recognition. If CapMICRDevice property is true,
then a MICR read function may be performed in a “single pass” or “multiple pass” cycle but prior to the check
being removed from the device. If CapConcurrentMICR property is true, then the device is capable of
supporting a “single pass” MICR read during an image scan. If CapConcurrentMICR property is true and
ConcurrentMICR property is true, then the MICR data would be read and calling the MICR's
beginInsertion and endInsertion methods would not be needed to reposition the check for MICR reading.

Additionally, after processing a DataEvent, the application should query the CapValidationDevice property
to determine if validation printing can be performed on the check prior to check removal. If this property is
true, the application may call the Printer Control's beginInsertion and endInsertion methods. This positions
the check for validation printing. The Printer Control's validation printing methods can then be used to perform
validation printing.

If the CapImageTagData property is true, then an identifying name, for example the transaction number, date
and time, or some other naming element, could be used to identify the image data. The format of the data must
be conformant to ARTS XML and reside in ImageTagData property.

Once the check is no longer needed in the device, the application must call beginRemoval of the Check
Scanner, the MICR (if CapMICRDevice is true), or the POS Printer (if CapValidationDevice is true), also
specifying a timeout value. This method will raise a UposException if the check is not removed within the
timeout period. In this case, the application may perform any additional prompting prior to calling the method
again. Once the check is removed, the application should call the same device’s endRemoval method to take
the device out of removal mode.

In order to accommodate many different Check Scanning devices, the application should follow the above
sequence of method calls even though the device may not physically require one or more of the methods. An
example may be a Check Scanner that is “auto armed” and is capable of detecting a check present and
initiating a Check Scan and MICR read cycle automatically. In this case the beginInsertion, endInsertion,
beginRemoval, and endRemoval method calls may actually do no more than return from the Service.

The model assumes that the device has a work area that can be used in the following ways:

* When a document is scanned its image will be loaded as raw data into this work area. When the
retrievelmage method is invoked the data from the work area may be modified by a previously defined
crop area, as specified by the cropArealD parameter, and loaded into the ImageData property. The work
area will still contain the original scanned image data. Additional retrievelmage method calls using
different crop area criteria can then be accomplished to load the ImageData property.

Unified POS, V1.15.1 Beta1

» The work area contains image data either from a recently scanned image or as a result of a
retrieveMemory method. Prior to invoking the storeImage method, the FileIndex property is set to the
correct index number (as maintained by the service) and if used, the FileID and/or ImageTagData
properties are set. When the storeImage method is invoked the data from the work area may be modified
by a previously defined crop area, as specified by the cropArealD parameter, and stored in the device
memory. The work area will still contain the original scanned image data. Additional storelmage method
calls using different crop area criteria can then be accomplished to store the image data in the device’s
memory. The RemaininglmagesEstimate property is adjusted to reflect the approximate number
additional images that may be stored in the device memory based upon the file size history of previously
stored images.

* When the retrieveMemory method is invoked, the work area is loaded with an image data file that was
previously stored in the device memory. Either the FileIndex, FileID, or ImageTagData may be used to
locate the previously stored image. The ImageData property is also loaded with the retrieved image data.

+ In order to accommodate the various storage and retrieval architectures that are in use for the Check Scanner
device class, the model has been designed to allow for three different addressing ways to locate previously
stored image data: FileIndex, FileID, and ImageTagData.

» The FileIndex is an addressing scheme that is automatically provided by the service to physically store
and retrieve the file data. The definition of file data in this case includes any and/or all of the following:
image data, tag data information (that is appended and included with the image data file), and a file
identification (a file name associated with the image data file). The FileIndex is only used by the service
to save and retrieve the scan data and its associated data elements.

» The FileID is a “file name” that may be provided automatically by the hardware device or the service. It
also may be populated by the application prior to a storeImage method being called. Once created it
remains with the ImageData and can be used to randomly locate a specific file for uploading to the POS
system and post processing applications.

» The ImageTagData property contains a set of information about the image that has been scanned. It is
required that the format of the data be XML and compliant to the ARTS Data Dictionary and ARTS
XML standards to ensure interoperability. Typically, it contains information about when the image was
captured, e.g., Date and Time, Store number, Lane Number, Clerk identification, etc. This data may be
pre- or post- appended to the ImageData and remains a part of the combined data file as a record of the
origin of the data.

11.3.4 Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following constraints:
+ The application must claim the device before enabling it.

» The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

» See the “Summary” table for precise usage prerequisites.

Unified POS, v1.15.1 Beta1 11-9

11.3.5 Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner device.

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. Thisl
means that the platform specific loading/configuration/creation code executed successfully. We also assume
that the application already registered some event handlers with the controls.

:ClientApp ‘ ‘ :CheckScanner

1:|setDataEventEnabled(true

‘ :DataEvent ‘ ‘Smm UpdateEvent

CheckScanner
Service

L]

: setDataEventEnabled(true)

L

4: setMapMode(CHK_MM_ENGLISH)

=

6: defineCropArea(1,0,0,1500,

=

000)

8: defingCropArea(1,0,2000,CHK_CROP_AREA_BOTT

fineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

1

OM,CHK_CROP_AREA_RIGHT)

-

Q: begininsertion(timeout;

1

12: endlnwo/

[—

U

Detect check
insertion and
scan check

16: deliver StatusUpdateEvent [FreezeE:

14: set

15: enqueue StatusUpd

137 new

tatus update event|status

ateEvent to servige's internal queue

=

ents == false]

3: setMapMode(CHK_MM_ENGLISH)
1
5: defineCropArea(1,0,0,1500,1000)
7: de
9: beginlnsertion(timeout)
1
11: endInsertion()
18:

11-10

notify client of new event =
=

T 19: retrievelmage(2)

17:|deliver event to all registered handlers

20: retriev’eﬁgggggp

retrieve the
image within the
second crop
area defined

24: set Check $canner properties and d
[DataEventEnabled == true && Fre|

21: ne

22: copy data to ne

w DataEvent

|
<

23: enqu

eue DataEvent to|service's internal queue
. <

eliver DataEvent
ezeEvents == falsie]

26: notify client of new eventle]

25: deliver event to all registered handlers

28: storelmage(1)

T 27: storelmage(1) —‘7

TZQ: beginRemoval(timeout

30: beginRemoval(timeout

il

:—Fdicate user to start removipng check

32: endRemoval()

33: endRemoval()

Unified POS, V1.15.1 Beta1

11.3.6 Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.

[Opened && [Closed ||
Claimed && Released || [Begin |
? Enabled] @@ @Dlsabled] ‘ Removal ‘
@rtion _ _ \\ / IbeginRemoval
/begininsertion
[Success]
_ Removal ‘ /endRemoval
Insertion ‘ Idle
[Success] \W
/endInsertion
)
End
Image Removal ‘

‘ Insertion defineCrop

/Emf/i;;ﬂ/

retrieyelmage
) [retrieveMem
Define -
Retrieve)
CropArea Store Image Image ‘ Retrieve Memory Clear Image
A

Unified POS, v1.15.1 Beta1

11-1

11.4 Properties (UML attributes)

11.4.1 CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the darkness of the
image to provide the best contrast for the image.
If true, then when Contrast is set to CHK_AUTOMATIC _CONTRAST, the device attempts to auto-
matically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapContrast Property, Contrast Property.

11.4.2 CapAutoGenerateFilelD Property

Syntax

Remarks

Errors

See Also

CapAutoGenerateFilelD: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate a file name that can be used
to reference the file containing the captured image.

If CapAutoGenerateFilelD is true, then the device can automatically create a file name for the
captured image file.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

FileID Property.

11.4.3 CapAutoGeneratelmageTagData Property

Syntax

Remarks

Errors

See Also

11 -12

CapAutoGeneratelmageTagData: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate tag data used in reference to
the image file for the captured image.

If CapAutoGeneratelmageTagData is true, then the device can automatically create image tag
data which can be appended to the image file to provide information about the captured image.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

ImageTagData Property.

Unified POS, V1.15.1 Beta1

11.4.4 CapAutoSize Property

Syntax CapAutoSize: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to determine the height and width of the document
automatically.

If CapAutoSize is true, then the height and width of the scanned document will be automatically
placed in the DocumentHeight and DocumentWidth properties when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set in the
DocumentHeight and DocumentWidth properties by the application prior to scanning an image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also DocumentHeight Property, DocumentWidth Property.
11.4.5 CapColor Property

Syntax CapColor: int32 { read-only, access after open }
Remarks This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning

CHK CCL MONO Bi-tonal (B/'W)
CHK CCL GRAYSCALE Gray scale

CHK CCL 16 16 Colors
CHK_CCL_256 256 Colors
CHK CCL_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
Errors” on page 1- 16.

See Also Color Property.

Unified POS, v1.15.1 Beta1 11 -13

11.4.6 CapConcurrentMICR Property

Syntax CapConcurrentMICR: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a Magnetic Ink Character Recognition read during
the image scanning process.
If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning
cycle (single pass scanning). For devices that are both a Check Scanner device and a MICR reader
device, following a check scan the device will automatically pass the MICR data to the MICR
Service. The check will not need to be re-read during the MICR beginInsertion and endInsertion
methods.
If CapConcurrentMICR is false, then it would be necessary to read the MICR data (if the device
supports MICR reading) by using the MICR beginInsertion and endInsertion methods. Usually
the MICR read is performed prior to the Check Scanning process.

This property has no meaning if the CapMICRDevice property is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

See Also CapMICRDevice Property, ConcurrentMICR Property.

11-14 Unified POS, V1.15.1 Beta1

11.4.7 CapContrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

CapContrast: boolean { read-only, access after open }

This capability indicates the ability of the device to lighten or darken the scanned image. This
affects the image regardless of the value of the CapColor property. If true then the darkness of the
image can be adjusted using the Contrast property. If false then the application cannot adjust the
darkness of the image.

A UposException may be thrown when this property is accessed. For further information see
“Errors” on page 1- 16.

CapAutoContrast Property, Contrast Property.

11.4.8 CapDefineCropArea Property

Syntax

Remarks

Errors

See Also

CapDefineCropArea: boolean { read-only, access after open }

This capability indicates if this device supports a feature that allows cropping of areas of interest
within the scan image area defined by the DocumentHeight and DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed; otherwise it is set to be
false. This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.

11.4.9 CaplmageFormat Property

Syntax

Remarks

Errors

See Also

CaplImageFormat: int32 { read-only, access after open }

This capability indicates the image file formats that this device supports. The image data is stored
in the ImageData property using one of the following formats supported by the CapImageFormat
Property:

CaplmageFormat is a logical OR combination of any of the following values:

Value Meaning

CHK CIF NATIVE Hardware native format
CHK CIF_TIFF TIFF format

CHK CIF _BMP BMP format

CHK CIF JPEG JPEG format

CHK CIF _GIF GIF format

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

ImageFormat Property

Unified POS, v1.15.1 Beta1 11 -15

11.4.10 CaplmageTagData Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

CaplmageTagData: boolean { read-only, access after open }

This capability indicates if this device has the ability to utilize ARTS XML compliant tag names to
identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the ImageTagData
property, to the image data file stored in the ImageData property.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

ImageTagData Property, retrievelmage Method, storelmage Method.

11.4.11 CapMICRDevice Property

Syntax

Remarks

Errors

See Also

CapMICRDevice: boolean { read-only, access after open }
This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in addition to check
scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning
cycle (single pass scanning). For devices that are both a Check Scanner device and a MICR reader
device, following a check scan the device will automatically pass the MICR data to the MICR
service. The check will not need to be re-read during the MICR beginInsertion and endInsertion
methods.

If CapConcurrentMICR property is false, then it would be necessary to read the MICR data by
using the MICR beginInsertion and endInsertion methods. In this case the MICR read is usually
performed prior to the Check Scanning process. This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

CapConcurrentMICR Property, ConcurrentMICR Property.

11.4.12 CapStorelmageFiles Property

Syntax

Remarks

Errors

See Also

11-16

CapStorelmageFiles: boolean { read-only, access after open }
This capability indicates if this device has the ability to store check images in its hardware memory.

If CapStorelmageFiles is true, one or more images can be stored in the memory provided by the
device by using the storelmage method. This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

retrievelmage Method, storelmage Method.

Unified POS, V1.15.1 Beta1

11.4.13 CapValidationDevice Property

Syntax

Remarks

Errors

CapValidationDevice: boolean { read-only, access after open }

This capability indicates if this device has the ability to perform a validation print function on the
check using a print station.

If CapValidationDevice is true, a check does not have to be removed from the Check Scanner
device prior to performing validation printing. For devices that are both a Check Scanner device as
well as a POS Printer, the device will automatically position the check for validation printing after
successfully performing a Check Scanner read. Either the Check Scanner Control’s or the POS
Printer Control’s beginRemoval and endRemoval methods may be called to remove the check
once the process is complete.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

11.4.14 Color Property

Syntax

Remarks

Errors

See Also

Color: int32 { read-write, access after open }

This property is used to select the image scan mode for subsequent document scan operations. The
available options may be affected by the current file type as specified by the ImageFormat
property. Certain file types may not work with all the “colors” that the device may support. It is up
to the application to insure that the proper Color and ImageFormat properties are compatible.
Changing the Color property will not affect any previously stored data currently residing in the
ImageData property.

It may contain one of the following values:

Value Meaning

CHK CL MONO Bi-tonal (B/W)
CHK CL_GRAYSCALE Gray scale
CHK CL 16 16 Colors

CHK CL 256 256 Colors
CHK CL_FULL Full color

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

CapColor Property, ImageFormat Property.

Unified POS, v1.15.1 Beta1 11 -17

11.4.15 ConcurrentMICR Property

Syntax

Remarks

Errors

See Also

ConcurrentMICR: boolean { read-write, access after open }

This property indicates whether a MICR read should be performed at the same time the check image
is captured (single pass operation).

This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check scanning cycle (single
pass scanning). For devices that are both a Check Scanner device and a MICR reader device,

following a check scan the device will automatically pass the MICR data to the MICR Service. The
check will not need to be re-read during the MICR beginInsertion and endInsertion methods.

If ConcurrentMICR is false and MICR data is required, then it is necessary to read MICR data by
using the MICR beginInsertion and endInsertion method calls. In this case the MICR read is
usually performed prior to the Check Scanning process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

CapConcurrentMICR Property, CapMICRDevice Property.

11.4.16 Contrast Property Added in Release 1.9

11-18

Syntax

Remarks

Errors

See Also

Contrast: int32 { read-write, access after enable }

This property allows the application to adjust the darkness of the image. The property is valid only
if the CapContrast property is true.

A value of 0 sets or indicates that the device will generate the lightest image possible. A value of 100
sets or indicates that the device will generate the darkest image possible. All values between 0 and 100
produce images with varying degrees of darkness. A value of 50 should produce an image that is the
optimal brightness for the best image under normal circumstances.

If the CapAutoContrast property is true then this property can be set to CHK _AUTOMATIC CON-
TRAST to allow the device to automatically adjust the darkness of the image based on sensing of the
paper to produce the optimal brightness for the best image under normal circumstances.

If CapAutoContrast is false, then attempting to set this property to CHK AUTOMATIC CONTRAST
is illegal.

If CapAutoContrast is true, then this property is initialized to CHK_ AUTOMATIC _CONTRAST

when the device is enabled. If CapAutoContrast is false, this property is initialized either to 50 or to a
user configured value when the device is enabled.

A UposException may be thrown when this property is accessed. For further information see
“Errors” on page 1- 16.

CapAutoContrast Property, CapContrast Property.

Unified POS, V1.15.1 Beta1

11.4.17 CropAreaCount Property

Syntax

Remarks

Errors

See Also

CropAreaCount: int32 { read-only, access after open }

This property indicates the number of Crop areas that have been defined which may be applied to
the captured image.

If CapDefineCropArea is false, then this property is always zero.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 1- 16.

CapDefineCropArea Property, MaxCropAreas Property, defineCropArea Method.