Date: May 2018

- ¢®
-l — g %
,

=V E F==
= = 5% ==
== Rl e—
= =

OBJECT MANAGEMENT GROUP

Unified POS Retail Peripheral Architecture

FTF - Beta 1

OMG Document Number: dtc/2018-05-16
Standard document URL: https://www.omg.org/spec/UPQOS/

This OMG document replaces the submission document (retail/18-03-19, Alpha). It is an OMG Adopted Beta specification
and is currently in the finalization phase. Comments on the content of this document are welcome, and should be directed to
issues@omg.org by August 6, 2018.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in December 2018. If you are reading this after
that date, please download the available specification from the OMG Specifications Catalog.

Copyright © 2018 Object Management Group

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of
this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

Trademarks

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this International Standard, but may not claim compliance or conformance with this International
Standard. In the event that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this International Standard may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under OMG Specifications, Report an Issue.

UnifiedPOS Retail Peripheral Architecture vii

PREFACE
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http:/ www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://'www.omg.org/technology/documents/spec_catalog.htm

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue Street
Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to https://
www.omg.org/report_issue.htm.

UnifiedPOS Version 1.15 -- May 11, 2018

viii UnifiedPOS Retail Peripheral Architecture

This page intentionally left blank.

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents ix
TABLE OF CONTENTS
PREFACE
About the Object Management GIOUP...........ecveeverieeierueeieerieseeseeeesseseeessesseeseseeenes vii
INTRODUCTION AND ARCHITECTURE
UnifiedPOS Architecture for Retail...........cccoooviieeiiiiiiiiieeiiceeceeee e 1
WHAT IS UNIFIEDPOS? 1
ABOUT THIS DOCUMENTATIONcocveveveveretereresssesesesns 2
GOALS <.ttt ettt ettt et et et s e et e s bt e e bt e shte s be e bte s bt e bt e sateenbeeeateenne 5
DEPENDENCTESceutteitesiteettesiteeteesitesteesttesseesseessseesseesaseesseessseesseesssesnseessesnseenns 5
UNIFIEDPOS RELATIONSHIP TO CONFORMING PLATFORM MAPPINGS.................. 5
WHO SHOULD READ THIS DOCUMENTcuutiiiiiniiiiiiiite ettt ettt 6
CONFORMANCE 7
UNIFIED POS ...ttt ettt sttt ae et essaeeabaessbeensaennee s 7
ARCHITECTURAL OVERVIEW 8
ARCHITECTURAL COMPONENTSeeeieeiienireereenieeeseesseesseesseessseesseesssessseesssesssesnns 8
USE OF UML ...ttt ettt ettt sttt st et site s beesaaesebeesaaesnneenns 9
Package Diagram..........ccceecuieniiiiiieniieiiee e 11
DATA TYPES ..ttt ettt ettt et e siee st e site st e beessaesbeesseesabeessnesnsesnseesnsesnseens 12
Device Behavior ModelS........oooouvvvieiiiiiiiiiieiieieee e 13
INTRODUCTION TO PROPERTIES, METHODS, AND EVENTS......cccevviieiieiieiieennne 13
Properties (UML AHPIDULES)cc.coooueeiiiiiiaieiieieee e 13
Methods (UML Operations)................cccueeevueeeceeesceeenceeeienennnes 14
Events (UML INterfaces)cccoccueeeeeeeceeeniieeiiieeeieeeeieeennns 14
DEVICE INITIALIZATION AND FINALIZATION........c.cceivevevevererererereeesesesesesesesesesenans 15
TNItAlIZALION ... 15
Initialization and Error Reportingcccccccceeeeveencveenceneane. 15
Finalizationc.ccccccccoouvvviiiiiiiiiieiciie e, 18
SUIMIIATY ...t 18
Device Sharing Modelcocvevieriiiiieiiieiecce e 19
Exclusive-Use Devicesccooeeviiiiiiiiiiiiiiiiiiiiieiieein, 19
Sharable Devices..............ccc...ccooeeeeieeiiiiiiiiieeiiiieeeeeeeeeee 19
EVENTS ccce ettt sttt st et s e et e sbte st e enbeesateenbeesseesnseenaee s 20
BITOTS e raanananaas 21
ERROR CODES.......coitiiiiiiiieiieeitiesieenitesitesbeesiteseteeseesssessseessaesnseesssesssesseesssesnseens 21
Extended Error Codec....coooveviiiiiiiiiiiiiiiiiiiiieeee, 22
DEVICE INPUT MODEL......ciiitiiiiiiiieniiesieeniieeteeieesereeteesitessseenseesseeseesssesnseessees 23
Error HAnAIiNGcccooooiiiiiiiiiieeee e 24
MiSCOIIANCOUS ... 25
DEVICE OUTPUT MODELSuoeitiiiiieniieeiieiieeteeieesiseeieesssesseenseesseesseesssessseessees 26
SYNChronous QUIDULcccueeeeeeeieieeeiieeeeiee e 26
ASYNChronous QUIDULc..cccueeeereiieeieeeieee e, 26

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

X Table of Contents
Device Power Reporting Model..........cccoeevvienieniiienieeiiciiecieees 27
MOAEL.............oooeeeeeiieeieeeee e 27
Power State Diagram.................cccccccoeveiiiiiiiiiiiiiiieeeeeee, 28
POWEF PrOPErties..............cccouviiiieeeiieeieeee e 29
Power Reporting Requirements for DeviceEnabled 30
Device Information Reporting Model...........c.ccccevviieiieniiiciiennnnne. 31
Statistics Reporting Properties and Methods............................ 31
XML Definitions for POS Device Statistics.................c.ccocueu.... 32
Update Firmware Device Model...........cccoooveeviiiiiiiieniieiiecieeee 34
DEVICE STATES ...ttt et s 35
Device State Diagramcccocccoevevciiiiiinicenieniinienee 36
VERSION HANDLING ..ottt 37
DEPRECATION HANDLINGcoiiiiiiiiiiniiiiiiiniitiienieeceteeee e e 38
HYDRA DEVICE CONSIDERATIONScccoitiiiiiiiiiiieieiiiieceireneee s s 39
Initial Connectivity Model..................cccccocvvviniinniinoiniininenne 39
Control Object or Device Control (Control)cccceeunene. 39
Service Object or Device Service (Service)coocvvervvernnenn. 39
Multi-Function (Hydra) Peripheral Devices............c.ccc.c....... 40
CONSIACTALIONS ... 42
CHAPTER 1
COMMON PROPERTIES, METHODS, AND EVENTS 1
SUMMARY ...ouiiiiiiiiiiiiit sttt st s st 1
GENERAL INFORMATION.......couiiiiiiiiiiiiiiiiiiiic ittt ene s 4
Common PME Class Diagram.................ccccccoevevvcnoenicnccncannnnn 4
PROPERTIES (UML ATTRIBUTES) ...eeeuvtetieriteeieeneeeereesseesseesseessseesseesssesssesssessseenes 6
METHODS (UML OPERATIONS)vteeuieeiietreeueeieessreeseeseneeseenseessesssessssesssesssnes 17
EVENTS (UML INTERFACES) ...uvteiitieittenieeeteeneesreesseessseesseesssesseesssesssesssessssessseens 28
CHAPTER 2
BELT 1
N 1010001 0T 1) RS 1
GENERAL INFORMATION.ovuiiieieieseiseississessessssssessesseses s sse s sse e ssssnes 5
CAPABILITIES ...ttt et s st st et st s e e e 5
BELT CLASS DIAGRAMcoouiiiiiiiiiiiiiiiciie e 6
Belt Sequence Diagram..................cccocceuveeveienieeeiiieaiieeeeeennens 7
IMODEL ...ttt ettt 9
DEVICE SHARING ..ottt ettt s s 10
Belt State Diagramcccoevveeeeeeeieiiieiieeeee e, 10
PROPERTIES (UML ATTRIBUTES) ...eeeutertieiieeieeieesireeieesineeseenseesseenseesssesnseessees 11
METHODS (UML OPERATIONS)cuieuiiuiiiiniiniiiiiesieseeiete ettt ene e 18
EVENTS (UML INTERFACES) ...uvtiiutteriienieeeteentesteenteessaeesteesseesnseesssessessseessesnseens 21
CHAPTER 3
BILL ACCEPTOR 1
SUMMARY ..ottt s s st 1
GENERAL INFORMATION. ..ottt sttt s e e s sae e 5

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents Xi

CaAPADIIILICS ..ottt ettt ettt e s eeaese e be e e b e essebeesaebeessenseens 5
Bill Acceptor Class Diagramc.cccccceveeeevceeenceeenieeennnn 6
MOdeL...........ocooiiiieee e 7
Bill Acceptor Sequence Diagramccceeeveveecieencenanne.. 8
Bill Acceptor State Diagramccccoceeieccnieniincennannn. 9
Device SHAVINGc...ccoveiiiiiiiiiieieeee e 9
PROPERTIES (UML ATTRIBUTES) ...eeeuveetietieeieeieesereereeseseeseeseesseesseesssessseessnes 10
METHODS (UML OPERATIONS)uvieetieeeiieitieereesieessseeseeseseeseesseesseessessssessseessees 15
EVENTS (UML INTERFACES) ...uviiittiesteesieeeteeseeeeveesseessseesseesssesseesssessseessessssesnsenns 19
CHAPTER 4
BILL DISPENSER 1
SUMMARY ...ttt ettt st et st sae s s e e et e e e enee e eeee 1
GENERAL INFORMATION.c.octutuiaintetieeseensessesseeseesees e s st sse s sssssssssse e sseseen 5
[T2 031 8 SRR R 5
Bill Dispenser Class Dia@ram..................ccccoecveecierenieeencneennen 6
MOAEL.............ooooeieiiieieeee e 7
Bill Dispenser Sequence Diagramccccoevveeeeenenannn. 9
Bill Dispenser State Diagramcccceveeeeenceeenceeainnannne, 10
Device SHAVINGccccccevoiiiiiiiiiiiiieeee e 10
PROPERTIES (UML ATTRIBUTES) ...eeeuveetietieeieeieessreeseessseeseesseesseesseesssesssesssnes 11
METHODS (UML OPERATIONS)cviuiiiiiiiiiniiiiieiiieie s 16
EVENTS (UML INTERFACES) ...uvteiutiestieneteeteenieesreesseessaeesseesssesseesssesssesssesssessseens 19
CHAPTER S
BIOMETRICS 1
SUMMARY ...ttt ettt st et st sae s s ee e e et eae e aeeneeaeeee 1
General INformationcoeeuiiieieiieee et 5
CAPADBIITLIES ... 5
Biometrics Class Diagramccccoccevveeeinocniioennienennen, 7
MOdel...........ooooiiiiieee e 8
Device SRHAVINGcc..ooeveiiiiiiee e 9
Biometrics Sequence Diagramscccccocevceeviecnicennennne. 10
Biometrics State Diagramcccceevveieccieniiianeeeeeen, 13
PROPERTIES (UML ATTRIBUTES) ..cccteetiertieeieesieesreeteesiseesseesseesseesseesssessseessnens 14
Methods (UML OPErations)cceeruerueeruertienienieeieneeeie st eneeseeeeeseeeeeeeeseeeeeneenes 21
Events (UML INtEIfaces)c.covieiiieiieeiieieeeie ettt ae e s 27
CHAPTER 6
BUMP BAR 1
SUMIMATY .ottt 1
GENERAL INFORMATION.c.ocuutuiaentntieeseinsesessse e ssessesses s s ssssssessse e ssessen 5
[T2 031 8 RSP S 5
Bump Bar Class Dia@ramccceeeveeeceeeeceeenieeesieeennnn 6
MOAEL.............ooooeieiieeeeeee e 7
Input —Bump Bar.........ccoooieiiiiiiie e 8
OULPUL — TONEC....eiiieiiiieeeiiee e 9

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Xii Table of Contents
Device SHAVINGc...oooveiiiiiiee e 9
Bump Bar State Diagramcccccccoeeueeeeiiieeeiiiiieeeiiieeen, 10

PROPERTIES (UML ATTRIBUTES) ...eeeuveetiertieeieeieensreeseessseeseenseesseesseesssesssesssnens 11
METHODS (UML OPERATIONS)vteeuieerieireeueesteessreeseessseesseenseesssesssessssesssesssnes 17
EVENTS (UML INTERFACES) ...uvteittiestiereteeteeneesreesseessseessaesseesseesssesssesssesssessseens 22
CHAPTER 7
CASH CHANGER 1
STUMMARY ...ttt sttt ettt sttt ebt et sttt s bt bt set et eae et sbe e et ebeenaeeae 1
GENERAL INFORMATION.....ccutiiuiiuiiniietieieeteetenieeeteteeenesieeeneteeesesaeensesaeennesaeenaenaees 5
[0 T2 03 1 18 Tt SRS 5
Cash Changer Class Diagramcccoccceuvvevcieeceaneenieannen. 6
MOdel..............ooooeeiiiaie e 7
Cash Changer Sequence Diagramccccccocueveevennenne. 11
Cash Changer State Diagramccccccoeveeeveeeeeneeannannnn. 12
Device SHAVINGc..oooeiiieiieeeeee e 12
PROPERTIES (UML ATTRIBUTES) ...eeouteiuiieiienieeieenireeieesiteeeeeieesseesieesneesnseesaeens 13
METHODS (UML OPERATIONS) ...vteiiiiniiniiniententententeteteneeneeseeseesessessesseseessessenee 25
EVENTS (UML INTERFACES)eettetietierteeeieeeeeensesseensesseessesseensesssensesssensesseensenses 33
CHAPTER 8
CASH DRAWER 1
STUMMARY ...eoutiiiteniiitete sttt sttt ettt st et eaee bt satesaesusenbesasenbeeanenteeaeeneeneenneeae 1
GENERAL INFORMATION. ...cuutiiiiiiitieiieniteniteete ettt eateesieesite e bt esaeeesbeesaeesabeesanesaneenne 4
CaAPADIIILICS ...e.vvevieeieieeiie ettt ettt et e e seeeae e e beesee b e essebeesaeseessenseenes 4
Cash Drawer Class Diagram...................ccccoceevenvcniiencncenennns 4
Cash Drawer Sequence Diagram.................cccccoecueeeianeenienannnn. 5
Device SHAVINGoooveeiiiiieiie e 6
PROPERTIES (UML ATTRIBUTES) ...eeeuteeuteeiieeieenieeeieenieesiteesieesieeenseesinesnseesanesseenns 7
METHODS (UML OPERATIONS)cuteuiriiniiniintintentenienteientententesteseeseesessessessessessenaens 9
EVENTS (UML INTERFACES) ...uvtiiutieiteniteeteenitesteesteessteesseesssesnseesssesssessseesssesnseens 10
CHAPTER 9
CAT - CREDIT AUTHORIZATION TERMINAL 1
STUMMARY ...eoutiiitentinitete sttt st ettt ettt et eaee bt satesaesusebesasenaeeanesteeaeenneeneenneeae 1
GENERAL INFORMATION. ...cuutiritiitteniienttenite et ettt eateesieesateesbeenateesbeesmeesareesanesaneenne 5
DeSCrIDLION Of tEFMIS ..o 5
[0 T2 03 1 8 S STRRST 6
CAT Class DiG@FAmcccooeeueeeeeeaiieiieeieeeeee e 8
MOdel...........c...oooooeiieeie e 9
Device SHAVINGccccccivoiiiiiiiiiiiieiee e 13
CAT Sequence Diagram................cccceevceeeiceieniieaiiieeieeeeeeene, 14
CAT State DiA@Iramcccoueeeeeeesciieeiieeeiieeeiee e 15
PROPERTIES (UML ATTRIBUTES) ...eeeuteeuiieiieeieeieesireeieesireeseeseesseesseesssesnseessnes 16
METHODS (UML OPERATIONS)eeuttritiniieitiieetenieeitenieetenieseneteseneniesseesesseenaeenee 33
EVENTS (UML INTERFACES) ...uvteiutieiteniteeteenieesteenteessteesseesseesnseesssesssessseesssesnseens 43
CHAPTER 10
CHECK SCANNER 1

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents xiii
SUMMARY ...uiiiiiiiiiiiniietiee sttt ettt s st s sttt et ae s 1
GENERAL INFORMATION......ociiuiiiiiiiiiiiiiiiiiii sttt sttt s 5

CaPADIIILICS ...ve ettt et e reestee st esteeesae e taeeaeenbeeenbeebee e 5
Check Scanner Class Diagramccccccveveienieaieanienannnnn. 6
MOdEL............oooeeeiieee et 7
Device SHAVINGccccccoooviiiiiiiiiiieeee e 10
Check Scanner Sequence Diagram..................cccccoeevveveeeeenane.. 11
Check Scanner State Diagramccceeeeveeceeenceeenenanne, 12
PROPERTIES (UML ATTRIBUTES) ...eeovteeutieiienieeieesiteeieesiteeeeeieesseesseesieesnveesaeens 13
METHODS (UML OPERATIONS)eeutieuiestieereeieeesseesessesnsessesssessesssensesssensesssessennes 28
EVENTS (UML INTERFACES)eevvetietiesteeeteeeseeensessaesesssesesseensesssensesssensesseensenses 37
CHAPTER 11
COIN ACCEPTOR 1
SUMMARY ..ottt s st 1
GENERAL INFORMATION.cuiiiiiiiiiiiieiieiiete sttt s e e s sae e 5
CaAPADIIILICSvvevieeieieeeiecieeie ettt et ete e e seeeae s e e beete e s e esseteesaeseessenseens 5
Coin Acceptor Class Diagramccccoceeecieciniienencencennns 6
MO L. 7
Coin Acceptor Sequence Diagramccceeeeeeenceeencenenne.. 8
Coin Acceptor State Diagramcccccoceeeievciiniioniicnicannnen. 9
Device SHAVINGc..cccoveiiiiiiiiiieeeee e 9
PROPERTIES (UML ATTRIBUTES) ...eeeuveeuiieitieereeieesereereeseseeseeseesseesseesssessseessnes 10
METHODS (UML OPERATIONS)uvieeuieeiriestieeteesteesereeseeseseeseesseesseessessssessseessnes 15
EVENTS (UML INTERFACES) ...uviiittiesteesieeeteeseeeeveesseessseesseesssessessssessseessessssesssenns 19
CHAPTER 12
COIN DISPENSER 1
SUMIMATY .ot s 1
GENERAL INFORMATION.......ccutiuiiuieiieuiniiniintenttetetestesteteseeeeenneseeneereesesuesaessesuenaens 4
CAPADIIILIES ... 4
Coin Dispenser Class Diagram.................cccoevcveeeveesceeenceneennnnn 5
Coin Dispenser Sequence Diagramcccccccovveeienccnncen. 6
Coin Dispenser State Diagramccccoeeceeeeceenieencneannnen. 7
MOdEL............oooeeeeeeie e s 8
Device SHAVINGc.cccoviiviiiiiiiiiiite e 8
PROPERTIES (UML ATTRIBUTES) ...eeeuvietierireeieesireereesseesreesseessseesseesssessseessessseenes 9
METHODS (UML OPERATIONS)vteeuieeiierireeueesteessreeseessseeseenseesssessseessseenseessees 10
EVENTS (UML INTERFACES) ...uvteiutiestiesireeteeneesreesseesseessaessaesseesssesssesssesssessseens 12
CHAPTER 13
ELECTRONIC JOURNAL 1
SUMMARY ...ttt ettt et et st sae s s a e et e e e e enee e eeee 1
General INformationcoeeouiiieieiieeee et 5
CaAPADBIITLIES ... 5
Electronic Journal Class Diagramc.ccccoveeecenveenennnn. 6
MO L. 7
Device SHAVINGooooviiiiiieiiieeee e 8

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Xiv Table of Contents
Electronic Journal Sequence Diagrams................cc.ccccveveueeanne... 9
Electronic Journal State Diagramccccccovevcuveennnnne. 11

PROPERTIES (UML ATTRIBUTES) . ccccteetiertteeteerteesreeseessneesseenseesssesssessssesssesssnes 12
Methods (UML OPETations)ccceeeeeeveereeniienieeseesreeseesseesseesseesseeseeseesnens 18
Events (UML INtETTACES) ...cviervieiiieiieeii ettt et eae e s 27
CHAPTER 14
ELECTRONIC VALUE READER / WRITER 1
SUMMATY ..ttt e e eeeaaeeenaeees 1
GENERAL INFORMATION........couiiiiiiiiiiiiciteicitetc et 7
CAPABILILIES ... 7
Electronic Value R/ W Class Diagram...................cccoceveeeen... 10
MOdel............ooiiiiiiiii e 11
Life Cycle of Sub-Serviceccccccovvieviniiniiniiciiieceen 14
The Service With VariQtions..................ccccceceuveevcincenieseeneanns 15
The Connection Model of EVR/W Devices...........c....ccccovevuven... 16
Transaction Mode SUppOFt................ccoceviioinieiiiiicniieneen 17
Device SHAVINGc.ccccviviiiiiiiiiiee et 17
Electronic Value R / W Sequence Diagram 18
Electronic Value R / W State Diagram...................ccccccecueuueen.. 21
Error Model...............ccccoooiiiiiiiiiiiiiiieeceee e 22
PROPERTIES (UML ATTRIBUTES)eeutruiriiniiriintenientensereteneeneeneeneeneeneesessessessensenee 26
METHODS (UML OPERATIONS)uvieeuieeiriestieeteesteesereeseeseseeseesseesseessessssessseessnes 44
EVENTS (UML INTERFACES)eovtiuiriintintinienteneeteteeeneeeteieeneeressesie et ssesseseensensenne 79
CHAPTER 15
FISCAL PRINTER 1
SUMMARY ...ttt ettt et et st sae s st a e e e e eaeeneeneeaeeee 1
GENERAL INFORMATION. ..ottt 10
Fiscal Printer Class Diagram...............cccocoeveeeeveecieencrannennnn. 11
General ReqUirements.cccooevueeecieeeceeesieeeiee e, 12
Fiscal Printer Modes................cccccoeevciieeciieiiieeiiieeeiee e, 13
MOdeL...........oooiiiiie s 14
Error Model...............c.ccoooiiiiiiiiiiiiiiiiiiiiee 15
Release 1.8 Additional Model Clarifications 17
Fiscal Printer StAtes.............cccccuuoeiieviiieiiaiiieeee e 19
Fiscal Printer State Diagram...................cccceeeeveeeceenceeannnaanne, 21
Document PYININGccccceeioiiiiiiiiiieieeee e 22
Ordering of Fiscal Receipt Print Requestsc..cc.c........ 23
Fiscal Receipt LAYOULSccoovveeeecieeiiiieeiiieeie e, 25
Example of a Fiscal Receipt................cccccvvoveioeiiianianiaenane. 26
Totalizers and Fiscal Memory............cc.ccccoeeeveeceeeceaseaeeaeenne 27
COUNTOTS ...t 27
VAT TADIES ... 27
Receipt DUPLICATION................c.cccoveiiiiiiaiiieieeeeee e 27

Currency Amounts, Percentage Amounts, VAT Rates, and Quan-

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XV

LY ATOUNLS ...t 28
Currency CRANGEcccveevieeeecieeeieeeie e 28
Device SHAVINGc.ccccvvviiiiiiiiiii et 28
PROPERTIES (UML ATTRIBUTES) ...eeetteetieitieeveeieesereereeseseeseeseesseesseesssessseessnens 29
METHODS (UML OPERATIONS)c.viuiiiuiiimiieenieete e 66
EVENTS (UML INTERFACES)uvteitieitiesteeeteesteeseeeseessseesseessssesseesssesseesssessseenns 146
CHAPTER 16
GATE 1
SUMIMATY .ottt 1
GENERAL INFORMATION.couiiiiiiiiiiiiiiieiiieeic st 4
CAPABILITIES ...ttt s e 4
GATE CLASS DIAGRAM ..ottt e e 5
Gate Sequence Diagram...................cccccoeeevieinciiniiniianienicaneen, 6
DEVICE SHARING ..ottt sttt s e 7
PROPERTIES (UML ATTRIBUTES) ...eeevvietieitieeieesieeeveeseeessreesseessseessessssesseessessseees 8
METHODS (UML OPERATIONS)ccuiiiuiiiiiieiieeeiieeee et 9
EVENTS (UML INTERFACES) ...uviiitviesttesiieeteeeeeereesseessseesseesseseseesssesseessessssesnsenns 10
CHAPTER 17
HARD TOTALS 1
SUMIMATY .ot 1
GENERAL INFORMATION.c..toiaianiacenciseiaeise sttt 5
CAPADIIILIES ... 5
Hard Totals Class Diagram.................cccccocuevceeenceeenieeeieeenenn 6
Hard Totals Sequence Diagram..................cccccccvceviioinneenennnn. 7
MOdel...........ooooiiiiieee e 8
Device SHAVINGoooeiiieiiieeie e 10
PROPERTIES (UML ATTRIBUTES) ...eeuterutietienieeieeniteeieesiteeteeieesseesieesieesnveesaeens 11
METHODS (UML OPERATIONS)c.veuiiiuiiiniiinenireneseenesnenesnenesnenesneesneeeseeeneeene 13
EVENTS (UML INTERFACES) ...uvtiiutieiteniteeteenitesteesteessteesseesssesnseesssesssessseesssesnseens 23
CHAPTER 18
IMAGE SCANNER 1
SUMMATY .ottt et et e e eeaeees 1
GENERAL INFORMATION.coiiiiiiiiiiiieiteieete sttt st e e e s sae e 5
CAPADBIITLIES ... 5
Image Scanner Class Diagramccccoccvceeiioinniencnnenn. 6
Image Scanner Sequence Diagram Icccccccoevevvenenannne.. 7
Image Scanner Sequence Diagram 2c.ccccceeveveeeenennne.. 8
Image Scanner Sequence Diagram 3cccccccovvevcienccnanins 9
Image Scanner Sequence Diagram 4cccccocevevevevncnnanne. 10
MOdel............ooiiiiiiiiii e 11
Device SHAVINGcccccccvoiiiiiiiiiiiiiieee e 11
Image Scanner State Diagramcccoueeeeevccieenieeennanne, 12
PROPERTIES (UML ATTRIBUTES) ...eecuveetieitieeveesieesereereeseseeseeseesseesseesssessseessees 13
METHODS (UML OPERATIONS)c.viuiiiuiiiiiieemieeteseee e 21
EVENTS (UML INTERFACES) ...uviiittiesteeseieeteeseeeereesseessveesseesssesseesssessseessessssesssenss 22

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Xvi Table of Contents
CHAPTER 19
ITEM DISPENSER 1
SUMMATY .ottt e e e e s e e e e etreeeesareee s 1
GENERAL INFORMATION.....ccuutitieiieiiettetteteaite st etteteeete st estenteentesaeeneesaeenaesaeenaesneas 4
CAPABILITIES ...cottiiinieeiteteeitenie ettt eete st et saeesaesatesaesueesbesaeenesunenbesaeenaeeneennesae 4
ITEM DISPENSER CLASS DIAGRAM.....ccutiiiiiiieeiieniieeieenieesiieenieesneeieesneeeee e 5
Item Dispenser Sequence Diagram................c.cccccoovevcueencencnienn 6
IMODEL ...ttt sttt sttt et ettt st st st st e sb e sbe et sae e 7
DEVICE SHARING ..ottt steete st et st etesie ettt sie et eseenaesae 7
Item Dispenser State Diagramccccoceevcveniiniiencncnancn. 7
PROPERTIES (UML ATTRIBUTES) ...eecvietieriteeieenieeereenseesreesseessseesseesseessesssessseenes 8
METHODS (UML OPERATIONS)vteeuieeiieireereeieessreeseessseeseesseesseessessssessseessees 10
EVENTS (UML INTERFACES) ...uvteittiestiereteeteeneesreesseessseessaesseesseesssesssesssesssessseens 12
CHAPTER 20
KEYLOCK 1
1010001 0T 1) RS 1
GENERAL INFORMATION.ccuttiuiiiiniietieieeteetenieeaeenteeenesieeeseteeesesaeennesaeennesaeenaenaees 4
CAPABILITIEStteetteeettteesteeesteeessteeessseessseeassseeaassasessssesansseesnssessssseensnsesennsees 4
KEYLOCK CLASS DIAGRAM......couiiiiiiiiieiinieeientente sttt sae e e 4
Keylock Sequence Diagramcccococvevecvevciineniieenneannnn. 5
11 (0] 1) 2} S USSR 6
DEVICE SHARINGcooutiitiiiriienieeteiteteett et steete st et st esne st ennestnennesseenaeeneenneeae 6
PROPERTIES (UML ATTRIBUTES) ...eeevvietieitieeieesieeeveeseeessreesseessseessessssesseessessseees 7
METHODS (UML OPERATIONS)uvtieuveeviesireereesireereesseessreesseessseessessssesssesssessseenns 9
EVENTS (UML INTERFACES) ...uviiittiestiesiteeteeseeeereesseessseesseesseseseesssessseessessssesssenss 10
CHAPTER 21
LIGHTS 1
SUMIMATY .ot s 1
GENERAL INFORMATION.ccuutitiemiiniiettetteteeite st etteteeite st enteteentesaeeeesaeenaesaeeneesneas 4
CAPABILITIES ...cottitinieiiteieeitenie et eete st estesteesaesatesaesueesnesaeesesusensesaeenaeeneenneeae 4
LIGHTS CLASS DIAGRAM....c..cotiiiiiiinitiiietenieetenie ettt 4
Lights Sequence Diagramc.cccoccevoeeeinocniioineenennenn, 5
DEVICE SHARINGcoutiuieiiiiieieeteiteteste et steetesitesaesueestesieennesunensesaeenaeeneennesae 6
PROPERTIES (UML ATTRIBUTES) ...eeeuvietieitveeieesieeeveeseeeeereesseessseessessssesseessessseenes 7
METHODS (UML OPERATIONS)itteteetieeeaiteseeeneeteentesseessesseeneesneensesseeneesneessesneas 9
EVENTS (UML INTERFACES) ...uvtiittiestiesiieeteesieeereesseessseesseesssssseesssessseessessssesssenns 11
CHAPTER 22
LINE DISPLAY 1
SUMIMATY .ottt 1
GENERAL INFORMATION......coutiuieiieuietietiettsteeteetestestesteste e neeneeneeneeneeseesesseesesseseennens 5
CAPADIIILIES ... 5
Line Display Class Dia@ram..............cccccccccveveevenieeenieeenineennnn 6
Line Display Sequence Diagram...................ccccccccceuvveinveencnnen. 7
MOAEL..............ooeoeieeieeieeeee e 8
Display MOAes..............ccccoccueeeiiiiiiiiiiiieeeiie e 9

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents Xvii

Data Characters and Escape Sequences................ccccccoeueuennn... 10
Device SHAVINGcoooveeeiieiiieeee e 10
PROPERTIES (UML ATTRIBUTES) ...eeeuveetiertieeieeieensreeseessseeseenseesseesseesssesssesssnens 11
METHODS (UML OPERATIONS)vteeuieerieireeueesteessreeseessseesseenseesssesssessssesssesssnes 32
EVENTS (UML INTERFACES) ...uvteittiestiereteeteeneesreesseessseessaesseesseesssesssesssesssessseens 47
CHAPTER 23
MICR - MAGNETIC INK CHARACTER RECOGNITION READER.............. 1
SUMMATY ..ttt e e eeeaaeeenaeees 1
GENERAL INFORMATION......ooutiiiiiiiiiiiiiiiiiiiiiniitiie sttt ene s 4
CAPABILILIES ... 4
MICR Class Dia@ram................ccccccueieuieeiesieaieeiieeieeeieeeeiens 5
MICR Sequence Diagram.................cccccueeeceeesieeeiieenieeneeennnnns 6
MOAEL.............ooooeeeiieeieeee e 7
Device SHAVINGc..ccoveiiiiiiiiiieeeeee e 8
MICR Character SUbSHIULION.cc.ceeeeeeecieeaiieeeiieeeieeeeenns 9
PROPERTIES (UML ATTRIBUTES) ...eeouteiuiieiienieeieenireeieesiteeeeeieesseesieesneesnseesaeens 11
METHODS (UML OPERATIONS)c.veuiiiuiiiniiineninerennesesnenesnesenesesneesnesee e eeneseene 16
EVENTS (UML INTERFACES)eettetietierteeeieeeeeensesseensesseessesseensesssensesssensesseensenses 20
CHAPTER 24
MOTION SENSOR 1
SUMMATY .ottt ettt e s e eaeees 1
GENERAL INFORMATION.cceiiiiiiiiiiiieiteie ettt e e s sae e 4
CaAPADBIITLIES ... 4
Motion Sensor Class Diagram................c.cccceecevccniioinveencnnenn. 4
MO L. 5
Device SRHAVINGc..oeeveiiiiieee e 5
Motion Sensor Sequence Diagram................ccccocceevveveeencuennncen. 6
Motion Sensor State Diagramccccceeeceeevceeenceeeieeennnn 7
PROPERTIES (UML ATTRIBUTES) ...eeeuvietieitieereesieeereeseeeesreesseessseessesssseesesssessseenes 8
METHODS (UML OPERATIONS)cuteutruiniinuirtintenieniensentenseneenteneeneeneesessessessessessensens 9
EVENTS (UML INTERFACES) ...uvtiittieetiesieeeteeseeereesseessseesseessssssessssessseessessssesssenss 10
CHAPTER 25
MSR - MAGNETIC STRIPE READER 1
SUMMARY ...ttt ettt st ettt e ae s a e et eae e e enee e eee 1
GENERAL INFORMATION.ctoiaiaianceneeneioeise st 5
[T2 031 18 SRR ST 5
Clarifications for JIS-II Data Handlingcccceeevvevueennnennne. 5
MSR Class Diagram................ccccccccuveniioinieniainieeeeeneee 6
Device Behavior Model..................c.ccccoocveviiiiiiiiiaiiaiieieenn 7
Input —MISR ..o 7
Output — MSR ..o 7
MSR Encryption and Authentication — Updated in Release 1.148
Encryption - MSR......coiiiiieeeeeeee e 8
Authentication - MSR.........ccooiiiiiiieieceee e 10

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

xviii Table of Contents
MSR Sequence Diagram.................cccoceveeeceeeeiieeniieenieaneneenn, 11
MSR Device Authentication Sequence Diagram........................ 12
MSR State Dia@ramscccceeveeieieeeiiieeiiieee e 13
PROPERTIES (UML ATTRIBUTES) ...eeetteetieitieeveeieesereereeseseeseeseesseesseesssessseessnens 15
METHODS (UML OPERATIONS)uvieetieeeiieitieereesteessreeteesesesseesssesseessessssessseessnes 39
EVENTS (UML INTERFACES) ..uvtiittiesteesieeeteeeeeeeveesseessveesseessssssessssessseessesssseessenss 44
CHAPTER 26
PIN PAD 1
SUMMARY ...ttt ettt st et sae s s e e et eae e e ene e aeeaee 1
GENERAL INFORMATION.ctuiaianianceneineiseise s sttt 5
[T2 031 18 SRS 5
PIN Pad Class Dia@ram.................cccocccueeeeeeeieeeaiieeiieesieeennns 6
PIN Pad Sequence Diagramccccocevivciniieninieencnnnn. 7
Feature Not SUpported...............cccccoeveeecieiieaiiiiieiiieeeee e 8
Note on Terminology.............cccccvevcueenieeesiiieiieeeiee e 8
MOAEL.............ooooeieiiieieeee e 9
Device SHAVINGc.ccccviviiiiiiiiiiee et 10
PIN Pad State Diagram..................cccoccveeeeeieceeeaiiienieeneeenn, 11
PROPERTIES (UML ATTRIBUTES) ...eeouterutieiierieeieesiteeieesiteeeeeieesteesieesieesnveesanens 12
METHODS (UML OPERATIONS)eeutieuiesiieeeetieiesseesaessesssessesssesesssensesssensesssensennes 23
EVENTS (UML INTERFACES)eettetietieteeeteeeetessesseensesssesesseessesseensesseensesseensenses 28
CHAPTER 27
POINT CARD READER / WRITER 1
SUMMARY ..ottt 1
General INfOrmationoo.eeiiiiriiiieieeee e 6
CAPADIIILIES ... 6
Point Card Reader Writer Class Diagram..................cc.ccuen.... 7
MOAEL.............ooooeieiiieieeee e 8
Input Modelccoooiiiiiiiieeie e 8
Output Model.......cc.ooviiiiiieiieiececece e 9
Card Insertion Diagrami..................cccocccucievinoinieiciniiencenene 10
Printing Capability.............c.ccooooveviiiiiiiiiiiiieieeeeee e 11
Cleaning Capabilitycc.ccooueveieeniieiiiiieieeeeeee e, 12
Initialization of Magnetic Stripe Datacccccccocevvennne. 12
Device SHAVINGc.ccccvvvieiiiiiieii et 12
Data Characters and Escape Sequences................cc.cccoeveuennn... 13
Point Card Reader Writer Sequence Diagram 15
Point Card Reader Writer State Diagram.....................c............ 16
PROPERTIES (UML ATTRIBUTES).....c.erttrtimiiriinteniententeteteneeneeeeeeneeneesesieseessensenee 17
Methods (UML OPEIrations)cceevuerueerueruienienieeieneeeie st eneeseeeee e eeeeeeneeeeeneenes 38
Events (UML INterfaces)cccoeierieiirieiene e 47
CHAPTER 28
POS KEYBOARD 1
SUMIMATY .ot s 1

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents Xxix
GENERAL INFORMATION.coiiiiiiiiiiiieiieie ettt s s 4
CaAPADBIITLIES ... 4
POS Keyboard Class Diagramccccceeeeeveeeenceeencnneannnn. 4
POS Keyboard Sequence Diagramccccceeveeeevennnan.n. 5
MOdel...........oooeiiiiiiiii e 6
Keyboard Translationcccceeiieiieniienieniieecc e 6
Device SHAVINGccoveiiiiiiiiiieeeee e 6
PROPERTIES (UML ATTRIBUTES) ...eeeuvieiieiiieeieesieeeveeseeeereesseessseessesssnessesssessseenes 7
EVENTS (UML INTERFACES) ...uvtiitiestieeiiestieeeeenteesereeseessseesseesssesssesssesssseesssesseenns 9
CHAPTER 29
POS POWER 1
SUMMARY ...ttt ettt st et st sae s s e e et e e e enee e eeee 1
GENERAL INFORMATION.couiiiiiiiiiiiiiiiciiieeic st 4
[T2 031 8 SRR R 4
DEVICE SNATINGooviieiiiieiiecie ettt ste e s essesteeaeete s e eseens 4
IMOEI ...ttt ettt ettt n et ettt enes 5
POSPower Class Diagram..................ccccceeeeeeeeeeieeaieaieseeenens 6
POSPower Sequence Diagram..................ccceeeueevceeenceeanenannnnnn 7
POSPower Standby Sequence Diagram.....................c.ccccccocueu.... 8
POSPower State Diagram..................ccccoeeveeeeeianieeeiiesieeeeen 9
POSPower PowerState Diagram - Part I..............ccccueeeunennn... 10
POSPower PowerState Diagram - Part 2..............ccccccceeeen... 11
POSPower PowerState Diagram - Part 3.............ccccoeeeveeeeunene. 12
POSPower State Chart Diagram for Fan and Temperature......13
POSPower Battery State Diagram.................ccccoccevcvenciennennne. 14
POSPower Power Transitions State Diagram........................... 15
PROPERTIES (UML ATTRIBUTES)eeutruiriiniiriintenientensereteneeneeneeneeneeneesessessessensenee 16
METHODS (UML OPERATIONS)cvieeuieeiieitieereesteessreeseeseseeseessasssseesseesssessseessnens 23
EVENTS (UML INTERFACES)......cotiuiuiieiiieiiniiieieeeiesee e 26
CHAPTER 30
POS PRINTER 1
SUMMARY ...ttt ettt st et st sae s st a e et eae e e e eneeaeeeee 1
GENERAL INFORMATION.ccuiiiiiiiiiiiiiieii it 9
[T2 031 8 R PRRS 9
POS Printer Class Diagram................cccccccveeceeeenceeenceeaneeannne, 10
POS Printer Class Diagram Updatesccccccccuveeninncn.. 11
MOdeL...........ooiiiiiiee e 12
Device SHAVINGc..oooveeieiieee e 18
POS Printer State Diagram..................ccccocovevvienciinecnicncnennne. 19
Page Mode Printing State Diagram..................c.ccccccevcevaeneene.. 20
“Both sides printing” sequence Diagram...................ccc...c....... 21
Page Mode printing sequence Diagram...................cccccoeen... 22
Data Characters and Escape Sequences..................cc..ccoaue.... 23
POS Printer State Diagrams (Low Level)...............cccccoceue...... 30

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

XX Table of Contents
PROPERTIES (UML ATTRIBUTES) ...eeetteetieitieeveeieesereereeseseeseeseesseesseesssessseessnens 35
METHODS (UML OPERATIONS)uvieetieeeiieitieereesteessreeteesesesseesssesseessessssessseessnes 83
EVENTS (UML INTERFACES)vteitieitiesteesteesteesreereessseesseessseaseesssesseesssessseenns 124

CHAPTER 31
REMOTE ORDER DISPLAY 1
SUMIMATY .ottt 1
GENERAL INFORMATION.....ccuutitieiieiiettetteteaite st etteteeete st estenteentesaeeneesaeenaesaeenaesneas 6
[T2 031 18 RSP S 6
Remote Order Display Class Diagramcccccceuveveeveannn... 7
MoOdel...............oooooeeiai e, 8
Device SHAVINGc.ccccveiiiiiiiiiiee et 12
PROPERTIES (UML ATTRIBUTES) ..veeetveetieitieereeieessreereeseseeseeseesseesseesssessseessnes 13
METHODS (UML OPERATIONS)uvieetieeiieitieeteeieesereereeseseeseesseesseessessssessseesseens 24
EVENTS (UML INTERFACES) ..uvtiiuvieeteesiieeteeseeeereesseessseesseesssessseesssessseessessssesnsenns 41
CHAPTER 32
RFID SCANNER 1
STUMMARY ...coutiiitentiniteie sttt et ettt ettt e st eaeetesatesaeeusenbesesenaeeanenteeaeeneeneenneeae 1
General INformationeecueiieieiieieieeee ettt e 5
CAPABILILIES ... 5
RFID Scanner Class Diagramcccccceeveeeeeneeeceeanieenans 6
MOdel..............oooooeeiieaee e 7
INPUL. .. e 7
OULPUL ..ttt s es 8
RFID Scanner Sequence Diagrams.................ccccoeecueeeceeeeeceneennn. 9
RFID Scanner State Diagramc.ccccccooveevceeenivinccenncnnne. 12
Device SHAVINGc.ccccviviiiiiiiieie et 12
PROPERTIES (UML ATTRIBUTES) ..cccteetiertieeteesteesereereeseseeseesseessseessessssesssesssnes 13
Methods (UML OPEIations)ceeevuerueeruenuienienieeieneeeee st eneeseeeeeseeeeeeeeseeeeeneenes 17
Events (UML INtEIfaces)cueevvieiiieiieeiieiieeie ettt ae e s 24
CHAPTER 33
SCALE 1
SUMIMATY .ot s 1
GENERAL INFORMATION.cvovitetereteteresasesesesesenans 5
CAPADIIILIES ... 5
Changes in Release 1.14........cccoovieviieiieiiieieceeeee e, 6
Scale Class Diagram..................cccccocuevieocniieniioiniiiineeneeee 7
Scale Sequence Diagram..................ccccccoecveveeeeciaiieeniiaieeene 8
MOdel..........c...ooooeeiieaeie e 9
Device SHAVINGcc..ccoviiiiiiiiiiiiieiee e 9
PROPERTIES (UML ATTRIBUTES) ...eeeuveetieriieeieeitesereeeeeseseesseenseesseesseesssesssesssees 10
METHODS (UML OPERATIONS)ceutieuientieutitteienteeneentesneesteseeeseeseentesneensesseenaeenee 20
EVENTS (UML INTERFACES) ...uvteiutiestieneteeteenieesreesseessaeesseesssesseesssesssesssesssessseens 35
CHAPTER 34
SCANNER (BAR CODE READER) 1
SUMMATY .ot e e et e e e e e s e neeeeeenareeeas 1

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXi

GENERAL INFORMATION.coiiiiiiiiiiiieiieie ettt s s 4
CaAPADBIITLIES ... 4
Scanner Class Diagramcccccccueeveeeeiieeeiiieesiieenieeenieens 4
Scanner Sequence DiA@ramcccccceeveeieiieeiiieeniieeneaen, 5
MOdeL............oooiiiiiiii e 6
Device SHAVINGc..ccoviiviiiiiiiiiieite e 6

PROPERTIES (UML ATTRIBUTES) ...eeeuvietieriieeieenieeereeneeesreesseessseesseesseessesssessseenns 7

EVENTS (UML INTERFACES) ...uvteitiestteseeeeteenieesreesseensseesseesseesseesssesssesssesssesnseens 14

CHAPTER 35
SIGNATURE CAPTURE 1

SUMMATY ...t e e ee e e eaeees 1

GENERAL INFORMATION......ooutiiiiiiiiiiiiiiiiiiiiiniitiie sttt ene s 4
CAPABILILIES ...t 4
Signature Capture Class Diagram.................cccccocceevcveecrannnanne.. 5
Signature Capture Sequence Diagram.................ccccoccveveveennnnnn. 6
MOAEL.............ooooeieiieeieeee e 7
Device SHAVINGc.cccoveviiiiiiiiieiieee e 8

PROPERTIES (UML ATTRIBUTES) ...eeeuvietieiireereesieeeveeseeeereesseessseessessssessesssessseenes 9

METHODS (UML OPERATIONS)uvieeuieeeiieitieereesieesereeseeseseeseesseesseessessssessseessnens 13

EVENTS (UML INTERFACES) ...uviiitviesttesiieeteeeeeereesseessseesseesseseseesssesseessessssesnsenns 15

CHAPTER 36
SMART CARD READER / WRITER 1

SUMMARY ..ottt 1

General INformationc.occviriririnineneiciee e 5
CAPABILILIES ... 5
Smart Card Reader / Writer Class Diagram................................ 6
MOdeL............coeiiiiiiii e 7
Card Insertion Diagram..................cccoccencieviniinieeciniencnene 10
Device SHAVINGc.ccccvivieiiiiiiiie e 11
Data Transfer Modescccocveveeviiiiienieaiieeieeeeeeee 12
Smart Card Reader / Writer Sequence Diagram 13
Smart Card Reader / Writer State Diagram............................... 14

PROPERTIES (UML ATTRIBUTES) ..cccteetiertieeieesieesreeteesiseesseesseesseesseesssessseessnens 15

Methods (UML OPErations)cceeruerueeruertienienieeieneeeie st eneeseeeeeseeeeeeeeseeeeeneenes 21

Events (UML INtEIfaces)c.covieiiieiieeiieieeeie ettt ae e s 26

CHAPTER 37
TONE INDICATOR 1

SUMIMATY .ottt 1

GENERAL INFORMATION.couiiiiiiiiiiiiiiiiciiieic et 4
CAPADIIILIES ... 4
Tone Indicator Class Diagram.................ccccccoueeeveeeeeeeenieeannnann. 4
Tone Indicator Sequence Diagramccccccovveeincuenennnnn. 5
MOdel...........oooeiiiieee e 6
Device SHAVINGooooeeiiiieiiii e 8

PROPERTIES (UML ATTRIBUTES) ...eeeuveeiieniieeieenieeeteenieesnteesseessseesseesssesseessessseenes 9

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Xxii Table of Contents

METHODS (UML OPERATIONS)uvteetieeiieitieereesieesereereeseseeseessaessseessessssessseessees 14
EVENTS (UML INTERFACES) ...uvtiiutiesteesiteeteeseeeereesseessseesseesssssseesssesseessessssesssenns 16
APPENDIX A

OLE for Retail POS — OPOS Implementation Referencecccccevierervnnennnnnn. 1
WHAT IS “OLE FOR RETAIL POS?”....c.ooiiiiiiiiiiiiicce 1
Who Should Read This Sectionccceecueeiienieenieniieiieeieeeeeee. 2
GENERAL OLE FOR RETAIL POS CONTROL MODELccccoouiuiiiiiiiiiiiiiieceenans 2
OPOS DefiNitioNs ...cc.eevveerieriiniieienierieeieseeie ettt 3
DEViICe CIASScc.ueeiiiiiiiiiiiieet et 3
Control Object oF CO...........cccceoiioiiiiiiiiiiiieiiieiee e 3
Service Object OF SOcccoovoeeiieiaiieiiieeeeieee e 3
OPOS Control or CORtrolcccccceeeeceeeeiiieiiieeeiieeseeenn 3
How an Application Uses an OPOS Controlccceeeevienicnennnene. 4
When Methods and Properties May Be Accessedccceeveennnneee. 5
MEIROAS ... 5
Properties ..o 5
Status, Result Code, and State Modelcccoovvemvvviieiiiiiiiiiiieeene, 7
Status Model.................coccovviiiiiiiiiiiiiiiiiece e 8
Result Code Modelccccocoueeveeiieiiiaiiiiaciieecieeeeeen 8
State Model................c.cccooooiiiiiiiiiiiiiieiee e 9
Device Sharing Modelcocvevieriiiiieiiieieeceeeie e 10
Exclusive-Use DeViCesccccocvueeeceeeeiiieiiieeeiieeeeeeeieeen, 10
Sharable DeviCes.............c.cccuouveeiieeiiiiieeieeeeee e 10
EVENES oot 11
OPOS Event Registration Sequence Diagram........................... 13
INPUt MOdel......eiiiiieiiee e 14
OUtPUt MOdel ...t 16
Synchronous QUIPULc.cccceeieciiiieniiienieieee e, 16
ASYNChronous QUIDULc..ccoueeereiieeiieieeie e, 16
Device Power Reporting Model..........cccoeevievieiiiienieeiiciecieeee 17
MOAEL.............oooveeeeiieeieeeee e 17
Propertios..........cccooooieiiiiiiiiiie e 18
Power Reporting Requirements for DeviceEnabled 19
Device Information Reporting Model.............ccccoviiiiiniiiiinnenne. 20
Statistics Reporting Properties and Methods............................. 20
Update Firmware Device Model...........cccoecvievieiiienieniieiiecieeiene 21
OPOS Component DesCriptions...........cccueveevuereenreeeeneeneneeneenens 22
Section 1: OPOS Data TYPeS ...cceevvieiieriieiieeieeiieeee et 23
Section 2: OPOS Interface Descriptions...........cccceeeevverveecieeninennnen. 25
OPOS COMMON PROPERTIES, METHODS, AND EVENTScccovvviiiiiiiriieeeeeineen. 26
COMMON PROPERTIES ..ottt sttt ettt 26
COMMON METHODS ..ottt sttt 27
OPOS Programmatic Names.........ccccccceeverernenieneniieneeneneeneenens 28
PIrOPEITIES ..eovvieiieeiieiie ettt 29

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents Xxiii
IMEETHODS.....cttteee ettt e e ettt e e e ettt e e e e e tta e e e e e eeataeeeeeeassaeeeeesaaseeaeeeassaeeeas 46
EVENTS L. e e et 58
Peripheral Interfacescoocuveeviiiiiiieiieeeeeeeeee e 62
OPOS: Cash DIawerccceeviiiiiiiieiieeieeeeee e 63

Visual Basic Command EXamples.ccccccovveevvaneennnnne. 63
Initializing Properties, Methods, and Events............................. 63
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVENLS ...c..oiieieeeee et 63
Cash Drawer Operations Properties and Methods.................... 64
Terminating Methodscccoooeuvoiaioiiiiiiiiiiieeeee e 64
Visual C++ Command Examples..................ccccccovceeevvannennnnne. 65
Initializing Properties, Methods, and Events............................. 65
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVENLS ...c..oeieieeeee et 65
Cash Drawer Operations Properties and Methods.................... 66
Terminating Methodsccccocovvoieioiiiiiiiiiiieeeeeeee 66
OPOS: MICR ..ottt 67
Visual Basic Command Examples................ccc.cccevevueenceeancunann. 67
Initializing Properties, Methods, and Events 67
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVENLS ... 67
MICR Operations Properties, Methods, and Events................. 68
Terminating Methodscccooceevieviiieiiaiieeeeeie e 69
Visual C++ Command Examples................cccocevevvivencvneninnnn. 70
Initializing Properties, Methods, and Events 70
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVENLS ..ot 70
MICR Operations Properties, Methods, and Events................. 71
Terminating Methodscccooceevieiciieieiiieeeeeie e 72
Section 3: OPOS Registry Usage........ccecvverieiiieniieeieeiieeieeieeene. 73
Service Object Root Registry Keycoceevveviininicneencnnne. 73
Device Class KeYS.....ccciviieriieiienieeiieeieeieeee et 73
Device Name Keys and Valuescccccceeevieviieiieniienieennn. 74
Logical Device Name Values.........cccccoceevveveenienienenicneenen. 74
Service Provider Root Registry Keyccccvevieeiieniennnne. 75
EXaMPIE..cceiiiiiiieieeeeee e 75
Section 4: OPOS Application Header Filescccccoveeiinenicncn. 77
Section 5: Technical Detailscccoecveveivierieneeienienecienieceee 78
System Strings (BSTR)........cooovveeieeiiieeeiie e 78
System String CharacteristiCs........coevvererruereeneereeneeniennenn 78
System String USage........cccuvevuieriieriieeiieiieeie et 78
System Strings and Binary Data...................ccccccvuveveveencunennn... 79
Mapping of CharacterSetcccuieeiecenienencinieeeeenae 80

Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

XXiv Table of Contents
81
Section 7: OPOS APG Change HiStorycccceevevieecieeniieeeieenee, 82
Release 1.01cccoooveeiiiiiiiiiiieiieeee e 82
Release 1.1cccooouiiiiiiiiiiiiiiiit e 83
Release 1.2ccccoeoveeieiiiiiieeee e 85
ReleASe 1.3 ...t 87
Release 1.4cccooviiiiiiiiiiiiei e 89
Release 1.5cccvieeiiiiiiiieii e 90
RELEASE 1.6 ... 92
Release 1.7cccooiiiiiiiiiiiieie i 93
Section 8: OPOS Control Programmer’s Guideccccceereeennne 94
Who Should Read This Section.................cc.cccocuevenieninoennann. 94
General OLE for Retail POS Control Model............................. 95
OPOS DEfinitionscc.cccuereiiiiiiiiiiiiiiniteeseee e 96
DEVICE ClaSS ..couviiiiiieiiiiiieieeiierie et 96
Control Object OF COoocvveeeiieiieeieeieeceeee e 96
Service Object oF SOcooiriiriiiiiriereceeeeeeeeeeeeee 96
OPOS Control or Control.........cccoceeveriinieninienieienieneeene 96
INterface OVervVIeWc.ccceeeueeeeecieeeieeieeeie e 98
MEIROMS ... 99
Open Method..........oooiieiiiiiieieeeee e 99
Close Method........ccoevuirieniiiierieeeeee e 99
Other Methodscooiiiiieiiiiiicee e 99
Properties..........cccoooiiiiiiiiiiiie e 100
String Propertiescccveeveeeiierieeiieeie et 100
LONG and BOOL Propertiescccceecvereenereeneenveniueneens 100
Other Property TYPES ..cccveeeiierieeieeiieeieeieeeee et 100
EVORNLS ..o 101
Architecture: Firing an Event.........cocccoooiiiiiiiniiiniene 101
Architectural Issue: Freezing Events by the Container 101
Architectural Feature: Freezing Events by the Application 102
Summary of Event Firingccoceoeviininiiniininineceee. 102
Control Object ReSponsibilitiescccccceveeeeiencenanenennnn. 103
MEthOAS ...t 103
PrOPerti€s....cccueeeiiiiiieie et 106
EVENTS (.o 107
Service Object Responsibilities and Implementation............... 111
MELhOAS ...t 111
PrOPeIti€s....cccvieeiiieiiecieeieeee et 118
EVENLS ..o 120
OPOS CPG Change HiStOTYcccccceeiiceiiiaiiiieniieneee 121
Release 1.01 ..o 121
Release 1.1 ..o 121

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXV
ReELEASE 1.2 i 122
ReElase 1.3 .eeeieiiiiiiiieeeee e 123
REIEASE L. 4. 124
ReElease 1.5 .. 124
REIEASE 1.0 .uuevviiiiiiiiieiiieeeee e 125
REICASE 1.7 e 125

Common Control ODJects..............cccueeceeeeceeeiiieeiiieeiieeeieens 126
Features........cccooviiiiiii, 126
Availability and Future............ccccoeeiiiiiiiiiiniiieieeiees 126

OPOS Internal Header Files.............cocovveiiiiiiiieeiiiiiininniaiinn, 127

APPENDIX B
Java for Retail POS — JavaPOS IMPLEMENTATION REFERENCE 1
WHAT IS JAVA FOR RETAIL POS?.....oiiiiiiiieeecee ettt 1
BENEFITS ...ttt ettt st es st 1
DEPENDENCIEScecutteitieetiesteeeteeteeateesseessseasseessesasseessesssseesseessseesssssssesssessssesssesses 2
RELATIONSHIP TO OPOS ...ttt sttt e teetee s veesaeessaeeaaesnneenns 2
WHO SHOULD READ THIS SECTIONccuviiiiieieeiiieeieeieesiieesieeneeeseeesseessseessnesnsennns 2
APPENAIX OVETVIEW ...evveiiieniieeiiieiieeieeiee et eieesteeaeesaeereesaeeenseees 3
Architectural OVErVIEWccovvvviiiieiiiieeeeeee e 3
ARCHITECTURAL COMPONENTSteriieiieeieeitesiteenieesiteesseesssesseesisesseesssesnseesseess 4
Additional Layers and APIScccceeviieniiiiiiiiieieieeeee 5
JavaPOS Development Environmentccceeveeveeniiennnnnne. 5
Device Behavior MOdEIS..........coovviiieiiuiiiiiiiiieeeeeee e 6
INTRODUCTION TO PROPERTIES, METHODS, AND EVENTS.....cccceiviiiiiiniiiiienieene 6
DEVICE INITIALIZATION AND FINALIZATION......c.0ttiiiiieeiiieeiieeeereeeeieeeeeveeesiveeens 7

TNIAlIZALION ... 7

Finalizationccccocoooeeiiiiieici e 7

SUMIATY ... 8

Device Sharing Modelc.cooiriiiiiiiniiniiiniceceeeeeeee 9
Exclusive-Use Devicesc...cccoveeeeeeieeeaeiieeeeeiieeeeeceeann 10
Sharable DeviCes...........ccccciiveeiiiiiiiiiiiiiiiiiieeeeeeeiieee e, 10
DAt TYPES weeevieiiiieeiee ettt s 11
EXCOPLIONSvieiieiiiieiiecie ettt ettt 12
ErrorCodeoooooviiiiiiiiiiiiieeeeii e 13
ErrorCodeExtendedcoooviiiiiiiiiiiiiiiiiiiiiiiiieee, 14
EVEILS ..t 15

Registering for EVERLSc.c..cocoeeieveeeceieiieeieeeeeieeie e 17

Event Deliverycccccuiviiviiiiiiiiiiiieee e 17

JavaPOS Event Registration Sequence Diagram....................... 18

Device Input Modelc.oooviiiiiiiiiiieeceeeeeee e 19
Error Handlingc..ccoooiiviioiiiiiieeeeeeee e 20
MiSCOIIANCOUS ... 21
Device Output MOdelScoocveveeiieiiieeiieeeeeee e 22
SYnchronous QUIPULc.cccceieeiiieniiienieiiee e, 22

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

XXVi Table of Contents
ASYNChrONOUS OQUIPULc..ooeeeeeeiieeeie e 22
Error HAnAIingccoooiiiiiiiiiiieeee e 23
MISCEIIANCOUS ... 23
Device Power Reporting Model..........ccceeovievieiiiienieeiiciecieeee 24
MOAEL.............oooeeeeiiieieeee e 24
Propertios..........cccooooiivoiiiiiiiie e 25
Power Reporting Requirements for DeviceEnabled 26
Device Information Reporting Model.............ccccoeviiiiiiniiiiienennn. 27
Statistics Reporting Properties and Methods............................. 27
Update Firmware Device Model...........ccccocveevieniieniieniieiiecieeiene 28
DIEVICE STALES ..ceuveiiuiieiieeiieiie ettt sttt et 29
TRICAAS ...t 30
VERSION HANDLING ...ttt s s 30
Classes and Interfacesccoveevuerieneeiienieeeeeee e 31
SYNOPSIS ...ttt 31
APPLICATION ... 31
Device CONrolcccccuiviiiiiiiiiiiieeeeeeee e 32
DeVice ServiCe.........ccccooiiiiiiiiiiiiiiiiie e 32
Helper ClASSes............cccoouiiiiiiiiiiiiiiiieteeee e 33
Sample Class and Interface Hierarchies..........c.cceceveevieriiencnncnnne 34
Application Samplecccccooeeiiiiieiiiiiiieeiie e 34
Device Control Sample.................cccccccooviniiiiiinoiniiiiiiicniecan 34
SCANNET ..o 34
POSPIINEET ...t 35
Device Service Sampleccoceeviiviiiiiiiiiniiniiiiieneeca 35
“MySCaANNETSEIVICE ...oovviiiiieiieeiieeiieeireeieeeiteereesreeaeesaeeens 35
“MyPrinterSerVICE™oooviireiiiiiieeiieiieeie et eere e eve e 36
SAMPLE APPLICATION CODEoccuiiiiiiiiiiiniiiiiienie ettt 37
PACKAGE STRUCTURE ..ottt sttt s s 38
JDOS e e e s 39
JDOS.@VEILS ...ttt et 43
JDOS.SCFVICESeveeee et 43
Device Controls.......cccvieciieeiiieciieecee e e 47
DEVICE CONTROL RESPONSIBILITIEScovvnrvamierisnsessssesssissssessesssessssssesssesenns 47
DEVICE SERVICE MANAGEMENTccooiiiiiiiiiiiiiiiiieesee s 48
Jjpos.config/loader (JCL) and JavaPOS Entry Registry (JER)...48
jpos.config/loader (JCL) Characteristics................cccouvueeeveennnn. 48
Property and Method Forwardingcccceevueeiiiniiiniinniiiiiee 51
EVENT HANDLINGcoouiiiiiiiiiiiiiiiiiccice et 52
Event Listeners and Event Deliveryc..cccccevvivcrannennn.. 52
Event Callbacks...............ccccoioiiiiiioiiiiiiiiiiiiieieeeee e 53
DEVICE CONTROL VERSION HANDLINGccuiruiieieieieieieteceesc et 54
DIEVICE SETVICES ..ceuvieuiieiiieiieiiieetee ettt ettt ettt e 56
DEVICE SERVICE RESPONSIBILITIEScoeuvvairniesesneesnsasessesisesssessessssssssssssensnns 56
PROPERTY AND METHOD PROCESSING........couuuuieriinrineeseessisesssesseessessessesssesenns 56

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXvii
EVENT GENERATION......ccceiiiutiiieeieitiiieeeeeeteteeeeeetteeeeeeeetareeeeeessseeaseesnseseseeansnseeens 57
PHYSICAL DEVICE ACCESS....oiiiieiitiieee e ettt eeetet e eeettte e e e eeatre e e e eeanreeaeeesnnaaeee s 58
API MAPPING RULES ...ooviiiiiitiiee ettt e e e ennees 58
JavaPOS Component DesCriptionsccceeeveerveecieereenreenieenenenn. 59
Section 1: JavaPOS Data Types.......cccceveevuerieneenieniineeienecneeens 60

DaATA TYPES ..ot 60
Section 2: JavaPOS Interface Descriptions............ccccveeveeeveenenennen. 61
JavaPOS Common Properties, Methods, and Events 62
CommOn Properties..........eveeriierieriieiienieeiieeieeiee e see e 62
CommMmON MEthOASovviiiiiiiiieeeeeeeee e 63
JAVAPOS Class NAIMIESuueeeeeeeeeeeee e 64
PLrOPEITIES ..eovvieiieeiiieiie ettt et 65
Peripheral Interfacesccoovvveeviieiiiieniiieeeeeeeeeeeee e 89
JavaPOS: CaSh DIQWETuueeeeeeeeeeeeeeeeeeeee e 90
JAVA COMMAND EXAMPLESouiiiiiiiieiiee et eetee e et eevee e eaaeeeaaeeen 90
INITIALIZING PROPERTIES, METHODS, AND EVENTSccoeeviiiiiiieeeie e 90
CAPABILITIES, ASSIGNMENTS AND DESCRIPTIONS PROPERTIES, METHODS, AND
BEVENTS oot e e e et e e et e e e etee e eeaaeeeeaaeeenn 90
CASH DRAWER OPERATIONS PROPERTIES, METHODS, AND EVENTS................... 91
CASH DRAWER TERMINATING METHODSccooiiiiiuiieeeiieeeeeeeeeieeeeeteeeeeaeee e ns 91
JavaPOS: MICR ... 92
JAVA COMMAND EXAMPLEScoiiittiiieeiiiiee ettt eetre e e e e eaareea e eeevaaeee s 92
INITIALIZING PROPERTIES, METHODS, AND EVENTSccoiiiiiiiieeiieeeeeeeeeeeeeee 92
CAPABILITIES, ASSIGNMENTS AND DESCRIPTIONS PROPERTIES, METHODS, AND
BEVENTS e e et e e e et e e e et a e e e e e eaata e e e eeeaaaee s 92
MICR OPERATIONS PROPERTIES, METHODS, AND EVENTSccccoovviiieeieeiinee. 94
MICR TERMINATING METHODS.......ccoiiiiiitiiieeeeeiiteeeeeecireeeeeeetreeeeeeenreeeeeeenannee s 94
Section 3: Technical Detailsoooveeueeieiiiiiieeeeeeeeeee e 95
OPOS TO JAVAPOS - API MAPPING RULES........ccooiiiieiiiieeieee e 95

DaATA TYPES ..ot 95

Property and Method Names..................cccccooveeiceenieencnannnannsn. 96

EVERLS ... 96

COMSEANLS ..o el 96
APT DEVIATIONS ...ttt ettt eete e et e e et e e e e e eae e e eeaeeeeetaeeeeaaeeeeaeeeens 97
MAPPING OF CHARACTERSETviiiitiiiiiiie et eeeie ettt e et eeaeeeeetveeeeaaeeeeaaeaenn 98
HANDLING BINARY DATA INSIDE STRINGSccoouiiiiiieeeitiieeiieeeeeieeeeetieeeeaeeeeaveeen 99
Section 4: JavaPOS Change HiStory.........ccccevveviiienieeiieniieee 100
REIEASE 1.3 .ottt ettt e e et e e e e et e e e e e annes 100
REIEASE 1.4 .ottt et e et e e e e stae e e e e snnes 101
REIEASE 1.5 ettt ettt e et e e e e stae e e e e ennes 102
REIEASE 1.6 ..ottt ettt e s e e s atae e e e enaes 104
REIEASE 1.7 ettt e et e e e e eata e e e e e ennes 105

APPENDIX C

POS FOR .NET IMPLEMENTATION REFERENCE 1
WHAT IS “POS FOR .NET?” ..ottt 1
Who Should Read ThiS SECtIONueeeeeeee 2
OVERVIEW OF POS FOR NEToooiiiiiiiiiie e 2

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
xxviii Table of Contents

POS for .NET Definitions........ccccveeerveeirieeeiieeeiieeeiee e eeiee e 4
DeViCe CLASS ... 4
Service Object OF SOcccoovoveiiiieiiaiieieeeeee e 4

KEY POS FOR .NET FEATURES.......ccoottiitiiriiiiieinite ettt ettt 4
.NET Interfaces for POS Peripherals..............cc.cccoeuvvcvanunnn... 4
Base Classes for Service ODJectsccoouvivciniiioinieenennn, 4
Basic Classes for Service ObjJectsc.cccouveeveienieaiianiaainn. 4
Device Category Support Level..............ccccoevvcviviieeaienaneeannen. 5
Plug and Playcccocoiiiiiiiiiiiiiii et 6
Standardized Setup.................cccoovviiiiiiiiiiiiii e 6
Device ERUMEFALION.................couveeeeaeeciiiiiiieaeeeeeecciieeeee e 6
Software-Based Device StatiSticscccccveercieninoinieencnenne. 6
Support for OPOS (COM-Based) Service Objects....................... 6
Service Object Verification Program................ccccoevveeeceeennnnnnn. 7

KEY PROGRAMMING CONSTRUCT DIFFERENCES FROM OPOSc.cccceriennnen. 7
Naming CONVENTIONSccceevuieoiiiiiiiiieniieieeee et 7
ERUMETALIONS ... 7
SIPUCIHUFES ... 25

CashCount StIUCTULE........cccuvvieeeiiieeeeeieeee et 25
CashCounts StrUCtUIeeccueeriierieeiierie et 25
CashUnits StruCture.......c.oecveeieeriieeieeeecie e 25
DirectlOData Structure.............oovvuveeeeeiieeeeeeiieee e 26
FiscalDataltem Structure...........cccceeeeveeeiieeiiieeeiie e 26
TotalsFileInfo Structure..........cooovvveviiiiiiiieiieeieee e 27
VatInfo Structurec..eeeeeeiviiiiieiiiee e 27
VideoMode Structureoccveevveeeiieriienieeieesieeieeeee e 28
Complete Class Libraries Provided.................c..ccccovvvvenunnnn.. 28
Return VAlUesccccoooeeiiiiieiiiiieeeeeeeeieeeeeee e, 29
Returning Properties.............ccoeevveeeieiiiiiiiiieeeieeeee e 29
RetUrNING LiSTSccevveeeieeciieecee e 29

KEY PARAMETER DIFFERENCEScoctimieitiniirienieeitenientenieeiteniesirenieeeeenieseeenaeenee 31

KEY PROPERTY SIGNATURE DIFFERENCESccccouteutinierienienienienirenieeirenieseeenaeenee 32

MORE INFORMATIONoiiiiiiiniinititinitenteettentteitesteeteesiesieentesanebesesentesbeentesseenaeene 32

POSEXpPlOTer APIooeiiieeee e 33
POSEXPIOTer Properties.............ccoucueeeereeeeceenieaieeeeeeeeeeeens 33
PosExplorer Methodscccoocueeeceeieieiaiiieeiieeeie e, 34
POSEXPIOTer EVENLScccccccviiiiiiiiiiieiieiieeeeeeee e 36
Global Configurationccoecveveeeeceeneeeieeiieeee e 37

SERVICE OBJECT REGISTRYeeeuiieiieriiieniienieeniteeieeieesiteeieesieeeieesitesbeesanesneenne 37

CONSUMING SERVICE OBJIECTS ..c.uttieuteruiienitenieeieesiteeieesiteeeeeseesseesseesseesnveesseens 37
OPOS ...t 37
POS fOr INET.......ccoooiiiiiiiiiiiiieiteeee e 38

WRITING SERVICE OBIECTS ...cutteutitieiieniieitenttetesteestenieseestesetesseeseenteeseensesseeneeenee 38
POS fOr NET.........oooiiiiieieeeee e 38

Status, State Model, and EXceptions...........ccecveeeeiveerciieecieeeneeenne, 39

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXiX

StatusUpdateEventcooovvvviiiiiiiiiiieceeceeee e 39
CoNtrolSTAte ... 39
EXCEPLIONS ..ottt e 39
DEVICE SHARING MODEL......cceitiiiiiiiieeiieeeiieeeieeeeiieeeeteessaeeesseesssaeesnsnessnsseenns 41
EXclusive-Use DEeVICES......cccvieruieriieiieeiieiieeieeiie e 41
Sharable DeVICEScevvieeriieiciieeiee et e 41
EVENES ittt s 42
INPUT MODELoiiitiieeiiieciiee et ete et et e e e e e seaeeesete e e saeeesnseassnsaeeensseesnsseenns 43
OUtPUt MOdel ... 45
SYnchronous QUIPULcccceeieeiiieriiiinieesee e, 45
ASYNChronous QUIDULc.cccccveeeeeeiieeieeieeeie e 45
DEVICE POWER REPORTING MODELcovviiiiiiiiiiieeeeeiiieeeeeeiieeeeeeeeinreeeeeeevnaee s 46
MOeL...........oooooiiiieieeeeeeec e 46
POWER REPORTING PROPERTIESccueeviiiiiiniieniieniieniieenieesieeseteesieeeieenbeesareeaeens 47
Power Reporting Requirements for DeviceEnabled 48
DEVICE INFORMATION REPORTING MODELc.vvieieeeeeeiseeeeeseneeeeeesseseeseenan 48
Statistics Reporting Properties and Methods............................. 49
POS FOR .NET COMPONENT DESCRIPTIONS.......ceiiivieerrireeereeeereeenereesnnseeennneenns 50
POS for NET Data TYPESccooeceeeiaeeieiieeieeieeeieee e 50
POS for NET Common Properties, Methods, Events, Statistics,
ANA CONSTANLS ...t 51
Common Propertiescceeevveeeriieniieeniie e eiee e e 51
Common MethodSuvvvviiiiiiiiiiiiiiieeeeeeee e, 52
Common EVENntscccvvvviiiiiiiiiiieiieceeeeeeeee e 52
CommON StALISTICSuvveiieeeereieeeeieeeeeeeeee e e e e 53
Common CONSLANTSuueueeeeeieieeieiiiiiiisiinrerarererseeeeearaaeaaa——.. 53
COMMON PROPERTIEScviitieitiieiieniieeteentteeteesteesssesseessseesseensessnsesssessssesssesssees 54
COMMON METHODSeeiivieiientieeieeniesseessteeseesseesssassseessseessesssessssesssessssssssesssees 61
COMMON EVENTS....coiitiiitiiiiieiiecieeritesiteeteesite st esteesiaeesbeessaessbeessneesseeseesnsesnseens 74
POS FOR .NET VS. UNIFIEDPOS MEMBERSceevtteiiieniieeieeniieenieenieesereeneeenenens 75
Interim Procedure Available For Legacy OPOS Services...

Shim Code USAZE......c.eovvieiiiiiieiieciieere ettt 76
Architecture STFUCTUFESccccc.euiiiieiiieeiiiiiiiieeeeeeeeee e 77
Method of Implementationcccccccoevevevcieeceeneennaeennen. 78

Shim Code Naming rules..........cccceevveeriieriienieeniienieeieeeeeenns 78
Shim Method Redefinition Rulescccoovvvvveiiiiiiiiiiiiiiinennn, 79
Shim Code Rules For In/Out Parameterscccueeene... 79
Method of AdMInIStrAtioN................c..cccveeeveeceecieeieeeieeeeaieeens 80
Shim Code File Namescccoceeeciiiiiiiiiiiiiiiiiiiiiieeeiieen 80
Shim file LIStoooiiiiiiieiiieeeeeeeeeee e 81
Class DIAGTAMSccceeeveeeeiieeeiie e e 82
INtErface ClassSoooivviieiiiiiiiiiieeeeeeeeeee et 82
BaSiC Class......ccoouviieiiiiiie e 82
Shim Classcoeieeiiiieeeceee e e e 83
SErVICE ClaSS .cooiiiiiiiiieiiieeeeeeeeeeee et 83

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
XXX Table of Contents

APPENDIX D

XMLPOS - XML POS Mapping Reference.........ccoecereereiieienieiieeseeee e, 1
OVERVIEW ..ottt 1
XMLPOS 1eqUirementscccocueeeueenceiniienieeniieneeneeeeenenes 1
OUL Of SCOPC ... 1
REFERENCED DOCUMENTS ...ttt sttt s ne e 2

TAXONOMY FOR CONVERSION FROM UNIFIEDPOS TO XML
UPDATED IN VERSION 1.14.1 2
CHANGES TO XMLPOS UPDATED IN VERSION 1.13 2
XMLPOS ARCHITECTURE OVERVIEW UPDATED IN RELEASE 1.143
UnifiedPOS XML Requirements.................cc.cccoeeveeeeeceeenvennnnn. 3
Converting UnifiedPOS Methods and Events.........c..ccccc.ce.... 3
UnifiedPOS Synchronous XML Communications........................ 5
UnifiedPOS Asynchronous XML Communications...................... 5
XMLPOS Common Properties Schema Architecture.............. 6
XMLPOS Common Methods Schema Architecture 7
Single Commands...........ccccueevrieeiierieniieiieeie e 8
Command SetS........coocuieriiiniiiiienie e 8
UNIFIEDPOS XML ERRORScoocuiuiiiiiiiiiiiiiiiiiiccee s 10
Device Error Codes and Message Severity Codes..................... 10
Message Severity Codes........oovirrirriiienieniiieiienieeieesre e 10
Standard Error Codes to Severity Codesccccccocenuenc.e. 11
Standard Status Codes to Severity Codesccccceevuvann.. 12
UnifiedPOS Synchronous XML Errorsccccovevveeeceeennnnn. 13
UnifiedPOS Asynchronous XML Errorscccocceeennenne. 13
XMLPOS COMMON EVENTS ..ottt 14
UnifiedPOS Synchronous XML EVentscccccoeeveeeeeenncnn. 15
UnifiedPOS Asynchronous XML EVeRtscc.cccceueeveennn. 15
Single EVENtSc.oociiiiiiiiiiiieicccccececeee e 15
EVvent SetS.....c.oooiiiiiiiiiicee e 15
XMLPOS COMMON PROPERTIESccuuiiiiuieiieiieieeienie et eee e ene e sie e sneens 16
XMLPOS COMMON DATA ..ottt 17
ARTS COMMON DATA ..ottt 18
UNIFIEDPOS DEVICEScoitiiiiiiiiieieeiecieeieste ettt et 19
Belt ..o 20
Belt Example V1.1 ..o 20
Move Belt Forward..........coocovieniiiinieniiiincciceceeee 20
Belt Domain VIEWcocceeiiiiiiiiiiinieeiceicececeeeeeeen 21
Belt Propertiesccoocueeiieeiienieeieesieeeee e 22
Belt Methodscc.coviiiiiiiiiiiiieceecee e 22
Belt EVENtS......ooiiiiiiiiiieeeeeeee e 23
Device Error Codes to Message Severity Codes................... 24
Status Codes to Message Severity Codes...........ccccueerveennnnne. 24
Device Specific Status Messagesccceeeevveercreeerveeenveeennnennn 24
Bill ACCEPIOT ..o 24

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXXi
Bill Acceptor EXamplecooeveevieeiiienieeiieiecieceeeieeine 24
Bill Acceptor Domain...........ccceeeevieeriieeiiieeciee e 26
Bill Acceptor Propertiesccvevveeiieniieeiiieiieeieeiie e 27
Bill Acceptor Methodscccveeeiieviieniieeiieiecieeeeereeine 27
Bill Acceptor Events.........ccoceeviiiiieniiiienieeceieeeeeeen 28
Device Error Codes to Message Severity Codes................... 29
Status Codes to Message Severity Codes.........c.cceeveervvennnnne. 29
Device Specific Status Messagesc.cceeeevvereenerieneennennnes 29

Bill DiSPENSerc.ccocuiiiiiiiiiiieeeeeeee e 29
Bill Dispenser Example..........cccoevveeviienieeiieenieeieeieecieeieene 29
Bill Dispenser Domaincccceoceeviiienieeiiienienieeieesieeieane 30
Bill Dispenser Properties.........ccceeveeeiienieeiienieesieeiiesveeieane 31
Bill Dispenser Methodscceevieiciienieeiiienieeieeieecve e 31
Bill Dispenser EVENntsccccooceeiieriiieniieniieieeieeieee e 32
Device Error Codes to Message Severity Codes................... 33
Status Codes to Message Severity Codes.........c.ccccvverveennnnn. 33
Device Specific Status Messagesc.cceeveevvereenerieneennennnen 33

BIOMEIVICS. ...t 33
Biometrics EXamplecccocvevieiiiiiieniieieeieeieeee e 33
Biometrics DOmain........ccceevvieiiiniiiiiecieeeeeceeee e 36
Biometrics Propertiescoveeveerieeiieniieeieeieeeie e 37
Biometrics Methods..........coceeeerieiinieniieiesieeeeceeeee 37
Biometrics EVENts........ccoociiiiiiiiiiiieieeee e 38
Device Error Codes to Message Severity Codes................... 39
Status Codes to Message Severity Codes.........c.cccevveereennnnn. 39
Device Specific Status Messagesc.ccceveevvereenerieneenneenen 39

BUID BAT ... 39
Bump Bar EXampleccoocieiiiiiiiiiiieeeeieceeee e 39
Bump Bar Domain...........ccoeeeeiiiiiiiiieeceeceeeee e 40
Bump Bar Propertiesccoceeveerieeiiienieeiienie e 41
Bump Bar Methods.........ccooeiieiiiiiiiiiiiiecieeeeeeeee e 41
Bump Bar Events.........ccoooiiiiiiiiiiiiieceeeen 42
Device Error Codes to Message Severity Codes................... 43
Status Codes to Message Severity Codes.........c.cceevverveennnnn. 43
Device Specific Status Messagesc.cceeeevvereenerveneennennnen 43

CaSh CRANGET ..o 44
Cash Changer EXamplecccoovvieviieiiiiiiieiiecieccieeieeieee 44
Cash Changer Domain............cocceveeiinienenieninnienecieeienene 46
Cash Changer Propertiesccoceevveerieecienieeieenie e 47
Cash Changer Methods.........ccoecvieeiiieeiiieeieeeee e 47
Cash Changer EVents.......c.ccceviiviiieniencnicneeiceeceeeenene 48
Device Error Codes to Message Severity Codes................... 49
Status Codes to Message Severity Codes.........cccceeveeennennnee. 50

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Xxxii Table of Contents
Device Specific Status MeSsagesccvevveerieerveerieenvennnnnn 50
CASH DFAWEF ... 51
Cash Drawer Example..........ccccoeeiiniiieiiienieeiieiecieeee 51
Cash Drawer Domainccceeceereerierienienieeieseeeesienieeene 52
Cash Drawer Properties..........ceceveeverieneenienieneeicneeneenns 53
Cash Drawer Methodscccoeoveviiniiniiniiiiniencecceeee 53
Cash Drawer EVEntsccccovieririenieniieieneeiesceeeeeeea 54
Device Error Codes to Message Severity Codes................... 55
Status Codes to Message Severity Codes...........ceecverrueennnnne. 55
Device Specific Status MeSsagesccvevveevveerveecveenvennnenn 55
CAT ..o 56
CAT EXamPIe.....ccoieviieiiiiiieiieeiceeee et 56
CAT DOMAIN ..ottt 57
CAT PrOPertiCs ..c..couveeueeruerieniieieniienieeeesieesieetesieesee e sieenens 58
CAT MethOds ...c.eeviieiiiieniiiierieeieeeee et 58
CAT EVENLS ..ottt 59
Device Error Codes to Message Severity Codes................... 60
Status Codes to Message Severity Codes...........ceceueervvennnnne. 62
Device Specific Status MeSsagesccvevveevveerveerieenvennnnnn 62
Check SCANNETcccveeeciiieiieeeieeeee e 62
Check Scanner Example.........cccoccvevviieiiiniieiieiecieeeee 62
Check Scanner Domaincoceveevienienienieeienceiesiesieeene 65
Check Scanner Properties.cocveverveneenienieneenicneeneenens 66
Check Scanner Methods.........coceviereiiiinienenienieccieneeee 66
Check Scanner EVentscccoecevierienienienieienceeseesieeeae 67
Device Error Codes to Message Severity Codes................... 68
Status Codes to Message Severity Codes...........ccccuverueennnnn. 69
Device Specific Status MeSsagesccvevveerveereeerreenveennnnn 69
COIN ACCEPIOF ... 70
Coin Acceptor EXxampleccoecvevieeiiiinieeiieiecieeiee 70
Coin Acceptor DoOmain..........ccueeevieeieeniienieeieeie e 72
Coin Acceptor Propertiescoceevevvvereeveeieneenienieneenns 73
Coin Acceptor Methods........cccueeciiirieeiiinieeiieece e 73
Coin Acceptor EVENtS.......cccvevvieiiieeiieieeeiecieeee e 74
Device Error Codes to Message Severity Codes................... 75
Status Codes to Message Severity Codes...........ccecveerueennnnne. 75
Device Specific Status MeSsagescccvevveevveerveerveenvennnnnn 75
COIN DISPENSEF ...t 76
Coin Dispenser Exampleccccccoeeviieiiiiniieciienieeieeeeee, 76
Coin Dispenser Domainccceeevvieeiieeeieeeniie e 77
Coin Dispenser Propertiescocveververeenenieneeneneeneenens 78
Coin Dispenser Methodscccceeeieeiieniiiiieiecieeeee, 78
Coin Dispenser Eventsccccoccveeviieeiiieeiieeciie e 79

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXxiii

Device Error Codes to Message Severity Codes................... 80
Status Codes to Message Severity Codes.........c.cceecveeennennnee. 80
Device Specific Status Messagescccverveevieenieerieenvennnenn 80
Electronic JOUrnal................c.ccocoveoueeiciieniiieiie e, 81
Electronic Journal Example.........cccocceviriininiiniininicneenns 81
Electronic Journal Domain.........ccccceceeverieneeneniencnienceens 82
Electronic Journal Properties..........ccccvevvervieenreenieenieenreenenne 83
Electronic Journal Methods...........ccovvveeiieeiiiieciieecieecee, 83
Electronic Journal Events..........ccccocieviniiniencnieninienceee 84
Device Error Codes to Message Severity Codes................... 85
Status Codes to Message Severity Codes........ccccecvevvenuennnene 86
Device Specific Status Messagescccvevveerieerieerieenvennnenn 86
Electronic Value Reader / Writer............cc.coooveeceveviveecnaeneennnn. 86
Electronic Value Reader / Writer Example..........c.cccoceennee. 86
Electronic Value Reader / Writer Domaincccccvenienn. 89
Electronic Value Reader / Writer Properties...........c.cc.c....... 90
Electronic Value Reader / Writer Eventscccccccvveennnn. 92
Device Error Codes to Message Severity Codes................... 93
Status Codes to Message Severity Codes.........c.ccccvvervvennnnne. 93
Device Specific Status Messagesc.cceeeevvereenerieneennennnen 93
FUSCAl PFINIE ... 93
Fiscal Printer EXamplec.ccccoeveiieiiiniieiieieeieeeecee e 93
Fiscal Printer Domain...........ccceeveveieiiieeiiee e 98
Fiscal Printer Propertiesccccocveeviieriienieeniienieeieecie e 99
Fiscal Printer Methods..........cccoevirieniiiienieieeienieceeene 100
Fiscal Printer Events.........cccccccvveeiiiiiiiiecciee e 101
Device Error Codes to Message Severity Codes................. 102
Status Codes to Message Severity Codes.........c.ccoverveennenns 115
Device Specific Status Messagesccccevveeveeviereenenneennens 115
GUALE ..o 116
Gate EXampleccveeeiiieiiieecececee e 116
Gate DOmMaIN.......ccveeeiireeiiieciie e 117
Gate PTOPETLIES ...ocveeeiieiiieeiieeieeee ettt 118
Gate Methods......coceeviiiiiiniiiiiieeen 118
Gate EVENLS...cceviiieeiiiee ettt 119
Device Error Codes to Message Severity Codes................. 120
Status Codes to Message Severity Codes.........cccccvevveennens 120
Device Specific Status Messagesccccvvveveevieneenenseennens 120
Hard Totalscccoooveiiiiiiiiiiieeeeeeee e, 121
Hard Totals Example........c.cccooveeeiiiiiieieieecieecee e 121
Hard Totals Domainccceveeeviieeecieeeiieeciee e 122
Hard Totals Properties.........ccoeeveerieeiiienieeiieie e 123
Hard Totals Methodscoceeiiiiiiiiiiiiiecece 123

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

XXXiv Table of Contents
Hard Totals EVentscccocueiieviinieniiieeiesceieeeeeceeee 124
Device Error Codes to Message Severity Codes................. 125
Status Codes to Message Severity Codes.........ccceeverveennenn. 127
Device Specific Status MeSSagesccceevveerveerreenveeveennes 127

IMAZe SCANNETcccviviiiiiiiiiiiiiiecec e, 128
Image Scanner Example..........ccoooveviiiiiiienieiiiciecieeeee, 128
Image Scanner Domaincceecveevvieeniiieeniieeiee e, 131
Image Scanner Properties........cc.cooevveereenerieneenicneencnnnn 132
Image Scanner Methodsccoeveeviieiiieniiniieieceeeeee, 132
Image Scanner Eventscccccoevviiviiieiiiineieecieecee e, 133
Device Error Codes to Message Severity Codes................. 134
Status Codes to Message Severity Codes.........ccceeverveennnnns 134
Device Specific Status MeSSagesccceevveerreerreenveeneennns 134

11em DISPERSET..........eeeeeiiiiiiiieeeeeeee e 134
Item Dispenser Example.........ccccoooveeiieniienieniiiiienieeee 134
Item Dispenser Domain...........ccceecveeviieniieniienieeiieeie e 135
Item Dispenser Properties..........coocueeviierieeiienieniiienieeieene 136
Item Dispenser Methods..........ccoooeeviiiiieniieiienieeieeeee, 136
Item Dispenser Events.........ccccccvevvveeiiienieeciieniecieeeee e 137
Device Error Codes to Message Severity Codes................. 138
Status Codes to Message Severity Codes.........cceeverveennenn. 138
Device Specific Status MeSSagescccveevveerveerieenveeveennes 138

KePIOCK ... 138
Keylock EXampleccoovveeiieniiiiieiieeieeeeceeeee e 138
Keylock DOmaincccoeeeuveeriieeniieeieecieeeeeeeeeee e 139
Keylock Propertiesccuevveerienieeniienieeiecie e 140
Keylock Methods........c.cooieeiiiiiiiiieiieeieeeceeeee e 140
Keylock EVEnts........ccociiioiieniiiiieiecieeeeee e 141
Device Error Codes to Message Severity Codes................. 142
Status Codes to Message Severity Codes.........ccceeverveennenn. 142
Device Specific Status MeSSagesccceevveerveerreenveeneennes 142

LEGRES .o 143
Lights EXample.........ccccooiviiiiiiniinieeieeieeeee e 143
Lights DOmMaincoocueeeiiieeiiieeieeeieeeee e 144
Lights Properties.........ccceevevieeiieeieeiieeieeeee e 145
Lights Methods........coociiiiiiiieiiecieeeeee e 145
Lights EVENtScooiiiiiiiieiieceeeeeeeeee e 146
Device Error Codes to Message Severity Codes................. 147
Status Codes to Message Severity Codes.........ccceeverveennnnn. 147
Device Specific Status Messagesccceeeevveerereeenreeenveeennne. 147

Line DiSPIayc.cocoeiiiiiiiiiiiiiei e 147
Line Display Example........cccoooievieeiienieeiieieeieeeeeeeee 147
Line Display Domaincccceeeevieieieeiiieeeieeeiee e 148

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXXV
Line Display Propertiesccccceevveeviierieeiienieeieeseeeveenees 149
Line Display Methodsccoueeeviiieiiienieeeie e 150
Line Display EVENtscccoocuieiiiiiieieeieeiecieeee e 151
Device Error Codes to Message Severity Codes................. 152
Status Codes to Message Severity Codes........ccccceveuenunenne. 153
Device Specific Status MeSsagesccceevveerveerieeneeeneennns 153

MICR ...t 154
MICR EXample......ccceoveriiriiniiiiinienieiienecieeeeeeceeeeneene 154
MICR DOMAIN ...ttt 156
MICR Properti€s........cceeeverieerrienieeiiienieereeseeeveeseeeveeens 157
MICR Methods........coviiiiiieiiieiieieeeeee e 157
MICR EVENLS ...c.ueiiiiiiiiiiienieciececeeeeeeeeee e 158
Device Error Codes to Message Severity Codes................. 159
Status Codes to Message Severity Codes........ccccceeeuennnenne. 159
Device Specific Status MeSSagescccceevveerveerieeneeeneenne 159

MOLION SEHSOT ...ttt 160
Motion Sensor Examplecocceoieviniininieniicniiicnicnens 160
Motion Sensor Domain...........ceecuevieneriieneenienienecenienene 161
Motion Sensor Propertiesc.cocvveecviereeeieeneenieenieeeveenes 162
Motion Sensor Methodscccoveeeiieniiiiiiiieiiieeee 162
Motion Sensor EVents..........ccoceeierienenieneenenieneciesienene 163
Device Error Codes to Message Severity Codes................. 164
Status Codes to Message Severity Codes........ccccceeeuenunenne. 164
Device Specific Status MeSSagesccceevveerveerieeneeeneenne 164

SR ..o 166
MSR EXaMPIE ...covviiiiiiiiiiiiieciccccseee e 166
MSR DOMAIN.....eiiiiiiiiiriiiieeieeieeeee e 167
MSR PrOPertiesceccveeruieriieiieeieeiiesieeiee e eveesieeeveeens 168
MSR Methods.......ccooviiiiieiiieiee e 169
MSR EVENLS....ooiiiiiiiiiiiiiieiieeceeeseeeeeee e 170
Device Error Codes to Message Severity Codes................. 171
Status Codes to Message Severity Codes........ccccceveuenunenne. 171
Device Specific Status MeSsagesccceevveerveerieeneeeneenne 171

PIN PaA........cooooiiiiieeeeeee e 172
PIN Pad Examplecocooeiiiiiiiiiiiieieceeeee e 172
PIN Pad DOmain........ccceevieriiniieienienieiieneesieeeeeeee e 174
PIN Pad Propertiesccceecveeeierieeiiieeieeieecie e 175
PIN Pad Methods........c.cooieiiiiiiiiiicieeccee e 175
PIN Pad EVEnts......cccccoeiiiniiiiiieicnieneeeeeeee e 176
Device Error Codes to Message Severity Codes................. 177
Status Codes to Message Severity Codes........cccceveuenunenne. 177
Device Specific Status MeSsagescccceevveerveerieeneeeneennes 177

Point Card Reader/Writer.............cccccevoiioiiiniieiiiaieneen. 178

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

XXXVi Table of Contents
Point Card Reader Exampleccccooovvveiiiiniiiiniieciceee, 178
Point Card Reader Domain............ccoceenieiiieniiiiiiinicene 181
Point Card Reader Propertiescccovveevvieniencieenieenneenne, 182
Point Card Reader Methods.........cccevivierienenienicieiieee 183
Point Card Reader Events..........ccccoeoiiiiiiiniiniiiiiieeicecee, 184
Device Error Codes to Message Severity Codes................. 185
Status Codes to Message Severity Codes.........cccccveeveennenns 186
Device Specific Status Messagesccccveeveevieneenennuennns 186

POS Keyboard..............cccccoveeiiiiiiiiiiiiiiiiieieceeeee e, 187
POS Keyboard Example..........c.ccoveveiienieniienieeieeieeeene 187
POS Keyboard Domainccceveeverieneenenicneeienicnens 188
POS Keyboard Properties..........cooveeieeeiienieeiieenreeieeseeeene 189
POS Keyboard Methods...........cceevveeiienieniieiecieeeeeeene 189
POS Keyboard Events.........cccccocevieviniineinenicnicienicnene 190
Device Error Codes to Message Severity Codes................. 191
Status Codes to Message Severity Codes.........cccceverveennenns 191
Device Specific Status Messagescccceveereevieneenenneennns 191

POS POWET ... 192
POS Power EXamplecoceeeiiiiiiiiiiieciieie e 192
POS Power Domain..........coceeeiierieiiiienieeieie e 193
POS Power Propertiescoccueeveerieeciienienieeniieeeeeieeee 194
POS Power Methods.........ooveviieiinieniiiienieeeeeeeeene 194
POS Power Events........ccocueiiiiiiiiiiniiciiccieeeeceeee 195
Device Error Codes to Message Severity Codes................. 196
Status Codes to Message Severity Codes.........c.cccveeveennens 196
Device Specific Status Messagescccveeveevieneenernuennens 196

POS PFIREEE ...t 197
POS Printer EXxample..........cccoooiieiiiniiiiieieciecieeeee 197
POS Printer Domaincoceevieiiieniieiiieieeeeeeeeee 199
POS Printer Properties.coccuveveeriieiienieeieenee e 200
POS Printer Methods........cccevieienieniiieiieceeeeeceeee 201
POS Printer EVents.........cccoooieiiiiiiiiieieeieceee e 202
Device Error Codes to Message Severity Codes................. 203
Status Codes to Message Severity Codes.........ccccovevveennenns 211
Device Specific Status Messagescccveeveeviereenenneennnns 211

Remote Order Display................cccccoovveiciaiiieaiiaiiiiiieiieeens 212
Remote Order Display Example..........ccccoevvievieeiiieneeenenne. 212
Remote Order Display Domain.......c..ccceveevenieniincnicnnn. 213
Remote Order Display Properties..........cccooeervieniienieenenne. 214
Remote Order Display Methods........cccoeeveeeiieevieecieene, 215
Remote Order Display Events.........ccccocevieniiiiniincnncnnns 216
Device Error Codes to Message Severity Codes................. 217
Status Codes to Message Severity Codes.........cccceecvveeennennn. 219

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXXVii

Device Specific Status MeSSagesccceevveerreerieeneeeneennes 219
REID SCANNEF ..ot 219
RFID Scanner Example.........ccccoovvveviieiiienieiiieieeieeieeen, 219
RFID Scanner Domaincoceeveenieniieenieniceneenieeeeee, 222
RFID Scanner Properties.........coceeereveneenieneeneeieneeniennne 223
RFID Scanner Methodsccoeeverieniincnienieieneeene 223
RFID Scanner EVentsccccoooeeviinieniieinienieeeenieeeee, 224
Device Error Codes to Message Severity Codes................. 225
Status Codes to Message Severity Codes.........ccceeverveennenn. 225
Device Specific Status MeSsagesccceevveerreerieenveeveennns 225
SCALE ...t 225
Scale EXamPplecoocviiriiiiiiiieeiieieeeee e 225
Scale DOMAIN........cceeririirieiieieeeee et 227
Scale Propertiesc.ccooeveereerienienenieneeeeieneee e 228
Scale Methodscoeeviiriiniiiiinieieneeceeee e 228
Scale EVENLS.....coouiiiiiieieeieieee e 229
Device Error Codes to Message Severity Codes................. 230
Status Codes to Message Severity Codes.........ccceeverveennnn. 230
Device Specific Status MeSSagesccceevveerveerreeneeeneennes 230
SCANNET D@VICE..........cc.vvveeeiiiiiieeiiii e 231
Scanner Device Example.........cccccoeviieiiienieeiiienieciceeeeen 231
Scanner Domainccoceeeviiiiiiiiiniieen 233
Scanner Propertiesc.cceveveevierienenienieieeieneeeeeeeeene 234
Scanner Methodsccovveviriinieienieeceeeeeeeen 234
Scanner EVentscccooiiiiiiiiiiiiiniiceeeeen 235
Device Error Codes to Message Severity Codes................. 236
Status Codes to Message Severity Codes.........ccceeverveennenn. 236
Device Specific Status MeSSagesccceevveerreerieeneeeveennes 236
Signature Capturec.cccoccevvieeienciiiiinieeieneeeeeeee 237
Signature Capture Example........c.ccccoeevieniiiiiiinieiiieieeen 237
Signature Capture Domaincccceeeeveerieecieeneeeneeneeennenn 239
Signature Capture Properties.........ccccevveveevueneenensieneeneennne. 240
Signature Capture Methodscoceeeciierieeiiieniieieeieee, 240
Signature Capture Eventscccoocveeviieiniieeiieeciieeeieene 241
Device Error Codes to Message Severity Codes................. 242
Status Codes to Message Severity Codes.........ccceeverveennnnn. 242
Device Specific Status MeSSagesccceevveerveerreenveeneennes 242
Smart Card Reader / WEItercccoeecevevceieeieeeiieeeeeennn 242
Smart Card Reader / Writer Example..........ccccoocvveviiennennen. 242
Smart Card Reader Domain..........c.ccoeeeerieiiiiniicenienieeenn, 245
Smart Card Reader Propertiesccccevceeveenienicneenicnnenne. 246
Smart Card Reader Methodscccooeviiviiniiniininicnnenne. 246
Smart Card Reader Events..........cccoceeiiiiiiiiiiniiiinieiieee, 247

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

xxxviii Table of Contents

Device Error Codes to Message Severity Codes................. 248

Status Codes to Message Severity Codes.........ccceecvveennennn. 249

Device Specific Status MeSSagesccceevveerveerieeneeeneennes 249

Tone INAICALOTcccceviiiiiiiiiiiiee e 250

Tone Indicator Exampleccooceeiiiiiiiiieniiiieieeeeee, 250

Tone Indicator Domain...........cccceeevveneenienienenienieeeene 251

Tone Indicator Propertiescccvevveevieviienieenieeeieeieeene. 252

Tone Indicator Methodscccceeiiiiiiiiiiniiiieieeee, 252

Tone Indicator EVents.........ccccoveeverienienieniencnienceeeene 253

Device Error Codes to Message Severity Codes................. 254

Status Codes to Message Severity Codes........ccccceeeuennnenne. 254

Device Specific Status MeSSagescccceevveerveerieenveeneenne 254

NAFEM PROTOCOL ...ttt ettt sttt ettt st sttt e bt s ne e 255

Administration Enterprise Group...............cccceveveveecveenceenannnen. 256

Asset Management Enterprise Groupccccoccvevceeaeueennenn 257

Bulk Transfer Enterprise Groupcccccceeeeveeeeeeeeneeanene. 258

Clock Calendar Enterprise Groupccccooevveeeceeesceeannennn. 259

Inventory Management Enterprise Groupccceecuenn.n 260

Maintenance Enterprise Group.............cccccoceeveeeenceeenieeennann, 261

Monitor Enterprise Groupcccooeeeeeeceeeeiceeeiieeiieeeieens 262

Notification Enterprise GFOUPccccccevceeeenceeneeceinnannnn. 263

Security ERterprise GFOUDcccccveeeeeeeiiieiiieeeieeeeeees 264

Utility Enterprise GFOUDccoeeeeeeeeiieeeiiieeie e 265

DISTRIBUTED FILEScooiiiiiiiiiiiiiiiiciiicieeccc s 266

GLOSSARY ...ttt ettt 267
APPENDIX E

CRANGE HISTOTY ...ouvieiieiieiieeiieiiee ettt ettt et a e st e s e sneensesseensessaensesseens 1

Release VErsion 1.4c.ooooiiiiiiee e e e 1

Release VErsion 1.5.. ..ot s 1

Release VErSion L1.6......ccooviiiiiiiniieiieiieiee ettt e 2

Release VErsion L1.7......coioriiiiiiiieieeieee ettt e 5

Release Version L.8......oooiiiiiiiiiiieieie et 11

Release VErsion 1.9.....c.coiiieiiiiieiiicieecieeee ettt et seve e seae s 14

Release Version L.10.......cooiiiiiiiiiieiieieeee et 16

Release Version 111 ..o 19

Release Version 112 ..ottt 23

Release Version L.13 ..ot 27

Release Version L.14.......cooiiioiiiiiieiieeeeee et 32

Release VErsion 1.14. L. ...cueiiiiiiiieie ettt ettt s 36

Release Version 1.14.2. ...coooiiiiieeiieieiee ettt 39
APPENDIX F

Additional Software Referencescoceririeriiiiiiiiiicieeceec e 1

UML RETEICNCEScuveeniiiieiiieiieie ettt ettt ettt sttt st et n e e s enes 1

Web Location Referencesc...cccueevcueeeiieeeeieeeiieeenieeeeneeennns 1

Reading Material References...............cccccooeeveeiviienieaniaiean. 1

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents XXXiX

APPENDIX G
Additional Hardware References..........covvveruieieriieiiiniieecceesee e 1
USB PLUSPOWER CONNECTORcccoviiiiniiiniirenieteiceenceecetenc s 1
OV VICW.....cveeeeiee et e e e e ata e e e saaaeeeenns 1
Host Side CONNector................ccccceeviiiiiiiiiiieiiseeee e 1
CADIE ... 2
Peripheral Side CORRectionccccccevceviiccniiicinienenn, 2
Web Location References - USB connector EIA approval........... 2
Reading Material References..............c..cccooveevvevveeeieeaneaninannns 3
ARTS Standard Endorsementcccoevveveveeeecenenireeenn.. 3
APPENDIX H
Deprecation HiStOTYeccuiiiieeieeiie sttt ettt ettt et e stee e e staeeaeesaesnnesnneenes 1
APPENDIX I
Systems Management Informationccccueeeueerieeieenienie e e 1
WHAT IS “SYSTEMS MANAGEMENT?” ..ottt e 1
How 1S UNIFIEDPOS INVOLVED IN SYSTEMS MANAGEMENT?.......cccoooiiiiniennnnnn. 1
Who Should Read This Sectioncccoeceevieiieriineniieneeieeeeeeen 2
UnifiedPOS Device Information Reporting Modelc...... 3
CIM SIPUCTUF@. ...ttt 3
Architectural OVerVIEWcocvevuiriiriieiieiesieee e 6
EXCIUSIVE USE ... 6
Multiple INSTANCESccooeoiieiiaieiiieeeeeeeeee e 6
Limited Lifetime................cccoooveviiecieiiieiiiecieeie e 6
SOIULION CTEALIONcceeeieeieeeeee e 6
Utilized CIM Data Types Updated in Release 1.139
COMMON PROPERTIES, METHODS, AND EVENTScccoiiiiiiiieiiiiieeceecieeee e 10
Common Properties Updated in Release 1.1410
Common Methods................c...ccooueveiuiivciiiiiiieiiieecieeeee e, 11
PROPERTIES ...ctutrtsititecee et ese st st esse s ss st aesses 11
Peripheral INterfacescccceeviiieiieiiiiiieieece e 12
Belt Updated in Release 1.13....13
Belt Class Diagram..........ccocceceerieienienenieneeicnieseeieseeens 15
Bill Acceptor Updated in Release 1.1316
Bill Acceptor Class Diagram............ccceeeveereverieenieenneennennnnnn 18
Bill Dispenser Updated in Release 1.13......19
Bill Dispenser Class Diagramcccceeeeeveevieneenenienennns 21
Biometrics Updated in Release 1.13.....22
Biometrics Class Diagram..........cccccoceeveriineeiicniencniecneenns 24
Bump Bar Updated in Release 1.13.....25
Bump Bar Class Diagram..........ccccceeeveeecieenciieeniieeeiee s 27
Cash Changer Updated in Release 1.1328
Cash Changer Class Diagram..........ccccccoeveveeiiienieeieenieennene 30
Cash Drawer Updated in Release 1.13.....31
Cash Drawer Class Diagramccccceceeeeneniieneenenecneenns 33

UnifiedPOS Version 1.15 -- May 11, 2018

xl

UnifiedPOS Retail Peripheral Architecture

Table of Contents

Credit Authorization Terminal — Updated in Release 1.13....... 34

Credit Authorization Terminal Class Diagram...................... 36
Check Scanner Updated in Release 1.1337
Check Scanner Class Diagramcccoecveeevierienieenieennnenne 39
Coin Acceptor Updated in Release 1.1340
Coin Acceptor Class Diagram.........cccecceevveeiieniienieenieenneenn, 42
Coin Dispenser Updated in Release 1.13......43
Coin Dispenser Class Diagram..........ccccceceeveeiienienenieneenens 45
Electronic Journal Updated in Release 1.1346
Electronic Journal Class Diagramccccoeeverveecneenenennnnn. 48
Electronic Value Reader/Writer ~Updated in Release 1.1349
Electronic Value Reader/Writer Class Diagram.................... 50
Fiscal Printer Updated in Release 1.13.....51
Fiscal Printer Class Diagram..........cccceceveineeiicnienensicneenens 54
Gate Updated in Release 1.13.....55
Gate Class Diagram.........cccceevveeviieeiieniienieeieecie e 56
Hard Totals Updated in Release 1.13....57
Hard Totals Class Diagramc.cccoeevieeiiienieniieiienieeiene 59
Image Scanner Updated in Release 1.1360
Image Scanner Class Diagram...........cccceeveeveeiieniencniecnennens 61
Item Dispenser Updated in Release 1.1362
Item Dispenser Class Diagram..........cccceevveevieenienneennennnnn. 64
Keylock Updated in Release 1.13.....65
Keylock Class Diagram...........ccceccveevvieniieeiienieeieeiieeve e 67
Lights Updated in Release 1.13.....68
Lights Class Diagramccccceceevervienieneniieneenenieneeeeenen 70
Line Display Updated in Release 1.13....71
Line Display Class Diagram............cccoeeveecveerieenieesieeneennens 74
MICR Updated in Release 1.13...75
MICR Class DIagramccceeveeriieniieeieeniienieeieesneeiens 77
Motion Sensor Updated in Release 1.13...... 78
Motion Sensor Class Diagram........c..cccceeeveveevieneencnieenennns 79
MSR Updated in Release 1.13....80
MSR Class Diagram...........ccecceeeviuieenieeenieeeiee e siee e 82
PINPad Updated in Release 1.13....83
PINPad Class Diagram...........cccceeeeviieniieniieeniienieeieesre e 84
Point Card Reader/Writer Updated in Release 1.13.....85
Point Card Reader/Writer Class Diagramc.ccoccveenennee. 88
POS Keyboard Updated in Release 1.1389
POS Keyboard Class Diagramccccceeveieeniieencieeennenn, 91
Properties (UML attributes)ccceeeevieeiieenieiiieiiecieeiee 92
Methods (UML Operations)..........c.eeeeeeueeeeeenieenveenieenneennens 93
POS Power Updated in Release 1.13.....94

UnifiedPOS Version 1.15 -- May 11, 2018

Table of Contents xli
POS Power Class Diagram...........ccceceevieeiieniienieeiienieeieane 95
POS Printer Updated in Release 1.13.....96
POS Printer Class Diagramcccccoevieeviienieniiienieeneene 101
Remote Order Display Updated in Release 1.13 ...102
Remote Order Display Class Diagramcccccoceveenennnene 104
RFID Scanner Updated in Release 1.13 ..105
RFID Scanner Class Diagramcccccceevveveieeneenveeneennen. 107
Scale Updated in Release 1.13...108
Scale Class Diagram..........cccoecueeviienieeniienieeiiecie e 110
Methods (UML operations)..........cceecvereeecreereeenveeneeeneennes 111
Scanner Updated in Release 1.13 ...112
Scanner Class Diagram............ccccceevieeiienieesiienieeeeeie e 115
Properties (UML attributes)cccccveeereenieecieenieeieeieeeen. 116
Signature Capture Updated in Release 1.13....120
Signature Capture Class Diagramcccceeeeevvenenienneenne. 122
Smart Card Reader/Writer Updated in Release 1.13....123
Smart Card Reader/Writer Class Diagramcc.ccccceueeee. 125
Tone Indicator Updated in Release 1.13.....126
Tone Indicator Class Diagram...........ccccceevveevienveeieenneennen. 128
Technical DetailS.........ueviiiiiiiiiiiiiiiieieeeeeeeeeee e 129
MOF FILES ... 129
APPENDIX J
DEVICE STALISTICS .. uveeivtieeeetie e et ettt e et e e e e et eetee e e e e e e et eeeaee e eaaeeeeaneeeenreeeenneas 1
DEVICE CATEGORY INAMES....c.uttitiiiieiiieniieetteniteeteesitesiteesteesiteesbeesinesnbeesasesnseenes 1
COMMON STATISTICS FOR ALL DEVICE CATEGORIEScovcievvieniienieeiieneeeieenne 3
XML DEFINITIONS FOR BIOMETRICS DEVICE STATISTICS ..cc.veevvieiieneerieeneeeeeens 3
XML DEFINITIONS FOR BUMPBAR DEVICE STATISTICSeovvveviieiienieeieeseeeeeens 3
XML DEFINITIONS FOR CASHDRAWER DEVICE STATISTICS......ccovvtereeererierirenneene 4
XML DEFINITIONS FOR CHECKSCANNER DEVICE STATISTICScceevcveeiierreeneene 4
XML DEFINITIONS FOR ELECTRONICJOURNAL DEVICE STATISTICS.........ccevevennee 4
XML DEFINITIONS FOR FISCALPRINTER DEVICE STATISTICSocvvevvevreriereereerennns 4
XML DEFINITIONS FOR IMAGESCANNER DEVICE STATISTICSooeevviieerieeeinennn. 5
XML DEFINITIONS FOR KEYLOCK DEVICE STATISTICS ...covevvevvevrerieererreriereereerenns 5
XML DEFINITIONS FOR LINEDISPLAY DEVICE STATISTICS ...ceoveervverreeiienieeneenns 6
XML DEFINITIONS FOR MICR DEVICE STATISTICS ..ccuvveevieiieniieenieeneeeieesneeeeees 6
XML DEFINITIONS FOR MOTIONSENSOR DEVICE STATISTICSccveevvererierireneeane 6
XML DEFINITIONS FOR MSR DEVICE STATISTICS....cccteeitienieenieenieeneeeieesneeneens 6
XML DEFINITIONS FOR PINPAD DEVICE STATISTICSvovevvevieveerieererreriereereerenns 7
XML DEFINITIONS FOR POSKEYBOARD DEVICE STATISTICSveeeeviieerieeeieennn. 7
XML DEFINITIONS FOR POSPRINTER DEVICE STATISTICSveeeiviieerieeeireeeeereens 7
XML DEFINITIONS FOR RFIDSCANNER DEVICE STATISTICS......ccocteeieriierreeneenns 8
XML DEFINITIONS FOR SCALE DEVICE STATISTICS......cceottertierieenieenreeieesreenneenns 8
XML DEFINITIONS FOR SCANNER DEVICE STATISTICSceevvterireeieenieesereenireeneenee 9
XML DEFINITIONS FOR SIGNATURECAPTURE DEVICE STATISTICScccveeennennn. 9
XML DEFINITIONS FOR TONEINDICATOR DEVICE STATISTICSccveevveeieerreeneene 9

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
xlii Table of Contents

UnifiedPOS Version 1.15 -- May 11, 2018

What Is UnifiedPOS?:

Intro-1

INTRODUCTION AND ARCHITECTURE

UnifiedPOS Architecture for Retail

What Is UnifiedPOS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural
specification for application interfaces to point-of-service devices that are used in
the retail environment. This standard is both operating system independent and
language neutral and defines:

An architecture for application interface to retail devices.

A set of retail device behaviors sufficient to support a range of POS solutions.

The UnifiedPOS standard will include:

The UnifiedPOS Retail Peripheral Architecture overview.

Text descriptions of the interface to the functions of the device.

UML terminology and diagrams for each device category, to describe:
* Relationships between classes/interfaces and objects in the system.

Basis for creating C++, Java, IDL, or other OO technology to implement the
UML design.

Operational characteristics and details for implementations which are
compliant to the UnifiedPOS architecture. These were added in the
Appendices for UnifiedPOS starting in Version 1.6. As new Implementations
become available, additional Appendices will be added in future versions of
the standard.

The UnifiedPOS standard will not include:

Specific language API specifications.

Complete software components. Hardware providers, software providers, or
third-party providers develop and distribute these components.

Certification mechanism; this must be handled by individual language
standard committees (such as the OLE for Retail POS (OPOS), POS for .NET,
and Java for Retail POS (JavaPOS) committees).

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-2 Introduction and Architecture

About This Documentation Updated in Release 1.12

Since the release of UnifiedPOS Version 1.4, the Retail Standards’ committees
had been maintaining three separate standard documents, OPOS, JavaPOS and
UnifiedPOS. The architecture and device characteristics are identical in each of
these documents. The addition of new device categories and/or enhancements to
existing chapters required consultation and agreement on the technical content for
the each of the separate standards. However, in addition to that technical work,
there is a heavy administrative burden in generating the correct documentation
for three different versions of the standard’s specification. That process was
inherently error prone in that the same changes had to be maintained in multiple
documents. Confusion has resulted in cases where differences have inadvertently
appeared in the documentation.

In order to simplify the process and bring a higher quality of review to ongoing
modifications of the documentation, the UnifiedPOS standard committee made a
change in the process for documenting its requirements. Beginning with
UnifiedPOS Version 1.6, only the UnifiedPOS document was updated and the
structure of the documentation was changed. The main body of the
documentation includes the abstracted generic description of all device categories
plus additional general design and utilization guidelines. Specific reference
platform requirements are now found in the included Appendices that outline the
implementation information for each of the specific existing implementations,
such as OPOS, JavaPOS and POS For Dot Net. (Note: OPOS-J, the POS
Standards body from Japan, has and plans to continue to maintain a translated
Japanese version of the OPOS documentation for their developer community.)

The documentation is arranged in such a fashion that allows the new user to
gather a general education about the UnifiedPOS Standard by reading the
“Introduction and Architecture” section. This section is designed to give an
overview of the material covered in the entire standard and provide an outline of
the design features that must be adhered to for a developer to implement the
standard. For a first time reader, this section should be read and understood, as it
will make the remaining chapters and appendices more beneficial. For a familiar
user, this section may serve as a “fall-back” reference for clarification of the
requirements when developing a Device Service or usage of the Device Services
by an Application.

Following the “Introduction and Architecture”, “Chapter 1 outlines the
Properties, Methods, and Events that are Common to all peripheral devices. It is
important to understand this section and make reference to it when questions arise
on the common functionality that apply to all device classes.

The following Chapters define each of the POS peripheral devices that are
covered in the standard. The specific Properties, Methods, and Events that are
peculiar to the peripheral are defined. Any additional helpful information relevant
to the POS peripheral are also included. As new POS peripherals are added a new
chapter will be added to describe the devices unique requirements.

UnifiedPOS Version 1.15 -- May 11, 2018

What Is UnifiedPOS?: About This Documentation Intro-3

Following the Chapters describing the POS peripheral devices, Appendices are
included that outline specific details on implementation dependencies for each of
the supported Operating Systems and/or language specific development
platforms.

“Appendix A” includes the definition, goals, and deliverables for OPOS. There
are explanations for the input/output and device sharing for Microsoft’s COM
model for the operation of the interface. Event and error handling unique to this
implementation is described. It concludes with a version change history that
guides the user in understanding the evolution of the OPOS implementation of
the standard.

“Appendix B” includes the definition, goals, and deliverables for JavaPOS.
There are explanations for the input/output and device sharing for the Java model
for the operation of the interface. Event and error handling unique to this
implementation is included. It also concludes with a version change history that is
helpful to the user to understand the evolution of the JavaPOS implementation
requirements.

“Appendix C” includes the definition, goals, and deliverables for POS for .NET.
There are explanations for the input/output and device sharing for Microsoft’s
NET model for the operation of the interface and the differences from the OPOS
COM architecture that affect implementation. Event and error handling unique to
this implementation are described. It also includes a version change history
section and brief clarifications of the design philosophy.

“Appendix D” is included to provide information on the usage of XML for
peripheral message mapping. Future versions of the UnifiedPOS standard will
evolve to a greater dependence upon XML as the command and interoperability
infrastructure of choice. There is increasing interest and focus on using XML for
communicating with peripheral devices. It opens up many new possibilities for
creating Device Services that, when coupled with Universal Plug and Play
hardware connection technologies such as USB, will provide for true language
and operating system independence.

“Appendix E” incorporates an overall Change History for the documentation. It
is highly recommended that the experienced user refer to this section as an aide
for understanding the version to version documentation changes as a resource to
help in the updating of the device support and/or implementation changes
necessary to the software for efficient usage.

“Appendix F” provides some additional software reference material that may
prove helpful to the understanding of the principals and documentation constructs
that the UnifiedPOS standard incorporates. The developer is encouraged to check
this section as additional resource material will be added as the standard evolves
from version to version.

“Appendix G” includes additional hardware reference material that is pertinent
to the hardware design for compliance to the UnifiedPOS standard. The USB Plus
Power connector recommendations are outlined in this section as well.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-4

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

“Appendix H” provides information on functionality and changes that are
documented in the UnifiedPOS standard in a version that will cause a previously
defined function to be deprecated. While every attempt is made to minimize the
use of Deprecation, the reader is highly encouraged to review this section to
ensure a firm understanding of direction the standard is evolving.

“Appendix I” includes the definition, goals, and deliverables for Systems
Management. Appendix I is targeted at a systems management solution developer
who requires access to POS-specific device information. It is also targeted to the
system developer who will provide device information from within the Services
he provided.

“Appendix J” includes the definitions and deliverables for UnifiedPOS Device
Statistics. This information was previously issued in a separate document, but
starting with v1.12, the device statistics appendix was added as an appendix to the
specification

UnifiedPOS Version 1.15 -- May 11, 2018

What Is UnifiedPOS?: Goals Intro-5

Goals
The goals of UnifiedPOS are to provide:
¢ Common device architecture that is international and extends across vendors,
platforms, and retail format.
« Standards for application to device interfaces in an operating system
independent and language neutral manner.
* Reduced implementation costs for vendors to support multiple (for example,
Windows/COM, Windows/.NET, and Java) platforms because they share the
same architecture. This should produce speed to market for innovation.
* An environment avoiding competition between standards while encouraging
competition among implementations.
Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard
committees (such as JavaPOS and OLE for Retail POS (OPOS) technical
committees) to advance the architecture into platform specific documentation,
API definitions and implementations.

The specific technical implementations require:

» Platform specific implementation references. (See Appendices A, B, C, & D.)
e Source files, including:

¢ Definition files. Various interface and class files described in the
standard.

« Example files. These will include a set of sample Control classes, to
illustrate the interface presented to an application.

UnifiedPOS Relationship to Conforming Platform Mappings

The UnifiedPOS specification formalizes and documents the underlying retail
device architecture, shared by the JavaPOS, OPOS, and POS for .NET standards,
in an operating system independent and language neutral manner. The first
release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as
conformant platform mappings of the UnifiedPOS specification. In UnifiedPOS
Version 1.6, appendices were added in order to document specific implementation
details for each of these platforms. JavaPOS will be recognized as the only
UnifiedPOS conformant, operating system neutral, Java language mapping (See
Appendix B). OPOS will be recognized as the only UnifiedPOS conformant
language neutral COM mapping (See Appendix A). POS for .NET will be
recognized as the only UnifiedPOS conformant language neutral NET mapping
(See Appendix C). Future UnifiedPOS mappings to platforms other than Java,
COM, and .NET will be included as appendices to the UnifiedPOS specification
as they become available.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-6

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

This acceptance of the existing standards is based on their close conformance to a
common design model. Historically, the OPOS standards provided device
interfaces for Win32-based terminals using ActiveX technologies. The OPOS
standard was used as the starting point for JavaPOS, due to:

* Similar purposes. Both standards involved developing device interfaces for
a segment of the software community.

* Reuse of device models. The majority of the OPOS documentation specifies
the properties, methods, events, and constants used to model device behavior.
These behaviors are in large part independent of programming language.

* Reduced learning curve. Many application and hardware vendors are
already familiar with using and implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write
their code in conformance with one or both of the JavaPOS or OPOS standards.
The content of the UnifiedPOS specification, however, along with the appropriate
Appendix, will constitute the definition of how an application can be developed
to meet the UnifiedPOS standard. The standards committees do not intend to
release future versions of the specific OPOS and JavaPOS documents after the
Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET
implementation, which similarly adheres to this common approach for the access
and control of POS peripherals.

Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will
provide the language specific mapping and Programmer’s Guides. However, the
application developer who will use POS devices, the system developer who will
write POS device code, and the suppliers of POS devices for retail may be
interested in the device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the
following:

* General characteristics of POS peripheral devices.

* UnifiedPOS terminology and architecture.

* UML for reading the design.

UnifiedPOS Version 1.15 -- May 11, 2018

CONFORMANCE: Unified POS Intro-7

CONFORMANCE
Unified POS

The UnifiedPOS specification formalizes and documents the underlying retail
device architecture, shared by JavaPOS, OPOS, and POS for .NET, which
provide standard platform specific mappings of the UnifiedPOS specification.
JavaPOS, OPOS and POS for .NET also provide base classes and/or interfaces to
be used for implementations of UnifiedPOS conformant device interfaces. To be
UnifiedPOS conformant POS applications and device vendors have to provide
implementation using an appropriate platform-specific mapping.

ARTS IP Policy

This specification was originally created under the ARTS IP Policy which can be
found here: http://www.omg.org/cgi-bin/doc?retail/2017-12-01

Summary Points

1. The Policy is applicable to all members of ARTS and acceptance of this Pol-
icy will be a condition of ARTS membership. Non-members wishing to
attend technical meetings must agree in writing to accept the Policy.

2. 2. The Policy is applicable to the Data Model, ARTS XML, UnifiedPOS and
future technical committees established by the ARTS Board to develop spec-
ifications.

3. 3. The Policy permits members that disclose intellectual property to reserve
rights on how they will license its use.

4. 4. The Policy encourages members to immediately disclose upon discovery
of intellectual property that maybe embedded in ARTS specifications.

5. 5. No member is required to conduct patent searches to search for intellectual
property within ARTS specification(s.)

6. 6. Members who participate in the development of ARTS specifications must
assign representatives with reasonable knowledge in the field of work.

7. 7. The Policy establishes defined periods for review of developing draft spec-
ifications for both technical accuracy and intellectual property. A public
review period is also provided.

8. 8. Members who do not disclose intellectual property within an ARTS speci-
fication before that specification is approved by the ARTS Board, must pro-
vide a 12-month royalty-free license to all implementers, during which time
ARTS may modify the specification to remove the infringing IP and each
implementer may make appropriate resolution.

9. 9. There is a default reasonable and non-discriminatory (“RAND”) licensing
obligation for members of Work teams and Technical Committees with only
limited exceptions.UnifiedPOS specification formalizes and documents the
underlying retail device

UnifiedPOS Version 1.15 -- May 11, 2018

http://www.omg.org/cgi-bin/doc?retail/2017-12-01

UnifiedPOS Retail Peripheral Architecture
Intro-8 Introduction and Architecture

Architectural Overview

UnifiedPOS defines a multi-layered architecture in which a POS Application
interacts with the Physical or Logical Device through the UnifiedPOS Control
layer.

POS Application

UnifiedPOS Device

y
UnifiedPOS Control

¢

UnifiedPOS Service

Y
Physical (or logical) Device

Architectural Components

The POS Application (or Application) is an Application that uses one or more
UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such
as Cash Drawer and POS Printer.

Each UnifiedPOS Device is a combination of these components:

* Control for a device category. The Control class provides the interface
between the Application and the device category. It contains no graphical
component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device
category’s control will be compatible. Therefore, the Control can be
developed independently of the Service for the same device category (they
can even be developed by different companies).

UnifiedPOS Version 1.15 -- May 11, 2018

Architectural Overview: Use of UML Intro-9

Use of UML

* Service, which is a component called by the Control through the Service
Interface. The Service is used by the Control to implement UnifiedPOS-
prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with
multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or
peripheral) by calling the platform specific APIs which conform to the
UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and
some Bar Code Scanners include an integrated Scale. However with UnifiedPOS,
an application treats each of these device categories as if it were an independent
Physical Device. The UnifiedPOS Device standard developer is responsible for
presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-
exposed hardware, in which case it is called a Logical Device.

The UnifiedPOS standard includes the use of UML terminology and diagrams to
define device categories. Following is a brief description of the extensions to
UML to make it better fit the UnifiedPOS architecture (this extension is expected
and allowed by the UML, see Booch98 reference in the “UML References” on
page D-1).

Should any discrepancies exist between the UML diagrams and the specification
text, then the text takes precedence.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-10

UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture

Table of extensions to UML for UnifiedPOS.

Name

Applies to UML
Symbol

Meaning

<<capability>>

Class attribute

stereotype which flags the attribute as a
UnifiedPOS capability

<<pr0p>>

Class attribute

stereotype which flags the attribute as a
UnifiedPOS property

<<event>>

Class

stereotype to indicate that the class/interface
will be mapped to a UnifiedPOS event which in
turn is mapped to a JavaPOS event class or a
COM event for OPOS or a .NET event

exclusive-use

Class

constraint that indicates this Device Service or
Service Object follows the exclusive-use
behavior defined in the UnifiedPOS
documentation in section “Exclusive-Use
Devices” on page Intro-19.

sharable

Class

constraint that indicates this Device Service or
Service Object follows the sharable behavior
defined in the UnifiedPOS documentation in
section “Sharable Devices” on page Intro-19.

read-only

read-write

Class attribute

constraint that indicates the mutability of the
attribute. For example, in JavaPOS, read-only
attributes translate to having a getter method for
the attribute and read-write attributes have getter
and setter methods for attributes.

access after
<open>|
<open-claim>|
<open-enable>|

<open-claim-enable>

Class attribute

constraint that indicates this attribute is
accessible when the service is in the state
indicated. For example {access after opened-
claim-enable} indicates that the attribute is
accessible when the service has been opened,
claimed and enabled in the order indicated.

raises-exception

Class operation

constraint that indicates this method can throw
an exception if the implementation language
supports exception; otherwise, some mechanism
is used to notify the application that an invalid
condition occurred. A value is returned to
indicate the error.

use after

<open>|
<open-claim>|
<open-enable>|

<open-claim-enable>

Class operation

constraint that indicates this operation is
accessible when the service is in the state
indicated. For example {use after open-claim-
enable} indicates that the method is accessible
when the service has been opened, claimed and
enabled in the order indicated.

UnifiedPOS Version 1.15 -- May 11, 2018

Architectural Overview: Use of UML Intro-11

Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

] |

upos events

(from upos)

Note: This package diagram is included to give some logical structure to the
interfaces in the UnifiedPOS interfaces UML diagrams. Some implementations
may have a corresponding equivalence for the packages and some may not. Also,
note that the name ‘upos’ may be replaced by an implementation specific prefix
(eg. JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Intro-12

Introduction and Architecture

Data Types

Updated in Release 1.13

UnifiedPOS uses textual references to data types which will be defined for
specific language usage:

POS for

UnifiedPOS JavaPOS OPOS NET UML UnifiedPOS text Usage

boolean boolean BOOL bool i boolean Boolean true or false.

boolean by boolean[1] BOOL* Not used ** inout Mutable boolean.

reference boolean

binary byte[] BSTR byte[] in binary ~ Immutable array of bytes.

binary by byte[1][] BSTR* Not used ** inout Mutable array of bytes. (Both its size

reference binary and contents may be modified.)

array of byte[][] SAFEARRAY Notused ** in binary/] Immutable array of array of bytes.

binary of BSTR

byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)

int32 int LONG int or enum in int32 32-bit integer.

int32 array int[] SAFEARRAY int[] in int32 Immutable array of 32-bit integers.

of LONG array

int32 array int[1][] SAFEARRAY* Not used ** inoutint32 Mutable array of 32-bit integers. (Both

by reference of LONG array its size and contents may be modified.)

int32 by int[1] LONG* Not used ** inout int32 Mutable 32-bit integer.

reference

currency long CURRENCY decimal n 64-bit integer. Sometimes used for

or CY currency currency values where 4 decimal

places are implied. E.g., if the integer
is “1234567”, then the currency value
is ©“123.4567”. See footnote?

currency by long[1] CURRENCY* Notused ** inout Mutable 64-bit integer.

reference or CY* currency

string String BSTR string Instring Text character string. See footnote?

string by String[1] ~ BSTR* Not used ** inout Mutable text character string. (Both its

reference string size and contents may be modified.)

array of Point[] BSTR Point[] nout Immutable array of points. Used by

points point[] Signature Capture.

object Object BSTR* object nout An object. This will usually be

object subclassed to provide a Service-

specific parameter.

nls String LONG Culturelnfo in nls Operating System National Language

Support data type.

a. Six decimal place precision 1s required for all computations in conversion between currencies but 1S not
required for the representation of the solution.

b. For data elements within comma delimited string data, no leading or trailing whitespace is permitted, unless
that whitespace is part of the data element. Comma delimited string data is typically used for a series of
numbers, in which no whitespace should be included in the string.

For Java:

The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s
primitive types, such as int and boolean, are passed by value, and its primitive wrapper types, such as Integer and
Boolean, do not support modification. For strings and arrays, do not use a null value to report no information.

(130

Instead use an empty string (

) or an empty array (zero length). In some chapters, an integer may contain a “bit-

wise mask”. That is, the integer data may be interpreted one or more bits at a time. The individual bits are

numbered beginning with Bit 0 as the least significant bit.

** POS for .NET does not use “out” parameters, return values are used instead.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Introduction to Properties, Methods, and Events Intro-13

Device Behavior Models

Introduction to Properties, Methods, and Events
An application accesses a POS Device via platform specific APIs.
The three elements of UnifiedPOS standard for APIs are:

* Properties. Properties are device characteristics or settings. A type is
associated with each property, such as boolean or string. An application may
retrieve a property’s value, and it may set a writable property’s value.

* Methods. An application calls a method to perform or initiate some activity
at a device. Some methods require parameters of specified types for sending
and/or returning additional information.

* Events. A Device implementation may call back into the application via
events. The application may need to register for events. The mechanism to do
this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the
interface will be included in a table. The properties are indicated as attributes.
The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }
where:

visibility in this document is always public for application visible interfaces but is
not explicitly shown.

Name 1s the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types
defined in section “Data Types” on page Intro-12.

default-value' the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define
two such strings: read-only and read-write, which indicates the mutability of the
attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

I Not used by UnifiedPOS standard

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-14

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Methods (UML Operations)

The generic UML pattern for methods is the following:
visibility name (parameter-list): return-type-expr { property string }
where:

parameter - list is a comma separated list of formal parameters using the
following generic UML naming pattern:

kind name: type-expression (= default-value)2
where:
kind is either: ‘in’, ‘out’, or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an
additional property string called ‘raises-exception’ is defined which means that
this method can throw the exception if the implementation language supports
exception; otherwise, some mechanism is used to notify the application that an
invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes
stereotyped with the event stereotype. The generic UML pattern for events is a
UML box with the stereotype <<event>> (class diagram) with the event name
and a list of the properties. This representation is different from Properties and
Methods.

<< event >>
XxxEvent

where:
XxxEvent stands for the UnifiedPOS event name and the second compartment of
the box would contain a list of attributes for the event.

2. default-value is not used by the UnifiedPOS standard

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Initialization and Finalization Intro-15

Device Initialization and Finalization Updated in Release 1.11

Initialization

The first actions that an application must take to use a Device are:

e Obtain a reference to a Control,

* Prepare Control for the events that the application needs to receive, if
necessary.

To initiate activity with the Physical Device, an application calls the Control’s
open method:

The logicalDeviceName parameter specifies a logical device to associate with the
Device. The open method performs the following steps:

* Creates and initializes an instance of the proper Service class for the specified
name.

« Initializes many of the properties, including the descriptions and version
numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same
time. Therefore, after the Device is opened, an application might need to call the
claim method to gain exclusive access to it. Claiming the Device ensures that
other Control instances do not interfere with the use of the Device. An application
can release the Device to share it with another Control instance— for example, at
the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to
true. This value brings the Physical Device to an operational state, while false
disables it. For example, if a Scanner Device is disabled, the Physical Device will
be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the
initialization APIs - open, claim, and/or DeviceEnabled=true. The following are
recommendations for initialization-time error handling by Service implementers.
These guidelines are not mandated, however, because of the wide variation in
some hardware devices and their initialization requirements, and due to variations
in already released Services.

open Primary purpose: Initialize the software stack, including the creation of
the Service and initialization of its supporting software components.

1) The Service must fail an open API call if software initialization fails.

Example: Supporting software components are not installed or
available, so fail the API call.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-16

UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture

2)

3)

If the Service must probe the device in order to correctly set open-
time properties (such as capabilities), then the Service should fail an
open API call if it cannot access the device.

Example: A Service supports several line display models and sets the
UnifiedPOS capabilities after communicating with the device. If the
device’s port is not available or the device does not respond, then the
Service cannot complete its open work and will need to fail the API
call.

For other cases, the Service should succeed the open API call and
report a failure (if needed) later.

Example: A Service cannot open an RS232 port during open. If the
previous case (#2) above does not apply, then the Service should
succeed the open and report the port open failure during claim, if the
port is still not available.

claim Primary purpose: Acquire exclusive access to the device, for exclusive-
use devices.

1)

2)

3)

The Service must fail a claim API call if another process has claimed
the device and the claim timeout expires.

If the device is not accessible, then the Service should fail a claim
API call.

Examples: A required communications or I/O port cannot be opened
or claimed. The Service determines that the device is not present or
is offline. For each of these cases, the Service should fail the API
call.

For other cases, the Service should succeed the claim API call. This
specifically includes cases where runtime faults exist.

Examples: A POSPrinter receipt station is out-of-paper, or the
POSPrinter receipt station detects a printer jam. These are runtime
faults that occur from time to time during operation, and are user
correctable. The Service should succeed the claim. POSPrinter
runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and/or by exceptions from APIs such as
printNormal.

DeviceEnabled=true Primary purpose: Final preparation for operation and

1)

2)

application use.

If the device is not accessible, then the Service should fail a
DeviceEnabled= true API call. (Note that the device may have been
accessible at claim but is now inaccessible.)

Example: The Service determines that the device is not present or is
offline, so the Service should fail the API call.

For other cases, the Service should succeed the DeviceEnabled=true
API call. This specifically includes cases where runtime faults exist.

Examples: See claim case (#3) above.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Initialization and Finalization Intro-17

An application developer must be prepared for failures at any of the initialization
points. With the variations in hardware devices and in their Service
implementations, a well-written application will respond predictably to the widest
range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of
ports, including RS232, RS485, Parallel, USB, Ethernet, and Wireless. In
addition, devices may be powered directly by the terminal or by an external
power source. These guidelines may be applied to all of these devices. Two
examples with typical initialization follow.

Example 1: Hand-held scanner attached to a terminal's powered RS232 port.
» open: Succeed if software initialization is successful.

+ claim: Succeed if open was successful and if an attempt to communicate with
the device is successful.

» DeviceEnabled = true: Succeed if claim was successful and if an attempt
to communicate with the device is successful.

« While enabled: If the device is unplugged from the powered RS232 port,
then detect the power state change and report to the application. If the device
is later plugged back in, then detect the power state change and report to the
application. For many devices, power state changes can be accomplished by
monitoring the RS232 DSR signal. (Note that hot unplugging and plugging in
with this port type is probably not recommended by the hardware vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a
“brick”.

» open: Succeed if software initialization is successful.

« claim: Succeed if open was successful and if an attempt to communicate with
the device is successful.

- DeviceEnabled = true: Succeed if claim was successful and if an attempt
to communicate with the device is successful.

» While enabled: If the device is unplugged from the USB port or from its
power source, then detect the power state change and report to the application.
If the device is later plugged back in, then detect the power state change and
report to the application. An operating system-specific mechanism detects
power state changes, such as an open, write, or read failure with specific
failure statuses.

Notice that the general initialization handling is very similar, even though the
second example will typically require somewhat more logic within the Service to
monitor and re-initialize the device connection.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-18 Introduction and Architecture

Finalization

After an application finishes using the Physical Device, it should call the close
method. If the DeviceEnabled property is true, close disables the Device. If the
Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device
resources in a timely manner.

Summary

In general, an application follows this general sequence to open, use, and close a
Device:

Obtain a Control reference.
Prepare for events if necessary.
Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical
Device. Required for exclusive-use Devices; optional for some
sharable Devices. (See “Device Sharing Model” on page 19 for more
information).

Set the DeviceEnabled property to true to make the Physical
Device operational. (For sharable Devices, the Device may be
enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical
Device.

Call the release method to release exclusive access to the Physical
Device.

Call the close method to unlink the Service from the Control.
Release events receipt if necessary

Remove the reference to the Control

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Sharing Model Intro-19

Device Sharing Model

Devices fall into two sharing categories:

* Devices that are to be used exclusively by one Control instance.

* Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time.
However, activities that an application can perform with a Control may be
restricted to the Control instance that has claimed access to the Physical Device.

Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is
the POS printer. Due to physical or operational characteristics, an exclusive-use
device can only be used by one Control at a time. An application must call the
Device’s claim method to gain exclusive access to the Physical Device before
most methods, properties, or events are legal. Until the Device is claimed and
enabled, calling methods or accessing properties may cause a failure condition to
occur.

An application may in effect share an exclusive-use device by calling the
Control’s claim method before a sequence of operations, and then calling the
release method when the device is no longer needed. While the Physical Device
is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform
the sequence of close method followed by open method on the device), some
settable device characteristics are restored to their condition at the release.
Examples of restored characteristics are the line display’s brightness, the MSR’s
tracks to read, and the printer’s characters per line. However, state characteristics
are not restored, such as the printer’s sensor properties. Instead, these are updated
to their current values.

Sharable Devices

Some devices are sharable devices. An example is the keylock. A sharable
device allows multiple Control instances to call its methods and access its
properties. Also, it may deliver its events to multiple Controls. A sharable device
may still limit access to some methods or properties to the Control that has
claimed it, or it may deliver some events only to the Control that has claimed it.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-20

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Events

Updated in Release 1.12

UnifiedPOS architecture uses events to inform the application of various
activities or changes with the Device. The five event types follow.

Supported When A
Event Class Description Device Category
Supports...
DataEvent Input data has been placed into device Event-driven input
class-category properties.
ErrorEvent An error has occurred during event- Event-driven input
driven input or asynchronous output. -or-
Asynchronous
output
OutputCompleteEvent An asynchronous output has Asynchronous
successfully completed. output
StatusUpdateEvent A change in the Physical Device’s Status change
status has occurred. notification
Devices may be able to report device
power state. See “Device Power
Reporting Model” on page 27.
DirectlOEvent This event may be defined by a Service ~ Always, for Service-
provider for purposes not covered by specific use

the specification.

The Service must enqueue these events on an internally created and managed
queue. All events are delivered in a first-in, first-out manner. (The only exception
is that a special input error event is delivered early if some data events are also
enqueued. See “Device Input Model” on page 23.) Events are delivered by an
internally created and managed Service thread. The Service causes event delivery
by calling an event firing callback method in the Control, which then delivers the
event to the application.

The following conditions cause event delivery to be delayed until the condition is
corrected:

* The application has set the property FreezeEvents to true.
* The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page 23.)

Unless specified otherwise, properties that convey device state information (e.g.,
JrnEmpty and DrawerOpened) are kept current while the device is enabled,
regardless of the setting of the FreezeEvents property.

Rules for event queue management are:

* The Device may only enqueue new events while the Device is enabled.

* The Device delivers enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

* For input devices, the clearInput method clears data and input error events.

* For output devices, the clearOutput method clears data and output error
events.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Errors

Intro-21

Errors

Error Codes

UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods
(UML Operations)” on page Intro-14 and explanation of exceptions:

* Errors that are “invalid or bad invocations” which are recognized by the
Service validation of the request. Method invocations and property accesses
may be valid or invalid. If the action is invalid, an invalid condition is set and
the application is notified in a fashion appropriate to the platform. For specific
implementations, OPOS would produce a ResultCode other than
OPOS_SUCCESS and JavaPOS would produce an exception.

» Errors that are caused by errant device behavior and produce error events.

Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid
condition occurs. In general, the property and method descriptions in later
chapters list error codes only when specific details or information are added to
these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning
E_CLOSED An attempt was made to access a closed Device.
E CLAIMED An attempt was made to access a Physical Device that

E_NOTCLAIMED

E_NOSERVICE

E_DISABLED

E ILLEGAL

is claimed by another Control instance. The other
Control must release the Physical Device before this
access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device
before the access is legal.

An attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.

If the Physical Device is already claimed by another
Control instance, then the status E_ CLAIMED is
returned instead.

The Control cannot communicate with the Service,
normally because of a setup or configuration error.

Cannot perform this operation while the Device is
disabled.

An attempt was made to perform an illegal or
unsupported operation with the Device, or an invalid
parameter value was used.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-22 Introduction and Architecture

E NOHARDWARE The Physical Device is not connected to the system or
is not powered on.

E OFFLINE The Physical Device is off-line.

E NOEXIST The file name (or other specified value) does not exist.
E_EXISTS The file name (or other specified value) already exists.
E _FAILURE The Device cannot perform the requested procedure,

even though the Physical Device is connected to the
system, powered on, and on-line.

E TIMEOUT The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

E BUSY The current Service state does not allow this request.
For example, if asynchronous output is in progress,
certain methods may not be allowed.

E _EXTENDED A device category-specific error condition occurred.
The error condition code is held in an extended error
code.

E DEPRECATED The requested operation can not be performed since it

has been deprecated. See “Deprecation Handling” on
page Intro-38 for additional information.

When more than one error code is valid, the most descriptive code should be
selected. For example, the closed, claimed, not claimed, and disabled errors must
follow this order of error reporting precedence, from higher to lower:

E CLOSED The device must be opened.

E CLAIMED The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.

E NOTCLAIMED The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E _DISABLED The device is opened and claimed (if this is an exclusive-
use device), but not enabled.

Extended Error Code

The extended error code is set as follows:

e When the error code is E EXTENDED, the extended error code is set to a
device category-specific value, and must match one of the values given in this
document under the appropriate device category chapter.

* When the error code is any other value, the extended error code may be set by
the Service to any Service-specific value. These values are only meaningful if
an application adds Service-specific code to handle them.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Input Model Intro-23

Device Input Model Updated in Release 1.13

The standard UnifiedPOS input model for exclusive-use devices is event-driven
input. Event-driven input allows input data to be received after DeviceEnabled is
set to true. Received data is enqueued as a DataEvent, which is delivered to an
application.

If the AutoDisable property is true when data is received, then the Device will
automatically disable itself, setting DeviceEnabled to false. This will inhibit the
Device from enqueuing further input and, when possible, physically disable the
device.

When the application is ready to receive input from the Device, it sets the
DataEventEnabled property to true. Then, when input is received (usually as a
result of a hardware interrupt), the Device delivers a DataEvent. (If input has
already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status
information through its Status property. The Device places the input data plus
other information as needed into device category-specific properties just before
the event is delivered.

Just before delivering this event, the Device disables further data events by
setting the DataEventEnabled property to false. This causes subsequent input
data to be enqueued by the Device while an application processes the current
input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting
DataEventEnabled to true.

(Added in 1.13) If an application causes disabling of the device (by setting
DeviceEnabled=false, or by setting AutoDisable=true and a subsequent input
event is enqueued), then it may need logic to ignore additional data until it
reenables the device. In particular, input that is already received and enqueued
will continue to be delivered (unless the clearInput, release or close API is
called, at which time undelivered input is discarded). As stated in the Events
section, the application may control the input delivery by using the
DataEventEnabled or FreezeEvents properties.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-24 Introduction and Architecture

Error Handling Updated in Release 1.12

If the Device encounters an error while gathering or processing event-driven
input, then the Device:

e Changes its State to S ERROR.

* Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the
error condition. This event is added to the end of the queue

* Ifone or more DataEvents are already enqueued for delivery, an additional
ErrorEvent with locus EL_INPUT _DATA is enqueued before the
DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is
true, so that orderly application sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input
ErrorEvents; it leaves the DataEventEnabled property value at true. Note that
the application may set DataEventEnabled to false within its event handler if
subsequent input events need to be disabled for a period of time.

ErrorLocus Description

EL_INPUT DATA Only delivered if the error occurred when one or more
DataEvents are already enqueued.

This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error before
processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of
the error condition quickly.

This locus was created especially for the Scanner: When this
error event is received from a Scanner Device, the operator can
be immediately alerted to the error so that no further items are
scanned until the error is resolved. Then, the application can
process any backlog of previously scanned items before error
recovery is performed.

EL_INPUT Delivered when an error has occurred and there is no data
available.

If some input data was buffered when the error occurred, then
an ErrorEvent with the locus EL_ INPUT DATA was
delivered first, and then this error event is delivered after all
DataEvents have been delivered.

If the Service has partial data that can be delivered with an
ErrorEvent, the related data properties should be filled in prior
to delivery of the event with this ErrorLocus. If there is no
partial data to be delivered with the ErrorEvent, the data
properties should be cleared prior to delivery of this event.

Note: This EL_INPUT event is not delivered if: an
EL _INPUT_DATA event was delivered and the application
event handler responded with an ER_CLEAR error response.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Input Model Intro-25

The application can cause the ErrorResponse property to be set one of the

following:
ErrorResponse Description
ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit

the error state, changing State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT This response acknowledges the error and directs the
Device to continue processing. The Device remains in the
error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all
input has been delivered and the DataEventEnabled
property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.

This is the default response when the locus is
EL_INPUT_DATA, and is legal only with this locus.

ER_RETRY This response directs the Device to retry the input. The
error state is exited, and State is changed to S_IDLE.
This response may only be selected when the device

chapter specifically allows it and when the locus is
EL_INPUT. An example is the scale.

The Device exits the Error state when one of the following occurs:

* The application returns from the EL_INPUT ErrorEvent.

* The application calls the clearInput method.

* The application returns from the EL_ INPUT DATA ErrorEvent with
ErrorResponse set to ER_CLEAR.

Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven
input. After the input is received by the Device, then typically no additional input
will be received until the method is called again to reinitiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the
Device.

Calling the clearInput method deletes all input enqueued by a Device.
clearInput may be called after open for sharable devices and after claim for
exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were
populated as a result of firing a DataEvent or ErrorEvent, back to their default
values. This call does not reset the DataCount or State properties.

The general event-driven input model does not specifically rule out the definition
of device categories containing methods or properties that return input data
directly. Some device categories define such methods and properties in order to
operate in a more intuitive or flexible manner. An example is the Keylock device.
This type of input is sometimes called “synchronous input.”

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-26 Introduction and Architecture

Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and
asynchronous. A device category may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device
does not return until the output is completed; this means the physical device has
performed the intended operation. For example the printer has successfully
transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively
quickly. Its merit is simplicity.

Asynchronous Output Updated in Release 1.13

The application calls a category-specific method to start the output. The Device
validates the method parameters and produces an error condition immediately if
necessary. If the validation is successful, the Device does the following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the
Physical Device can receive and process it.

2. Sets the OutputID property to a unique integer identifier for this request. (For more
information about the QutputID property, see page 12.)

3. Returns as soon as possible.

When the Device successfully completes a request, an QutputCompleteEvent is
enqueued for delivery to the application. A property of this event contains the
output ID of the completed request. The application should compare the returned
OutputCompleteEvent property OutputID value with the OutputID value set
by the asynchronous process method call used to send the data in order to track
what data has been successfully sent to the device. If the request is terminated
before completion, due to reasons such as the application calling the clearOutput
method or responding to an ErrorEvent with a ER_CLEAR response, then no
OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which
will be delivered to the application after the events already enqueued, including
OutputCompleteEvents (according to the normal Event delivery rules on page
20). No further asynchronous output will occur until the event has been delivered
to the application. If the response is ER_CLEAR, then outstanding asynchronous
output is cleared. If the response is ER_RETRY, then output is retried; note that if
several outputs were simultaneously in progress at the time that the error was
detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Power Reporting Model Intro-27

Device Power Reporting Model Updated in Release 1.8

Applications frequently need to know the power state of the devices they use.
Note: This model is not intended to report Workstation or POS Terminal power
conditions (such as “on battery” and “battery low”). Reporting of these conditions
is now managed by the POSPower device category, see page 1.

Model

UnifiedPOS architecture segments device power into three states:
* ONLINE. The device is powered on and ready for use. This is the
“operational” state.

* OFF. The device is powered off or detached from the terminal. This is a “non-
operational” state.

* OFFLINE. The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or it
may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

* OFF_OFFLINE. The device is either off or offline, and the Service cannot
distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)

If a device is “offline”, then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-28

UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture

Power State Diagram

[Device is closed]

PowerState Unknown
PS_UNKNOWN

|
Device is glosed]
|

Known PowerStates

[Device is Off or Offline]

pem

Off/Offline States

PowerState Standard Off/Offline
PS_OFF_OFFLINE

v —
PowerState Online I
PS_ONLINE
|
[CapPowerReporti‘ng == PR_ADVANCED]

v
Advanced Off/Offline States

PowerState Advanced Offline
PS_OFFLINE

|
[Device is Off] (; [Device is Offline]

PowerState Advanced Off
PS_OFF

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Power Reporting Model Intro-29

Power Properties

The UnifiedPOS device power reporting model adds the following common
elements across all device classes.

* CapPowerReporting property. Identifies the reporting capabilities of the
device. The UML pattern for the property is:
PR _xxx : int32 { frozen }
This property may be one of:
* PR NONE. The Service cannot determine the state of the device.

Therefore, no power reporting is possible.

PR _STANDARD. The Service can determine and report two of the power
states - OFF_OFFLINE (that is, off or offline) and ONLINE.

* PR _ADVANCED. The Service can determine and report all three power
states - ONLINE, OFFLINE, and OFF.

* PowerState property. Maintained by the Service at the current power
condition, if it can be determined. The UML pattern for the property is:

PS_xxx :int32 { frozen }
This property may be one of:

« PS_UNKNOWN

« PS_ONLINE

- PS OFF

« PS_OFFLINE

.« PS_OFF_OFFLINE

* PowerNotify property. The application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation
of power notification with no adverse effects on the application. The
application is either prepared to receive notifications or doesn't want them,
and has no need to switch between these cases. The UML pattern for the
property is:

PN_xxx : int32 { frozen }
This property may be one of:

PN _DISABLED
« PN _ENABLED

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-30

UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture

Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN ENABLED:

When the Control changes from DeviceEnabled false to true, then begin
monitoring the power state:

o Ifthe Physical Device is ONLINE, then:
PowerState is set to PS_ONLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_ONLINE.

» Ifthe Physical Device’s power state is OFF, OFFLINE, or
OFF_OFFLINE, then the Service may choose to fail the enable by
notifying the application with error code E NOHARDWARE or
E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Service chooses to return success for the enable, then:

PowerState is set to PS_OFF, PS_OFFLINE, or
PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_OFF, SUE POWER OFFLINE, or
SUE POWER_OFF_OFFLINE.

When the Device changes from DeviceEnabled true to false, UnifiedPOS
assumes that the Device is no longer monitoring the power state and sets the
value of PowerState to PS UNKNOWN

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Information Reporting Model Intro-31

Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to
monitor the current configuration and usage metrics of the various POS devices
that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware
Version, and Connection Type. Examples of usage data for the POSPrinter device
are the Number of Lines Printed, Number of Hours Running, Number of paper
cuts, etc. Examples of usage data for the Scanner device are the Number of scans,
Number of Hours Running, etc. Examples of usage data for the MSR device are
the Number of successful swipes, Number of swipes resulting in errors, Number of
Hours Running, etc. See below for examples of XML definitions of the device
statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In
other cases, the data may be accumulated by the Service and stored, possibly on
the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System
Management application) to obtain statistics from the same device, proper care
must be taken by both applications so that the device can be made accessible
when required. This is done by using the claim method and by setting
DeviceEnabled to true when access to a device is required and then setting
DeviceEnabled to false and using the release method when access to the device
is no longer needed. Coordination of device access via this mechanism is the
responsibility of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common
properties and methods across all device classes.

* CapStatisticsReporting property. Identifies the reporting capabilities of the
device. When CapStatisticsReporting is false, then no statistical data
regarding the device is available. This is equivalent to Services compatible
with prior versions of the specification. When CapStatisticsReporting is
true, then some statistical data for the device is available.

* CapUpdateStatistics property. Defines whether gathered statistics (or some
of them) can be reset/updated by the application. This property is only valid if
CapStatisticsReporting is true. When CapUpdateStatistics is false, then
none of the statistical data can be reset/updated by the application. Otherwise,
when CapUpdateStatistics is true, then (some of) the statistical data can be
reset/updated by the application.

* resetStatistics method. Can only be called if both CapStatisticsReporting
and CapUpdateStatistics are true. This method resets one, some, or all of the
resettable device statistics to zero.

* retrieveStatistics method. Can only be called if CapStatisticsReporting is
true. This method retrieves one, some, or all of the accumulated statistics for
the device.

* updateStatistics method. Can only be called if both CapStatisticsReporting
and CapUpdateStatistics are true. This method updates one, some, or all of
the resettable device statistics to the supplied values.

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-32

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

XML Definitions for POS Device Statistics

The XML files containing the UnifiedPOS defined statistics for each device
category are provided as downloads from the web sites that also host this
specification. These statistics can be referenced individually by name or as a
group using the “U_" string as (part of) the parameter to the statistics methods.

Manufacturers/Service providers can add their specific statistics in the provided
“ManufacturerSpecific” section. These statistics can be referenced individually
by name or as a group using the “M_” string as (part of) the parameter to the
statistics methods.

The following table contains the definitions of the information contained in the
UnifiedPOS defined Devicelnformation section covering all device categories.

<DeviceInformation>
Definition description

XML Definition Name
UnifiedPOSVersion Version of the UnifiedPOS specification supported
DeviceCategory Device category (e.g., POSPrinter)
ManufacturerName Device manufacturer’s name
ModelName Device model name
SerialNumber Device serial number
ManufactureDate Device manufacture date
MechanicalRevision Device hardware revision
FirmwareRevision Device firmware revision
Interface Device hardware interface (e.g., serial, USB)
InstallationDate Device installation date

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device Information Reporting Model Intro-33

The following is an example of the XML file that describes the “UnifiedPOS”
defined statistics for the CashDrawer device category.

<?xml version='1.0’ ?>
<UPOSStat version="1.13.0” xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance” xmlns="http://www.omg.org/UnifiedP0OS/
namespace/” xsi:schemalocation="http://www.omg.org/UnifiedPOS/
namespace/UPOSStat.xsd” >
<Event>
<Parameter>
<Name>DrawerGoodOpenCount</Name>
<Value>1353</Value>
</Parameters>
<Parameter>
<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>
</Parameters>
<ManufacturerSpecifics>
<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasures>meters</unitofmeasures>
</ManufacturerSpecifics>
</Event>
<Equipment >
<UnifiedPOSVersion>1.13</UnifiedPOSVersions>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName >
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevisions>
<FirmwareRevision>1.0 Rev. B</FirmwareRevisions>
<Interface>RS8232</Interface>
<InstallationDate>2000-03-01l</InstallationDate>
</Equipment>
</UPOSStat>

The most up-to-date files defining the XML tag names that conform to the ARTS Data

Dictionary and example schemas for the statistics for all device categories can be
downloaded from the ARTS web site at http://retail.omg.org

UnifiedPOS Version 1.15 -- May 11, 2018

http://www.nrf-arts.org
http://www.nrf-arts.org

UnifiedPOS Retail Peripheral Architecture
Intro-34 Introduction and Architecture

Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the
various POS devices that are attached to the POS terminal. This model defines a
consistent application interface for updating the firmware in a device controlled
by a UnifiedPOS control.

This model has the following capabilities:

* A property, CapUpdateFirmware, that indicates whether a device supports
firmware updating.

* A property, CapCompareFirmwareVersion, that indicates whether a
firmware file’s version can be compared against the firmware version of the
device.

* A method, updateFirmware, to perform an asynchronous update of the
firmware in a device.

* A method, compareFirmwareVersion, to compare the firmware file’s
version against the firmware version of the device.

* Additional StatusUpdateEvent Status values to report the progress of an
asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its
progress via StatusUpdateEvents. This update firmware process applies to all
device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not
covered by this document, only the means by which the update firmware process
is started and progress is reported.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Device States Intro-35

Device States

UnifiedPOS defines a property State with the following values:

S _CLOSED
S IDLE

S BUSY

S _ERROR

The State property is set as follows:

« State is initially S CLOSED.
* State is changed to S_IDLE when the open method is successfully called.

e State is set to S_ BUSY when the Service is processing output. The State is
restored to S_IDLE when the output has completed.

* The State is changed to S ERROR when an asynchronous output encounters
an error condition, or when an error is encountered during the gathering or
processing of event-driven input.

After the Service changes the State property to S ERROR, it notifies the
application of this error. The properties of this event are the error code and
extended error code, the locus of the error, and a mutable response to the error.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-36 Introduction and Architecture

Device State Diagram

Closed
State == S_CLOSED

m
/closé‘

|
Opened

/open

[async output in progress]

Idle e e & Busy
State == S_IDLE State == S_BUSY
o

[async oufputerrororinput event error]

[error eventdone and no async oufput]

Error
State == S_ERROR

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Version Handling Intro-37

Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of
some Devices. UnifiedPOS imposes the following requirements on Control and
Service versions:

Control requirements. A Control for a device category must operate with
any Service for that category, as long as its major version number matches the
Service's major version number. If they match, but the Control's minor version
number is greater than the Service’s minor version number, then the Control
may support some new methods or properties that are not supported by the
Service’s release. If an application calls one of these methods or accesses one
of these properties, the application will be notified of an error condition
(E_NO_SERVICE).

Service requirements. A Service for a device category must operate with any
Control for that category, as long as its major version number matches the
Control's major version number. If they match, but the Service's minor version
number is greater than the Control's minor version number, then the Service
may support some methods or properties that cannot be accessed from the
Control.

When an application wishes to take advantage of the enhancements of a version,

it must first determine that the Control and Service are at the proper major version
and at or greater than the proper minor version. The versions are reported by the

properties DeviceControlVersion (see page 9) and DeviceServiceVersion (sce

page 11).

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-38 Introduction and Architecture

Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the
specification, a method of deprecation is required in order to eliminate these
items over time.

Deprecation can be applied to Properties and Methods, as well as parameters,
constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to
support the element’s functionality for the following two minor releases of the
standard. Starting with the third release of the standard after an element has been
marked as deprecated, usage of the element will result in an E DEPRECATED
status.

When an element is marked as deprecated, then support for the element will be
removed from the standard in the next major release of the standard after it is
marked as deprecated.

All deprecated elements and the related versions when they were first marked as
deprecated are listed in Appendix H, Deprecation History on page H-1.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Hydra Device Considerations Intro-39

Hydra Device Considerations Updated in Release 1.12

Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that
the most flexible methodology would be to have an application be able to
communicate to a peripheral through a two-layer process. Since the Microsoft’s
COM platform was the first supported architecture, Control Object and Service
Object names were chosen. Later when Java was defined and the technology used
precluded the use of “objects” as defined in the Windows world, the names were
closely linked using the terminology Device Control and Device Service.
Functionality however at the higher, abstracted level, remained the same.

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what is commonly
called “connecting the pipes” wherein a communication port would be opened
and a device name would be assigned so that the application is able to
communicate to the peripheral using that device name.

Service Object or Device Service (Service)

This incorporates usually vendor-specific code that interfaces with the peripheral
device to allow for accessing, monitoring, processing, all the functionality of the
peripheral device and exposing it to a common set of properties, methods, and
events that an application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the
most simplistic system one instance of a Control is instantiated to connect to the
Service. As example for a simple POSPrinter:

Note that only one physical connection port (RS-232 for example) is used in this example...

Application

A

Control

A

Service
Service for Functionality of Peripheral
Device and supports Physical

Connection to the Peripheral Device
A

y

POS Receipt
Printer

UnifiedPOS Version 1.15 -- May 11, 2018

Intro-40

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Keeping things simple but adding another level of complexity is the case when
more than one application needs to use the device. In this case, another Control is
instantiated to the peripheral Service and all applications need to recognize that
the peripheral is capable of being shared (for this example, assuming a shareable
device) and utilize the claim and release methodology that the standard provides.
In the POSPrinter example, this would look like...

Note that only one physical connection port (RS-232 for example) is used in this example...

Application One Application Two
A A
A 4 \ 4
Control One Control Two
y A
A 4 \ 4
Service

Service for Functionality of Peripheral Device and
supports Physical Connection to the Peripheral
Device

A

POS Receipt
Printer

Note, that as far as each application is concerned, it is connected to the peripheral
device and only one physical connection to the device is required... via the RS-
232 serial connection in this example. This served the needs of device sharing
where cooperating applications were utilized.

Multi-Function (Hydra) Peripheral Devices

The model needed to be expanded to cover the peripherals that
include multiple device class functionality in a single unit. An
example of such a device is a POS printer that may have
additional functionality of being able to control a Customer
Line Display, Cash Drawer, MICR, or other devices. These
peripherals are referred to as “Hydra” peripherals alluding to
the Greek mythology of a multi-headed animal that was
connected to a single body interface.

In the interaction of POS peripherals, the interface to the Application needs to be
agnostic in its knowledge in either of the following cases...one where multiple
physical peripheral devices are used or the other where one physical peripheral
device incorporates the functionality of multiple physical peripheral devices.

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232
serial ports for instance) are required...one for each of the physical peripheral
devices.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Hydra Device Considerations Intro-41

In a Hydra peripheral only one “pipe” is required and it is used to communicate
with all the various Device peripheral functionality of the connected peripheral
device.

For example, consider the cases where in one instance a separate POSPrinter
device and a separate MICR device is present; in another instance, a Hydra
POSPrinter that has an incorporated MICR reader. The “look” to the
Application(s) has to be agnostic...it should not care nor should it have to know
which type of hardware device(s) are physically present. Ideally it should be able
to use the same Application code to interact with either of the two
implementations. For example:

Application interfacing with two distinct peripherals...

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control
A A
A\ 4 A4
MICR Service POSPrinter Service
Separate Physical Separate Physical
Device Device
RS-232 Port 1 RS-232 Port 2

Note that in this case the application running the MICR and the POSPrinter
consumes two separate ports but as far as the Application is concerned it
interfaces to the MICR and POSPrinter functionality without regard to the fact
that the two ports are used.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-42 Introduction and Architecture

Application interfacing with a Hydra peripheral...

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control

v t v i

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One
Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function

Note that in this case the application running the MICR and POSPrinter
consumes only one port but as far as the application is concerned it interfaces to
the MICR and POSPrinter functionality without regard to the fact that only one
port is used. It is up to the Hydra Service to control the port and route the
functionality to and from the proper interface.

Considerations

While the desire is to have both interconnection techniques work the same with
regards to the Application interface, problems do arise. In the Hydra case, an
error state in one of the specific device functions may block the usage of the other
function. This would not happen in the non-Hydra case since each peripheral is
truly separate.

In our Printer and MICR Hydra case, the printer running out of paper might
present a condition that would prevent reading a MICR code for instance. An
error condition of “Out of Paper” would be reported through the POSPrinter
interface but would not have any meaning to a route through the MICR interface.
The Application requesting a MICR read in the Hydra case would be presented
with an error or status condition that it would not get in the discrete MICR
peripheral case. This presents a potential “hang up” condition or unresolved error
situation.

Obviously an error condition needs to be reported to the application that is using
the MICR functionality to alert it of a problem and allow for resolution. Rather
than reporting a meaningless error of “Out of Paper” to the MICR application, a
general E_FAILURE error would be sent back to the MICR application to alert it
of the problem. The MICR application would then be responsible to go through
an error recovery procedure to rectify the situation. It would go through an error
recover operation that would present a console message informing the operator of
an impending problem with usage of the MICR device.

UnifiedPOS Version 1.15 -- May 11, 2018

Device Behavior Models: Hydra Device Considerations Intro-43

Operator knowledge of the specific device would then be used to correct the
problem. In this case knowing that the MICR is part of the printer would focus the
attention of the Operator to the “Paper Out” status indicator. The resolution would
be to replace the paper which would then clear the error condition for the MICR
as well as the Printer.

Notice that every attempt is made to make the interaction with the peripheral
device or Hydra peripheral device “look the same” to the application. Careful
Service design needs to be used to make sure this is accomplished. Device
vendors should define any limitations and unusual error conditions that may exist
when accessing such hydra devices in their user documentation. Application
developers should be aware of the possibility of discrete and Hydra POS devices
when crafting their software and plan their error resolution accordingly.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
Intro-44 Introduction and Architecture

UnifiedPOS Version 1.15 -- May 11, 2018

Summary

11

CHAPTER 1

Common Properties, Methods, and Events

Summary

The following Properties, Methods, and Events are used for all device categories
unless noted otherwise in the Usage Notes table entry. For an overview of the
general rules and guidelines, see “Device Behavior Models" on page Intro-13.

Updated in Release 1.10

The following property list is a summary of the JavaPOS Common Properties.
This list is used throughout the main UnifiedPOS chapters. Further details may be
found in Appendix B, “Common Properties” on page B-62.

The OPOS implementation adds the following Common Properties:
BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.

Also, the last six properties are replaced by:
ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription,
ServiceObjectVersion, DeviceDescription, and DeviceName.

Further details may be found in Appendix A, “Common Properties” on page A-26.

Properties (UML attributes)

e . Usage

Name Type Mutability Version No tfs
AutoDisable: boolean { read-write } 1.2 1
CapCompareFirmwareVersion: boolean { read-only } 1.9
CapPowerReporting: int32 { read-only } 1.3
CapStatisticsReporting: boolean { read-only } 1.8
CapUpdateFirmware: boolean { read-only } 1.9
CapUpdateStatistics: boolean { read-only } 1.8
CheckHealthText: string { read-only } 1.0
Claimed: boolean { read-only } 1.0
DataCount: int32 { read-only } 1.2
DataEventEnabled: boolean { read-write } 1.0
DeviceEnabled: boolean { read-write } 1.0
FreezeEvents: boolean { read-write } 1.0
OutputlD: int32 { read-only } 1.0 2
PowerNotify: int32 { read-write } 1.3
PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0
DeviceControlDescription: string { read-only } 1.0
DeviceControlVersion: int32 { read-only } 1.0
DeviceServiceDescription: string { read-only } 1.0
DeviceServiceVersion: int32 { read-only } 1.0
PhysicalDeviceDescription: string { read-only } 1.0
PhysicalDeviceName: string { read-only } 1.0

Usage Notes:
1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

UnifiedPOS Version 1.15 -- May 11, 2018

1-2

UnifiedPOS Retail Peripheral Architecture

Chapter 1
Common Properties, Methods, and Events

Methods (UML operations)

Name Version

open (logicalDeviceName: string): 1.0
void { raises-exception }

close (): 1.0
void { raises-exception }

claim? (timeout: int32): 1.0
void { raises-exception }

release® (): 1.0
void { raises-exception }

checkHealth (level: int32): 1.0
void { raises-exception }

clearInput (): 1.0
void { raises-exception }

clearInputProperties (): 1.10
void { raises-exception }

clearOutput (): 1.0
void { raises-exception }

directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception }

updateStatistics (statisticsBuffer: string): 1.8

void { raises-exception }

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively
due to Release being a reserved method used by Microsoft’s Component

Object Model (COM).

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 1-3
Events (UML interfaces)
- . Usage

Name Type Mutability Version Notes
upos::events::DataEvent 1.0 1

Status: int32 { read-only }
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent 1.0

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse: int32 { read-write }
upos::events::QutputCompleteEvent 1.0 2

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.0

Status:

Usage Notes:

int32 { read-only }

1.Used only with Devices that have Event Driven Input.
2.Used only with Asynchronous Output Devices.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-4 Common Properties, Methods, and Events

General Information

This section lists properties, methods, and events that are common to many of the
peripheral devices covered in this standard.

The summary section of each device category marks those common properties,
methods, and events that do not apply to that category as “Not Supported.” Items
identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is
required. Please see “Device Behavior Models" on page Intro-13 for additional
information.

Common PME Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the Common classes.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

1-5

<<Interface>>
BaseControl
(fromupos)

<<event>>
UposEvent

(fromevents)

<fires

gr<<capability>> CapCompareFirmwareVersion : boolean
<<capability>> CapPowerReporting : int32
cz<<capability>> CapStatisticsReporting : boolean
<<capability>> CapUpdateFirmware : boolean
«z<<capability>> CapUpdateStatistics : boolean
<<<prop>> AutoDisable : boolean

<<prop>> CheckHealthText : string
<<prop>> Claimed : boolean

#<<prop>> DataCount : int32

<<prop>> DataEventEnabled : boolean
«#<<prop>> DeviceEnabled : boolean
<<prop>> FreezeEvents : boolean
<<prop>> OutputID : int32

<<prop>> PowerNotify : int32

<<prop>> PowerState : int32

<<prop>> State : int32

«#<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceSeniceDescription : string
w<<prop>> DeviceSeniceVersion : int32
<<prop>> PhysicalDeviceDescription : string
z<<prop>> PhysicalDeviceName : string

<<uses>>/"

Fopen(logicalDeviceName : string) : void

close() : void

claim(timeout : int32) : void
®compareFirmwareVersion(firmwareFileName : string, out result : int32) : void
Brelease() : void

¥resetStatistics(statisticsBuffer : string) : void

®checkHealth(level : int32) : void

®clearinput() : woid

®clearlnputProperties() : void

clearOutput() : void

®directlO(command : int32, inout data : int32, inout obj : Object) : void
retrieveStatistics(inout statisticsBuffer : string) : void
BupdateFirmware(firmwareFileName : string) : void

SupdateStatistics (statisticsBuffer : string) : void

<<utility>>
UposConst

(from upos)

/
<<’&ses>>
\
\

<<uses>>
[T 7

\ <<54ndsé,

T 4 R 5

<<uses>>

\ <<sends>>
<<sends>> \

<<exception>>
UposException

I (from upos)
/ ’, <<sends>>
/ /é<sends>>
[
<<Interface>> <<Interface>> <<Interface>> <<interface>>
BumpBarControl MSRControl POSPrinterControl <DevCat>Control
(from upos) (from upos) (from upos) (from upos)
<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...
Notes: AutoDisable, DataCount, and DataEventEnabled are used only with

Devices that have Event Driven Input.
OutputID is used only with Asynchronous Output Devices.

UnifiedPOS Version 1.15 -- May 11, 2018

1-6

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Properties (UML attributes)
AutoDisable Property

Syntax

Remarks

Errors

See Also

AutoDisable: boolean { read-write }

If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives
and enqueues data as a DataEvent. Before any additional input can be received,
the application must set DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when
data is received.

This property provides the application with an additional option for controlling the
receipt of input data. If an application wants to receive and process only one input,
or only one input at a time, then this property should be set to true. This property
applies only to event-driven input devices.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Input Model" on page Intro-23.

CapCompareFirmwareVersion Property Revised in Release 1.14

Syntax

Remarks

Errors

See Also

CapCompareFirmwareVersion: boolean { read-only, access after open }

If true, then the Service/device supports comparing the version of the firmware in
the physical device against that of a firmware file; initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

compareFirmwareVersion Method.

CapPowerReporting Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

CapPowerReporting: int32 { read-only }

Identifies the reporting capabilities of the Device. It has one of the following
values:

Value Meaning

PR NONE The UnifiedPOS Service cannot determine the state of
the device. Therefore, no power reporting is possible.

PR STANDARD The UnifiedPOS Service can determine and report two
of the power states - OFF_OFFLINE (that is, off or
offline) and ONLINE.

PR _ADVANCED The UnifiedPOS Service can determine and report all
three power states - OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Power Reporting Model" on page Intro-27, PowerState Property,
PowerNotify Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 1-7

CapStatisticsReporting Property Added in Release 1.8

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage;
otherwise no usage statistics are accumulated. The information accumulated and
reported is device specific, and is retrieved using the retrieveStatistics method.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also retrieveStatistics Method.

CapUpdateFirmware Property Updated in Release 1.14

Syntax CapUpdateFirmware: boolean { read-only, access after open }

Remarks If true, then the device’s firmware can be updated via the updateFirmware
method; initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also updateFirmware Method.

CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the
resetStatistics method, or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics

Method.

CheckHealthText Property

Syntax

Remarks

Errors

See Also

CheckHealthText: string { read-only }

Holds the results of the most recent call to the checkHealth method. The
following examples illustrate some possible diagnoses:

* “Internal HCheck: Successful”

» “External HCheck: Not Responding”

e “Interactive HCheck: Complete”

This property is empty (“”’) before the first call to the checkHealth method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21

checkHealth Method.

UnifiedPOS Version 1.15 -- May 11, 2018

1-8

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Claimed Property

Syntax

Remarks

Errors

See Also

Claimed: boolean { read-only }

If true, the device is claimed for exclusive access. If false, the device is released
for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Initialization and Finalization" on page Intro-15, “Device Sharing
Model" on page Intro-19, claim Method, release Method.

DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: in#32 { read-only }
Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Input Model" on page Intro-23, DataEvent.

DataEventEnabled Property

Syntax

Remarks

Errors

See Also

DataEventEnabled: boolean { read-write }

Iftrue, a DataEvent will be delivered as soon as input data is enqueued. If changed
to true and some input data is already queued, then a DataEvent is delivered
immediately. (Note that other conditions may delay “immediate” delivery: if
FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until
the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input
error occurs, the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Events" on page Intro-20, DataEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 1-9

DeviceControlDescription Property

Syntax

Remarks

Errors

See Also

DeviceControlDescription: string { read-only }
Holds an identifier for the UnifiedPOS Control and the company that produced it.
A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998
Epson”

This property is always readable.
None.

DeviceControlVersion Property.

DeviceControlVersion Property

Syntax

Remarks

Errors

See Also

DeviceControlVersion: int32 { read-only }
Holds the UnifiedPOS Control version number.
Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control
developer. Updated when corrections are made to the
UnifiedPOS Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major
version 1, minor version 2, build 38 of the UnifiedPOS Control.

This property is always readable.
None.

“Version Handling" on page Intro-37, DeviceControlDescription Property.

UnifiedPOS Version 1.15 -- May 11, 2018

1-10

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

DeviceEnabled Property

Syntax

Remarks

Errors

See Also

DeviceEnabled: boolean { read-write }

If true, the device is in an operational state. If changed to true, then the device is
brought to an operational state.

If false, the device has been disabled. If changed to false, then the device is
physically disabled when possible, any subsequent input will be discarded, and
output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to true before using
output devices.

The Device’s power state may be reported while DeviceEnabled is true; See
“Device Power Reporting Model" on page Intro-27 for details.

This property is initialized to false by the open method. Note that an exclusive use
device must be claimed before the device may be enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Initialization and Finalization" on page Intro-15.

DeviceServiceDescription Property

Syntax

Remarks

Errors

DeviceServiceDescription: string { read-only }
Holds an identifier for the UnifiedPOS Service and the company that produced it.
A sample returned string is:

“TM-U950 Printer UnifiedPOS Compatible Service Driver,
(C) 1998 Epson”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 1-11

DeviceServiceVersion Property

Syntax

Remarks

Errors

See Also

DeviceServiceVersion: int32 { read-only }
Holds the UnifiedPOS Service version number.
Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service
developer. Updated when corrections are made to the
UnifiedPOS Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Version Handling" on page Intro-37, DeviceServiceDescription Property.

UnifiedPOS Version 1.15 -- May 11, 2018

1-12

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

FreezeEvents Property Updated in Release 1.12

Syntax

Remarks

Errors

FreezeEvents: boolean { read-write }

If true, the UnifiedPOS Control will not deliver events. Events will be enqueued
until this property is set to false.

If false, the application allows events to be delivered. If some events have been
held while events were frozen and all other conditions are correct for delivering
the events, then changing this property to false will allow these events to be
delivered. An application may choose to freeze events for a specific sequence of
code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g.,
JrnEmpty and DrawerOpened) are kept current while the device is enabled,
regardless of the setting of this property.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

OutputID Property

Syntax

Remarks

Errors

See Also

OutputID: int32 { read-only }
Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns
an identifier to the request. When the output completes, an
OutputCompleteEvent will be enqueued with this output ID as a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are
guaranteed to be unique among the set of outstanding asynchronous outputs. No
other facts about the ID should be assumed.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Output Models" on page Intro-26, OutputCompleteEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 1-13

PowerNotify Property

Syntax

Remarks

Errors

See Also

PowerNotify: int32 { read-write }

Contains the type of power notification selection made by the Application. It has
one of the following values:

Value Meaning

PN _DISABLED The UnifiedPOS Service will not provide any power
notifications to the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while
DeviceEnabled is false.

This property is initialized to PN_DISABLED by the open method. This value
provides compatibility with earlier releases.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following occurred:
* The device is already enabled.

* PowerNotify = PN _ENABLED but
CapPowerReporting = PR NONE.

“Device Power Reporting Model" on page Intro-27, CapPowerReporting
Property, PowerState Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1

1-14

Common Properties, Methods, and Events

PowerState Property

Updated in Release 1.11

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value

Meaning

PS UNKNOWN

PS_ONLINE

PS_OFF

PS OFFLINE

PS_OFF_OFFLINE

Cannot determine the device’s power state for one of the
following reasons:

CapPowerReporting =PR_NONE; the device does not
support power reporting.

PowerNotify = PN DISABLED; power notifications
are disabled.

DeviceEnabled = false; Power state monitoring does
not occur until the device is enabled.

The device is powered on and ready for use. Can be
returned if CapPowerReporting=PR_STANDARD or
PR_ADVANCED.

The device is powered off or detached from the POS
terminal. Can only be returned if CapPowerReporting
=PR_ADVANCED.

The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR ADVANCED.

The device is either off or off-line. Can only be returned
if CapPowerReporting = PR_STANDARD.

This property is initialized to PS_ UNKNOWN by the open method. When
PowerNotify is set to enabled and DeviceEnabled is true, then this property is
updated as the UnifiedPOS Service detects power condition changes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also “Device Power Reporting Model" on page Intro-27, CapPowerReporting
Property, PowerNotify Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 1-15

PhysicalDeviceDescription Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceDescription: string { read-only }
Holds an identifier for the physical device.
A sample returned string is:
“NCR 7192-0184 Printer, Japanese Version”
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

PhysicalDeviceName Property.

PhysicalDeviceName Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceName: string { read-only }

Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

PhysicalDeviceDescription Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1
116 Common Properties, Methods, and Events

State Property
Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning

S CLOSED The Device is closed.

S IDLE The Device is in a good state and is not busy.

S BUSY The Device is in a good state and is busy performing
output.

S _ERROR An error has been reported, and the application must
recover the Device to a good state before normal I/O can
resume.

This property is always readable.
Errors None.

See Also “Device Information Reporting Model" on page Intro-31.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 117

Methods (UML operations)

checkHealth Method

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting
UnifiedPOS Service will typically display a modal
dialog box to present test options and results.

Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined
by a visual inspection of these test results.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The specified health check level is not supported by the
UnifiedPOS Service.

CheckHealthText Property.

UnifiedPOS Version 1.15 -- May 11, 2018

1-18

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

claim Method

Syntax

Remarks

Errors

See Also

Updated in Release 1.11
claim (timeout: int32):
void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, then immediately either returns (if
successful) or throws an appropriate exception. If FOREVER (-1), the method
waits as long as needed until exclusive access is satisfied.

Requests exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL This device cannot be claimed for exclusive access, or
an invalid timeout parameter was specified.

E TIMEOUT Another application has exclusive access to the device,

and did not relinquish control before timeout
milliseconds expired.

“Device Initialization and Finalization" on page Intro-15, “Device Sharing
Model" on page Intro-19, release Method.

clearlnput Method

Syntax

Remarks

Errors

See Also

clearInput ():
void { raises-exception }

Clears all device input that has been buffered.

Any data events or input error events that are enqueued — usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false — are also
cleared.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

“Device Input Model" on page Intro-23.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 1-19

clearlnputProperties Method Added in Release 1.10

Syntax

clearInputProperties ():
void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or
ErrorEvent back to their default values. This does not reset the DataCount or
State properties.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also “Device Input Model" on page Intro-23.

clearOutput Method Updated in Release 1.7
Syntax clearOutput ():
void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when
possible, halts outputs that are in progress.
Any output error events that are enqueued — usually waiting for FreezeEvents to
be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also “Device Output Models' on page Intro-26.

close Method

Syntax

Remarks

Errors

See Also

close ():
void { raises-exception }

Releases the device and its resources.
If the DeviceEnabled property is true, then the device is disabled.
If the Claimed property is true, then exclusive access to the device is released.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

“Device Initialization and Finalization" on page Intro-15, open Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1

1-20 Common Properties, Methods, and Events
compareFirmwareVersion Method Added in Release 1.9
Syntax compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the

firmware or a file containing a set of firmware files
whose versions are to be compared against those of the
device.

result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the
specified file is newer than, older than, or the same as the version of the firmware
in the physical device.

The Service should check that the specified firmware file exists and that its
contents are valid for this device before attempting to perform the comparison
operation.

The result of the comparison is returned in the result parameter and will be one of
the following values:

Value Meaning

CFV_FIRMWARE OLDER Indicates that the version of one or more of the
firmware files is older than the firmware in the
device and that none of the firmware files is
newer than the firmware in the device.

CFV_FIRMWARE SAME Indicates that the versions of all of the firmware
files are the same as the firmware in the device.

CFV_FIRMWARE NEWER Indicates that the version of one or more of the
firmware files is newer than the firmware in the
device and that none of the firmware files is
older than the firmware in the device.

CFV_FIRMWARE DIFFERENT
Indicates that the version of one or more of the
firmware files is different than the firmware in
the device, but either:
 The chronological relationship cannot be

determined, or
* The relationship is inconsistent -- one or
more are older while one or more are newer.

CFV_FIRMWARE UNKNOWN
Indicates that a relationship between the two
firmware versions could not be determined. A
possible reason for this result could be an
attempt to compare Japanese and US versions
of firmware.

If the firmwareFileName parameter specifies a file list, all of the component
firmware files should reside in the same directory as the firmware list file. This
will allow for distribution of the updated firmware without requiring a
modification to the firmware list file.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 1-21

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapCompareFirmwareVersion is false.
E_NOEXIST The file specified by firmwareFileName does not exist

or, if firmwareFileName specifies a file list, one or more
of the component firmware files are missing.
E_EXTENDED ErrorCodeExtended = EFIRMWARE BAD_FILE:
The specified firmware file or files exist, but one or
more are either not in the correct format or are corrupt.

CapCompareFirmwareVersion Property.

directlO Method

Syntax

Remarks

Errors

See Also

directlO (command: inf32, inout data: inf32, inout obj: object):
void { raises-exception }

Parameter Description

command Command number whose specific values are assigned
by the UnifiedPOS Service.

data An array of one mutable integer whose specific values
or usage vary by command and UnifiedPOS Service.

obj Additional data whose usage varies by command and

UnifiedPOS Service.
Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality
to the application that is not otherwise supported by the standard UnifiedPOS
Control for its device category. Depending upon the UnifiedPOS Service’s
definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may,
however, maintain portability by performing directIO calls within conditional
code. This code may be based upon the value of the DeviceServiceDescription,
PhysicalDeviceDescription, or PhysicalDeviceName property.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

DirectlOEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

1-22

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

open Method
Syntax

Remarks

Updated in Release 1.7

open (logicalDeviceName: string):
void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.
Opens a device for subsequent 1/0.

The device name specifies which of one or more devices supported by this
UnifiedPOS Control should be used. The logicalDeviceName must exist in the
operating system’s reference locater system (such as the JavaPOS Configurator/
Loader (JCL) or the Window’s Registry) for this device category so that its
relationship to the physical device can be determined. Entries in the reference
locator’s system are created by a setup or configuration utility.

The following sequence diagram shows the details of what needs to happen during
the open method call processing to allow the creation of the Service and its binding
to the Control.

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular
platform. Note also, that some platform binding might have "easier" or "harder" AP to accomplish the same task.

:ClientApp

:<DevCat> :Config :Loader :<DevCat>
(registry of senice properties) Senice

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the
senices that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories

1: open(logicalName

Errors

2: find properties of senice Lith logicalName ‘ ‘

‘ 3: pass loader properties, and ask to %reate senice

\ 4: Ioaderyrses properties ard loads the <De\,Cat>Servicr

7:|

\ / 1 5: create and/or bind to service

6: retum égrvfce instance/fo control

|

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.

However, logically the actions above are happening on the
system. ‘

444:4
—

When this method is successful, it initializes the properties Claimed,
DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions
and version numbers of the UnifiedPOS software layers. Additional category-
specific properties may also be initialized.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 1-23

See Also

release Method

Syntax

Remarks

Errors

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The UnifiedPOS Control is already open.

E NOEXIST The specified logicalDeviceName was not found.

E NOSERVICE Could not establish a connection to the corresponding

UnifiedPOS Service.

“Device Initialization and Finalization" on page Intro-15, “Version Handling"
on page Intro-37, close Method.

release ():
void { raises-exception }

Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device,
then the device is also disabled (this method does not change the device enabled
state of sharable devices).

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The application does not have exclusive access to the
device.

“Device Sharing Model" on page Intro-19, claim Method.

resetStatistics Method Updated in Release 1.10

Syntax

Remarks

resetStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL
resettable statistics are to be reset, “U_" means all UnifiedPOS defined resettable
statistics are to be reset, “M_" means all manufacturer defined resettable statistics
are to be reset, and “actual namel, actual name2” (from the XML file definitions)
means that the specifically defined resettable statistic(s) are to be reset.

Resets the defined resettable statistics in a device to zero. All the requested
statistics must be successfully reset in order for this method to complete
successfully, otherwise an ErrorCode of E_ EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to
successfully use this method.

This method is always executed synchronously.

UnifiedPOS Version 1.15 -- May 11, 2018

1-24

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is
false, or the named statistic is not defined/resettable.

E_EXTENDED ErrorCodeExtended = ESTATS _ERROR:
At least one of the specified statistics could not be reset.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be reset in
addition to a requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

retrieveStatistics Method Added in Release 1.8

Syntax

Remarks

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics to be retrieved and
in which the retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL
statistics are to be retrieved, “U_” means all UnifiedPOS defined statistics are to
be retrieved, “M_ means all manufacturer defined statistics are to be retrieved,
and “actual namel, actual name2” (from the XML file definitions) means that the
specifically defined statistic(s) are to be retrieved.

Retrieves the requested statistics from a device.

CapStatisticsReporting must be true in order to successfully use this method.
This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version='1.0’ ?>

<UPOSStat version="1.13.0” xmlns:xsi="http://www.w3.0org/2001/
XMLSchema-instance” xmlns="http://www.omg.org/UnifiedP0OS/
namespace/” xsi:schemalLocation="http://www.omg.org/UnifiedP0OS/
namespace/UPOSStat.xsd” >

<Event>

<Parameter>
<Name>RequestedStatistic</Name>
<Value>1234</Value>
</Parameters

</Event>
<Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersions>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevisions>
<Interface>RS232</Interfaces>
<InstallationDate>2000-03-01l</InstallationDates>

</Equipment >

</UPOSStat>

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 1-25

If the application requests a statistic name that the device does not support, the
<Parameter> entry will be returned with an empty <values. e.g.,

<Parameter>
<Name>RequestedStatistic</Name>
<Value></Value>

</Parameters>

All statistics that the device collects that are manufacturer specific (not defined in the
schema) will be returned in a <ManufacturerSpecifics taginstead of a <Parameters>

tag. e.g.,

<ManufacturerSpecific>
<Name>TheAnswer</Name>
<Values>42</Value>

</ManufacturerSpecifics>

When an application requests all statistics from the device, the device will return a
<Parameter> entry for every defined statistic for the device category as defined by the
XML schema version specified by the version attribute in the <UPOSStat > tag. If the
device does not record any of the statistics, the <values tag will be empty.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http://

retail.omg.org.

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL CapStatisticsReporting is false or the named statistic is
not defined.

CapStatisticsReporting Property.

updateFirmware Method Added in Release 1.9

Syntax

Remarks

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

firmwareFileName Specifies either the name of the file containing the
firmware or a file containing a set of firmware files that
are to be downloaded into the device.

This method updates the firmware of a device with the version of the firmware
contained or defined in the file specified by the firmwareFileName parameter
regardless of whether that firmware’s version is newer than, older than, or the
same as the version of the firmware already in the device. If the firmwareFileName
parameter specifies a file list, all of the component firmware files should reside in
the same directory as the firmware list file. This will allow for distribution of the
updated firmware without requiring a modification to the firmware list file.
When this method is invoked, the Service should check that the specified firmware
file exists and that its contents are valid for this device. If so, this method should
return immediately and the remainder of the update firmware process should
continue asynchronously.

UnifiedPOS Version 1.15 -- May 11, 2018

http://retail.omg.org
http://retail.omg.org
http://retail.omg.org
http://retail.omg.org

1-26

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Errors

See Also

The Service should notify the application of the status of the update firmware
process by firing StatusUpdateEvents with values of SUE_ UF_ PROGRESS +an
integer between 1 and 100 indicating the completion percentage of the update
firmware process. For application convenience, the StatusUpdateEvent value
SUE_UF_COMPLETE is defined to be the same value as SUE_ UF_PROGRESS
+100.

For consistency, the update firmware process is complete after the new firmware
has been downloaded into the physical device, any necessary physical device reset
has completed, and the Service and the physical device have been returned to the
state they were in before the update firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with
an incomplete progress completion percentage (i.e. a percentage between 1 and
99), even if the device cannot physically report the progress of the update firmware
process. If the update firmware process completes successfully, the Service must
fire a StatusUpdateEvent with a progress of 100 or use the special constant
SUE_UF_COMPLETE, which has the same value. These Service requirements
allow applications using this method to be designed to always expect some level
of progress notification.

If an error is detected during the asynchronous portion of a update firmware
process, one of the following StatusUpdateEvents will be fired:

Value Meaning

SUE _UF _FAILED DEV_OK The update firmware process failed but the
device is still operational.

SUE UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the
device is neither usable nor recoverable
through software. The device requires service
to be returned to an operational state.

SUE _UF FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the
device will not be operational until another
attempt to update the firmware is successful.

SUE_UF_FAILED DEV_UNKNOWN
The update firmware process failed and the
device is in an indeterminate state.

A UposException may be thrown when this method is invoked. For further

information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapUpdateFirmware is false.
E NOEXIST The file specified by firmwareFileName does not exist

or, if firmwareFileName specifies a file list, one or more
of the component firmware files are missing.

E EXTENDED ErrorCodeExtended = EFIRMWARE BAD_ FILE:
The specified firmware file or files exist, but one or
more are either not in the correct format or are corrupt.

CapUpdateFirmware Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 1-27

updateStatistics Method Updated in Release 1.10

Syntax

Remarks

Errors

See Also

updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics with values that
are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name
(““”=valuel”) means ALL resettable statistics are to be set to the value “valuel”,
“U_=value2” means all UnifiedPOS defined resettable statistics are to be set to the
value “value2”, “M_=value3” means all manufacturer defined resettable statistics
are to be set to the value “value3”, and “actual namel=value4,

actual name2=value5” (from the XML file definitions) means that the specifically
defined resettable statistic(s) are to be set to the specified value(s).

Updates the defined resettable statistics in a device. All the requested statistics
must be successfully updated in order for this method to complete successfully,
otherwise an ErrorCode of E_ EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to
successfully use this method.

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is
false, or the named statistic is not defined/updatable.

E_EXTENDED ErrorCodeExtended = ESTATS _ERROR:
At least one of the specified statistics could not be
updated.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be updated in
addition to a requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-28 Common Properties, Methods, and Events

Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive
a specific implementation case. The UML event base control model and interfaces
are shown below for the events.

upos::BaseControl

<<utility>>
UposConst
(from upos)
//%
/ <<uses>>
s
/
<< >>) <<Interface>>
event fires

UposEvent BaseControl
(from events) (from upos)

~\\<<sends>>

\

<<exception>>
UposException
(from upos)

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces)

1-29
upos::events interfaces

<<event>>
UposEvent
<<event>> | (fromevents) | <<event>>
DataEvent —] N OutputCompleteEvent
(from events) | (from events)
<<prop>> Status : int32 T‘ g<<prop>> OutputID : int32

\
<<event>> ‘ <<event>>
DirectlOEvent ‘ StatusUpdateEvent
(from events) ‘ (from events)
g<<prop>> EventNumber : int32 ‘ <<prop>> Status : int32
g<<prop>> Data : int32 \
g<<prop>> Obj : object)
\
\

|
<<event>>
ErrorEvent
(from events)
<<prop>> ErrorCode : int32

4<<prop>> ErrorCodeExtended : int32
£<<prop>> ErrorLocus : int32

<<prop>> ErrorResponse : int32

UnifiedPOS Version 1.15 -- May 11, 2018

1-30

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

DataEvent

<<event>>

Description

Attribute

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that input data is available from the device.
This event contains the following attribute:

Attribute Type Description

Status int32 The input status with its value dependent upon the
device category; it may describe the type or qualities of
the input data.

When this event is delivered to the application, the DataEventEnabled property
is changed to false, so that no further data events will be delivered until the
application sets DataEventEnabled back to true. The actual byte array input data
is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is
enqueued in an internal buffer, the device-specific input data properties are not
updated, and the event is not delivered. When DataEventEnabled is subsequently
changed back to true, the event will be delivered immediately if input data is
enqueued and FreezeEvents is false.

“Errors" on page Intro-21, “Device Input Model" on page Intro-23,
DataEventEnabled Property, FreezeEvents Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 1-31

DirectlOEvent

<<event>>

Description

Attributes

Remarks

See Also

Updated in Release 1.7

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides UnifiedPOS Service information directly to the application. This event
provides a means for a vendor-specific UnifiedPOS Service to provide events to
the application that are not otherwise supported by the UnifiedPOS Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
UnifiedPOS Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the UnifiedPOS Service. This
attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the UnifiedPOS Service. This attribute is settable. !

This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the UnifiedPOS standard. Use of this event may
restrict the application program from being used with other vendor’s devices
which may not have any knowledge of the UnifiedPOS Service’s need for this
event.

“Events" on page Intro-20, directlO Method.

I In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-32 Common Properties, Methods, and Events

ErrorEvent Updated in Release 1.13

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is
necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes under “Errors' on page Intro-21.

ErrorCodeExtended
int32 Extended Error Code causing the error event. These
values are device category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this attribute is settable). See
values below.

The ErrorLocus attribute has one of the following values:

Value Meaning

EL OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The application’s error event handler can set the ErrorResponse attribute to one of
the following values: (Updated in 1.13)

Value Meaning

ER _RETRY Retry sending the data. The error state is exited.
May be valid for some input devices when the locus is
EL_INPUT, in which case the input is retried and the
error state is exited. Typically valid for asynchronous
output devices when the locus is EL_ OUTPUT, in
which case the asynchronous output is retried and the
error state is exited. This is the default response when
the locus is EL_OUTPUT.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 1-33

Remarks

See Also

ER CLEAR Valid for all loci: EL_ INPUT, EL_ INPUT DATA, and
EL _OUTPUT. Clear all buffered input or output data
(including all asynchronous output). The error state is
exited. This is the default response when the locus is
EL_INPUT.

ER_CONTINUEINPUT
Only valid when the locus is EL_INPUT _DATA.
Acknowledges that a data error has occurred and directs
the Device to continue input processing. The Device
remains in the error state and will deliver additional
DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and
DataEventEnabled is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
This is the default response when the locus is
EL INPUT DATA.

This event is enqueued when an error is detected and the Device’s State transitions
into the error state. Input error events are not delivered until DataEventEnabled
is true, so that proper application sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input
ErrorEvents; it leaves the DataEventEnabled property value at true. Note that
the application may set DataEventEnabled to false within its event handler if
subsequent input events need to be disabled for a period of time.

“Device Input Model" on page Intro-23, “Error Handling'" on page Intro-24,
“Device Output Models'" on page Intro-26.

OutputCompleteEvent Updated in Release 1.13

<<event>>

upos::events::OQutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the

Attribute

Remarks

See Also

OutputID attribute has completed successfully.
This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

This event is enqueued after the requested data has been both sent and the
UnifiedPOS Service has confirmation that is was processed by the device
successfully.

“Device Output Models" on page Intro-26, OutputID Property.

UnifiedPOS Version 1.15 -- May 11, 2018

1-34

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

StatusUpdateEvent Updated in Release 1.9

<<event>>

upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.

Attribute

This event contains the following attribute:

Attribute Type Description

Status int32 Device category-specific status, describing the type of
status change.

Release 1.3 and later — Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning

SUE POWER ONLINE
The device is powered on and ready for use. Can be
returned if CapPowerReporting =
PR_STANDARD or PR_ ADVANCED.

SUE POWER_OFF The device is off or detached from the terminal. Can
only be returned if CapPowerReporting =
PR_ADVANCED.

SUE POWER _OFFLINE
The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR ADVANCED.

SUE POWER _OFF OFFLINE
The device is either off or off-line. Can only be returned
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at the current power state of

the device.

Release 1.9 and later — Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status
values for communicating the status/progress of an asynchronous update firmware
process:

Value Meaning

SUE_UF_PROGRESS + 1 to 100
The update firmware process has successfully
completed 1 to 100 percent of the total operation.
SUE_UF _COMPLETE The update firmware process has completed
successfully. The value of this constant is identical to
SUE_UF PROGRESS + 100.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces)

1-35

Remarks

See Also

SUE_UF_COMPLETE DEV_NOT _RESTORED
The update firmware process succeeded, however the
Service and/or the physical device cannot be returned to
the state they were in before the update firmware
process started. The Service has restored all properties
to their default initialization values.
To ensure consistent Service and physical device states,
the application needs to close the Service, then open,
claim, and enable again, and also restore all custom
application settings.

SUE_UF_FAILED DEV_OK
The update firmware process failed but the device is still
operational.

SUE _UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the device is
neither usable nor recoverable through software. The
device requires service to be returned to an operational
state.

SUE_UF FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the device will
not be operational until another attempt to update the
firmware is successful.

SUE_UF_FAILED DEV_UNKNOWN
The update firmware process failed and the device is in
an indeterminate state.

This event is enqueued when a Device needs to alert the application of a device
status change. Examples are a change in the cash drawer position (open vs. closed)
or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the
application of the device state. This behavior, however, is not required.

“Events" on page Intro-20, “Device Power Reporting Model' on page Intro-27,
CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify
Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-36 Common Properties, Methods, and Events

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 2-1

CHAPTER 2

Belt

This Chapter defines the Belt device category.

Summary
Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 Not Supported
DataEventEnabled: boolean { read-write } 1.12 Not Supported
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 Not Supported
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --
DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

UnifiedPOS Version 1.15 -- May 11, 2018

2-2

UnifiedPOS Retail Peripheral Architecture

Chapter 2
Belt

Properties (Continued)

Specific
CapAutoStopBackward:

CapAutoStopBackwardItemCount:

CapAutoStopForward:

CapAutoStopForwardItemCount:

CapLightBarrierBackward:
CapLightBarrierForward:
CapMoveBackward:
CapSecurityFlapBackward:
CapSecurityFlapForward:
CapSpeedStepsBackward:
CapSpeedStepsForward:

AutoStopBackward:
AutoStopBackwardDelayTime:
AutoStopBackwardItemCount:
AutoStopForward:
AutoStopForwardDelayTime:
AutoStopForwardItemCount:

LightBarrierBackwardInterrupted:

LightBarrierForwardInterrupted:

MotionStatus:
SecurityFlapBackwardOpened:
SecurityFlapForwardOpened:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32

int32

boolean
int32
int32
boolean
int32
int32
boolean
boolean
int32
boolean

boolean

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

void { raises-exception, use after open }

claim (timeout: int32):

void { raises-exception, use after open }

release ():

Version
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

void { raises-exception, use after open, claim }

checkHealth (level: int32):

void { raises-exception, use after open, enable }

clearInput ():
void {}

May Use After
open
open
open
open
open
open
open
open
open
open

open

open

open

open

open

open

open
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable

open, claim, & enable

Version

1.12
1.12
1.12
1.12
1.12

Not
supported

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 2-3
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.12
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.12
void { raises-exception, use after open, enable }
resetStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }
updateFirmware (firmwareFileName: string): 1.12
void { raises-exception, use after open, enable }
updateStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }
Specific
Name
adjustItemCount (direction: int32, count: int32): 1.12
void { raises-exception, use after open, claim, enable }
moveBackward (speed: int32): 1.12
void { raises-exception, use after open, claim, enable }
moveForward (speed: int32): 1.12
void { raises-exception, use after open, claim, enable }
resetBelt (): 1.12
void { raises-exception, use after open, claim, enable }
resetltemCount (direction: int32): 1.12
void { raises-exception, use after open, claim, enable }
stopBelt (): 1.12

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-4 Belt

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.12

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.12

Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 2-5

General Information

The Belt programmatic name is “Belt”.

This device category was added to Version 1.12 of the specification.

Capabilities

The Belt Control has the following capability:

* Supports a command to move the belt in forward direction.

* Supports commands to stop and reset the belt.

The Belt may have several additional capabilities, these are moving in backward
direction, moving with different speeds, light barriers, security flap, controlling an
automatic stop and emergency stop. See the Model section and the capabilities
properties for specific information.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

2-6

Chapter 2
Belt

Belt Class Diagram

The following diagram shows the relationships between the Belt classes.

«exception»
UposException

«sends»

«interface»
BaseControl

«uses»

«utility»
UposConst

«utility»
BeltConst

47

«uses»

=—— «sends» \/\ =

«interface»
BeltControl

+CapAutoStopBackward : boolean
+CapAutoStopBackwardltemCount : boolean
+CapAutoStopForward : boolean
+CapAutoStopForwardltemCount : boolean
+CapLightBarrierBackward : boolean
+CapLightBarrierForward : boolean
+CapMoveBackward : boolean
+CapSecurityFlapBackward : boolean
+CapSecurityFlapForward : boolean
+CapSpeedStepsBackward : int32
+CapSpeedStepsForward : int32
+AutoStopBackward : boolean
+AutoStopBackwardDelayTime : int32
+AutoStopBackwardltemCount : int32
+AutoStopForward : boolean
+AutoStopForwardDelayTime : int32
+AutoStopForwardltemCount : int32
+LightBarrierBackwardInterrupted : boolean
+LightBarrierForwardInterrupted : boolean
+MotionStatus : int32
+SecurityFlapBackwardOpened : boolean
+SecurityFlapForwardOpened : boolean

+adjustltemCount(direction : int32, count : int32) : void
+moveBackward(speed : int32) : void
+moveForward(speed : int32) : void

+resetBelt() : void

+resetltemCount(direction : int32) : void

+stopBelt() : void

«fires» _ -~ T~ «fires»

«event»
DirectlOEvent
+EventNumber : int32
+Data : int32
+0bj : object

«event»
StatusUpdateEvent
+Status : int32

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

2-7

Belt Sequence Diagram

The following sequence diagram shows the typical usage of the Belt device during
an automatic stop scenario.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. The belt should automatically stop after five items passing
the light barrier, that means CapAutoStopForward and CapAutoStopForwardltemCount are true.

Application

Belt Control

1: setDeviceEnabled(true)

4: adjustitemCount
(BELT_AIC_FORWARD, 5)

2: setDeviceEnabled(true)

6: setAutoStopForward(true)

5: adjustltemCount
(BELT_AIC_FORWARD, 5)

8: moveForward(speed1)

7: setAutoStopForward(true)

11: notify client of new event

9: moveForward(speed1)

Belt Service Belt
| |
o 0
3: connect or somehow have
access to the hardware
10: moves the belt forward
Assume that five items passed the light barrier
and another one is detected. The belt stops.

11: update MotionStatus to BELT_MT_STOPPED

and deliver SUE

Application event handling
code takes appropriate action

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-8 Belt

The following sequence diagram shows the typical usage of the Belt device during
an emergency StOp scenario caused by an open securlty ﬂap.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device

and is registered to receive events from the control. Emergency stop caused by an open security flap, that

means CapSecurityFlapForward is true.

Application Belt Control Belt Service Belt

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: moveForward(speed1)

5: moveForward(speed1)

3: connect or somehow have
access to the hardware

-1 |

7: update MotionStatus to BELT_MT_EMERGENCY

and deliver SUE

6: moves the belt forward

Assume that an item opens the security flap.
The belt stops due to an emergency condition.

8: notify client of new event

Application event handling code takes
appropriate action, calls for assistance
and the problem is finally fixed.

9: resetBelt()

10: resetBelt()

12: update MotionStatus to BELT_MT_STOPPED

and deliver SUE

11: resets the belt

13: notify client of new event

Application goes on with
normal operation.

14: moveForward(speed1)

15: moveForward(speed1)

16: moves the belt forward

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

29

Model

The general model of a Belt is:

After the belt is enabled an application can call moveForward and stopBelt
in order to control the motion.

If CapMoveBackward is true, the application may also call moveBackward.

Moving forward and backward may be available in different speeds defined
by CapSpeedStepsBackward and CapSpeedStepsForward.

Due to safety regulations a belt is usually equipped with security flaps at the
end of the belt, at both ends if it can move backwards.
CapSecurityFlapBackward and CapSecurityFlapForward are defining
the availability of them.

CapAutoStopBackward and CapAutoStopForward tell an application if
the belt supports an automatic stop. Whether the application wants to use this
feature can be controlled by setting AutoStopBackward and
AutoStopForward properties. The belt is stopped if an automatic stop
condition becomes true. Usually such a condition is controlled by light
barriers, but it can also correspond to an internal state of the device which is
not exposed. The condition is device specific and has to be explained in the
device documentation.

Light barriers may be available for handling an automatic stop feature.
CapLightBarrierBackward and CapLightBarrierForward define the
availability of such barriers.

If CapAutoStopForwardItemCount is true the application may control the
automatic stop feature depending on a number of items passing the light
barrier or any other item counting mechanism in forward direction by calling
adjustItemCount and resetItemCount. In this case the belt is automatically
stopped if AutoStopForwardItemCount is zero and an additional item is
detected. This feature may be also available for backward direction.

If CapAutoStopForward is true, an application may also delay automatic
stop in forward direction by setting AutoStopForwardDelayTime. The delay
time starts when an automatic stop condition becomes true. The belt is stopped
when the delay time has expired. During delay time automatic stop is
cancelled if the automatic stop condition becomes false. This feature may be
also available for backward direction.

The application will be informed about any status change with a
StatusUpdateEvent, also all corresponding status properties will be updated
before event delivery.

An emergency stop will occur if one of the security flaps is open or the
operator presses an emergency button. In this case technical assistance is
needed and the application has to reset the belt by calling resetBelt. A security
stop will occur if the belt has been stopped due to safety requirement
regulations but no technical assistance is needed.

UnifiedPOS Version 1.15 -- May 11, 2018

210

UnifiedPOS Retail Peripheral Architecture Chapter 2
Belt

Device Sharing

Belt is an exclusive-use device. Its device sharing rules are:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties and methods, or receiving events.

e See the “Summary” table for precise usage prerequisites.

Belt State Diagram

The following diagram illustrates the various state transitions within the Belt
device category.

moveForward motor fault
€mergency stop
stopBelt
H Stopp

moveBackward
H Backward
emergency stop

open claim
S Closed]/ /[Opened]/ /[Claimed
close release
close release
(7
&9
~
Enabled |

Emergency
Stop

fire
event done

done

fire event
g j:[ﬁre Events
done

fire
event

automatic stop
piemio4anow

fire
event

[0}

done

done

Motor Fault

automatic stop
plemoegaAow

motor fault

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 2-11

Properties (UML attributes)

AutoStopBackward Property

Syntax

Remarks

Errors

See Also

AutoStopBackward: boolean { read-write, access after open }

If true, the automatic stop feature in backward direction is enabled. If false, it is
disabled. The belt will automatically stop if an automatic stop condition becomes
true.

If CapAutoStopBackward is false, then this property is always false.
This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopBackward Property.

AutoStopBackwardDelayTime Property

Syntax

Remarks

Errors

See Also

AutoStopBackwardDelayTime: in#32 { read-write, access after open }

Specifies a delay time in milliseconds for an automatic stop in backward direction.
The delay time starts when an automatic stop condition becomes true. The delay
time counting stops and automatic stop is cancelled if the condition becomes false.

If CapAutoStopBackward is false, then this property has no meaning, setting this
property will be ignored.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopBackward Property.

AutoStopBackwarditemCount Property

Syntax

Remarks

Errors

AutoStopBackwardItemCount: inf32 { read-only, access after open }

Holds the actual item counter for an automatic stop in backward direction. If an
item is detected this property will be decreased. The automatic stop condition
becomes true if the item counter mechanism detects an additional item and the
counter is already zero.

This property can be increased or decreased by calling the adjustIitemCount
method and can be reset to zero by calling the resetitemCount method.

If CapAutoStopBackward or CapAutoStopBackwardItemCount is false, then
this property has no meaning.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-12 Belt

information, see “Errors" on page Intro-21.

See Also CapAutoStopBackward Property, CapAutoStopBackwardItemCount
Property, adjustItemCount Method, resetitemCount Method.

AutoStopForward Property
Syntax AutoStopForward: boolean { read-write, access after open }

Remarks If true, the automatic stop feature in forward direction is enabled. If false, it is
disabled. The belt will automatically stop if an automatic stop condition becomes
true.

If CapAutoStopForward is false, then this property is always false.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAutoStopForward Property.

AutoStopForwardDelayTime Property
Syntax AutoStopForwardDelayTime: int32 { read-write, access after open }

Remarks Specifies a delay time in milliseconds for an automatic stop in forward direction.
The delay time starts when an automatic stop condition becomes true. The delay
time counting stops and automatic stop is cancelled if the condition becomes false.

If CapAutoStopForward is false, then this property has no meaning, setting this
property will be ignored.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAutoStopForward Property.

AutoStopForwarditemCount Property
Syntax AutoStopForwardItemCount: in#32 { read-only, access after open }

Remarks Holds the actual item counter for an automatic stop in forward direction. If an item
is detected this property will be decreased. The automatic stop condition becomes
true if the item counter mechanism detects an additional item and the counter is
already zero.

This property can be increased or decreased by calling the adjustIitemCount
method and can be reset to zero by calling the resetitemCount method.

If CapAutoStopForward or CapAutoStopForwardItemCount is false, then
this property has no meaning.

This property is initialized to zero (0) by the open method.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 213

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopForward Property, CapAutoStopForwardItemCount Property,
adjustltemCount Method, resetitemCount Method.

CapAutoStopBackward Property

Syntax

Remarks

Errors

CapAutoStopBackward: boolean { read-only, access after open }

Iftrue, the device supports an automatic motor stop when moving backward, based
on an automatic stop condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopBackwardltemCount Property

Syntax

Remarks

Errors

See Also

CapAutoStopBackwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving backward
depending on the number of items specified by AutoStopBackwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AutoStopBackwardItemCount Property.

CapAutoStopForward Property

Syntax

Remarks

Errors

CapAutoStopForward: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward, based
on an automatic stop condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopForwarditemCount Property

Syntax

Remarks

Errors

See Also

CapAutoStopForwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward
depending on the number of items specified by AutoStopForwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AutoStopForwardItemCount Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-14 Belt

CapLightBarrierBackward Property
Syntax CapLightBarrierBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward light barrier and
LightBarrierBackwardInterrupted holds the actual state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also LightBarrierBackwardInterrupted Property.

CapLightBarrierForward Property
Syntax CapLightBarrierForward: boolean { read-only, access after open }

Remarks If true, the device has a forward light barrier and
LightBarrierForwardInterrupted holds the actual state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also LightBarrierForwardInterrupted Property.

CapMoveBackward Property
Syntax CapMoveBackward: boolean { read-only, access after open }
Remarks If true, the belt can move backward.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSecurityFlapBackward Property
Syntax CapSecurityFlapBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward security flap and
SecurityFlapBackwardOpened holds the actual state of the flap.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also SecurityFlapBackwardOpened Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 215

CapSecurityFlapForward Property

Syntax

Remarks

Errors

See Also

CapSecurityFlapForward: boolean { read-only, access after open }

If true, the device has a forward security flap and SecurityFlapForwardOpened
holds the actual state of the flap.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SecurityFlapForwardOpened Property.

CapSpeedStepsBackward Property

Syntax

Remarks

Errors

See Also

CapSpeedStepsBackward: int32 { read-only, access after open }

Defines how many speed steps the belt motor supports in backward direction,
minimum is one (1). This property is only valid if CapMoveBackward is true. If
CapMoveBackward is false this property is initialized to zero (0).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapMoveBackward Property.

CapSpeedStepsForward Property

Syntax

Remarks

Errors

CapSpeedStepsForward: int32 { read-only, access after open }

Defines how many speed steps the belt motor supports in forward direction,
minimum is one (1).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

LightBarrierBackwardinterrupted Property

Syntax

Remarks

Errors

See Also

LightBarrierBackwardInterrupted: hoolean { read-only, access after open-
claim-enable }

If true, the light barrier in backward direction is interrupted, otherwise it is false.
An appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierBackward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapLightBarrierBackward Property.

UnifiedPOS Version 1.15 -- May 11, 2018

2-16

UnifiedPOS Retail Peripheral Architecture Chapter 2
Belt

LightBarrierForwardinterrupted Property

Syntax

Remarks

Errors

See Also

LightBarrierForwardInterrupted: hoolean { read-only, access after open-
claim-enable }

If true, the light barrier in forward direction is interrupted, otherwise it is false. An
appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapLightBarrierForward Property.

MotionStatus Property

Syntax

Remarks

Errors

MotionStatus: int32 { read-only, access after open-claim-enable }
Holds the current motion state of the device. It has one of the following values:

Value Meaning

BELT MT FORWARD The device is moving forward.
BELT MT BACKWARD The device is moving backward.

BELT MT_STOPPED The device has stopped due to an automatic stop,
security stop or motor timeout stop.

BELT MT_EMERGENCY Emergency stop, either a security flap is open or the
emergency button was pressed. Technical
assistance is needed in order to reactivate the belt
device.

BELT MT MOTOR_FAULT The device has stopped due to a motor failure like
overheating or a defective fuse. Technical
assistance may be needed in order to reactivate the
motor.

This property is initialized and kept current while the device is enabled.
An appropriate StatusUpdateEvent indicating a status change will be enqueued.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 217

SecurityFlapBackwardOpened Property

Syntax

Remarks

Errors

See Also

SecurityFlapBackwardOpened: boolean { read-only, access after open-claim-
enable }

If true, the security flap in backward direction is open, otherwise it is closed. An
appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapBackward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSecurityFlapBackward Property.

SecurityFlapForwardOpened Property

Syntax

Remarks

Errors

See Also

SecurityFlapForwardOpened: boolean { read-only, access after open-claim-
enable }

If true, the security flap in forward direction is open, otherwise it is closed. An
appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSecurityFlapForward Property.

UnifiedPOS Version 1.15 -- May 11, 2018

2-18

UnifiedPOS Retail Peripheral Architecture Chapter 2
Belt

Methods (UML operations)

adjustitemCount Method

Syntax

Remarks

Errors

See Also

adjustItemCount (direction: in#32, count: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

direction Specifies the auto stop item count property to be
adjusted. May be either BELT AIC BACKWARD or
BELT_AIC_ FORWARD.

count The count parameter contains the number of items to be
adjusted.

Depending on direction either AutoStopBackwardItemCount or
AutoStopForwardItemCount will be adjusted by count. It can be an increment
or decrement depending on whether count is positive or negative.

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is
true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

A possible value of the exception’s ErrorCode property is:

Value Meaning

E ILLEGAL adjustItemCount is not supported or an invalid
direction was specified.

CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount
Property, CapAutoStopForwardItemCount Property,
AutoStopForwardItemCount Property, resetltemCount Method.

moveBackward Method

Syntax

Remarks

Errors

moveBackward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsBackward.

Starts the belt motor to move backward with the specified speed.
This method is only valid if CapMoveBackward is true.

Subsequent calls to moveBackward will change the speed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 2-19

See Also

A possible value of the exception’s ErrorCode property is:

Value Meaning

E ILLEGAL moveBackward is not supported or an invalid speed
step was specified.

CapMoveBackward Property, CapSpeedStepsBackward Property.

moveForward Method

Syntax

Remarks

Errors

See Also

moveForward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsForward.

Starts the belt motor to move forward with the specified speed.

Subsequent calls to moveForward will change the speed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

CapSpeedStepsForward Property.

resetBelt Method

Syntax

Remarks

Errors

resetBelt ():
void { raises-exception, use after open-claim-enable }

Resets the belt after an emergency stop caused by an open security flap or a
pressed emergency button.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-20 Belt

resetltemCount Method

Syntax resetltemCount (direction: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

direction Specifies the auto stop item count property to be reset.
May be either BELT RIC BACKWARD or
BELT _RIC FORWARD.

Remarks Depending on direction either AutoStopBackwardItemCount or
AutoStopForwardItemCount will be reset to zero (0).

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is
true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

A possible value of the exception’s ErrorCode property is:
Value Meaning

E ILLEGAL resetIltemCount is not supported or an invalid direction
was specified.

See Also CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount
Property, CapAutoStopForwardItemCount Property,
AutoStopForwardItemCount Property, adjustitemCount Method.

stopBelt Method
Syntax stopBelt ():

void { raises-exception, use after open-claim-enable }
Remarks Stops the belt motor.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 2-21

Events (UML interfaces)

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DirectiIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Belt Service to provide events to the application that
are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Belt devices which may not have any
knowledge of the Service’s need for this event.

“Events" on page Intro-20, directIO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-22 Belt

StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Belt changes.
Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Belt.

The Status attribute has one of the following values:

Value Description

BELT SUE_AUTO_STOP
The belt has automatically stopped.

BELT SUE _EMERGENCY_STOP
The belt has stopped caused by an emergency condition,
either a security flap is open or an emergency button has
been pressed. Technical assistance is needed.

BELT _SUE_SAFETY_STOP
The belt has stopped for safety reasons. Technical
assistance is not needed.

BELT SUE TIMEOUT STOP
The belt has stopped due to a hardware timeout
protecting the motor against overheating.

BELT SUE_MOTOR_OVERHEATING
The belt has stopped due to a motor overheating.

BELT _SUE MOTOR_FUSE DEFECT
The belt has stopped due to a defective fuse.

BELT SUE LIGHT BARRIER BACKWARD INTERRUPTED
The light barrier in backward direction is interrupted.

BELT SUE LIGHT BARRIER BACKWARD OK
The light barrier in backward direction is no longer
interrupted.

BELT SUE LIGHT BARRIER FORWARD_ INTERRUPTED
The light barrier in forward direction is interrupted.

BELT SUE LIGHT BARRIER FORWARD OK
The light barrier in forward direction is no longer
interrupted.

BELT SUE _SECURITY _FLAP BACKWARD OPENED
The security flap in backward direction is open.

BELT SUE SECURITY _FLAP BACKWARD_CLOSED
The security flap in backward direction is closed.

BELT SUE SECURITY FLAP FORWARD OPENED

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 2-23

The security flap in forward direction is open.
BELT _SUE _SECURITY _FLAP FORWARD CLOSED
The security flap in forward direction is closed.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

Remarks This event applies for status changes of the belt. It depends on the capabilities of
the device which status changes can be reported.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-24 Belt

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 3-1

CHAPTER 3

Bill Acceptor

This Chapter defines the Bill Acceptor device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Chapter 3

3-2 Bill Acceptor
Properties (Continued)
Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapFullSensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearFullSensor: boolean {read-only} 1.11 open
CapPauseDeposit: boolean {read-only} 1.11 open
CapRealTimeData: boolean {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.11 open
DepositCashList: string {read-only} 1.11 open
DepositCodeList: string {read-only} 1.11 open
DepositCounts: string {read-only} 1.11 open
DepositStatus: int32 {read-only} 1.11 open, claim, & enable
FullStatus: int32 {read-only} 1.11 open, claim, & enable
RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 3-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): 1.11
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void {} supported

directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.11

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-4 Bill Acceptor

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.11

Status: int32 { read-only }
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

3-5

General Information

The Bill Acceptor programmatic name is “BillAcceptor”.

This device category was added to Version 1.11 of the specification.

Capabilities

The Bill Acceptor has the following capabilities:

Reports the cash units and corresponding unit counts available in the Bill
Acceptor.

Reports jam conditions within the device.

Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

Reporting the levels of the Bill Acceptor’s cash units. Conditions which may
be indicated include full, and near full states.

Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

The money (bills) which are deposited into the device between the start and
end of cash acceptance is reported to the application. The contents of the
report are cash units and cash counts.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-6 Bill Acceptor

Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)

\
\
\
\

A
<<sends>> <<utility>>
A BillAcceptorConst
<<Interface>> (from upos)
<<event>> BillAcceptorControl <<uses>>
DataEvent (from upos) >
(from events) B <<capability>> CapDiscrepancy : boolean -7
=~ B <<capability>> CapFullSensor : boolean i

=~ 5 <<capability>> CapJamSensor : Boolean

~ _ | B¥<<capability>> CapNearFullSensor : boolean
<<fireg>> 5 <<capability>> CapPauseDeposit : boolean

B <<capability>> CapRealTimeData : Boolean

B<<prop>> CurrencyCode : string
<<ewent>> B<<prop>> DepositAmount : int32
DirectiCEvent | | B5<<prop>> DepositCashList : string
(from events) B <<prop>> DepositCodeList : string
%<<prop>> DepositCounts : string
<<fires>> BJ<<prop>> DepositStatus : int32
B <<prop>> FullStatus : int32
- &5 <<prop>> RealTimeDataEnabled : boolean
<<event>> = BadjustCashCounts(cashCounts : string)
StatusUpdateEvent <<fires>> QbeginDeposil()
(fiomievents) ®endDeposit(amount : int32)
SfixDeposit()

SpauseDeposit(control : int32)
SreadCashCounts(cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

3-7

Model

The general model of a Bill Acceptor is:

Supports several bill denominations. The supported cash type for a particular
currency is noted by the list of cash units in the DepositCashList property.

Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

The removal of cash from the device (for example, to empty deposited cash)
is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call
readCashCounts to retrieve the current unit count for each cash unit.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show
full and near full status. If there are one or more full cash slots, then
FullStatus is BACC STATUS FULL.

Cash acceptance into the “cash acceptance mechanism” is started by invoking
the beginDeposit method. The previous values of the properties
DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
pauseDeposit method is executed with a parameter value of

BACC _DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of BACC_DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until the endDeposit method is invoked with a

BACC _DEPOSIT_COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-8 Bill Acceptor

Bill Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientA - BillAcceptorControl ‘ BilAcceptorSenvice ‘ ‘ _: DataEvent ‘ ‘ Human Actor
| setRealTimeDataEvents(tru D D D

1| setRealTimeDataEvents (tru#) Set so DepositAmount and
W_i’ DepositCounts are updated for

T

|

|

|

|

|

|

|

|

|

|

|

" | each Data Event

1

4: beginDeposit()

|
|
|
|
|
|
|
|
|
: 3: beginDeposit()
11:

|

| 5: initialize DepositAmount and DepositCounts

‘ [Pm— ‘

| | |

| | |

: | T 6: accept Pash
|

! |

| |

! |

: ! 8: enqueue Data Event for delivery
|

| | P |

: : 9: update DepositAmount and DepositCour*is

| | p=— !

|

| : 10: deliver Data Event

|

' 11: notify ClientApp of event

i) J

12: fixDeposit() !

13: fixDeposit

=1

15: endDeposit(int32)

16: endDeposit(int32) '

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
7: create Data Event | U
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e S e

|
|
|
|
|
|
|
|
|
|
|
|
14: updateDeposjtAmount and DepositCouq‘ts
|
|
|
|
|
|
|
|
|
|

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Bill Acceptor State Diagram

clearlpput

¢Enabled(true)

Enabled clearlnput Clearlnput processing

readCashCo@

entry/ empty data queue

earlnput

beginDeposit

Fix Mode ‘

‘ entry/ sync DepostAmount and DepositCount

Cash Acceptance

fixDeposj fixDepasit
entry/ DepositAmount = 0
entry/ DepositCount = 0
Pause Mode
D tA t and De itCount
pauseDeposi n OSIT_R S?Rw_fync SRR Ek e
has room
h
pauseDeposit(BACC_BPEPOSIT_PAUSE)

adjustCashCourt

mowe\cash

7

adjustCashCounts /

Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the

properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

3-10

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

Properties (UML attributes)

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the bill acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also StatusUpdateEvent.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Bill Acceptor can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 3-11

CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Bill Acceptor has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled Property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value
is guaranteed to be one of the set of currencies specified by the DepositCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

3-12

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Bill
Acceptor.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Acceptor for the currency represented
by the CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the ASCII
semicolon character (*‘;”) followed by ASCII numeric comma delimited values for
the bills that can be used with the Bill Acceptor. The semicolon (*;”) is present to

denote the start of bills when integrated within the bill dispenser
Below are sample DepositCashList values in Japan.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, DepositCodeList Property.

DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

Itis alist of ASCII three-character [SO 4217 currency codes separated by commas.
For example, if the string is “JPY,USD”, then the Bill Acceptor supports both
Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, DepositCashList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 3-13

DepositCounts Property Updated in Release 1.12

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the bill acceptor. Cash units inside the
string are the same as the DepositCashList property, and are in the same order.
For example if the currency is Japanese yen and string of the DepositCounts
property is set to:

“;1000:80,5000:77,10000:0”

After the call to the beginDeposit method, there would be 80 one thousand yen
bills and 77 five thousand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

BACC_STATUS DEPOSIT START
Cash acceptance started.

BACC _STATUS_DEPOSIT END
Cash acceptance stopped.

BACC_STATUS DEPOSIT COUNT
Counting or repaying the deposited money.

BACC_STATUS DEPOSIT JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to BACC_STATUS DEPOSIT END after initialization.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

3-14

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

BACC STATUS OK All cash slots are neither nearly full nor full.
BACC _STATUS FULL Some cash slots are full.
BACC STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the
DepositAmount and DepositCounts properties. Otherwise, DepositAmount and
DepositCounts are updated with the value of the money collected when fixDeposit is
called. Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginDeposit method is performed. This prevents confusion
regarding what would happen if it were modified between a beginDeposit -
endDeposit pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts
Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 3-15

Methods (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Bill Acceptor after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“;1000:80,5000:77,10000:0”

as a result of calling the adjustCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

UnifiedPOS Version 1.15 -- May 11, 2018

3-16

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

beginDeposit Method

Syntax

Remarks

Errors

See Also

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

e The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until
fixDeposit is called while the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The call sequence is not correct.

DepositAmount Property, DepositCounts Property, endDeposit Method,
fixDeposit Method, pauseDeposit Method.

endDeposit Method

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

BACC_DEPOSIT COMPLETE The deposit is accepted and the mode is
complete.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 3-17

fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current
values in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
e The call sequence is invalid. beginDeposit must be
called before calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:
Parameter Description

BACC DEPOSIT PAUSE Cash acceptance is paused.
BACC DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to BACC_DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount
properties are updated to reflect the current state of the Bill Acceptor. The property
values are not changed again until the deposit process is resumed.

If control is BACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* The call sequence is invalid. beginDeposit must be
called before calling this method.

» The deposit process is already paused and control is
set to BACC_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
BACC _DEPOSIT RESTART.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 3

318 Bill Acceptor
readCashCounts Method Updated in Release 1.12
Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):

void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is
in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Bill Acceptor. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Bill Acceptor. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also DepositCashList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 3-19

Events (UML interfaces)

DataEvent

<< event >>

Description
Attributes

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when the Bill Acceptor has accepted a bill.

This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for
a vendor-specific Bill Acceptor Service to provide events to the application that are not
otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bill Acceptor devices which may not have
any knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-20 Bill Acceptor

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Acceptor
device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Bill Acceptor status condition:

Value Meaning

BACC _STATUS FULL Some cash slots are full.

BACC _STATUS NEARFULL Some cash slots are nearly full.

BACC _STATUS FULLOK No cash slots are either full or nearly full.
BACC STATUS JAM A mechanical fault has occurred.
BACC_STATUS JAMOK A mechanical fault has recovered.

Remarks Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full or
near full states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 41

CHAPTER 4

Bill Dispenser

This Chapter defines the Bill Dispenser device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 Not Supported
DataEventEnabled: boolean {read-write} 1.11 Not Supported
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-2 Bill Dispenser
Properties (Continued)
Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapEmptySensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearEmptySensor: boolean {read-only} 1.11 open
AsyncMode: boolean {read-write} 1.11 open
AsyncResultCode: int32 {read-only} 1.11 open, claim, & enable
AsyncResultCodeExtended: int32 {read-only} 1.11 open, claim, & enable
CurrencyCashList: string {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
CurrencyCodeList: string {read-only} 1.11 open
CurrentExit: int32 {read-write} 1.11 open
DeviceExits: int32 {read-only} 1.11 open
DeviceStatus: int32 {read-only} 1.11 open, claim, & enable
ExitCashList: string {read-only} 1.11 open

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 4-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): Not
void { raises-exception, use after open, claim } supported

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void { } supported

directlO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific
Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-4 Bill Dispenser
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 4-5

General Information

The Bill Dispenser programmatic name is “BillDispenser”.
This device category was added in Version 1.11 of the specification.

Capabilities

The Bill Dispenser has the following capabilities:

* Reports the cash units and corresponding unit counts available in the Bill
Dispenser.

* Dispenses a specified number of cash units from the device in bills into a user-
specified exit.

* Reports jam conditions within the device.

* Supports more than one currency.

The Bill Dispenser may also have the following additional capabilities:
* Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions
which may be indicated include empty and near empty states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-6 Bill Dispenser

Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N
N
N T

. \
N
<<sends>> \ ‘

<<Interface>> ‘\
BillDispenserControl <<utility>>

(from upos) BillDispenserConst
&<<capability>> CapDiscrepancy: boolean <<uges>> (from upos)
%<<capability>> CapEmptySensor : boolean
%«capability» CapJamSensor : Boolean _

&<<capability>> CapNearEm ptySensor : boolean
&j<<prop>> AsyncMode : boolean

&J<<prop>> AsyncRes ultCode : int32
Bf<<prop>> AsyncRes ultCodeExtended :int32

<<event>> &<<prop>> CurrencyCashList : string
DirectlOEvent &<<prop>> CurrencyCode : sting
(from events) T T~ 7~ =~~~ — ~|B<<prop>> CurrencyCodeList : string

& <<prop>> CurrentExit: int32
<<fires>> B5<<prop>> DeviceEnxits : int32
@ <<prop>> DeviceStatus : int32
@ <<prop>> ExitCashList : string

<<event>> -~ . i .
Status UpdateEvent ‘zgjL:ité::s:S(i:t?)unts(cashCounts :string)
(from events) <<fires>> 9 P

®dispenseCas h(cash Counts : string)
®dispenseChange(amount : int32)

®endDeposit(amount :int32)

SfixDeposit()

®pause Deposit(control : int32)
SreadCashCounts(cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Model

The general model of a Bill Dispenser is:

Supports several bill denominations. The supported bill denomination for a
particular currency is noted by the list of cash units in the CurrencyCashList

property.
Consists of any combination of features to aid in the cash processing functions
such as a number of slots or bins which can hold the cash, and cash exits.

This specification provides programmatic control only for the dispensing of
cash. The accepting of cash by the device (for example, to replenish cash) is
controlled by the adjustCashCounts method, unless the device can determine
the amount of cash on its own. The application can call readCashCounts to
retrieve the current unit count for each cash unit, but cannot control when or
how cash is added to the device.

May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

Dispenses cash into the exit specified by CurrentExit when dispenseCash is
called. With dispenseCash, the application specifies a count of each cash unit
to be dispensed.

Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMode is true and no exception is thrown by dispenseCash, then
the method is performed asynchronously and its completion is indicated by a
StatusUpdateEvent with its Data property set to BDSP_STATUS ASYNC.
The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one
asynchronous method can be processed at a time.

The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-8 Bill Dispenser

e May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

* Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status. If there are one or more empty cash slots,
then DeviceStatus is BDSP_ STATUS EMPTY.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 4-9

Bill Dispenser Sequence Diagram

claimed and enabled the device

NOTE: We are assuming the clienApp has already successfully opened, ﬁ

::ClientApp : BillDispenserControl ::BillDispenserSenvice . StatusUpdateEvent

|
| 1
1: dispenseCash(string) : ‘
|
2: dispenseCash(string) |

Assume Bill
M ~ ~ | Dispenser is

getting low

=1

4: create new SUE Event

5: deliver SUE to control U

| |
| |
| |
| |
|
|
|
| |
| |
| |
|] |
: 3: updat‘e deviceStatus to BDSP_STATPS_NEAREMPTY (CapNearErpptySensor = true)		
[

6: 'notify ClientApp of new event

U

e

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-10 Bill Dispenser

Bill Dispenser State Diagram

Claimed

s¢tDeviceEnabled(false)

setDeviceEnabléd(true

Enabled
setAsyncMode(false)

setAsyn Has Bills

™ N
adCash@

Neai/Empty

ynchronous

Asynchronous

Y

jams

Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 4-11

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash method will be performed asynchronously. If false, this
method will be performed synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value
of BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: int32 { read-only, access after open-claim-
enable}

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value
of BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method.

UnifiedPOS Version 1.15 -- May 11, 2018

4-12

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the occurrence of a mechanical fault in the
Bill Dispenser.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }

If true, the Bill Dispenser can report the condition that some cash slots are nearly
empty.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 4-13

CurrencyCashList Property

Syntax

Remarks

Errors

See Also

CurrencyCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Dispenser for the currency represented
by the CurrencyCode property.

The string consists of an ASCII semicolon character (“;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Bill Dispenser.

The semicolon (*;”) is present to indicate the units are bills. This is used for
merging multiple device services into the Cash Changer.

Below are sample CurrencyCashList values in Japan.
« “%1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Bill Dispenser operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

CurrencyCodeList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

4-14

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

CurrencyCodelList Property

Syntax

Remarks

Errors

See Also

CurrencyCodeList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Bill Dispenser supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

CurrentExit Property

Syntax

Remarks

Errors

See Also

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater than 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

» Bill Dispenser supports bills; an auxiliary exit is used for larger quantities
of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits =2
When CurrentExit = 1 : ExitCashList = ““;1000,5000
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An invalid CurrentExit value was specified.
CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentExit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 4-15

DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS _OK The current condition of the Bill Dispenser is
satisfactory.

BDSP_STATUS_EMPTY

Some cash slots are empty.
BDSP_STATUS NEAREMPTY

Some cash slots are nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.

This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

4-16

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

Methods (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Bill Dispenser after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be initialized because an
asynchronous method is outstanding.

readCashCounts Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 417

dispenseCash Method

Syntax

Remarks

Errors

See Also

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of ““;cash unit:cash counts,, cash unit:cash counts”.

T3]

Units must be preceded by ““;” to represent bills.

Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

+ 51000:10”
Dispense 10 one thousand yen bills.

e “1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* The cashCounts parameter value was illegal for the
current exit.
E _EXTENDED ErrorCodeExtended = EBDSP_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

4-18

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

readCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is
some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Bill Dispenser. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Bill Dispenser. An example would be
when a bill dispenser has diverted unusable bill to a holding area.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 4-19

Events (UML interfaces)
DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for
a vendor-specific Bill Dispenser Service to provide events to the application that are not
otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bill Dispenser devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

4-20

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Dispenser

Attributes

Remarks

See Also

device.

This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Bill Dispenser status condition:

Value Meaning

BDSP_STATUS EMPTY Some cash slots are empty.

BDSP_STATUS NEAREMPTY Some cash slots are nearly empty.

BDSP STATUS EMPTYOK No cash slots are either empty or nearly
empty.

BDSP_STATUS JAM A mechanical fault has occurred.

BDSP _STATUS JAMOK A mechanical fault has recovered.

BDSP_STATUS_ASYNC Asynchronously performed method has
completed.

Fired when the Bill Dispenser detects a status change.

For changes in the fullness levels, the Bill Dispenser is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events' on
page Intro-20

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 5-1

CHAPTER 5

Biometrics

This Chapter defines the Biometrics device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.10 open
CapCompareFirmwareVersion: boolean { read-only } 1.10 open
CapPowerReporting: int32 { read-only } 1.10 open
CapStatisticsReporting: boolean { read-only } 1.10 open
CapUpdateFirmware: boolean { read-only } 1.10 open
CapUpdateStatistics: boolean { read-only } 1.10 open
CheckHealthText: string { read-only } 1.10 open
Claimed: boolean { read-only } 1.10 open
DataCount: int32 { read-only } 1.10 open
DataEventEnabled: boolean { read-write } 1.10 open
DeviceEnabled: boolean { read-write } 1.10 open & claim
FreezeEvents: boolean { read-write } 1.10 open
OutputID: int32 { read-only } 1.10 Not Supported
PowerNotify: int32 { read-write } 1.10 open
PowerState: int32 { read-only } 1.10 open
State: int32 { read-only } 1.10 --
DeviceControlDescription: string { read-only } 1.10 --
DeviceControlVersion: int32 { read-only } 1.10 --
DeviceServiceDescription: string { read-only } 1.10 open
DeviceServiceVersion: int32 { read-only } 1.10 open
PhysicalDeviceDescription: string { read-only } 1.10 open
PhysicalDeviceName: string { read-only } 1.10 open

UnifiedPOS Version 1.15 -- May 11, 2018

5-2

UnifiedPOS Retail Peripheral Architecture

Chapter 5
Biometrics

Properties (Continued)

Specific:

Algorithm:
AlgorithmList:

BIR:
CapPrematchData:
CapRawSensorData:
CapRealTimeData:
CapSensorColor:
CapSensorOrientation:

CapSensorType:

CapTemplateAdaptation:

RawSensorData:
RealTimeDataEnabled:
SensorBPP:
SensorColor:
SensorHeight:
SensorOrientation:
SensorType:
SensorWidth:

Type
int32
string
binary
boolean
boolean
boolean
int32
int32
int32

boolean
binary
boolean
int32
int32
int32
int32
int32
int32

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-write }

{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open & claim
open
open & claim
open
open
open
open
open

open

open
open & claim
open
open
open
open
open, claim, & enable
open, claim, & enable

open

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 5.3
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.10
void { raises-exception }
close (): 1.10
void { raises-exception, use after open }
claim (timeout: int32): 1.10
void { raises-exception, use after open }
release (): 1.10
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }
clearInput (): 1.10
void { raises-exception, use after open, claim }
clearInputProperties (): 1.10
void { raises-exception, use after open, claim }
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.10
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
Specific Updated in Release 1.11
Name
beginEnrollCapture (referenceBIR: binary, payload: binary): 1.10
void { raises-exception, use after open, claim, enable }
beginVerifyCapture (): 1.10
void { raises-exception, use after open, claim, enable }
endCapture (): 1.10
void { raises-exception, use after open, claim, enable }
identify (maxFARRequested: in732, maxFRRRequested: int32, 1.11

FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-4 Biometrics
identifyMatch (maxFARRequested: in732, maxFRRRequested: inz32, 1.11
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):
void { raises-exception, use after open, claim, enable }
processPrematchData (capturedBIR: binary, prematchDataBIR: binary, 1.10
inout processedBIR: binary):
void { raises-exception, use after open, claim, enable }
verify (maxFARRequested: int32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR: binary,
inout result: boolean, inout FARAchieved: int32, inout FRRAchieved:
int32, inout payload: binary, timeout: int32):
void { raises-exception, use after open, claim, enable }
verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary):
void { raises-exception, use after open, claim, enable }
Events (UML interfaces)
Type Mutability Version
upos::events::DataEvent 1.10
Status: int32 { read-only }
upos::events::DirectlOEvent 1.10
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.10
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.10
Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

General Information

The Biometrics programmatic name is “Biometrics”.
This device was introduced in Version 1.10 of this specification.

Capabilities

All Biometric devices have the following capabilities:

The device captures biometrics data from a biometrics sensor. The biometrics
data is in the form of a Biometrics Information Record (BIR) containing one
or more Biometrics Data Blocks (BDB) which in turn contain one or more
biometric data samples or biometric templates.

This standard uses the term template (as adapted from the BioAPI') to refer
to the biometric enrollment data for a user. The term biometric information
record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for
verification or identification, as well as enrollment data. Typically, the only
data stored persistently by the application is the BIR generated for enrollment
(i.e., the template). The format of the Opaque Biometric Data Block (BDB) is
indicated by the Format field of the Header. This may be a standard or
proprietary format. The BDB may be encrypted. The digital signature is
optional, and may be used to ensure integrity of the data during transmission
and storage. When present, it is calculated on the Header + BDB. For
standardized BIR formats, the signature will take a standard form (to be
determined when the format is standardized). For proprietary BIR formats
(all that exists at the present time), the signature can take any form that suits
the Service. For this reason, there is no C structure definition of the signature.
The BIR Data Type indicates whether the BIR is signed and/or encrypted.

1 BioAPI is defined by the BioAPI consortium (www.bioapi.org).

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 5

Biometrics

Length Header | BIR Data CQuality Purpose

‘Opaque” Digital
Headsr Biometric Data Block Signature
Format ID

Biometric Type
(Header + BOE)} ersion Type Crwner Type ¥P
4 1 1 2 2 1 1 4
< Product ID) .
Creation | Creation | Subtype | Index Index

Date Time Flag (Ui

Owner Type

2 2 4 3 1 1 18

The Device captures Biometric data for the purposes of enrollment. The
notion of enrollment requires a higher level of quality for the final BIR that is
created. Generally, the BIR will be the aggregation of series of biometric
captures.

The Device captures Biometric data for the purposes of verification.
Verification does not require the same level of quality as enrollment.

The Device has the ability to determine if two BIRs match within the degree
of error specified by the False Accept Rate (FAR) and False Reject Rate
(FRR). The FAR is the margin of percentage error acceptable that two non-
matching biometric samples will be falsely deemed to match. The FRR is the
margin of percentage error acceptable that two matching biometric samples
will be falsely deemed not to match.

The Device has the ability to compare a BIR against a sample population of
BIRs and create a rank ordering of the population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

The Device Returns the raw biometric data in “real time” as it is captured by
the device. If this capability is true and has been enabled by application by
setting the RealTimeDataEnabled property to true, then a series of
StatusUpdateEvents are enqueued, each as a raw image defined by
SensorBPP, SensorColor, SensorHeight, and SensorWidth representing a
partial biometrics image capture.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

«interface»
BaseControl

«exception»
UposException

«sends» «uses» «utility»

UposConst

«utility»
BiometricsConst|

«sends» «uses»

«interface»
BiometricsControl

+Algorithm : int32
+AlgorithmList : string

+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary
+RealTimeDataEnabled : boolean
+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32
+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void

Note: Method parameters are

«event»
DataEvent

+Status : int32

not listed due to space
limitations - refer to the
Methods section for details.

+identify() : void
+identifyMatch() : void
+processPrematchData() : void
+verify() : void

«fires»

«fires»

+verifyMatch() : void

T T
|
|
|
|

|
«fires»

«event»
DirectlOEvent

«event»
ErrorEvent

+EventNumber : int32
+Data : int32
+Obj : object

+ErrorCode : int32

+ErrorLocus : int32

+ErrorResponse : int32

+ErrorCodeExtended : int32

«event»
StatusUpdateEvent|

+Status : int32

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 5

Biometrics

Model

The Biometrics device usage model is:

Open and claim the device.
Enable the device and set the property DataEventEnabled to true.

Begin capturing biometrics data by calling on of the following asynchronous
methods beginVerifyCapture or beginEnrollCapture. These methods
activate the biometrics sensor to begin acquiring the biometrics data in the
relevant manner for the particular biometrics device. The result biometric
data is stored in the BIR property. The BIR data can be provided to the
identifyMatch method and verifyMatch method for comparison and
matching purposes. The archival process of the BIR for future verification is
application dependent.

Perform synchronous biometric verifications through the verify method or
synchronous biometric identifications through the identify method.

If the device is capable of supplying biometrics data in real time as the
biometric sample is captured (CapRealTimeData is true), and if
RealTimeDataEnabled is true, the biometrics data is presented to the
application as a series of partial biometric data through the RawSensorData
property and notified to the application through StatusUpdateEvents until
the biometric sample is fully acquired. RawSensorData is not queued rather
it is up to the application to capture the data upon receiving the
StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-
driven input:

When input is received by the Service, it enqueues a DataEvent.

If AutoDisable is true, then the Device automatically disables itself when a
DataEvent is enqueued.

A queued DataEvent can be delivered to the application when the property
DataEventEnabled is true and other event delivery requirements are met.
Just before delivering this event, data is copied into properties, and further
data events are disabled by setting DataEventEnabled to false. This causes
subsequent input data to be enqueued while the application processes the
current input and associated properties. When the application has finished
processing the current input and is ready for more data, it re-enables events
by setting DataEventEnabled to true.

An ErrorEvent (or events) is enqueued if the an error occurs while gathering
or processing input, and is delivered to the application when
DataEventEnabled is true and other event delivery requirements are met.
The DataCount property may be read to obtain the number of queued
DataEvents.

All enqueued input may be deleted by calling clearInput. See the clearInput
method description for more details.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Deviations from the general “Device Input Model” for event-driven input are:
* The capture of biometrics data begins when beginEnrollCapture or
beginVerifyCapture is called.

* Ifbiometrics capture is terminated by calling endCapture, then no
DataEvent or ErrorEvent will be enqueued.

Device Sharing

The Biometrics is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing many of
the Biometrics specific properties.

* The application must claim and enable the device before calling methods that
manipulate the device or before changing some writable properties.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-10 Biometrics

Biometrics Sequence Diagrams

The following diagram illustrates the enrollment sequence for the Biometrics
device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.
Application Biometrics Control Biometrics Service Hardware

Il I I Il

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginEnrollCapture()

4: beginEnrollCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

‘\::; 13: BIR data persisted
-

—_——— - —— — — — A

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 5-11

The following diagram illustrates the verify sequence for the Biometrics device
category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Service

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

The application provides a set of enrollment BIRs from which a match is to be found.

13: verify()

14: verify()

15: Hardware compares each enrollment BIR against the verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

—_— —

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-12 Biometrics

The following diagram illustrates the verify - match sequence for the Biometrics
device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Service Hardware

I I Il I

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

The application provides the enroliment BIR of the user to verify.

13: verifyMatch()

14: verifyMatch()

15: Hardware compares enroliment BIR against verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

—_— —

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 5-13

Biometrics State Diagram

The following diagram illustrates the various state transitions within the
Biometrics device category.

/ close()
/ open() / claim()
Closed]/ / close() /[Opened / release() Claimed
N~
/ close() / release() | setDeviceEnabled(true)

/ setDeviceEnabled(false)

Enroll Capture
/ beginEnrollCapture()
~
/ endCapture()

~—

/ beginVerifyCapture() Verify Capture
pture()

/ DataEvent fired

/ DataEvent fired

/identify() / verifyMatch()

| processPrematchData() / verify()

Identify

Verify Matching

Identify Matching Preprocess Data

UnifiedPOS Version 1.15 -- May 11, 2018

5-14

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

Properties (UML Attributes)

Algorithm Property

Syntax

Remarks

Errors

See Also

Algorithm: int32 { read-write, access after open-claim }

Contains the biometric algorithm currently in use for generating the biometrics
template. The values can be set to index the values contained in AlgorithmList.
For example:

Value Meaning

0 Default value

1 First algorithm in AlgorithmList

2 Second algorithm in AlgorithmList, etc.

This property can only be updated when the device is opened and claimed, but not
enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AlgorithmList Property.

AlgorithmList Property

Syntax
Remarks

Errors

See Also

BIR Property 2
Syntax

Remarks

AlgorithmList: string { read-only, access after open }
Contains the comma-delimited list of algorithms that are supported by the device.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Algorithm Property.

BIR: binary { read-only, access after open-claim-enable }3

This standard uses the term template to refer to the biometric enrollment data for
a user. The term biometric information record (BIR) refers to any biometric data
that is returned to the application; including raw data, intermediate data, processed
sample(s) ready for verification or identification, as well as enrollment data.
Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block
(BDB) is indicated by the Format field of the Header. This may be a standard or
proprietary format. The BDB may be encrypted. The digital signature is optional,
and may be used to ensure integrity of the data during transmission and storage.
When present, it is calculated on the Header + BDB.

2. Biometrics Information Record (BIR) was originally defined by the BioAPI
consortium (Www.bioapi.org).

3 In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML Attributes)

5-15

For standardized BIR formats, the signature will take a standard form (to be
determined when the format is standardized). For proprietary BIR formats (all that
exists at the present time), the signature can take any form that suits the Service.
For this reason, there is no C structure definition of the signature. The BIR Data

Type indicates whether the BIR is signed and/or encrypted.

Processed biometric data obtained through the methods beginEnrollCapture,
beginVerifyCapture, and verify are stored in this property upon successful
completion.

Header “Opaque’ Digital
Biometric Data Block Signature
Lenaih Head 8IR Da Format ID
eng eader ta "
{Header + BOA) \ersion Type Cuality Purpose

4

< Product 1D))
Creation | Creation | Subtype | Index Index

Errors

See Also

CapPrematchData Property

Syntax

Remarks

Errors

See Also

CapRawSensorData Property

Syntax
Remarks

Errors

See Also

Biometric Type
Owner Type
1 1 2 2 1 1 4

Date Time Flag (UuIoy

Cwner Type

2 2 4 3 1 1 16

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

beginEnrollCapture Method, beginVerifyCapture Method, verify Method.
Updated in Release 1.11
CapPrematchData: boolean { read-only, access after open }

If true, the Service is capable of using MOC (Match-On-Card) SmartCard
technology to generate a processed BIR based on prematch data stored on a
SmartCard.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

processPrematchData Method.
Updated in Release 1.12

CapRawSensorData: boolean { read-only, access after open }

If true, the Service is able to return unprocessed raw data from the biometrics
sensor.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RawSensorData Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

5-16

Chapter 5
Biometrics

CapRealTimeData Property

Updated in Release 1.12

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks

If true, the device is able to supply raw biometrics data as the biometrics

information is being captured (“real time”). This property value will be false if
CapRawSensorData is false, since real time data is only delivered via the
RawSensorData property which requires that CapRawSensorData is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also

RawSensorData Property, SensorBPP Property, SensorColor Property,

SensorHeight Property, SensorWidth Property.

CapSensorColor Property

Syntax CapSensorColor: int32 { read-only, access after open }

Remarks

This capability indicates if this device supports image formats other than bi-tonal.

CapSensorColor is a logical OR combination of any of the following values:

Value

Meaning

BIO_CSC_MONO
BIO_CSC_GRAYSCALE
BIO_CSC_16

BIO_CSC 256
BIO_CSC_FULL

Bi-tonal (B/W))
Gray scale

16 Colors

256 Colors

Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSensorOrientation Property

Syntax CapSensorOrientation: int32 { read-only, access after open }

Remarks

This capability indicates the ability of the sensor image to be rotated prior to

processing. CapSensorOrientation is a logical OR combination of any of the

following values:

Value Meaning
BIO_CSO_NORMAL 0°
BIO_CSO_RIGHT 90°
BIO_CSO_INVERTED 180°
BIO_CSO_LEFT 270°

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML Attributes) 5-17

CapSensorType Property Updated in Release 1.11
Syntax CapSensorType: int32 { read-only, access after open-claim-enable }
Remarks This capability indicates the types of biometrics data that can be captured by the

attached sensor. CapSensorType is a logical OR combination of any of the
following values:
Value Meaning
BIO CST FACIAL FEATURES Facial Features/Topography
BIO _CST _VOICE Voice
BIO _CST FINGERPRINT Fingerprint
BIO_CST _IRIS Iris
BIO _CST RETINA Retina
BIO_CST HAND_ GEOMETRY Hand Geometry
BIO _CST SIGNATURE DYNAMICS Signature
BIO CST KEYSTROKE DYNAMICS Keystrokes
BIO_CST_LIP. MOVEMENT Lip Movement
BIO _CST THERMAL FACE IMAGE Face Image
BIO_CST THERMAL HAND IMAGE Hand Image
BIO _CST GAIT Gait/Stride
BIO _CST PASSWORD Password
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also SensorType Property.

CapTemplateAdaptation Property

Syntax CapTemplateAdaptation: boolean { read-only, access after open }

Remarks If true, the Service is able to return an adapted BIR that is the result of updating a
reference BIR with information taken from a sample BIR or capture BIR. The
purpose of this adaptation is to keep the reference BIR current as biometric data
shifts over time.

This capability must be populated after open, claim, and enable because it is
dependent on the selected Algorithm.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

RawSensorData Property Updated in Release 1.12

Syntax RawSensorData: binary { read-only, access after open-claim-enable }4

Remarks Holds the biometrics image data as raw pixel data scan lines from the top, left to

the bottom, right. SensorHeight and SensorWidth define the number of pixels.
SensorBPP defines the number of bits per pixel. SensorColor defines the
interpretation of the pixel data. If CapRawSensorData is false, then this property
contains no meaningful value.

4 In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

5-18

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapRawSensorData Property, CapRealTimeData Property,
RealTimeDataEnabled Property, SensorBPP Property, SensorColor Property,
SensorHeight Property, SensorWidth Property.

RealTimeDataEnabled Property Updated in Release 1.12

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean { read-write, access after open }

If true, then StatusUpdateEvents will be fired as updated partial biometric data is
captured until biometric capture is completed. Otherwise, the captured biometric
data is enqueued as a single DataEvent when biometric capture is completed.

Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginEnrollCapture or beginVerifyCapture method is
performed. This prevents confusion regarding what would happen if it were
modified between a beginEnrollCapture - endCapture or beginVerifyCapture
- endCapture pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot set to true because CapRealTimeData
is false.

CapRealTimeData Property, RawSensorData Property, SensorBPP Property,
SensorColor Property, SensorHeight Property, SensorWidth Property,
beginEnrollCapture Method, beginVerifyCapture Method, endCapture
Method.

SensorBPP Property

Syntax SensorBPP: int32 { read-only, access after open }
Remarks Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
SensorColor Property Updated in Release 1.11
Syntax SensorColor: int32 { read-write, access after open }
Remarks This property is used to select the image capture mode for subsequent biometric

capture operations. Certain SensorType devices may not work with all the
“colors” or color image type may not make sense. Changing the SensorColor
property will not affect any previously stored data currently residing in the
RawSensorData property or BIR property.

It may contain one of the following values:

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML Attributes) 5-19
Value Meaning
BIO_SC_MONO Bi-tonal (B/W)
BIO_SC GRAYSCALE Gray scale
BIO _SC 16 16 Colors
BIO _SC 256 256 Colors
BIO _SC FULL Full color

This property can only be set to a value if the value is defined in CapSensorColor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL Invalid sensor color specified. See
CapSensorColor.
See Also CapSensorColor Property, RawSensorData Property, SensorBPP Property,

SensorHeight Property, SensorWidth Property.

SensorHeight Property

Syntax SensorHeight: int32 { read-only, access after open }

Remarks

Holds the height of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SensorOrientation Property

Updated in Release 1.11

Syntax SensorOrientation: int32 { read-write, access after open-claim }
Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR
creation.
Value Meaning
BIO_SO NORMAL 0°
BIO_SO _RIGHT 90°
BIO SO _INVERTED 180°
BIO SO _LEFT 270°

Errors

See Also

This property can only be updated when the device is opened and claimed, but not
enabled.

This property can only be set to a value if the value is defined in
CapSensorOQOrientation.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid sensor orientation specified. See

CapSensorOrientation.

CapSensorOrientation Property.

UnifiedPOS Version 1.15 -- May 11, 2018

5-20

UnifiedPOS Retail Peripheral Architecture

Chapter 5
Biometrics

SensorType Property

Syntax

Remarks

Errors

See Also

Updated in Release 1.11

SensorType: int32 { read-write, access after open-claim-enable }

Holds the type of biometrics sensor being accessed.

Value Meaning

BIO ST FACIAL FEATURES Facial Topography
BIO ST VOICE Voice

BIO ST FINGERPRINT Fingerprint

BIO ST IRIS Iris

BIO ST RETINA Retina

BIO_ ST HAND GEOMETRY Hand Geometry
BIO ST SIGNATURE DYNAMICS Signature

BIO ST KEYSTROKE DYNAMICS Keystrokes

BIO ST LIP MOVEMENT

BIO ST THERMAL FACE IMAGE
BIO ST THERMAL HAND IMAGE
BIO_ST GAIT

BIO ST PASSWORD

Lip Movement
Thermal Face Image
Thermal Hand Image
Gait/Stride

Password

This property can only be set to a value if the value is defined in CapSensorType.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid sensor type specified. See
CapSensorType.

CapSensorType Property.

SensorWidth Property

Syntax
Remarks

Errors

See Also

SensorWidth: int32 { read-only, access after open }

Holds the width of the RawSensorData in pixels.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RawSensorData Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 5-21

Methods (UML operations)

beginEnroliCapture Method Updated in Release 1.11

Syntax beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description

referenceBIR’ Optional BIR to be adapted (updated). This parameter is
ignored, if EMPTY.

payload® Data that will be stored by the BSP. This parameter is

ignored, if EMPTY.

Remarks Starts capturing biometrics data for purposes of enrollment. Although not
required, enrollment captures customarily result in a series of biometrics data
captures whose aggregation form the final BIR. Optionally if
CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation
with the enrollment. If a payload is provided that data is added into the resulting
BIR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E _FAILURE referenceBIR could not be adapted.
E ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, CapTemplateAdaptation Property, endCapture Method.

beginVerifyCapture Method Updated in Release 1.11
Syntax beginVerifyCapture ():

void { raises-exception, use after open-claim-enable }

Remarks Starts capturing biometrics data for the purposes of verification. The resulting
processed data is stored in the BIR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Biometrics capture is already in progress.
See Also BIR Property, endCapture Method.

> In the OPOS environment, the format of referenceBIR and payload depends upon
the value of the BinaryConversion property. See BinaryConversion property on
page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

5-22

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

endCapture Method

Syntax

Remarks

Errors

See Also

identify Method

Syntax

endCapture():
void { raises-exception, use after open-claim-enable }

Stops (terminates) capturing biometrics data.

If RealTimeDataEnabled is false and biometrics data was captured, then it is
placed in the properties BIR and RawSensorData. If no biometrics data was
captured, then BIR and RawSensorData are EMPTY.

If RealTimeDataEnabled is true and there is biometric data remaining which
have not been delivered to the application by a StatusUpdateEvent, then the
remaining biometric data is placed into the properties BIR and RawSensorData.
If no biometrics data was captured or all biometric data has been delivered to the
application, then BIR and RawSensorData are EMPTY.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Biometrics capture was not in progress.

BIR Property, RawSensorData Property, RealTimeDataEnabled Property,
beginEnrollCapture Method, beginVerifyCapture Method, DataEvent.

Updated in Release 1.12

identify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification,

as defined in the BioAPI specification. If zero, then this
criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
(TRUE) indicates that maxF'ARRequested takes
precedence, BIO_ FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.

referenceBlRPopulation6
An array of BIRs against which the Identify match is
performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation
listed in rank order. The indices are zero-based.

% In the OPOS environment, the format of referenceBIRPopulation depends upon the

value of the BinaryConversion property. See BinaryConversion property on page
A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 5.23

timeout Maximum number of milliseconds to attempt a
successful biometric capture before failing.

Remarks This function captures biometric data from the attached device within the allotted
timeout, and compares it against a set of referenceBIRPopulation. It then returns a
rank ordered array of referenceBIRPopulation indices in candidateRanking. 1f
nothing matches, an array with zero elements is returned.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or
referenceBIRPopulation was not valid or Biometrics
capture is in progress.

E TIMEOUT The specified timeout has elapsed before biometric data
was captured.

identifyMatch Method Updated in Release 1.12

Syntax identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification,
as defined in the BioAPI specification. If zero, then this
criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR PRECEDENCE
(TRUE) indicates that maxF'ARRequested takes
precedence, BIO_ FRR_ PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.

sampleBIR’ The BIR to be identified

referenceBIRPopulation '
An array of BIRs against which the Identify match is
performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation
listed in rank order. The indices are zero-based.

Remarks This function accepts a sampleBIR, and compares it against a set of

referenceBIRPopulation. 1t then returns a rank ordered array of
referenceBIRPopulation indices in candidateRanking. If nothing matches, an
array with zero elements is returned.

7- In the OPOS environment, the format of sampleBIR and referenceBIR Population

depends upon the value of the BinaryConversion property. See BinaryConversion
property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

5-24

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

Errors

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or
referenceBIRPopulation was not valid or Biometrics
capture is in progress.

processPrematchData Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout
processedBIR: binary)
void { raises-exception, use after open-claim-enable}

Parameter Description

sampleBIR® BIR to be processed

prematchDataBIR BIR containing prematch data previously emitted by the
associated MOC Library.

processedBIR 8 The newly constructed processed BIR

This function creates processed biometric samples suitable for Match-on-Card
(MOC). It enables MOC implementations that require the retrieval of “prematch”
data from the card prior to the subsequent matching operation. Since smart cards
generally do not have the capability to capture and process biometric samples, the
on-card MOC functionality needs a host to perform off-card operations such as
sample acquisition and feature extraction. In this case, the card needs the host to
perform an operation based on prematch data that is retrieved from the card.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL sampleBIR was not valid, Biometrics capture is in
progress, or CapPrematchData is false.

CapPrematchData Property.

8 In the OPOS environment, the format of sampleBIR, prematchDataBIR, and

processedBIR depends upon the value of the BinaryConversion property. See
BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations)

5-25

verify Method
Syntax

Remarks

Errors

See Also

Updated in Release 1.12

verify(maxFARRequested: in#32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR: binary,
inout result: boolean, inout FARAchieved: int32, inout FRRAchieved: int32,
inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification,
as defined in the BioAPI specification. If zero, then this
criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
(TRUE) indicates that maxFARRequested takes
precedence, BIO FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.

referenceBIR9 The BIR to be verified against.

adaptedBIR ? A pointer to the handle of the adapted BIR. This
parameter can be EMPTY (0x00) if an adapted BIR is
not desired.

result A boolean value of true for a successful match or false
for a failed match.

FARAchieved FAR Value indicating the closeness of the match.

FRRAchieved FRR Value indicating the closeness of the match.

payload® If a payload is associated with the referenceBIR, it is
returned in an allocated binary if a successful match was
made.

timeout Maximum number of milliseconds to attempt a

successful biometric capture before failing.

This function captures biometric data from the attached device within the allotted
timeout, and compares it against the referenceBIR. If the match is successful as
indicated by a positive result and an adaptedBIR handle was provided, the Service
will attempt to adapt the referenceBIR from information take form the captured
BIR.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or
referenceBIR was not valid or Biometrics capture is in
progress.

E TIMEOUT The specified timeout has elapsed before biometric data

was captured.

BIR Property, CapTemplateAdaptation Property.

% In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload
depends upon the value of the BinaryConversion property. See BinaryConversion
property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

5-26

UnifiedPOS Retail Peripheral Architecture

Chapter 5
Biometrics

verifyMatch Method

verifyMatch (maxFARRequested: inf32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32, inout
FRRACchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Syntax

Remarks

Errors

Parameter

Updated in Release 1.12

Description

maxFARRequested

maxFRRRequested

FARPrecedence

sampleBIR'?
referenceBIR?
adaptedBIR '°

result

FARAchieved
FRRAchieved
payload '°

The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

The requested FRR criterion for successful verification,
as defined in the BioAPI specification. If zero, then this
criterion is not provided.

If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
(TRUE) indicates that maxFARRequested takes
precedence, BIO FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.
The BIR to be identified.

The BIR to be verified against.

A pointer to the handle of the adapted BIR. This
parameter can be EMPTY (0x00) if an adapted BIR is
not desired.

A boolean value of true for a successful match or false
for a failed match.

FAR Value indicating the closeness of the match.

FRR Value indicating the closeness of the match.

If a payload is associated with the referenceBIR, it is
returned in an allocated binary if a successful match was
made.

This function compares a sampleBIR against the referenceBIR. If the match is
successful as indicated by a positive result and an adaptedBIR handle was
provided, the Service will attempt to adapt the referenceBIR from information
taken from the captured BIR.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

maxFARRequested, or maxFRRRequested, or
referenceBIR was not valid or Biometrics capture is in
progress.

10-1n the OPOS environment, the format of sumpleBIR, referenceBIR, adaptedBIR,

and payload depends upon the value of the BinaryConversion property. See
BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML Interfaces) 5-27

Events (UML Interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

DirectlOEvent

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that input data is available.
This event contains the following attribute:

Attributes Type Description

Status int32 BIO_DATA_ ENROLL if enroll capture is completed.
BIO_DATA_ VERIFY if verify capture is completed.

The properties BIR and RawSensorData are set to appropriate values prior to a
DataEvent being delivered to the application.

“Events" on page Intro-20, BIR Property, RawSensorData Property,
beginEnrollCapture Method, beginVerifyCapture Method, endCapture
Method.

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Biometrics Capture Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendors’ Biometric devices which may not have any
knowledge of the Service’s need for this event.

“Events" on page Intro-20, directIO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

5-28

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

ErrorEvent

Updated in Release 1.11

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a Biometrics device error has been detected and a
suitable response by the application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. It may
contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available. (Very unlikely - see Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER CLEAR Clear all buffered input data. The error state is exited.
Default when locus is EL._INPUT.

ER _CONTINUEINPUT
Used only when locus is EL_ INPUT DATA.
Acknowledges the error and directs the Service to
continue processing. The Service remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT. Default when locus isEL_INPUT _DATA.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML Interfaces)

5-29

Remarks

See Also

Enqueued when an error is detected while trying to read biometric capture data.
This event is not delivered until DataEventEnabled is set to true and other event
delivery requirements are met, so that proper application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_ INPUT DATA will
not occur. This is because each biometrics capture requires an explicit
beginXxxxxxCapture method, which can generate at most one DataEvent. The
application would need to defer the DataEvent by setting DataEventEnabled to
false and request another capture before an EL_INPUT_ DATA would be possible.

“Device Input Model" on page Intro-23, “Device Information Reporting

Model" on page Intro-31, “Events' on page Intro-20.

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Updated in Release 1.13

Description Notifies the application that there is a change in the status of a Biometric Capture

Attributes

device.

This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a Biometrics
device or reports a requested user interaction with the
Biometrics sensor to complete the capture. In the case of
the latter, the following directives can be issued:

Value Meaning

BIO_SUE RAW DATA
BIO_SUE_MOVE_LEFT
BIO_SUE_MOVE_RIGHT
BIO_SUE_MOVE_DOWN
BIO_SUE_MOVE_UP
BIO_SUE_MOVE_CLOSER
BIO_SUE_MOVE_AWAY
BIO_SUE_MOVE_BACKWARD
BIO_SUE_MOVE_FORWARD
BIO_SUE_MOVE_SLOWER
BIO_SUE_MOVE_FASTER
BIO_SUE_SENSOR_DIRTY
BIO_SUE_FAILED READ

BIO_SUE_SENSOR_READY

BIO_SUE_SENSOR_COMPLETE

Raw image data is available.

The position was too far to the right.
The position was too far to the left.
The position was too high.

The position was too low.

The position was too far away.

The position was too near (close).

The position was too far forward.

The position was too far backward.
The motion was too fast, move slower.
The motion was too slow, move faster.
The sensor is dirty and requires cleaning.
Unable to capture data from the sensor,
please retry the operation.

(Added in Release 1.13)
The sensor is ready to scan a Biometric
object

(Added in Release 1.13)
The sensor reports that the scan of a
Biometric object is complete.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-30 Biometrics

Remarks Enqueued when the Biometric Capture device detects a power state change or user
interaction.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 6-1

CHAPTER 6

Bump Bar

This Chapter defines the Bump Bar device category.

Summary

Properties (UML attributes)

Common Type Mutability Version ~May Use After
AutoDisable: boolean { read-write } 1.3 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 open
DataEventEnabled: boolean { read-write } 1.3 open
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --
DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

UnifiedPOS Version 1.15 -- May 11, 2018

6-2

UnifiedPOS Retail Peripheral Architecture

Chapter 6
Bump Bar

Properties (Continued)

Specific
AsyncMode:

AutoToneDuration:

AutoToneFrequency:

BumpBarDataCount:

CapTone:
CurrentUnitID:
ErrorString:
ErrorUnits:
EventString:
EventUnitID:
EventUnits:
Keys:

Timeout:

UnitsOnline:

Type
boolean
int32
int32
int32
boolean
int32
string
int32
string
int32
int32
int32
int32
int32

Mutability
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }

{ read-only }

Version
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3

May Use After
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable

open
open
open & claim
open & claim
open & claim
open, claim, & enable
open

open, claim, & enable

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 6-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.3
void { raises-exception }

close (): 1.3
void { raises-exception, use after open }

claim (timeout: int32): 1.3
void { raises-exception, use after open }

release (): 1.3
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.3
void { raises-exception, use after open, claim, enable }

clearInput (): 1.3
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { raises-exception, use after open, claim } supported®

clearOQutput (): 1.3
void { raises-exception, use after open, claim }

directlO (command: int32, inout data: int32, inout obj: object): 1.3
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name
bumpBarSound (units: int32, frequency: int32, duration: int32, 1.3
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open, claim, enable }
setKeyTranslation (units: inz32, scanCodes: int32, logicalKey: int32): 1.3

void { raises-exception, use after open, claim, enable }

a. No sensitive information is generated or stored.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 6
6-4 Bump Bar

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.3
Status: int32 { read-only }
upos::events::DirectlOEvent 1.3
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.3
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent 1.3
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.3
Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 6-5

General Information

The Bump Bar programmatic name is “BumpBar”.

Capabilities

The Bump Bar Control has the following minimal set of capabilities:

* Supports broadcast methods that can communicate with one, a range, or all
bump bar units online.

e Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

* Supports bump bar enunciator output with frequency and duration.

* Supports tactile feedback via an automatic tone when a bump bar key is
pressed.

UnifiedPOS Version 1.15 -- May 11, 2018

Chapter 6

UnifiedPOS Retail Peripheral Architecture
6-6 Bump Bar
Bump Bar Class Diagram
The following diagram shows the relationships between the Bump Bar classes.
< - -
<event>> <<utility>> <<utility>> <<uses>> <<Interface>>
DataEvent BumpBarConst UposConst | BaseControl
(from events) (from upos) (from upos) | (from upos)
. A /\ccuses>> ~ /
<<uses>> | e
\\ P \y’<<sends>>
) / <<exception>>
ires | /
<<event>> \ ’ UposException
DirectlOEvent ‘\ | / (from upos)
\ f
(from events) I /
\ \ /]
\ / /
\ /
fires | / / <<sends>>
\ N
<<Interface>>
BumpBarControl
(from upos)

<<capability>> CapTone : boolean
&#<<prop>> AsyncMode : boolean
&<<prop>> Timeout : int32

#<<prop>> UnitsOnline : int32
<<prop>> CurrentUnitID : int32
&<<prop>> AutoToneDuration : int32
&#<<prop>> AutoToneFrequency : int32
<<prop>> BumpBarDataCount : int32
&<<prop>> Keys : int32

&<<prop>> ErrorUnits : int32
<<prop>> ErrorString : string
&<<prop>> EventUnitID : int32
&#<<prop>> EventUnits : int32
<<prop>> EventString : string

#bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void

| ®setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

yﬁi

7 ﬂ“res

/ V

<<event>> <<event>> <<event>>
ErrorEvent StatusUpdateEvent OutputCompleteEvent
(from events) (from events) (from events)

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Model

The general model of a bump bar is:

The bump bar device class is a subsystem of bump bar units. The initial
targeted environment is food service, to control the display of order
preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage
and control the entire subsystem of bump bars. If applications on the same or
other workstations and POS Terminals will need to access the subsystem, then
this application must act as a subsystem server and expose interfaces to other
applications.

All specific methods are broadcast methods. This means that the method can
apply to one unit, a selection of units or all online units. The units parameter
is an int32, with each bit identifying an individual bump bar unit. (One or more
of the constants BB_UID 1 through BB_UID 32 are bitwise ORed to form
the bitmask.) The Service will attempt to satisfy the method for all unit(s)
indicated in the units parameter. If an error is received from one or more units,
the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors
received. The method will then notify the application of the error condition. In
the case where two or more units encounter different errors, the Service should
determine the most severe error to report.

The common methods checkHealth, clearInput, and clearOutput are not
broadcast methods and use the unit ID indicated in the CurrentUnitID
property. (One of the constants BB_UID 1 through BB_UID 32 are
selected.) See the description of these common methods to understand how
the current unit ID property is used.

When the current unit ID property is set by the application, all the
corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the depen-
dent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The defini-
tions range from BB_UID 1 to BB_UID_ 32. These definitions are also used
to create the bitwise parameter, units, used in the broadcast methods.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 6

Bump Bar

Input — Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input
with some differences:

When input is received, a DataEvent is enqueued.

This device does not support the AutoDisable property, so the device will not
automatically disable itself when a DataEvent is enqueued.

An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it reenables events by setting DataEventEnabled to true.

An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

The BumpBarDataCount property may be read to obtain the number of
bump bar DataEvents for a specific unit ID enqueued. The DataCount
property can be read to obtain the total number of data events enqueued.

Queued input may be deleted by calling the clearInput method. See
clearInput method description for more details.

The Bump Bar Service provider must supply a mechanism for translating its inter-
nal key scan codes into user-defined codes which are returned by the data event.
Note that this translation must be end-user configurable. The default translated key
value is the scan code value.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Output - Tone Updated in Release 1.7

The bump bar follows the general “Device Output Model,” with some enhance-
ments:

The bumpBarSound method is performed either synchronously or
asynchronously, depending on the value of the AsyncMode property.

When AsyncMode is false, then this method operates synchronously and the
Device returns to the application after completion. When operating
synchronously, the application is notified of an error if the method could not
complete successfully.

When AsyncMaode is true, then this method operates as follows:

* The Device buffers the request in program memory, for delivery to the
Physical Device as soon as the Physical Device can receive and process
it, sets the QutputID property to an identifier for this request, and returns
as soon as possible. When the device completes the request successfully,
the EventUnits property is updated and an QutputCompleteEvent is
enqueued. A property of this event contains the output ID of the
completed request.

* Ifan error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The EventUnits property is set to the unit or
units in error. The EventString property is also set.

Note: ErrorEvent updates EventUnits and EventString. If an error is
reported by a broadcast method, then ErrorUnits and ErrorString are
set instead.

The event handler may call synchronous bump bar methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

* Asynchronous output is performed on a first-in first-out basis.

* All output buffered may be deleted by setting the CurrentUnitID
property and calling the clearOutput method. An
OutputCompleteEvent will not be enqueued for cleared output. This
method also stops any output that may be in progress (when possible).

Device Sharing

The bump bar is an exclusive-use device, as follows:

The application must claim the device before enabling it.

The application must claim and enable the device before accessing many
bump bar specific properties.

The application must claim and enable the device before calling methods that
manipulate the device.

When a claim method is called again, settable device characteristics are
restored to their condition at release.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 6
6-10 Bump Bar

Bump Bar State Diagram

€ iceEna}zﬁIed(false)

Enabled

/setDeviceEnabled(true)

[AsyncMode == true]/bumpBarSound

[async requests done

bar input error]

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 6-11

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open-claim-enable }

If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

bumpBarSound Method, “Device Output Models" on page Intro-26.

AutoToneDuration Property

Syntax

Remarks

Errors

See Also

AutoToneDuration: int32 { read-write, access after open-claim-enable }

Holds the duration (in milliseconds) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

AutoToneFrequency Property

Syntax

Remarks

Errors

See Also

AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Holds the frequency (in Hertz) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

UnifiedPOS Version 1.15 -- May 11, 2018

6-12

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

BumpBarDataCount Property

Syntax

Remarks

Errors

See Also

BumpBarDataCount: int32 { read-only, access after open-claim-enable }

Holds the number of DataEvents enqueued for the bump bar unit specified by the
CurrentUnitID property.

The application may read this property to determine whether additional input is
enqueued from a bump bar unit, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property, DataEvent.

CapTone Property

Syntax

Remarks

Errors

See Also

CapTone: boolean { read-only, access after open-claim-enable }

If true, the bump bar unit specified by the CurrentUnitID property supports an
enunciator.

This property is initialized when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 6-13

CurrentUnitID Property

Syntax

Remarks

Errors

CurrentUnitID: inf32 { read-write, access after open-claim-enable }

Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar
device. The unit ID definitions range from BB_UID_1 to BB UID_32.

Setting this property will update other properties to the current values that apply to
the specified unit.The following properties and methods apply only to the selected
bump bar unit ID:

* Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount,
CapTone, and Keys.

* Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID 1 when the device is first enabled
following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only, access after open }

Holds the total number of DataEvents enqueued. All units online are included in
this value. The number of enqueued events for a specific unit ID is stored in the
BumpBarDataCount property.

The application may read this property to determine whether additional input is
enqueued, but has not yet been delivered because of other application processing,
freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

BumpBarDataCount Property, DataEvent Event, “Device Input Model" on
page Intro-23.

UnifiedPOS Version 1.15 -- May 11, 2018

6-14

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

ErrorString Property

Syntax

Remarks

Errors

See Also

ErrorString: string { read-only, access after open }

Holds a description of the error which occurred on the unit(s) specified by the
ErrorUnits property, when an error occurs for any method that acts on a bitwise
set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventString instead.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ErrorUnits Property.

ErrorUnits Property

Syntax

Remarks

Errors

See Also

ErrorUnits: int32 { read-only, access after open }

Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs
for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventUnits instead.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ErrorString Property.

EventString Property

Syntax

Remarks

Errors

See Also

EventString: string { read-only, access after open-claim }

Holds a description of the error which occurred to the unit(s) specified by the
EventUnits property, when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

EventUnits Property, ErrorEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 6-15

EventUnitlD Property

Syntax

Remarks

Errors

See Also

EventUnitID: int32 { read-only, access after open-claim }

Holds the bump bar unit ID causing a DataEvent. This property is set just before
a DataEvent is delivered. The unit ID definitions range from BB_UID 1 to
BB _UID 32.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DataEvent.

EventUnits Property

Syntax

Remarks

Errors

See Also

Keys Property
Syntax

Remarks

Errors

See Also

EventUnits: int32 { read-only, access after open-claim }

Holds a bitwise mask of the unit(s) when an OutputCompleteEvent,
ErrorEvent, or StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

Keys: int32 { read-only, access after open-claim-enable }

Holds the number of keys on the bump bar unit specified by the CurrentUnitID
property.

This property is initialized when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

UnifiedPOS Version 1.15 -- May 11, 2018

6-16

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

Timeout Property

Syntax

Remarks

Errors

See Also

Timeout: int32 { read-write, access after open }

Holds the timeout value in milliseconds used by the bump bar device to complete
all output methods supported. If the device cannot successfully complete an output
method within the timeout value, then the method notifies the application of the
error.

This property is initialized to a Service dependent timeout following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, ErrorString Property, bumpBarSound Method.

UnitsOnline Property

Syntax

Remarks

Errors

See Also

UnitsOnline: int32 { read-only, access after open-claim-enable }

Bitwise mask indicating the bump bar units online, where zero or more of the unit
constants BB_UID 1 (bit 0 on) through BB_UID 32 (bit 31 on) are bitwise ORed.
32 units are supported.

This property is initialized when the device is first enabled following the open
method. This property is updated as changes are detected, such as before a
StatusUpdateEvent is enqueued and during the checkHealth method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

checkHealth Method, StatusUpdateEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations)

6-17

Methods (UML operations)

bumpBarSound Method

Syntax

Remarks

bumpBarSound (units: int32, frequency: int32, duration: int32,

numberOfCycles: int32, interSoundWait: in#32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to
operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat
continuously. Else perform the specified number of
cycles.

interSoundWait When numberOfCycles is not one, then pause for

interSoundWait milliseconds before repeating the tone
cycle (before playing the tone again)

Sounds the bump bar enunciator for the bump bar(s) specified by the units

parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be
stopped by using the clearQutput method. (When a numberOfCycles value of
FOREVER was used to start the sound, then the application must use clearOutput
to stop the continuous sounding of tones.)

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 6

6-18

Bump Bar

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

E_FAILURE

One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value
nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is
false.

A negative interSoundWait was specified.
units is zero or a non-existent unit was specified.
A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be
updated before the exception is thrown.

An error occurred while communicating with one of the
bump bar units specified by the units parameter. The
ErrorUnits and ErrorString properties are updated
before the exception is thrown. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone
Property, clearOutput Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 6-19

checkHealth Method (Common)

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device.

CH_INTERACTIVE Perform an interactive test of the device. The Service
will typically display a modal dialog box to present test
options and results.

When CH_INTERNAL or CH_EXTERNAL level is requested, the method will
check the health of the bump bar unit specified by the CurrentUnitID property.
When the current unit ID property is set to a unit that is not currently online, the
device will attempt to check the health of the bump bar unit and report a
communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText
property.

The UnitsOnline property will be updated with any changes before returning to
the application.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E FAILURE An error occurred while communicating with the bump
bar unit specified by the CurrentUnitID property.

CurrentUnitID Property, UnitsOnline Property.

UnifiedPOS Version 1.15 -- May 11, 2018

6-20

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

clearinput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the
CurrentUnitID property.
Any data events that are enqueued — usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also CurrentUnitID Property, “Device Input Model" on page Intro-23.

clearOutput Method (Common) Updated in Release 1.7
Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered, including all asynchronous output,
for the unit specified by the CurrentUnitID property.
Any output complete and output error events that are enqueued — usually waiting
for DataEventEnabled to be set to true and FreezeEvents to be set to false — are
also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also CurrentUnitID Property, “Device Output Models" on page Intro-26.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations)

6-21

setKeyTranslation Method

Syntax

Remarks

Errors

See Also

setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set
key translation for.

scanCode The bump bar generated key scan code. Valid values 0-
255.

logicalKey The translated logical key value. Valid values 0-255.

Assigns a logical key value to a device-specific key scan code for the bump bar
unit(s) specified by the units parameter. The logical key value is used during
translation during the DataEvent.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL

One of the following errors occurred:
scanCode or logicalKey are out of range.
units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are
updated prior to notifying the application of the error.

ErrorUnits Property, ErrorString Property, DataEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

6-22

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 {read-only }

Notifies the application when status from the bump bar is available.
This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type,
located in the low word, the remaining 2 bytes will contain additional data. The
diagram below indicates how the Status property is divided:

High Word Low Word (Event Type)

High Byte Low Byte
Unused. Always zero. LogicalKeyCode BB DE KEY

Enqueued to present input data from a bump bar unit to the application. The low
word contains the Event Type. The high word contains additional data depending
on the Event Type. When the Event Type is BB DE_KEY, the low byte of the
high word contains the LogicalKeyCode for the key pressed on the bump bar unit.
The LogicalKeyCode value is device independent. It has been translated by the
Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

“Device Input Model" on page Intro-23, EventUnitID Property,
DataEventEnabled Property, FreezeEvents Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 6-23

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Bump Bar Service to provide events to the application
that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bump Bar devices which may not have any
knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 6

6-24 Bump Bar
ErrorEvent Updated in Release 1.10
<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
Description Notifies the application that a Bump Bar error has been detected and a suitable
response by the application is necessary to process the error condition.
Attributes This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 6-25

Remarks

See Also

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error event listener may change ErrorResponse
to one of the following values:

Value Meaning

ER RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

ER _CLEAR Clear all buffered output data (including all
asynchronous output) or buffered input data. The error

state is exited.
Default when locus is EL._INPUT.

ER _CONTINUEINPUT
Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT DATA.

Enqueued when an error is detected while gathering data from or processing
asynchronous output for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true,
so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before the event is
delivered.

“Device Output Models" on page Intro-26, “Device Information Reporting
Model" on page Intro-31, DataEventEnabled Property, EventUnits Property,
EventString Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 6
6-26 Bump Bar

OutputCompleteEvent

<<event>> upos::events::QutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete. The EventUnits property is updated before
delivering.

Remarks Enqueued when a previously started asynchronous output request completes
successfully.

See Also EventUnits Property, “Device Output Models" on page Intro-26.
StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.
Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent”

description on page 1-34)

* Before delivering the event, the EventUnits property is set to the units for
which the new power state applies.

* When the bump bar device is enabled, then a StatusUpdateEvent is enqueued
to specify the bitmask of online units.

e While the bump bar device is enabled, a StatusUpdateEvent is enqueued
when the power state of one or more units change. If more than one unit
changes state at the same time, the Service may choose to either enqueue
multiple events or to coalesce the information into a minimal number of events
applying to EventUnits.

See Also EventUnits Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 7-1

CHAPTER 7

Cash Changer

This Chapter defines the Cash Changer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string {read-only} 1.2 open
Claimed: boolean {read-only} 1.2 open
DataCount: int32 {read-only} 1.5 open
DataEventEnabled: boolean {read-write} 1.5 open
DeviceEnabled: boolean {read-write} 1.2 open & claim
FreezeEvents: boolean {read-write} 1.2 open
OutputID: int32 {read-only} 1.2 Not Supported
PowerNotify: int32 {read-write} 1.3 open
PowerState: int32 {read-only} 1.3 open
State: int32 {read-only} 1.2 --
DeviceControlDescription: string {read-only} 1.2 --
DeviceControlVersion: int32 {read-only} 1.2 --
DeviceServiceDescription: string {read-only} 1.2 open
DeviceServiceVersion: int32 {read-only} 1.2 open
PhysicalDeviceDescription: string {read-only} 1.2 open
PhysicalDeviceName: string {read-only} 1.2 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-2 Cash Changer

Properties (Continued)

Specific Type Mutability Version May Use After
CapDeposit: boolean {read-only} 1.5 open
CapDepositDataEvent: boolean {read-only} 1.5 open
CapDiscrepancy: boolean {read-only} 1.2 open
CapEmptySensor: boolean {read-only} 1.2 open
CapFullSensor: boolean {read-only} 1.2 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearEmptySensor: boolean {read-only} 1.2 open
CapNearFullSensor: boolean {read-only} 1.2 open
CapPauseDeposit: boolean {read-only} 1.5 open
CapRealTimeData: boolean {read-only} 1.11 open
CapRepayDeposit: boolean {read-only} 1.5 open
AsyncMode: boolean {read-write} 1.2 open
AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable
AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable
CurrencyCashList: string {read-only} 1.2 open
CurrencyCode: string {read-write} 1.2 open
CurrencyCodeList: string {read-only} 1.2 open
CurrentExit: int32 {read-write} 1.2 open
CurrentService: int32 {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.5 open
DepositCashList: string {read-only} 1.5 open
DepositCodeList: string {read-only} 1.5 open
DepositCounts: string {read-only} 1.5 open
DepositStatus: int32 {read-only} 1.5 open, claim, & enable
DeviceExits: int32 {read-only} 1.2 open
DeviceStatus: int32 {read-only} 1.2 open, claim, & enable
ExitCashList: string {read-only} 1.2 open
FullStatus: int32 {read-only} 1.2 open, claim, & enable
RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable
ServiceCount: int32 {read-only} 1.11 open
Servicelndex: int32 {read-only} 1.11 open

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 7-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.2
void { raises-exception }

close (): 1.2
void { raises-exception, use after open }

claim (timeout: int32): 1.2
void { raises-exception, use after open }

release (): 1.2
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.2
void { raises-exception, use after open, claim, enable }

clearInput (): 1.5
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void { } supported

directIO (command: int32, inout data: int32, inout obj: object): 1.2

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.5
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.2
void { raises-exception, use after open, claim, enable }

dispenseChange (amount: int32): 1.2
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.5
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.5

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-4 Cash Changer

pauseDeposit (control: int32): 1.5
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.2
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.5

Status: int32 { read-only }
upos::events::DirectlOEvent 1.2

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.2

Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 7-5

General Information

The Cash Changer programmatic name is “CashChanger”.

Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:
* Reports the cash units and corresponding unit counts available in the Cash
Changer.

* Dispenses a specified amount of cash from the device in either bills, coins, or
both into a user-specified exit.

» Dispenses a specified number of cash units from the device in either bills,
coins, or both into a user-specified exit.
* Reports jam conditions within the device.

* Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

* Reporting the fullness levels of the Cash Changer’s cash units. Conditions
which may be indicated include empty, near empty, full, and near full states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

Release 1.5 and later — Support for the cash acceptance is added
as an option.

* The money (bills and coins) which is deposited into the device between the
start and end of cash acceptance is reported to the application. The contents of
the report are cash units and cash counts.

Release 1.11 and later — Support for the use of cash device sub-

services

* The service can use sub-services for other cash devices to create a full-
function cash changer service. Properties are added for the extraction of
information from the sub-services.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture
7-6

Chapter 7
Cash Changer

Cash Changer Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

<<exception>>

UposException
(fomupog

“\ <<sends>>
\
<<Interface>>
CashChangerControl
(from upos)

% <<capability>> CapDeposit : boolean
&¥<<capalility>> CapDepositDataE \ent : boolean
<<event>> &% <<capalility>> CapDiscrepancy : boolean
DataEvent B <<capalility>> CapEmptySensor : boolean
fiomevents) B%<<capalility>> CapFullSensor : bodean

) <<capability>> CapJamSensor : Boolean

fires B <<capability>> CapNearEmptySensor : boolean
E¥<<capability>> CapNearFullSensor : boolean
& <<capability>> CapPauseDeposit : boolean
E¥<<capability>> CapRealTimeData : Boolean

<<ewent>> & <<capalility>> CapRepayDeposit : boolean
DirectiOEvent B<<prop>> AsyncMode : boolean
fromeverts) fires | B<<prop>> AsyncResultCode : int32
S B <<prop>> AsyncResultCodeExtended : int32
&%<<prop>> CumrencyCashList : string

&<<prop>> CurrencyCode : string
&% <<prop>> CumrencyCodeList : string
B <<prop>> CurrentExit : int32

<<event>> fires | B<<prop>> CumrentSenice : int32
StatusUpdateEvent & <<prop>> DepositAmourt : int32
(from events) '%«prop» DepositCashlList : string
B <<prop>> DepositCodeList : string
B <<prop>> DepositCounts : string

fires B <<prop>> DepositStatus : int32
B <<prop>> DeviceExits : int32
<<ewent>> / B <<prop>> DeviceStatus : int32
ErorEvent B%<<prop>> ExitCashList : string
(from events) B <<prop>> FullStatus : int32
B <<prop>> RealTimeDataEnabled : boolean
B <<prop>> SeniceCount : int32
E%<<prop>> Senicelndex : int32

SadjustCashCounts(cashCounts : stiing)

SbeginDeposit()

SdispenseCash(cashCounts : string)
SdispenseChange(amount : int32)

SendDepoasit(amount : int32)

SfixDeposit()

®pauseDeposit(control : int32)

SreadCashCounts(cashCounts : string, discrepancy : boolean)

<<utility>>
UposConst

(from upos)

<<utility>>
CashChangerConst

(from upos)

Z,
s
-

.7 <<uses>>

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 7-7

Model Updated in Release 1.11

The general model of a Cash Changer is:

* Supports several cash types such as coins, bills, and combinations of coins and
bills. The supported cash type for a particular currency is noted by the list of
cash units in the CurrencyCashList property.

* Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

* Prior to Release 1.5 this specification provides programmatic control only for
the dispensing of cash. The accepting or removing of cash by the device (for
example, to replenish cash) is controlled by the adjustCashCounts method,
unless the device can determine the amount of cash on its own. The
application can call readCashCounts to retrieve the current unit count for
each cash unit, but cannot control when or how cash is added to the device.

* May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

* Dispenses cash into the exit specified by CurrentExit when either
dispenseChange or dispenseCash is called. With dispenseChange, the
application specifies a total amount to be dispensed, and it is the responsibility
of the Cash Changer device or the Control to dispense the proper amount of
cash from the various slots or bins. With dispenseCash, the application
specifies a count of each cash unit to be dispensed.

* Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMode is true and no exception is thrown by either
dispenseChange or dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with
its Data property set to CHAN_STATUS ASYNC. The request’s completion
status is set in the AsyncResultCode and AsyncResultCodeExtended
properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.
Nesting of asynchronous Cash Changer operations is illegal; only one
asynchronous method can be processed at a time.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7

Cash Changer

The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status, and in the FullStatus property to show full
and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN_STATUS_EMPTY, and if there are one or more full
cash slots, then FullStatus is CHAN STATUS FULL.

After Release 1.5 — Support for cash acceptance is added as an
option.
The cash acceptance model is as follows:

Note that the AsyncMode property has no affect on methods that have been
added for cash acceptance, since these are treated as input methods.

The dispensing of change function of this device is not dependent upon the
availability of a “cash acceptance” function option. Dispensing of change and
collection of money are two independent functions.

Receipt of cash (cash acceptance function) is an option that may be provided
by the Cash Changer device. Cash acceptance into the “cash acceptance
mechanism” is started by invoking the beginDeposit method. The previous
values of the properties DepositCounts and DepositAmount are initialized to
Zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a
DataEvent is generated to inform the application that cash has been collected.
If the pauseDeposit method is executed with a parameter value of
CHAN_DEPOSIT PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of CHAN _DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until an endDeposit method is executed. At this point
the “cash acceptance” mechanism is notified to stop accepting cash. If
endDeposit method receives a CHAN_DEPOSIT CHANGE parameter, then
the mechanism will dispense cash change back to the user. If endDeposit is
invoked with a CHAN DEPOSIT NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if
endDeposit is invoked with a CHAN_DEPOSIT REPAY parameter, then all
collected cash is returned back to the user by the mechanism.

Two types of Cash Changer mechanisms are covered by this standard. In one
case where CapRepayDeposit is true, the bins that are used for collecting the
cash are the same bins that are used for dispensing the cash as change. In the

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 7-9

other case where CapRepayDeposit is false, the bins that are used for
collecting the cash are different from the bins that are used for dispensing the
change. In the first case, if a transaction is aborted for any reason, the same
cash the user input to the mechanism will be returned to the user. In the second
case, it is up to the application to dispense an equivalent amount of cash (not
the same physical cash collected) back to the user for an aborted transaction.

¢ The Cash Changer mechanisms can only be used in one mode at a time. While
the mechanism is collecting deposited cash, it cannot dispense change at the
same time. Therefore, while beginDeposit method is being executed, no
payment of change can occur. Only after an endDeposit method call can the
proper amount of change be determined (either by the application or by a
“smart” Cash Changer) and dispensed to the user. Each Cash Changer
manufacturer must determine the amount of time it takes to process the
received cash and place in storage bins before it completes the endDeposit
method.

* When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

» After Release 1.11 — Support for the use of cash device sub-
services.

¢ The cash device sub-service model is as follows:

* Cash Changer service can utilize other cash device sub-services, such as coin
dispensers, coin acceptors, bill dispenser, bill acceptors and other cash
changers to access device hardware, creating a full function cash changer
service. Each call to the cash changer service will invoke the corresponding
call to the sub-services. Therefore, an open call will call the open method of
all of the sub-services, claim will call claim, and so forth. The same can be said
for the cash changer properties. Some properties are available for dispensers,
while others are available only for acceptors. It is up to the aggregating cash
changer service to analyze and interpret the results of its communications to
the sub-services and report to the application. For example, if the open call
fails for one of the sub services, the exception should be passed up to the
application. The mapping of the properties and methods from service to sub-
service is as follows:

Cash Coin Bill Coin Bill

Changer Dispenser Dispenser Acceptor Acceptor
CapDeposit
CapDepositDataEvent
CapDiscrepancy X X X X
CapEmptySensor X X
CapJamSensor X X X X
CapFullSensor X X
CapNearEmptySensor X X
CapNearFullSensor X X
CapPauseDeposit X X
CapRealTimeData X X
CapRepayDeposit
AsyncMode X
AsyncResultCode X

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

7-10

Chapter 7
Cash Changer

Cash

Coin

Changer Dispenser

Bill
Dispenser

Coin
Acceptor Acceptor

Bill

AsyncResultCodeExtended

CurrencyCashList

CurrencyCode

CurrencyCodeList

CurrentExit

X P | | A

CurrentService

DepositAmount

DepositCashList

DepositCodeList

DepositCounts

DepositStatus

P | R <

ikalteltallks

DeviceExits

DeviceStatus DispenserStatus

ExitCashList

X | <

FullStatus

ServiceCount

Servicelndex

RealTimeDataEnabled

beginDeposit()

| <

| P

dispenseCash()

dispenseChange()

endDeposit()

fixDeposit()

pauseDeposit()

readCashCounts()

X | |

kil

* ServiceCount lists the number of sub-services used by the cash changer.

* Servicelndex is a byte segmented property containing the index for each sub-

service.

» Ifaccess to sub-service property and method information is desired, setting the
CurrentService property to the desired index will allow the application to
request property information of the specified sub-service.

<<Interface>>
CashChangerControl

(fromupos)

POS
Application | - - — — = >

Example of a Cash Changer Service using a coin cash changer --=

CashChangerSenice

service, a bill acceptor service and a bill dispenser service.

Coin Cash Changer Senice

Bill Acceptor
Senice

Bill Dispenser
Senice

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 7-1

Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
ICashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp | :CashChanger | |:CashChangerService| | :Human Actor |

~4 register to receive Dataa/ent with Control i

J_ [
setDataEventEnabIed(t[ubl) setDataEventEnabIedﬂrLe)

T |
— beginDeposit() | beginDeposit() | DepositCounts and Dep itAmount
\—H property values are initialized
1 |

accepting cash H;l

DepositCounts and DepositAmount
property values are quated

1

deliver DataEvent

eliver DataEvent

pauseDeposit(Pause)

—]

|
|
|
ﬂ pauseDeposit(Pause)
|

while checL amount accepted |

is < amounjt of sale |

setDataEventEnabled(true)
|

setDataEventEnabled|(i rue)

pauseDeposit(Restart)

L’ pauseDeposit(Restart)

accepting cash

DepositCounts and DepositAmount
property values are quated

’J_deliver DataEvent |

eliver DataEvent

endloop T | |
—fixDeposit U e . | DepositCounts and DepasitAmount
bost) J_' fixDeposit() | property values are finalized
endDeposit(Change/ \T‘ .
Nochange/Repayment) ! endDeposit(Change/ ||

if there is change !
dispenseChange() or
dispenseCash()

|

Nochange/Repayment i

I ! ; |
|

dispenseChange() or

 dispenseCash() ﬁ change tl

o

endif T

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-12 Cash Changer

Cash Changer State Diagram Updated in Release 1.8

/\
open() CIaIm()
. close() release()

setDeviceEnabled(fals

clearinput()

ceEnabled(true)

Clearlnput Processing
entry/ empty data queue

cear&()\/

‘ FixMode

endDeposit()

)

posit(CHAN_DEPOSIT_RESTART
clearlnp

entry/ sync DepositCounts and DepositAmount

. Pay Money

done
[asyncMode == false] [asyncMode == true] Fire Events

‘ Synchronous Pay ‘ ‘ Async

fire event entry/ enqueue StatusUpdateEvents

Device Sharing

The Cash Changer is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 7-13

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash and dispenseChange methods will be performed
asynchronously. If false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseChange Mecthod, dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: in#32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN STATUS ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: in#32 { read-only, access after open-claim-
enable}

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN_STATUS_ ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-14 Cash Changer

CapDeposit Property Added in Release 1.5
Syntax CapDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit

Method.
CapDepositDataEvent Property Added in Release 1.5
Syntax CapDepositDataEvent: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a cash acceptance event.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.

CapDiscrepancy Property
Syntax CapDiscrepancy: boolean { read-only, access after open }
Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also readCashCounts Method.
CapEmptySensor Property
Syntax CapEmptySensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 7-15

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }

If true, the Cash Changer can report the condition that some cash slots are nearly
empty.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceStatus Property, StatusUpdateEvent.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Cash Changer can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-16 Cash Changer

CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also pauseDeposit Method.

CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real
time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also RealTimeDataEnabled property.

CapRepayDeposit Property Added in Release 1.5
Syntax CapRepayDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also endDeposit Method.

CurrencyCashList Property
Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash dispensing units supported in the Cash Changer for the currency
represented by the CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the
units of coins, then the ASCII semicolon character (*;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Cash Changer. If

(73%1)

a semicolon (“;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 717

e “1,5,10,50,100,500” ---
1, 5,10, 50, 100, 500 yen coin.

e “1,5,10,50,100,500;1000,5000,10000” ---
1,5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.
CurrencyCode Property
Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList

property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

See Also CurrencyCodeList Property.

CurrencyCodelList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.

UnifiedPOS Version 1.15 -- May 11, 2018

7-18

UnifiedPOS Retail Peripheral Architecture Chapter 7

Cash Changer

CurrentExit Property

Syntax

Remarks

Errors

See Also

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater then 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”

DeviceExits = 1

CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

Cash Changer supports both coins and bills; an auxiliary exit is used for
larger quantities of bills:

CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits =2

When CurrentExit = 1 : ExitCashList =
“1,5,10,50,100,500;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

Cash Changer supports bills; an auxiliary exit is used for larger quantities
of bills:

CurrencyCashList = “;1000,5000,10000”

DeviceExits =2

When CurrentExit = 1 : ExitCashList = “;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL An invalid CurrentExit value was specified.

CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 7-19

CurrentService Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

CurrentService: int32 { read-write, access after open }

Holds the current service. The value 0 represents the primary service, while values
greater than 0 and less than or equal to ServiceCount are used to request
information from the integrated services. Legal values range from 0 to
ServiceCount. The readCashCounts method and all of the properties, common
and specific, are accessible when the CurrentService is greater than 0.
CurrentService, ServiceCount and ServiceIndex will always reflect the primary
service.

Below are examples of a cash changer service using services for separate Coin
Acceptor and Dispenser and a bills only cash changer. A StatusUpdateEvent
indicting a jam has been received by the application. Only the bill changer and the
coin dispenser can detect a jam.

* Checking the values of the primary service:
CurrentService = 0
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN _STATUS JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

« Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”

* The coin dispenser looks ok. Check the bill changer:
CurrentService =3
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An invalid CurrentService value was specified.

ServiceCount Property, ServiceIndex Property.

UnifiedPOS Version 1.15 -- May 11, 2018

7-20

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

DepositAmount Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash
Changer.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCashList Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode property. It is set to an empty string when the cash
acceptance process is not supported.

It consists of ASCII numeric comma delimited values which denote the units of
coins, then the ASCII semicolon character (*;””) followed by ASCII numeric
comma delimited values for the bills that can be used with the Cash Changer. If

€,

the semicolon (“;”) is absent, then all units represent coins.

Below are sample DepositCashList values in Japan.
« “1,5,10,50,100,500 ---
1, 5,10, 50, 100, 500 yen coin.
« “1,5,10,50,100,500;1000,5000,10000” ---
1, 5,10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 7-21

DepositCodeList Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }

Holds the currency code indicators for cash accepted. It is set to an empty string
when the cash acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by com-
mas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCounts Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the cash units. The format of the string is
the same as cashCounts in the dispenseCash method. Cash units inside the string
are the same as the DepositCashList property, and are in the same order. It is set
to an empty string when the cash acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash
Changer.

This property is initialized by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

UnifiedPOS Version 1.15 -- May 11, 2018

7-22

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

DepositStatus Property Added in Release 1.5

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

CHAN_STATUS DEPOSIT START

Cash acceptance started.
CHAN_STATUS _DEPOSIT END

Cash acceptance stopped.
CHAN_STATUS DEPOSIT NONE

Cash acceptance not supported.
CHAN_STATUS_DEPOSIT COUNT

Counting or repaying the deposited money.

CHAN_STATUS DEPOSIT JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CHAN STATUS DEPOSIT END after initialization, or to
CHAN_STATUS DEPOSIT NONE if the device does not support cash
acceptance.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentExit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 7-23

DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN_STATUS OK The current condition of the Cash Changer is
satisfactory.

CHAN_STATUS _EMPTY

Some cash slots are empty.
CHAN_STATUS NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.

This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

FullStatus Property Updated in 1.14

Syntax

Remarks

Errors

FullStatus: in#32 { read-only, access after open, claim, enable }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CHAN_STATUS _OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

7-24

UnifiedPOS Retail Peripheral Architecture Chapter 7

Cash Changer

RealTimeDataEnabled Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the
DepositAmount and DepositCounts properties. Otherwise, DepositAmount and
DepositCounts are updated with the value of the money collected when fixDeposit is
called. Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginDeposit method is performed. This prevents confusion
regarding what would happen if it were modified between a beginDeposit -
endDeposit pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData property, DepositAmount property, DepositCounts
property, beginDeposit Method, endDeposit Method, fixDeposit Method.

ServiceCount Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

ServiceCount: int32 { read-only, access after open }

The number of integrated services used by the cash changer service. If the service
does not utilize other services, this value will be zero.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentService Property, Servicelndex Property.

Servicelndex Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

Servicelndex: int32 { read-only, access after open }

The value is divided into four bytes indicating the service index for each of the
integrated service types.The diagram below indicates how the property is divided:

A value of zero means that no integrated services are utilized.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Bill Dispenser Bill Acceptor | Coin Dispenser | Coin Acceptor

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentService Property, ServiceCount Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 7-25

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the cash changer after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the changer.

To reset all cash counts to zero, set cach denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Cash Changer.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

readCashCounts Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-26 Cash Changer

beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

* The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is
reported by DataEvents until fixDeposit is called while the deposit process is not
paused.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Either the Cash Changer does not support cash
acceptance, or the call sequence is not correct.

See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts
Property, endDeposit Method, fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 7-27

dispenseCash Method

Syntax

Remarks

Errors

See Also

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of “cash unit:cash counts, ..;.., cash unit:cash counts”.
Units before ““;” represent coins, and units after “;” represent bills. If “;” is absent,
then all units represent coins.

Dispenses the cash from the Cash Changer into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

* “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five
hundred yen coins.

e “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand
yen bills.

+ 51000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* The cashCounts parameter value was illegal for the
current exit.
e Cash could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-28 Cash Changer

dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to
the Cash Changer to determine what combination of bills and coins will satisfy the
tender requirements from its available supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit
represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY The specified change cannot be dispensed because an
asynchronous method is in progress.

E ILLEGAL One of the following errors occurred:

* A negative or zero amount was specified.

e The amount could not be dispensed based on the
values specified in ExitCashList for the current
exit.

* Change could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified change cannot be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 7-29

endDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

CHAN_DEPOSIT _CHANGE The deposit is accepted and the deposited
amount is greater than the amount required.

CHAN_DEPOSIT NOCHANGE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.

CHAN_DEPOSIT _REPAY The deposit is to be repaid through the cash
deposit exit or the cash payment exit.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the
amount required then success is set to CHAN DEPOSIT NOCHANGE.

If success is set to CHAN _DEPOSIT_REPAY then the deposit is repaid through
either the cash deposit exit or the cash payment exit without storing the actual
deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were
deposited. Depending on the actual device, the cash repaid may be the exact same
bills and coins that were deposited, or it may not.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts
Property, beginDeposit Method, fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 7

7-30 Cash Changer
fixDeposit Method Added in Release 1.5
Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks When this method is called, all property values are updated to reflect the current
values in the Cash Changer.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
e The call sequence is invalid. beginDeposit must be
called before calling this method.
See Also DepositAmount Property, DepositCounts Property, beginDeposit Method,

endDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 7-31

pauseDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CHAN_DEPOSIT PAUSE Cash acceptance is paused.
CHAN DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CHAN_DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the depositCounts and depositAmount
properties are updated to reflect the current state of the Cash Changer. The
property values are not changed again until the deposit process is resumed.

If control is CHAN_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

» Cash acceptance is not supported.

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to CHAN_ DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
CHAN _DEPOSIT RESTART.

CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount
Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

7-32

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

readCashCounts Method

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Cash Changer. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Cash Changer. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 7-33

Events (UML interfaces)
DataEvent Updated in Release 1.11

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has accepted cash.
Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for
a vendor-specific Cash Changer Service to provide events to the application that are not
otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Changer devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

7-34

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash Changer

Attributes

Remarks

See Also

device.

This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN _STATUS _EMPTY Some cash slots are empty.

CHAN _STATUS NEAREMPTY Some cash slots are nearly empty.

CHAN STATUS EMPTYOK No cash slots are either empty or nearly
empty.

CHAN_STATUS FULL Some cash slots are full.

CHAN_STATUS NEARFULL Some cash slots are nearly full.

CHAN _STATUS _FULLOK No cash slots are either full or nearly full.

CHAN_STATUS JAM A mechanical fault has occurred.

CHAN_STATUS JAMOK A mechanical fault has recovered.

CHAN_STATUS _ASYNC Asynchronously performed method has
completed.

Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events' on
page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 8-1

CHAPTER 8

Cash Drawer

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not Supported
DataEventEnabled: boolean { read-write } 1.0 Not Supported
DeviceEnabled: boolean { read-write } 1.0 open
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not Supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

8-2

Chapter 8
Cash Drawer

Properties (Continued)

Specific Type
CapStatus: boolean
CapStatusMultiDrawerDetect: boolean

DrawerOpened: boolean

Methods (UML operations)

Mutability
{ read-only }
{ read-only }
{ read-only }

Version

1.0
1.5
1.0

May Use After
open
open

open & enable

Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception } ’
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open } ’
release (): 1.0
void { raises-exception, use after open, claim })
checkHealth (level: int32): 1.0
void { raises-exception, use after open, enable } Note ’
clearInput (): Not
void { } supported
clearInputProperties (): Not
void { } supported
clearOQutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception, use after open } :
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
Specific
Name
openDrawer (): 1.0
void { raises-exception, use after open, enable } Note ’
waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32): 1.0

void { raises-exception, use after open, enable }

Note

Note: Also requires that no other application has claimed the cash drawer.

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 8-3
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.0

Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

8-4

UnifiedPOS Retail Peripheral Architecture

Chapter 8
Cash Drawer

General Information

<<exception>>
UposException
(from upos)

<~

The Cash Drawer programmatic name is “CashDrawer”.

Capabilities

1)

The Cash Drawer Control has the following capability:

* Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

* Drawer status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where the
drawer is the only drawer accessible via a hardware port.

* Drawer unique status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where more
than one drawer is accessible via the same hardware port.

Cash Drawer Class Diagram Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

<<Interface>>
BaseControl
(fromupos)

<<sends>>

IS

<<sends>>\

>

<<uses>>

<<utility>>
UposConst
(from upos)

<<utility>>
CashDrawerConst
(from upos)

<<uses>> 7
e

<<Interface>>

CashDrawerControl

(from upos)

l%«capability» CapStatus : boolean
t%«capability» CapStatusMultiDrawerDetect : boolean
t%«prop» DrawerOpened : boolean

openDrawer() : void
SwaitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

fires

<<event>>

StatusUpdateEvent

(from events)

<<prop>> Status: int32

fires

<<event>>
DirectlOEvent
(from events)

<<<prop>> EventNumber : int32
¢<<prop>> Data : int32
ca<<prop>> Obj : object

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 8-5

Cash Drawer Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of a Cash Drawer open()
- setDeviceEnabled(true) = getDrawerOpened() = openDrawer(); as well as
showing the unique sharing model of the Cash Drawer device when used with
multiple control instances open on the same physical device but by different
applications.

means that the platform specific loading/configuration/creation code executed successfully.

NOTE: we are assuming that the :ClientApp(s) already successfully opened the controls. This ﬁ

:ClientApp0 :ClientApp1 cd0:CashDrawe| cd1:CashDrawer :StatusUpdateEvent : :CashDrawer :CashDrawer Physical CD
r ‘ StatusUpdateEvent Service0 Servicel Device
‘ 1: setDeviceEnabled(true) ‘ 2: setDeviceEnabled(true ‘
3: connect or somehow have access to the hardware
{ Service returns

current state of

4: openDrawer() T 5: openDrawer() cash drawer

to open physical (CD

If the command to open the physical CDDN™ CashDrawer N

is successful then this will result in device is
T StatusUpdateEvent delivered to any assumed open
T registered listeners. Thisisnot shown in successfully and
this diagram for simplicity. DrawerOpened
property is now
7: setDeviceEnabled(true) true

8: setDeviceEnabled(true)

9: might communicate with
device (e.g. get ¢current drawer
state)

10: openDrawer() CashDrawer is now

open by call to cd1.
Assume that some
human actor closes
11: openDrawer() after open

12: send command to open drawer

Assume the CashDrawer
is successfully claimed
at this point by
:ClientApp1

13: claim(timeout) 4: claim(timeout)

Thiscall resultsin a
UposException since
H the CashDrawer device

L 16: openDrawer() isclaimed by the cd1

15: gpenDrawer()

__~ | l——"]instance that isused by
:ClientApp1
17: throw UposExceq
[T
Assume that both L 7 q
:ClientApp0 and :ClientApp1 Thiscall is
registered to receive events successful and)
— not shown. CashDrawer device
18: openDrawer() |_|isopen since cd1
claimed the device
successfully
L 21: send command to open CD

2

N

: deliver SUE to control

23: deliver evep{ to all registered handlers

ZI ~ StatusUpdateEvent isdelivered

24: notify client of new event "o all registered handlers, even

though, in the situation above,

L L 25: new only :ClientApp1 is allowed to
call openDrawer() - since it

L | successfully claimed the CD.

26: deliver SUE tp/qg,mmlr

_| |
Service0 also detects the cash drawer is
P=m— opened, either via a message from

28: notify client of new event Service1, a StatusUpdateEvent from
Service 1, or from a lower level interface

I | |

27: deliver evept to all registered handlers

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 8
8-6 Cash Drawer

Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

* After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

* Ifmore than one application has opened and enabled the device, each of these
applications may access its properties and methods. Status update events are
delivered to all of these applications.

* Ifone application claims the cash drawer, then only that application may call
openDrawer and waitForDrawerClose. This feature provides a degree of
security, such that these methods may effectively be restricted to the main
application if that application claims the device at startup.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 8-7

Properties (UML attributes)
CapStatus Property

Syntax

Remarks

Errors

CapStatus: boolean { read-only, access after open }

If true, the drawer can report status. If false, the Service is not able to determine
whether the cash drawer is open or closed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

CapStatusMultiDrawerDetect: boolean { read-only, access after open }

If true, the status unique to each drawer in a multiple cash drawer conﬁguration1
can be reported.

If false, the following possibilities exist:
DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it
might be the particular drawer in question. This case can occur in multiple cash
drawer configurations where only one status is reported indicating either a) all
drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or
printer supports opening more than one cash drawer independently via the same
channel or hardware port. A typical example is a configuration where a “Y™ cable,
connected to a single hardware printer port, has separate drawer open signal lines
but the drawer open status from each of the drawers is “wired-or” together. It is not
possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStatus Property, DrawerOpened Property.

L Multiple cash drawer configuration -- A hardware configuration where a printer or

terminal controls more than one cash drawer independently via the same channel or
hardware port. A typical example is a configuration with a “Y”’ cable connected to a
single hardware port that controls two cash drawers.

UnifiedPOS Version 1.15 -- May 11, 2018

8-8

UnifiedPOS Retail Peripheral Architecture Chapter 8
Cash Drawer

DrawerOpened Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

DrawerOpened: boolean { read-only, access after open-enable }
If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status
reporting, and this property is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a
DrawerOpened value of true indicates at least one drawer is open, and it might be
the particular drawer in question in a multiple cash drawer configuration. See
CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStatus Property, CapStatusMultiDrawerDetect Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 89

Methods (UML operations)

openDrawer Method

Syntax

Remarks

Errors

openDrawer ():
void { raises-exception, use after open-enable }

Opens the drawer.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

waitForDrawerClose Method

Syntax

Remarks

Errors

See Also

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32):
void { raises-exception, use after open-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert
beeper.

beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be
sounded.

beepDelay Number of milliseconds between the sounding of beeper
tones.

Waits until the cash drawer is closed. If the drawer is still open after beep Timeout
milliseconds, then the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert
beeper. However, by setting these parameters the application will insure that the
system alert beeper will be utilized if it is present.

Unless a UposException is thrown, this method will not return to the application
while the drawer is open. In addition, in a multiple cash drawer configuration
where the CapStatusMultiDrawerDetect property is false, this method will not
return to the application while any of the drawers are open. When all drawers are
closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this
method will return immediately.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

CapStatus Property, CapStatusMultiDrawerDetect Property.

UnifiedPOS Version 1.15 -- May 11, 2018

8-10

UnifiedPOS Retail Peripheral Architecture Chapter 8
Cash Drawer

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 {read-write}
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a

Attributes

Remarks

See Also

means for a vendor-specific Cash Drawer Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Drawer devices which may not have any
knowledge of the Service’s need for this event.

“Errors" on page Intro-21, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 8-11

StatusUpdateEvent Updated in Release 1.13

<<event>> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes only while

Attributes

Remarks

See Also

the device is enabled. A StatusUpdateEvent may be enqueued when the device
is enabled, to inform the application of the initial or current state. However, this
behavior is not required; the application must not depend upon it.

This event contains the following attribute:

Attributes Type Description

Status int32 The status reported from the Cash Drawer.
The Status property has one of the following values:

Value Meaning

CASH_SUE DRAWERCLOSED The Cash Drawer has been closed.

CASH _SUE DRAWEROPEN (Updated in Release 1.13) The Cash Drawer
has been opened. Can only be reported if the Cash
Drawer is not locked (by Key or other locking means).

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See description “StatusUpdateEvent' on page 1-34.

If CapStatus is false, then the device does not support status reporting, and this
event will never be delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE DRAWEROPEN
value indicates that at least one cash drawer is open and it might be the particular
drawer in question for multiple cash drawer configurations.

“Events" on page Intro-20, CapStatus Property, CapStatusMultiDrawerDetect
Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 8
8-12 Cash Drawer

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 9-1

CHAPTER 9

CAT - Credit Authorization Terminal

This Chapter defines the Credit Authorization Terminal device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.4 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.4 open
Claimed: boolean { read-only } 1.4 open
DataCount: int32 { read-only } 1.4 Not Supported
DataEventEnabled: boolean { read-write } 1.4 Not Supported
DeviceEnabled: boolean { read-write } 1.4 open & claim
FreezeEvents: boolean { read-write } 1.4 open
OutputID: int32 { read-only } 1.4 open
PowerNotify: int32 { read-write } 1.4 open
PowerState: int32 { read-only } 1.4 open
State: int32 { read-only } 1.4 --
DeviceControlDescription: string { read-only } 1.4 --
DeviceControlVersion: int32 { read-only } 1.4 --
DeviceServiceDescription: string { read-only } 1.4 open
DeviceServiceVersion: int32 { read-only } 1.4 open
PhysicalDeviceDescription: string { read-only } 1.4 open
PhysicalDeviceName: string { read-only } 1.4 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-2 CAT - Credit Authorization Terminal

Properties (Continued)

Specific Type Mutability Version May Use After
AccountNumber: string { read-only } 1.4 open
AdditionalSecurityInformation: string { read-write } 1.4 open
ApprovalCode: string { read-only } 1.4 open
AsyncMode: boolean { read-write } 1.4 open
Balance: currency { read-only } 1.9 open
CapAdditionalSecurityInformation: boolean { read-only } 1.4 open
CapAuthorizeCompletion: boolean { read-only } 1.4 open
CapAuthorizePreSales: boolean { read-only } 1.4 open
CapAuthorizeRefund: boolean { read-only } 1.4 open
CapAuthorizeVoid: boolean { read-only } 1.4 open
CapAuthorizeVoidPreSales: boolean { read-only } 1.4 open
CapCashDeposit: boolean { read-only } 1.9 open
CapCenterResultCode: boolean { read-only } 1.4 open
CapCheckCard: boolean { read-only } 1.4 open
CapDailyLog: int32 { read-only } 1.4 open
Caplnstallments: boolean { read-only } 1.4 open
CapLockTerminal: boolean { read-only } 1.9 open
CapLogStatus: boolean { read-only } 1.9 open
CapPaymentDetail: boolean { read-only } 1.4 open
CapTaxOthers: boolean { read-only } 1.4 open
CapTransactionNumber: boolean { read-only } 1.4 open
CapTrainingMode: boolean { read-only } 1.4 open
CapUnlockTerminal: boolean { read-only } 1.9 open
CardCompanyID: string { read-only } 1.4 open
CenterResultCode: string { read-only } 1.4 open
DailyLog: string { read-only } 1.4 open
LogStatus: int32 { read-only } 1.9 open
PaymentCondition: int32 { read-only } 1.4 open
PaymentDetail: string { read-only } 1.4 open
PaymentMedia: int32 { read-write } 1.5 open
SequenceNumber: int32 { read-only } 1.4 open
Settled Amount: currency { read-only } 1.9 open
SlipNumber: string { read-only } 1.4 open
TrainingMode: boolean { read-write } 1.4 open
TransactionNumber: string { read-only } 1.4 open
TransactionType: int32 { read-only } 1.4 open

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 9-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.4
void { raises-exception }

close (): 1.4
void { raises-exception, use after open }

claim (timeout: int32): 1.4
void { raises-exception, use after open }

release (): 1.4
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.4
void { raises-exception, use after open, claim, enable }

clearInput (): Not
void { } supported

clearInputProperties (): Not

void { } supported

clearOutput (): 1.4
void { raises-exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object): 1.4
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32): 1.4
void { raises-exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: inf32, amount: currency, 1.4
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizePreSales (sequenceNumber: inf32, amount: currency, 1.4
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: inf32, amount: currency, taxOthers: 1.4
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

9-4

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

lockTerminal ():
void { raises-exception, use after open, claim, enable }

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Type Mutability
upos::events::DataEvent Not supported
upos::events::DirectlOEvent

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent

Status: int32 { read-only }

1.4

1.4

1.4

1.9

1.4

1.9

1.9

Version

1.4

1.4

1.4

1.4

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

General Information

The CAT programmatic name is “CAT”.

Description of terms

Authorization method

Methods defined by this device class that have the Authorize prefix in their
name. These methods require communication with an approval agency.
Authorization operation

The period from the invocation of an authorization method until the
authorization is completed. This period differs depending upon whether
operating in synchronous or asynchronous mode.

Credit Authorization Terminal (CAT) Device

A CAT device typically consists of a display, keyboard, magnetic stripe card
reader, receipt printing device, and a communications device. CAT devices
are predominantly used in Japan where they are required by law. Essentially a
CAT device can be considered a device that shields the encryption, message
formatting, and communication functions of an electronic funds transfer
(EFT) operation from an application.

Purchase

The transaction that allows credit card or debit card payment at the POS. It is
independent of payment methods (for example, lump-sum payment, payment
in installments, revolving payment, etc.).

Cancel Purchase

The transaction to request voiding a purchase on the date of purchase.

Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This
differs from cancel purchase in that a cancel purchase operation can often be
handled by updating the daily log at the CAT device, while the refund
purchase operation typically requires interaction with the approval agency.
Authorization Completion

The state of a purchase when the response from the approval agency is
“suspended”. The purchase is later completed after a voice approval is
received from the card company.

Pre-Authorization

The transaction to reserve an estimated amount in advance of the actual
purchase with customer's credit card presentation and card entry at CAT.
Cancel Pre-Authorization

The transaction to request canceling pre-authorization.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9

CAT - Credit Authorization Terminal

Card Check

The transaction to perform a negative card file validation of the card presented
by the customer. Typically negative card files contain card numbers that are
known to fail approval. Therefore the Card Check operation removes the need
for communication to the approval agency in some instances.

Daily log

The daily log of card transactions that have been approved by the card
companies.

Payment condition

Condition of payment such as lump-sum payment, payment by bonus,
payment in installments, revolving payment, and the combination of those
payments. Debit payment is also available. See the PaymentCondition,
PaymentMedia, and PaymentDetail properties for details.

Approval agency

The agency to decide whether or not to approve the purchase based on the card
information, the amount of purchase, and payment type. The approval agency
is generally the card company.

Capabilities

The CAT control is capable of the following general mode of operation:

This standard defines the application interface with the CAT control and does
not depend on the CAT device hardware implementation. Therefore, the
hardware implementation of a CAT device may be as follows:

* Separate type (POS interlock)
The dedicated CAT device is externally connected to the POS (for
instance, via an RS-232 connection).
e Built-in type
The hardware structure is the same as the separate type but is installed
within the POS housing.
The CAT device receives each authorization request containing a purchase
amount and tax from CAT control.

The CAT device generally requests the user to swipe a magnetic card when it
receives an authorization request from CAT control.

Once a magnetic card is swiped at the CAT device, the device sends the
purchase amount and tax to the approval agency using the communications
device.

The CAT device returns the result from the approval agency to the CAT
control. The returned data will be stored in the authorization properties by the
CAT control for access by applications.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Electronic Money Device: Added in Release 1.9

The CAT Device Category is extended to support an Electronic Money Device that
has the following attributes.

* A CAT device typically consists of a display, keyboard, magnetic stripe
reader, receipt printing device, and a communications device. CAT devices
are predominanly used in Japan where they are required by law. Essentially, a
CAT device can be considered a device that shields the encryption message
formatting and communications functions of an Electronic Funds Transfer
(EFT) operation from an application.

* The Electronic Money Device receives the tendering information (amount of
tender, tax, and other transaction based information) from CAT control, and
then starts the authorization processing.

* When the Electronic Money Device is required, a Credit Card swipe on the
CAT device is generally required for authorization.

* When a Card [Contact Type / Contactless Type] is input by the Electronic
Money Device, it is formatted into the authorization format with the
transaction information and then communicated for authorization.

* When the authorization is completed, the Electronic Money Device sends the
settlement result to CAT control. The settlement result is stored by the CAT
control and passed back to the calling application.

* The Electronic Money Device may save settlement result as DealingLog in
the memory of the device. The device may also send DealingLog to the Center
by settlement processing.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-8 CAT - Credit Authorization Terminal

CAT Class Diagram Updated in Release 1.9

<<utility>> <<exception>>
UposConst UposException
(from upos) (from upos)
N A
<<sends>>
<<event>> <<uses> <<Interface>>
ErrorEvent CATControl
(from events) (from upos)
B <<prop>> AccountNumber : string
& <<prop>> AdditionalSecurityInformation : string
&<<prop>> ApprovalCode : string
¥ <<prop>> AsyncMode : boolean
<<event>> fires &<<prop>> Balance : currency
OutputCompleteEvent < <capability>> CapAdditionalSecurity Information : boolean
(from events) & <<capability>> CapAuthorizeCompletion : boolean
&<<capability>> CapAuthorizePreSales : boolean
¥ <<capability>> CapAuthorizeRefund : boolean
) &< <capability>> CapAuthorizeVoid : boolean
<<event>> fires B <<capability>> CapAuthorizeVoidPreSales : boolean
StatusUpdateEvent &< <capability>> CapCashDeposit : boolean
(from events) &<<capability>> CapCenterResultCode : boolean
¥ <<capability>> CapCheckCard : boolean
fires & <<capability>> CapDailyLog : int32
8 <<capability>> Caplnstallments : boolean
&8 <<capability>> CapLockTerminal : boolean
<<ewn %«capabil?ty» CapLogStatus : bgolean
) < <capability>> CapPaymentDetail : boolean
DirectiOEvent fires &<<capability>> CapTaxOthers : boolean
(from events) <""*‘f‘—\,,,,\7% &<<capability>> CapTransactionNumber : boolean
| BB<<capability>> CapTrainingMode : boolean

&< <capability>> CapUnlockTerminal : boolean
[&<<prop>> CardCompanyID : string
&8 <<prop>> CenterResultCode : string
&<<prop>> DailyLog : string

¥ <<prop>> LogStatus : int32
&<<prop>> PaymentCondition : int32
B <<prop>> PaymentDetail : string

& <<prop>> PaymentMedia : int32

& <<prop>> SequenceNumber : int32
¥ <<prop>> SettledAmount : currency
&<<prop>> SlipNumber : string

B <<prop>> TrainingMode : boolean

& <<prop>> TransactionNumber : string
&<<prop>> TransactionType : int32

BaccessdailyLog()
®authorizeCompletion()
WauthorizePreSales()
®authorizeRefund()
®authorizeSales()
authorizeVoid()
®authorizeVoidPreSales()
®WcashDeposit()
@checkCard()

®lock Terminal()
®unlock Terminal()

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

9-9

Model

The general models for the CAT control are shown below:

* The CAT control basically follows the output device model. However,
multiple methods cannot be issued for asynchronous output; only one

outstanding asynchronous request is allowed.

* The CAT control issues requests to the CAT device for different types of
authorization by invoking the following methods.

Function Method name Corresponding Cap property
Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization

authorizeVoidPreSales

CapAuthorizeVoidPreSales

e The CAT control issues requests to the CAT device for special processing
local to the CAT device by invoking the following methods.

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

e The CAT control stores the authorization results in the following properties
when an authorization operation successfully completes:

Description

Property Name

Corresponding Cap Property

Credit Account number

AccountNumber

None

Additional information

AdditionalSecurityInformation

CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanylID None

ggoe(ilec}f/rom the approval CenterResultCode CapCenterResultCode
Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

* The accessDailyLog method sets the following property

Description Property Name Corresponding Cap Property
Daily log DailyLog CapDailyLog
Electronic Money Device: Added in Release 1.9

e The CAT Control requires the Electronic Money Device to track each

settlement and closing in the DealingLog.

Function Method name Corresponding Cap property
Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

¢ When the CAT Control receives the settlement results from the Electronic
Money Device it stores these results in the following properties:

Description Property Name Corresponding Cap Property
Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation
Approval code ApprovalCode None

Settled amount Settled Amount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

¢ The accessDai

lyLog method sets the following property

Description

Property Name

Corresponding Cap Property

DealingLog

DailyLog

CapDailyLog

* Sequence numbers are used to validate that the properties set at completion of
a method are indeed associated with the completed method. An incoming
SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method
has completed. If the numbers do not match, or if an application fails to
identify the number, there is no guarantee that the values of the properties
listed in the two tables correspond to the completed method.

* The AsyncMode property determines if methods are run synchronously or
asynchronously.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

9-11

When AsyncMode is false, methods will be executed synchronously and their
corresponding properties will contain data when the method returns.

When AsyncMode is true, methods will return immediately to the application.
When the operation associated with the method completes, each
corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be
issued immediately after issuing a prior method; only one outstanding
asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous
method.

The methods supported and their corresponding properties vary depending on
the CAT control implementation. Applications should verify that particular
Cap properties are supported before utilizing the capability dependent
methods and properties.

Results of synchronous calls to methods and writable properties will be stored
in ErrorCode. Results of asynchronous processing will be indicated by an
OutputCompleteEvent or returned in the Errorcode argument of an
ErrorEvent. If ErrorCode or the ErrorCode argument is E EXTENDED,
detailed device specific information may be stored to ErrorCodeExtended in
synchronous mode and stored to ErrorEvent argument ErrorCodeExtended
in asynchronous mode. The error code from the approval agency will be stored
in CenterResultCode in either mode.

Training mode occurs continually when TrainingMode is true. To
discontinue training mode, set TrainingMode to false.

An outstanding asynchronous method can be canceled via the clearOutput
method.

The Daily log can be collected by the accessDailyLog method. Collection will
be run either synchronously or asynchronously according to the value of
AsyncMode.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-12 CAT - Credit Authorization Terminal

* Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()
- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the
authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method
- Wait for QutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)
- release

- close

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

9-13

Device Sharing

The CAT is an exclusive-use device, as follows:

After opening the device, properties are readable.
The application must claim the device before enabling it.

The application must claim and enable the device before calling methods that
manipulate the device.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-14 CAT - Credit Authorization Terminal

CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the
AuthorizeSales process of the CAT device.

:Client App :CAT :CAT Service :CAT Hardware

i open(logicalName) i i

open(logicalName) |

T claim(timeout)

claim(timeout)

I A

setDeviceEnabled(true) ,
1

setDeviceEnabled(true)

s f’aymentMedia(mediaTyﬁe)

setPaymentMedia()

SequenceNumber

Definition of the argume%‘

AuthorizeSaIesI(sequenceNumber, amoulnt, tax, timeout)

{
BN N

E}

AuthorizeSales(sequenceNumber, amount, tax, timeout)

send commands to
physical CAT

After human actor swipes the card,
the device sends the purchase amount
and tax to approval agency using the
communications device.

|_|_l

p—

1
1
Set properties on |
return from successful |
I
I

authorization.

on successful retur

Check properties ﬁ T
n. |
|

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 9-15

CAT State Diagram

The following diagram depicts the CAT states.

close()
open() claim()
.%[Closed G Opened Claimed]
close() release()
release()

Iset DeviceEnabled (false) clearOutput

Iset

Logging Enabled
Processing

accessDailyLog(

viceEnabled (true)

Clear Output
Processing

Method processing

Done delivering even authorizeXyz(),
checkCard()

authorizeXyz(),
[Svninhfgmus TcheckCard() 4 Async Mode N
ode

ErrorEvent OutputCompleteEvent
Processing Processing

- /

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-16 CAT - Credit Authorization Terminal

Properties (UML attributes)

AccountNumber Property Updated in Release 1.9
Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
AdditionalSecuritylnformation Property Updated in Release 1.7
Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before
issuing an authorization method. Also, data obtained from the CAT device and not
stored in any other property as the result of an authorization operation (for
example, the account code for a loyalty program) can be provided to an application
by storing it in this property. Since the data stored here is device specific, this
should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAdditionalSecurityInformation Property.
ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Electronic Money Device: Approval Code for the settled account.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.
If false, the authorization methods will run synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also Authorization Methods.

I In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 9-17

Balance Property Added in Release 1.9
Syntax Balance: currency { read-only, access after open }
Remarks Electronic Money Device: The balance of Credit Card.
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

CapAdditionalSecuritylnformation Property

Syntax

Remarks

Errors

See Also

CapAdditionalSecurityInformation: boolean { read-only, access after open }

If true, the AdditionalSecurityInformation property may be utilized; otherwise
it is false.

This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AdditionalSecurityInformation Property.

CapAuthorizeCompletion Property

Syntax

Remarks

Errors

See Also

CapAuthorizeCompletion: boolean { read-only, access after open }

If true, the authorizeCompletion method has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizeCompletion Method.

CapAuthorizePreSales Property

Syntax

Remarks

Errors

See Also

CapAuthorizePreSales: boolean { read-only, access after open }

If true, the authorizePreSales method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizePreSales Method.

CapAuthorizeRefund Property

Syntax

Remarks

Errors

See Also

CapAuthorizeRefund: boolean { read-only, access after open }

If true, the authorizeRefund method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizeRefund Method.

UnifiedPOS Version 1.15 -- May 11, 2018

9-18

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

CapAuthorizeVoid Property

Syntax
Remarks

Errors

See Also

CapAuthorizeVoid: boolean { read-only, access after open }
If true, the authorizeVoid method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizeVoid Method.

CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is
false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizeVoidPreSales Method.

CapCashDeposit Property Added in Release 1.9

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Electronic Money Device: Show the device has charged method by cashDeposit
method or not. If true, the cashDeposit method is implemented, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also cashDeposit Method.

CapCenterResultCode Property

Syntax
Remarks

Errors

See Also

CapCenterResultCode: boolean { read-only, access after open }

If true, the CenterResultCode property has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CenterResultCode Property.

CapCheckCard Property

Syntax
Remarks

Errors

See Also

CapCheckCard: boolean { read-only, access after open }
If true, the checkCard method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

checkCard Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 9-19

CapDailyLog Property

Syntax
Remarks

Errors

See Also

CapDailyLog: inf32 { read-only, access after open }
Shows the daily log ability of the device.

Value Meaning

CAT DL _NONE The CAT device does not have the daily log functions.

CAT DL _REPORTING The CAT device only has an intermediate total function
which reads the daily log but does not erase the log.

CAT DL SETTLEMENT The CAT device only has the “final total” and “erase
daily log” functions.

CAT DL REPORTING SETTLEMENT
The CAT device has both the intermediate total function
and the final total and erase daily log function.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DailyLog Property, accessDailyLog Method.

Caplnstallments Property

Syntax Caplnstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the
result of accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DailyLog Property.

CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device
can set the lock using the lockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also lockTerminal Method.

CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device can notify the condition of the log
by the LogStatus property, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also LogStatus Property.

UnifiedPOS Version 1.15 -- May 11, 2018

9-20

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

CapPaymentDetail Property

Syntax

Remarks

Errors

See Also

CapPaymentDetail: boolean { read-only, access after open }
If true, the PaymentDetail property has been implemented; otherwise it is false.
This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

PaymentDetail Property.

CapTaxOthers Property

Syntax

Remarks

Errors

See Also

CapTaxOthers: boolean { read-only, access after open }

If true, the item “TaxOthers” which is stored in the DailyLog property as the result
of access DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the
authorization methods.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DailyLog Property.

CapTransactionNumber Property

Syntax

Remarks

Errors

See Also

CapTransactionNumber: boolean { read-only, access after open }

If true, the TransactionNumber property has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TransactionNumber Property.

CapTrainingMode Property

Syntax

Remarks

Errors

See Also

CapTrainingMode: boolean { read-only, access after open }
If true, the TrainingMode property has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TrainingMode Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 9-21

CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device
can release the lock using the unlockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also unlockTerminal Method.

CardCompanylID Property

Syntax

Remarks

Errors

CardCompanylID: string { read-only, access after open }

This property is updated when an authorization operation successfully completes.
It shows credit card company ID.

The length of the ID string varies depending upon the CAT device.
This property is initialized to an empty string by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CenterResultCode Property

Syntax

Remarks

Errors

CenterResultCode: string { read-only, access after open }

Contains the code from the approval agency. Check the approval agency for the
actual codes to be stored.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-22 CAT - Credit Authorization Terminal

DailyLog Property
Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13
decimal)+LF(10 decimal) for each transaction and is stored in ASCII code. The

[T 2]

detailed data of each transaction is comma separated [i.e., delimited by “,” (44)].

The details of one transaction are shown as follows:

No | Item Property Corresponding Cap Property
Card company ID CardCompanyID None
2 Transaction type TransactionType None
Transaction date None None
Note 1)
4 Transaction number | TransactionNumber CapTransactionNumber
Note 3)
5 Payment condition | PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date None None
Note 5)
9 Account number AccountNumber None
10 | Amount The argument Amount of the None
Note 4) authorization method or the
amount actually approved.
11 Tax/others The argument TaxOthers of the CapTaxOthers
Note 3) authorization method.
12 Installments None Caplnstallments
Note 3)
13 | Additional data AdditionalSecurityInformation | CapAdditionalSecurityInfor-
Note 2) mation

Notes from the previous table:

1) Format
Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

Some CAT devices may not support seconds by the internal clock. In that
case, the seconds field of the transaction date is filled with “00”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables
an application to receive data other than that defined in this specification. The
data stored here is vendor specific and should not be used for development
which places an importance on portability.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 9-23

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data.
In such instances, the item cannot be displayed so the next comma delimiter
immediately follows. For example, if “Amount” is 1234 yen and “Tax/others”
is missing and “Installments” is 2, the description will be “1234,,2”. This
makes the description independent of Cap property and makes the position of
each data item consistent.

4) Amount
Amount always includes “Tax/others” even if item 11 is present.
5) Purchase date

The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

Item Description Meaning

Card company ID 102 JCB

Transaction type CAT TRANSACTION_SALES Purchase

Transaction date 19980116134530 1/16/199813:45:30

Transaction number 123456 123456

Payment condition CAT PAYMENT INSTALL- Installment 1
MENT 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234

Amount 12345 12345JPY

Tax/others None None

Number of payments 2 2

Additional data 12345678 Specific information

The actual data stored in DailyLog will be as follows:

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

Electronic Money Device: Setting DealingLog which is a result of the Electronic

Money Device which does not have the communication module for closing
processing done closing processing. It may be the device which is enciphered
DealingLog to everything except for Center.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also

CapDailyLog Property, accessDailyLog Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-24 CAT - Credit Authorization Terminal
LogStatus Property Added in Release 1.9
Syntax LogStatus: int32 { read-only, access after open }
Remarks Electronic Money Device: This property shows the status of the DealingLog of
the device.
Value Meaning
CAT LOGSTATUS OK DealingLog has enough capacity.
CAT LOGSTATUS NEARFULL DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
This property is initialized by the open method and kept current while the device
is enabled.
If DealingLog becomes full, depending on the device, the settlement processing
may not be able to operate.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also StatusUpdateEvent Event.
PaymentCondition Property Updated in Release 1.9
Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization
operation.
This property will be set to one of the following values. See PaymentDetail for
the detailed payment string that correlates to the following PaymentCondition
values.
Value Meaning
CAT PAYMENT LUMP Lump-sum
CAT PAYMENT BONUS 1 Bonus 1
CAT _PAYMENT BONUS 2 Bonus 2
CAT _PAYMENT BONUS 3 Bonus 3
CAT _PAYMENT BONUS 4 Bonus 4
CAT _PAYMENT BONUS 5 Bonus 5
CAT PAYMENT INSTALLMENT 1 Installment 1
CAT _PAYMENT INSTALLMENT 2 Installment 2
CAT PAYMENT INSTALLMENT 3 Installment 3
CAT_PAYMENT BONUS COMBINATION 1
Bonus combination payments 1
CAT PAYMENT BONUS COMBINATION 2
Bonus combination payments 2
CAT_PAYMENT BONUS COMBINATION 3
Bonus combination payments 3
CAT _PAYMENT BONUS COMBINATION 4
Bonus combination payments 4
CAT PAYMENT REVOLVING Revolving
CAT _PAYMENT DEBIT Debit card
CAT PAYMENT ELECTRONIC MONEY
Electronic Money
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also PaymentDetail Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 9-25

PaymentDetail Property Updated in Release 1.9

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation.
Payment details vary depending on the value of PaymentCondition. The data will
be stored as comma separated ASCII code. An empty string means that no data is
stored and represents a string with zero length data.

PaymentCondition PaymentDetail
CAT PAYMENT_LUMP An empty string
CAT PAYMENT BONUS 1 An empty string
CAT PAYMENT BONUS 2 Number of bonus payments
CAT_PAYMENT BONUS 3 15 bonus month
CAT PAYMENT BONUS 4% Number of bonus payments, 1% bonus month, 2"9 bo-

nus month, 3" bonus month, 4™ bonus month, 5th ho-
nus month, 6 bonus month

CAT PAYMENT BONUS 5* Number of bonus payments, 15 bonus month, 1% bo-
nus amount, 2" honus month, 2™ honus amount, 3rd
bonus month, 3" bonus amount, 4™ bonus month, 4th
bonus amount, 5t bonus month, 5 bonus amount, 6th
bonus month, 6" bonus amount

CAT PAYMENT_INSTALLMENT 1 1! billing month, Number of payments

CAT PAYMENT INSTALLMENT 2% 15t billing month, Number of payments, 15 amount,
2" amount, 3™ amount, 4™ amount, 5™ amount, 6
amount

CAT PAYMENT INSTALLMENT 3 1% billing month, Number of payments, 15* amount
CAT PAYMENT BONUS COMBINATION 1 15t billing month, Number of payments
CAT PAYMENT BONUS_COMBINATION_ 2 13 billing month, Number of payments, bonus amount

CAT PAYMENT BONUS COMBINATION 3* 15! billing month, Number of payments, number of bo-
nus payments, 15! bonus month, 2"4 bonus month, 3™
bonus month, 4™ bonus month, 5! bonus month, 6th
bonus month

CAT PAYMENT BONUS COMBINATION 4* 15! billing month, Number of payments, number of bo-
nus payments, 1% bonus month, 1%' bonus amount, 24
bonus month, 2™ bonus amount, 3™ bonus month, 34
bonus amount, 4" ponus month, 4™ bonus amount, sth
bonus month, 5™ bonus amount, 6™ bonus month, 6™
bonus amount

CAT_PAYMENT_REVOLVING An empty string
CAT PAYMENT_DEBIT An empty string
CAT PAYMENT_ELECTRONIC_MONEY An empty string

*Maximum 6 installments

UnifiedPOS Version 1.15 -- May 11, 2018

9-26

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

The payment types and names vary depending on the CAT device. The following
are the payment types and terms available for CAT devices. Note that there are
some differences between UnifiedPOS terms and those used by the CAT devices.
The goal of this table is to synchronize these terms.

o o CAT CAT G-CAT JET-S SG-CAT Master-T
& 2 Name (Old CAT)
S = Credit Not Not ICB VISA MASTER
g ;E Card specified specified
£ E
2 S A
& £ 2 UnifiedPOS Card Company Terms
s &= g Term
) =3} A
Lump- | (None) 10 Lump-sum J|Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum
sum
Bonus | (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1
Numberof |22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2
bonus
payments
Bonus 23 Bonus 3 Bonus 3 Does not ex- | Does not ex- | Bonus 3 Bonus 3
month(s) ist. ist.
Numberof | 24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4 Bonus 4
bonus (Up to two
payments entries for
Bonus bonus
month (1) month)
Bonus
month (2)
Bonus
month (3)
Bonus
month (4)
Bonus
month (5)
Bonus
month (6)

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes)

9-27

Number of
bonus
payments

Bonus
month (1)

Bonus
amount

(M

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25

Bonus 5

Bonus 5

Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

UnifiedPOS Version 1.15 -- May 11, 2018

9-28

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62

Installment 2

Installment 2

Does not
exist.

Does not
exist.

Does not
exist.

Does not
exist.

Payment
start
month

Number of
payments

Initial
amount

63

Installment 3

Installment 3

Installment 2

Installment 2

Does not
exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32

Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
exist.

Does not
exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes)

9-29

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33

Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
exist.

Does not
exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

UnifiedPOS Version 1.15 -- May 11, 2018

9-30

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34

Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4

(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None)

80

Revolving

Revolving

Revolving

Revolving

Revolving

Revolving

Debit

(None)

110

Debit

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapPaymentDetail Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 9-31

PaymentMedia Property Updated in Release 1.9

Syntax
Remarks

Errors

PaymentMedia: in#32 { read-write, access after open }
Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an
approval method call. “None specified” means that payment media will be
determined by the CAT device, not by the POS application.

Value Meaning

CAT MEDIA UNSPECIFIED None specified.
CAT MEDIA CREDIT Credit card.
CAT MEDIA DEBIT Debit card.
CAT MEDIA_ELECTRONIC MONEY
Electronic Money.

This property is initialized to CAT _MEDIA UNSPECIFIED by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs
to be checked by an application to see if it matches with the argument
sequenceNumber of the originating method.

If the “sequence number” returned from the CAT device is not numeric, the CAT
control set this property to zero.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SettledAmount Property Added in Release 1.9

Syntax SettledAmount: currency { read-only, access after open }

Remarks Electronic Money Device: Setting real amount of the settlement.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizeSales Method, cashDeposit Method.

SlipNumber Property Updated in Release 1.7

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

9-32

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

TrainingMode Property

Syntax

Remarks

Errors

TrainingMode: boolean { read-write, access after open }

If true, each operation will be run in training mode; otherwise each operation will
be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from
training mode, because it will not automatically be set to false after the completion
of an operation.

This property will be initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapTrainingMode is false.

TransactionNumber Property

Syntax

Remarks

Errors

TransactionNumber: string { read-only, access after open }
Stores a “transaction number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TransactionType Property Updated in Release 1.10

Syntax

Remarks

Errors

TransactionType: int32 { read-only, access after open }
Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

This property will be set to one of the following values.

Value Meaning

CAT _TRANSACTION_SALES Sales

CAT _TRANSACTION_VOID Cancellation
CAT_TRANSACTION_ REFUND Refund purchase

CAT _TRANSACTION_COMPLETION Purchase after approval

CAT _TRANSACTION_PRESALES Pre-authorization

CAT _TRANSACTION_ CHECKCARD Card Check

CAT TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
CAT_TRANSACTION CASHDEPOSIT Charge

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 9-33

Methods (UML operations)
accessDailyLog Method Updated in Release 1.9

Syntax

Remarks

Errors

See Also

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get daily log.
type Specify whether the daily log is intermediate total or

final total and erase.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Application must specify one of the following values for #ype for daily log type
(either intermediate total or adjustment). Legal values depend upon the
CapDailyLog value.

Electronic Money Device: Gets the DealinglLog from the Electronic Money
Device to send to the Center. If the Electronic Money Device has communication
capabilities, the DealingLog will be sent from the Electronic Money Device to the
Center and nothing is stored in the DailyLog. Otherwise, the DealingLog is stored
in the DailyLog Property.

Value Meaning

CAT DL _REPORTING Intermediate total.

CAT DL SETTLEMENT Final total and erase.
Electronic Money Device: Closing DealingLog of
the Electronic Money device.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported #ype or timeout parameter was
specified, or CapDailyLog is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapDailyLog Property, DailyLog Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-34

CAT - Credit Authorization Terminal

authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: in#32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter

Description

sequenceNumber
amount
taxOthers

timeout

Sequence number for approval.
Purchase amount for approval.
Tax and other amounts for approval.

The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified

by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value

Meaning

E_ILLEGAL

E TIMEOUT

E_EXTENDED
E_BUSY

Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

No response was received from CAT during the
specified timeout time in milliseconds.

The detail code has been stored in ErrorCodeExtended.

The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 9-35

authorizePreSales Method

Syntax

Remarks

Errors

See Also

authorizePreSales (sequenceNumber: in#32, amount: currency, taxQOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizePreSales is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizePreSales Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-36 CAT - Credit Authorization Terminal

authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeRefund is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 9-37

authorizeSales Method

Syntax

Remarks

Errors

authorizeSales (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-38

CAT - Credit Authorization Terminal

authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: in#32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter

Description

sequenceNumber
amount
taxOthers

timeout

Sequence number for approval.
Purchase amount for approval.
Tax and other amounts for approval.

The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value

Meaning

E_ILLEGAL

E TIMEOUT

E_EXTENDED
E_BUSY

Invalid timeout parameter was specified, or
CapAuthorizeVoid is false.

No response was received from CAT during the
specified timeout time in milliseconds.

The detail code has been stored in ErrorCodeExtended.

The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 9-39

authorizeVoidPreSales Method

Syntax

Remarks

Errors

See Also

authorizeVoidPreSales (sequenceNumber: in#32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as
the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have
not implemented the pre-authorization approval cancellation. Refer to the
documentation supplied with CAT device and / or CAT control.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoidPreSales is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeVoidPreSales Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-40

CAT - Credit Authorization Terminal

cashDeposit Method

Added in Release 1.9

Syntax cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter

Description

sequenceNumber
amount
timeout

Remarks Chargings.

Sequence number for charge.
Amount of money for charge.

The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait
forever until the Electronic Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors'" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value

Meaning

E ILLEGAL
E TIMEOUT

E_EXTENDED
E_BUSY

Invalid timeout parameter was specified, or
CapCashDeposit is false.

No response was received from CAT during the
specified timeout time in milliseconds.

The detail code has been stored in ErrorCodeExtended.
The CAT device cannot accept any commands now.

See Also CapCashDeposit Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 9-41

checkCard Method Updated in Release 1.9

Syntax

Remarks

Errors

See Also

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Card Check is intended.
Card Check will be made as specified by sequenceNumber-.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The
Balance will be stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapCheckCard is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Balance Property, CapCheckCard Property.

UnifiedPOS Version 1.15 -- May 11, 2018

9-42

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

lockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

lockTerminal ():
void { raises-exception, use after open-claim-enable }

Sets the security lock. When locked, the Electronic Money Device cannot accept
any commands.

AdditionalSecurityInformation property is used when key information is
required.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security
lock function.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapLockTerminal Property.

unlockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

unlockTerminal ():
void { raises-exception, use after open-claim-enable }

Releases the security lock.

AdditionalSecurityInformation property is used when key information is
required.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security
lock function.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapUnlockTerminal Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 9-43

Events (UML interfaces)

DirectlOEvent

<<event>>

Description

Attributes

Remarks

See Also

ErrorEvent

upos::events::DirectiIOEvent
EventNumber: int32 {read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific CAT Service to provide events to the application that
are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber

and the Service. This attribute is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s CAT devices which may not have any
knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method

Updated in Release 1.9

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a CAT error has been detected and suitable response
by the application is necessary to process the error condition.
This event contains the following attributes:

Attributes Type Description

ErrorCode int32 The code which caused the error event. See
ErrorCode for the values.

ErrorCodeExtended int32 The extended code which caused the error
event. See ErrorCodeExtended below for

values.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred
during asynchronous action.

ErrorResponse int32 Pointer to the error event response. See

ErrorResponse below for values.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-44 CAT - Credit Authorization Terminal

If ErrorCode is E EXTENDED, ErrorCodeExtended will be set to one of the
following values:

Value Meaning

ECAT_CENTERERROR
An error was returned from the approval agency. The
detail error code is defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never
returned so long as CAT control is working correctly.

ECAT RESET CAT was stopped during processing by CAT reset key
(stop key) and so on.

ECAT _COMMUNICATIONERROR
Communication error has occurred between the
approval agency and CAT.

ECAT DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has
been stopped and the value of DailyLog property is
uncertain.
Electronic Money Device:
A failure will occur if the DealingLog on the device is
full and the device is attempting to be closed.

ECAT_DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close
settlement.

ECAT OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted
that is over the chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default
value of ER_ RETRY. An application may set one of the following values.

Value Meaning

ER RETRY Retries the asynchronous processing. The error state is
exited.

ER CLEAR Clear the asynchronous processing. The error state is
exited.

Remarks Fired when an error is detected while processing an asynchronous authorize group
method or the accessDailyLog method. The control's State transitions into the
error state.

See Also “Device Output Models' on page Intro-26, Device Information Reporting Model
on page 31.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 9-45

OutputCompleteEvent

<<event>> upos::events::OQutputCompleteEvent
OutputlD: int32 {read-only }

Description Notifies the application that the queued output request associated with the
OutputlD attribute has completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models" on page Intro-26.
StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT
device.

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the
Electronic Money Device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.
Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
Electronic Money Device:
The Status parameter contains the DealingLog status condition.
Value Meaning

CAT LOGSTATUS OK DealingLog is enough capacity.
CAT _LOGSTATUS NEARFULL
DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
Remarks Enqueued when the CAT device detects a power state change.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-46 CAT - Credit Authorization Terminal

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 10-1

CHAPTER 10

Check Scanner

This Chapter defines the Check Scanner device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.7 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.7 open
Claimed: boolean { read-only } 1.7 open
DataCount: int32 { read-only } 1.7 open
DataEventEnabled: boolean { read-write } 1.7 open
DeviceEnabled: boolean { read-write } 1.7 open & claim
FreezeEvents: boolean { read-write } 1.7 open
OutputID: int32 { read-only } 1.7 Not Supported
PowerNotify: int32 { read-write } 1.7 open
PowerState: int32 { read-only } 1.7 open
State: int32 { read-only } 1.7 --
DeviceControlDescription: string { read-only } 1.7 --
DeviceControlVersion: int32 { read-only } 1.7 --
DeviceServiceDescription: string { read-only } 1.7 open
DeviceServiceVersion: int32 { read-only } 1.7 open
PhysicalDeviceDescription: string { read-only } 1.7 open
PhysicalDeviceName: string { read-only } 1.7 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-2 Check Scanner

Properties (Continued)

Specific Type Mutability Version May Use After
CapAutoContrast: boolean { read-only } 1.9 open
CapAutoGenerateFileID: boolean { read-only } 1.7 open
CapAutoGeneratelmageTagData: boolean { read-only } 1.7 open
CapAutoSize: boolean { read-only } 1.7 open
CapColor: int32 { read-only } 1.7 open
CapConcurrentMICR: boolean { read-only } 1.7 open
CapContrast: boolean { read-only } 1.9 open
CapDefineCropArea: boolean { read-only } 1.7 open
CapImageFormat: int32 { read-only } 1.7 open
CaplmageTagData: boolean { read-only } 1.7 open
CapMICRDevice: boolean { read-only } 1.7 open
CapStorelmageFiles: boolean { read-only } 1.7 open
CapValidationDevice: boolean { read-only } 1.7 open
Color: int32 { read-write } 1.7 open
ConcurrentMICR: boolean { read-write } 1.7 open
Contrast: int32 { read-write } 1.9 open & enable
CropAreaCount: int32 { read-only } 1.7 open
DocumentHeight: int32 { read-write } 1.7 open
DocumentWidth: int32 { read-write } 1.7 open
FilelD: string { read-write } 1.7 open
FileIndex: int32 { read-write } 1.7 open
ImageData: binary { read-only } 1.7 open
ImageFormat: int32 { read-write } 1.7 open
ImageMemoryStatus: int32 { read-only } 1.7 open & claim
ImageTagData string { read-write } 1.7 open
MapMode: int32 { read-write } 1.7 open
MaxCropAreas: int32 { read-only } 1.7 open
Quality: int32 { read-write } 1.7 open
QualityList: string { read-only } 1.7 open
RemainingIlmagesEstimate: int32 { read-only } 1.7 open

UnifiedPOS Version 1.15 -- May 11, 2018

Summary

10-3

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):

void { raises-exception }
close ():

void { raises-exception, use after open }
claim (timeout: int32):

void { raises-exception, use after open }
release ():

void { raises-exception, use after open, claim }
checkHealth (level: int32):

void { raises-exception, use after open, claim, enable }
clearInput ():

void { raises-exception, use after open, claim }
clearInputProperties ():

void { raises-exception, use after open, claim }
clearOutput ():

void { }

directlO (command: int32, inout data: int32, inout obj: object):

void { raises-exception, use after open, claim }

Version
1.7

1.7

1.7

1.7

1.7

1.7

1.10
Not supported

1.7

compareFirmwareVersion(firmwareFileName: string,out result: inz32):1.9

void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string):

void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }

Specific
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
beginRemoval (timeout: inf32):

void { raises-exception, use after open, claim, enable }
clearImage (by: int32):

void { raises-exception, use after open, claim, enable }
defineCropArea (cropArealD: int32, x: int32,y: int32,

cx: int32, cy: int32):

void { raises-exception, use after open, claim, enable }
endInsertion ():

void { raises-exception, use after open, claim, enable }
endRemoval ():

void { raises-exception, use after open, claim, enable }
retrievelmage (cropArealD: int32):

void { raises-exception, use after open, claim, enable }
retrieveMemory(by: int32):

void {raises-exception, use after open, claim, enable }
storelmage (cropArealD: int32):

void { raises-exception, use after open, claim, enable }

1.8

1.8

1.9

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture

Chapter 10

10-4 Check Scanner
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.7
Status: int32 { read-only }
upos::events::DirectlOEvent 1.7
EventNumber: int32 { read-only }
Data: . .
Obj: int32 { read-write }
object { read-write }
upos::events::ErrorEvent 1.7
ErrorCode: int32 { read-only }
ErrorCodeExtended: .
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }
int32 { read-write }
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.7
Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 10-5

General Information

The Check Scanner programmatic name is “CheckScanner”.

Capabilities

The primary purpose of this device is to capture the image of a personal or business
check for Electronic Check Conversion. However, other documents (vouchers,
signature receipts, etc.) may be scanned if they fall within the capture size
parameters of the Check Scanner. Therefore, in the description used in this
standard the overall term “document” may be used to indicate the multiplicity of
uses of which the device may be capable. When the term “check” is used, it should
be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:

* Reads image data from a Check Scanner device.

* Has programmatic control of check insertion, reading, and removal. For some
Check Scanner devices, this will require no processing in the Control since the
device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:

* The Check Scanner may store successive check images in its hardware
memory.

* Cropping of areas of interest within the check image may be supported by the
Check Scanner to aid in the reduction of the memory needed to transmit or
store the check image data.

* The retrievelmage data is deposited in the ImageData property in binary
form.

* The Check Scanner may allow for retrieval of images stored in its hardware
memory.

e The Check Scanner may support Image tag data information to identify the
check image.

* The application reads the contents of ImageData property when it wants to
further process the check image.

* The Check Scanner device may be physically attached to or incorporated into
a check validation print device and/or a MICR device. If this is the case, once
a check is inserted via Check Scanner Control methods, the check can still be
used by the Printer and MICR Control prior to check removal.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10

10-6 Check Scanner

Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner

classes.
<<sends>>

<<exception>> <<Interface>> <<uses>> <<utility>> <<utility>>
UposException BaseControl UposConst CheckScannerConst

(from upos) (from upos) = (irom upos) (from upos)

<<usH >>
<<sends>>

<<event>> <<Interface>>
DataEvent CheckScannerControl
(from events) (from upos)

[ig<<prop>> Status : int32

<<fires>>

<<ewent>>
DirectlOEvent
(from events)

[ig<<prop>> EventNumber : int32
[&<<prop>> Data : int32
[i&<<prop>> Obj : object

<<fires>>

\

<<fires>>

<<ewvent>>
ErrorEvent
(from events)

L

[&<<prop>> ErrorCode : int32
[&<<prop>> ErrorCodeExtended : int32
[&&<<prop>> ErrorLocus : int32
[i&<<prop>> ErrorResponse : int32

<<event>>
StatusUpdateEvent

(from events)

[iG<<prop>> Status : int32

<<fires>>

2 < <capability>> CapAutoContrast : boolean
<<capability>> CapAutoGenerateFilelD : boolean
<capability>> CapAutoGeneratelmageTagData : boolean
i < <capability>> CapAutoSize : boolean
<<capability>> CapColor : int32
<capability>> CapConcurrentMICR : boolean
%4 <<capability>> CapContrast : boolean
<capability>> CapDefineCropArea : boolean
<capability>> CaplmageFormat : int32
2 < <capability>> CaplmageTagData : boolean
<capability>> CapMICRDevice : boolean
<capability>> CapStorelmageFiles : boolean
i <<capability>> CapValidationDevice : boolean
<prop>> Color : int32
<prop>> ConcurrentMICR : boolean
gs <<prop>> Contrast : int32
<prop>> CropAreaCount : int32
<prop>> DocumentHeight : int32
g <<prop>> DocumentWidth : int32
<prop>> FilelD : string
<prop>> Filelndex : int32
%/ <<prop>> ImageData : binary
<prop>> ImageFormat : int32
<prop>> ImageMemoryStatus : int32
&z <<prop>> ImageTagData : string
<prop>> MapMode : int32
<prop>> MaxCropAreas : int32
& <<prop>> Quality : int32

<prop>> QualityList : string

<<prop>> Remaining ImagesEstimate : int32
.beginlnsertion(timeout :int32) : void
®beginRemoval(timeout : int32) : void
®clearimage(by : int32) : void
.defineCropArea(cropAreaID 1int32, x @ int32,y 1 int32, cx : int32, cy : int32) : void
.endlnsertion() : void
endRemoval() : void
retrievelmage(cropArealD : int32) : void

[BretrieveMemory(by : int32) : void
.storelmage(cropArealD :int32) : void

UnifiedPOS Version 1.15

-- May 11, 2018

General Information

10-7

Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model”. One point of

difference is that the Check Scanner Control requires the execution of methods to

insert and remove the check for processing. Therefore, this Control requires more
than simply setting the DataEventEnabled property to true in order to receive
data. The basic model is as follows:

* The Check Scanner Control is opened, claimed, and enabled.

» Starting with Version 1.9, the application has the ability to adjust the darkness
of the scanned image for devices that have the ability to adjust the scan
mechanism so that it can darken or lighten the image. The CapContrast
property controls whether the device supports this feature.

* When the beginInsertion method is called, the Check Scanner is ready to read
the check within the specified time as indicated by the time-out value. If the
check is not inserted before the time-out value expires, a UposException is
raised.

e Inthe event of a time-out, the Check Scanner device will remain in a state that
allows a check to be inserted. The application may provide an operator prompt
which requests that a check be inserted. Following this prompt, the application
would then reissue the beginInsertion method and wait for the check to be
inserted.

* Once a check is inserted, the beginInsertion method returns and the
application calls the endInsertion method, which results in the Check
Scanner device exiting the check insertion mode and causes the check image
to be captured.

* Following the endInsertion method, the scan image data is stored in a
working buffer memory area and a StatusUpdateEvent will occur to
indicate that a successful scan image process has taken place. No
DataEvent is enqueued since data has not been transferred to the
ImageData property at this point.

* The application must use the retrievelmage method to retrieve the
current scan image data. However, if the check image was not
successfully captured by the device, the Control enqueues a ErrorEvent
to indicate the capture was not successful.

» Ifthe AutoDisable property is true, then the device is automatically
disabled when the image is successfully captured.

* Anenqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery
requirements are met. Just before delivering this event, the Control copies
data into specific properties, and disables further data events by setting the
DataEventEnabled property to false. This causes subsequent input data
to be enqueued by the Control while the application processes the current
input and associated properties. When the application has finished the
current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

* Ifthe CapAutoSize property is true, when the DataEvent is delivered,
the height and width of the of entire captured image are automatically
stored in the corresponding DocumentHeight and DocumentWidth
properties. If the CapAutoSize property is false, the application must
manually set the DocumentHeight and the DocumentWidth property
values prior to the beginInsertion method being invoked.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-8 Check Scanner

« If the application needs to retrieve the entire or a cropped portion of the
captured image, the retrievelmage method is called. The image data is
sent from the device to the service and stored in the ImageData property.
When the corresponding DataEvent is delivered, the current image or
cropped image may be accessed by the application reading the image file
contained in the ImageData property.

» Ifthe CapStorelmageFiles property is true, then the current image, or
cropped image, can be stored in the memory by using the storelmage
method.

* Any previously stored image may be retrieved by using the
retrieveMemory method. The stored image may be identified using the
“by” parameter and requesting that the image be located by FilelD,
FileIndex, or ImageTagData.

* If CapDefineCropArea is true, then the application can use the
defineCropArea method to define crop areas in the captured image.

* AnErrorEvent (or events) is (are) enqueued if the Control encounters an
error while reading the check, and is delivered to the application when the
DataEventEnabled property is true and other event delivery
requirements are met.

* All input data enqueued by the Control may be deleted by calling the
clearInput method.

» All data properties that are populated as a result of firing a DataEvent or
ErrorEvent can be set back to their default values by calling the
clearInputProperties method.

* After processing the endInsertion DataEvent, the application may query the
CapMICRDevice property to determine if the device supports Magnetic Ink
Character Recognition. If CapMICRDevice property is true, then a MICR
read function may be performed in a “single pass” or “multiple pass” cycle but
prior to the check being removed from the device. If CapConcurrentMICR
property is true, then the device is capable of supporting a “single pass” MICR
read during an image scan. If CapConcurrentMICR property is true and
ConcurrentMICR property is true, then the MICR data would be read and
calling the MICR's beginInsertion and endInsertion methods would not be
needed to reposition the check for MICR reading.

* Additionally, after processing a DataEvent, the application should query the
CapValidationDevice property to determine if validation printing can be
performed on the check prior to check removal. If this property is true, the
application may call the Printer Control's beginInsertion and endInsertion
methods. This positions the check for validation printing. The Printer
Control's validation printing methods can then be used to perform validation
printing.

o Ifthe CaplmageTagData property is true, then an identifying name, for
example the transaction number, date and time, or some other naming
element, could be used to identify the image data. The format of the data must
be conformant to ARTS XML and reside in ImageTagData property.

* Once the check is no longer needed in the device, the application must call
beginRemoval of the Check Scanner, the MICR (if CapMICRDevice is
true), or the POS Printer (if CapValidationDevice is true), also specifying a
timeout value. This method will raise a UposException if the check is not

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

10-9

removed within the timeout period. In this case, the application may perform
any additional prompting prior to calling the method again. Once the check is
removed, the application should call the same device’s endRemoval method
to take the device out of removal mode.

In order to accommodate many different Check Scanning devices, the
application should follow the above sequence of method calls even though the
device may not physically require one or more of the methods. An example
may be a Check Scanner that is “auto armed” and is capable of detecting a
check present and initiating a Check Scan and MICR read cycle automatically.
In this case the beginInsertion, endInsertion, beginRemoval, and
endRemoval method calls may actually do no more than return from the
Service.

The model assumes that the device has a work area that can be used in the
following ways:

* When a document is scanned its image will be loaded as raw data into this
work area. When the retrievelmage method is invoked the data from the
work area may be modified by a previously defined crop area, as specified
by the cropArealD parameter, and loaded into the ImageData property.
The work area will still contain the original scanned image data.
Additional retrievelmage method calls using different crop area criteria
can then be accomplished to load the ImageData property.

* The work area contains image data either from a recently scanned image
or as a result of a retrieveMemory method. Prior to invoking the
storelmage method, the FileIndex property is set to the correct index
number (as maintained by the service) and if used, the FileID and/or
ImageTagData properties are set. When the storelmage method is
invoked the data from the work area may be modified by a previously
defined crop area, as specified by the cropArealD parameter, and stored
in the device memory. The work area will still contain the original
scanned image data. Additional storeImage method calls using different
crop area criteria can then be accomplished to store the image data in the
device’s memory. The RemaininglmagesEstimate property is adjusted
to reflect the approximate number additional images that may be stored in
the device memory based upon the file size history of previously stored
images.

* When the retrieveMemory method is invoked, the work area is loaded
with an image data file that was previously stored in the device memory.
Either the FileIndex, FileID, or ImageTagData may be used to locate the
previously stored image. The ImageData property is also loaded with the
retrieved image data.

In order to accommodate the various storage and retrieval architectures that
are in use for the Check Scanner device class, the model has been designed to
allow for three different addressing ways to locate previously stored image
data: FileIndex, FileID, and ImageTagData.

* The FileIndex is an addressing scheme that is automatically provided by
the service to physically store and retrieve the file data. The definition of
file data in this case includes any and/or all of the following: image data,
tag data information (that is appended and included with the image data
file), and a file identification (a file name associated with the image data

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10

10-10

Check Scanner

file). The FileIndex is only used by the service to save and retrieve the
scan data and its associated data elements.

The FilelD is a “file name” that may be provided automatically by the
hardware device or the service. It also may be populated by the
application prior to a storelmage method being called. Once created it
remains with the ImageData and can be used to randomly locate a
specific file for uploading to the POS system and post processing
applications.

The ImageTagData property contains a set of information about the
image that has been scanned. It is required that the format of the data be
XML and compliant to the ARTS Data Dictionary and ARTS XML
standards to ensure interoperability. Typically, it contains information
about when the image was captured, e.g., Date and Time, Store number,
Lane Number, Clerk identification, etc. This data may be pre- or post-
appended to the ImageData and remains a part of the combined data file
as a record of the origin of the data.

Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following
constraints:

The application must claim the device before enabling it.

The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 10-11

Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner
device.

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. This|
means that the platform specific loading/configuration/creation code executed successfully. We also assume

that the application already registered some event handlers with the controls.
CheckScanner
Service

‘ :ClientApp ‘ [:CheckScanner| ‘ :DataEvent ‘ ‘smm UpdateEvent

|
] i

2: sptDataEventEnabled(trug)

1:|setDataEventEnabled(true

1]

3: sptMapMode(CHK_MM_ENGLISH)

4: setMapMode(CHK_MM_ENGLISH)

1]

5: defineCropArea(1,0,0,1500,1000) 6: defiheCropArea(1,0,0,1500,1000)

fineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

8: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_PAREA_RIGHT)

1]

9: begininsertion(timeout)

1Q: begininsertion(timeout;

Detect check
insertion and
scan check

T 11: endInsertion()

12: endlnm()/

14: set status update it

15: enqueue StatusUpdateEvent to servigels internal queue
m—|

16: deliver StatusUpdateEvent [FreezeEyents == false]

17:|deliver event to all registered handlers

18:|notify client of new event | =1

retrieve the
image within the

cond crop

T 19: retrievelmage(2) 20: retrievelmage(2)— area defined

21: nej

LH\ 22: copy data to new DataEvent

[

23: enqueue DataEvent to [service's internal queue

24: set Check $canner properties and deliver DataEvent
[D: 1abled == true && F its == falsg]
25: deliver event to all registered handlers L]
26: notify client of new eveptee 1
T 27: storelmage(1) /J 28: storelmage(1)

R

29: beginRemoval(timeout, 30: beginRemoval(timeout

31: ;};dicate user to start removipg check

32: endRemoval() 33: endRemoval()

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10

10-12 Check Scanner

Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.

[Opened && [Closed ||
Claimed && Released ||

Enabled] . @ Disabled]

/beginRemoval
/begininsertion /
Failed] [Failed]

Removal

Clear Image

Begin
Removal

Begin
Insertion

[Success]
/endRemoval

Insertlon Idle

/defineCropAre
Is age /retrieyelmage
[retriev

Define
Retrieve
CropArea ‘ Store Image |
mage

[Success]
/endInsertion

End
Insertion

Retrieve Memory ‘

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-13

Properties (UML attributes)

CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the
darkness of the image to provide the best contrast for the image.
If true, then when Contrast is set to CHK_AUTOMATIC_CONTRAST, the device
attempts to automatically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapContrast Property, Contrast Property.

CapAutoGenerateFilelD Property

Syntax

Remarks

Errors

See Also

CapAutoGenerateFilelD: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate a file name
that can be used to reference the file containing the captured image.

If CapAutoGenerateFilelD is true, then the device can automatically create a file
name for the captured image file.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FileID Property.

CapAutoGeneratelmageTagData Property

Syntax

Remarks

Errors

See Also

CapAutoGenerateImageTagData: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate tag data
used in reference to the image file for the captured image.

If CapAutoGeneratelmageTagData is true, then the device can automatically
create image tag data which can be appended to the image file to provide
information about the captured image.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ImageTagData Property.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-14 Check Scanner

CapAutoSize Property

Syntax CapAutoSize: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to determine the height and width of
the document automatically.

If CapAutoSize is true, then the height and width of the scanned document will be
automatically placed in the DocumentHeight and DocumentWidth properties
when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set
in the DocumentHeight and DocumentWidth properties by the application prior to
scanning an image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DocumentHeight Property, DocumentWidth Property.

CapColor Property

Syntax CapColor: int32 { read-only, access after open }
Remarks This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning

CHK _CCL_MONO Bi-tonal (B/W)
CHK CCL_GRAYSCALE Gray scale

CHK CCL 16 16 Colors

CHK CCL 256 256 Colors
CHK CCL_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also Color Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-15

CapConcurrentMICR Property

Syntax

Remarks

Errors

See Also

CapConcurrentMICR: boolean { read-only, access after open }

This capability indicates if this device supports a Magnetic Ink Character
Recognition read during the image scanning process.

If CapConcurrentMICR is true, a check's MICR data can be captured during a
check scanning cycle (single pass scanning). For devices that are both a Check
Scanner device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR Service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR is false, then it would be necessary to read the MICR
data (if the device supports MICR reading) by using the MICR beginInsertion
and endInsertion methods. Usually the MICR read is performed prior to the
Check Scanning process.

This property has no meaning if the CapMICRDevice property is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapMICRDevice Property, ConcurrentMICR Property.

CapContrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

CapContrast: boolean { read-only, access after open }
This capability indicates the ability of the device to lighten or darken the scanned
image. This affects the image regardless of the value of the CapColor property.

If true then the darkness of the image can be adjusted using the Contrast property. If
false then the application cannot adjust the darkness of the image.

A UposException may be thrown when this property is accessed. For further
information see “Errors' on page Intro-21.

CapAutoContrast Property, Contrast Property.

CapDefineCropArea Property

Syntax

Remarks

Errors

See Also

CapDefineCropArea: boolean { read-only, access after open }

This capability indicates if this device supports a feature that allows cropping of
areas of interest within the scan image area defined by the DocumentHeight and
DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed;
otherwise it is set to be false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.

UnifiedPOS Version 1.15 -- May 11, 2018

10-16

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

CaplmageFormat Property

Syntax CaplmageFormat: int32 { read-only, access after open }

Remarks This capability indicates the image file formats that this device supports. The
image data is stored in the ImageData property using one of the following formats
supported by the CapImageFormat Property:

CaplmageFormat is a logical OR combination of any of the following values:
Value Meaning

CHK CIF NATIVE Hardware native format

CHK _CIF_TIFF TIFF format

CHK CIF_BMP BMP format

CHK CIF _JPEG JPEG format

CHK CIF_GIF GIF format

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also ImageFormat Property.

CaplmageTagData Property Updated in Release 1.11

Syntax CaplmageTagData: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to utilize ARTS XML
compliant tag names to identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the
ImageTagData property, to the image data file stored in the ImageData property.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also ImageTagData Property, retrievelmage Method, storeImage Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-17

CapMICRDevice Property

Syntax

Remarks

Errors

See Also

CapMICRDevice: boolean { read-only, access after open }
This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in
addition to check scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a
check scanning cycle (single pass scanning). For devices that are both a Check
Scanner device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR property is false, then it would be necessary to read the
MICR data by using the MICR beginInsertion and endInsertion methods. In this
case the MICR read is usually performed prior to the Check Scanning process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapConcurrentMICR Property, ConcurrentMICR Property.

CapStorelmageFiles Property

Syntax

Remarks

Errors

See Also

CapStorelmageFiles: boolean { read-only, access after open }

This capability indicates if this device has the ability to store check images in its
hardware memory.

If CapStorelmageFiles is true, one or more images can be stored in the memory
provided by the device by using the storelmage method.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrievelmage Method, storelmage Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-18 Check Scanner

CapValidationDevice Property
Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to perform a validation print
function on the check using a print station.

If CapValidationDevice is true, a check does not have to be removed from the
Check Scanner device prior to performing validation printing. For devices that are
both a Check Scanner device as well as a POS Printer, the device will
automatically position the check for validation printing after successfully
performing a Check Scanner read. Either the Check Scanner Control’s or the POS
Printer Control’s beginRemoval and endRemoval methods may be called to
remove the check once the process is complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Color Property

Syntax Color: int32 { read-write, access after open }

Remarks This property is used to select the image scan mode for subsequent document scan
operations. The available options may be affected by the current file type as
specified by the ImageFormat property. Certain file types may not work with all
the “colors” that the device may support. It is up to the application to insure that
the proper Color and ImageFormat properties are compatible. Changing the
Color property will not affect any previously stored data currently residing in the
ImageData property.

It may contain one of the following values:

Value Meaning
CHK_CL_MONO Bi-tonal (B/W)

CHK CL GRAYSCALE Gray scale

CHK CL_16 16 Colors
CHK CL 256 256 Colors
CHK_CL_FULL Full color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapColor Property, ImageFormat Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-19

ConcurrentMICR Property

Syntax

Remarks

Errors

See Also

ConcurrentMICR: boolean { read-write, access after open }

This property indicates whether a MICR read should be performed at the same
time the check image is captured (single pass operation).

This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check
scanning cycle (single pass scanning). For devices that are both a Check Scanner
device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR Service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If ConcurrentMICR is false and MICR data is required, then it is necessary to
read MICR data by using the MICR beginInsertion and endInsertion method
calls. In this case the MICR read is usually performed prior to the Check Scanning
process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapConcurrentMICR Property, CapMICRDevice Property.

Contrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

Contrast: int32 { read-write, access after enable }

This property allows the application to adjust the darkness of the image. The
property is valid only if the CapContrast property is true.

A value of 0 sets or indicates that the device will generate the lightest image possible.
A value of 100 sets or indicates that the device will generate the darkest image possi-
ble. All values between 0 and 100 produce images with varying degrees of darkness.
A value of 50 should produce an image that is the optimal brightness for the best
image under normal circumstances.

If the CapAutoContrast property is true then this property can be set to CHK AU-
TOMATIC_CONTRAST to allow the device to automatically adjust the darkness of
the image based on sensing of the paper to produce the optimal brightness for the best
image under normal circumstances.

If CapAutoContrast is false, then attempting to set this property to CHK AUTO-
MATIC CONTRAST is illegal.

If CapAutoContrast is true, then this property is initialized to CHK_ AUTOMAT-
IC_CONTRAST when the device is enabled. If CapAutoContrast is false, this prop-
erty is initialized either to 50 or to a user configured value when the device is enabled.

A UposException may be thrown when this property is accessed. For further
information see “Errors' on page Intro-21.

CapAutoContrast Property, CapContrast Property.

UnifiedPOS Version 1.15 -- May 11, 2018

10-20

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

CropAreaCount Property

Syntax

Remarks

Errors

See Also

CropAreaCount: int32 { read-only, access after open }

This property indicates the number of Crop areas that have been defined which
may be applied to the captured image.

If CapDefineCropArea is false, then this property is always zero.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapDefineCropArea Property, MaxCropAreas Property, defineCropArea
Method.

DocumentHeight Property

Syntax

Remarks

Errors

See Also

DocumentHeight: int32 { read-write, access after open}

This property is used to define the height of the document scanned or the height of
a document to scan. It is expressed in the unit of measure as defined by the
MapMode property.

If CapAutoSize is true, then the height of the scanned document will be

automatically placed in the DocumentHeight property when the image is
captured.

If CapAutoSize is false, the height of the document can be manually set in the
DocumentHeight property by the application prior to scanning a document.

This property is initialized to the maximum height supported by the device by the
open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoSize Property, MapMode Property.

DocumentWidth Property

Syntax

Remarks

Errors

See Also

DocumentWidth: int32 { read-write, access after open}

This property is used to define the width of the document scanned or the width of
a document to scan. It is expressed in the unit of measure as defined by the
MapMode property.

If CapAutoSize is true, then the width of the scanned document will be

automatically placed in the DocumentWidth property when the image is
captured.

If CapAutoSize is false, the width of the document can be manually set in the
DocumentWidth property by the application prior to scanning an image.

This property is initialized to the maximum width supported by the device by the
open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoSize Property, MapMode Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-21

FilelD Property

Syntax FilelD: string { read-write, access after open }

Remarks This property is used to store a “file name” associated with the image data file. If
the application chooses to create the data for this property, it must set the FileID
property prior to calling the storeImage method.

After a retrieveMemory method call the FileID property will be set to the image
data file name if available, otherwise it will be set to an empty string. Its value is
set prior to a DataEvent being delivered to the application.

If the CapAutoGenerateFileID property is true then the FileID will
automatically be generated by the hardware device or the service when the image
is scanned.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAutoGenerateFileID Property, retrievelmage Method, retrieveMemory
Method, storelmage Method.

FileIndex Property Updated in Release 1.13

Syntax FileIndex: int32 { read-write, access after open }

Remarks This property is used to store a file location reference to the image data file when
either the storelmage or retrieveMemory methods are called. Its value is set prior
to a DataEvent being delivered to the application.

The FileIndex property is used only by the service in conjunction with the device
to manage the storage and retrieval of an image data file. The application may
write a value into the FileIndex property. However, it is normally the
responsibility of the service to ensure that a unique integer value is used to store
or retrieve the image file.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also clearImage Method, retrievelmage Method, retrieveMemory Method

storelmage Method.

UnifiedPOS Version 1.15 -- May 11, 2018

10-22

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

ImageData Property

Syntax

Remarks

Errors

See Also

ImageData: binary { read-only, access after open }l

This property is used to store the image data after the retrievelmage or
retrieveMemory methods are called. If no image data was available, the
ImageData property will be set to zero length (or empty). Its value is set prior to
a DataEvent being delivered to the application.

This property is initialized to zero length by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrievelmage Method, DataEvent.

ImageFormat Property

Syntax

Remarks

Errors

See Also

ImageFormat: in#32 { read-write, access after open }

This property is used to define the data format of the image file that the device will
use when it captures an image. The availability of acceptable file types is specified
in the CapImageFormat property.

The ImageFormat property must be set before a document is scanned. Any
previously stored data in the ImageData property will not be affected by changing
the value of the ImageFormat property.

If the device provides support, it may be one of the following values:

Value Meaning

CHK IF NATIVE Hardware native format
CHK IF_TIFF TIFF format

CHK IF BMP BMP format

CHK IF JPEG JPEG format

CHK _IF GIF GIF format

The default value of this property is CHK IF TIFF.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CaplmageFormat Property, Color Property, DataEvent.

I In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-23

ImageMemoryStatus Property

Syntax

Remarks

Errors

See Also

ImageMemoryStatus: int32 { read-only, access after open-claim }

This property is used to indicate the current memory availability status if the
device has the ability to store multiple image files. The ImageMemoryStatus
value is only valid if the CapStoreImageFiles is true.

The following values are supported.

Value Meaning

CHK IMS _EMPTY The image memory is empty.

CHK IMS OK The image memory is has storage available.
CHK IMS FULL The image memory is full.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStorelmageFiles Property, storeImage Method.

UnifiedPOS Version 1.15 -- May 11, 2018

10-24

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

ImageTagData Property Updated in Release 1.13

Syntax

Remarks

Errors

See Also

ImageTagData: string { read-write, access after open }

This property is used to define a string that specifies the ARTS XML compliant
tag name for the captured image data. The recommended way is to use XML
CDATA to transfer this data to the application to prevent inadvertent parsing of
the data.

An example of one possible data set would be:

<![CDATA[
<Transaction>192345782</Transaction>
<Operator>35467</Operator>
<SellingLocation>Store Number 762</SellingLocation>
<DateTime>2008-11-21T12:21:30.5Z</DateTime>
<CheckAccountNumber>0089543219</CheckAccountNumber>
<ImageData>12546a92b7c5........ 45d3</ImageData>

1>

Note: The example shown would pass the XML data for the image intact to the
application. When the CDATA constructs were removed, the resultant XML data
could then be parsed by another application process.

The tag name may be specified by the application or auto-generated by the Check
Scanner device. Information contained in the data may refer to the date, time, lane
number, location, clerk, or other information of interest associated with the image
at the time of capture.

If the application chooses to create the data for this property, it must set the
ImageTagData property prior to calling the storelmage method. After a
retrieveMemory method call, the ImageTagData property will be set if
available, otherwise it will be set to an empty string. Its value is set prior to a
DataEvent being delivered to the application.

If the CapAutoGeneratelmageTagData property is true, the ImageTagData
will automatically be generated by the hardware device or the service when the
image is scanned.

All ImageTagData information must be formatted using XML that is conformant
to the ARTS Data Model and XML Dictionary. It is the responsibility of the
Application and/or Service to encode or parse the XML data.

Some possible entries from the ARTS XML Dictionary are:

DateTime, SellingLocation, Operator, CheckAccountNumber and Transaction.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoGeneratelmageTagData Property, retrievelmage Method,
retrieveMemory Method, storelmage Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-25

MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }

Remarks This property is used to specify the units of measure that are currently valid for the
Check Scanner.
The mapping mode defines the unit of measure used by other properties, such as
the DocumentHeight and DocumentWidth properties.
The following units of measure may be selected for storing the image:
Value Meaning
CHK_ MM _DOTS The scanner’s dot width.
CHK_MM_TWIPS 1/1440 of an inch.
CHK MM ENGLISH 0.001 inch.
CHK MM _ METRIC 0.01 millimeter.
Note: The value of MapMode for the Check Scanner is initialized to
CHK_MM_ENGLISH when the device is first enabled following the open
method. This default value may be different from other device categories in the
UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DocumentHeight Property, DocumentWidth Property, defineCropArea

Method.

MaxCropAreas Property

Syntax

Remarks

Errors

See Also

MaxCropAreas: int32 { read-only, access after open }

This property is used to specify the maximum number of crop areas that the device
can support.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapDefineCropArea Property, CropAreaCount Property, defineCropArea
Method.

UnifiedPOS Version 1.15 -- May 11, 2018

10-26

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

Quality Property

Syntax

Remarks

Errors

See Also

Quality: int32 { read-write, access after open }

This property is used to set the resolution of the device when a scan image is to
take place. It is defined as a dpi (dots per inch) value.

Any previously stored data in ImageData property will not be affected when the
Quality property value is changed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

QualityList Property.

QualityList Property

Syntax

Remarks

Errors

See Also

QualityList: string { read-only, access after open }

This property is used to define the resolutions that the Check Scanner is capable
of supporting.

The string data consists of comma separated values that indicate the available
scanning resolutions that the device supports measured in dots per inch (dpi). An
empty string indicates that resolution is not selectable.

An example might be “160,320”, which indicates that the device supports 160 dpi
and 320 dpi.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Quality Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 10-27

RemaininglmagesEstimate Property
Syntax RemaininglmagesEstimate: int32 { read-only, access after open }

Remarks This property is used to provide a “best guess” estimate of the remaining number
of images that can be stored. It is updated after every new image is stored or
cleared from the device’s available memory. The RemaininglmagesEstimate
along with the ImageMemoryStatus properties are intended to be used by the
application to monitor the amount of available image storage.

This property is initialized to a “best guess” estimate of the total number of image
files that can be stored in the device’s memory by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also ImageMemoryStatus Property.

UnifiedPOS Version 1.15 -- May 11, 2018

10-28

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

Methods (UML operations)

begininsertion Method

Syntax

Remarks

Errors

See Also

beginlnsertion (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if
successful. otherwise a UposException is raised. If FOREVER (-1), the method
tries to begin insertion mode, then waits as long as needed until either the check is
inserted or an error occurs.

Called to initiate the document insertion process.

When called, the Check Scanner is made ready to receive a check by opening the
Check Scanner’s check handling “jaws” or activating a Check Scanner’s check
insertion mode. This method is paired with the endInsertion method for
controlling the check insertion. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to
ensure application portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into insertion mode, a
UposException is raised. Otherwise, check insertion is monitored until either:

* The check is successfully inserted.

* The check is not inserted before timeout milliseconds have elapsed, or an error
is reported by the Check Scanner device. In this case, a UposException is
raised, The Check Scanner device remains in check insertion mode. This
allows an application to perform some user interaction and reissue the
beginInsertion method without altering the Check Scanner check handling
mechanism.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY If the Check Scanner is a combination device, the peer
device may be busy.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified time has elapsed without the check being

properly inserted.

beginRemoval Method, endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 10-29

beginRemoval Method

Syntax

Remarks

Errors

See Also

beginRemoval (timeout: inz32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if
successful. otherwise a UposException is raised. [f FOREVER (-1), the method
tries to begin removal mode, then waits as long as needed until either the check is
removed or an error occurs.

Called to initiate the check removal processing.

When called, the Check Scanner is made ready to remove a check by opening the
Check Scanner’s check handling “jaws” or activating a Check Scanner’s check
ejection mode. This method is paired with the endRemoval method for controlling
check removal. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into removal or ejection mode, a
UposException is raised. Otherwise, check removal is monitored until either:

e The check is successfully removed.

e The check is not removed before timeout milliseconds have elapsed, or an
error is reported by the Check Scanner device. In this case, a UposException
is raised, The Check Scanner device remains in check removal mode. This
allows an application to perform some user interaction and reissue the
beginRemoval method without altering the Check Scanner check handling
mechanism.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY If the Check Scanner is a combination device, the peer
device may be busy.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified time has elapsed without the check being

properly removed.

beginInsertion Method, endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-30 Check Scanner

clearimage Method

Syntax clearImage (by : int32):
void { raises exception, use after open-claim-enable }

Parameter Description

by Indicates how the image file is to be located so that it can
be removed from the storage.

Remarks Called to clear a specific image or all the images in the device memory.
The following values may be selected for by to initiate clearing of the memory:

Value Meaning
CHK CLR _ALL All images in the device are cleared

CHK _CLR _BY_FILEID Locate file to be cleared using the FileID property.

CHK _CLR _BY_FILEINDEX
Locate file to be cleared using the FileIndex property.

CHK CLR BY IMAGETAGDATA
Locate file to be cleared using the ImageTagData

property.

Return A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL One of the following errors occurred:

* Device does not support stored images
* Device does not support clearing one image

E NOEXIST Image was not found.

See Also CapStorelmageFiles Property, FileID Property, FileIndex Property,
ImageTagData Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 10-31

defineCropArea Method

Syntax

Remarks

Errors

See Also

defineCropArea (cropArealD: int32, x: int32, y: int32, cx: int32, cy: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD The numeric identifier for the defined crop area.
x The starting X-coordinate of the cropping area.

y The starting Y-coordinate of the cropping area.
cx The value added to the “X-coordinate” in order to

determine the “X” endpoint for the cropping area.

cy The value added to the “Y-coordinate” in order to
determine the “Y” endpoint for the cropping area.

If the cropArealD parameter is set to CHK_ CROP_AREA RESET ALL, thenall
the crop area definitions allowed (as specified by the MaxCropAreas property)
will reset their (x,y) and (cx,cy) values to (0,0) and

(DocumentWidth, DocumentHeight) respectively.

If the cropArealD parameter is set to CHK CROP_AREA ENTIRE IMAGE,
then the crop area is equal to the entire area of the scanned image.

If cx is set to the parameter CHK_CROP_AREA_ RIGHT, then the “X” endpoint
value will be set to the value of the DocumentWidth property.

If ¢y is set to the parameter CHK_CROP_AREA BOTTOM, then the “Y”
endpoint value will be set to the value of the DocumentHeight property.

This method is used to establish one or more cropping areas that may be applied
to a scanned image. The values are in MapMaode units and use the top left corner
of the scanned document as the origin (0,0). All values are positive.

The defineCropArea method specifies an area of interest that is contained within
a crop box and given an index number for reference. Only the data defined by
defineCropArea index number will be sent when the retrievelmage method is
called.

The crop areas should be set before the retrievelmage method is called and will
be in effect until changed.

A crop box cannot contain an area larger than that defined by the current
DocumentHeight and DocumentWidth properties. If the resultant value for the
endpoint (x+cx) is greater than the DocumentWidth value, then the “X” endpoint
value will be set to DocumentWidth. If the resultant value for endpoint (y+cy) is
greater than the DocumentHeight value, then the “Y” endpoint value will be set
to DocumentHeight.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

CapDefineCropArea Property, CropAreaCount Property, DocumentHeight
Property, DocumentWidth Property, MapMode Property, MaxCropAreas
Property.

UnifiedPOS Version 1.15 -- May 11, 2018

10-32

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

endlnsertion Method

Syntax

Remarks

Errors

See Also

endInsertion ():
void { raises exception, use after open-claim-enable }

Ends the document insertion processing. If this method call is successful, the
device will place the captured image in a working buffer memory area. A
StatusUpdateEvent will occur to indicate that a successful scan image process
has taken place. No DataEvent is enqueued since data has not been transferred to
the ImageData property at this point. The application must invoke retrievelmage
in order to populate the ImageData property with the scan image data.

When called, the Check Scanner is taken out of the check insertion mode. If a
check is not detected in the device, a UposException is raised with an extended
error code of ECHK NOCHECK. This allows an application to prompt the user
prior to calling this method to ensure that the form is correctly positioned.

This method is paired with the beginInsertion method for controlling check
insertion. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in check insertion mode.
E EXTENDED ErrorCodeExtended = ECHK NOCHECK:

The device was taken out of insertion mode without a
check being inserted.

beginInsertion Method, beginRemoval Method, endRemoval Method,
retrievelmage Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 10-33

endRemoval Method

Syntax

Remarks

Errors

See Also

endRemoval ():
void { raises exception, use after open-claim-enable }

Ends the document removal processing.

When called, the Check Scanner is taken out of check removal or ejection mode.
If a check is detected in the device, a UposException is raised with an extended
error code of ECHK CHECK .

This method is paired with the beginRemoval method for controlling check
removal. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in check removal mode.
E _EXTENDED ErrorCodeExtended = ECHK CHECK:

The device was taken out of removal mode while a
check is still present.

beginInsertion Method, beginRemoval Method, endInsertion Method.

UnifiedPOS Version 1.15 -- May 11, 2018

10-34

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

retrievelmage Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

retrievelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area
parameters to be applied to the most recently scanned
image held in the working area memory of the device. If
the value is CHK_CROP_AREA ENTIRE IMAGE
then the entire area of the most recently scanned image
is retrieved.

Called to retrieve the most recently scanned image which is resident in the work
area memory to the ImageData property. If this method call is successful, the
device will deliver either a DataEvent or an ErrorEvent at a later time.

If the CapImageTagData property is true, then the ImageTagData property is set
to the ARTS XML compliant tag data associated with the image data file.

If a file name has been created for the image data by the device, then the FileID
property will be set to the file name; if none is available then the FileID property
will be set to an empty string.

Many models of Check Scanner devices do not require any check handling
processing from the application. Such devices may always be capable of receiving
a check, scanning the image into their working memory area, and require no
commands to actually read and eject the check. For these type of Check Scanner
devices, the beginInsertion, endInsertion, beginRemoval and endRemoval
methods simply return, and the Control will enqueue the data until the
DataEventEnabled property is set to true. However, applications should still use
these methods to ensure application portability across different Check Scanner
devices.

The retrievelmage method cannot be called after a retrieveMemory method has
been called until a new document has been scanned.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The following error has occurred:
* Cropped area that is specified by cropArealD
parameter is invalid.

CaplmageTagData Property, FileID Property, ImageData Property,
ImageTagData Property, beginlnsertion Method, beginRemoval Method,
endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 10-35

retrieveMemory Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

retrieveMemory (by: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

by Indicates how the image file is to be located so that it can
be retrieved from the device memory storage.

Called to retrieve an image that was previously stored in memory to the work area
and the ImageData property. If this method call is successful, the device will
deliver either a DataEvent or an ErrorEvent at a later time.

The following values may be selected for by:

Value Meaning

CHK _LOCATE BY_FILEID
Locate image file using the FileID property.

CHK LOCATE BY_FILEINDEX
Locate image file using the FileIndex property.

CHK LOCATE BY IMAGETAGDATA
Locate image file using the ARTS XML compliant
ImageTagData property.

The FilelD, FileIndex, and ImageTagData properties will all be updated to
reflect their respective values associated with the image data file after this method
is called. A value for FileIndex will always be available. The FileID and
ImageTagData properties will be set to empty strings if the image file does not
have respective data to be retrieved for these properties.

The retrievelmage method cannot be called after a retrieveMemory method has
been called until a new document has been scanned.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* by parameter is invalid.

* The image data file could not be located due to an
invalid value stored in either the FileID, FileIndex,
or ImageTagData properties that was being used
with the by value.

FileID Property, FileIndex Property, ImageData Property, ImageTagData
Property.

UnifiedPOS Version 1.15 -- May 11, 2018

10-36

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

storelmage Method Updated in Release 1.13

Syntax

Remarks

Return

See Also

storelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area
parameters to be applied to image data file currently in
the buffer memory area of the device. If the value is
CHK_CROP_AREA_ENTIRE IMAGE, then an exact
image of the buffer memory is stored in the device
memory (no cropping is applied).

Called to store an image or a cropped area of the image in the memory of the
device.

The RemaininglmagesEstimate property is adjusted to reflect the approximate
number additional images that may be stored in the device memory based upon the
file size history of previously stored images.

The ImageMemoryStatus property indicates whether or not the device memory
is full and is adjusted as a result of this method.

The FilelD, FileIndex, and ImageTagData properties must all be updated to
reflect their respective values associated with the image data file before this
method is called. A value for FileIndex will always be available and is supplied
by the service. The FileID and/or ImageTagData properties will be set to empty
strings if the device does not support the respective property.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXIST Image already exists in the store location specified by
the FileIndex property.

E ILLEGAL One of the following errors occurred:
* Device does not support storing images

* Cropped area that is specified by cropArealD
parameter is invalid.

E _FAILURE Internal error storing image.

E_EXTENDED ErrorCodeExtended = ECHK_NOROOM:
There is no more room for the image in memory.

CapStorelmageFiles Property, FileID Property, FileIndex Property,
ImageMemoryStatus Property, ImageTagData Property,
RemaininglmagesEstimate Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 10-37

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when data from the Check Scanner device is available to be
read.

This event contains the following attribute:

Attributes Type Description

Status int32 Setto 0.
Before this event is delivered, the scanned check image is placed into ImageData.

ImageData Property, endInsertion Method, retrievelmage Method, storelmage
Method.

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Check Scanner Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Check Scanner devices which may not have
any knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

10-38

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

ErrorEvent

<< event >>

Description

Attributes

upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that an error has been detected at the Check Scanner
device and a suitable response by the application is necessary to process the error
condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL _INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER _CONTINUEINPUT Use only when locus is EL_INPUT DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.

Default when locus is EL_INPUT DATA.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 10-39

Remarks This event is not delivered until DataEventEnabled is true and other event
delivery requirements are met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 26.

StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Check Scanner
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the Check Scanner
device.

The Status parameter has one of the following values:

Value Meaning

CHK_SUE_SCANCOMPLETE
The process of scanning a document image has been
successfully completed.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

Remarks Enqueued after the endInsertion method has been called and the Check Scanner
device has successfully completed the process of scanning a new image into a
working buffer memory area. Also enqueued when the Check Scanner device
detects a power state change.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-40 Check Scanner

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 111

CHAPTER 11

Coin Acceptor

This Chapter defines the Coin Acceptor device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-2 Coin Acceptor

Properties (Continued)

Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapFullSensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearFullSensor: boolean {read-only} 1.11 open
CapPauseDeposit: boolean {read-only} 1.11 open
CapRealTimeData: boolean {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.11 open
DepositCashList: string {read-only} 1.11 open
DepositCodeList: string {read-only} 1.11 open
DepositCounts: string {read-only} 1.11 open
DepositStatus: int32 {read-only} 1.11 open, claim, & enable
FullStatus: int32 {read-only} 1.11 open, claim, & enable
RealTimeDataEnabled: boolean {read-only} 1.11 open, claim & enable

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 11-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): 1.11
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void {} supported

directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.11

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-4 Coin Acceptor

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.11

Status: int32 { read-only }
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

11-5

General Information

The Coin Acceptor programmatic name is “CoinAcceptor”.

This device category was added to Version 1.11 of the specification.

Capabilities

The Coin Acceptor has the following capabilities:

Reports the cash units and corresponding unit counts available in the Coin
Acceptor.

The coins which are deposited into the device between the start and end of
cash acceptance are reported to the application. The contents of the report are
cash units and cash counts.

Reports jam conditions within the device.

Supports more than one currency.

The Coin Acceptor may also have the following additional capabilities:

Reporting the fullness levels of the Coin Acceptor’s cash units. Conditions
which may be indicated include full, and near full states.

Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-6 Coin Acceptor

Coin Acceptor Class Diagram

<<ewent>>
DataEvent
(from events)

The following diagram shows the relationships between the Coin Acceptor

classes.

<<exception>>
UposException
(from upos)

N

N

<<sends>>

<<fires>>

<<ewent>>
DirectIOEvent

(from events)

S

<<fires>>

<<ewent>>

(fom events)

StatusUpdateEvent

<<fires>>

<<utility>>
UposConst
(from upos)
A Z}
N
N
AN ‘
<<Interface>> <<utility>>
CoinAcceptorControl CoinAcceptorConst
from upos) uses>> (from upos)
B <<capability>> CapFulSensor : boolean
B <<capability>> CapJamSensor : Boolean -7

%<<capability>> CapNearFullSensor : boolean
%<<capability>> CapPauseDeposit : boolean

N %<<capability>> CapReal TimeData : Boolean

BJ<<prop>> CurencyCode : string
B5<<prop>> DepositAmount : int32
BJ<<prop>> DepositCashList : sting

_|B5<<prop>> DepositCodeList : string

Q)<<prop>> DepositCounts : string
B5<<prop>> DepositStatus : int32
B <<prop>> FullStatus : int32

B<<prop>> RealTimeDataEnabled : boolean

®adjustCash Counts(cashCounts : string)
SbeginDeposit()

®endDeposit(amount : int32)
®ixDeposit()

®pauseDeposit(control : int32)

WreadCashCounts (cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

Model

The general model of a Coin Acceptor is:

Supports several coin denominations. The supported cash type for a particular
currency is noted by the list of cash units in the DepositCashList property.

This specification provides programmatic control only for the accepting of
cash. The removal of cash from the device (for example, to remove deposited
cash) is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call
readCashCounts to retrieve the current unit count for each cash unit, but
cannot control when or how cash is removed from the device.

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list DepositCodeList.
DepositCashList and readCashCounts all act upon the current currency
only.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show
full and near full status. If there are one or more full cash slots, then
FullStatus is CACC_STATUS FULL.

Coin acceptance into the “coin acceptance mechanism” is started by invoking
the beginDeposit method. The previous values of the properties
DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties.

If the pauseDeposit method is executed with a parameter value of
CACC_DEPOSIT _PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of CACC_DEPOSIT _RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until the endDeposit method is invoked with a
CACC_DEPOSIT _COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-8 Coin Acceptor

Coin Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientApp : CoinAcceptorControl CoinAcceptorSenice : DataEvent Human Actor
;| setRealTimeDataEvents(tru D D D

| |
‘| setRealTimeDataEvents (true%) Set so DepositAmount and
| DepositCounts are updated for
M’ each Data Event

3: beginDeposit()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5: initialize DepositAmount and DepositCounts

—

|
|
|
|
[6: accept Cash
|
|
|
|

7: create Data Event

8: enqueue Data Event for delivery M

|
9: update DepositAmount and Deposit Counts
|

|
|
|
|
|
|
|
|
|
|
|
:
U 4: beginDeposit()
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

1

|

10: deliver Data Event I I

| |

| |

11: notify ClientApp of event I :
|

H ‘ !

| | |

|

I 12: fixDeposit() T : : I

| L | | !

| | |

u 13: fixDeposit I I :
| |

| | |

: 14: updateDeposjitAmount and DepositCouqts :

LJ

|

: | < : ‘

I 15: endDeposit(int32) | I :
| L |

| | |

u 16: endDeposit(int32) : : :

! /I_J | |

| | |

| L | |

| | |

| | |

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 11-9

Coin Acceptor State Diagram

setDeviceZhabled(trde)
sefDeviceEngbled(false)

release

Enabled clearinput

readCas| hc@

Coin Acceptance

ClearinputProcessing
entry/ empty data queue

be hDeposit

endDepos’ clearinput

entry/ DepositAmount = 0
entry/ DepositCounts = 0

has room
for coins

Fix Mode }

fixDeposit { entry/ sync DepositAmount and DepositCounts

fix Deposit

adjustCas X
pauseDeposit(CACC_DEPOSIT_PAUSE)

adust

Pause Mode
pauseDeposit(CACC_DEPOSIT_RERTART ¥ e positAmount and DepositCounts ‘

‘

Device Sharing

The Coin Acceptor is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

11-10

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

Properties (UML attributes)

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Coin Acceptor can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 11-11

CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Coin Acceptor has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Coin Acceptor operations.

This property is initialized to an appropriate value by the open method. This value
is guaranteed to be one of the set of currencies specified by the DepositCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

11-12

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Coin
Acceptor.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Coin Acceptor for the currency represented
by the CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the units of
the coins.

Below are sample DepositCashList values in Japanese yen.

* “1,5,10,50,100,500” ---
1, 5,10, 50, 100, and 500 yen coin.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

Itis a list of ASCII three-character ISO 4217 currency codes separated by commas.
For example, if the string is “JPY,USD”, then the Coin Acceptor supports both
Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 11-13

DepositCounts Property

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the cash units. Cash units inside the string
are the same as the DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to:

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Coin
Acceptor.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the coin acceptance operation. It may be one of the
following values:

Value Meaning

CACC _STATUS DEPOSIT START
Cash acceptance started.

CACC_STATUS_DEPOSIT _END

Cash acceptance stopped.
CACC _STATUS DEPOSIT _COUNT

Counting or repaying the deposited money.
CACC _STATUS DEPOSIT _JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CACC_STATUS DEPOSIT _END after initialization.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

11-14

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CACC_STATUS _OK All cash slots are neither nearly full nor full.
CACC_STATUS_FULL Some cash slots are full.
CACC_STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true, each data event fired will update the DepositAmount and DepositCounts
properties. Otherwise, DepositAmount and DepositCounts are updated with the
value of the money collected when fixDeposit is called. Setting
RealTimeDataEnabled will not cause any change in system behavior until a
subsequent beginDeposit method is performed. This prevents confusion regarding
what would happen if it were modified between a beginDeposit - endDeposit pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts
Property, beginDeposit Mecthod, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 11-15

Methods (UML operations)

adjustCashCounts Method

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Coin Acceptor after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

UnifiedPOS Version 1.15 -- May 11, 2018

11-16

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks Cash acceptance is started.
The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.
* The DepositAmount property is set to zero.
After calling this method, cash acceptance is reported by DataEvents until
fixDeposit is called while the deposit process is not paused.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL The call sequence is not correct.
See Also DepositAmount Property, DepositCounts Property, endDeposit Method,
fixDeposit Method, pauseDeposit Method.
endDeposit Method
Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }
The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:
Parameter Description
CACC_DEPOSIT COMPLETE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.
Remarks Cash acceptance is completed.
Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.
The application must call the fixDeposit method before calling this method.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:

e The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method,

fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 1117

fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current
values in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be
called before calling this method.
DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CACC_DEPOSIT PAUSE Cash acceptance is paused.
CACC _DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CACC_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CACC_DEPOSIT _RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount
properties are updated to reflect the current state of the Coin Acceptor. The
property values are not changed again until the deposit process is resumed.

If control is CACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL One of the following errors occurred:

* The call sequence is invalid. beginDeposit must be
called before calling this method.

» The deposit process is already paused and control is
set to CACC_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
CACC _DEPOSIT RESTART.

CapPauseDeposit Property, DepositAmount Property, DepositCounts Property,
beginDeposit Method, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-18 Coin Acceptor

readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is
in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Coin Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Coin Acceptor. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Coin Acceptor. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also DepositCashList Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 11-19

Events (UML interfaces)

DataEvent

<< event >>

Description
Attributes

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when one or more coins have been accepted.
This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for
a vendor-specific Coin Acceptor Service to provide events to the application that are not
otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Acceptor devices which may not have
any knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-20 Coin Acceptor

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Coin Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
The Status parameter contains the Coin Acceptor status condition:

Value Meaning

CACC_STATUS _FULL Some cash slots are full.

CACC _STATUS _NEARFULL Some cash slots are nearly full.
CACC_STATUS_FULLOK No cash slots are either full or nearly full.
CACC _STATUS JAM A mechanical fault has occurred.
CACC_STATUS _JAMOK A mechanical fault has recovered.

Remarks Fired when the Coin Acceptor detects a status change.

For changes in the fullness levels, the Coin Acceptor is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full or
near full states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 121

CHAPTER 12

Coin Dispenser

This Chapter defines the Coin Dispenser device category.

Summary
Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not Supported
DataEventEnabled: boolean { read-write } 1.0 Not Supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not Supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

UnifiedPOS Version 1.15 -- May 11, 2018

12-2

UnifiedPOS Retail Peripheral Architecture

Chapter 12
Coin Dispenser

Properties (Continued)

Specific
CapEmptySensor:
CapJamSensor:
CapNearEmptySensor:

DispenserStatus:

Type
boolean
boolean
boolean
int32

Methods (UML. operations)

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version May Use After
1.0 open
1.0 open
1.0 open
1.0 open, claim, & enable

Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception }
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open }
release (): 1.0
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.0
void { raises-exception, use after open, claim, enable }
clearInput (): Not
void { } supported
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 12-3

Methods (UML operations) - continued

Specific
Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

dispenseChange (amount: int32): 1.0
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::QutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent

Status: int32 { read-only } 1.0

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-4 Coin Dispenser

General Information

The Coin Dispenser programmatic name is “CoinDispenser”.

Capabilities Updated in Release 1.11

The coin dispenser has the following capability:

* Supports a method that allows a specified amount of change to be dispensed
from the device.

The coin dispenser may have the following additional capabilities:
» Status reporting, which indicates empty coin slot conditions, near empty coin
slot conditions, and coin slot jamming conditions.

* Starting with Release 1.11, reporting of a possible (or probable) cash count
discrepancy in the data reported by the readCashCounts method.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 12-5

Coin Dispenser Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Coin Dispenser
classes.

<<Interface>>
BaseControl
(fromupos)
[®open(
[®close()
[Sclaim()
[®compareFimwareVersion() <<utility>>
.re!ease()') | ___ Ssuses>> UposConst
[®reset Statistics() - > rom upos)
TS <<sends>> _ _ -~ i¥checkHealth()
UposException &~~~ [®clearinput())
(from upos) [®clearinputProperties()
[®clearOutput ()
[®directlO()
NN [®retrieweStatistics()
N >
S | oy <<uiity>>
AN CoinDispenserConst
AN (from upos)
N T
<<sends>> ! =
N [<<uses>>
~ N | _ -
Il
<<ewent>> <<|nterface>>
DirectlOEvent CoinDispenserControl
(from events) 3 (fom upos)
[<<prop>> EventNumber : int32 fires g <<capability>> CapEmptySensor : boolean
[G<<prop>> Data : int32 N <<capability>> CapJamSensor : boolean
[<<prop>> Obj : object <<capability>> CapNearEmptySensor : boolean
[E<<capability>> DispenserStatus : int32

®adjustCashCounts(cashCounts : string) : void
[®dispens eChange(amount : int32) : void

i
res [®readCashCounts(cashCounts : string, discrepancy : boolean) : void

<<event>>
StatusUpdateEvent

(from events)

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-6 Coin Dispenser

Coin Dispenser Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Coin Dispenser
device, showing coin dispensing and the firing of a StatusUpdateEvent due to
coin status getting low.

NOTE: we are assuming that the :ClientApp already successfully registered handlers for events and opened, claimed
and enabled the CoinDispenser device. This means that the Claimed, DeviceEnabled properties are == true

‘ :ClientApp ‘ ‘ :CoinDispenser

| | |

1: dispenseChange(amouint1)

‘ :StatusUpdateE vent ‘ :CoinDispenserSenice

2: dispense#hange(amounﬂ)

i /I.ﬁ
4: dispenseCJhange(amountz) ‘

/I-H\Assume that after this

point the CoinDispenser
‘ change is getting low

7

3: dispenseChange(amt{unm)

5: update %ispenserStatus to COIN_STA]£JS_NEAR_EMPTY [CapNearEmptyStatus == true]

At this point the ‘ :l
:ClientApp event 6: create new SUE event
handling code executes ‘ E]
and takes appropriate
action (like informing
user) ‘ 7: deliver SU% ewent to control

I \ 1

L L 8: deliver StatusUpdateE#ent to all registered handlers

: notify cI|eN\t of new event
T | | y

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 12-7

Coin Dispenser State Diagram Updated in Release 1.11

The following diagram illustrates the various state transitions within the Coin
Dispenser device category.

Enabled

readCashC@

UnifiedPOS Version 1.15 -- May 11, 2018

12-8

UnifiedPOS Retail Peripheral Architecture Chapter 12

Coin Dispenser

Model Updated in Release 1.11

The general model of a coin dispenser is:

Consists of a number of coin slots which hold the coinage to be dispensed. The
application using the Coin Dispenser Service is not concerned with
controlling the individual slots of coinage, but rather calls a method with the
amount of change to be dispensed. It is the responsibility of the coin dispenser
device or the Service to dispense the proper amount of change from the
various slots.

Starting with Release 1.11:

Sets cash in the device programatically by adding amount to counts when cash
is added.

Reads cash counts from device, either directly from the hardware, or from the
service, by tracking what is dispensed and what has been added to the device.

Device Sharing

The coin dispenser is an exclusive-use device, as follows:

The application must claim the device before enabling it.

The application must claim and enable the device before accessing some of the
properties, dispensing change, or receiving status update events.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML attributes) 12-9

Properties (UML attributes)
CapEmptySensor Property

Syntax

Remarks

Errors

CapEmptySensor: boolean { read-only, access after open }
If true, the coin dispenser can report an out-of-coinage condition.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapJamSensor Property

Syntax

Remarks

Errors

CapJamSensor: boolean { read-only, access after open }
If true, the coin dispenser can report a mechanical jam or failure condition.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapNearEmptySensor Property

Syntax

Remarks

Errors

CapNearEmptySensor: boolean { read-only, access after open }
If true, the coin dispenser can report when it is almost out of coinage.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DispenserStatus Property

Syntax

Remarks

Errors

DispenserStatus: in#32 { read-only, access after open-claim-enable }
Holds the current status of the dispenser. It has one of the following values:

Value Meaning

COIN_STATUS _OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is synonymous to the DeviceStatus in the Cash Changer.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

12-10

UnifiedPOS Retail Peripheral Architecture Chapter 12
Coin Dispenser

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Coin Dispenser after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the dispenser.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

dispenseChange Method

Syntax

Remarks

Errors

dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Dispenses change. The value represented by the amount parameter is a count of
the currency units to dispense (such as cents or yen).

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An amount parameter value of zero was specified, or the
amount parameter contained a negative value or a value
greater than the device can dispense.

UnifiedPOS Version 1.15 -- May 11, 2018

Methods (UML operations) 12-11

readCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is an ASCII string. The string has a set of
comma separated units. Each unit in cashCounts indicates a denomination of a unit
as well as a count of those units, separated by a colon (“:”).

For example if the currency is Japanese yen and string returned in cashCounts is
set to:
1:80,5:77,10:0,50:54,100:0

as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, and 54 fifty yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-12 Coin Dispenser

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Coin Dispenser Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Dispenser devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events" on page Intro-20, directIO Method.

UnifiedPOS Version 1.15 -- May 11, 2018

Events (UML interfaces) 12-13

StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application of a sensor status change.
Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The status reported from the Coin Dispenser.
The Status attribute has one of the following values:

Value Meaning

COIN_STATUS OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS JAM A mechanical fault has occurred.
Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
Remarks This event applies for status changes of the sensor types supported, as indicated by
the capability properties. It also applies if Power State Reporting is enabled.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-14 Coin Dispenser

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 1341

CHAPTER 13

ELECTRONIC JOURNAL

This Chapter defines the Electronic Journal device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.10 open
CapCompareFirmwareVersion: boolean { read-only } 1.10 open
CapPowerReporting: int32 { read-only } 1.10 open
CapStatisticsReporting: boolean { read-only } 1.10 open
CapUpdateFirmware: boolean { read-only } 1.10 open
CapUpdateStatistics: boolean { read-only } 1.10 open
CheckHealthText: string { read-only } 1.10 open
Claimed: boolean { read-only } 1.10 open
DataCount: int32 { read-only } 1.10 open
DataEventEnabled: boolean { read-write } 1.10 open
DeviceEnabled: boolean { read-write } 1.10 open & claim
FreezeEvents: boolean { read-write } 1.10 open
OutputID: int32 { read-only } 1.10 open
PowerNotify: int32 { read-write } 1.10 open
PowerState: int32 { read-only } 1.10 open
State: int32 { read-only } 1.10 --
DeviceControlDescription: string { read-only } 1.10 --
DeviceControlVersion: int32 { read-only } 1.10 --
DeviceServiceDescription: string { read-only } 1.10 open
DeviceServiceVersion: int32 { read-only } 1.10 open
PhysicalDeviceDescription: string { read-only } 1.10 open
PhysicalDeviceName: string { read-only } 1.10 open

UnifiedPOS Version 1.15 -- May 11, 2018

13-2

UnifiedPOS Retail Peripheral Architecture

Chapter 13
Electronic Journal

Properties (Continued)

Specific:

AsyncMode:
CapAddMarker:
CapErasableMedium:
CaplnitializeMedium:
CapMediumlIsAvailable:
CapPrintContent:
CapPrintContentFile:
CapRetrieveCurrentMarker:

CapRetrieveMarker:

CapRetrieveMarkerByDateTime:

CapRetrieveMarkersDateTime:

CapStation:
CapStorageEnabled:
CapSuspendPrintContent:
CapSuspendQueryContent:
CapWaterMark:
FlagWhenldle:
MediumFreeSpace:
MediumID:
MediumlIsAvailable:
MediumSize:

Station:

StorageEnabled:
Suspended:

WaterMark:

Type
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
boolean
currency
string
boolean
currency
int32
boolean
boolean

boolean

Mutability
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-only}

{read-write}

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open, claim & enable
open, claim & enable
open, claim & enable
open, claim & enable
open
open, claim & enable
open

open

UnifiedPOS Version 1.15 -- May 11, 2018

Summary 13-3
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.10
void { raises-exception }
close (): 1.10
void { raises-exception, use after open }
claim (timeout: int32): 1.10
void { raises-exception, use after open }
release (): 1.10
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }
clearInput (): 1.10
void { raises-exception, use after open, claim }
clearInputProperties (): Not
void { } supported
clearQutput (): 1.10
void { raises-exception, use after open, claim }
directlO (command: int32, inout data: int32, inout obj: object): 1.10
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
Specific
Name
addMarker (marker: string): 1.10
void { raises-exception, use after open, claim, enable }
cancelPrintContent (): 1.10
void { raises-exception, use after open, claim, enable }
cancelQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }
eraseMedium (): 1.10
void { raises-exception, use after open, claim, enable }
initializeMedium (mediumlID: string): 1.10
void { raises-exception, use after open, claim, enable }
printContent (fromMarker: string, toMarker: string): 1.10

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15 -- May 11, 2018

13-4

UnifiedPOS Retail Peripheral Architecture

Chapter 13
Electronic Journal

printContentFile (fileName: string): 1.10
void { raises-exception, use after open, claim, enable }

queryContent (fileName: string, fromMarker: string, toMarker: string): 1.10
void { raises-exception, use after open, claim, enable }

resumePrintContent (): 1.10
void { raises-exception, use after open, claim, enable }

resumeQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

retrieveCurrentMarker (markerType: inf32, out marker: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveMarker (markerType: int32, sessionNumber: int32, document- 1.10

Number: int32, out marker: string):

void { raises-exception, use after open, claim, enable }

retrieveMarkerByDateTime (markerType: int32, dateTime: string, mark- 1.10

erNumber: string, out marker: string):

void { raises-exception, use after open, claim, enable }

retrieveMarkersDateTime (marker: string, out dateTime: string):
void { raises-exception, use after open, claim, enable }

suspendPrintContent ():

void { raises-exception, use after open, claim, enable }

suspendQueryContent ():

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name

upos::events::DataEvent
Status:

upos::events::DirectlOEvent
EventNumber:
Data:
Obj:

upos::events::ErrorEvent
ErrorCode:
ErrorCodeExtended:
ErrorLocus:

ErrorResponse:

upos::events::OQutputCompleteEvent
OutputID:

upos::events::StatusUpdateEvent
Status:

Type

int32

int32
int32
object

int32
int32
int32
int32

int32

int32

Mutability

{ read-only }

{ read-only }
{ read-write }

{ read-write }

{ read-only }
{ read-only }
{ read-only }

{ read-write }

{ read-only }

{ read-only }

1.10

1.10

1.10

Version

1.10

1.10

1.10

1.10

1.10

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

13-5

General Information

The Electronic Journal programmatic name is “ElectronicJournal”.
This device was introduced in Version 1.10 of this specification.

Capabilities

The Electronic Journal device stores records of transactions into digital media as
electronic data. If the recording function of the Electronic Journal device is
enabled, then it starts storing all print data that is output to the POSPrinter or
FiscalPrinter device. In the case of the FiscalPrinter device, the Fiscal Printing
output is stored at all times.

The Electronic Journal has the following capabilities.

 Stores transaction data.
 Transfers stored data.

The Electronic Journal may also have the following additional capabilities.
* Prints stored data on the attached POSPrinter or FiscalPrinter.
* Erases stored data.
* Initializes recording medium.

The Electronic Journal may also have the following special capabilities in fiscal
environments.

* Provides the ability to re-print entire fiscal documents and tickets specifying
a range of ticket numbers or ticket dates and times.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-6 Electronic Journal

Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal
device classes.

<<exception>> <<nterface>> <<utility>> <<utility>>
UposException BaseControl UpesCosd ElectronicJournalConst
(fromupos) < —— —— ——— (fromupos) | = (from upos)|<"] (from upos)
<<sends>> <<uses>>

b 7
<<sends;\ \ <<uses>>/

<<event>>
DataEvent
(from events) : <<Interface>>
<<prop>> Status : int32 ElectronicJournalControl
(from upos)

<<<prop>> AsyncMode : boolean

fires G<<capability>> CaplnitializeMedium : boolean
s2<<capability>> CapErasableMedium : boolean
sz<<capability>> CapPrintContent : boolean
w2<<capability>> CapPrintContentFile : boolean

<<event>> w<<capability>> CapStation : int32
ErrorEvent w<<capability>> CapSuspendPrintContent : boolean
(from events) a<<capability>> CapSuspendQueryContent : boolean

s2<<capability>> CapWaterMark : boolean
2<<capability>> CapMediumlsAvailable : boolean
«2<<capability>> CapRetrieveMarker : boolean
<<<capability>> CapRetrieveMarkerByDateTime : boolean
<<<capability>> CapRetrieveCurrentMarker : boolean
@<<capability>> CapRetrieveMarkersDateTime : boolean
sz<<capability>> CapAddMarker : boolean
sz<<capability>> CapStorageEnabled : boolean
«2<<prop>> FlagWhenldle : boolean

<<<prop>> MediumID : string

<<<prop>> MediumSize : currency

@<<prop>> ErrorCode : int32
<<<prop>> ErrorCodeExtended : int32
w<<prop>> ErrorLocus : int32 fires
@<<prop>> ErrorResponse : int32 <
prop: P! I~

<<event>> @<<prop>> MediumFreeSpace : currency
OutputCompleteEvent fires “G<<prop>> MediumisAvailable : boolean
(from events) |« |K#<<prop>> StorageEnabled : boolean
@<<prop>> OutputiD : int32 @<<prop>> Station : int32
<<<prop>> Suspended : boolean
<<<prop>> WaterMark : boolean

®addMarker(marker : string) : void

fires ScancelPrintContent () : void
®cancelQueryContent () : void
<<event>> FinitializeMedium (mediumlD : string) : void

StatusUpdateEvent - ®eraseMedium () : void
(from events) FprintContent (fromMarker : string, toMarker : string) : void
G<<prop>> Status : int32 SprintContentFile (fileName : string) : void

SqueryContent (fileName : string, fromMarker : string, toMarker : string) : void

®resumePrintContent () : void

FresumeQueryContent () : void

#suspendPrintContent () : void

¥suspendQueryContent () : void

SretrieveMarker(markerType : int32, sessionNumber : int32, documentNumber : int32, out marker : string) : void
SretrieveMarkerByDate Time(markerType : int32, dateTime : string, markerNumber : string, out marker : string) : void
®retrieveCurrentMarker(markerType : int32, out marker : string) : void

FretrieveMarkersDate Time(marker : string, out dateTime : string) : void

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

13-7

Model

The Electronic Journal writing process is started implicitly when a printing
method for the POSPrinter or FiscalPrinter is performed. All output is performed
on a first-in first-out basis. Therefore, an ErrorEvent is delivered if the writing
process fails.

The writing process of the POSPrinter or FiscalPrinter may result in a failure, in
this case an ErrorEvent is delivered.

* The following methods are always performed synchronously: addMarker,
retrieveCurrentMarker, retrieveMarker, retrieveMarkerByDateTime,
retrieveMarkersDateTime, and checkHealth. These methods will fail if
output to the POSPrinter or FiscalPrinter is outstanding.

* The suspendPrintContent and suspendQueryContent methods are also
always performed synchronously.

These methods attempt to stop printing (that is, at the very next printer
operation). They may be called when asynchronous output is outstanding.
These methods are primarily intended for use in exception conditions when
asynchronous output is outstanding.

* The following methods are performed either synchronously or asynchronously,
depending on the value of the AsyncMode property: eraseMedium,
initializeMedium, printContent, printContentFile, and queryContent.
When AsyncMode is false, then these methods are performed synchronously.

A marker can be placed where to store data and it can be used as an index. It can
be added at the beginning and end of data to indicate the data range when getting
or printing stored data.

During asynchronous data printing or transfer process, it can be suspended by
interrupt methods.

In fiscal environments the markers are set implicitly by the FiscalPrinter device.
The stored data is organized in sessions that correspond to the fiscal days. These
sessions contain documents that correspond to fiscal tickets. Sessions and
documents can be queried by the application indirectly using the
retrieveMarker, retrieveMarkerByDateTime, and retrieveCurrentMarker
methods. The returned markers are intended to be used with the printContent
and queryContent methods. The content and format of the markers are
implementation specific and need not be known or analyzed by the application.

An Electronic Journal device combines both the properties of an input device
(query) and an output device (store and print).

The data stored on the electronic journal medium are the printing lines that have
been issued to the attached POSPrinter or FiscalPrinter device. The data format of
the stored information depends upon the physical device model. The data should
be stored in nonvolatile storage; e.g., flash cards, memory cards, CD-RW, and
HDD can be used as the physical media. There is no need to distinguish the
differences between the physical media.

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-8 Electronic Journal

If the recording medium can be removed from or inserted into the device, a
StatusUpdateEvent is delivered when the medium status is changed.
Additionally, the medium status can be checked and it can be initialized if
necessary.

The primary responsibility is storing transaction data as it is, so there are no
functions to convert or reprocess the data.

Device Sharing

The Electronic Journal is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing many of
the Electronic Journal specific properties.

* The application must claim and enable the device before calling methods that
manipulate the device.

e See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15 -- May 11, 2018

General Information

13-9

Electronic Journal Sequence Diagrams

Various sequence diagrams are used to illustrate how the Electronic Journal API
can be used. These scenarios are designed to show the rationale and key concepts
behind the structure of the API.

: Application

: ElectronicJournalControl

: POSPrinterControl

open()

claim()

h

T setDeviceEnabled(true)

setStorageEnabled(true)

T setDataEventEnabIed(true)/I—ﬁ

addMarker(1) ‘

printNormal PTR_S#RECEIPT, "Receipt #1")

addMarker(2)

write data

\
u‘
|
|

g

(
pri ntNormaI(PTR_SJRECEIPT, "Receipt #2")

T queryContent("data.bin", 1, 2)

write data

|
|

notify of DataEvent

)

close()

|
i

J
J

UnifiedPOS Version 1.15 -- May 11, 2018

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-10 Electronic Journal

The following sequence diagram shows how markers are intended to be used in
the fiscal environment. The querying of the FiscalPrinter device for the needed
markers is processed implicitly and therefore not shown below.

: Application : ElectronicJournalConst

retrieveMarker(EJ_MT_SESSION_BEG, 1, 0, marker1)

maker1

retrieveMarker(EJ_MT_SESSION_END, 1, 0, marker2)T

marker2

printContent(marker1, marker2)

queryContent("data.bin", marker1, marker2)

I
— — -

UnifiedPOS Version 1.15 -- May 11, 2018

General Information 13-11

Electronic Journal State Diagram

The following diagram illustrates the various state transitions within the
Electronic Journal device.

. printContent(), printContentFile(), queryContent()

N

Y

N IMod | |
L ormaiiiode suspendPrintContent()L SuspendMode)

suspendQueryContent()

resumePrintContént(), cancelPrintContenty(),
resumeQueryContent(), cancelQueryContent()

UnifiedPOS Version 1.15 -- May 11, 2018

13-12

UnifiedPOS Retail Peripheral Architecture Chapter 13
Electronic Journal

Properties (UML Attributes)

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods will be performed asynchronously.
If false, they will be performed synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAddMarker Property

Syntax CapAddMarker: boolean {read-only, access after open}

Remarks If true, the application can use the addMarker method. Usually this property is
false for fiscal EJ devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also addMarker Method.

CapErasableMedium Property

Syntax

Remarks

Errors

CapErasableMedium: boolean {read-only, access after open}

If true, the storage medium can be erased. If false, it is impossible.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CaplnitializeMedium Property

Syntax CaplnitializeMedium: boolean { read-only, access after open }

Remarks If true, the application can initialize the medium.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapMediumisAvailable Property Updated in Release 1.11
Syntax CapMediumlIsAvailable: boolean { read-only, access after open }
Remarks If true, the application can check whether a recording medium is available or not.
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.
See Also MediumlIsAvailable Property.

UnifiedPOS Version 1.15 -- May 11, 2018

Properties (UML Attributes) 13-13

CapPrintContent Property Updated in Release 1.11
Syntax CapPrintContent: boolean { read-only, access after open }
Remarks If true, the device is able to repr